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Chapter 1 
 

Sulfur containing silylated heterocycles as useful building blocks 

in organic chemistry: synthesis and functionalization under 

different conditions 
 

1.1. Introduction 

 

In the last years, sulfur containing heterocyclic rings have attracted considerable 

attention, because they are very interesting molecules having applications in 

synthetic organic chemistry and for their properties as biologically and 

pharmaceutically active compounds. Among them, five-membered heterocyclic 

derivatives containing one or more sulfur atoms are important intermediates in 

organic chemistry, firstly as protecting group for carbonyl compounds and as 

building blocks for  

the synthesis of more complex structures.  

1,3-Oxathiolanes, 1,3-thiazolidines and 1,3-dithiolanes (Figure 1) have found 

wide application, due to the presence of this kind of heteroatomic skeletons in a 

number of molecules with biological activity.  

 

 

1,3-Oxathiolanes with suitable substituting groups, for example, showed 

pharmaceutical activities as anti-Alzheimer agents (Figure 2, left),1 anti-HIV 

agents2 (Figure 2, middle) and muscarinic agonists (R, R1=H, CH3) or antagonist 
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R RR
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(R, R1=Ph, Cy; Figure 2, right), depending on different substituting groups at 

position 23. 

 

 

 

Likewise, the 1,3-thiazolidinic system is present in a large number of molecules 

with activities as radio-protective agents4 (Figure 3, left), glycosidase inhibitors5 

(Figure 3, right) and antitussive agents. 

 

 

 

 

Very recently a paper dealing with the potent antitumor activity of cis-2-

carbonylethyl-4,5-di(L-aminoacyloxymethyl)-1,3-dithiolanes has been reported in 

the literature6 (Figure 4, left); moreover, differently substituted α-, β- and γ- 

semicarbazone- and thiosemicarbazone-1,3-dithiolanes are known as radio-

protectors,7 thus confirming the high versatility of such structures in the 

pharmaceutical field (Figure 4, right). 
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Moreover, chiral 1,3-dithiolanes can find possible applications as chiral 

auxiliaries in asymmetric synthesis. 

As a consequence of the importance and versatility of five-membered heterocyclic 

intermediates, the development of a general strategy to transfer the cyclic unit 

onto electrophiles, in order to obtain differently substituted compounds, attracted 

a great deal of interest in organic synthesis.  

 

 

1.2.1.  Stereoselective functionalization of silylated heterocycles, as a class of 

formyl anion equivalents, induced by fluoride-ion 

 

The retrosynthetic approach to the synthesis of functionalized heterocycles would 

foresee the nucleophilc attack of heterocyclic anions, arising from the 

corresponding synthetic equivalents by treatment under basic conditions, onto 

electrophiles (Scheme 1). 
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In this context, umpolung reactivity is a remarkable strategy, providing the 

formation of C-C bonds via the inversion of normal reactivity.8 As a consequence, 

the development of synthetic equivalents of acyl anions has in the recent years 

grown due to the potentiality of this approach, and suitable protected carbonyl 

derivatives are a very interesting class of molecules acting as equivalents of acyl 

anions.  

Acyclic derivatives, such as α-silyl sulfides,9 α -metalated derivatives10 have been 

employed as masked formyl and acyl anion synthons, but, among them thioacetals 

represent certainly the most versatile class of synthetic equivalents . In particular, 

hetorocyclic thioacetals showed a valuable versatility for the development of such 

reactivity. The most common classes of cyclic thioacetals are 1,3-dithianes and 

1,3-dithiolanes, which are interesting protecting groups of carbonyl compounds 

and can also react as masked acyl anions.11 The use of these compounds, when 

compared with their oxygen analogues, presents some advantages, for example 

thioacetals are easier to obtain and they are more stable to hydrolytic cleavage 

under basic and acidic conditions.  

1,3-Dithianes undergo easy metalation with BuLi and react with a large range of 

electrophiles, showing their versatility as umpoled reagents.11,12 

On the other hand, deprotonation of the corresponding 1,3-dithiolanes 1 invariably 

gives unstable anions and consequent cleavage of the rings is always observed, so 

limiting their use as masked acyl carbanions and preventing the possibility of 

further functionalizations of the dithiolane moiety.13 In fact, 1,3-dithiolane anions, 

upon treatment with bases, have been reported to undergo either deprotonation at 

C-2, with subsequent cycloelimination to the corresponding alkenes and 

dithiocarboxylate anions,13c or at C-4, affording products derived from 

thiocarbonyl derivatives and vinyl thiolate anion (Scheme 2).13a,b 
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Although, in fact, two examples of fuctionalization under basic conditions of 

dithiolanes bearing electron-withdrawing groups have been reported in the 

literature,14 there is not a general protocol for the dithiolane-moiety transfer. 

In recent years, organosilicon compound chemistry has grown, due to the critical 

role that silylated molecules play in organic synthesis and to their versatility  and 

tolerance of other functional groups. The functionalization of carbon-silicon bond 

represents an interesting methodology for the formation of novel carbon-carbon 

bonds. Thus, synthetic methods based on silicon chemistry are an important and 

always increasing area of organic synthesis. The application of heterocyclic 

silanes to organic synthesis offers a fundamental opportunity for new 

methodologies, since these cycles can react effectively as precursors of 

heterocyclic carbanions.  

The interest in the reactivity of organosilanes showed the possibility to consider 

the 2-trimethylsilyl-1,3-dithiolane 2a as a possible masked dithiolane anion 3 

equivalent.  

Previous works published by Degl'Innocenti, Capperucci et al.15 revealed that the 

fluoride ion-induced carbodesilylation reaction of silyl dithiolanes 2a in the 

presence of electrophiles, occurred with success forming new C-C bonds (Scheme 

3). 
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These results suggested that the carbodesilylation reaction proceeded through a 

pentacoordinated silicon intermediate, due to the tendence of silicon to extend its 

coordination sphere to five or even six,16 rather than through a free carbanion, 

which we expected to decompose.  

Due to the mildness of such basic conditions, it was possible to observe an 

effective transfer of a dithiolane unit onto electrophiles, without decomposition of 

the ring, as observed in the presence of stronger bases, such as BuLi or LDA 

(Scheme 2). 

Thus, when 2-trimethylsilyl-1,3-dithiolane was treated with aldehydes in the 

presence of different sources of fluoride ion, the functionalization of C-Si bond 

occurred, leading to the corresponding functionalized α-hydroxy dithiolane 5, 

with a small amount of protodesilylation product (around 20%). This was the first 

example of silyl mediated dithiolane transfer reported in the literature.15a 

In this context, several fluoride ion sources were evaluated, ranging from CsF, 

TASF, TBAT and TBAF, and TBAF was found to be the best choice. 

Interestingly this reactivity was extended to aromatic, heteroaromatic, aliphatic 

and α,β-unsaturated aldehydes, as electrophiles, affording in all cases protected α-

hydroxy aldehydes 5 in good yields. It is interesting to underline that in the 

presence of α,β-unsaturated aldehydes, only 1,2-adducts have been obtained. In 

the same context,15b,c,d the stereochemical fate of the reaction was also considered. 

When both cis and trans-4,5-dimethyl-2-trimethylsilyl-1,3-dithiolanes (2b, 2b')  

were employed in the presence of aldehydes 4 (such as benzaldehyde), a 

stereoconservative carbodesilylation reaction occurred at C-2, affording 5b and 

5b', and no traces of epimerization were detected (Scheme 4).  
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Nevertheless it was not possible to obtain asymmetric induction on the newly 

formed stereogenic center. As a consequence, the crude products were isolated as 

a mixture of the two enantiopure diasteroisomers, which could be 

chromatographically separated to give chiral funtionalized 1,3-dithiolanes in good 

yields. 

Such results then outlined the peculiarity of the silicon moiety in promoting these 

reactions, and evidenced the fluoride ion induced functionalization of the C-Si 

bond as a possible general tool for the functionalization of otherwise not easily 

functionalizable heterocycles. 

 

 

1.2.2.  Recent results: 

tetrabutylammonium phenoxide induced functionalization of silylated 

dithiolanes 

 

Several drawbacks are nevertheless linked to the use of TBAF, such as the 

difficulties in having an anhydrous solution, and its stability along with time.17 In 

the past, Majetich et al.17c reported a long procedure to dry tetra-n-

butylammonium fluoride, by treatment of commercially available TBAF ·3H2O 

under vacuum, in the presence of activated molecular sieves and dry DMF; stock 

solution of DMF/TBAF stored at room temperature were found effective for only 

one day. This is why we began to look for different catalytic systems in the 

activation of C-Si bond. 

S S

SiMe3

S S

OHPh

PhCHO
S S

SiMe3

S S

OHPh

PhCHO

FF / DMF / DMF

Scheme 4
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A recent investigation by Mukaiyama and coworkers18 reported that Lewis base 

catalysts, such as phenoxide ion based catalysts, can promote C-Si bond activation 

of trimethylsilylacetylenes and of 2-trimethylsilyl-1,3-dithianes 6. Mukaiyama 

found that the use of PhONn-Bu4 as catalyst in DMF gave the best results, in the 

fuctionalization of silyl dithianes with aromatic having electron-donating or -

withdrawing groups, heteroaromatic and α,β-unsaturated aldehydes (80-97% 

yiels). When aliphatic aldehydes were used, the reaction proceeded smoothly, 

giving the adducts in moderate to good yiels (60-83%). Since dithiane adducts 

were recovered as a mixture of their TMS-ethers and desilylated alcohols, 

hydrolysis by treating the crudes with 1 M HCl was necessary, affording the 

corresponding alcohols (Scheme 5). 

 

 

 

 

Prompted by these results, our attention was turned to the possibility to use 

phenoxide ion catalysts in replacement of TBAF in promoting the reactions of 

silyl dithiolanes, thus overcoming the aforementioned drawbacks connected with 

the use of TBAF.17 

Our hope was that the reaction conditions in using phenoxide ion catalysis could 

have been mild enough to allow the functionalization of silyl dithiolanes without 

decomposition of the heterocyclic system. 

In this context, both PhONa and PhONn-Bu4 were used as catalysts in the 

reactions of silyl dithiolanes 2a, 2c with aldehydes 4 and different solvents taken 

into consideration, and we also found the best choice being PhONn-Bu4 in polar 

solvents such as DMF (Scheme 6).19 
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The use of PhONa generally led to the formation of variable amounts of 

desilylation products, and solvents like THF to low yields of the expected 

products. Moreover, reactions in DMF were faster than in THF, being the starting 

dithiolane reacted in 2-4 h in DMF with respect 12-24 h in THF. 

Results of this investigation are summarized in Table 1. 

Reactivity proveded general, occurring smoothly with aromatic, heteroaromatic 

and aliphatic aldehydes. In all reactions no trace of decomposition of the 

dithiolane ring was observed, thus showing that also under the influence of 

phenoxide ion a real carbanion 3 was not generated in the present conditions. The 

substituted 2-silyl-4-(isopropoxymethyl)-1,3-dithiolane 2c was reacted as well 

with benzaldehyde, leading to the formation of the 4-substituted-α-hydroxy-

dithiolane 5c as a mixure of cis/trans isomers (Table 1, entry 4), that could be 

separated on silica gel. It should be  

mentioned that when reacting substituted dithiolanes a greater amount of 

protodesilylation was observed. 
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Scheme 6
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                   Table 1   Carbodesilylation of silyldithiolanes 
 

 
entry dithiolane R'CHO catalyst solvent product yield 

(%) a 
1 2a PhCHO PhONa DMF 5a 42 
2 2a PhCHO PhONBu4 THF 5a 10 
3 2a PhCHO PhONBu4 DMF 5a 87 
4 2c PhCHO PhONBu4 DMF 5c 49 b 
5 2a Thienyl-CHO PhONBu4 DMF 5d 88 
6 2a p-Br-C6H4-CHO PhONBu4 DMF 5e 70 
7 2a E-PhCH=CHCHO PhONBu4 DMF 5f 78 
8 2a C6H11CHO PhONBu4 DMF 5g 60 
9 2a (CH3)2CHCH2CHO PhONBu4 DMF 5h 30 

 
                         a Based on isolated yield. 
                         b Mixture of cis and trans isomers. 
 
 

Similarly to Mukaiyama findings,18 usually dithiolane adducts were obtained as a 

mixture of hydroxy compounds and trimethylsilyl ethers. The use of saturated 

aqueous NH4Cl solution during the work-up led to the exclusive formation of the 

corresponding alcohols 5a-h.  

 

 

1.2.3. Conclusions 

 

In conclusion, the phenoxide ion-induced activation of the C-Si bond of silyl 1,3-

dithiolanes has led to the development of a simple and mild protocol for their not 

obvious functionalization. This methodology was completely general, as shown in 

Table 1, and could be interestingly extended to 4-substituted-heterocyclic rings 

2c, thus leading to polyfunctionalized systems which are important building 

blocks for the synthesis of more complex molecules. 

In the presence of stereochemically defined substrates, it was possible to tranfer 

the dithiolane moiety with retention of configuration, in analogy with the 

corresponding reaction induced by fluoride-ion. In this case, also without 

asymmetric induction onto the new stereogenic center at carbon 2, it was possible 

to isolate enantiopure diastereoisomers, which could be separated on silica gel, 
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giving chiral cycles. The importance of chiral polyfunctionalized heterocyclic 

skeletons, present in a variety of biologically active compounds, was discussed 

before underlining the versatility of the methodology here reported. 

