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Summary 

  

     “Proteome” is the entirety of proteins expressed in an organism, a cell, an 

organelle, but also in a tissue or a body fluid, including the modifications made to a 

particular set of proteins at a given time point under defined conditions. Proteome is 

much more dynamic than genome, and is strongly influenced by internal and external 

factors such as development, differentiation, temperature or stress and thus differs 

from cell to cell. 

      This work discusses our proteomics investigations conducted on three different 

types of biological samples obtained from three different organisms, belonging to 

different kingdoms and orders: NIH-3T3 cells, yeast Saccharomyces cerevisiae and 

Human Plasma. 

      In the first work [Magherini et al., 2009] we performed a proteomic analysis of 

NIH-3T3 cells exposed to toxic aggregates of a protein domain not involved in any 

amyloid disease: the N-terminal domain of the prokaryotic HypF hydrogenase 

maturation factor (HypF-N). The aggregation properties and aggregate toxicity of 

HypF-N were previously characterized [Bucciantini et al., 2004; 2005; Campioni et 

al., 2008]. Two-dimensional gel electrophoresis followed by protein identification by 

MALDI-TOF MS, allowed us to find that aggregates cause to the cells changes in the 

expression level of proteins involved in stress response and in signal transduction. To 

our knowledge, this is the first proteomic study on the alterations of the protein 

expression profiles in cells exposed to toxic amyloid aggregates of a disease 

unrelated protein.  

      The second work [Guidi et al., submitted to B.B.A-Proteins and Proteomics] 

deals with our proteomic study to understand how Saccharomyces cerevisiae adapts 

its metabolism during the exponential growth in three different glucose 

concentrations (2%, 0,5% and 20% glucose). From our analysis we noticed that yeast 

cells have a decreased growth rate during the initial phase of fermentation in high 

glucose and that there is a differential proteins expression depending on the 

environmental variations. In glucose restriction (0,5% glucose) and in high glucose 
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(20% glucose) we found an over-expression of a protein (Peroxiredoxin) involved in 

protection against oxidative stress insult. Identifying the functionally modulated 

proteins involved in glucose induced yeast response, will lead to a better 

comprehension of the mechanisms underlying the effects of different glucose 

concentrations; this will contribute to the complete understanding of yeast 

fermentation and respiration metabolism.  

      The last work made in our lab was a proteomic study of human plasma obtained 

from athletes trained to perform endurance exercise and from subjects practising 

various kinds of sport only for recreational purposes. Physical activity, following an 

increase in oxygen consumption, leads to a temporary imbalance between the 

production of RONS and their disposal; this phenomenon is called oxidative stress. 

We wanted to characterize plasma proteins that undergo carbonylation in response to 

different kinds of training and different physical exercises. In fact, it is widely 

accepted an increase in carbonylated proteins in plasma of athletes after physical 

exercise, but in literature there aren’t works in which the targets of this oxidation are 

identified. This is the first work in which the carbonylated proteins in plasma are 

analyzed by a proteomic approach. We found not only proteins that are target of 

carbonylation after physical exercise, but also proteins which carbonylation is not 

affected by exercise and proteins which are carbonylated only in the plasma of the 

resting condition. A protein whose carbonylation level increases after exercise is the 

Haptoglobin, a glycoprotein present in plasma with important antioxidants functions: 

it protects Haemoglobin from oxidative damage. Then we found that endurance 

trained athletes showed a higher carbonylation of plasma proteins in comparison to 

men that practise various kind of sports with a moderate exercise. These methods 

allowed us to obtain an overview of the change in the oxidation of plasma proteins 

after physical exercise and to identify new markers of physiological stress. 

 

      The proteomic approach applied to these samples has thus provided a rich and 

varied set of data and we hope they will make a contribution to the appropriate 

individual fields of biotechnology applications. 



Chapter 1. Proteomics 

 6

 

 

Chapter 1 

 

 

 

 

“Proteomics” 

 

 

 

 



Chapter 1. Proteomics 

 7

1. Proteomics 

 

      The word “proteome” is derived from “PROTEins expressed by a genOME” and 

it refers to all the proteins produced by an organism, much like the genome is the 

entire set of genes. Proteomics is the large-scale study of proteins, particularly their 

structures and functions. This term was first used by Wasinger et al., in 1995 to make 

an analogy with genomics, and while it is often viewed as the “next step”, 

proteomics is much more complicated than genomics.  

      One of the milestone achievements of biology has been the independent 

completion of the sequencing of the human genome by both the Human Genome 

Organisation (HUGO) [Lander 2001]and Celera Corporation [Venter et al,. 2001]. 

Since then, the corresponding availability of automated and high-throughput 

sequencers allowed the completion of several genomes of model organisms 

[Aparicio et al., 2002; Waterston et al., 2002; Gibbs et al., 2004; Hillier et al., 2004; 

Mikkelsen et al., 2005]. In turn, the availability of whole-genome sequences started 

off large-scale searches for open reading frames (ORF’s). Both in silico efforts and 

mRNA sequencing contributed greatly to this end and today we have a very good 

estimate of the total number of expected genes in the human genome [International 

Human Genome Sequencing Consortium 2004]. 

      Although a genome provides the important basis for a better understanding of a 

living organism, it cannot by itself provide an explanation for the actual diversity and 

adaptability evident in all life. Rather, we have to look into the RNA and protein 

content of cells in order to get an idea of how the cell works at any given time. 

      One of the big surprises from the human genome sequencing was the relatively 

low number of about 20,000 human genes detected, only roughly three times more 

than present in yeast. Even though the human species appears much more complex 

than yeast, its difference is unlikely to be explained solely by the number of genes. 

Figure 1 gives an enlightening example why genetic data cannot explain many 

biological processes and functions of an organism. 
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Fig. 1. Caterpillar and butterfly of Orgyia antiqua L. Not only the genome, but in particular 
the proteins [the proteome] determine the appearance and state of a biological organism. 

 

Each somatic cell of the caterpillar and its counterpart the butterfly possess the 

identical genetic information, but there are two totally different phenotypes of the 

same insect. This fact is explained by the different expression of the individual genes 

into proteins, that is the different translation of the genetic information. In fact, 

proteins are responsible for the biological activity and function of the organism. 

      The proteome is the entirety of proteins expressed in an organism, a cell, an 

organelle, but also in a tissue or a body fluid, including the modifications made to a 

particular set of proteins at a given time point under defined conditions. Proteome is 

much more dynamic than genome, and is strongly influenced by internal and external 

factors such as development, differentiation, temperature or stress and thus differs 

from cell to cell. Furthermore, distinct genes are expressed in distinct cell types and 

many proteins may go through a wide variety of modifications that profoundly affect 

their activity. Phosphorylation, glycosylation or oxidation of certain amino acid 

residues can influence protein localization, stability, enzymatic activity and protein-

protein interactions [Proud et al., 2005; Tischer et al.,2003; Restle et al., 2005; 

Spiriti et al., 2008]. 

      Understanding the functions of a living cell at a molecular level is one of the 

most important issues in modern research. Most of the molecular mechanisms that 

occur in a cell are performed by proteins [Witzmann and Li, 2002]. Given that the 

One GENOME 

Different 
PROTEOME 
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whole sequence of genome of various organisms, including humans, is known, the 

number of proteins with unknown function has grown enormously. The Human 

Genome Project has indeed provided a wide variety of information about the 

sequence of individual genes. However, there isn’t a simple linear relationship 

between the information contained in the genome and that expressed by proteins 

[Cahill et al., 2001]. Indeed, the high post-transcriptional processing and the many 

post-translational variants of proteins make impossible to predict the real functional 

proteic product from the information contained in its open reading frame. 

   Currently, therefore, the interest is projected towards the identification of the 

structure, function and interactions of each protein produced by a cell, in order to 

understand its role both in physiological than pathological processes. The term 

“proteome” is generally attributed to Mark Wilkins, who coined the term at the 

“Siena Conference” in 1994 [Wasinger et al., 1995]. In order to understand a living 

cell at the molecular level it is imperative to analyze its protein content. Analyzing 

the proteome presents a more daunting challenge than analyzing the genome: apart 

from spanning an extremely large concentration range (at least 10 orders of 

magnitude in plasma [States et al.,2006]) it is both highly dynamic in concentration 

as well as in modification state. Indeed, even though cells share the same genome, 

their proteomes can differ markedly [Collins et al., 2001]. 

 

      Protein sequences are not easily duplicated to large copy-numbers as is the case 

for nucleic acid sequences, through the application of the polymerase chain reaction 

(PCR). The most popular technique today for studying the proteome is by mass 

spectrometry, which relies on separating charged ions by their mass-to-charge ratio 

(m/z).  
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Modern proteomics studies can be divided into two main areas: expression and 

functional proteomics. 

 

Expression Proteomics (also called structural): its main objective is the analysis on a 

large scale of proteins expressed by a cell as a function of changes in cellular 

conditions (different growth conditions, cellular stress, disease etc.). Expression 

Proteomics can be further divided into two main lines: 

 

• Systematic proteomics : leads to the creation of reference maps of the 

expressed proteins and their precise identification. 

• Differential proteomics: provides quantification of proteins that are 

differently expressed in the same biological sample, in relation to changes in 

physiological or pathological conditions, with the identification of proteins 

responsible for the expression changes. 

    

   The development of this analysis approach is the result of considerable 

development of analytical technologies for the separation of proteic molecules (2D 

electrophoresis and 2D liquid chromatography) coupled to the identification of 

proteins (mass spectrometry and bioinformatics). The considerable amount of new 

information we can get, led the proteomics studies in the biomedical field; in this 

field the expression proteomics aims to identify proteins involved in the development 

and progression of a disease, with the aim to find specific markers useful for not 

invasive diagnosis or prognosis of many diseases, most notably cancer [Hanashi et 

al., 2004]. For example proteomics has been used to identify proteins that are 

differentially expressed between normal and tumor tissue in various cancer, such as 

liver, bladder, lung, prostate and others [Soldes et al., 1999; Celis et al., 2000; 2002; 

Meehan et al., 2002]. 
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Functional proteomics has the objective to identify the biological functions of 

proteins, whose role remains unknown. This task is also achieved through the 

identification of protein interactions in vivo. In cells, in fact, biological processes are 

not only controlled by the relative abundance of various proteins, but also by the 

transient regulation of their activity (for example by reversible covalent 

modification), their cellular localization and their association with other components. 

A large number of proteins act their functions in cells forming multi-proteic 

complexes; therefore, understanding biological functions of these proteins and 

elucidating the molecular mechanisms by which these functions are performed, is 

related to the identification of their molecular partners. Proteomics analysis can 

contribute to identify basic components of multi-proteic complexes and are an 

effective alternative method to the molecular biology techniques. 
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1.1 Two Dimensional Gel Electrophoresis  (2D-GE) 

 

Two dimensional electrophoresis allows to separate, in a single experiment, 

thousands of proteins expressed by a cell. In some cases more than 10,000 protein 

spots have been resolved in a single gel [Klose et al., 1999]. The large amount of 

data obtained is then processed by using sophisticated bioinformatics analysis of the 

2D images. The two-dimensional polyacrylamide gel electrophoresis (2D-SDS-

PAGE) is a technique known since the '70s; despite the understanding of the benefits 

that this technique could be made in biological studies, two-dimensional 

electrophoresis was not actually used for many years due to some technical 

difficulties. In fact until the introduction of some changes in gels preparation and 

manipulation, to achieve clear and well reproducibly results was not possible.  

Currently, two-dimensional electrophoresis is one of the methods with higher 

resolution for separating complex mixtures of proteins. In fact, two-dimensional 

electrophoresis can separate the various proteins of a highly heterogeneous protein 

mixture basing on their isoelectric point (isoelectric focusing), and according to their 

molecular weight, once masked the intrinsic charge of each protein. 

However, poorly soluble proteic molecules (e.g. membrane proteins) can not be 

separated by two-dimensional electrophoresis, since there aren’t recovered during 

sample preparation or during the early stages of separation processes. Small 

molecules (weighing less than 8 kDa) are lost during isoelectric focusing, while those 

weighing more than 200 kDa are not separate efficiently during the second 

dimension. For this reason alternative methods have been developed to integrate this 

method, for example two-dimensional liquid chromatography system (ion exchange / 

reverse phase) coupled to mass spectrometry in tandem. In general, these methods 

are called "Multidimensional Protein Identification Technology” [Yates et al., 1997; 

Washburn et al., 2001]. 
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Fig. 2. Diagram of the first dimension. At the top of the drawing there is a schematic 
structure of a strip with immobilized pH gradient. The bottom portion represents the phases 
of isoelectric-focusing. By applying a potential difference, different proteins migrate along 
the strip, stopping at the point where the pH corresponds to their isoelectric point. 

 

      A common 2D-GE is achieved combining two electrophoretic techniques, which 

define the so-called “dimensions”. 

The first dimension is an isoelectric focusing (IEF), in which proteins are separated 

in a pH gradient until they reach an equilibrium state where their net charge is zero 

(isoelectric point, pI) (Fig.2). Initially, pH gradient was formed ex novo for each 

experiment, in special tubes containing the gel where sample was applied; only linear 

pH gradients were generated: at equal pH intervals corresponded equal parts of the 

gel. This methodology made the experiments less reproducible and failed to provide 

good resolution of heterogeneous protein mixtures. The success of two-dimensional 

electrophoresis came when, for the first dimension, preformed strips were introduced 

in place of the tubes containing the gel [Bjellqvist et al.,1982]. These strips had the 

polyacrylamide layer applied on. In addition pH gradient, initially generated by 

ampholytic carriers, was replaced by an immobilized pH gradient (IPG). 

In the second dimension (Fig.3), polypeptides are separated orthogonally from the 

first dimension, by a polyacrylamide gel electrophoresis in the presence of sodium 

I.P.

pH gradientpH gradient

+_

I.P.

pH gradientpH gradient

++__
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dodecylsulphate (SDS, an anionic detergent). This detergent binds to proteins in a 

stoichiometric way, according to a 1:2 ratio with the amino acid residues.  

 

 

 

 

 

 

 

 

Fig. 3. Diagram of the Second dimension. Strip containing the proteins immobilized in 
polyacrylamide, is placed at the top of a gel. During the run proteins migrate from the strip 
to the gel, maintaining the separation obtained in the first dimension and by the presence of 
SDS they will be further separated based on their molecular weight. 

 

      The SDS is used in conjunction with reducing agents, in order to denature and 

dissociate proteins in single polypeptide chains. By using SDS the intrinsic charge of 

each protein is completely masked. In this way the proteins negative charge density 

is proportional to their molecular weight. 

After the electrophoretic run, proteins are shown using appropriate specific colours 

and appear on the gel as a single point, called "spot", which can vary in size and in 

coloration intensity, depending on the amount of protein. 

      With specific software and mass spectrometry is possible quantify the differences 

between individual spots in different gels, in order to obtain information about 

changes in proteomes of samples of interest. The high resolving power of two-

dimensional electrophoresis is mainly due to the fact that two distinct chemical and  
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physical properties of the polypeptides are exploited [Herbert et al.,1997]. Perhaps 

one of the key to the success of 2D-PAGE has been the introduction of IPG-

technology (immobilized pH gradient) and in particular the generation of non-linear 

extended pH gradients, thereby covering the pH range 3-10. In fact the first gradients 

used were linear and did not allow a good resolution in the separation, due to the fact 

that proteins in a cell lysate do not cover uniformly all pH ranges with their 

isoelectric point. This problem was solved with the introduction of non-linear pH 

gradients. The idea of non-linear pH gradient drift from the job to Gianazza and 

Righetti [1980], where they evidenced that only one third of the proteins present in a 

generic sample focus in the region of alkaline pH scale, while more than two thirds 

focus in the acid region. For this reason they created a pH gradient that had a lower 

slope in the more acidic region and a higher slope in the alkaline one, improving the 

yield of the first dimension separation. For example, Giannazza et al., [1985], with 

these modifications, achieved significant improvements in the resolution of 

overlapping bands in the acidic region of a Klebsiella pneumoniae lysate, without 

incurring losses in the basic region of the protein profile. A pH gradient of 3.5-10 

laid the foundations for most of the non-linear gradients in commerce today.The 

different ranges of gradients allowed to explore a larger region of the pH scale. 

 

Fig. 4. Proteomics analysis. 
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Highly acidic pH ranges were described for the fractionation of acidic proteins such 

as pepsin [Righetti et al., 1988], as well as very basic ph ranges (ph 10-12) for the 

analysis of protease with high and even of histones [Bossi et al., 1994]. In 1990 2D-

maps were described with the widest possible pH gradient (pH 2.5-11) [Sinha et al., 

1990]. Also sigmoidal pH gradient were optimized [Tonani and Righetti, 1991].      

Despite the progress made in recent years for the development of alternative methods 

of protein separation, as the use of technologies based on the use of "chips" [Issaq et 

al., 2002; Merchant and Weinberger, 2000] or use of "affinity tags" [Zhou et al., 

2002], two-dimensional polyacrylamide gel electrophoresis remains the most widely 

used in proteomics (Fig. 4). 
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1.2  Spots Visualization 

 

Techniques commonly used for visualization of proteins separated on gel base on 

the use of dyes that bind to proteins in a non-specific way. The type of colour must 

be chosen according to the type of analysis (Table I). There are colour that allow 

viewing of spots but make impossible the analysis by mass spectrometry (for 

example ammoniacal silver staining). These can be used when quantitative and 

qualitative differences must be assessed. Other types of colouring, however, does not 

alter proteins structure and allow protein identification by mass spectrometry. 

One such technique involves the use of colloidal Coomassie Blue staining. This 

dye is widely used and enables the detection of protein amounts ranging from 

micrograms to nanograms. A more sensitive technique, enabling detection of less 

abundant proteins, is the silver staining, able to detect proteins in quantities below 

the nanograms. Both these methods of viewing the protein, however, have 

drawbacks: they show a different reactivity from protein to protein, lack of linearity 

between the amount of protein present in the gel and the amount of dye associated 

and may be poorly reproducible, thereby preventing a real quantification of the 

protein in question. These defects were corrected with the introduction of fluorescent 

reagents that allow the visualization of proteins with a sensitivity of silver staining, 

but with fewer problems of linearity in the resolution.  

 

Table I. Different dyes for 2D-GE. 

Dye Sensibility Compatibility with mass 
spectrometry 

radioactive < 1 ng yes 

Coomassie Blue 30 – 100 ng yes 

Silver 1 ng Not always 

Zinc-Imidazole 10 – 20 ng yes 

SYPRO Ruby 1 ng yes 
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1.3  Spots Analysis  

 

      A proteomics analysis, in spite of the sample or biological problem, requires a 

series of independent experiments. Generally, in order to minimize the experimental 

variation and to obtain the real biological information with a statistical analysis of the 

results, it’s necessary to do the same experiments at least in triplicate. In this way, for 

every experiment, a lot of different gels have to be analysed, with thousands of spots 

to be looked in order to find qualitative and quantitative differences. In particular, to 

evaluate variations in spot intensities (quantitative differences) directly is impossible. 

To analyze so many spots and gels in order to compare different samples and to 

detect both quantitative and qualitative differences, after staining, scanning the gels 

using a scanner or a densitometer is needed.  

Thus, to analyse and quantify the differences between individual spots in 

different gels, in order to obtain information about changes in proteomes of samples 

of interest, the use of specific software is necessary. There are specific software to 

analyze digitized images. MELANIE (Medical ELectrophoresys ANalysis Interactive 

Export system) has bees one of the first programs and it has been updated with the 

program Image Master 2D (Fig.5). 

The resolving power of two-dimensional electrophoresis is generally considered 

proportional to the total area of the gel, because it depends on the extent of both 

dimensions of run. On standard size gel (16cm x 18cm) between 2000 and 4000 

proteins can be displayed; in order to display up to 10000 spots, gels of big 

dimensions have also been obtained [Klose et al., 1999]. 

Faced with such complexity to use computerized systems of image processing is 

essential to obtain objectivity and reproducibility of qualitative and quantitative gels 

analysis. These systems will overcome the real differences between images. These 

differences are due to gels resolution, size and gradient, to distortion and 

interference. Software helps the extrapolation of information and functional 

expression from the huge and complex amount of data obtained by 2D-GE. 
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Fig. 5. Particular of a 2D gel during the MELANIE’s analysis. 

      

      The image processing performed by the software produces an attenuation of the 

distortion and interference resolution, an increase in the contrast between spots and 

background and an images distortion allowing overlay and comparison of different 

gels. 

Each spot recognized by the system on the gel (spot detection), is evaluated both 

qualitatively and quantitatively:  

• Qualitative analysis is obtained in order to detect the presence or absence of spots 

in the gels. It’s made by direct comparison overlapping different gels; the software 

uses specific algorithms that allow to couple different spots present in different gels 

as a function of their Cartesian coordinates (gel matching). 

• Quantitative assessment is conducted according to the relative spot volume 

calculated on the total volume of all spots on the gel. The software is able to assess 

the volume of each spot multiplying its area to its corresponding optical intensity.  

      Two spots present in two different gels but characterized by the same spatial 

coordinates are paired and given as a pair. This allows a comparative analysis of the 

gels to understand the variations in proteins expression in relation to the different 
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biological conditions considered. With the numerous analysis programs a 

comparison of the gels obtained from samples with two-dimensional maps in 

database and also maps produced in different laboratories can be made directly with 

good results [Corbett et al., 1994; Blomberg et al., 1995]. 

Unfortunately, the procedure for computer analysis is not, as it can appear, simple 

and automated. The imperfection of systems analysis, both in spot detection that in 

the evaluation of "discrepancies" in images, makes the analysis an "...exercise in 

frustration..." [Witzmann et al., 2002], which can take months to be completed.  
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1.4 Proteins identification by Mass Spectrometry 

 

Once completed the images analysis is essential to identify and characterize the 

proteins that are found changed in quality or quantity [Shevchenko et al., 1996]. The 

ability to separate high proteins loads, maintaining good resolution, gives the 

purification of thousands of polypeptides; these can be identified quickly and directly 

through specific biochemical methods. In the past, Edman degradation [Edman and 

Begg, 1967] was the main technique for proteins identification. Currently this 

method has been replaced by mass spectrometry techniques, because of problems 

associated with high costs and the long period of analysis [Patterson and Aebersold, 

1995]. These techniques constitute the most sensitive for an accurate mass 

determination of various kinds of complex molecules, depending on their 

relationship mass/charge (m/z). This methodology is applicable only if the molecules 

can be ionized and if ions can exist in the corresponding gas phase. 

      Mass spectrometry has been made compatible with the analysis of biological 

polymers, mainly proteins, by the introduction of ionization methods that do not 

degrade the analytes: the electrospray ionization (ESI) [Fenn et al., 1989] and matrix 

assisted desorption ionization (MALDI) [Karas and Hillenkamp, 1988]. Both 

techniques allow to analyze complex peptide mixtures obtained from proteolytic 

digestion or total lysates. The almost exclusive use of trypsin is important, since it 

allows to obtain peptides with known and predictable terminal residues. 

Generally, a mass spectrometer consists of three main components: 1) Ion source; 2) 

Ion analyzer;3) Detector. 

 In MALDI-TOF (Matrix-Assisted Laser Desorption Ionization - Time Of Flight) 

mass spectrometry, peptides are incorporated into an aromatic matrix that promotes 

protonation if irradiated with laser. Then ions enter the chamber of the analyzer by 

applying a potential difference variable. The m/z ratio of each ion is then determined 

by its time of flight (TOF) registered by the detector. Therefore, with the same kinetic 

energy, ions having lower m/z ratio will arrive before at the end of the tube of the 

analyzer than heavier ions. If we want to determine the peptide sequence we proceed 
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to the further fragmentation of individual peptides using the TOF-TOF technique 

(Fig.6). 

 

 

Fig. 6. Mass Spectrometer MALDI-TOF/TOF. 

 

      Analyzing the peptides mixture generated, we obtain a set of precise molecular 

weight values (peptide mass fingerprinting), which can be used for searching in 

protein sequences databases, using one of several network available software. These 

programs simulate the hydrolysis of all proteic sequences present in database and 

calculate the molecular weights values of each peptide virtually generated. Thus, for 

each protein, a series of virtual molecular weights is obtained; these are compared 

with the series of experimental values. Higher the correspondence between the 

measured values and theoretical ones is, greater is the probability that the protein be 

the one indicated in the database.  

In the ESI mass spectrometry, analyte in liquid phase is passed through a capillary, 

after which the sample undergoes atomization, desolvation and ionization. In this 

case the analyzer is different and it is often an ion trap. 
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1.5 Proteomics Applications 

 

There are countless areas of biological application of the proteomics and the 

amount of data, information and notional-functional integration obtained and 

processed is incredibly large and varied. Each type of organism, from the more 

complex to the most simple, is a possible object for proteomics study. It is incredible 

to see that even an organism generally considered "simple", like yeast, is actually an 

intricate functional system of proteins. Proteomics is a powerful tool that can be 

applied to understand a lot of biological mechanisms and processes.  

      For example, many applications of proteomics are used in microbiology. The 

proteome of many pathogens has been identified and placed in special databases. The 

proteomics approach has been useful in the development of recombinant vaccines, 

such as that against the meningococcus. Other strategies include comparative 

proteomic analysis of pathogens and non-pathogenic organisms, in order to identify 

proteins that are involved in pathogenesis. For example the proteome of the 

tuberculosis agent, Mycobacterium tuberculosis, was compared with that of relative 

non-pathogenic, Mycobacterium bovis, to identify proteins specific of the virulent 

strain. Proteomics has also been used to analyze all the proteins expressed by some 

fungi pathogenic for humans, such as Aspergillus fumigatus and Candida albicans. 

      Proteomics studies have also clarified that most human diseases are extremely 

complex, that pathogenicity involves a large number of proteins and that rarely there 

is a single target protein. Since proteins are the principal target of drugs, the 

development of proteomics techniques has provided an important aid to the 

identification of new active molecules. Proteomics is applied at all stages of drug 

developing: target identification, target validation, identification of lead compound, 

lead optimization, toxicity studies and clinical trials. Once the therapeutic target has 

been identified, proteomics can still be useful in the search for compounds active on 

that target. Techniques such as structural proteomics have been very useful in the 

development of protease inhibitors, drugs used to treat HIV. Additionally these 

techniques can be helpful in the development of broad spectrum antibiotics [Schmid 
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et al., 2002]. Proteomics may be useful in assessing the effectiveness of the drug 

and its toxicity. For example, to evaluate the proteins alterations involved in 

nephrotoxicity induced by gentamicin, 2D-GE was used [Charlwood et al., 2002]. 

Proteins identified were involved in the toxicity mechanism and these studies have 

suggested that such markers could be used for highlighting the potential 

nephrotoxicity in the antibiotics screening. Correlating proteomics information with 

those obtained with genomic techniques, we can obtain more information on many 

diseases and we can clarify the action mechanisms of many drugs and many cellular 

processes. 
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1.6 Cell Culture and Proteomics 

 

      Working with cell culture is not only an established model for many diseases but 

also offers a quick and efficient way to analyze reactions and responses of various 

cells types to different effects or conditions. This includes not only looking at the 

cells viability, but also much deeper at the proteomics of the cells.  

      In cells, in fact, biological processes are not only controlled by the relative 

abundance of various proteins, but also by the transient regulation of their activity 

(for example by reversible covalent modification), their cellular localization and their 

association with other components. A large number of proteins act their functions in 

cells forming multi-proteic complexes; therefore, understanding biological functions 

of these proteins and elucidating the molecular mechanisms by which these functions 

are performed, is related to the identification of their molecular partners. 

      Proteomics analysis can contribute to identify basic components of multi-proteic 

complexes and are an effective alternative method to the molecular biology 

techniques. In this field the expression proteomics aims to identify proteins involved 

in the development and progression of a disease, with the aim to find specific 

markers useful for not invasive diagnosis or prognosis of many diseases, most 

notably cancer [Hanashi et al., 2004]. Proteomics studies with cell cultures has been 

used to identify proteins differentially expressed between normal and tumor tissue in 

various cancer, such as liver, bladder, lung, prostate and others [Soldes et al., 1999; 

Celis et al., 2000; 2002; Meehan et al., 2002]. 

      In the past years, academic and industry 

researchers have successfully applied 

proteomic techniques, such as 2D-GE, liquid 

chromatography and mass spectrometry, to 

investigate protein-expression profile changes 

in different cell culture processes and 

conditions [Kim et al., 2008; Shen et al., 

2004]. Fig.7. Fibroblast labeled with FITC, 
Rhodamine, and Dapi. 
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Proteomic tools have been used extensively for products characterization in cell 

culture industry. SDS-PAGE was used to asses purity and integrity of the product 

isolated from culture supernatant [Ackermann 1995]. 2D-GE has also been used to 

asses the consequences of cell culture conditions on protein expression [Lee 1996]. 

Kim et al., [2008] used a 2D-GE-based proteomics approach to the systematical 

analysis of the dysregulations in the cellular proteome of NIH/3T3 cells transformed 

by three kinds of oncogenic ras. The results obtained show that the comparative 

analysis of proteome from oncogenic ras expressing cells has yielded interpretable 

data to elucidate the differential protein expression directly and/or indirectly and 

contributed to evaluate the possibilities for physiological and therapeutic targets. The 

advantage of using cell culture is the high throughput and reproducibility throughout 

the different studies given through immortalized cell lines. 

      Therefore, cell culture proteomics is widely used to understand viral infections 

on cells; for example, Zhao et al. [2008] performed a proteomic analysis to 

determine the role of heat stress in production of progeny HCV in Huh7 cells 

harbouring intact HCV. The intact hepatitis C virus (HCV) cell culture system 

provided a powerful tool for studying the interaction between HCV and host cell. To 

study the infection mechanism of alphaherpesvirus pseudorabies virus (PrV), the 

etiological agent of Aujeszky's disease,  Skiba et al. [2008] performed a quantitative 

proteome analysis on bovine kidney cells. 

      Cell culture proteomics is also used to understand drug effects on cells. For 

example, it’s known that antidepressant drugs can have significant effects on the 

mood of a patient suffering from major depression or other disorders. However, 

many aspects of antidepressant action are not understood. McHugh et al. [2008] 

conducted a proteomic analysis in a neuronal cell culture model to identify molecules 

important to the operation of pathways functionally relevant to antidepressant action. 

Feng et al. [2006] performed a proteomic analysis to determine differentially 

expressed proteins related to the development of cancer cells resistance to 

Methotrexate, one of the most important and frequently used drugs in cancer therapy. 
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1.7 Yeast and Proteomics 

 

Currently yeast, especially Saccharomyces cerevisiae, is widely used as model 

organism for the study of many biological mechanisms, as well as in biotechnology 

and pharmacology. In fact, Saccharomyces cerevisiae has many advantages as model 

system for molecular level studies. It has "technical" advantages, since the equipment 

and tools for its cultivation and study are fairly simple. Furthermore Saccharomyces 

cerevisiae is a unicellular organism whose genome (approximately 6000 genes) was 

completely sequenced and published in 1996 by Goffeau et al.. The Yeast Genome 

Directory and The Saccharomyces Genome Database (SGD) represent the definitive 

source of all information on Saccharomyces cerevisiae genome. 

      Through proteomic analysis has been possible to study all the proteins expressed 

by yeast, for example to understand the changes that occur at different stages of life 

of these cells, by comparing their different proteomes [Kusch et al., 2008]. Given the 

importance of yeast in the study of the molecular mechanisms occurring in 

eukaryotic cells, in literature there are many works where yeast is used on with these 

objectives. 

      In recent years, with improved techniques and the importance of discoveries on 

yeast, studies in genomics and proteomics on these organisms have integrated. Until 

a few years ago, the genomic research was conducted exclusively with an approach 

aimed at isolating and studying a single gene at a time, to find functions and 

regulation pathways. This strategy has 

produced results of considerable interest, 

especially in the medical field, leading to the 

production of several compounds (through 

recombinant DNA technology) used in both 

therapeutic and in diagnostic field. Studies in 

yeast have allowed to develop both the methods 

that approaches for studies of structural and 

functional genomics using DNA microarrays 

[De Risi et al., 1997].  
Fig.8. Budding yeast Saccharomyces 
cerevisiae. 
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Yeast is also the first model system in which DNA microarrays were applied to study 

natural populations both in laboratory conditions that in presence of natural stress 

[Cavalieri et al., 2000, Townsend et al., 2003]. 

      Yeasts were useful to clarify the underlying mechanisms of some fundamental 

cellular processes and they have been used as a model for studying the mechanism of 

many metabolic pathways. 

• In the field of biochemistry they contributed to understanding glycolysis: the 

role of some glycolytic enzymes has been clarified thanks to yeasts, in 

particular the role of phosphofructokinase, [Reibstein et al., 1986].  

 
• Concerning cytology yeasts were used to clarify organelles biogenesis 

[Sudarikov et al., 1988] and structure and function of cytoskeleton [Takai et al., 

1995]. In genetics and molecular biology yeast helped to study cellular cycle: 

homologous of key proteins regulating cell cycle in human cells were found in 

yeast [Lew et al., 1993]. Saccharomyces cerevisiae was used as model 

organism to understand the mechanism of oncogenes in mammalian cells, like 

for protooncogene RAS [Gibbs et al., 1989]. 

• Yeast has been used also as system to produce recombinant proteins for 

therapeutic purposes. The first protein derived from yeast, marketed for 

therapeutic purposes, was the hepatitis B vaccine produced by Merck in 1986 

under the name recombivax. Since than, many other proteins are produced by 

yeasts, also because, being a eukaryotic organism, is able to perform almost all 

post-translational modifications necessary to render the protein biologically 

active. Some of these recombinant proteins are hormones, like insulin [Hadfield 

et al., 1993], interferons [Wisemann et al., 1996], blood proteins like tissue 

plasminogen activator and factors VII, VIII and IX coagulation [Rallabhandi 

and Yu, 1996]. In the field of pharmacology Saccharomyces cerevisiae is a 

useful organism for the development of new drugs. For example, the application 

of proteomics techniques to Saccharomyces cerevisiae appears to be of primary 

importance in the early stages of drugs developing, especially in identifying the 

target. This includes the development of yeast strains engineered to assess the 

toxicity of potential drugs. Analysis based on yeast cells have been applied 
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successfully to identify influenza virus M2 protein inhibitors [Kurtz et al., 

1995].  

 

Fig. 9. Saccharomyces cerevisiae 2D-GE Map with identified spots indicated by their 
accession number. 

 

 

      Building yeast reference maps was possible thanks to the application of 2D–GE 

to S. cerevisiae for proteins large-scale separation and visualization [Shevchenko et 

al., 1996; Maillet et al., 1996; Norbeck et al., 1997; Perrot et al., 1999; Wildgruber et 

al., 2002]. Depending on the protein staining method, more than 1000 proteins can 

be visualized on such gels. Also, subproteome reference maps of, for example, yeast 

mitochondria, have been generated [Ohlmeier et al., 2004]. Moreover, 2D reference 

maps have been constructed for important industrial yeast strains, such as an ale-

fermenting strain [Kobi et al., 2004], wine and lager-brewing strain [Trabalzini et al., 

2003] [Joubert et al., 2000;2001] (Fig. 9). These reference maps are useful tools for 

yeast researchers because they can be used for 2D gel comparisons. 
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      Previews published works made in our lab used a proteomic approach and 

reference maps comparisons for studies on yeast. For example to do a proteome 

analysis in apoptotic yeast cells [Magherini et al., 2007] or to study the 

mitochondrial proteome of yeast mutants lacking proteins Sco1p or Sco2p [Gamberi 

et al., 2009]. Also how different carbon sources can affect protein redox state during 

Saccharomyces cerevisiae ageing was investigated [Magherini et al., 2009] with a 

proteomic approach. In literature many quantitative 2D-gel-based studies have been 

reported with applications to yeast, examining, for example, yeast growth under 

different environmental conditions. Salusjarvi et al. [2003] performed a proteome 

analysis of recombinant xylose-fermenting yeast, comparing conditions in which 

glucose or xylose was the carbon source. Kolkman et al. studied yeast grown in 

chemostat cultures limited for glucose and ethanol [2005], which enabled the 

differential analysis of protein expression levels under glycolytic and gluconeogenic 

conditions. In other studies, 2D gel electrophoresis was used to obtain a global view 

of changes in the yeast proteome as a function of stimuli in the environment, such as 

cadmium [Vido et al., 2001], lithium [Bro et al., 2003], H2O2 [Godon et al., 1998], 

sorbic acid [de Nobel et al., 2001] and amino acid starvation [Yin et al., 2004]. 

Proteome knowledge about industrial strains can be useful for the optimization and 

control of yeast proliferation during industrial fermentation. 

 

      In general, proteome analysis of yeast might contribute to the functional 

characterization of basic cellular mechanisms of eukaryotes [Hwang et al., 2006]. 
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1.8 Human Plasma and Proteomics 

 

Blood plasma is an exceptional proteome in many respects. It is the most 

complex human-derived proteome, containing other tissue proteomes as subsets. It is 

collected in huge amounts (millions of liters) for preparation of protein therapeutic 

products. It is the most difficult protein-containing sample to characterize on account 

of the large proportion of albumin (55%), the wide dynamic range in abundance of 

other proteins and the tremendous heterogeneity of its predominant glycoproteins. 

And it is the most sampled proteome, with hundreds of millions of tubes withdrawn 

every year for medical diagnosis, making it the most important clinically. Proteins in 

plasma have been studied since before we knew genes existed.  

      Plasma is not only the primary clinical specimen but also represents the largest 

and deepest version of the human proteome present in any sample: in addition to the 

classical "plasma proteins," it contains all tissue proteins (as leakage markers) plus 

very numerous distinct immunoglobulin sequences, and it has an extraordinary 

dynamic range in more than 10 orders of magnitude of proteins concentration (Fig. 

11). Although the restricted dynamic range of conventional proteomic technology 

(two-dimensional gels and mass spectrometry) has limited its contribution to the list 

of 289 proteins that have been reported in plasma to date, very recent advances in 

multidimensional techniques promise at least to double this number in the near future.  

      Abundant scientific evidence, from proteomics and other disciplines, suggests 

that among these are proteins whose abundances and structures change in indicative 

ways in many human diseases. Nevertheless, only a handful of proteins are currently 

used in routine clinical diagnosis, and the rate of 

introduction of new protein tests approved by 

the United States Food and Drug Administration 

(FDA) has paradoxically declined over the last 

decade to less than one new proteic diagnostic 

marker per year.  

 

 
Fig.10. Blood separated into its major 
components by centrifugation. 
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Fig.11. Reference intervals for 70 protein analytes in plasma. Abundance is plotted on a 
log scale spanning 12 orders of magnitude. Where only an upper limit is quoted, the lower 
end of the interval line shows an arrowhead. The classical plasma proteins are clustered to 
the left (high abundance), the tissue leakage markers (e.g. enzymes and troponins) are 
clustered in the center, and cytokines are clustered to the right (low abundance). 
 

      We use the term "plasma" to embrace all the proteins of the blood soluble phase 

(excluding cellular proteins) and not as a prescription for a specific sample 

processing technique. In his classic series entitled The Plasma Proteins, Putnam 

[1987] defined true plasma proteins as those that carry out their functions in the 

circulation, thus excluding proteins that, for example, serve as messengers between 

tissues (e.g. peptide hormones) or that leak into the blood as a result of tissue damage 

(e.g. cardiac myoglobin released into plasma after a heart attack). This functional 

definition correctly emphasized the fact that proteins may appear in plasma for a 

variety of different reasons, but it also hints at the fact that different methods and 

approaches were originally responsible for discovery of these classes.  

      Elaborating on Putnam’s classification from a functional viewpoint, we can 

classify the protein content of plasma into the following design/function groups: 

Proteins Secreted by Solid Tissues: classical plasma proteins are largely secreted by 

the liver and intestines.  
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Immunoglobulins: they represent a unique class of proteins because of their 

complexity: there are thought to be on the order of 10 million different sequences of 

antibodies in circulation in a normal adult.  

"Long Distance" Receptor Ligands: the classical peptide and protein hormones are 

included in this group.  

"Local" Receptor Ligands: these include cytokines and other short distance 

mediators of cellular responses. High plasma levels may cause deleterious effects 

remote from the site of synthesis, e.g. sepsis.  