 

 

1.3.1. Five-membered silylated heterocycle synthesis 

 

Taking advantage of the previously outlined results15,19 for the reactivity of 1,3-

dithiolanes 2, which seems to proceed via pentacoordinated silicon species and 

not via a free carbanion, we envisaged that functionalization of the C-Si bond 

under the mild catalytic activity of phenoxide ion, as well as under catalysis of 

fluoride ion, could lead to a solution to the functionalization problem for such 

labile heterocycles. In this context, it appeared obvious the importance to find a 

general and effective methodology leading to the synthesis of these key-

intermediate silylated heterocycles.  

Since direct access to silyl heterocycles is difficult, an alternative route to such 

molecules had to be devised. A possible route to silyl dithiolanes and, in general, 

to five-membered ring silylated heterocycles could be envisaged through the 

reaction of bifunctional molecules, such as 1,2-dithiols, 1,2-mercaptoalcohols and 

1,2-aminothiols with formyl trimethylsilane 7 (Scheme 7).  
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Nevertheless, formyl trimethylsilane 7 presents some difficulties in its 

generation20 due to its lability , and as a consequence, the research for a possible 

synthetic equivalent of such a compound is required. In our group, we previously 

envisaged bromo(methoxy)methyl trimethylsilane 9 to be the right reagent for the 

cyclization process of bifunctional molecules (Scheme 8).15c,21 

 

 

 

In fact, bromo(methoxy)methyl trimethylsilane was synthesized in quantitative 

yield (80%) by the radical reaction of commercially available methoxymethyl 

trimethylsilane 8 with bromine, and a subsequent one-pot cyclization with the 

required mercaptan 10, aminothiol or mercaptoalcohol 11 led to desired silylated 

heterocyclic systems (Scheme 9).15c,21 

 

 

The formation of the bromo(methoxy)methyl trimethylsilane 9 intermediate could 

be checked by 1H-NMR analysis, before the addition of bifunctional compound.  
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The one-pot procedure was general and occurred under mild conditions, affording 

the corresponding heterocycles in good yield and allowing to extend the protocol 

to bifunctionalized mercapto-derivatives bearing substituting group of different 

nature. Such a reaction then evidenced the ability of bromo(methoxy)methyl 

trimethylsilane 9 to act as a real synthetic equivalent of formyl silane 7 and 

opened the way to a possible general route to access a wide variety of silyl 

heterocycles. Nonetheless, it is clear that the generality of this procedure is strictly 

related to the availability of the required starting bifunctionalized molecules, 

namely 1,2-dithiols 10, 1,2-mercapto alcohols 11 and 1,2-amino thiols.  

 

 

1.3.2. Synthesis of β-mercapto alcohols: a recently reported versatile method 

using HMDST 

 

Probably due to their ease of oxidation, it is not easy to obtain and to store β-

mercapto alcohols 11 and 1,2-dithiols 10, so limiting the generality of the already 

mentioned synthetic route to five-membered heterocyclic rings.  

Despite these difficulties, bifunctionalized molecules of this kind play a 

fundamental role in organic chemistry as crucial building blocks for the synthesis 

of polyfunctionalized molecules and, if chiral, as possible ligands in asymmetric 

synthesis. As a consequence, the development of general methodology for their 

synthesis has attracted a great deal of attention during the years.  

It is well know that ring opening of epoxides 12 with nucleophiles represent a 

very versatile chemical transformation to access a wide range of functionalized 

molecules.22 In particular, reactions with thio nucleophiles offer the opportunity to 

access different interesting sulfurated molecules,23 and among them there are a 

few methods which allow a direct access to β-mercapto alcohols. Some protocols 

involve reactions of H2S,24 and thiourea.25  

Moreover, in the course of time, thiosilanes26 and silane thiols such as Ph3SiSH27 

(Scheme 10) and i-Pr3SiSH28, which behave as mono-protected H2S but are easier 

to use,  have been used as nucleophiles in the opening of oxiranes affording the 

desired β-hydroxy thiols, even if not always a regiocontrolled reaction was 

achieved. 
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An interesting route to these structures was found by our group in the use of a 

versatile thionating agent, bis(trimethylsilyl)sulfide (hexamethyldisilathiane, 

HMDST) (TMS)2S 13, which proved a very versatile reagent in the delivery of 

sulfurated moieties with ring-strained heterocycles, such as oxiranes, thiiranes, 

aziridines. HMDST 13 can be considered as a synthetic equivalent of H2S, 

affording hydroxythio-, dithio-, aminothio- derivatives owing to the ring opening 

reactions of ring-strained cycles, but it is easier to handle and to measure than 

H2S.15,29  

Previous results in our group 15c,d, 29 showed that reaction of differently substituted 

epoxides 12 with HMDST 13 and TBAF as catalyst in the activation of the S-Si 

bond, afforded a mild ring opening of heterocyclic ring, leading to the formation 

of various β-mercaptoalcohols 11 in good yields (40-95%), arising from a 

regioselective  attack of the silyl sulfide on the less hindered side of the oxirane 

(Scheme 11).  
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Due to the mild reaction conditions, this methodology was applied also to useful 

but very labile compounds, such as glycidol derivatives and epichlorohydrin 

(Scheme 11), which represent important versatile structures in the biological and 

pharmaceutical fields, without removing of the protective moieties. 

Moreover, the mild conditions allowed to apply such procedure as well to 

enantiopure epoxides, thus affording a regioselective and totally 

enantioconservative access to chiral β-mercaptoalcohols  (65-95% yields) 

(Scheme 12). Only in the case of styrene oxide was the corresponding regioisomer 

detected in little amount (regioisomeric ratio 10 : 0.5).  

 

 

 

A plausible reaction mechanism for the activation of the Si-S bond was proposed 

by Tanabe, for the ring opening of epoxides with thio nucleophiles, such as PhS-

TMS, in DMF (Scheme 13).26a 

Thus, activation of the silicon-heteroatom bond by fluoride ion contributes to 

ring-opening reaction via hypervalent silicate intermediates, as shown in Scheme 

16 . In the catalytic cycle, the TBAF catalyst firstly attacks the thiosilane 14 to 

give the reactive pentavalent thiosilicate 15, which coordinates to the oxygen of 

the epoxide 12 and forces the thiol group towards the carbon centre of the 

substrate. After the ring opening process, the fluoride anion is immediately 
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transferred from the alkoxy(fluoro)silicate to another molecule of thiosilane 15 

with the release of the silyl ether product and regeneration of the thiosilicate. 
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1.3.3. Stereoselective synthesis of 1,2-dithiols under fluoride ion catalysis 

 

The reactivity of HMDST 13 towards epoxides was conveniently extended to 

other ring strained compounds, such as thiiranes 16, affording an easy access to a 

variety of building blocks for use in the synthesis of five-membered ring silylated 

heterocycles.15, 29 

Unlike the case of epoxides, to the best of our knowledge, only few examples 

have been described on the ring opening of thiiranes,30 probably due to their easy 

polymerization and tendency to be desulfurized. Generally such reactions are 

reported under Lewis acid catalysis, and represent a very useful method to obtain 

sulfurated systems, even if they often show poor regio- and stereoselectivity. 

Thus, the approach using HMDST afforded an easy access to a variety of 

functionalized mercaptans 10, useful precursors for the synthesis of five-

membered silylated heterocycles. 

With our delight, in fact, episulfides 16 upon treatment with 

bis(trimethylsilyl)sulfide 13 and TBAF as catalyst, were converted smoothly to 

the corresponding 1,2-dithiols 10a-e in good yields. The reaction occurred 

regioselectively in this case too, with the nucleophilic attack on the less hindered 

position of the substrate (Scheme 14).15c,d 

 

 

 

The isolation of 1,2-dithiols, which are extremely labile substrates due to the 

presence of easily oxidizable thiol-groups, was possible by a simple work-up in 

the presence of anti-oxidant agents, such as citric acid solution (50% aqueous 

solution). In these conditions it was possible to isolate 1,2-dithiols, which were 

pure enough to be used without further purification. 
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The reactivity proved general, leading to the synthesis of substituted 1,2-dithiols 

10a-e bearing aromatic and aliphatic moieties, as reported in the Table 2. 

 

 

     Table2  Direct synthesis of 1,2-dithiols 

 

entry R product yield (%)a,b 

1 CH2OAll (16a) 10a 54 

2 Ph (16b) 10b 75 

3 i-PrOCH2 (16c) 10c 74 

4 (±)-CH2OBn (16d) 10d 80 

5 (R)-CH2OBn (16e) 10e 77 

 

                 a Based on isolated yield. 
                          b All the products were characterized by 1H-NMR, 13C-NMR and mass  
                   spectroscopy. 
 

 

Interestingly, as already reported in the case of epoxides, the reactivity was 

successfully extended to enantiopure thiiranes, leading to the isolation of optically 

active 1,2-dithiols, with retention of the stereochemistry (Table 2, entry 5; Scheme 

15). 
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1.3.4. Stereoselective synthesis of β-mercaptoalcohols and 1,2-dithiols under 

phenoxide ion catalysis 

 

In a previous section, we established the efficiency of phenoxide ion in promoting 

the functionalization of the C-Si bond in silylated dithiolanes;19 here we turned 

our attention to different organosilanes, namely those containing an heteroatom-

silicon bond, such as S-Si.  

As previously reported, we have been interested in the activation of the S-Si bond 

of nucleophiles for regio- and stereoselective ring opening reactions of ring 

strained molecules with HMDST, under mild catalysis of fluoride ion.15c,d, 29  

As a further step, our aim was to study the reactivity of HMDST 13 in the ring 

opening reactions of oxiranes 12 and episulfides 16, in the presence of phenoxide 

ion as catalyst for the activation of the S-Si bond. This extension of the reactivity 

of thiosilanes was very interesting, due to the aforementioned advantages in the 

use of phenoxide ion based catalysts, with respect to the fluoride ion catalysts.   

A preliminary research concerning the role of phenoxide ion in the 

functionalization of S-Si bond, was directed to the evaluation of the reactivity of 

the less labile silylated nucleophile PhS-TMS 17, towards epoxides and thiiranes.  

Thus, when phenylthiotrimethylsilane 17 was reacted with benzylglycidol 12a and 

a catalytic amount of PhONn-Bu4 (20%), a clean reaction occurred, leading to the 

isolation in good yield of compound 18a, arising from a regioselective attack of 

the nucleophile on the less hindered side of the oxirane ring (Scheme 16).19 Then, 

the above described procedure may represent a simple and efficient approach to 

access β-hydroxy sulfides, that behave as useful intermediates in different 

synthetic transformations.  
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Likewise, the reaction of 17 with 2-(isopropoxymethyl)thiirane 16c and PhONn-

Bu4 (20 mol%), led to the isolation of compound 19c, with total regioselectivity. 

The isolation of labile β-mercapto-sulfide was possible by treating the reaction 

mixture with citric acid (50% aqueous solution), as anti-oxidant agent, to avoid 

the total dimerization of the -SH group; nevertheless, a little amount of 

dimerization product was detected in the crude (Scheme 17).  

Interestingly, epoxide and thiirane ring opening reactions in the presence of thio 

nucleophiles under phenoxide ion catalysis, was conveniently performed in THF 

instead of DMF, as for the activation of C-Si bond under catalysis of PhONn-Bu4; 

moreover it was possible to reduce the amount of the catalyst to 20 mol%, instead 

of 40 mol% employed in the carbodesilylation reactions.19 

 

 

 

The efficiency of the methodology was further demonstrated by the use in such 

reactions of the much more labile chalcogen derivative HMDST 13 as 

nucleophile, which in turn reacted smoothly with oxirane 12a, affording the β-

hydroxythiol 11a in comparable yields with those already reported under fluoride 

ion conditions (Scheme 18).19 In some cases, products were isolated as their 

trimethylsilyl ethers.   
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The extension of the reactivity to ring opening of 16c, showed a behavior 

completely comparable in terms of selectivity with that already observed under 

fluoride catalysis, allowing the isolatation of the 1,2-dithiol 10c in good yield. In 

this case the treatment with citric acid (50% aqueous solution), led to the isolation 

of 10c in 61% of yield (Scheme 19). 

 

 

 

It is remarkable to underline that, as well as in the case of TBAF,  the phenoxide 

ion catalysis assured mildness of the reaction conditions so that they was applied 

to labile compounds, such as glycidol derivatives, without decomposition. 
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1.4. Synthesis of 4-functionalized-2-trimethylsilyl 1,3-dithiolanes by 

cyclization of 1,2-dithiols 

 

The  obtained bifunctionalized derivatives are versatile building blocks for the 

synthesis of silylated heterocyclic rings, such as 4-functionalized-2-trimethylsilyl 

1,3-dithiolanes 2c-e. In this context, as already reported,15 a one-pot procedure 

with the in situ preformed trapping agent, bromo(methoxy)methyl trimethylsilane 

9, and 1,2-dithiols 10c-e led to silylated heterocyclic rings in moderate to good 

yields (Scheme 20, Table 3). 

  

                

                    

                   

 

                     Table 3  Synthesis of 4-functionalized-2-trimethylsilyl 1,3-dithiolanes 

 

entry R product yield (%)a d.r. (cis : trans)b 

1 CH2Oi-Pr 2c 44 2.5 : 1 

2 (±)-CH2OBn 2d 37 1.5 :1 

3 (R)-CH2OBn 2e 40 1.5 :1 

 
                              a Based on isolated yield, after purification. 
                              b Determined by correlation spectroscopy. 
 
 

The reaction was performed with glycidol derivatives without appreciable 

decomposition of the protective moieties, and only a little amount of 4-

(bromomethyl)-2-trimethylsilyl 1,3-dithiolane, arising from the nucleophilic 
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substitution of bromide on the isopropyl or benzyl groups was detected in the 

crude. 

With our delight, such one-pot protocol could be successfully extended to chiral 

1,2-dithiols (Table 3 , entry 3), no racemization being ever detected in the 

cyclization step. 

 

 

 

 

In this case the methodology afforded enantiopure diastereoisomers, which was 

chromatographically separated to give chiral 4-functionalized-2-trimethylsilyl 1,3-

dithiolanes (Scheme 21). This result was not obvious, and represented an 

important potentiality for the synthesis of  chiral polyfunctionalized silylated  

heterocycles of different nature, which can be further reacted by activation of the 

C-Si bond, so opening the doors to a general protocol to obtain complex 

molecules with applicability in different fields.  
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1.5. Conclusions 

 

In this chapter we reported the synthesis of 2-trimethylsilyl 1,3-dithiolanes 2 by 

cyclization reaction of bifunctionalized intermediates, such as β-mercaptoalcohols 

11 and 1,2-dithiols 12. Such molecules, which are important building blocks in 

organic synthesis as well as possible chiral ligands in asymmetric synthesis, could 

be easily obtained by a general approach consisting of the regio- and 

enantioselective fluoride induced ring opening reaction of epoxides and 

episulfides with HMDST 13. The methodology was extended to the use of 

different catalytic systems, such as phenoxide ion,19 in order to overcome the 

drawbacks connected with the use of fluoride ion catalysts. 

Finally we examined the activation of the C-Si bond of 2-trimethylsilyl 1,3-

dithiolanes 2, induced by phenoxide ion catalysis, in the transfer of the dithiolane 

moiety onto electrophiles.19 

These results underlined the high versatility of phenoxide ion in promoting the 

activation of C-Si and heteroatom-Si bond under mild reaction conditions. 
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Chapter 2 

 

Investigation of organothiosilane reactivity in ionic liquids 
 

2.1. Ionic Liquids in organic synthesis, an alternative to traditional organic 

media 

 

Once established the role of fluoride and phenoxide ions in promoting the 

activation of the C-Si and heteroatom-Si bonds in traditional organic solvents, we 

turned our attention to study the reactivity of organosilanes in alternative reaction 

media, such as ionic liquids. In fact in the last decades, the use of ionic liquids 

(ILs) as media for organic reactions has grown constantly, due to their peculiar 

properties that have highlighted their wide applicability. Moreover, the growing 

attention and sensitivity to environmental problems, prompted us to investigate 

the possibility to use greener solvents for our reactions. 

In this context, new chemicals are constantly being designed to meet the needs of 

industry and society, for example to reduce the toxicity, to enhance the 

biodegradability, all of which are fundamental principles of green chemistry. 

Ionic liquids (ILs) are defined as pure compounds, consisting only of large 

organic cations and inorganic anions, which melt at or below 100°C. Among 

them, many are liquid at room temperature, and for this reason there are 

sometimes called 'Room Temperature Ionic Liquids' (RTILs). The cation is 

generally a bulky organic structure with a low degree of symmetry, in order to 

decrease the melting point, while the anion is generally a polyatomic species such 

as BF4
-, PF6

-, CF3COO-,  CF3SO3
-, NTf2

-, N(CN)2
-. 

 Despite a lot of cations have been reported in the literature, such as ammonium, 

sulfonium, phosphonium, imidazolium, pyridinium, most of the data are focused 

on N,N-dialkylimidazolium salts (Figure 5).31  
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The first examples of ILs based on dialkylimidazolium cations were reported 

around 1980 years by Wilkes et al.,32 and they contained chloroaluminate anions 

(AlCl4
- or Al2Cl7

-); however problem in using these ILs was the high reactivity of 

the chloroaluminate anion towards water.  

The first examples of ILs of new generation, ethylmethylimidazolium 

tetrafluoroborate [emim][BF4] and the corresponding hexafluorophosphate 

[emim][PF6] were reported in the literature by Wilkes in 1992,33, 34 and they 

showed to be stable towards hydrolysis. 

Ionic liquids have been widely considered greener solvents, suitable for a range of 

organic reactions and providing possibilities such as enhanced rate and reactivity, 

ease of product recovery, catalyst immobilization and recycling.  

They have many fascinating properties which make them of fundamental interest 

to all chemists as potentially attractive media for organic synthesis, since both the 

thermodynamics and kinetics of reactions carried out in ILs are different to those 

in conventional organic solvents. 35 

RTILs have essentially no vapour pressure, so they don't evaporate with 

consequent ease to be contained; they present high thermal stability and their high 

polarity allows to dissolve a wide range of organic, inorganic and organometallic 

compounds. Their ability to dissolve organic and inorganic compounds and their 

high polarity sort out in a general increase of the rate and the selectivity of plenty 

of chemical processes, when compared with traditional synthetic media. 
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Furthermore the polarity and hydrophilicity/lipophilicity can be modified by a 

suitable choice of cation and anion, and for this reason ILs have been denoted as 

'designer solvents'. For example, butylmethylimidazolium tetrafluoroborate 

[bmim][BF4] is completely miscible with water, while the analogous [bmim][PF6] 

salt is largely immiscible with water.  

The polarity and the absence of vapour pressure allow an easy recovering of the 

reaction products. Precisely, volatile products can be recovered by distillation, 

while non-volatile compounds by solvent extraction. 

ILs are immiscible with some organic solvents and hence they can be employed in 

two-phase systems instead of water; similarly, lipophilic ILs can be used in 

aqueous biphasic systems.34 

There is also significant interest in the development of 'task specific' ionic liquids, 

where the anion and cation are designed to affect the chemical and physical 

properties for a specific use as solvents and/or catalysts and reagents in chemical 

processes. In the literature are described several anions and cations having distinct 

Lewis/Brønsted acidity or basicity and how these properties can influence the 

choice and application of the ILs. The most common ILs, 

butylmethylimidazolium tetrafluoroborate [bmim][BF4] and 

butylmethylimidazolium hexafluorophosphate [bmim][PF6] are classified as 

neutral ionic liquid (Figure 6).36 

 

 

 

RTILs are described as 'green solvents', and due to their low vapour pressure and 

limited miscibility with water and organic solvents they are completely 

recyclable, with consequent benign effect on pollution. Nevertheless, about their 

biodegradability and toxicity, relatively little is known; in the last years the 
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studies in this direction grew up, highlighting strictly connection between the 

biodegradability of ILs and the structure of the anions.37 

The peculiar properties, some of which have been here described, can highlight 

why ILs are considered valid and always growing alternative to traditional organic 

systems. 

 

 

2.2. Synthesis of bifunctionalized compounds in ionic liquids under fluoride 

ion catalysis 

 

The brief introduction about the IL use in organic chemistry could explain the 

interest to report our research-line in this direction, that showed how ILs can be 

efficiently used in replacement of the traditional molecular solvents for the 

reaction of silylated species towards electrophiles. 

In fact, as a consequence of the interesting properties of ILs and of the social 

demand to investigate greener alternatives to the conventional organic solvents as 

important step towards sustainable chemistry, we focused our attention on the 

possibility to extend the methodologies for the synthesis of bifunctionalized 

molecules with silylated thio nucleophiles in ILs as reaction media. 

 

 

2.2.1. Ring opening of epoxides and thiiranes with PhSTMS, under catalysis 

of fluoride ion 

 

ILs used in this first investigation were dialkylimidazolium based neutral ILs, 

such as butylmethylimidazolium tetrafluoroborate [bmim][BF4] and 

butylmethylimidazolium hexafluorophosphate [bmim][PF6]. 

Firstly, we considered the possibility of obtaining β-mercapto-derivatives by ring 

opening reactions of ring strained heterocycles with different thiosilanes in ionic 

liquids, under the catalysis of fluoride ion. In this context, not so many examples 

have been described in the literature concerning the ring opening of epoxides with 

nucleophiles of different nature in ILs,38 and among them only few papers 

reported the ring opening of oxiranes in presence of thio nucleophiles, 39 such as 

thiophenols and aryl disulfides, to give β-hydroxy sulfides. 
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The reaction in Scheme 22, for example, generated β-hydroxy sulfides in 

excellent yield with high regioselectivity and chemoselectivity, without the use of 

any catalyst. In this context, among several  

 

 

 

ILs, ethylmethylimidazolium tetrafluoroborate, [emim][BF4], gave the best results 

in term of yields, promoting the nucleophilic attack of thiophenols on the less 

substituted α-carbon.39c  

Another interesting example in this direction foresaw the synthesis of β-

hydroxysulfides arising from the ring opening reaction of 1,2-epoxides with diaryl 

disulfides in the presence of zinc powder, catalyzed by BiCl3 immobilized on IL 

(tetrabutylphosphonium bromide) (Scheme 23).39b 

 

  

 

 

 

The products were obtained by the attack of nucleophiles on the less hindered 

carbon of substrates, however in the case of styrene oxide, a reverse 

regioselectivity was reported. 
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Moreover, there is only one report on the reactivity of silylated nucleophiles in 

ILs. Precisely in this paper, was reported the ring opening reaction of epoxides 

with TMSCl, affording chlorohydrins in good yields (Scheme 24).40 

 

 

 

 

The IL, due to its high polarity, promoted the activation of TMSCl, facilitating the 

attack on the less substituted carbon of the epoxide, with the exception of styrene 

oxide. 

Our interest was then turned to evaluate the possibility to activate S-Si bond of 

thio nucleophiles by catalysis of fluoride ion in ILs, with the intention to extend 

the scope of our already reported methodologies. 

In this direction, firstly we reacted oxiranes 12a-e with PhSTMS 17, in the 

presence of TBAF as fluoride ion source, using [bmim][BF4] or [bmim][PF6] as 

solvents (Scheme 25, Table 4). 
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                 Table 4.  Synthesis of β-hydroxysulfides in ILs 

 

entry R1,  R2 [X] product yield (%)a 

1 CH2OBn, H (12a) [BF4] 18a 73 

2 CH2Oi-Pr, H (12b) [BF4] 18b 81 

3 Ph, H (12c) [BF4] 18c 67b 

4 CH2OBn, H (12a) [PF6] 18a 75 

5 cyclohexyl (12d) [PF6] 18d 59 c 

6 CH2Cl, H (12e) [PF6] 18e 47 
 

                            a Based on isolated yield. 
                            b Mixture of two regioisomers, in ratio 6 : 1. 
                            c Amount of cyclohexene-oxide recovered: 15 %. 

 

It is interesting to underline that the process was generally highly regioselective, 

only one product 18a-e being observed in the crude arising from clean 

regioselective attack of the thio nucleophile on the less hindered side of the 

substrate, in accord to the results previously obtained in THF. 

Only in the case of styrene oxide 12c (Table 4, entry 3), was the corresponding 

regioisomer detected, and this particularity was observed also in traditional 

organic solvent, due probably to the activation of the benzylic position. 

Due to the mildness of the experimental conditions, this methodology in ionic 

liquids could be applied to useful but labile molecules, such as glycidol 

derivatives and the protective moieties were not removed. This result was not 

obvious, due to the high polarity and in general the different properties of ionic 

liquids, when compared with traditional organic solvents.  

We performed such reactions using both [bmim][BF4] and [bmim][PF6] with 

excellent results, but due to the less hygroscopicity of [bmim][PF6], we used this 

one to react the highly sensitive epichlorohydrin (Table 4, entry 6). In these 

conditions it was possible to obtain the corresponding compound 18e in 

satisfactory yield; the oxirane was again regioselectively opened at the less 

hindered carbon, and nucleophilic attack occurred exclusively on the epoxide, the 

halide being preserved on the side chain. 
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The scope of the reaction was extended successfully to the ring opening of 

episulfides 16a-c in the same conditions, leading to the isolation of β-

mercaptosulfides 19a-d with total regioselectivity for the substrates examined 

(Scheme 26, Table 5). 

 

                

                  

               

                    Table 5.  Synthesis of β-mercaptosulfides in ILs 

 

entry R IL product yield (19) (%)a 

1 CH2Oi-Pr (16c) [bmim][BF4] 19c 43b 

2 CH2OBn (16d) [bmim][BF4] 19d 66c 

3 CH2Oi-Pr (16c) [bmim][PF6] 19c 71 

4 CH2OBn (16d) [bmim][PF6] 19d 69 

5 CH2OAll (16a) [bmim][PF6] 19a 65 

 
                             a Refers to crude products, determined by 1H-NMR analysis. 
                             b Yield of the corresponding disulfide 20c: 23%. 
                             c Yield of the corresponding disulfide 20d: 10%. 

 

It is particularly important the possibility to extend with success the methodology 

to thiiranes, considering also that no example relative to the reactivity in ILs of 

such substrates has been reported in the literature. 

Nevertheless, due to the ease of polymerization of the thiol-group, when using 

[bmim][BF4] as reaction medium, the products were obtained as a mixture of β-

mercapto thiols 19c,d and the corresponding dimerization products 20c,d (Table 
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5, entries 1-2). Such trend was observed also when carrying the work-up in the 

presence of an anti-oxidant citric acid solution.  