Temporary Passengers: these include non-hormone proteins that traverse the plasma 

compartment temporarily on their way to their site of primary function, e.g. 

lysosomal proteins that are secreted and then taken up via a receptor for sequestration 

in the lysosomes.  

Tissue Leakage Products: these are proteins that normally function within cells but 

can be released into plasma as a result of cell death or damage. These proteins 

include many of the most important diagnostic markers, e.g. cardiac troponins, 

creatine kinase, or myoglobin used in the diagnosis of myocardial infarction.  

Aberrant Secretions: these proteins are released from tumors and other diseased 

tissues, presumably not as a result of a functional requirement of the organism. These 

include cancer markers, which may be normal, non-plasma-accessible proteins 

expressed, secreted, or released into plasma by tumor cells.  

Foreign Proteins: these are proteins of infectious organisms or parasites that are 

released into the circulation.  

 

      A series of other body fluids including cerebrospinal fluid, synovial fluid, and 

urine (the ultimate destination of most of the <60-kDa protein material in plasma) 

share some of the protein content of plasma with specific local additions that reveal 

interesting clinical information. Unfortunately, these samples are more difficult to 

obtain in a useful state than plasma: collection of cerebrospinal fluid and synovial 

fluid are invasive procedures involving pain and some risk, while urine is more 

difficult to process to a useful sample quickly in a clinical setting (centrifugation to 

remove cells, prevention of microbial growth, and concentration).  
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      Blood was first emphasized diagnostically by Hippocrates, who proposed that 

disease was due to an imbalance of four humors: blood, phlegm, yellow bile, and 

black bile. The importance of this idea was to propose a physical cause, and not a 

divine one, for human disease and it remained basic to medical practice for over a 

thousand years. With Wohler’s synthesis of urea in 1828, the distinction between 

living matter and chemicals began to disappear, and with the enunciation of the cell 

theory by Schleiden and Schwann [1847], the question of the location of disease 

could be productively revisited: Virchow described the cellular (as opposed to 

humoral) basis of disease and finally put an end to phlebotomy as general therapy. 

Despite not being a humor or "vital principle," plasma remained a subject of interest 

throughout this period: in the 1830s Liebig and Mulder analyzed a substance called 

"albumin," in 1862 Schmidt coined the term "globulin" for the proteins that were 

insoluble in pure water, and in 1894 Gurber crystallized horse serum albumin. 

Enzyme activities were detectable in body fluids long before the enzyme proteins 

could be isolated and studied [Moss et al., 1999]. Alkaline and acid phosphatase 

activities were related to bone disease and prostate cancer, respectively, in the 

decades before 1950 and in 1955 the enzyme now called aspartate aminotransferase 

was detected in serum following acute myocardial infarction.  

      The use of analytical separations to look at the plasma proteome parallels very 

closely the development of the separations themselves: plasma is always among the 

first samples to be examined. Tiselius found that serum could be fractionated into 

multiple components on the basis of electrophoretic mobility. His method of 

electrophoresis, first in liquid and then later in anticonvective media such as paper, 

cellulose acetate, starch, agarose, and polyacrylamide, has dominated the separative 

side of plasma proteome work until very recently, evolving through a series of one- 

and two-dimensional systems and finally to combinations with chromatography and 

mass spectrometry that generalize to n-dimensions. This evolution has resulted in an 

almost constant exponential increase in resolved protein species for the past 70 

years.  

Soon after the introduction of high resolution two-dimensional gel electrophoresis 

(2D-GE) in 1975 by Klose, O’Farrell and others, the technique was applied to the 

plasma proteins by the Anderson [1977] with the result that the number of resolved 
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species increased to 300 or more. The 2D-GE map of human plasma that resulted is 

recognizably the same as those produced later by many investigators: in contrast to 

cellular protein patterns, the plasma 2D-GE pattern appears the same in everyone’s 

hands perhaps due to the very high solubility of the proteins involved and the ease 

with which the distinctive glycosylation trains of specific proteins can be recognized. 

A more comprehensive database was reported by Anderson in 1991 in which 727 

spots were resolved and 376 were identified as 49 different proteins. A plasma map 

using an immobilized pH gradient first dimension separation was presented the 

following year with 40 protein identifications [Hughes et al., 1992] and this has been 

extended [on the current Swiss 2D-Page web site: us.expasy.org/ch2d] to identify 60 

proteins (613 spots identified, a majority by immunodetection) (Fig. 12).  

 

Fig. 12. Human Plasma 2D-GE Map. 
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      In plasma there is a very high abundance of a few proteins (albumin, transferrin, 

immunoglobulins, etc.) and an extreme heterogeneity of glycoproteins and 

immunoglobulins. This feature may represent a limit in terms of two-dimensional gel 

analysis of unfractionated plasma. However, this limit can be overcome combining 

2D-GE with additional separation steps. Classical chromatographic separations (such 

as size exclusion, ion exchange, lectin binding, and hydrophobic interaction) may be 

applied to further fractionate plasma.  

      The practical utility of 2D-GE for studies of the high abundance plasma proteome 

has been substantial. Because the isoelectric focusing is sensitive to molecular charge 

and the SDS electrophoresis is sensitive to polypeptide length, 2D-GE is very 

effective at revealing genetic variants (about one-third of which differ in net charge 

from wild type), proteolytic cleavages, and variations in sialic acid content. Several 

genetic variants have been discovered by 2D-GE [Tracy et al., 1982; Harrison et al.; 

1991]. Many proteins in plasma show complex combinations of post-translational 

modifications (particularly involving glycosylation) that can be discriminated by 2D-

GE.  

      The immense dynamic range of plasma proteins is achieved only by technologies 

that presuppose the identity of the analyte: available methods for protein discovery, 

such as 2D-GE or LC/MS/MS, have typical dynamic ranges of only 102–104. Current 

approaches to the extension of this range combine independent fractionation methods 

(principally chromatography, immunoaffinity subtraction, preparative isoelectric 

focusing, or precipitation) with 2D-GE or MS to gain an additional factor of 10–102, 

which, although very productive, is still far short of the desired range.  

      The attraction of plasma for disease diagnosis lies in two characteristics: the ease 

by which it can be safely obtained and the fact that it comprehensively shows the 

state of the body at a particular moment. While other sample types can be obtained 

(saliva, tears, urine, skin, hair, etc.), each is either a small subset of plasma or else a 

restricted local sampling of cellular activity. Genetic markers can be sampled almost 

anywhere (skin, lymphocytes, and various tissues) with equivalent results, but such 

markers reveal only the genotype and hence do not reveal anything of the regulation 

of biological processes in response to lifestyle, disease or drugs that is expressed at 

the mRNA and protein levels. While the mRNA does reveal regulation, it is routinely 
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obtained for clinical purposes only from blood lymphocytes and it is not well 

correlated with protein expression [Anderson et al., 1997] (and hence function). The 

use of plasma and serum for disease diagnosis is thus an obvious approach that has 

been undertaken with some success for many decades [Burtis et al., 1999]. A series 

of 2D-GE studies have examined aspects of the acute phase response in which many 

plasma proteins increase or decrease following a range of inflammatory insults 

[Modesti et al., 2009 Choukaife et al., 1989; Saile et al., 1990 Bini et al., 1992;]. A 

work by Bini et al. [1996] indicates particularly interesting differences between the 

response of the body to bacterial and viral infection. These results indicate both the 

generality of the acute phase response and the power of proteomics to subdivide its 

features in diagnostically useful ways. Many other disease states and developmental 

processes have been examined using 2D-GE on plasma. Tissot et al. demonstrated 

characteristic changes in the plasma 2D-GE pattern indicative of monoclonal 

gammopathies, hyper-γ-globulinemia, hepatic failure, chronic renal failure, and 

hemolytic anemia [1991] as well as progressive changes during fetal development 

[Tissot et al., 1993]. Other changes have been reported associated with malnutrition 

[Lonberg-Holm et al., 1986], haptoglobin in Duchenne muscular dystrophy [John et 

al.,1989], haptoglobin in Down syndrome [Myrick et al., 1990], apoA-I during 

parturition [Del Priore et al., 1991] and apoA-I isoforms in heart disease [Burgess-

Cassler et al., 1992], human chorionic gonadotropin isoforms in patients with 

trophoblastic tumors [Hoermann et al., 1993], and oxidized plasma proteins in 

Alzheimer’s disease [Choi et al., 1924].  

      Cancer tissue samples could be analyzed to distinguish tumor type and prognosis 

[Schmid et al., 1995], and a panel of six cancer markers in plasma was found to be 

useful [Negishi et al., 1987; Alaiya et al., 2000]. More recently, mass spectrometry-

based proteomic approaches have been used as well to discover patterns of disease-

related protein features related to a specific cancer [Petricoin et al., 2002].  

Most of the proteins and disease markers in plasma remain to be discovered.  
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2. Abstract 

 

      Several human diseases are associated with the deposition of stable ordered 

protein aggregates known as amyloid fibrils. In addition, a large wealth of data 

shows that proteins not involved in amyloidoses, are able to form, in vitro, amyloid-

like prefibrillar and fibrillar assemblies indistinguishable from those grown from 

proteins associated with disease. Previous studies showed that early prefibrillar 

aggregates of the N-terminal domain of the prokaryotic hydrogenase maturation 

factor HypF (HypF-N) are cytotoxic, inducing early mitochondria membrane 

depolarization, activation of caspase 9 and eventually cell death. 

      To gain knowledge on the molecular basis of HypF-N aggregate cytotoxicity, we 

performed a differential proteomic analysis of NIH-3T3 cells exposed to HypF-N 

prefibrillar aggregates in comparison with control cells. Two-dimensional gel 

electrophoresis followed by protein identification by MALDI-TOF MS, allowed us 

to identify 21 proteins differentially expressed. The changes of the expression level 

of proteins involved in stress response (Hsp60 and 78 kDa glucose-regulated protein) 

and in signal transduction (Focal adhesion kinase1) appear particularly interesting as 

possible determinants of the cell fate. The levels of some of the differently expressed 

proteins were modified also in similar studies carried out on cells exposed to Aβ or 

α-synuclein aggregates, supporting the existence of shared features of amyloid 

cytotoxicity. 



Chapter 2. “Proteomic analysis of cells exposed to prefibrillar aggregates of HypF-N” 

 40

2.1 Introduction 

 

      Amyloid diseases are a group of protein misfolding pathologies including either 

systemic forms (i.e. type II diabetes mellitus,) and neurodegenerative diseases 

(Alzheimer's, Parkinson's, Huntington and prion diseases) (reviewed in [M. Stefani et 

al., 2003;2004]). The molecular basis of these clinically different pathologies can be 

traced back to the presence, in the affected tissues and organs, of proteinaceous 

deposits of fibrillar aggregates of one out of a number of peptides or proteins, each 

found aggregated specifically in each disease (reviewed in [M. Stefani et al., 2003; F. 

Chiti et al., 2006]). In the last ten years it has became increasingly clear that the 

ability to oligomerize into amyloid assemblies is not a specific feature of the proteins 

and peptides found aggregated in tissues affected by amyloid diseases; in fact, since 

1998, an increasing number of reports support the idea that protein misfolding 

following mutations, chemical modifications, presence of destabilizing surfaces or 

any other alteration of the chemical environment, can result a structural 

reorganization, favouring oligomerization/polymerization of peptides and proteins 

into amyloids [J.I. Guijarro et al.;F. Chiti et al., 1999]. 

      In addition to amyloid aggregation, aggregate toxicity has also recently resulted 

as a generic property of proteins and peptides. In particular, it is increasingly 

recognized that amyloid oligomers, preceding the appearance of mature fibrils, 

known as prefibrillar aggregates, are the most toxic species, among amyloid 

assemblies associated or not associated with disease [C.G. Glabe et al., 2006;2006]. 

This view supports the idea that any protein can potentially become the source of 

toxic species impairing cell viability and that the cytotoxicity of prefibrillar 

aggregates results, at least in part, from shared basic structural features of the latter 

[M. Bucciantini et al., 2004]. Moreover, a growing number of studies suggest that, in 

most cases, the cell membrane, can also favour protein/peptide misfolding favouring 

the appearance of aggregating nuclei [M. Zhu et al., 2002]. Conversely, toxic 

prefibrillar aggregates from disease associated or disease-unrelated proteins can 

interact with the cell membranes modifying their structural order resulting in the 

early impairment of ion and redox homeostasis [M. Bucciantini et al., 2005; J.I. 
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Kourie et al., 2001]. Intense efforts are presently dedicated at unravelling the 

molecular basis of the appearance in tissue of protein aggregates and their 

cytotoxicity. 

However, much must still be learnt to gain enough knowledge to allow designing 

therapeutic strategies aimed at counteracting the clinical symptoms of amyloid 

diseases. On this respect, it can be important to investigate the cytotoxic effects on 

cells exposed to amyloid aggregates of proteins/peptides not associated with any 

amyloid disease. Such study can highlight cell modifications resulting from shared 

structural features in amyloids excluding those associated with the specific features 

of any aggregated peptide/protein. 

      The advent of proteomics has allowed the simultaneous analysis of changes in 

the expression pattern of multiple proteins in complex biological systems. This 

appears particularly important in the case of cell dysfunctions resulting from protein 

aggregation. The effects protein aggregates have on cells appear highly complex and 

heterogeneous. Such a complex pattern of cell impairment makes proteomics one of 

the most useful tools to integrate these modifications into a whole systematic picture. 

The reports that recently appeared on the proteomic analysis of amyloid diseases 

such as Alzheimer's disease, Parkinson's disease and others have provided valuable 

data on some cell modifications allowing to explain, at least in part, cell impairment 

in these diseases [B. Martin et al., 2008; S. Joerchel et al., 2008; Y. Hu et al., 2005; 

Z. Xun et al., 2008; M.H. Chin et al., 2008]. Proteomic studies provided useful 

information on the changes in pattern of protein expression in cells exposed to toxic 

aggregates of specific peptides/proteins found aggregated in the corresponding 

diseases. In the present study we performed a proteomic analysis of NIH-3T3 cells 

exposed to toxic aggregates of a protein domain not involved in any amyloid disease, 

the N-terminal domain of the prokaryotic HypF hydrogenase maturation factor 

(HypF-N) whose aggregation properties and aggregate cytotoxicity were previously 

characterized [ M. Bucciantini et al., 2004; M. Bucciantini et al., 2005; S. Campioni 

et al., 2008]. To our knowledge, this is the first proteomic study on the alterations of 

the protein expression profiles in cells exposed to toxic amyloid aggregates of a 

disease-unrelated protein. Our results highlight some generic changes in protein 

expression pattern elicited by the shared features of amyloids such as the basic cross-
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beta structure and the exposure of hydrophobic patches. We found significant 

differences in the protein expression patterns in the exposed cells, with a number of 

up- or down-regulated proteins. Some of these proteins were also found in similar 

studies carried out on cells exposed to Aβ or α-synuclein aggregates in agreement 

with the generic nature of the cellular changes underlying amyloid cytotoxicity. 

Among the differentially expressed proteins, the reduced expression of Fak1 

observed in the exposed cells can be related to the apoptotic process, whereas the 

increased expression of Hsp60 can provide protection against cell stress induced by 

HypF-N prefibrillar aggregates. Furthermore the treated cells showed a marked 

increase of the expression of both glyceraldehydes-3- phosphate dehydrogenase 

(Gapdh) and enolase. These two proteins are involved in energy metabolism and 

Gapdh has also been shown to bind the β-amyloid precursor protein [J.L. Mazzola et 

al., 2002] and to be involved in transcriptional regulation of cell-cycle [S. Carujo et 

al., 2006]. Finally, we observed an increase in the expression level of actin as 

previously shown in cell exposed to the intracellular domain of the β-amyloid 

precursor protein [T. Müller et al., 2007]. 
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2.2 Materials and Methods 

 

2.2.1 HypF-N expression and purification 

HypF-N was expressed and purified as previously described [S. Campioni et al., 

2008]. HypF-N prefibrillar aggregates were obtained by incubating the protein for 48 

h at room temperature at a concentration of 0.3 mg/ml in 30% (v/v) trifluoroethanol, 

50 mM sodium acetate, 2 mM dithiotreitol (DTT), pH 5.5, as previously reported [S. 

Campioni et al., 2008]. At the end ofthe incubation the solution was centrifuged, and 

the resulting pellet was dried under N2 to remove the residual solvent, dissolved in 

DME Mat 200 μM (monomeric protein concentration) and immediately added to the 

cell culture medium at 2 μM final concentration. 

2.2.2 Cell culture and treatment 

Cell culture media and other reagents, unless otherwise stated, were from Sigma-

Aldrich Fine Chemicals Co. NIH-3T3 murine fibroblasts (ATCC, Manassas, VA) 

were routinely cultured in Dulbecco's modified Eagle's medium (DMEM) with 4.5 

g/l glucose, containing 10% bovine calf serum (HyClone Lab, Perbio Company, 

Celbio), 3 mM glutamine, 100 U/ml penicillin and 100 μg/ml streptomycin, in a 

5%CO2 humidified environment at 37 °C. Cells were used for a maximum of 10 

passages. Sub-confluent NIH-3T3 cells were treated for differing lengths of time 

with 2 μM toxic HypF-N prefibrillar aggregates. Under these conditions it was 

previously shown that the aggregates are stable in the culture media [M. Bucciantini 

et al., 2004]. Controls were performed by exposing the cells to the same amount of 

native, soluble HypF-N. At the end of each treatment, the cells were washed twice 

with phosphate-buffered saline (PBS), dried and stored at −80 °C. 

2.2.3 Sample preparation and 2D-GE 

Cells were scraped in RIPA buffer (50 mM Tris–HCl pH 7.0, 1% NP-40, 150 mM 

NaCl, 2 mM EGTA, 100 mM NaF) containing a cocktail of protease inhibitors 

(Sigma). The cells were sonicated (10 s) and protein extracts were clarified by 

centrifugation at 8000 g for 10 min. Proteins were precipitated following a 
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chloroform/methanol protocol [D. Wessel et al., 1984] and the pellet was 

resuspended in 8Murea, 4% CHAPS and 20mM DTT. Three independent 

experiments were performed and each sample was run in triplicate in order to assess 

biological and analytical variation. IEF (first dimension) was carried out on non-

linear wide range immobilized pH gradients (pH 3.0–10; 18 cm long IPG strips; GE 

Healthcare, Uppsala, Sweden) and achieved using the Ettan™ IPGphor™ system 

(GE Healthcare, Uppsala, Sweden). Analytical-run IPG strips were rehydrated with 

60 μg of total proteins in 350 μl of lysis buffer and 0.2% carrier ampholyte for 1 h at 

0 V and for 8 h at 30 V, at20 °C. MS-preparative IPG strips were loaded with 400 μg 

of proteins. The strips were focused at 20 °C according to the following electrical 

conditions: 200 V for 1 h, from 300 V to 3500 V in 30 min, 3500 V for3 h, from 

3500 V to 8000 V in 30 min, and 8000 V until a total of 80,000 V/h was reached. 

After focusing, analytical and preparative IPG strips were equilibrated for 12 min in 

6 M urea, 30% glycerol, 2% SDS, 2% DTT in 0.05M Tris–HCl buffer, pH 6.8, and 

subsequently for 5 min in the same urea/SDS/Tris buffer solution where DTT was 

substituted with 2.5% iodoacetamide. The second dimension was carried out on 9–

16% polyacrylamide linear gradient gels (18 cm×20 cm×1.5 mm) at10 °C and 40 

mA/gel constant current until the dye front reached the bottom of the gel. Analytical 

gels were stained with ammoniacal silvernitrate as previously described [D.F. 

Hochstrasser et al., 1998]; MS-preparative gels were stainedwith colloidal 

Coomassie [V. Neuhoff et al.,1988] 

2.2.4 Western blotting analysis of proteomic candidates  

For 1-DE 30 μg of protein extracts was separated by 12% SDS-PAGE and 

transferred onto a PVDF membrane (Millipore). To confirm  the results obtained 

from 2D-GE analysis, the relative amount of Hsp60and Fak proteins were assessed 

by Western blot with appropriate antibodies (Santacruz). For quantification, the blots 

were stained with Coomassie brilliant blue R-250 and subjected to densitometric 

analysis performed using Quantity One Software (Bio-Rad). Statistical analysis of 

the data was performed by Student's t-test; p-values 0.05 were considered statistically 

significant. The intensity of the immunostained bands were normalized with the total 

protein intensities measured by Coomassie brilliant blue R-250 from the same blot. 
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2.2.5 Image analysis and statistics 

The gel and Western blot images were acquired with an Epson expression 1680 PRO 

scanner. For each condition, three biological replicates were performed and only the 

spots present in all the replicates were taken in consideration for subsequent analysis. 