In order to avoid, or anyway to reduce the dimerization process, we tried to 

substitute [bmim][BF4] with [bmim][PF6].  With our delight it was possible, in 

these conditions, to isolate thiols 19 in excellent yield (Table 5, entries 3-5). The 

products were recovered from the reaction medium by  extraction with diethyl 

ether, and subsequent treatment with citric acid solution gave the crude mixtures. 

Unluckily  after purification on silica gel (the purification was required to remove 

PhS-SPh, always present in the crude), variable amounts of dimerization products 

were recovered in all cases, due to the instability of the -SH group.  

The advantages of the reported methodology in ILs included high regioselectivity 

and chemoselectivity, comparable to those already observed in traditional organic 

solvents,15c,d, 29 good yields, fast reactions, simple operations and recyclability of 

the reaction media. 

Experiments about the recyclability of ILs were performed, and ILs were reused 

for three runs, without any appreciable loss of activity.  

 

 

2.2.2. Ring opening of epoxides and thiiranes with HMDST under catalysis of 

fluoride ion 

 

To the best of our knowledge, no example has been described in the literature of 

epoxide and episulfide reactions with thio nucleophiles to give directly β-

mercaptoalcohols 11 and 1,2-dithiols 10, probably due to the lability of such 

molecules.  

In this context, the versatility of our methodology was further demonstrated by the 

use, for the ring opening reactions of three-membered heterocycles in ILs, of the 

much more labile HMDST 13. HMDST reacted smoothly with oxiranes 12 under 

the catalysis of fluoride ion, to give 11 in comparable yields with those reported 

under traditional conditions (Scheme 27, Table 6).  
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The compounds were recovered from the reaction medium by simple extraction 

with diethyl ether and subsequent treatment with anti-oxidant citric acid solution, 

which gave 11 pure enough to be used without further purification. The possibility 

to avoid the purification step was fundamental for this kind of molecules, due to 

their tendency to polymerize during the treatment on silica gel. 

 

                 Table 6.  Synthesis of 1,2-mercaptoalcohols in ILs 

 

entry R [X] product yield (%)a 

1 (±)-CH2OBn (12a) [PF6] 11a 69 

2 (R)-CH2OBn (12f) [BF4] 11f 60 

3 CH2Oi-Pr (12b) [BF4] 11b 57 

4 CH2Oi-Pr (12b) [PF6] 11b 73 

5 CH3 (12g) [BF4] 11g 35 b 

 
                           a Refers to isolated products whose spectroscopic data are consistent with the  
                    assigned structure. 
                           b The lower yield depends on the volatility of 11g. 
 
 

Interestingly, the reactivity in IL showed the same regioselectivity than in THF, 

giving the products arising from regioselective attack of nucleophile on the less 

hindered side of the epoxide. When the enantiopure substrate 12f was reacted 

under such mild conditions,  enantioconservation was observed with the formation 

of the optically active 11f (Scheme 28). 
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Table 6 underlines how the reactivity of 13 is completely comparable using both 

ionic liquids, [bmim][BF4] and [bmim][PF6], but in the presence of [bmim][PF6] 

yields were just higher (entries 1, 4).  

As a further step, we decided to evaluate the possible extension of the reactivity of 

HMST to the ring opening reactions of thiiranes (Scheme 29).  

 

 

 

 

The regio- and enantioconservative  methodology afforded compounds 10 in good 

yields, which  

were pure enough to be used without further purification. The reactivity proved 

general, occurring smoothly with differently substituted episulfides (Table 7). 

 

                   

 

 

O
+ HMDST

TBAF 20 mol%
bmim BF4

BnOH2C

HO

SH
work-up:

citric acid 50% aq sol

BnO

Scheme 28

12f 11f13
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+ HMDST

TBAF 20 mol%
bmim X

R

HS

SHR
work-up:

citric acid 50% aq sol

Scheme 29

16a-e 10a-e
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                       Table 7.  Synthesis of 1,2-dithiols in ILs 

 

entry R [X] product yield (%)a 

1 CH2OAll (16a) [PF6] 10a 64 

2 CH2Oi-Pr (16c) [BF4] 10c 64 

3 CH2OBn (16d) [BF4] 10d 75 

4 (R)-CH2OBn (16e) [PF6] 10e 77 

 
                              a Refers to isolated products whose spectroscopic data are consistent with the  
                       assigned structure. 
                               
 
 

The reported results were, in a first moment, completely unexpected due to the 

instability of 1,2-dithiols and to the difficulties in obtaining them also in 

anhydrous THF. Nevertheless it was possible to disclose an efficient procedure for 

the obtainment of such molecules in high yields, using both [bmim][BF4] and 

[bmim][PF6] as solvents. 

In conclusion, the reactivity of thiosilanes as nucleophiles in the ring opening 

reactions of strained heterocyclic rings could be applied successfully to the use of 

ionic liquids, under catalysis of fluoride ion, affording bifunctionalized molecules 

in good yields. The methodology revealed to be highly regioselective and, with 

enantiopure substrates, enantioconservative, according with the behaviour 

previously observed in traditional organic solvents.15c,d, 29  

The use of different ILs as well as different ring strained heterocycles as 

substrates are now under investigation. 
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2.3. Synthesis of bifunctionalized compounds in ionic liquids under 

phenoxide ion catalysis 

 

Despite the efficiency of TBAF in promoting the activation of the S-Si bond in the 

ring opening reactions of three-membered heterocycles, several drawbacks, as 

reported in the previous chapter,  are linked to the use of this catalyst.  

For this reason, in Chapter 1 we highlighted the possibility of using different 

catalytic systems in order to overcome such drawbacks, and in this direction we 

found that PhONn-Bu4 was a suitable catalyst in activating organosilanes under 

traditional conditions.19  

In this section we report our results concerning the reactivity of silylated 

nucleophiles in ILs, induced by PhONn-Bu4.  

 

 

2.3.1. Ring opening of epoxides and thiiranes with PhSTMS under catalysis 

of phenoxide ion in ILs 

 

In this context, we started to check the reactivity of phenylthiotrimethylsilane 17 

with benzyl glycidol 12a in [bmim][PF6], under catalysis of PhONn-Bu4. The 

reaction proved quite efficient, leading to the isolation of the β-hydroxy 

phenylthio-derivative 18a in good yield, thus confirming the versatility of this 

new catalytic system in S-Si bond activation also in ILs. The regioselectivity  was 

the same that for the analogous reaction in the presence of TBAF, with the attack 

of the thio nucleophile on the less hindered carbon of the substrate, no trace of the 

other regioisomer being detected (Scheme 30). 

Similarly, the reaction of the corresponding glycidol thiirane 16d showed total 

regioselectivity, allowing to obtain the β-mercapto phenylthio-derivative 19d in 

quite good yield after purification on silica gel (Scheme 30). 
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When enantiopure substrates were used, the regioselective attack of PhSTMS 

allowed to obtain chiral phenylthio-derivatives with complete 

enantioconservation. 

An interesting study concerning the influence of different catalysts, TBAF and 

PhONn-Bu4, on the reactivity and stereoselectivity of organosilanes in ILs, was 

carried out with PhSTMS 17 and styrene oxide 12c in [bmim][BF4] (Scheme 31). 

The peculiarity of this substrate is that, due to the presence of phenyl group which 

activates the benzylic position, nucleophiles usually afford products as mixture of 

both regiosomers arising from attack on the less as well as on the more hindered 

side of the substrate. Only in this case both regioisomers were isolated in the ring 

opening reaction with our thio nucleophiles, and the same behaviour was also 

observed in THF.15c,d, 29 

The results reported in Scheme 31 showed that, as expected, the two regioisomers 

18c and 18c' were obtained either under catalysis of both fluoride ion (in 67 % of 

total yield)  or phenoxide ion (in 51 % of total yield), but with different 

regioisomeric ratios. 

 

 

 

 

 

 

 

X
+ PhSTMS

PHONn-Bu4 20 mol %

bmim PF6

HX

SPh
BnO

18a X = O (69 % yield)
19d X = S (48 % yield)

Scheme 30

12a X = O
16d X = S

17

BnO
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2.3.2. Ring opening of epoxides and episulfides with HMDST under catalysis 

of phenoxide ion in ILs 

 

Finally, we tried to extended the protocol under phenoxide ion catalysis to the use 

of labile HMDST, with the aim to obtain β-mercaptoalcohols 11 and 1,2-dithiols 

10. 

When we reacted benzylglycidol 12a with HMDST 13 and a catalytic amount of 

PhONn-Bu4, a clean reaction occurred, leading to the isolation of the 

mercaptoalcohol 11a with total regioselectivity, in moderate yield after 

purification on silica gel (Scheme 32).  

In the same way, the ring opening of 16d in such reaction conditions afforded 

regioselectively  the corresponding 1,2-dithiol 10d in moderate yield after 

purification, due to the oxidation of the -SH group.  

 

 

O
+ PhSTMS

PHONnBu4

bmim BF4 Ph

HO

SPhPh

+

OHPh

PhS

2 : 1

12c 17 18c 18c'

20 mol%

O
+ PhSTMS

TBAF 20 mol %

bmim BF4 Ph

HO

SPhPh

+

OHPh

PhS

6 : 1

Scheme 31

12c 18c 18c'17
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Performing the reactions in ILs, no trimethylsilyl ether formation was detected, as 

observed for the corresponding reaction in THF, but only hydroxy compounds 

were isolated. 

Experiments about the recyclability of ILs were performed, and ILs were reused 

without any appreciable loss of activity.  

 

 

2.4. Spontaneous reactivity of organosilanes in ionic liquids 

 

It is worthwhile mentioning that in ILs, reactions of organosilanes occurred also 

spontaneously without the use of any catalyst, even if with a noticeable slowering 

of the rate. 

In fact, due to the high polarity of ionic liquids with consequent polarization of 

the S-Si bond, uncatalysed ring opening reactions of epoxides and episulfides 

occurred with HMDST, leading to the formation of β-hydroxy and β-mercapto 

disulfides, 21 and 22 respectively (Scheme 33).  

 

 

 

 

 

 

 

 

X
+ HMDST

PHONn-Bu4 20 mol %

bmim PF6

HX

SHwork-up:

citric acid 50% aq sol

BnO

11a X = O 51 % yield
10d X = S 40 % yield

Scheme 32

12a X = O
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Results of this investigation are summarized in Table 8. 

            

                Table 8.  Synthesis of β-thio-derivatives 

 

entry X R product yield (%)a 

1 O  (±)-CH2OBn (12a) 21a 27 

2 O  (R)-CH2OBn (12f) 21f 31 

3 O CH3 (12g) 21g 21 

4 O CH2Oi-Pr (12b) 21b 25 

5 S CH2Oi-Pr (16c) 22c 19 
 

                          a Based on isolated yield.  
 

 

In some cases, ring opening products were isolated as mixtures of hydroxy 

compounds and their trimethylsilyl ethers, but simple treatment with 0.2 

equivalents of TBAF afforded the desired β-hydroxy derivatives. 

Due to the longer reaction times and to the easy polymerization of thiol-groups, 

the ring opening products were obtained as dimers, also performing the work-up 

in the presence of anti-oxidant citric acid.  

Chiral compounds of this kind find possible applications as ligands in asymmetric 

synthesis.  

The S-S bond, moreover, can be reduced with NaBH4, to give the corresponding 

β-mercapto alcohols and 1,2-dithiols, which can be in situ used for further 

transformations.  

X

R

+ HMDST
rt

bmim BF4 R

HX

S S R

XH

X = O
X = S

Scheme 33

21 X = O
22 X = S
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The conversion degree of the process is not high, even when carrying out the 

reaction for several days and trying to heat the system, and starting materials were 

recovered after purification on silica gel, together with the dimerization products 

in moderate yields. The reaction proceeded with total regioselectivity for the 

substrates examined, and no trace of the regioisomer arising from the nucleophilc 

attack on the more hindered side of the cycle, was detected.  

 

 

2.5. Conclusions 

 

In conclusion, the results reported in this section showed as the S-Si bond 

activation of nucleophiles could be extended to the use of alternative and greener 

reaction media, such as ionic liquids, for the synthesis of bifuctionalized 

molecules, such as β-mercaptoalcohols, 1,2-dithiols, and β-phenyl thio-

derivatives, useful intermediates in the synthesis of more complex molecules and 

possible ligands for asymmetric synthesis.  

The organosilane reactivity in ILs, in terms of yields and stereoselectivity, was 

completely comparable with that already observed under traditional reaction 

conditions. These considerations highlighted the total generality and versatility of 

our synthetic methodologies also in the perspective of more environmental 

sustainable processes. 