Computer-aided 2D image analysis was carried out using Image-Master 2-DE 

Platinum software version 6.0 (GE Healthcare). The relative spot volume calculated 

as %V (V single spot/V total spots, where V=integration of OD over the spot area) 

was used for quantitative analysis in order to decrease experimental errors. The 

normalized intensity of the spots on replicate 2D gels was averaged and standard 

deviation was calculated for each condition. A two-tiled non paired Student's t-test 

was performed using ORIGIN 6.0 (Microcal Software, Inc.) to determine whether 

the relative change was statistically significant. 

2.2.6 In-gel trypsin digestion and MALDI-TOF mass spectrometry 

The analysis was performed on the Coomassie blue-stained spots excised from the 

gels. The spots were washed first with acetonitrile and then with 0.1 M ammonium 

bicarbonate. Protein samples were reduced by incubation in 10 mM dithiothreitol 

(DTT) for 45 min at 56 °C. The cysteines were alkylated by incubation in 5 mM 

iodoacetamide for 15 min at room temperature in the dark. The gel particles were 

then washed with ammonium bicarbonate and acetonitrile. Enzymatic digestion was 

carried out with trypsin (12.5 ng/μl) in 50 mM ammonium bicarbonate buffer, pH 

8.5, at 4 °C for 4 h. The buffer solution was then removed and a new aliquot of the 

enzyme/buffer solution was added for 18 h at 37 °C. A minimum reaction volume, 

enough for complete gel rehydration was used. At the end of the incubation the 

peptides were extracted by washing the gel particles with 20 mM ammonium 

bicarbonate and 0.1% TFA in 50% acetonitrile at room temperature and then 

lyophilised. Positive Reflectron MALDI spectra were recorded on a Voyager DE 

STR instrument (Applied Biosystems, Framingham, MA). The MALDI matrix was 

prepared by dissolving 10 mg of alpha cyano in 1 ml of acetonitrile/water (90:10 

v/v). Typically, 1 μl of matrix was applied to the metallic sample plate and then 1 μl 

of analyte was added. Acceleration and reflector voltages were set up as follows: 

target voltage at 20 kV, first grid at 70% of target voltage, delayed extraction at 100 

ns to obtain the best signal-to-noise ratios and the best possible isotopic resolution 
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with multipoint external calibration using a peptide mixture purchased from Applied 

Biosystems. Each spectrum represents the sum of 1500 laser pulses from randomly 

chosen spots per sample position. Raw data were analyzed using the computer 

software provided by the manufacturers and are reported as monoisotopic masses. 

2.2.7 nanoLC mass spectrometry 

A mixture of peptide solution was subjected to LC-MS analysis using a 4000Q-Trap 

(Applied Biosystems) coupled to an 1100 nano HPLC system (Agilent 

Technologies). The mixture was loaded on an Agilent reverse-phase pre-column 

cartridge (Zorbax 300 SB-C18, 5×0.3 mm, 5 μm) at 10 μl/min (A solvent 0.1% 

formic acid, loading time 5 min). The peptides were separated on an Agilent reverse-

phase column (Zorbax 300 SB-C18,150mm×75 μm, 3.5 μm), at a flow rate of 0.3 

μl/min with a 0% to 65% linear gradient in 60 min (A solvent 0.1% formic acid, 2% 

acetonitrile in MQwater; B solvent 0.1% formic acid, 2% MQ water in acetonitrile). 

Nanospray source was used at 2.5 kV with liquid coupling, with a declustering 

potential of 20 V, using an uncoated silica tip from New Objectives (O.D. 150 μm, 

I.D. 20 μm, T.D. 10 μm). The data were acquired in information-dependent 

acquisition (IDA) mode, in which a full scan mass spectrum was followed by MS/ 

MS of the 5 most abundant ions (2 s each). In particular, spectra acquisition of MS-

MS analysis was based on a survey Enhanced MS Scan (EMS) from 400 m/z to 1400 

m/z at 4000 amu/s. This scan mode was followed by an Enhanced Resolution 

experiment (ER) for the five most intense ions and then MS2 spectra (EPI) were 

acquired using the best collision energy calculated on the basis of m/z values and 

charge state (rolling collision energy) from 100 m/z to 1400 m/z at 4000 amu/s. The 

data were acquired and processed using the Analyst software (Applied Biosystems). 

2.2.8 MASCOT analysis 

The spectral data were analyzed using the Analyst software (version 1.4.1) and the 

MS-MS centroid peak lists were generated using the MASCOT.dll script (version 

1.6b9). The MS-MS centroid peaks were threshold at 0.1% of the base peak. MS-MS 

spectra with less than 10 peaks were rejected. The spectra were searched against the 

Swiss Prot database (2006.10.17 version) using the licensed version of Mascot 2.1 

(Matrix Science), after converting the acquired MS-MS spectra in MASCOT generic 
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file format. The MASCOT search parameters were: taxonomy mus musculus; 

allowed number of missed cleavages 2; enzyme trypsin; variable post-translational 

modifications, methionine oxidation, pyro-glu N-term Q; peptide tolerance 200 ppm 

and MS/MS tolerance 0.6 Da; peptide charge, from +2 to +3 and top 20 protein 

entries. Spectra with a MASCOT score b25 having low quality were rejected. The 

score used to evaluate the quality of matches for the MS-MS data was higher than 

30. However, the spectral data were manually validated and contained sufficient 

information to assign peptide sequence. 
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2.3 Results 

 

2.3.1 Comparative proteomic analysis between control cells and cells 
exposed to HypF-N prefibrillar aggregates  

 

      Previous experiments performed by Bucciantini et al. showed that prefibrillar 

HypF-N aggregates induced early Ca2+ increase and oxidative stress followed by 

mitochondria depolarization and caspase activation in exposed NIH-3T3 cells. After 

24 h, the cells died with necrotic features possibly since the ATP levels were too low 

to sustain the initially triggered apoptotic program [M. Bucciantini et al., 2005]. 

      In order to investigate the changes (if any) in protein expression induced in the 

same cells upon exposure to HypF-N prefibrillar aggregates, we performed a 2D-GE 

followed by mass spectrometry. In all the experiments carried out in this study, the 

cells were exposed to 2 μM prefibrillar aggregates. This protein concentration was 

chosen to investigate finely regulated biochemical processes, such as the activation 

of pro-apoptotic factors, which could be hidden by a stronger cell injury [M. 

Bucciantini et al.,2005]. The cells were treated for 5 and 24 h and proteins extracts 

were prepared as described under Materials and methods. Then the proteins were 

separated by 2D-GE and the resulting silver-stained gels were analyzed using the 

ImageMaster 2D Platinum 6.0 software. The differences of protein expression 

between control and treated cells were taken into consideration if the relative volume 

of the spots differed reproducibly more than 1.5-fold and this difference was 

statistically significant. An average of about 1300 spots was detected in each silver-

stained gel. Cell exposure to HypF-N prefibrillar aggregates did not affect the overall 

proteomic profiles both after 5 h and after 24 h (Figs. 1 and 2). However, the 

computer analysis highlighted 19 variations between cells treated for 5 h with 2 μM 

HypF-N prefibrillar aggregates (Fig. 1B) and the control cells treated for the same 

length of time with an equivalent amount of native HypF-N (Fig. 1A). Among these 

variations, only two were still present after 24 h of treatment with aggregates (Fig. 2) 

indicating that the alteration of the expression is a transient event, at least for this 
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group of proteins, except two. On the other hand, the comparison between cells 

treated for 24 h with 2 μM HypF-N prefibrillar aggregates and control cells showed a 

variation of 9 spots, whose expression was not affected after 5 h, indicating that 

some proteins are up- or down-regulated as a consequence of the prolonged exposure 

to the aggregates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1A. 2D images of silver stained gels of total proteins extracted from control and HypF-N 
prefibrillar aggregate treated cells for 5 h. Arrows indicate variations between control 
(panel A) and treated cells (panel B, next page). Letters indicate the identified proteins. 
Controls were performed by exposing the cells to native, soluble HypF- 
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Fig. 1B. See preview page. 
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Fig. 2A. 2D images of silver stained gels of total proteins extracted from control and HypF-
N prefibrillar aggregate treated cells for 24 h. Arrows indicate variations between control 
(panel A) and treated cells (panel B, next page). Numbers indicate the identified proteins. 
Controls were performed by exposing the cells to native, soluble HypF-N. 
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Fig. 2B. See preview page. 
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2.3.2 Identification of differentially expressed proteins  

 

      In order to identify the proteins of interest, 400 μg of protein lysates was loaded 

on preparative gels and stained with colloidal Coomassie. The spots indicated by 

arrows in representative gels shown in Figs. 1 and 2 were selected for mass spectral 

identification after merging the images of preparative and analytical gels. The 

proteins excised from the gels were reduced, alkylated and in situ digested with 

trypsin. The resulting peptide mixtures were directly analyzed by MALDI/MS 

according to the peptide mass fingerprinting procedure. 

      The peaks detected in the MALDI spectra were used to search for a non 

redundant sequence database using the in house MASCOT software, taking 

advantage of the specificity of trypsin and the taxonomic category of the samples. 

The number of measured masses that matched within the given mass accuracy of 200 

ppm was recorded and the proteins that received the highest number of peptide 

matches were examined. Some spots could not be identified unambiguously either 

due to the low protein content of the spot or to the presence of more than one protein 

per spot. 

      Among the 19 spots differentially expressed after 5 h of cell exposure to the 

aggregates, 13 spots were successfully identified and are indicated by arrows and 

letters in Fig. 1. Among the 9 spots differentially expressed in cells treated for 24 h 

with 2 μM HypF-N prefibrillar aggregates, 8 spots were identified and are indicated 

by arrows and numbers in Fig. 2. Some spots gave no confident identification by the 

peptide mass fingerprinting procedure. Additional data were then provided by nano 

LC/MS/MS experiments. The peptide mixtures were fractionated by nano HPLC and 

sequenced by tandem mass spectrometry leading to the unambiguous identification 

of the protein candidate. 

      The lists of proteins identified by these approaches are reported in Table 1 (5 h 

treatment) and in Table 2 (24 h treatment). The identified proteins included 

cytoskeleton elements (actin, tubulin alpha 1C chain, microtubule-actin cross-linking 

factor 1), enzymes involved in energy metabolism and transcriptional regulation 
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(Gapdh, enolase), proteins involved in stress response (Hsp60 and 78 kDa glucose-

regulated protein) and the focal adhesion kinase, Fak1. Among these proteins only 

Fak1 and Hsp60 showed an expression variation persisting over time, since it was 

observed both after 5 and after 24 h of cell exposure to the aggregates. 
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Table 1. Relative change in protein expression in cells treated for 5 h with HypF-N 
prefibrillar aggregates versus control cells. 

Spot Protein name AC Masco
t score 

No. 
matched 
peptides 

Seque
nce 

covera
ge 

Fold change p-
value 

Functional 
categorizatio

n 

Up-regulated by HypF-N       

A Hsp60 P63038 162 5 12% +1,58 0,0005 

Protein 
folding and 

stress 
response 

B Actin P60710 79 5 22% Only in treated 
cells. N.D. Cytoskeletal 

organization 

C Actin P60710 241 7 18% +9.8 0.007 Cytoskeletal 
organization 

D 
Glyceraldehyde-

3-phosphate 
dehydrogenase 

P16858 120 7 33% +9,7 0,0081 
Energy 
related 

(glycolysis) 

E 78 kDa glucose-
regulated protein P20029 78 2 5% +4.8 0.1 

Protein 
folding and 

stress 
response 

(response to 
unfolded 
proteins) 

F Nucleophosmin Q61937 165 5 15% Only in treated 
cells. N.D. 

Associated 
with 

nucleolar 
ribonucleopro
tein structures 

and bind 
single-

stranded 
nucleic acids 

Down-regulated by HypF-N       

G Focal Adhesion 
kinase-1 P34152 77 17 22% 1,6 0,01 

Non-receptor 
protein-
tyrosine 
kinase 

involved in 
cell motility, 
proliferation 

and apoptosis. 

H Enolasi-1 P17182 118 12 32% -2,4 0,09 
Energy 
related 

(glycolysis) 

I Tubulin alpha-1C 
chain P68373 80 9 31% -8,3 0,015 

major 
constituent of 
microtubules 

J Annexin-A3 O35639 111 13 43% -2 0,019 
Inhibitor of 

phospholipase 
A2 

K Hsp60 P63038 85 2 5% -1,6 0,032 

Protein 
folding and 

stress 
response 

L Transgelin-2 Q9WVA
4 171 7 41% Only in control 

cells N.D. 
Belongs to 

the calponin 
family 

M 
Heparan sulfate 

glucosamine 3-O-
sulfotransferase 2 

Q673U1 47 2 4% Only in control 
cells N.D. 

Catalyzes the 
O-sulfation of 
glucosamine 
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Table 2. Relative change in protein expression in cells treated for 24 h with HypF-N 
prefibrillar aggregates versus control cells. 

Spot Protein name 
Accession 

number 

Mascot 

score 

No. 

matched 

peptides 

Sequence 

coverage 

Fold 

chang

e 

p-

value 

Functional 

categorization 

Up-regulated by HypF-N       

1 
Ovostatin 

homolog 
Q3UU35 48 4 15% +1,4 0,28 

Proteases 

inhibitor 

2 Hsp60 P63038 162 5 12% +1,58 0,0005 

Protein folding 

and stress 

response 

Down-regulated by HypF-N       

3 

Microtubule-

actin cross-

linking factor 1 

Q9QXZ0 82 14 10% -1.66 0.035 

F-actin-binding 

protein which 

may play a role 

in cross-linking 

actin to other 

cytoskeletal 

proteins. 

4 

Microtubule-

actin cross-

linking factor 

Q9QXZ0 88 10 8% -2,24 0,023  

5 Pol protein Q7M6W3 73 10 17% -1,67 0,1 Unknown 

6 Pdia2 protein Q14AV9 43 2 5% -3,21 0,004 
Protein disulfide 

isomerase 

7 

Poly(rC)-

binding protein 

2 

Q61990 71 2 6% -3,78 0,014 

Single-stranded 

nucleic acid 

binding protein 

8 

Fak1 Focal 

Adhesion 

kinase 

P34152 77 17 22% -1,53 0,015 

Non-receptor 

protein-tyrosine 

kinase involved 

in cell motility, 

proliferation and 

apoptosis. 
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2.3.3 Validation of proteomics results 

 

      In order to validate the proteomic results, the amounts of Fak1 and Hsp60 were 

evaluated by Western blot analysis with specific antibodies as shown in Fig. 3, 

panels A and B, respectively. Thirty μg of proteins was loaded on 12% SDS-PAGE 

and transferred onto a PVDF membrane. For quantification, the intensities of the 

immunostained bands were normalized to the total protein intensities in the same 

blot, as measured by Coomassie brilliant blue. In Fig. 3, panel C the histograms 

representing the variation of the expression of Fak1 and Hsp60 are also reported. 

Such analysis confirmed the decrease of Fak1 expression and the increase of Hsp60 

expression both after 5.0 and 24 h. 

 

Fig. 3. Validation of proteomic results by western blot analysis. Western blot were probed 
with antibodies against Fak1 and Hsp60 proteins identified by proteomic screening. The 
intensity of immunostained bands was normalized with the total protein intensities measured 
from the same blot stained with Coomassie brilliant blue (in panel A and panel B a 
representative band of the lane is reported). (A) Aggregate-induced reduced expression of 
Fak1 after 5 and 24 h of treatment: lane 1, cells exposed to native HypF-N; lane 2, cells 
exposed to HypF-N prefibrillar aggregates. (B) Aggregate-induced increased expression of 
Hsp60 after 5 and 24 h of treatment: lane 1, cells exposed to native HypF-N; lane 2, cells 
exposed to HypF-N prefibrillar aggregates. (C) Histograms representing Fak1 and Hsp60 
protein expression variation. The two-tailed non paired Student’s t-test was performed using 
ORIGIN 6.0. (pb0.05). 
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2.3.4 Protein expression changes in cells exposed for 5 h to HypF-N 
prefibrillar aggregates 

 

      In cells exposed to HypF-N prefibrillar aggregates for 5 h, 6 spots (A to F in 

Table 1) appeared up-regulated, whereas 7 spots (G to M in Table 1) appeared down-

regulated. Among the up-regulated proteins, we found the heat shock protein Hsp60 

(spot A). Hsp60 belongs to a family of highly homologous chaperone proteins that 

are induced in response to environmental, physical and chemical stresses, including 

accumulations of misfolded proteins and reactive oxygen species [H.R. Saibil et 

al.,2008; R. Arya et al., 2007]. The increase of Hsp60 expression limits the 

consequences of damage facilitating cell recovery. Hsp60 was also identified in the 

spot K, which was down-regulated upon cell treatment with the aggregates. 

However, the position in the gel and the peptide coverage, indicates that this spot is 

probably a fragment arising from a proteolytic cleavage of Hsp60. 

      A further indication of a stress condition induced in cells exposed to the HypF-N 

aggregates is the marked increase in the expression of the key glycolytic enzyme 

Gapdh (spot D). This protein plays a central role in glycolysis, catalyzing the 

reversible conversion of glyceraldehyde- 3-phosphate to 1,3-bisphosphoglycerate. 

More recent studies have highlighted unexpected non-glycolytic functions of Gapdh 

in physiological and pathological processes, including transcriptional regulation of 

cell-cycle [S. Carujo et al., 2006]. In addition two spots corresponding to actin were 

up-regulated. 

      Among the proteins whose expression appeared decreased upon exposure to 

HypF-N prefibrillar aggregates, the focal adhesion kinase (Fak1; spot G) is 

particularly interesting. Fak1 is a non-receptor cytoplasmic tyrosine kinase that plays 

a key role in the regulation of proliferation and migration of normal and tumour cells 

[M.D. Schaller et al., 1992; 2001]. Interestingly, Fak1 and Hsp60 are the only two 

proteins, among those differentially expressed after 5 h of cell exposure, that do not 

recover a normal expression level after 24 h.  
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2.3.5 Protein expression changes in cells exposed for 24 h to HypF-N 
prefibrillar aggregates 

 

      It was previously shown that NIH-3T3 cells treated for 24 h with 10 μM HypF-N 

prefibrillar aggregates die with necrotic features, including cytoplasmic vacuolization 

and nuclear swelling after an initial apoptotic activation [M. Bucciantini et al., 2005]. 

The amount of HypF-N aggregates (2 μM, soluble protein concentration) used in this 

work is not so high to induce cell death, thus allowing the cells to overcome damage. 

After 24 h of cell exposure to HypF-N aggregates, few other proteins, besides Fak1 

and Hsp60, displayed altered expression. 

      In particular, we identified 6 new spots (1 up-regulated and 5 down-regulated). 

Among the proteins down-regulated, the microtubule-actin crosslinking factor 1 

(MACF1, spot 3) belongs to the Plakin family, that includes proteins involved in the 

linkage of cytoskeletal elements and the junctional complex. MACF1 was found to 

regulate microtubule remodelling in response to the activation of signal transduction 

pathways, although its function has not yet been fully explored [I. Karakesisoglou et 

al., 2000; H.J. Chen et al., 2006]. 
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2.4 Discussion 

 

      To our knowledge, this study is the first proteomic investigation focused on 

highlighting the alterations of the protein expression profiles in a cultured cell model 

exposed to toxic amyloid aggregates of a protein not involved in any amyloid 

disease. Our analysis was performed using a non lethal dose of HypF-N prefibrillar 

aggregates, allowing the detection of fine variations more directly implicated in a 

response to the cell injury given by the aggregates, instead of the complex pattern of 

changes arising during the process of cell death. 