The use of different ILs is now under investigation. 
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Part I 

 
 

 

Selenosilane reactivity for the synthesis of selenium 

containing chiral molecules. 
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Chapter 3 

 

Synthesis of selenium containing polyfunctionalized molecules in 

traditional organic solvents 

 
 

3.1. Introduction 

 

Selenium was discovered by the chemist Jöns Jacob Berzelius in 1818 and during 

the last decades the chemistry of organoselenium compounds has attracted great 

interest, from both the synthetic and biologic point of view.41 Selenated reagents 

are in fact used either as useful intermediates in the synthesis of selenium 

containing complex molecules, or heterocyclic compounds.42  

Selenium is an essential nutrient of fundamental importance to human biology.43 

Selenocysteine, the 21st aminoacid, is a component of selenoproteins, some of 

which have fundamental enzymatic functions. Selenium functions as a redox 

centre in enzymes involved in reduction processes. An example of this redox 

function is the reduction of hydrogen peroxide and damaging lipid and 

phospholipid hydroperoxides to harmless products, such as water and alcohols, by 

the family of selenium-dependent glutathione peroxidases. This function helps to 

maintain membrane integrity and to reduce the propagation of oxidative damage 

to biomolecules such as lipids, lipoproteins and DNA, with consequent decreasing 

of cancer risks. Due to the important role of selenoproteins in metabolism, 

selenium deficiency has adverse consequences in human health. Selenium 

deficiency is accompanied with loss of immunocompetence and progression of 

some viral infections, such as Keshan disease, atherosclerosis, HIV-virus, as well 

as cardiovascular diseases.43   

Selenium enters the food chain mostly through plants, which take it up from the 

soil. Food sources of selenium are cereals, fish, liver.  Inorganic selenium salts,  

such as sodium selenite, represent common supplements, but organic forms 

appear to possess superior properties from both a safety and efficacy standpoint.43a  

Interest in the use of organoselenium compounds in biochemistry grew with the 

findings that organoselenium compounds are much less toxic, compared with the 

inorganic selenium species. During the past decade, the attention has been 
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directed toward the synthesis of stable organoselenium compounds that could be 

used as antioxidants, enzyme inhibitors, antitumor and anti-infective agents.44 In 

this context, selenated aminoacids such as selenocysteine (Figure 7, left) and 

selenotyrosine (Figure 7, right), useful intermediates for the synthesis of 

selenoproteins and heterocyclic compounds, showed themselves activity as 

antitumor agents.45  

 

 

 

The isosteric replacement of sulfur by selenium showed increasing activity toward 

biological targets, for example some selenium containing anti-cancer molecules 

present pharmaceutical activity 50-140 times higher than that of their sulfur 

analogues.44 The interchanging of selenium for sulfur can be considered as an 

important approach that has been extensively used in medicinal chemistry. The 

unique redox properties of selenium are crucial in the biological activity oh these 

compounds. 

Sometimes the toxicity of selenium compounds becomes the limiting factor of 

their use in pharmacology; recent investigations highlighted that the toxicity could 

be lowered by suitable substitutions in the molecular skeleton.  

The application of organoselenium compounds in cancer prevention and treatment 

represents now an important field for selenium research, and nucleoside like the 

selenium analogues of 6-thioguanosine (Figure 8, left) and 6-mercaptopurine 

(Figure 8, right) have been studied for their antitumor activities.44  

 

NH3

COO

HSe

HSe

COO
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Recently, certain heterocyclic derivatives, such as Ebselen (Figure 9, left) 46 and 

its p-chloro analogue, selenazoles (Figure 9, right) 47 and selenomorpholines  

(Figure 9, middle) 48 have been evaluated for their antibacterial, antifungal and 

anti-inflammatory activities, joined together with extremely low toxicity. It is 

interesting to underline that their corresponding sulfur analogues did not present 

the same pharmaceutical activity.44  

 

 

 

In conclusion, selenium containing molecules present wide applicability in the 

pharmacological and biological fields as potential drugs for the treatment of 

diseases, such as cancer and HIV-virus, due to the peculiarity of selenium atom. 

 Moreover, since last decades several chiral organoselenium reagents found 

chemical applications as ligands for asymmetric synthesis,41a, 49 and more 

recently, selenides have been employed in organocatalysis,49c so disclosing the 
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vast importance of selenium chemistry in the chemical  as well as in the biological 

fields.41 

 

 

3.2.1. Selenosilanes in the ring opening reactions of three-membered 

heterocycles for the synthesis of β-hydroxy and β-mercapto diselenides, 

under TBAF catalysis 

 

Once established the importance of selenated molecules in the biological, 

pharmaceutical and chemical fields, the need of developing efficient 

methodologies for their synthesis appears clear. 

Selenated reagents are in fact used either as useful intermediates in the synthesis 

of heterocyclic compounds or in the synthesis of selenium containing cyclic 

structures. Although a number of synthetic processes based on selenium chemistry 

have been reported along the years, little is known about methodologies based on 

the reactivity of selenosilanes.  

Our long dated interest in the chemical behaviour of HMDST, led us to elucidate 

its efficiency as a useful reagent in the generation of a variety of thiocarbonyl 

compounds, as well as β-mercapto-derivatives.15c,d, 29  

On the other hand, the chemistry of the corresponding selenium derivative, 

bis(trimethylsilyl)selenide (HMDSS, TMS-Se-TMS) 2350 has received much less 

attention, despite the relevance that organoselenium compounds have actually 

gained.  

To the best of our knowledge, only few examples dealing with the reactivity of 

silyl selenides with heterocyclic rings have been reported. In particular, reactions 

of phenylseleno(trimethylsilane) towards tetrahydrofurans51 and epoxides,52 under 

basic (n-BuLi) or Lewis acid conditions (Scheme 34) were described in the 

literature. In Scheme 34, the ring opening of differently substituted epoxides with 

PhSeTMS under catalysis of ZnI2, afforded β-siloxy-alkyl phenyl selenides; the 

regioselectivity of the process was not total, depending on the substituting groups 

on the epoxides and on the reaction conditions. 52a 
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More recently, Tiecco et al. reported the synthesis of enantioenriched β-hydroxy 

selenides by asymmetric ring opening of meso-epoxides with different 

(phenylseleno)silanes, catalyzed by chiral salen(metal) complexes.52d 

Lewis acid catalyzed reaction of epoxides with the related PhSeSnBu3 has also 

been reported in the literature.53  

On the contrary, a large number of papers concerning the reactivity of diselenides 

and different selenium anions with epoxides have been described in the 

literature.54  

In our group, we have already investigated the reactivity of HMDSS 23 

(synthesized from elemental selenium, see experimental section), with epoxides 

that afforded ring opening of these three-membered cycles under fluoride ion 

catalysis.55 The reaction in the presence of catalytic amount of TBAF, as fluoride 

ion source, led to the isolation of β-hydroxy diselenides 24 with total 

regioselectivity, due to the attack of the nucleophile on the less bulky side of the 

substrate; when enantiopure heterocycles were reacted under the same conditions, 

optically active β-hydroxy diselenides were regioselectively formed (Scheme 35). 

The reaction proved quite general, occurring with aliphatic and aromatic 

substituents on the epoxide. 

Only in the case of styrene oxide was the corresponding regioisomer, arising from 

the attack of the nucleophile on the more hindered side of the substrate, detected. 
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In this first screening, several attempts to isolate the β-hydroxy silyl selenide (or 

selenol) intermediates were unsuccessful, and the corresponding β-hydroxy 

diselenides 24 were always obtained. In fact, while the treatment of the reaction 

mixture with anti-oxidant citric acid led to the isolation of β-mercapto alcohols 

and 1,2-dithiols, as already reported in Chapter 1, in the case of the corresponding 

selenated compounds the dimerization process occurred in any case, even when 

carrying the work-up under anti-oxidant conditions. The different behaviour was 

depending on the easier tendency of the selenols to oxidation, when compared 

with the corresponding thiols.  

We could envisage a plausible reaction mechanism for the activation of the Si-Se 

bond, completely parallel to the activation mechanism published by Tanabe 26afor 

the reaction of PhSTMS, under TBAF catalysis, towards oxiranes (Scheme 13, 

Chapter 1). 

The described reactivity was not limited to epoxides, but was conveniently 

extended to other ring strained heterocycles, such as episulfides (Scheme 36),55 

leading to a convenient access to several β-mercapto diselenides 25 in good 

yields. 
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1.4 equiv.

Scheme 35

THF

OH

Se R

0°C rt

12 23 24



 63

 

 

Nucleophilic attack occurred on the less hindered position of the thiirane, thus 

providing ring-opening products with total regioselectivity. 

Diselenide derivatives of this kind are useful building blocks in organic chemistry 

for the synthesis of more complex selenium containing molecules, such as 

heterocyclic compounds, which present biological and pharmaceutical activities. 

In this context, in the literature, few examples have been reported for the direct 

synthesis of selenium containing heterocycles, such as 1,3-oxaselenolane. In 

particular, two examples have been reported in which, after reduction of the Se-Se 

bond of diselenide intermediates by NaBH4
56

 or H3PO2,57 the in situ trapping with 

aldehydes or bromo-acetals, afforded 1,3-oxaselenolanes. Moreover, the synthesis 

of 1,3-thiaselenolanes has been even more rarely reported.58 

In our group, we found a direct and highly efficient methodology for the synthesis 

of 1,3-oxaselenolanes and 1,3-thiaselenolanes in good yields (Scheme 37). 55 
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In such a methodology, when oxiranes or thiiranes were treated with HMDSS in 

the presence of 1-bromo-1-methoxy derivatives, the expected 1,3-oxaselenolanes 

and 1,3-thiaselenolanes were obtained as mixtures of cis and trans 

diastereoisomers, arising from the in situ trapping of the β-hydroxy or β-mercapto 

selenol intermediates by the bromo derivatives. 
 

 

3.2.2. HMDSS as versatile reagent for the selective synthesis of β-hydroxy 

and β-mercapto selenides, under TBAF catalysis 

 

Taking advantage of the previuosly reported reactivity of HMDSS, and 

considering that chiral products, such as β-mercapto diselenides and β-hydroxy 

diselenide could be used as ligands for suitable metals in the construction of 

optically pure metal complexes for asymmetric synthesis,49 we turned our 

attention to find a general and efficacious methodology for the chemoselective 

synthesis of the corresponding chiral β-functionalized selenides. 

In fact, the evaluation that β-functionalized diselenides and β-functionalized 

selenides could act as chiral bidentate ligands with different spacing, prompted us 

to find a general and direct methodology  for their selective synthesis.  

In the literature, many examples have been described for the synthesis of 

selenides through reduction of diselenides, affording selenium anions which were 

X

R

+ (TMS)2Se
1. TBAF, 0°C

2.

R'

Br OCH3

SeX

R

R'X = O
X = S

R = CH3, CH2OPh, CH2Oi-Pr
Yields = 30-66%

Scheme 37

X = O
X = S
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in situ trapped with electrophiles.59 Nevertheless, selenides were often recovered 

in mixtures with the corresponding diselenides, and their purification was 

difficult, thus limiting the versatility of the processes. In Scheme 38 is reported an 

example in this direction, concerning the synthesis of asymmetric selenides 

through reductive cleavage of preformed diorganyl diselenides, catalyzed by 

In(III) and mediated by Zn.59d 

 

 

 

 

In this context, our intention was to investigate the possible selective and direct 

access to chiral diselenides or selenides, by using HMDSS in the ring opening 

reactions of epoxides and episulfides, under catalysis of fluoride ion. HMDSS 

turned out to be a versatile seleno nucleophile, effectively activated by fluoride 

ion catalysis under mild reaction conditions and as a consequence, we envisaged 

the possibility to synthesize chemoselectively diselenides or selenides only 

through the control of the stoichiometric ratio of the reagents.  

The results outlined in the previous section showed that the reaction between ring 

strained cycles (as electrophiles), and 1.4 equivalents of HMDSS, led to the 

isolation of differently β-substituted diselenides; the further step was to carry out 

the reaction in the same reaction conditions, but using double amount of 

electrophiles, in comparison with HMDSS (Scheme 39). 
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With our delight, the reaction of epoxides with 0.7 equivalents of HMDSS under 

catalysis of TBAF, allowed to obtain with high selectivity, β-hydroxy-selenides 

26 in moderate to good yields. The reaction proved totally regioselective, with the 

attack of the seleno nucleophile on the less hindered position of the substrate and, 

when enantiopure epoxides were reacted, optically active β-hydroxy-selenides 

were regioselectively formed (Table 9, entry 2). 

 

                    

                    Table 9.  Synthesis of β-hydroxy selenides in THF under TBAF catalysis 

 

entry R product yield (%)a,b 

1 (±)-CH2OBn (12a) 26a 56 

2 (R)-CH2OBn (12f) 26f 59 

3 CH2OCH3 (12h) 26h 61 

. 
                                   a Based on isolated yield.  
                                   b All the products were characterized by 1H-NMR, 13C-NMR, 77Se-NMR 
                                       and mass spectroscopy. 
 
 

The univocal assignment of the structures was not possible on the base of 1H-

NMR and 13C-NMR spectroscopies, because the differences of the chemical shifts 

were usually not significant to distinguish between β-hydroxy diselenides and β-

hydroxy selenides.  

O
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+ TMS-Se-TMS
TBAF 20 mol%

R

HO

Se
0.7 equiv.

R

OH

THF

Scheme 39
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1H-NMR and 13C-NMR analysis of these two classes of compounds (β-hydroxy 

diselenides and β-hydroxy selenides ) allowed to recognize a specific trend in 

which chemical shifts of the proton and carbon at α-position in selenides usually 

resonated at upfield from that of diselenides. Nevertheless, these differences were 

not enough for the univocal assignment of the structures.   

On the other hand, the differences in the 77Se-NMR chemical shifts were 

substantial and it was possible to find two specific ranges for the chemical shifts 

of the two classes of compounds, which were distant more than 200 ppm (Table 

10). In this way the assignment of the structures was unambiguous. 

 

  

 

 

 

The scope of the reaction was extended with success to the ring opening of 

thiiranes, affording under the same reaction conditions, β-mercapto selenides 27 

with total regioselectivity and enantioselectivity (Scheme 40, Table 11). 