      Our approach led us to identify a subset of cell proteins whose levels were 

significantly altered upon cell exposure to the aggregates for 5 h or 24 h. Some of the 

proteins detected in our investigation, including Hsp60, actin, enolase-1 and Gapdh 

had previously been identified in other proteomic studies carried out on cells exposed 

to Aβ42 or α-synuclein. In Table 3 a comparison between the protein identified in 

our study and the proteins identified in other studies is shown, indicating that there is 

a general response of cells to toxic aggregates that is not sequence specific [B. 

Martin et al., 2008; S. Joerchel et al., 2008; M.A. Lovell et al., 2005; S.J. Shin et al., 

2004; D.C. David et al., 2006] 

 

Table 3.Protein expression changes observed in this study in comparison to previous protein 
reported in other studies. 
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      Actually, changes in the expression levels of Gapdh, actin, tubulin and heat shock 

proteins have frequently been reported in amyloid-linked proteomic studies possibly 

because they are related to a generic response to stress conditions [J. Petrak et al., 

2008] such as that associated with the growth of amyloid aggregates. In our 

experiments, cell exposure to toxic amyloid aggregates induced an increase of the 

expression levels of several proteins such as Hsp60. In addition to its chaperone 

activity, Hsp60 has been suggested to perform complex functions, producing both 

anti- and pro-apoptotic effects. In fact, cytosolic Hsp60, can promote either cell 

survival or caspase mediated cell death by preventing the translocation of the pro-

apoptotic protein Bax into the mitochondria or by favouring the maturation of 

procaspase-3, respectively [J.C. Ghosh et al., 2008; S.R. Kirchhoff et al. 2002; S. 

Xanthoudakis et al., 1999 ; A. Samali et al., 1999; D. Chandra et al., 2007 ]. In a 

recent study, Hsp60, Hsp70, and Hsp90 were shown to provide differential 

protection against intracellular stress caused by β-amyloid by maintaining the 

efficiency of the mitochondrial oxidative phosphorylation and the tricarboxylic acid 

cycle enzymes. In particular, Hsp60was shown to prevent the inhibition of complex 

IV activity by β-amyloid, thus preventing apoptosis [V. Veereshwarayya et al., 

2006]. 

      We also found significantly increased levels of Gapdh and actin. As far as Gapdh 

is concerned, several recent studies have shown that, in addition to glycolysis, it is 

involved in several glycolysis-unrelated activities; these include a role in vesicle 

fusion and transport [E.J. Tisdale et al., 2001], microtubule bundling [P. Huitorel et 

al., 1985], nuclear RNA transport [R. Singh et al., 1993], and transcription [G. 

Morgenegg et al., 1986]. Furthermore, increased expression and nuclear 

translocation of Gapdh have recently been reported to participate to the apoptotic 

pathway in different cell types [M.R. Hara et al., 2005; D.M. Chuang et al., 2005; Z. 

Dastoor et al., 2001; F. Magherini et al., 2007]. Finally, Gapdh has also been 

reported to bind to a variety of proteins involved in neuronal diseases, including the 

amyloid precursor protein and huntingtin [J.L. Mazzola et al., 2002]. The increased 

levels of actin expression in cells exposed to prefibrillar HypF-N aggregates are 

similar to the effects previously reported by Muller et al.; these authors found up-

regulation of the actin gene expression in cells harbouring the cytoplasmic domain of 

the amyloid precursor protein [T. Müller et al., 2007]. 
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      Finally, we found a significant decrease of Fak1 in cells exposed both 5 h and 24 

h to the HypF-N aggregates. The repression of Fak1 synthesis in exposed cells, 

confirmed by Western blot analysis, is one of the major results of this proteomic 

analysis. In vivo animal studies have shown that Fak1 expression is increased in a 

number of human cancers, thus contributing to tumour development and malignancy 

[M.D. Basson et al., 2008]. Moreover, Fak1 has recently been shown to be a critical 

protein in survival signalling, since it blocks apoptosis induced by several stimuli 

[D.H. Crouch et al., 1996]. Fak1 expression decrease following proteolytic cleavage 

in various cell types has been associated with various cell dysfunctions including c-

Myc-induced apoptosis of chicken embryo fibroblasts (CEF) [D.H. Crouch et al., 

1996], growth factor deprivation-induced apoptosis of human umbilical vein 

endothelial cells [B. Levkau et al., 1998], and detachment-induced cell death 

(anoikis) of intestinal epithelial cells [J. Grossmann et al., 2001]. In a recent study, 

different epithelial cell lines treated with thimerosal displayed increased levels of 

hydrogen peroxide resulting in caspase activation, Fak1 cleavage and apoptosis 

[M.F. Mian et al., 2008]. All these observations suggest that the decreased Fak1 

expression in NIH-3T3 cells treated with HypF-N aggregates could be related to the 

apoptotic process: in particular its decreased intracellular levels could be the 

consequence of a proteolytic cleavage making the cells more vulnerable to death.  

      The reported changes in protein expression profiles in exposed cells suggest 

some alterations in specific signalling pathways involved in the control of gene 

transcription and translation and/or in protein degradation pathways. These 

alterations could be triggered, at least in part, by modifications of signalling 

pathways following the reported interaction of amyloid aggregates with the cell 

membrane [M. Bucciantini et al., 2005; J.I. Kourie et al., 2001; L. Zhang et al., 

2001]. Overall, our results can provide useful information on the crucial events 

underlying cytotoxicity induced by amyloid aggregates of different peptides or 

proteins both related and unrelated to disease. 
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3. Abstract 

 

We performed a proteomic study to understand how Saccharomyces cerevisiae 

adapts its metabolism during the exponential growth on three different 

concentrations of glucose; this information will be necessary to understand yeast 

carbon metabolism in different environments. We induced a natural diauxic shift by 

growing yeast cells in glucose restriction thus having a fast and complete glucose 

exhaustion. We noticed differential expressions of groups of proteins. Cells in high 

glucose have a decreased growth rate during the initial phase of fermentation; in 

glucose restriction and in high glucose we found an over-expression of a protein 

(Peroxiredoxin) involved in protection against oxidative stress insult. The 

information obtained in our study validates the application of a proteomic approach 

for the identification of the molecular bases of environmental variations such as 

fermentation in high glucose and during a naturally-induced diauxic shift.  

 

 

 

 

 

 

 

Keywords: Yeast fermentation, proteomics, diauxic shift, glucose metabolism 
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3.1 Introduction.  

 

      Yeast is a facultative anaerobe able to live on various fermentable and non-

fermentable carbon sources. Saccharomyces cerevisiae uses glucose in different 

ways depending on the availability of oxygen and quantity of carbon source. When 

yeast is grown on fermentable substrates such as glucose, the metabolic energy 

essentially originates from glycolysis. The Pasteur effect relates oxygen with sugar 

catabolism, hence glycolysis in resting cells proceeds more rapidly under anaerobic 

conditions than under aerobic conditions [Lagunas et al., 1983]. The situation is very 

different in growing cultures where, irrespective of oxygen availability, fermentation 

is the predominant route of sugar metabolism. If the glucose concentration is high, 

the Pasteur effect is no longer operable and is replaced by the Crabtree effect, by 

which cells continue to ferment due to the repression/inactivation of respiratory 

enzymes or to the inherent limited respiratory capacity of cells [Walker et al., 1999].  

      The Crabtree effect can be either a short-term or a long-term effect [Petrik et al., 

1983]. The short-term effect is characterized by its capability of triggering alcoholic 

fermentation upon a sudden glucose excess condition whereas the long-term effect is 

characterized by the respiratory fermentative metabolism observed in batch 

cultivation or in continuous culturing. During fermentation in grapes, for example, 

sugar concentrations can vary between 1 M and 10-5 M [Kruckeberg et al., 1996]. To 

survive changes in its nutritional environment, yeast is able to detect the availability 

of nutrients and rapidly adapt its metabolism. In S. cerevisiae, growth in rich media 

with low glucose concentration increases both replicative and chronological 

longevity [Jiang et al., 2000; Lin et al., 2000]. The beneficial effects of glucose 

restriction in yeast are related to the increase in respiratory rates that occurs when 

glucose levels in the media are low [Lin et al., 2002; Barros et al., 2004]. These 

enhanced respiratory rates increase intracellular NAD+ levels which may be involved 

in the regulation of replicative lifespan. This modulates the activity of Sir2 family 

proteins [Lin et al., 2003] and reduces the releasing of mitochondrial reactive oxygen 

species (ROS) [Tahara et al., 2007]. ROS are normal by-products of cell metabolism; 

however an increase in their production can cause oxidative modifications in cell 
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macromolecules such as proteins, DNA and lipids. This can induce alterations of cell 

structure that, in many cases, lead to a loss of function. A great number of recent 

reports seems to confirm the Harman “free radical theory of ageing” [Harman et al., 

1992] proposed some fifty years ago notwithstanding the many still remaining 

unknown details. 

      In our previous study, a proteomic approach was used to evaluate the redox state 

of yeast protein cysteines during chronological ageing [Magherini et al., 2009]. 

These data demonstrated that glucose restriction and growth on glycerol 

supplemented media extend S. cerevisiae lifespan and that oxidative damage in cells 

grown on high glucose content, mostly affects glycolytic enzymes. Studying how 

yeast adapts to changes in its environment is important, not only because it might be 

relevant for the optimization of its industrial applications but also because knowledge 

gained during such experiments could help understand some important eukaryotic 

cells biological processes. Comprehensive transcriptome analyses have been 

performed to study the effects of different nutrient conditions on yeast [Boer et al., 

2003; Wu et al., 2004; Saldanha et al., 2004; Tai et al., 2005]. These genome-wide 

expression profiles reflect the physiological status of cells and show how they 

respond to different nutritional environments at transcriptional level. Unlike 

transcriptome studies, proteome studies allow the analysis of all proteins that are 

present in a certain condition. However, increasing evidence shows that mRNA 

abundance is not always correlated with protein expression levels [Anderson et al., 

1997; Gygi et al., 1999; Le Naour et al., 2001; Ideker et al., 2001; Griffin et al., 

2002]. Therefore, it is essential to study yeast adaptation and other biological 

processes at a proteomic level. 

      Two-dimensional reference maps have been constructed for important industrial 

yeast strains [Kobi et al., 2004; Trabalzini et al., 2003; Joubert et al., 2000; Joubert 

et al., 2001]. Many quantitative 2D-gel-based studies with applications to yeast have 

been reported, examining, for example, yeast growth under different environmental 

conditions [Salusjarvi et al., 2003; Brejning et al., 2005; Trabalzini et al., 2003]. 

Global analyses of protein profiles have become a powerful tool to understand how 

cells respond to changes in environment. Ethanol fermentation is a clear one example 

of a process during which yeast cells have to adapt to significant variations. We 
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performed a proteomic study to understand how S. cerevisiae adapts its metabolism 

during the exponential growth in medium supplemented with three different 

concentrations of glucose: 2%, 0.5% and 20%. We selected a 2% and 20% glucose 

concentration for yeast growth because both induce a fermentative metabolism. 

Furthermore, media with 20% glucose concentration is very similar to natural must. 

Throughout alcoholic fermentation, S. cerevisiae cells have to cope with several 

stress conditions that could affect their growth and viability. Glucose per se is a 

powerful signalling molecule in yeast. When glucose concentration falls below 0.2%, 

cells stop dividing for a few hours. After this lag phase, cells start to consume 

ethanol (obtained from the former glucose catabolism) by respiration (natural diauxic 

shift) [Westerbeek-Marres et al., 1988]. A yeast model of glucose restriction (0.5% 

glucose) was chosen in order to study the effect of glucose limitation on its 

proteome. 

 

      The aim of this study was to analyze the proteome changes during growth under 

both high glucose concentration and glucose restriction in yeast. As a result, we 

notice differential expressions of groups of proteins. Yeast grown in these conditions 

shows different growth rates and fermentative behaviours. The different expression 

patterns could be related to the stress caused by high glucose concentration and to the 

previously demonstrated beneficial effect of glucose restriction. 
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3.2 Materials and Methods 

 

3.2.1 Strains. 

The S.cerevisiae strain used in this study is wild-type strain W303-1A, MATa, ura3-

52, trp1Δ2, leu2-3_112, his3-11, ade2-1, can1-100 (accession no. 20000A; 

EUROSCARF, Frankfurt a.M., Germany).  

3.2.2 Growth conditions. 

Yeast cells were grown at 30°C in synthetic complete (SC) medium containing 

0.67% w/v of Yeast Nitrogen Base without Amino Acids (USbiological) 

supplemented with complete Amino Acid dropout solution (USbiological). 0.5% 

glucose, 2% glucose and 20% glucose were used as carbon sources. Cells were 

picked from fresh colonies and grown overnight in SC medium with 0.5%, 2% and 

20% glucose. Cells were then diluted in their respective fresh media to an optical 

density at 600 nm of 0.2 O.D./ml using flasks with volume/medium ratio of 3:1. 

Growth was monitored by measuring the turbidity of the culture at 600 nm (OD600) 

on a spectrophotometer until they reached the cellular density of 0.8 O.D./ml.  

3.2.3 Ethanol and glucose measurement. 

For ethanol and glucose determination, cells were grown in SC medium containing a 

fermentable carbon source (0.5% glucose, 2% glucose and 20% glucose) to an 

optical density (600 nm) of 0.8 O.D. /ml. One millilitre of the growth was harvested 

at exponential phase and then centrifuged. The cleared supernatant was collected to 

estimate the ethanol production and the residual glucose. Ethanol was determined 

using the alcohol-dehydrogenase/aldehyde-dehydrogenase method (the assay was 

performed according to the “K-etoh” kit from Megazymes (Ireland)). Glucose was 

determined according to the Accu-Chek® Active Glucose (Roche Diagnostics) 

protocol. 
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3.2.4 Intracellular ROS evaluation.  

To evaluate the ROS production, cells were grown in SC medium supplemented with  

0.5%, 2% and 20% glucose and were harvested when they reached the cellular 

density of 0.8 O.D./ml. One O.D. of cells was washed twice in 10 mM HEPES 

buffer, then resuspended in the same buffer and incubated at 30° C in the dark for 2 

hours with dihydrorhodamine 123 (Molecular Probes) in order to highlight ROS 

production on a Leica TCS SP5 confocal microscope. 

3.2.5 Sample preparation and 2D-GE. 

For two dimensional experiments, cells were harvested during the exponential phase 

at a cellular density of 0.8 O.D./ml. Cells were broken in RIPA buffer (50 mM Tris-

HCl pH 7, 1% NP-40, 150 mM NaCl, 2mM EGTA, 100mM NaF) plus a cocktail of 

yeast protease inhibitors (Sigma) with glass beads in a Fastprep instrument (Savant). 

Protein extracts were clarified by centrifugation at 8000g for 10 minutes.  

Proteins were precipitated following the chloroform/methanol protocol [Wessel et 

al., 1984] and the pellet was resuspended in 8M urea, 4% 3-[(3-Cholamidopropyl) 

dimethylammonio]-1-propanesulfonate (CHAPS) and 20 mM dithiothreitol (DTT). 

For each experimental condition at least three samples were run in order to assess 

biological and analytical variation. Isoelectrofucusing (IEF) was carried out on 

nonlinear wide-range immobilized pH gradients (pH 3-10; 18 cm long IPG strips; 

GE Healthcare, Uppsala, Sweden) and achieved using the EttanTM IPGphorTM 

system (GE Healthcare, Uppsala, Sweden). MS-Preparative-run IPG-strips were 

rehydrated at 16°C with 350 μg of proteins in 350 μl of lysis buffer and 0.2% carrier 

ampholyte for 1h at 0 V and for 8h at 30 V. The strips were then focused at 16°C 

according to the following electrical conditions: 200 V for 1h, from 300 V to 3500 V 

in 30 min, 3500 V for 3h, from 3500 V to 8000 V in 30 min, 8000 V until a total of 

80000 Vh was reached. After focusing MS-preparative IPG strips were equilibrated 

for 12 min in 6 M urea, 30% glycerol, 2% Sodium Dodecyl Sulfate (SDS), 0.05 M 

Tris-HCl, pH 6.8, 2% DTT, and subsequently for 5 min in the same urea/SDS/Tris 

buffer solution but substituting the 2% DTT with 2.5% iodoacetamide. The second 

dimension was carried out on 9-16% polyacrylamide linear gradient gels (18 cm x 20 

cm x 1.5 mm) at 40 mA/gel constant current and 10°C until the dye front reached the 
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bottom of the gel. The MS-preparative gels were stained with colloidal Coomassie 

[Vilain et al., 2001].  

3.2.6 Image analysis and statistics. 

Gels were acquired with an Epson expression 1680 PRO scanner. For each strain 

condition, 2D gels were run in triplicate and only spots present in all the replicates 

were taken into consideration for subsequent analysis. Computer-aided 2D image 

analysis was carried out using ImageMaster 2-D Platinum software version 6.0 (GE 

Healthcare). Relative spot volume (%V were V=integration of OD over the spot area 

and were %V = V single spot/V total spots) was used for quantitative analysis in 

order to reduce experimental errors. The normalized intensity of spots on three 

replicates 2-D gels was averaged and standard deviation was calculated for each 

condition. A two-tailed non-paired Student’s t-test was performed using ORIGIN 7.5 

(Microcal Software, Inc.) to determine if the variations in relative spot volume was 

statistically significant  

3.2.7 In-gel trypsin digestion and MALDI-TOF Mass spectrometry.  

Protein spots were manually excised from the gel, washed with high-purity water and 

with 50% acetonitrile/water and dehydrated with 100% acetonitrile. The gel slices 

were swollen at room temperature in 20 µl of 40 mM NH4HCO3/10% acetonitrile 

containing 25 ng/µl trypsin (Trypsin Gold, mass spectrometry grade, Promega). 

After 1 h, 50 µl of 40 mM NH4HCO3/10% acetonitrile were added and digestion 

proceeded overnight at 37 °C. The generated peptides were than extracted with 50% 

acetonitrile/5% trifluoroacetic acid (TFA, 2 steps, 20 min each at room temperature), 

dried by vacuum centrifugation, suspended in 0.1% TFA, passed through micro 

ZipTip C18 pipette tips (Milllipore, Bedford, MA, U.S.A.) and directly eluted with 

the MS matrix solution (10 mg/ml α cyano-4-hydroxycinnamic acid in 50% 

acetonitrile/1% TFA). Mass spectra of the tryptic peptides were obtained using a 

Voyager-DE MALDI-ToF mass spectrometer (Applied Biosystems). Peptide mass 

fingerprinting database searching was performed using the MASCOT search engine 

(http://www.matrixscience.com) in NCBInr/Swiss-Prot databases. Parameters were 

set to allow one missed cleavage / peptide, a mass tolerance of 0.5 Da and 
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considering carbamido-methylation of cysteines as a fixed modification and 

oxidation of methionines as a variable modification.  
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3.3 Results and Discussion. 

 

3.3.1 Growth and fermentation profile during aerobic cultivation. 

 

      The W303-1A yeast strain was aerobically cultivated in SC medium 

supplemented with 2%, 0.5% and 20% glucose in order to characterize the molecular 

basis of the yeast’s respiratory and fermentative metabolism during exponential 

growth in the presence of different amounts of glucose. The strain is Crabtree 

positive and to analyze its behaviour, we first evaluated cell growth rate. The three 

different growth behaviours are shown in Figure 1 panel a. In 0.5% and 2% glucose 

the yeast enters the exponential phase more rapidly than in 20% glucose. We choose 

the standard condition of 2% glucose concentration as control. 