 

 

 

 

 

 

 

 

Table 10

2-hydroxy selenide 77Se-NMR (ppm) 2-hydroxy diselenide 77Se-NMR (ppm)

69
MeOH2C

HO

Se CH2OMe

OH

280
MeOH2C

HO

Se-Se

OH

CH2OMe

71
BnOH2C

HO

Se CH2OBn

OH

278
BnOH2C

HO

Se-Se

OH

CH2OBn
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The isolation of the compounds was possible through an easy work-up consisting 

in the treatment with an anti-oxidant citric acid solution, to avoid the oxidation of 

the thiol-groups. In same cases, the products were recovered from the reaction 

medium pure enough to be employed in further transformations without 

purification. 

 

 

                    Table 11.  Synthesis of β-mercapto selenides in THF under TBAF catalysis 

 

entry R product yield (%)a,b 

1 CH2Oi-Pr (16c) 27c 50 

2 (±)-CH2OBn (16d) 27d 52 

3 (R)-CH2OBn (16e) 27e 49 

 

                  a  Based on isolated yield.  
                                        b All the products were characterized by 1H-NMR, 13C-NMR,  
                                           77Se-NMR,  and mass spectroscopy. 
 

 

The assignment of the structures was possible through 77Se-NMR spectroscopy, in 

accord with the already mentioned case for the corresponding β-hydroxy 

derivatives. 

Also in this case, 77Se-NMR analysis led to the finding of specific ranges of 

chemical shifts for β -mercapto selenides 27 and diselenides 25, which were 

distant almost more 200 ppm (Table 12). 
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The ring opening reaction of racemic epoxides and episulfides with HMDSS 

afforded β-functionalized diselenides and selenides as mixtures of syn and anti 

diastereoisomers, which could be, in same cases, distinguished by 77Se-NMR 

spectroscopy  (Table 12). 

In conclusion, we have devised a general and efficient methodology for the 

obtaining of β-hydroxy 26 and β-mercapto 27 selenides by regio- and 

stereoselective ring opening reaction of epoxides and thiiranes in the presence of 

HMDSS, under mild catalysis of fluoride ion in THF.  

We highlighted the versatility of HMDSS as selenating reagent, with which it was 

possible to obtain, using the same methodology and only changing the 

stoichiometric ratios, the corresponding β-hydroxy 24 and β-mercapto 25 

diselenides with high selectivity.  

The possibility to obtain selenides or diselenides with selectivity has shown 

fundamental  importance, because of  the extreme difficulty to separate selenides 

and diselenides by chromatography. 

           

         

 

 

 

 

Table 12

2-mercapto selenide 77Se-NMR (ppm) 2-mercapto diselenide 77Se-NMR (ppm)

122 - 123
i-PrOH2C

HS

Se CH2O i-Pr

SH

311 - 312

i-PrOH2C

HS

Se-Se

SH

CH2Oi-Pr

123 - 124
BnOH2C

HS

Se CH2OBn

SH

311

BnOH2C

HS

Se-

SH

CH2OBnSe
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3.3.1. Reactivity of PhSeTMS under catalysis of phenoxide ion in THF 

 

As a further step, we decided to evaluate the possible extension of the 

selenosilanes reactivity in the presence of phenoxide ion catalysts, due to the 

advantages that they present when compared with fluoride ion catalysts, as 

reported in Chapter 1.  

In this context, we started to investigate the reactivity of PhSeTMS 28 as 

nucleophile for the ring opening reactions of three-membered heterocycles under 

catalysis of PhONn-Bu4.  

When benzylglycidol 12a was reacted with phenylselenotrimethylsilane 28 under 

catalysis of PhONn-Bu4 in THF, a clean reaction occurred, leading to the isolation 

in good yield of the β-hydroxy phenylseleno derivative 29a, thus confirming the 

versatility of this new catalytic system (Scheme 41).  

Compounds of this kind are interesting synthetic intermediates, due to the 

presence of the PhSe- group that is an excellent leaving group and that allows 

further transformations.54l 

 

 

 

The nucleophilic attack occurred regioselectively on the less hindered side of 12a, 

and no trace of the other regioisomer was detected. The crude was recovered as 

mixture of hydroxy compound and its trimethylsilyl ether, and simple work up 

under acidic conditions (citric acid aqueous solution) smoothly afforded the 

desired phenylselenoalcohol 29a. 

The ring opening of the thiirane 16c under the same reaction conditions afforded 

the β-mercapto phenylseleno derivative 30c with total regioselectivity (Scheme 

42). 

 

O

OBn + PhSe-TMS
PhONn-Bu4

20 mol%

1.1 equiv. THF

OH

SePh

OBn

Scheme 41

89 % yield12a 28 29a
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In this case the work-up under anti-oxidant conditions (citric acid, aqueous 

solution) allowed to preserve the labile -SH group, even if, during the purification 

process on silica gel, dimerization occurred with consequent decreasing of the 

yield (53%). 

 

 

3.3.2. Synthesis of β-hydroxy and β-mercapto diselenides, under catalysis of 

phenoxide ion in THF 

 

The efficiency of the phenoxide ion catalysis in the activation of the Se-Si bond 

was further demonstrated by the use in such reactions of the much more labile, but 

more intriguing HMDSS 23.  

When differently substituted epoxides were reacted with HMDSS and PhONn-

Bu4, a smooth reaction occurred, leading to the synthesis of β-hydroxy diselenides 

24, arising from oxidation of the transient selenols, in comparable yields with 

those already obtained under fluoride ion conditions55 (Scheme 43, Table 13). 

 

 

                     

O
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PhONn-Bu4
20 mol%
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THF R

HO

Se-Se
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SeR

Scheme 43

0°C rt
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R

HO
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S

O + PhSeTMS
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PhONn-Bu4
20 mol%

THF

SH

SePh

Oi-Pr

Scheme 42

53% yield16c 28 30c
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                  Table 13.  Synthesis of β-hydroxy diselenides under phenoxide ion catalysis 

 

entry R product yield (%)a,b 

1  (±)-CH2OBn (12a) 24a 59 

2  (R)-CH2OBn (12f) 24f 62 

3 CH2Oi-Pr (12b) 24b 57 

4 Ph (12c) 24c 57c 

5 CH3 (12g) 24g 60 

                          
                                 a Based on isolated yield.  
                                  bAll the products were characterized by 1H-NMR, 13C-NMR, 77Se-NMR  
                        and mass spectroscopy. 
                                  c Mixture of two regioisomers. 
 

 

Attempts to isolate the β-hydroxy silyl diselenide (or selenol) intermediates were 

unsuccessful. 

The reaction proceeded with high regioselectivity and with enantioconservation 

when enantiopure oxiranes were used (Table 13, entry 2).  

Only in the case of styrene oxide (Table 13 entry 4) was the regioisomer arising 

from the attack of the nucleophile on the more hindered position of the substrate, 

detected (Scheme 44, Table 14).  

Interestingly, when we performed the reaction with styrene oxide under catalysis 

of both TBAF and PhONn-Bu4, we obtained different regioisomeric ratios of the 

products 24c and 24c', depending on the catalyst employed.  

 

 

O

Ph Ph

HO

Se
THF

HMDSS
+

2

Se

2

OH

cat

Scheme 44

Ph
12c 24c 24c'



 73

The results are summarized in Table 14; the assignment of the structures was 

possible through NMR spectroscopy, and also in this context 77Se-NMR analysis 

confirmed the presence of both regioisomers as mixture of two diastereoisomers.  

 

 

                        Table 14. Regioisomeric ratios of styrene oxide derivatives 

 

TBAF  

r.r. (24c:24c') 

PhONn-Bu4  

r.r. (24c:24c')

77Se-NMR (δ ppm)

compound 24c   

77Se-NMR (δ ppm) 

compound 24c'  

95 : 5 75 : 25 281.4 - 280.8 264 - 262 

 

 

The methodology was extended with success to the ring opening of thiiranes 

affording, in the same reaction conditions, β-mercapto diselenides 25 in moderate 

to good yields (Scheme 45, Table 15) with total regioselectivity. 

 

 

 

 

Table 15. Synthesis of β-mercapto diselenides under phenoxide ion catalysis 

 

entry R product yield (%)a,b 

1 CH2Oi-Pr (16c) 25c 43 

2 CH2OBn (16d) 25d 40 
                                

                                 a Based on isolated yield.  
                                  bAll the products were characterized by 1H-NMR, 13C-NMR, 77Se-NMR  
                        and mass spectroscopy. 

R

HS

Se-Se

SH

R

S PhONn-Bu4
20 mol%

THF

Scheme 45

TMS-Se-TMS
1.4 equiv.

+

0°C rt
work-up:

citric acid 50% aq. sol.

R
16c-d 23

25c-d
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The obtainment of β-mercapto diselenides 25c-d resulted more complicate, due to 

the presence of the thiol-groups which easily undergo oxidation and as a 

consequence, the yields decreased when compared with those obtained for the β-

hydroxy diselenides 24a-g.  

 

 

3.3.3. Synthesis of differently β-functionalized selenides under catalysis of 

phenoxide ion 

 

Once established the efficiency of phenoxide ion in promoting the activation of 

the Se-Si bond of HMDSS for the synthesis of β-hydroxy and β-mercapto 

diselenides, it was interesting to evaluate the possibility to obtain differently β-

functionalized selenides under catalysis of PhONn-Bu4. 

The results already reported for the obtainment of diselenides and selenides under 

fluoride ion catalysis outlined that a chemoselective synthesis of such molecules 

was possible simply by changing the stoichiometric ratio of the reagents.  

On the ground of  these results, we decided to apply the same reaction conditions 

which allowed to obtain selenides under TBAF catalysis, to the ring opening of 

epoxides and thiiranes with PhONn-Bu4 as catalyst.  

Thus, when 0,7 equivalents of HMDSS were reacted with (R)-benzylglicidol 12f, 

in the presence of PhONn-Bu4 in anhydrous THF, a smooth regio- and 

enantioselective reaction occurred, leading to the isolation of the compound 26f in 

54 % yield (Scheme 46). 
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A little amount (around 5%) of the corresponding β-hydroxy diselenide 24f was 

detected in the crude, and several attempts to avoid its formation were 

unsuccessful.  

Again, the reported procedure might represent a simple and versatile approach to 

access β-hydroxy selenides under PhONn-Bu4 catalysis, as well as under TBAF 

catalysis.  

In order to evaluate the possible extension to the ring opening of thiiranes, we 

reacted 16c with HMDSS and PhONn-Bu4 (Scheme 47).  

 

 

 

 

The reaction occurred regioselectively, leading to the formation of 27c in quite 

good yield; also in this case, a little amount of the corresponding diselenide was 

detected in the crude. 

The assignment of the structures was possible by 77Se-NMR analysis, on the 

ground of the already reported results. 

S
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work-up:
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20 mol % HO
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+ HMDSS
THF0.7 eq.

BnO
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Scheme 46

0°C rt
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In conclusion, we showed that phenoxide ion catalysis could successfully activate 

the Se-Si bond of HMDSS for the selective synthesis of diselenides or selenides, 

versatile intermediates in organic synthesis. 

 

 

3.4. Synthesis of β-hydroxy and β-mercapto selenols under phenoxide ion 

catalysis 

 

The investigation concerning the use of phenoxide ion catalysts in the ring 

opening reactions of epoxides and episulfides allowed the isolation, with our 

surprise and delight, of β-hydroxy and β-mercapto selenols, synthetic 

intermediates with very limited stability, due to the presence of the selenol-group 

which undergoes easy oxidation to diselenide.  

In the literature not so many examples have been reported for the synthesis of 

selenols, and usually they required drastic and long procedures.60   

Guillemin et al. reported the synthesis of allylic and propargylic selenols starting 

from diselenides in the presence of n-Bu3SnH, via a radical route (Scheme 48). 

The allylic selenols were prepared in a vacuum line by starting from the crude 

allylic diselenides by slow addition of n-Bu3SnH, and it was not possible to avoid 

the formation of the corresponding alkenes. During the addition, selenols were 

continuously distilled off in vacuo from  the reaction mixture, to avoid their 

oxidation, and conserved at low temperature.61 

 

 

 

Se-Se

R

R' R'

R

n-Bu3SnH

SeHR'

R

Scheme 48
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Another synthetic route to allyl and alkynyl selenols involved selenocyanates as 

precursors and LiAlH4 as the reagent to form selenolate salts which, after 

acidification, led to the corresponding selenols.62
   

Recently, Krief et al. reported the synthesis of primary-alkyl selenols from 

primary-alkyl thiols,63 involving diphenyl sulfonium salts. In this procedure, 

alkyldiphenylsulfonium tetrafluoroborates reacted with potassium selenocyanate 

in ethanol affording alkyl selenocyanates which could be reduced to the 

corresponding sodium alkylselenoates in the presence of NaBH4, to give alkyl 

selenols after acid hydrolysis (Scheme 49). 

 

 

 

 

This procedure allowed to obtain selenols in good yields, but involved several 

steps. 

Usually selenols are trapped in situ with electrophiles, and several procedures in 

this direction have been described in the literature.64  

For example, Tiecco et al. very recently reported the use of zinc, under acidic 

conditions, in reducing diselenides to afford selenols, which were trapped with 

epoxides to give β-hydroxyselenides, or with halides to give selenides (Scheme 

50).64b 
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As showed in these examples, the syntheses of selenols is not direct and not easy. 