      We found that cells grown in glucose restriction show a higher growth rate 

compared to cells grown in high glucose. After cellular acclimation the exponential 

growth begins. When the cultures reach a cellular density of 0.8 O.D./ml (i.e. 8x106 

cells/ml) we evaluate cellular ethanol production and glucose consumption. We 

choose this particular cellular density because in yeast grown in glucose restriction, 

this point is coincides with the onset of the natural diauxic shift [Maris, 2001] 

(glucose concentration in the medium reaches 0.2%, see Table 1A). In this particular 

moment cells undergo a metabolic adaptation accompanied by a global 

reprogramming of gene expression (including mitochondrial biosynthesis) which 

precedes complete glucose exhaustion. The ethanol production in the three different 

amounts of glucose is shown in Figure 1 panel b. The ethanol concentration at 0.8 

O.D./ml is: 2.6 mg/O.D. for 2% glucose; 2.4 mg/O.D for 0.5% glucose and 4.2 

mg/O.D. for 20% glucose. Under high glucose concentration (20%) ethanol 

production is not as high as expected. Pham T. K. et al. [2006, 2008] had previously 

reported that to minimize the osmotic stress caused by a high glucose concentration, 

S. cerevisiae accelerates its production of acidic compounds and glycerol rather than 

synthesize ethanol. The differences related to sugar consumption among the cultures 

are made evident in Figure 1 panel c: at 0.8 O.D./ml a low percentage of glucose 
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consumption (9.9%) is observed in yeast grown in 20% glucose; at that cellular 

density these cells leave approximately 90% residual glucose. On the contrary, 

glucose consumption percentually increases in cells grown in glucose restriction: 

cells leave about 32% residual glucose in the medium. In Table 1 the differences in 

fermentative abilities are shown using two parameters: glucose consumption (A) and 

ethanol production (B). As is evident in Table 1A and Figure 1c, the cells in glucose 

restriction are the ones to use the most glucose. In high glucose concentration ethanol 

is the major product but as shown in Table 1B and Figure 1c, the percentage of 

glucose used for fermentation, in comparison to the total glucose consumption 

(9.9%), is only 37.6%.  
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Fig. 1. a) Aerobic exponential growth of  W303 1A in SC medium supplemented with.: ■, 2% 
glucose; , 20% glucose; , 0.5% glucose. Growth rate of cells was determined by O.D. 
measurements at 600 nm for the indicated times. b) Ethanol concentration (mg/O.D.) was 
evaluated at the cellular density of 0.8 O.D./ml on SC plus 2%,0.5% and 20% glucose. c) 
Percentage of residual glucose evaluated at 0.8 O.D./ml on SC medium containing an initial 
glucose concentration of: 2% glucose; 0.5% glucose and 20% glucose. Black bars indicate 
the amount of initial glucose in each medium which is to be considered 100%. Grey bars 
represent the % of residual glucose in each medium. Data represent the mean and standard 
deviation obtained from three independent experiments. 
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3.3.2 Evaluation of intracellular generation of free radicals. 

 

      ROS production in the three different glucose concentrations (2%, 0.5% and 20%) 

was measured with dihydrorhodamine (DHR123) when the cells reach a cellular 

density of 0.8 O.D./ml. DHR123 is a non-fluorescent dye that is able to enter cells 

[Unterluggauer, 2003; Madeo, 1999]. Yeast cells grown in 0.5% and 2% glucose 

concentration show a relatively low and comparable ROS production. Oxidation of 

DHR123 results considerably higher in yeast grown in 20% glucose. Figure 2 shows 

that approximately 50% of cells grown in 20% glucose are stained with fluorescent 

Rodamine at 0.8 O.D./ml. thus indicating a high level of ROS production.  

 

 

 

 

 

 

 

 

 

Fig. 2. ROS production, evaluated using the DHR123 fluorescent probe in cells grown 
exponentially (0.8 O.D./ml) on different glucose concentrations: figures represent a merge 
between DIC and fluorescent images obtained with a 40X objective. In the histogram, the 
percentage of fluorescent cells stained with DHR123 at the cellular density of 0.8 O.D./ml is 
shown. A two-tailed non-paired Student’s t-test was performed using ORIGIN 6.0 (Microcal 
Software, Inc.) to determine if the relative change in the conditions of 0.5% and 20% glucose 
was statistically significant in comparison to the control cells. Differences were considered 
statistically significant when p < 0.01 (*). 
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On the contrary, the percentage of fluorescent cells at the same growth point is less 

than 10% in 0.5% and 2% glucose. Considering that intracellular levels of ROS 

depend on the balance between their production and scavenging, the high level of 

ROS production in cells grown in 20% glucose indicates an alteration of this 

equilibrium. 
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3.3.3 Proteomic analysis. 

 

      To investigate S. cerevisiae protein expression during exponential growth under 

different glucose concentrations we compared the proteomes of yeast grown in 0.5% 

and 20% to that grown in 2% glucose (as control). Yeast cells were harvested during 

exponential phase (0.8 O.D./ml) and proteins were extracted and resolved by two-

dimensional SDS-PAGE (2D-GE). Figure 3 shows typical 2D-GE images of soluble 

proteins from yeast cells grown in 2% (control cells, panel a), 0.5% (panel b), and 20 

% (panel c) glucose concentration. The pattern of protein distribution and relative 

abundance displays corresponds well with yeast 2D-GE protein profiles produced 

previously by our laboratory [Magherini et al., 2007] and to a 2D-GE S. cerevisiae 

reference gel available on the internet (www.expasy.org). 

      An average of about 1000 spots is detected in each 2D-GE gel stained with 

Coomassie. The computer analysis points out a total of 156 protein spots changing 

significantly. Of these protein spots, 82 are differentially expressed (quantitative 

difference) whereas 74 are not detected in all the analyzed strains (qualitative 

difference). The general pattern of migration is maintained between replicate gels, 

thus indicating the high degree of reproducibility of sample preparation and of 2D-

GE procedures. 

      MALDI-TOF mass spectrometry was used to identify proteins of interest. It is 

important to remember that proteins are affected by post-translational regulation and 

that, although we characterized only the spots with different abundance levels, we 

found several isoforms of proteins. The results reported in this study indicate that, 

during exponential phase, there are significant alterations in protein expression 

profile of cells grown on different glucose concentrations. 
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Identification of differentially expressed proteins (quantitative 
difference). 

 

      A total of 21 differentially expressed proteins was successfully identified by MS 

analysis. The locations of these spots are marked with circles and capital letters in the 

representative gels in Figure 3 (panels a, b and c).  Fourteen spots in cells grown in 

0.5% glucose (spots A, C, E, H, I, J, M, O, P, Q, R, S, T and U) and 12 in cells 

grown in 20% glucose (spots C, E, F, I, J, K, L, M, N, P, Q, and R) are down-

regulated in comparison to cells grown in 2% glucose. Of these: 8 spots (C, E, I, J, 

M, P, Q and R) show a down-regulation in both 0.5% and 20% glucose versus 

control cells. Nine spots are up-regulated (spots A, B, D, O, G, H, S, T and U) in 

20% glucose grown cells in comparison to control cells. Spot G, corresponding to 

Peroxiredoxin TSA1, is up-regulated in both 0.5% and 20% glucose in comparison to 

the control. This protein is involved in protection against oxidative stress and its 

expression depends on nutrient availability or on stress conditions. Peroxiredoxin 

belongs to a set of stress defence proteins known as “environmental stress response”, 

thus suggesting the importance a redox control complex has in stress conditions 

[Wong et al., 2003]. 

      In 0.5% glucose grown cells 6 spots (spots B, D, F, K, N and L) show no 

variation in comparison to the control cells. This suggests that an increase in the 

expression level of a number of specific proteins is a dominant phenomenon in cells 

grown in high glucose concentration. The identities of the found proteins are 

summarized in Table 2. Some differentially expressed proteins are present in 

multiple forms, thus suggests post-translational modification and/or the proteolysis 

of the corresponding native proteins. We identified 3 spots (spots A, B and C) 

corresponding to Pyruvate decarboxylase 1 (Pdc-1p); 2 spots corresponding to 

Enolase 2 (spots O and N); 6 spots (S, T, U and P, Q, R) corresponding to 

Glyceraldehyde-3-phosphate dehydrogenase 3; 2 spots that correspond to Alcohol 

dehydrogenase 1 (Adh-1p) (spots K and L) and finally 2 spots (E and F) that 

correspond to S-adenosylmethionine synthetase-2. Proteins with significantly 

decreased molecular masses in our 2D gels are a sign of protein fragmentation. 
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Identification of qualitative differences  

 

      A computer analysis pointed out a total of 40 qualitative spot variations between 

control cells and cells grown in 0.5% and 20% glucose. These spots were all 

identified by MS analysis. The data are summarized in Table 3. The location of the 

spots is marked with circles and numbers in the representative gels shown in Figure 3 

(panels a, b, and c). Seven spots (spots 1 to 7; Figure 3a) are detected exclusively in 

the control cells and 7 spots (spots 8 to 14; Figures 3a and 3b) are detected 

exclusively in the 20% glucose yeast cells. Seven spots (spots 15 to 21; Figure 3c) 

are detected both in the control cells and in the 0.5% glucose yeast cells whilst 19 

spots (spots 22 to 40; Figures 3a and 3c) are detected both in the control cells and in 

the 20% glucose yeast cells.  

 

• Proteins detected exclusively in 2% glucose. 

      Seven proteins are detected exclusively in cells grown in 2% glucose. Of these, a 

majority is involved in cell’s glucose metabolism and protein synthesis (Figure 3a 

and Table 3). Among these we identified the Enolase 2 enzyme (spot 1). This 

enzyme catalyses the first common step of glycolysis and gluconeogenesis; its 

expression is glucose induced. We also identify Pyruvate kinase1 (Pyk-1, spot 3), 

catalyst in the final step of glycolysis. At this glucose concentration we identified 2 

more spots (spots 6 and 7) as Bmh1 and Bmh2 which are the yeast members of the 

highly conserved 14-3-3 protein family present in all eukaryotic organisms.  

These two proteins are involved in cells growth control, in post-transcriptional 

regulation and in the regulation of many processes including exocytosis, vesicle 

transport, Ras/MAPK signalling (Kakiuchi et al., 2007). 
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Fig. 3. Representative Blue Coomassie 2D gels of total protein extract from cells grown 
exponentially in 2% glucose (panel A), 0.5% glucose (panel B) and 20% glucose (panel C). 
Quantitative and qualitative variations are displayed with circles. Quantitative variations 
between cells grown in 0.5% glucose (panel B, next page) and 20% glucose (panel C, next 
parge) vs 2% glucose (panel A) are indicated by capital letters. They are listed in Table 2. 
Qualitative variations identified are displayed with numbers and represent conditions 
described in Sections 3.5. They are listed in Table 3. 

 

A 
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• Proteins detected exclusively in 20% glucose. 

       The 7 spots detected exclusively in yeast cells during exponential growth in 20% 

glucose are listed in Table 3. The locations of the identified proteins are marked with 

circles and numbers in the representative gel shown in Figure 3c. Some of these 

proteins are present in multiple forms. We found the enzyme Phosphoglycerate 

kinase (spot 8) expressed in 20% glucose; this is a glycolitic/gluconeogenic enzyme. 

When cells produce a high amount of ethanol, they use this metabolite as a carbon 

source and they convert it into glucose through gluconeogenic pathway. We also 

identified 2 spots of the Pyruvate decarboxylase 1 enzyme (spots 10 and 11). 

Pyruvate decarboxylase 1 is the first enzyme of the fermentation pathway and its 

expression in cells grown in 20% glucose agrees with the high rate fermentation that 

we evaluated in these cells. Furthermore we saw that the translation protein 

Elongation factor 2 (spot 13) and the ATP-dependent RNA helicase (spot 14) which 

is involved in mitochondrial splicing and also required for efficient mitochondrial 

translation, are expressed exclusively in 20% glucose. 

 

• Proteins exclusively detected both in 2%glucose and 0.5% glucose.  

      Among the 7 protein spots, whose expression during the exponential growth 

resulted detectable exclusively both in 2% and in 0.5% glucose (Figures 3a and 3b), 

is the 5-methyltetrahydropteroyl-triglutamate-homocysteine-methyltransferase which 

is present in multiple forms. We identified, in fact, 4 spots (spots 16, 17, 18 and 19) 

that correspond to this enzyme which is involved in amino acids metabolism. We 

also identified the Poly-(A)-binding protein (spot 15), which is part of the 3'-end 

RNA-processing complex and interacts with translation factor eIF-4G, and the Alpha 

subunit of mitochondrial F1F0 ATP synthase (spot 21), which is a large, 

evolutionarily conserved enzyme complex required for ATP synthesis. 
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• Proteins exclusively detected both in 2% glucose and 20%glucose.  

      Of the 18 proteins (Figures 3a and 3c) whose expression results inhibited in 0.5% 

glucose we identified several proteins related to glycolysis and alcoholic 

fermentation. Two spots (spots 22 and 23) correspond to the enzyme Pyruvate 

decarboxylase 1. One spot correspondsto Phosphoglycerate kinase (spot 34), a key 

enzyme in glycolysis. Two spots (spots 24 and 25) correspond to Fructose 1,6-

bisphosphate aldolase, which is required for glycolysis and 2 spots correspond to 

Enolase 2 (spots 27 and 28) whose expression is glucose-induced. We also identified 

2 spots corresponding to Glyceraldehyde-3-phosphate dehydrogenase 3 (spots 39 and 

40). Among the proteins detected in 0.5% glucose we identified a protein involved in 

the synthesis of amino acids: 5-methyltetrahydropteroyltriglutamate-homocysteine-

methyltransferase. Moreover, we found the cytoplasmatic and nuclear Poly(A)-

binding protein involved in the regulation of peptide formation on ribosomes. In our 

study the naturally-induced diauxic shift resulted in an induction of the global protein 

synthesis. This, in turn, allows the de novo biosynthesis of functional mitochondria. 

Glucose restriction also induces the synthesis of a few proteins necessary for 

respiratory growth such as the mitochondrial ATP synthase subunit alpha that 

produces mitochondrial ATP This confirmed the induction of respiration during the 

diauxic shift. 

      In the current study we detected that, during the first hours of fermentation, in 

yeast cells is increased the expression of proteins involved in response to oxidative 

stress. In particular, we found two members of the heat shock protein 70 family 

(HSP70) which are stress-induced and were not detected 0.5% glucose: Ssa2p and 

Ssb1p. These stress response proteins can indicate a better adaptation during 

fermentation and be important for maintaining the viability of cells during 

fermentative conditions. In our study we see that, in high glucose, the percentage of 

glucose used for fermentation is low compared to total glucose consumption and that 

the ethanol production is inhibited. We deduced that glucose was also used to 

produce other molecules, such as glycerol. Further evidence was observed, since 

Adh1p, an enzyme related to ethanol production, was down-regulated. Moreover, we 

found an increase in the expression of many proteins involved in glycerol 

biosynthesis. We determined that DL-glycerol-3-phosphatase1 (involved in glycerol 
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biosynthesis) was expressed exclusively in this condition. This is induced in response 

to osmotic stress. These results confirmed the theory according to whom S. 

cerevisiae accelerates its production of glycerol and acidic compounds rather than 

synthesizing ethanol to minimize the effects of the high osmotic conditions generated 

by a high glucose concentration and ethanol production [33 Pham, 2006]. We can 

conclude that yeast cells in high glucose concentration have a decreased growth rate 

during the initial phase of fermentation, because part of their metabolism is occupied 

in the synthesis of compounds to resist osmotic stress.  
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Table2: Relative protein expression changes of  2% glucose versus 0.5% glucose and 20% 
glucose. 
 
 

 
 
a) Swiss-Prot/TrEMBL accession number. 
b) p-Value 6 <0.01.  
c) p-Value 6 <0.05. 
d) MASCOTscore (Matrix Science, London, UK; http://www.matrixscience.com).  
e) Number of peptide masses matching the top hit from Ms-Fit PMF. 
f) Per centage of amino acid sequence coverage of matched peptides in the identified proteins. 
g) Each value represents the mean 6 SD of individually computed %V (V = integration of OD over the spot area;%V = V single spot/V 
total 
spots) in three different gels of control,  0.5% and 20%. 
i) Fold change ( control vs 0.5% and control vs  20% glucose) was calculated dividing %V from control by the %V from 0.5% glucose and 
from 20% glucose. 

Spot 
N o Protein name AC (a ) Score 

(d) 

N o of 
matchi

ng 
peptid
e (e )

Seque
nce 

covera
ge (f) 
(%)

%V(x10-4) mean (±SD)(g) Fold change (i) 

Glucose2% Glucose0.5% Glucose20% 2% / 
0.5% 

2% / 
20% 

A Pyruvate decarboxylase 
isozyme 1 

P0616
9 102 8 22 998 ± 74 521 ± 37 c  1891 ± 463 1.9 0.52 

B Pyruvate decarboxylase 
isozyme 1 

P0616
9 100 6 25 554 ± 141 733 ± 96 1916 ± 6b 0.75 0.29 

C Pyruvate decarboxylase 
isozyme 1 

P0616
9 

102 8 22 2845 ± 90 1037 ± 142 1527 ± 170 b 2.7 1.9 

D Adenylate kinase cytosolic P0717
0 59 6 31 3681 ± 1870 3560 ± 70 b 7763 ± 472 1 0.47 

E S-adenosylmethionine 
synthetase 2 

P1935
8 86 11 33 2493 ± 280 1270 ± 220 331 ± 20 b 1.9 7.5 

F S-adenosylmethionine 
synthetase 2 

P1935
8 89 12 35 1373 ± 408 1027 ± 113 603 ± 50 1.3 2.2 

G Peroxiredoxin TSA1 P3476
0 104 8 51 436 ± 244 1820 ± 80 c  1063 ± 85 0.23 0.41 

H Peptidyl-prolyl cis-trans 
isomerase 

P1483
2 83 9 43 2042 ± 274 920 ± 32 b 9392 ± 1100 2.2 0.21 

I Cystathionine beta-
synthase 

P3258
2 

93 15 34 2908 ± 107 1280 ± 120 25 ± 12 b 2.3 11.8 

J Phosphoglycerate kinase P0056
0 111 13 42 9666 ± 3460 3515 ± 25 2074 ± 43 2.7 4.7 

K Alcohol dehydr ogenase 1 P0033
0 104 12 47 3058 ± 682 3605 ± 1025 1629 ± 169 0.84 1.9 

L Alcohol dehydr ogenase 1 P0033
0 111 13 50 16641 ± 117 17850 ± 350 5548 ± 348 b 0.93 2.9 

M Heat shock protein 
homolog SSE1 

P3258
9 66 10 19 1940 ± 1 788 ± 98 331 ± 15 b 2.4 6 

N Enolase 2 P0092
5 150 20 58 46594 ± 8776 52400 ± 

10400 24660 ± 5927 0.88 1.9 

O Enolase 2 P0092
5 148 17 51 4884 ± 401 1375 ± 115 8955 ± 379 b 3.5 0.54 

P 
Glyceraldehyde-3-
phosphate dehydrogenase 
3 

P0035
9 69 9 39 11174 ± 813 3125 ± 315 2601 ± 145 b 3.5 4.3 

Q 
Glyceraldehyde-3-
phosphate dehydrogenase 
3 

P0035
9 68 9 40 2268 ± 588 540 ± 15 102 ± 82 c  4.2 22.2 

R 
Glyceraldehyde-3-
phosphate dehydrogenase 
3 

P0035
9 70 10 43 5383 ± 598 1690 ± 80 c  1576 ± 79 3.2 3.4 

S 
Glyceraldehyde-3-
phosphate dehydrogenase 
3 

P0035
9 

65 7 42 1331 ± 40 341 ± 97 2504 ± 134 3.9 0.53 

T 
Glyceraldehyde-3-
phosphate dehydrogenase 
3 

P0035
9 68 9 40 2195 ± 193 840 ± 115 3638 ± 268 c 2.6 0.6 

U 
Glyceraldehyde-3-
phosphate dehydrogenase 
3 

P0035
9 70 11 37 6042 ± 1453 1725 ± 125 b 16573 ± 1 3.5 0.36 
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Table 3. MS identification of qualitative differences. 
 
Spot 
No Protein name AC (a ) Score

(b) 
No of matching 

peptide (c) 
Sequence coverage(d)

(%)
Proteins detected exclusively in Glucose 2%

1 Enolase 2 P00925 148 17 51 

2 HSP82 P10591 47 7 14 
3 Pyruvate kinase 1 P00549 67 6 19 

4 Eukaryotic translation initiation factor 
4B P34167 98 10 21 

5 Ketol-a cid reductoisomerase,  
mitochondr ial precursor  P06168 63 8 31 

6 Protein BMH1 P29311 63 6 31 

7 Protein BMH2 P34730 72 5 27 

Proteins detected exclusively in Glucose 20% 

8 Phosphoglycerate kinase P00560 148 17 51 

9 Glyceraldehyde-3-phosphate 
dehydrogenase 3 P00359 68 9 40 

10 
11  

Pyruvate decarboxylase isozyme 1 P06169 102 8 22 

12 YNN4 P53912 56 6 25
13 Elongation factor 2 P32324 62 10 12 

14 ATP-dependent RNA helicase 
MSS116, mitochondr ial precursor  P15424 41 5 10 

Proteins detected exclusively in Glucose 2% and Glucose 0.5% 

15 
Polyadenylate-binding protein, 
cytoplasmic and nuclear (Poly(A) 
binding protein) (PABP) 

P04147 64 7 18 

16 
17 
18 
19 

5methyltetrahydropteroyltriglutamate-
homocysteine methyltransferase P05694 70 9 14 

20 GMP synthase [glutamine-
hydrolyzing] P38625 55 7 14 

21 ATP synthase subunit alpha,  
mitochondrial precursor P07251 91 14 26 

Proteins detected exclusively in Glucose 2% and Glucose 20% 
   22 Pyruvate decarboxylase isozyme 1 P06169 102 8 22 

23 Pyruvate decarboxylase isozyme 1 P06169 100 6 20 

24 Fructose-bisphosphate aldolase P14540 94 8 50 

25 Fructose-bisphosphate aldolase P14540 56 5 23 

26 Adenylate kinase cytosolic P07170 59 6 31 
27 Enolase 2 P00925 150 20 58
28 Enolase 2 P00925 150 20 58
29 Enolase 2 fragment     

30 Heat shock protein SSA2 P10592 74 12 23 

31 Heat shock protein SSB1 P11484 93 17 35 
32 Heat shock protein SSB1 P11484 80 15 30

33 NADP-specific glutamate 
dehydrogenase 2 P39708 68 9 27 

34 Phosphoglycerate kinase P00560 117 13 42 

35 Small glutamine-rich tetratricopeptide 
repeat-containing protein 2 Q12118 65 7 29 

36 (DL)-glycerol-3-phosphatase 1 P41277 78 7 35 
37 Inorganic pyrophosphatase P00817 94 14 57 
38 NADPH dehydrogenase 2 Q03558 88 10 34

39 Glyceraldehyde-3-phosphate 
dehydrogenase 3 P00359 117 12 53 

40 Glyceraldehyde-3-phosphate 
dehydrogenase 3 P00359 68 9 40 

a) Swiss-Prot /TrEMBL access ion number. 
b) MASCOTscore (Matrix Science, London, UK; http :/ /www.matrixscien ce.com).  
c) Number of peptid e masses match ing the top  hit from M s-Fit  PM F. 
d) Percentage of amino acid sequence coverage of matched p eptides in th e id ent ified proteins. 
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3.4 Conclusions 

 

      The information obtained in our study validates the application of a proteomic 

approach for the identification of the molecular bases of environmental variations 

such as fermentation in high glucose and during a naturally-induced diauxic shift. 

Identifying the functionally modulated proteins involved in glucose induced yeast 

response, will lead to a better comprehension of the mechanisms underlying the 

effects of different glucose concentrations and will contribute to the complete 

understanding of yeast fermentation and respiration metabolism. 
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4. Abstract 

 

      Physical activity, following an increase in oxygen consumption, leads to a 

temporary imbalance between the production of RONS and their disposal; this 

phenomenon is called oxidative stress. Proteins are one of the most important targets 

of oxidation during physical exercise and carbonylation is one of the more common 

oxidative protein modifications. In cells a regulated level of oxidized proteins exists 

and this doesn’t interference with cell function; however, an increase in oxidized 

protein levels may cause a series of cellular malfunctions that could lead to a disease 

state. For this reason a quantification of protein oxidation is of major importance to 

distinguish healthy and disease states.  

      The aim of our research was to characterize plasma proteins carbonylated in 

response to physical exercise in men trained to perform endurance exercise and in 

men practising sport for recreational purposes. It is widely accepted the increase of 

carbonylated proteins in the plasma of athletes after exercise, but in literature there 

aren’t works in which the targets of this oxidation are identified. We analyzed the 

plasma taken at resting condition and after two different kinds of PE by a proteomic 

approach using 2D-GE followed by western blot with specific antibodies against 

marked carbonylated proteins. We noticed that “endurance hard trained” athletes 

showed a higher carbonylation of plasma proteins in comparison to men practising 

various kind of sports with a moderate training. From the 2D analysis we found 

proteins target of carbonylation after physical exercise, but also proteins which 

carbonylation is not affected by exercise and proteins carbonylated only at resting 

condition. 

These methods have allowed to obtain an overview of the change in the oxidation of 

plasma proteins after physical exercise and to identify new markers of physiological 

stress. 
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4.1 Introduction 

 

    Physical activity is defined as any body movement induced by skeletal muscle 

which leads to an excess energy expenditure compared to the condition of rest. There 

is a great interest in investigating the effects of a regular physical activity on the 

human health and physiology. 

   Medicine recognizes that physical activity plays an essential role in ensuring good 

health. This depends on the fact that a physically active life induces organic changes 

and modifications that are positive for the proper functioning of organs and 

apparatuses. We know that a steady exercise causes an adaptive response that allows 

the improvement of sports performance [Davies et al., 1981]. These adjustments 

include an increase in the size and number of mitochondria in skeletal muscle and an 

altered expression of several genes. These changes are relatively stable over time and 

are effective only when sport is practiced on a regular basis. In fact, proper practice 

of sport leads to cardiovascular protection, reduction of the risk of obesity and of 

diabetes, reinforcement of the joints, hormonal control, delay of aging. 

   On the contrary physical inactivity, which has general implications for the entire 

body, is a risk factor for health. The physical inactivity has an important part in the 

development of obesity, dyslipidemia and hypertension, and it is also one of the 

determining factors in the genesis of coronary diseases. 

    However physical activity, following an increase in oxygen consumption, leads to 

a temporary imbalance between the production of toxic substances for the body 

(reactive oxygen/nitrogen species (RONS)) and their disposal [Davies et al., 1982; 

Ashton et al., 1998; 1999; Bailey et al., 2004; 2007; Groussard et al., 2003; 

Ogonovszky et al., 2005]. The generation of RONS occurs regularly as part of 

normal cellular metabolism and is increased under conditions of physical stress. 

RONS generate as a result of electron leakage from the mitochondrial respiratory 

chain or other physiological and non-physiological processes. The body's antioxidant 

defence system serves to protect the cells from the excess in RONS production. This 

system comprises both endogenous (bilirubin, uric acid, superoxide dismutases, 
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catalase, glutathione peroxidase, etc.) and exogenous (carotenoids, tocopherols, 

ascorbate, bioflavonoids, etc.) compounds [Urso et al., 2003]. The exogenous 

compounds are consumed in the diet and come primarily from ingestion of fruits and 

vegetables [Watson et al., 2005]. 

      Physical activity leads to a temporary imbalance between the production of free 

radicals and their disposal, and this phenomenon is called oxidative stress [Finaud et 

al., 2006]. There is a great deal of controversy over whether or not oxidative stress 

and subsequent damage are truly associated with exercise. In the past, exercise 

studies have varied in the intensity, duration, and mode of activity chosen for the 

study model. Additionally, variations in the fitness levels of subjects and assays used 

to assess oxidative damage have contributed to the inconsistent findings. Together 

these factors have contributed to the lack of consensus regarding exercise-induced 

oxidative stress. Since the initial finding of an increase in lipid peroxidation 

following acute aerobic exercise in 1978 [Dillard et al., 1978], the research about of 

oxidative stress and exercise has expanded substantially. This increased interest is 

fuelled by several factors, including the enhanced awareness of the role of RONS in 

human disease, as well as the widespread development and availability of various 

antioxidant agents (of which efficacy is often tested using exercise as a stimulus of 

RONS). Although much of the early work has viewed exercise-induced RONS 

production as a potential detriment to physiological function (i.e., decreased 

performance and immune function, and increased fatigue), more recent work is 

investigating an alternative role for RONS production in regards to favourable 

exercise-induced adaptations. 

    An excessive accumulation of free RONS causes oxidation of proteins, lipids and 

nucleic acids; the oxidation modifies these macromolecules and  can damage them 

[Alessio et al., 1988; Davies et al., 1982; Gomez-Cabrera et al., 2006; Ikeda et al., 

2006; Ji et al., 2006; Mahoney et al., 2005; Paroo et al., 2002; Poulsen et al., 1998; 

Russell et al., 2005; Halliwell B, et al., 1994]. 

Proteins are one of the most important targets of oxidation, based on their high 

concentration in cells. Among the many possible oxidative modification of proteins, 
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irreversible introduction of carbonyl groups is one of the more common [Dalle-

Donne et al., 2006]. 

    Proteins carbonylation is a post-translational modification which can be obtained 

through various reactions and consists in the addition of carbonyl groups to protein 

structure, especially the aminoacidical residues of proline, arginine and lysine. 

Protein carbonyls can be generated directly as a result of amino acids side chain 

oxidation and protein backbone cleavage or indirectly, by Michael addition of 4-

hydroxy-2-nonenal to protein lysine, histidine or cysteine residues or reaction of 

protein ammonium substituent with lipid peroxidation products. 

In cells a regulated level of oxidized proteins exists and this doesn’t interference with 

cell function even if reactive oxygen species are continuously generated both 

intracellular and exogenously. However, an increase in oxidized protein levels may 

cause a series of cellular malfunctions that could lead to a disease state. For this 

reason a quantification of protein oxidation is of major importance to distinguish 

healthy and disease states. As one of the most common features of oxidative damage, 

protein carbonyls have been used as a marker for identification and quantification of 

protein damage [Lin et al., 2009; Lamprecht et al., 2008; Bloomer et al., 2007]. For 

identification and quantification of oxidized proteins carbonylated peptides have 

been a major target. In fact, protein carbonyl groups have been quantified in several 

ways. One is by derivatization with 2,4-dinitrophenyhydrazine or tritiated 

borohydride followed by quantification with UV spectroscopy or radiography 

[Mirzaei et al., 2006].   

     The sport activity in our body leads to an increase in endogenous defences against 

this type of stress, therefore reducing the damage. Several manufacturers of 

supplements focus on sales of antioxidants to reduce the free radicals production, 

thereby facilitating the recovery between workouts or competitions. However, there 

are currently significant limitations of the knowledge of the relationship between 

performance, supplements and oxidative stress [Bloomer et al., 2006; Margaritis et 

al., 2008; Khassaf et al., 2003]. 
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      In this study we focused on carbonylation of plasma proteins and its modification 

during the physical exercise (PE in this work). Plasma is the biological sample for 

excellence; it contains the highest concentration of different proteins than any other 

type of sample. 

        Unlike other tissues, plasma proteome is extremely complex, because it contains 

specific proteins of the blood and also proteins released from other tissues as a result 

of leakage, damage or other factors [Anderson et al., 2002]. In medicine plasma 

proteins have been widely used to obtain useful information on physiopathology, to 

define the various clinical cases in a uniform way and to reach an early diagnosis for 

many diseases. In particular, plasma proteins have been widely used as a useful 

alarm bell, so that an altered expression of some of them may be considered the key 

to early diagnosis of certain diseases. 

      It is known that endurance training can cause damage to the active muscle, as 

indicated by increased release of muscular enzymes into the plasma, the 

ultrastructural disruption of the sarcomere [Maxwell et al., 1993] and a substantial 

impairment in maximal torque production [Millet et al., 2003]. The practical 

implications of this damage have been reviewed [Warren et al., 2001] and include 

decreased joint range of motion, increased fatigability, decreased shortening velocity, 

and prolonged strength loss. Evidence that oxidative damage by reactive oxygen 

species (ROS) mediates skeletal muscle damage is accumulating [Maxwell et al., 

1993]. 

     The aim of our research was to characterize plasma proteins that undergo 

carbonylation in response to physical exercise in men trained to perform endurance 

exercise. It is widely accepted the increase of carbonylated proteins in the plasma of 

athletes after exercise [Bloomer et al.,2007, Nikolaidis et al., 2007], but in literature 

there aren’t works in which the targets of this oxidation are identified. To study the 

carbonylation target proteins we analyzed the plasma of athletes taken at resting 

condition and after two different kinds of PE by a proteomic approach using two-

dimensional electrophoresis followed by western blot with specific antibodies against 

marked carbonylated proteins. We then analyzed the two-dimensional images 

identifying several proteins that are targets of carbonylation.    
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      By proteomic analysis we found not only proteins that are target of carbonylation 

after physical exercise, but also proteins which carbonylation is not affected by 

exercise and also proteins that are carbonylated only in the plasma of the resting 

condition. These methods have allowed to obtain an overview of the change in the 

oxidation of plasma proteins after physical exercise and to identify new markers of 

physiological stress. 
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4.2  Materials and methods 

 

4.2.1 Subjects  

      To our research 19 (8 endurance athletes and 11 recreational athletes) volunteers 

subjects cooperated. These men volunteered to participate following explanation of 

all experimental procedures. A medical history and physical activity questionnaire 

were completed by all subjects in order to determine eligibility. No subject used 

antioxidant supplements. Plasma samples of all subjects were taken at rest condition 

and after an hour of run. Eight endurance trained healthy volunteers were recruited 

among athletes practising endurance activity in Siena. Mean age was 48 ± 10 years; 

weight was 70 ± 12 kg. They averaged 60 ± 12 Km training/week (see Tab I). Eleven 

recreational athletes volunteers were recruited among athletes practising various 

kinds of physical activity in Florence. Mean age was 45 ± 5 years; weight was 73 ± 8 

kg. Subjects were selected on the basis of non-smoking status, age, stable body 

weight, and maintenance of regular exercise patterns. Subjects were excluded if they 

were antioxidant supplement users (vitamin C, vitamin E, selenium, or carotenoids). 

Subjects with previous personal history of cardiovascular disease, diabetes mellitus, 

dyslipemia, physical disability, or chronic respiratory disease, as well as those with a 

body mass index (BMI) over 30 kg/m2, alcohol consumption greater than 40 g per 

day, or long-term medication use, including mineral or vitamin supplements, were 

excluded. The local research ethics committee approved the protocol and all 

participants provided informed consent. 

4.2.2 Physical fitness assessment 

The endurance trained participants followed an individualized and supervised 

training program for 2 weeks before the running tests. Subjects recorded on a daily 

basis the type, duration, and intensity of exercise performed each day. The training 

program counted total of 112 Km of run, 48 Km in the first week and 64 Km during 

the second week. After this training period the athletes performed two different 

running test: an “aerobic resistance test”, in which they made a run of 12 Km at a 

constant speed but 5% -10% under their aerobic threshold and an “aerobic power 
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test”, in which they made five runs of 1000 meters with speed 2%-5% above their 

aerobic threshold. The recreational athletes followed their normal physical activity 

during the two weeks before the test without a common training program or a 

specific diet. 

4.2.3 Diet 

The endurance trained subjects consumed a specified diet for 15 d  before the two 

running tests. The daily diet provided 2500 Kcal and consisted of approximately 

20% protein, 60% carbohydrate, and 20% fat. Nutrient composition of the specified 

diets was determined using an Excel Program. 

4.2.4 Handling of plasma samples (Blood analysis) 

A 5 mL blood sample from each athlete was taken via vacutainer from an antecubital 

vein by a medical staff at resting condition and after each test (aerobic and 

anaerobic) following a 10 min quiet rest. Blood samples were analyzed for whole 

blood lactate using an Accutrend portable lactate analyzer (Roche Diagnostics, 

Mannheim, Germany). The remainder of whole blood was immediately separated to 

plasma and stored in several aliquots in liquid nitrogen to be used for the 

measurement of oxidative stress biomarkers. Protein carbonyls were analyzed using 

an ELISA according to the procedures recommended by the manufacturer (kit 

Protein Carbonyl Assay, Cayman). Assays were performed in duplicate on first thaw. 

4.2.5 Albumin and IgG depletion from plasma samples 

The deep frozen crude plasma samples were returned to 4 ◦C. Using the 

commercially available ion exchange based Blue Albumin and IgG Depletion kit 

(Sigma), 50 µL of crude plasma was diluted with 150 µL of equilibration buffer (kit 

reagent) before application to the column. The protocol was executed as described in 

the Blue Albumin and IgG Depletion Kit user guide. The flow-through fraction 

contained the albumin depleted plasma.  
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4.2.6 Two-dimensional polyacrylamide gel electrophoresis 

The frozen albumin and IgG-depleted plasma samples were solubilised in a lysis 

buffer containing 8M urea, 4% 3-[(3-Cholamidopropyl) dimethylammonio]-1-

propanesulfonate (CHAPS), 20 mM dithiothreitol (DTT) and 2.0% 4–7 non-linear 

immobilized pH gradient (IPG) buffer (Amersham Bioscience, Uppsala, Sweden). 

For each experimental condition at least three samples were run in order to assess 

biological and analytical variation. Isoelectrofocusing (IEF) was carried out on 

nonlinear wide-range immobilized pH gradients (pH 4-7; 7 cm long IPG strips; GE 

Healthcare, Uppsala, Sweden) and achieved using the EttanTM IPGphorTM system 

(GE Healthcare, Uppsala, Sweden). MS-Preparative-run IPG-strips were rehydrated 

at 16°C with 150 μg of proteins in 125 μl of lysis buffer and 0.2% carrier ampholyte 

and focused at 16°C according to the following electrical conditions: for 12h at 30V 

and for 0.30h at 500V, from 500 V to 1000 V in 30 min, from 1000 V to 5000 V in 

1,30h, 5000 V until a total of 18000 Vh was reached. After focusing MS-preparative 

IPG strips were equilibrated for 12 min in 6 M urea, 30% glycerol, 2% Sodium 

Dodecyl Sulfate (SDS), 0.05 M Tris-HCl, pH 6.8, 2% DTT, and subsequently for 5 

min in the same urea/SDS/Tris buffer solution but substituting the 2% DTT with 

2.5% iodoacetamide. The second dimension was carried out on 9-16% 

polyacrylamide linear gradient gels (18 cm x 20 cm x 1.5 mm) at 40 mA/gel constant 

current and 10°C until the dye front reached the bottom of the gel. The MS-

preparative gels were stained with colloidal Coomassie [Vilain et al., 2001]. 

4.2.7 Derivatization of protein carbonyls and DNP immunostaining 

Following plasma sample rehydration and IEF, the IPG strips used for carbonylation 

analysis were placed in 10mL tubes and incubated in 2N HCl with 10mM DNPH 

(2,4-dinitrophenylhydrazine, Sigma, St. Louis, MO) at 25 ◦C for 20 min. Following 

the incubation enabling protein-bound carbonyls derivatization, the marked IPG 

strips were washed with 6M Urea, 20% Glycerol, 1% SDS, 150mM Tris-HCl pH 6.8. 

The marked IPG strips were then prepared for the second dimension, followed by 

protein blotting to a PVDF membrane as described previously [Korolainen et al., 

2007; Reinheckel et al., 2000]. Next, the PVDF membranes were incubated 

overnight at 4 ◦C for immunostaining with the primary antibody solution consisting 

of a 1:10.000 dilution of the anti-DNP IgG antibody (Sigma) in the Phosphate-
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buffered saline (PBS) containing 3.0% non-fat dry milk. Next, the blots were washed 

with PBS, 20% Tween and incubated with the goat anti-rabbit IgG/HRP conjugate 

(1:3.000 dilution in PBS/Milk) for 1 h at room temperature. An enhanced 

chemiluminescence kit (Immobilon Western Chemiluminescent AP substrate, 

Millipore) was used for detection. The protein spots were quantified using 

ImageMaster 2-D Platinum software version 6.0 (GE Healthcare). 

4.2.8 Image analysis 

Gels and Oxyblots images were acquired with an Epson expression 1680 PRO 

scanner. Computer-aided 2D image analysis was carried out using ImageMaster 2-D 

Platinum software version 6.0 (GE Healthcare). Relative spot volume (%V were 

V=integration of OD over the spot area and were %V = V single spot/V total spots) 

was used for analysis in order to reduce experimental errors. The intensity of 

carbonylated spots in the oxyblots was normalized on Coomassie gels. 