 Nevertheless, selenols are interesting intermediates for the synthesis of more 

complex molecules with biological and pharmaceutical activities and when chiral, 

for a possible use as ligands in asymmetric synthesis. As a consequence of this 

wide versatility, an easier and direct access to them is of fundamental importance 

in organic chemistry, despite their well known instability towards oxidation. 

Our investigation concerning the activation of the Se-Si bond of HMDSS 

promoted by PhONn-Bu4, allowed to synthesize through a direct and easy 

approach, β-hydroxy selenols 31 and β-mercapto selenols 32 in good yields. In 

this context, the ring opening of epoxides and episulfides with HMDSS and a 

catalytic amount of PhONn-Bu4 afforded, with our delight, β-hydroxy  and β-

mercapto selenols, arising from regioselective attack of HMDSS on the less 

hindered side of the substrates (Scheme 51).  
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In Scheme 51, the optimized reaction conditions have been reported; 

unexpectedly 2 mol% of catalyst was enough to induce total conversion to the 

selenols. The possibility to reduce the amount of catalyst to 2 mol% was very 

important in this context, due to the lability and tendency to oxidation of selenols, 

that made their purification on silica gel not possible. As a consequence of the 

small amount of catalyst employed, the selenols could be used directly for further 

reactions. 

The reaction proved completely general, occurring with epoxides as well as with 

episulfides bearing substituting groups of different nature, and the mildness of the 

experimental conditions allowed to apply the methodology also to labile glycidol 

derivatives (Table 16). 

The obtainment of such labile compounds was possible by working under inert 

atmosphere and carrying the work-up in anti-oxidant conditions (addition of solid 

citric acid to the reaction medium).  

 

 

                              Table 16.  Synthesis of β-hydroxy and β-mercapto selenols 

 

entry X R product yield (%)a,b 77Se-NMR (δ ppm) 

1 O CH2OBn (12a) 31a 67 -79 

2 O Ph (12c) 31c 44 -48 

3 O C4H9 (12i) 31i 53 -90 

4 O CH2Oi-Pr (12b) 31b 62 -79 

5 S CH2Oi-Pr (16c) 32c 63 -57 

 
                                     a Based on isolated yield.  
                                     bAll the products were characterized by 1H-NMR,  77Se-NMR. 
 

 

The assignment of the structures was supported by 77Se-NMR analysis, that 

allowed to recognise a specific range of chemical shifts for such molecules. 

The reactivity could be promoted also by TBAF,  but a little amount of disulfides 

were observed in some cases.  

Concerning the stability of the obtained selenols, we observed that it was strictly 

depending on the nature of the substituting groups. Precisely, selenols bearing 
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phenyl (Table 16, entry 2) and n-butyl group (Table 16, entry3) showed an 

extremely limited stability, undergoing oxidation to the corresponding diselenides 

after 3-4 hours, while selenols bearing an oxygen atom in the side chain (Table 

16, entries 1, 4, 5) were stable for several days, without decomposition. A possible 

explanation of such peculiar behaviour was the formation of  hydrogen bond 

which involved the oxygen in the side chain, to stabilize the structures, thus 

allowing a completely unexpected stability.  

   

 

3.5. Synthesis of 2-trimethylsilyl 1,3-oxaselenolanes and 2-trimethylsilyl 1,3-

thiaselenolanes  

 

As a consequence of the unexpected obtainment and isolation of β-hydroxy and β-

mercapto selenols, it was possible to employ them for the synthesis of five-

membered selenated heterocyclic rings, bearing a trimethylsilyl-group at position 

2, which represent important skeletons present in a number of molecules with 

biological activity. In fact, due to the presence of the trimethylsilyl-group, they 

can be further reacted, affording polyfuntionalized heterocyclic units of wide 

versatility. 

The synthesis of 2-silyl-1,3-oxaselenolanes 33 and 2-silyl-1,3-thiaselenolanes 34 

was possible by applying the same methodology already reported in Chapter 1 for 

the synthesis of the corresponding 2-trimethylsilyl-1,3-dithiolanes 2.  

Actually, the treatment of the bifunctionalized selenols in the presence of 

bromo(methoxy)methyl trimethylsilane 9 led to the isolation of the selenium 

containing cycles in moderate yields (Scheme 52). 
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The methodology proved quite general, occurring with β-hydroxy (31) and β-

mercapto selenols (32), and the results are reported in table 17. Due to the 

mildness of the experimental conditions, this process was successfully applied to 

useful but labile compounds, such as glycidol derivatives, which represent 

important structures in different fields. 

 

                       Table 17.  Synthesis of 2-silyl-1,3-oxaselenolanes and thiaselenolanes 

 

entry X R product
yield 

 (%)a,b

77Se-NMR 

(δ ppm) 

d.r. 

 (cis : trans)c 

1 O CH2OBn (31a) 33 21 245 > 10  :  1 

2 S CH2Oi-Pr (32c) 34 26 322 - 344 1.5  :  1 

 
                                a Based on isolated yield.  
                                 bAll the products were characterized by 1H-NMR, 13C-NMR, 77Se-NMR. 
                                c Determined by correlation spectroscopy. 

 
77Se-NMR analysis revealed the presence of the thiaselenolane 34 as mixture of 

two diastereoisomers (Table 17, entry 2), while in the case of 2-silyl-1,3-

oxaselenolane 33 (Table 17, entry 1), 77Se-NMR in accord with 1H-NMR and 13C-

NMR, confirmed the presence of only one major stereoisomer. 
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3.6. Conclusions 

 

In conclusion, in this section we outlined the peculiar reactivity of HMDSS as 

selenating reagent for selective synthesis of differently β-fuctionalized selenium 

containing molecules, which can be employed as building blocks for the synthesis 

of complex molecules, as well as possible ligands for asymmetric synthesis. In 

this context the obtainment of such intermediates was possible under different 

reaction conditions, such as different catalytic systems, highlighting the wide 

versatility of HMDSS as seleno nucleophile in ring opening reactions of ring 

strained heterocycles. 

Finally, in the course of our investigation, it was possible, with our delight, to 

obtain and to isolate β-hydroxy and β-mercapto selenols, the synthesis of which is 

barely reported in the literature due to their lability. This important result 

confirmed once more the mildness of our reaction conditions for the obtainment 

of selenium containing structures. 
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Chapter 4 

 

Synthesis of selenium containing polyfunctionalized molecules in 

ionic liquids 

 
 

4.1. Introduction 

 

The importance that environmentally friendly methodologies have acquired in the 

last years, turned our interest to the investigation of selenosilane reactivity in 

alternative and environmentally sustainable organic media, such as ionic liquids. 

In Chapter 2 we showed that ionic liquids are excellent solvents for regio- and 

stereoselective synthesis of sulfur containing polyfunctionalized molecules.  

Here, taking advantage of the previously reported results concerning the 

selenosilane reactivity in traditional conditions, we were interested to evaluate the 

possibility to extend these methodologies to the use of ionic liquids as reaction 

media. 

To the best of our knowledge, besides few examples of ring opening of three-

membered cycles with sulfurated39 or silylated40 nucleophiles in ILs, no example 

has been described of reactions of oxiranes and episulfides with selenosilanes. 

Very recently, a paper dealing with uncatalyzed highly regioselective ring 

opening reaction of epoxides promoted by [bmim][BF4] with arylselenols has 

been reported, affording the corresponding selenium containing compounds in 

good yields65 (Scheme 53). 

 

 

O

R

+ ArSeH
50°C

+
bmim BF4

HO R

SeAr

R SeAr

HO

> 100 : 1

Scheme 53
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The investigation of the selenosilane reactivity in ILs has been, until now, not 

explored; as a consequence, it was really interesting for us the evaluation of using 

selenosilanes for the synthesis of selenium containing molecules in ILs, also 

considering the already explained advantages connected with their use. 

 

 

4.2.1. PhSeTMS reactivity in ring opening reactions of epoxides and 

episulfides promoted by fluoride ion catalysis, in ILs 

 

The first step of this investigation foresaw the employing of PhSeTMS 28 in the 

ring opening reaction of epoxides and episulfides promoted by TBAF, to obtain 

differently β-functionalized phenylseleno-derivatives.  

Thus, when epoxides 12 were reacted with PhSeTMS 28 under catalysis of TBAF, 

a smooth reaction occurred, leading to the isolation of the corresponding β-

hydroxy phenylseleno-derivatives 29 in very good yields (Scheme 54, Table 18).  

 

 

 

 

The reaction was totally regioselective and, with chiral epoxides (Table 18, entry 

4), enantioconservation was observed.  

The mildness of the experimental conditions allowed, also in ILs, to apply the 

protocol to labile glycidol derivatives, without removing of the protective 

moieties. 
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                      Table 18.  Synthesis of β-hydroxy phenylselenides under TBAF catalysis 

 

entry R [X] product yield (%)a,b 

1  (±)-CH2OBn (12a) [BF4] 29a 73 

2 (R)-CH2OBn (12f) [BF4] 29f 75 

3 CH2Oi-Pr (12b) [BF4] 29b 83 

4 CH2Oi-Pr (12b) [PF6] 29b 85 
                                

                                      a  Based on isolated yield.  
                                       b All the products were characterized by 1H-NMR, 13C-NMR,  
                                          77Se-NMR, and GC-MS. 
 

Table 18 showed that the reaction was extended successfully to the use of 

[bmim][BF4] as well as of [bmim][PF6], affording comparable results. 

The reactivity of 28 was not limited to the use of epoxides, but was conveniently 

applied to thiiranes, leading to a convenient access to several β-mercapto 

phenylselenides 30 in good yields (Scheme 55, Table 19). Attack occurred at the 

less hindered position of thiirane, affording the ring-opening products in good 

yields and with total regioselectivity. 
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                    Table 19.  Synthesis of β-mercapto phenylselenides under TBAF catalysis 

 

entry R [X] product yield (%)a,b 

1 CH2Oi-Pr (16c) [BF4] 30c 45c 

2 CH2OBn (16d) [PF6] 30d 68 

3 CH2Oi-Pr (16c) [PF6] 30c 71 
                                  

                                     a Refers to crude products.  
                                     b All the products were characterized by 1H-NMR, 13C-NMR, 
                                         77Se-NMR, and GC-MS. 
                                     c In the crude, the dimerization product in 13% yield was also detected. 

 

 

The use of  [bmim][PF6] allowed to avoid the presence of disulfides, arising from 

the oxidation of -SH group (Table 19, entries 2-3), while in the presence of 

[bmim][BF4] a little amount of disulfide was detected (Table 19, entry 1). 

 

 

 4.2.2. HMDSS in the synthesis of β-hydroxy and β-mercapto selenides and 

diselenides under fluoride ion catalysis, in ILs 

 

Once established the efficiency of the Se-Si bond activation of PhSeTMS 

promoted by TBAF, we moved to explore the reactivity of HMDSS for the 

synthesis of β-hydroxy and β-mercapto selenides and diselenides.  

In this context, few examples have been reported in the literature, and in any case, 

the synthesis of selenides and diselenides involved preformed selenated species.66  

Recently Braga et al.67 reported the synthesis of unsymmetrical diorganyl 

selenides promoted by InI. In this methodology, selenides were obtained by 

reduction of diselenide species and consequent trapping of the intermediates in the 

presence of  alkyl halides (Scheme 56). 
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In this direction, our intention was to investigate the possibility to extend the 

already reported methodologies for the selective synthesis of diselenides or 

selenides to the use of ILs as reaction media. This possibility was not obvious, 

because of the completely different properties of such solvents, when compared 

with the traditional organic media. For example, the high polarity of the ILs could 

activate HMDSS, leading to a different reactivity than that observed in THF.  

Firstly, we studied the ring opening reaction of epoxides in ILs under catalysis of 

TBAF with 0.7 equivalents of HMDSS, applying the same reaction conditions 

that in THF allowed to isolate selectively β-hydroxy selenides. It was possible to 

obtain selenides 26 in good yields with total selectivity (Scheme 57, Table 20), 

arising from regioselective attack of the seleno nucleophile on the less hindered 

side of the oxirane; when an enantiopure epoxide was reacted, the optically active 

β-hydroxy selenide 26f was regioselectively obtained (Table 20, entry 2). 
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                          Table 20.  Synthesis of β-hydroxy selenides in ILs, using TBAF 

 

entry R [X] product yield (%)a,b 

1  (±)-CH2OBn (12a) [BF4] 26a 65 

2 (R)-CH2OBn (12f) [BF4] 26f 59 

3 CH2OCH3 (12h) [BF4] 26h 69 
                                 

                                          a Refers to isolated products.  
                                          b All the products were characterized by 1H-, 13C-, 77Se-NMR. 
 

 

It is important to underline that our procedure allowed a direct synthesis of 

selenides, without  employing preformed selenated species, as reported in the 

literature. 

The procedure was extended to the ring opening of episulfides, affording in the 

same conditions, β-mercapto selenides 27 in quite good yields (Scheme 58, Table 

21) with regioselectivity and enantioconservation. 
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                           Table 21.  Synthesis of β-mercapto selenides in ILs, using TBAF 

 

entry R [X] product yield (%)a,b 

1 CH2Oi-Pr (16c) [BF4] 27c 48 

2 (±)-CH2OBn (16d) [PF6] 27d 59 

3 (R)-CH2OBn (16e) [PF6] 27e 55 
                                 

                                          a Refers to isolated products.  
                                           b All the products were characterized by 1H-, 13C-, 77Se-NMR. 
 