4.2.9 In-gel enzymatic digestion and MALDI-TOF mass spectrometry 

Protein spots were manually excised from the gel, washed with high-purity water and 

with 50% acetonitrile/water and dehydrated with 100% acetonitrile. The gel slices 

were swollen at room temperature in 20 µl of 40 mM NH4HCO3/10% acetonitrile 

containing 25 ng/µl trypsin (Trypsin Gold, mass spectrometry grade, Promega). 

After 1 h, 50 µl of 40 mM NH4HCO3/10% acetonitrile were added and digestion 

proceeded overnight at 37 °C. The generated peptides were than extracted with 50% 

acetonitrile/5% trifluoroacetic acid (TFA, 2 steps, 20 min each at room temperature), 

dried by vacuum centrifugation, suspended in 0.1% TFA, passed through micro 

ZipTip C18 pipette tips (Milllipore, Bedford, MA, U.S.A.) and directly eluted with 

the MS matrix solution (10 mg/ml α cyano-4-hydroxycinnamic acid in 50% 

acetonitrile/1% TFA). Mass spectra of the tryptic peptides were obtained using a 

Voyager-DE MALDI-ToF mass spectrometer (Applied Biosystems). Peptide mass 

fingerprinting database searching was performed using the MASCOT search engine 

(http://www.matrixscience.com) in NCBInr/Swiss-Prot databases. Parameters were 

set to allow one missed cleavage per peptide, a mass tolerance of 0.5 Da and 

considering carbamido-methylation of cysteines as a fixed modification and 

oxidation of methionines as a variable modification. The criteria used to accept 
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identifications included the extent of sequence coverage, the number of matching 

peptides and the probabilistic score, as detailed in Table II. 
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4.3 Results and Discussion 

 

4.3.1 Subjects. 

      The aim of our research was to characterize plasma proteins that undergo 

carbonylation in response to physical exercise in 8 volunteers subjects  trained to 

perform endurance exercise. These men (called “hard trained” in this work) are used 

to perform endurance activity for agonistic purposes. They train at least 5 times at 

week according to a specific training program with a personal trainer who constantly 

monitors their performance. Furthermore they periodically perform races and 

marathons. These subjects never use supplements during their training and races. 

These subjects could be processed to a very controlled performance. Tab I 

summarizes subjects features. For this work they followed for two weeks before the 

tests a common training program, a specific diet and the abstention from smoke and 

drugs. This common treatment let us to have the athletes in the same physical 

condition for the tests. 

 

       The athletes performed two different running tests; an “aerobic resistance test”, 

in which they made a run of 12 Km at a constant speed but 5% -10% under their 

aerobic threshold. Doing so they had a constant and sustained aerobic effort without 

lactate accumulation. The second test was an “aerobic power test”, in which they 

made five runs of 1000 meters with speed 2%-5% above their aerobic threshold. 

Doing so they had a sub maximal and repeated anaerobic efforts with lactate 

accumulation. We made a blood collection (5 ml) before and after these exercises. 

 

Tab. I. Subjects characteristics. 
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4.3.2 Protein carbonylation in the post exercise condition of “hard 
trained” subject. 

 

      In order to have a preliminary determination of total protein carbonyls, we used a 

kit supplied by Cayman company, which is based on the ability of 2,4-

dinitrophenylhydrazine (DNPH) to react with proteins carbonyls, producing the 

corresponding 2,4-dinitrofenilidrazone, which will be then identified with 

spectrophotometric methods. We performed the assay on the plasma obtained from 

all the subjects in order to evaluate a difference in the proteic carbonylation level 

between their resting condition and their post-exercise condition. The assay 

demonstrated that the carbonyls levels are subjective for each sample, and no 

significant differences were found (data not shown). Furthermore, due to the low 

sensitivity of the method it is not possible to find little differences involving small 

groups of proteins in the whole plasma assayed. For this reason we used a proteomic 

approach to study protein carbonylation targets. 

     We analyzed the plasma before and after exercise in all the subjects. We marked 

carbonylated proteins with DNPH which is detected by a specific antibody as 

described in methods. Then we performed the experiments using 2D-GE followed by 

western blot. Comparison and normalization of plasma protein oxidation levels was 

obtained by matching the 2D-oxyblots and subsequent Coomassie-stained 2D-gel 

images from the same sample. It’s known that albumin and IgG constitute 

approximately 85–90% of the total protein mass of crude human plasma [Dayarathna 

et al., 2008; Chromy et al., 2004; Issaq et al., 2007]. So we depleted plasma samples 

from Albumin and IgG using a specific kit (see methods). In fact, an increase in the 

number of lower abundant protein spots may be considered as much more powerful 

diagnostic biomarkers [Jacobs et al., 2004] and this approach has be implemented 

after removal of highly abundant proteins. Thus, after the depletion, a relatively large 

amount of albumin was still contained in the albumin-depleted plasma samples, as is 

visible in the 2-DE gels given in Fig. 1. However, a perfect and complete removal of 

albumin from plasma samples would also cause highly distorted proteomic results 

such as removing the broad range of other low mass and low-abundant 
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physiologically important regulatory and/or transient proteins which were bound to 

albumin as the main carrier/transport protein in the blood. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1: Representative Coomassie gel of total plasma proteins. Arrows and numbers indicate 
the proteins spots target of carbonylation, identified by MS and by matching with plasma 
proteome map in database. 
 
 

To reduce the experimental variability we decided to use 7 cm length strips, 

collocating on the same gel two strips corresponding to resting-condition plasma and 

to post-exercise plasma of each subject. Figure 2 shows some representative images 

of the gels and oxyblots obtained. In panel A and B there are two images 
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representative of the oxyblots. In each picture the number 1 refers to the resting-

condition plasma, while the number 2 relates to the post-exercise plasma. Panel A 

shows a carbonylation profile of a subject presenting a low level of protein 

carbonylation at resting condition and an increase after the exercise. Panel B shows a 

protein carbonylation profile of a subject presenting a high protein carbonylation at 

resting condition and an increase after the exercise. Panels a and b show the 

corresponding Coomassie stained gels. We used the same criteria for each subject, 

analysing all the almost 100 images obtained. In order to verify the experimental 

reproducibility we also performed several replicates of random samples. 

Reproducible gel patterns were observed between the replicates. 

      A total of about 300 protein spots appeared in the Coomassie staining 2-DE gel 

of albumin/IgG-depleted plasma samples as reported in the representative gel in Fig 

1. In order to evaluate the effect of PE on spots oxidation, we compared the intensity 

values of the spots of the oxyblots signals in the resting condition with those 

obtained post the PE. From this analysis, we found 31 protein spots, identified by 

overlapping with the map in databases and confirmed by mass spectrometry, 

differentially carbonylated in all the samples and in both conditions. These proteins 

are reported in Tab II and indicated by arrows and numbers in Fig 1. 

      From our analysis we observed a high individual variability in protein 

carbonylation, maybe depending on the habits of the single subject and we didn’t 

find any proteins spots changing significantly following the PE in all the subjects. In 

the figure 3 is shown an example of this individual variability: a particular of the 2D-

oxyblots of each sample underlines the different carbonylated states of the spot 2, 10, 

6 and 39 (corresponding to various isoforms of beta fibrinogen chain) at the resting 

condition and after the two different physical exercises. As shown in the figure more 

spots corresponded to isoforms of the same protein. We noticed that not all the 

isoforms are carbonylated following the PE in all the subjects. This fact probably 

means that some isoforms are more susceptible to carbonylation than others; this is 

maybe due to their structural specific features.  
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Fig. 2. Representative images of gels and oxyblots obtained. In panel A and B (next page) 
there are two images representative of the oxyblots. Number 1 refers to the resting-condition 
plasma, number 2 relates to the post-exercise plasma. Panel A shows a carbonylation profile 
of a subject presenting a low protein carbonylation at resting condition and an increase 
after the exercise. Panel B shows a protein carbonylation profile of a subject presenting a 
high protein carbonylation at resting condition and an increase after the exercise. Panels a 
and b show the corresponding Coomassie stained gels. 
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Fig. 2. See previews page. 
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Fig.3. Example of individual variability in spot carbonylation. Particular of the 2D-oxyblots 
of each sample underlining the different carbonylated states of the spot 2, 10, 6 and 39 
(corresponding to various isoforms of beta fibrinogen chain) at the resting condition and 
after the two different physical exercises 
 

 

4.3.3 Protein carbonylation trend following the aerobic and anaerobic 
exercise. 

 

      In order to better analyze our results and to compare the effects of the aerobic and 

the anaerobic exercise in endurance trained men, we indicated the carbonylation 

trend of each protein spot after the exercise in a coloured table. We considered as 

modified in carbonylation those spots whose spot intensity in post-exercise oxyblots 

was at least 2 times higher or lower than in the resting condition. The table IIIA 

shows the spots carbonylation trend after the aerobic exercise, while the table IIIB 
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shows the spots carbonylation trend after the anaerobic exercise. In these tables are 

included all subjects (horizontally) and all carbonylated spots (vertically), using three 

different colours to indicate the carbonylation trend of each spot following the 

exercise. Green boxes represent major spot carbonylation before the PE, red boxes 

represent an increase in carbonylation following the PE and orange boxes indicate 

that the spot carbonylation remains constant in spite of PE. Asterisks represent spots 

carbonylated only in resting condition (asterisk and green box) or only after the 

exercise (asterisk and red box). 

      This kind of table gives also an idea of the carbonylation profile of the single 

subject. In fact there are subjects showing high proteins carbonylation following both 

the exercises (for example subject number 1, 4 and 5), while there are subjects who 

have a low carbonylation profile in both the PE (for example subjects 3 and 7). In 

particular the subject number 2 presents spots carbonylated exclusively after the 

activity. The lines in the tables represent the carbonylation trend of each protein spot 

after the physical exercise. Some spots are always carbonylated in all the subjects 

and keep a constant carbonylation (orange boxes) level after PE. These spots are the 

numbers 24, 26, 85, 56, 57, 70, 79 and 86 and correspond to the proteins a-1-

antitrypsin, Vitamin D binding protein and Ig alpha chain C region. These proteins, 

through their abundance, may function as scavengers of free radicals. a-1-antitrypsin 

is a glycoprotein synthesized by the liver which plays a regulative role for the trypsin 

and other proteolytic enzymes activity. We also found that albumin and other 

immunoglobulin are carbonylated in most subjects irrespective of the PE (data not 

shown). 

      A protein whose carbonylation level increases after exercise is the Haptoglobin 

(spot 9, 11, 46), a glycoprotein present in plasma with important antioxidants 

functions: it protects Haemoglobin from oxidative damage. The spots corresponding 

to Haptoglobin are carbonylated after the physical activity (boxes marked with 

asterisks) and in more subjects following the anaerobic exercise. There are also 

protein spots which carbonylation decreases with the PE (green boxes) or that are 

carbonylated only before the activity (green boxes marked with asterisks). These 

spots are present in all the subject and in both conditions. Given that carbonylation is 

an irreversible proteins modification, the fact that we find a group of spot more 

carbonylated before the exercise maybe is due to the plasma proteins turnover. 
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      In Fig. 4 we summarised all the results obtained representing the percentage of 

carbonylated spots after the two types of exercise. We can see that the values and the 

spots distributions are practically the same between the two types of exercises and 

we could see that only the 21-23% of the analyzed spots remains not carbonylated 

after the PE.  

 

      All these results indicate that the PE induces a strong variation on plasma protein 

carbonylation related to the individual conditions. We identify that the only protein 

which carbonylation level increases after the PE is the Haptoglobin. This protein 

could be indicated as a potential marker of oxidative stress due to an hard endurance 

training. Moreover from our results this protein shows a mainly increase in 

carbonylation following an anaerobic effort.  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Fig. 4. Percentage of carbonylated spots after the two types of exercise in endurance trained 
subjects. a) relates to the aerobic exercise. b) relates to the anaerobic exercise. Green: 
major spot carbonylation before PE. Red: increase in carbonylation after PE. Orange: 
constant carbonylation in spite of PE. White: no carbonylation. 
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Tab. III: Spots carbonylation trend after PE in endurance trained men. Panel A relates to 
the aerobic exercise, while panel B relates to the anaerobic exercise. Horizontal numbers 
indicate subjects and vertical numbers indicate all carbonylated spots. Colours indicate the 
carbonylation trend of each spot following the exercise. Green: major spot carbonylation 
before PE. Red: increase in carbonylation after PE. Orange: constant carbonylation in spite 
of PE. White: no carbonylation. Asterisks represent spots carbonylated only in resting 
condition (asterisk and green box) or only after the exercise (asterisk and red box).  
 
 
 
 
 
 

A: Aerobe PE B: Anaerobe PE 
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a) Swiss-Prot/TrEMBL accession number. 
b) MASCOTscore (Matrix Science, London, UK; http://www.matrixscience.com). 
c) Number of peptide masses matching the top hit from Ms-Fit PMF. 
d) Percentage of amino acid sequence coverage of matched peptides in the identified proteins. 
e) Identification method 

 
Tab. II: proteins identified as target of carbonylation. 

Spot (e) AC (a) Sco
re(b) 

No of 
matching 
peptide (c) 

Sequence 
coverage(d) 

(%) 
Protein name 

2 MS P02679 250 16 51 Fibrinogen gamma chain 

6 MS P02679 116 9 20 Fibrinogen gamma chain 

10 MS P02679 144 10 30 Fibrinogen gamma chain 

39 MS P02679 132 9 20 Fibrinogen gamma chain 

40 MS P02679 116 9 20 Fibrinogen gamma chain 

3 MS P02675 90 6 12 Fibrinogen beta chain 

20 MS P02675 107 10 25 Fibrinogen beta chain 

41 map P02675    Fibrinogen beta chain 

87 map P02675    Fibrinogen beta chain 

51 map P00751    Complement factor B 

52 MS P00751 94 7 13 Complement factor B 

53 map P00751    Complement factor B 

25 MS P01042 109 9 21 Kininogen 1 

54 MS P01042 89 9 13 Kininogen 1 

24 MS P01009 181 14 40 Alpha-1 antitrypsin 

26 MS P01009 161 13 36 Alpha-1 antitrypsin 

85 MS P01009 128 11 29 Alpha-1 antitrypsin 

56 MS P02774 98 8 20 Vitamin D binding protein 

57 MS P02774 117 9 22 Vitamin D binding protein 

70 MS P01876 98 7 20 Ig alpha-1 chain C region 

79 MS P01876 85 7 22 Ig alpha-1 chain C region 

86 map P01876    Ig alpha-1 chain C region 

7 MS P02766 178 9 58 Transthyretin 

21 MS P02766 66 3 25 Transthyretin 

65 MS P02766 66 3 25 Transthyretin 

9 MS P00738 93 7 16 Haptoglobin 

11 MS P00738 112 10 24 Haptoglobin 

46 MS P00738 78 6 15 Haptoglobin 

8 MS P02787 135 12 16 Serotransferrin 

15 MS O43866 88 7 18 CD5 antigen-like 

1 map P99006    IgG heavy chain 
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4.3.4 Protein carbonylation in the post exercise condition of “less 
trained” subjects 

 

      In order to evaluate the influence on protein carbonylation in subject not trained 

for endurance activity, we analyzed the same trend on plasma proteins of subject 

who practise various kind of sport for recreational purposes. This group was formed 

by 11  recreational athletes. They practise regular physical activity less than 3 times 

at week according to their physical possibility and without a personal trainer. To 

process these athletes to the same effort intensity for our study they performed 1 hour 

of run according to their physical possibility; a sample of blood collection (5 ml) was 

taken before and after this exercise. Furthermore, they quantify the effort during the 

hour of run by using the Borg Scale. This is a simple method of rating perceived 

exertion (RPE) and can be used to gauge an athlete's level of intensity in training and 

competition. In fact, researchers found that there is a correlation between an athlete's 

rate of perceived exertion (RPE) and their heart rate, lactate levels, %VO2 max and 

breathing rate [Chen et al., 2002]. Their perceived exertion was between 13 and 15 

RPE, corresponding to a moderate exercise, considered like an aerobic exercise. 

 

      Also for these subjects we analyzed the plasma protein carbonylation by marking 

the carbonylated proteins with DNPH and using 2D-GE followed by western blot. In 

order to analyze our results we indicated, as previously, the carbonylation trend of 

each protein spot in the table IV. Analyzing the same proteins we identified for the 

hard trained subjects we saw a different carbonylation trend. First of all is interesting 

to notice that the global protein carbonylation level, “carbonylome”, following the 

PE is lower in comparison to the hard trained subjects (33% vs 23%, fig. 5-4). There 

are some proteins spot (70, 79 and 86) susceptible to carbonylation following the 

exercise  corresponding to the Ig alpha chain C region. Also for the recreational 

athletes the Haptoglobin resulted carbonylated after the exercise. As previously 

visualized for the hard trained subjects there are individual variations in the 

carbonylation profile of the recreational athletes. In fact we can see from the table 

that some subjects present high carbonylation level  following the exercise  (subjects 

1and 7), while some subjects have a low and constant level of carbonylated spots 

(subjects 2, 4 and 11).  
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Tab. IV: Spots carbonylation trend after PE in recreational athletes. Horizontal numbers 
indicate subjects and vertical numbers indicate all carbonylated spots. Colours indicate the 
carbonylation trend of each spot following the exercise. Green: major spot carbonylation 
before PE. Red: increase in carbonylation after PE. Orange: constant carbonylation in spite 
of PE. White: no carbonylation. Asterisks represent spots carbonylated only in resting 
condition (asterisk and green box) or only after the exercise (asterisk and red box).  
 

 

 

 

 

 

 

 

 
 
Fig. 5. Percentage of carbonylated spots after PE in recreational athletes. Green: major 
spot carbonylation before PE. Red: increase in carbonylation after PE. Orange: constant 
carbonylation in spite of PE. White: no carbonylation. 
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4.3.5 Protein carbonylation in resting condition 

       

      To understand if a constant and strenuous training may have effect on proteins 

oxidation in spite of the physical exercise, we decided to study the plasma 

carbonylome at the resting condition (basal level) for both the group of subjects. To 

do so, we compared the proteins carbonylation at resting condition in the hard 

athletes and in the recreational athletes. We considered the presence or the absence 

of the carbonylated spot in the western blots of each subject. The table V shows the 

results of this comparison between the two groups. Spots marked with a “X” are 

carbonylated in the corresponding subject. Even analysing the basal carbonylation 

profile of each subject it’s possible to notice the individual variability, previews 

found with the proteomic analysis. 

 

 

 
 
 
 
Tab. V. Spots Carbonylation at resting condition in recreational athletes and in Endurance 
trained men. “X” indicate the spot carbonylation in each subject. 
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      As we can see from the table there are spots, corresponding to the same protein, 

always carbonylated in the resting condition in both the groups. For example the 

spots 2 and 10 corresponding to isoforms of fibrinogen gamma chain, spot 20 

corresponding to fibrinogen beta chain and 56, corresponding to Vitamin D binding 

protein. Maybe some isoforms of these proteins are more susceptible to 

carbonylation than others. This fact may be due to conformational features of the 

various isoforms. The others spots corresponding to these proteins are carbonylated 

only in some subjects and we found that there is a majority of endurance trained 

subjects showing this characteristic. In fact, our analysis indicates that recreational 

athletes present at resting conditions a 62% of carbonylation of the total spots 

analyzed, in comparison to the high trained athletes presenting a 70%. 

 

      The higher oxidation level at resting condition in the more trained men maybe 

means that a constant and strenuous training causes an oxidative stress higher than a 

moderate physical exercise.  
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4.4 Conclusions 

 

      The aim of our research was to characterize plasma proteins that undergo 

carbonylation in response to physical exercise in men trained to perform endurance 

exercise and in men practising sport for recreational purposes. By a proteomic 

analysis we found not only proteins that are target of carbonylation after physical 

exercise, but also proteins which carbonylation is not affected by exercise and 

proteins that are carbonylated only in the plasma of the resting condition. A protein 

whose carbonylation level increases after exercise is the Haptoglobin, a glycoprotein 

present in plasma with important antioxidants functions: it protects Haemoglobin 

from oxidative damage. Then we noticed that “endurance hard trained” athletes 

showed a higher carbonylation of plasma proteins in comparison to men that practise 

various kind of sports with a moderate exercise. 

     These methods have allowed to obtain an overview of the changes in the 

oxidation of plasma proteins with physical exercise and to identify new markers of 

physiological stress. 
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