 
 

On the other hand, some difficulties were found in the selective obtainment of the 

corresponding β-functionalized diselenides in ILs. In fact, they could not be 

synthesized selectively in ILs, by changing the stoichiometric ratio of the 

reagents, as observed in THF.  

Probably in this context, the polarity of the ILs played a fundamental role in the 

activation of the species, facilitating the elongation of the Se-Si bond in the β-

hydroxy silyl selenol intermediates, which gave nucleophilic attack onto a second 

molecule of electrophile, so leading to the formation of selenides rather than 

undergo dimerization. As a consequence selenides were isolated in mixture with 

the corresponding diselenides. 

Attempts to avoid the second nucleophilic attack of the intermediate onto the 

electrophile were unsuccessful; nevertheless it was possible to reduce the amount 

of diselenide, by increasing the dilution of the reaction mixture and using 2.2 

equivalents of HMDSS. Precisely, while the concentration used until now in ILs 

was around 0.6 M, we set up the reaction using an excess of HMDSS (2.2 

equivalent)  in 0.2 M solution. Thus, when we reacted epoxides in such new 

conditions under catalysis of TBAF, it was possible to obtain β-hydroxy 

diselenides 24 in good yields with total regioselectivity (Scheme 59), with a little 

amount of the corresponding selenides 26 (around 10-15%). 
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The methodology proved quite general and was extended also to the ring opening 

of thiiranes, leading to the isolation of β-mercapto diselenides 25 and a little 

amount of the corresponding selenides 27 (Scheme 60).  

 

 

 

 

 

In summary, the use of fluoride ion in promoting the reactivity of silyl selenides 

in ILs allowed to obtain differently β-functionalized selenium containing 

molecules, with high selectivity. Nevertheless, the different properties of ILs, 

when compared with traditional solvents, required to set up specific reaction 

conditions to increase the selectivity. Obviously, the advantages of this method 

included the possibility to reuse ILs for three or more runs, without any 

appreciable loss of the reactivity.  
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OH
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2.2 equiv.

+ trace of
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Scheme 59

12a-b 24a-b 26a-b
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20 mol%
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S
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Se
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2.2 equiv.
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2
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work-up:
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4.3.1. PhSeTMS reactivity in ILs for ring opening reactions of epoxides and 

episulfides, promoted by phenoxide ion catalysis 

 

The drawbacks linked to the use of TBAF, such as the difficulties in having an 

anhydrous solution, and its stability along with time, prompted us to investigate 

the activation of the Se-Si bond in ILs induced by phenoxide ion catalysis.  

In this direction, firstly we evaluated the ring opening reaction of three-membered 

heterocycles with PhSeTMS in ILs. Thus, when we reacted benzylglycidol 12a 

with PhSeTMs 28 and a catalytic amount of PhONn-Bu4 (20 mol%) in 

[bmim][PF6], a clean reaction occurred, affording the β-hydroxy phenylselenide 

29a in good yield with total regioselectivity (Scheme 61). 

 

 

 

 

 

Performing the reaction in ILs, no trimethylsilyl ether formation was observed, 

like in THF, but only hydroxy compounds were isolated. 

The procedure was successfully extended to the ring opening of the thiirane 16c, 

leading to the corresponding β-mercapto phenylselenide 30c with total 

regioselectivity in 55% yield (Scheme 62). 

 

 

 

 

 

 

 

PhSe-TMS
PhONn-Bu4 20 mol%

bmim

O
+

r.t.
PhSe

OH

PF6

29a 78% yield

OBn
OBn

Scheme 61

12a 28
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4.3.2. HMDSS in the synthesis of β-hydroxy and β-mercapto selenides and 

diselenides under phenoxide ion catalysis, in ILs 

 

Finally, when we proceeded to apply this methodology to the use of HMDSS as 

nucleophile for the ring opening reactions of epoxides and episulfides, we found 

that the different chemical properties of ILs influenced the trend of the reactions.  

In this context, when we reacted benzylglycidol 12a and its thiirane 16d with 0.7 

equivalents of HMDSS under catalysis of PhONn-Bu4, we obtained the β-hydroxy 

selenide 26a and the analogous β-mercapto selenide 27d with total 

regioselectivity, and no trace of the corresponding diselenides were detected 

(Scheme 63). 

 

 

 

 

+ HMDSS

PhNn-Bu4
20mol%

0.7 equiv.
BnOH2C

HX

Se

XH

CH2OBn

X
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26a X = O 79%
27d X = S 49%

Scheme 63
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12a X = O
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PhSe-TMS
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PhSe

SH

PF6

30c 55% yield

Oi-Pr
Oi-Pr

Scheme 62

work-up:
citric acid, aq. sol. / Et2O

16c 28

1.1 equiv.
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Nevertheless, the reaction to obtain the corresponding diselenides in ILs, as 

already observed for the reaction catalyzed by TBAF, was not totally selective, 

affording diselenides in mixture with selenides, also in the presence of a large 

amount of nucleophile.  

Thus, when we reacted the oxirane 12b in the presence of 2.2 equivalents of 

HMDSS under catalysis of PhONn-Bu4 in [bmim][PF6], we obtained a mixture of 

diselenide and selenide. As a consequence, taking advantage of the previously 

reported results for the corresponding reaction under catalysis of TBAF, we tried 

to increase the dilution, and in this case it was possible to reduce the amount of 

selenide, but not to avoid its formation (Scheme 64). The β-hydroxy diselenide 

24b was recovered in 45% yield.  

 

 

 

 

 

The same behaviour was pointed out for the ring opening of the thiirane 16c under 

the same reaction conditions. Also in this case the β-mercapto diselenide 25c was 

regioselectively formed together with a large amount of the analogous selenide 

27c (Scheme 65), and several attempts to avoid the formation of 27c were 

unsuccessful.  
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These results completely agreed with those already reported under fluoride ion 

conditions, thus confirming that the peculiar properties of ILs, such as their high 

polarity, influenced the activation of the Se-Si bond of the β-hydroxy or β-

mercapto silyl selenide intermediates, facilitating a second nucleophilic attack 

onto the electrophile, rather than the dimerization to the corresponding 

diselenides. 

 

 

4.4. Conclusions 

 

In conclusion, the use of ionic liquids as reaction media for ring opening reactions 

of epoxides and episulfides with seleno nucleophiles led to the regioselective 

synthesis of differently β-functionalized selenium containing molecules, useful 

intermediates in organic chemistry.  

The activation of seleno nucleophiles in ILs proceeded under fluoride ion 

catalysis, as well as under phenoxide ion catalysis, thus confirming the high 

versatility of our methodologies.  

These results represented an important improvement in the perspective of 

environmental benign processes, which combined the use of environmentally 

friendly solvents with a new catalytic system, the PhONn-Bu4, that allowed to 

overcome the aforementioned drawbacks linked to the use of fluoride ion 

catalysts. 

 

bmim PF6

S

i-PrOH2C

+ HMDSHS
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Se
2.2 equiv.

+ selenide

2

PhNn-Bu4
20mol%

37% 26%

work-up:
citric acid / Et2O

Scheme 65

16c 25c 27c23
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Chapter 5 
 

HMDSS in the synthesis of seleno-carboxylic acid derivatives 

 
 

In these last years as previously reported, the syntheses of compounds containing 

selenium have been widely studied because of their interesting reactivities and 

their potential pharmaceutical and biological significances. Various methods for 

the synthesis of selenium-containing compounds, using different selenating 

reagents have been developed. Among them, the use of alkali metal salts of 

hydrogen selenide, which can be prepared in situ by the reaction of elemental 

selenium and a reducing reagent such as Li, LiAlH4, Na, NaBH4, NaBEt3H has 

been extensively studied.68 However the use of these selenating reagents was 

often limited to the synthesis of specific selenated compound classes. In this 

context we investigated the use of PhSeTMS and HMDSS for the synthesis of 

seleno-carboxylic acid  derivatives, so confirming once more the high versatility 

of these reagents in the synthesis of selenium containing molecules of different 

nature.  

 

 

5.1. Synthesis of selenol esters 

 

Selenol esters are important intermediates in organic synthesis and they present 

wide applicability in different fields: for example they have been used with 

success as liquid crystals69 and in the synthesis of steroids and sex hormones.70 

These compounds exhibit also higher reactivity as acyl and aroyl transfer reagents 

than the corresponding O-analogs. As a consequence of their versatility, the 

development of a convenient method for their synthesis has attracted valuable 

attention. 

In this context, although several synthetic methods for selenol esters have been 

reported in the literature,71 they presented some disadvantages, for example 

problems connected with handling of organoselenium compounds, which usually 

are air and moisture unstable, difficulties in preparing organoselenium 

compounds, and in using acid chlorides which are easily hydrolyzed by water.  



 96

One of the most common synthetic route to selenol esters was the trapping of 

preformed selenocarboxylate salts with alkyl or aryl halides under different 

conditions, to give esters in moderate to good yields.72, 73   

In 2002 Sonoda et al. reported an interesting synthesis of selenol esters through 

palladium-catalyzed coupling of phenyl tributylstannyl selenide, a reagent stable 

to air and moisture, with aryl iodides and carbon monoxide (Scheme 66). This 

three-component coupling reaction afforded selenol esters in moderate to good 

yields, depending on the position of the substituent on the aryl iodide.74 

 

 

 

Another common procedure involved the reaction of diaryl or dialkyl diselenides 

with carboxilic acids derivatives. An example in this direction foresaw the 

treatment of diselenides with acid chlorides in the presence of Zn/AlCl3 system 

(Scheme 67).75  

 

 

 

The reductive cleavage of the Se-Se bond led to zinc selenoate intermediates, 

which underwent nucleophilic displacement with acid chlorides in the presence of 

aluminium chloride, affording selenol esters.  

SeSnBu3 I

+ CO + X
cat. Pd(PPh3)4

Se

O

X

Scheme 66

RSe-SeR + 2 R'COCl
Zn/AlCl3

dry DMF, 65°C
2 R'COSeR

Scheme 67
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Moreover, it was interesting to mention the synthesis of γ-selenobutyrolactone by 

reaction of 4-chlorobutyryl chloride with the in situ prepared LiAlHSeH (Scheme 

68).68 

 

 

 

Finally, very recently Braga et al. reported the synthesis of selenol esters mediated 

by indium metal, which promoted the direct coupling of preformed diselenides 

and acyl chlorides (Scheme 69).76 

 

  

 

 

Nevertheless, as shown by these examples, the synthesis of selenol esters required 

the use of preformed selenating compounds, which were often unstable to air and 

moisture, and tedious and long procedures. 

As a consequence, the need to find a general and easy approach for the synthesis 

of such intermediates turned our attention to the possibility of using selenosilanes, 

activated by fluoride ion catalysts, in the obtainment of selenol esters in the 

presence of acyl chlorides.  

In this context, the reactivity of PhSeTMS 28 induced by TBAF was investigate 

with several aliphatic, aromatic and heteroaromatic carboxylic acid derivatives 35 

in THF.  

+ SeLiAlH4

THF, 0°C,
0.5 h

LiAlHSeH H2+

O

Cl
Cl

Se

O

71%

Scheme 68

O

ClR1

O

SeR2R1

+ R2Se-SeR2

In, CH2Cl2

reflux, 12h

Scheme 69

2 2
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With our delight, the reaction occurred successfully, leading to the isolation, after  

purification on silica gel, of phenyl-selenyl esters 36 in good yields (Scheme 70, 

Table 22). 

 

 

 

The fundamental improvement of our methodology, when compared with those 

previously reported in the literature, consisted in the use of stable and 

commercially available PhSeTMS as selenating reagent. Then, this  general 

approach was applied with success to aromatic and aliphatic acid chlorides.  

 

 

                            Table 22.  Synthesis of selenol esters 

 

entry R product yield (%)a,b 77Se-NMR (δ ppm) 

1 C6H5 (35a) 36a 73 637 

2 p-Cl-C6H4 (35b) 36b71e 75 638 

3 p-CH3O-C6H4 (35c) 36c 70 624 

4 o-CF3-C6H4 (35d) 36d 71 679 

5 C3H7 (35e) 36e 61 655 

6 CH3(CH)Cl (35f) 36f 59 651 
                

                                   a Based on isolated yield.  
                                    b All the products were characterized by 1H-NMR, 13C-NMR,  
                                        77Se-NMR and mass spectroscopy. 
 
 

 

+
TBAF 20 mol%

O

ClR
PhSe-TMS

THF
overnight

O

SePhR1.2 equiv.

Scheme 70

35a-f 36a-f28
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The structures were assigned by spectroscopic analysis, and 77Se-NMR studies 

allowed to devise a specific range of chemical shifts for this class of molecules 

(Table 22). 77Se-NMR spectroscopy is one of the most useful methods for 

structure identifications, however reports including 77Se-NMR chemical shifts 

have scarcely appeared in the literature. 

 

 

5.2. Synthesis of diacyl selenides and diacyl diselenides 

 

Diacyl selenides and diselenides are useful transfer reagents for acyl or aroyl 

groups onto various organic compounds. Despite this, probably due to their 

instability, the synthesis of diacyl selenides and diselenides has been not 

frequently reported in the literature. 

Some methods have been desribed during the years,77 but they presented several 

disadvantages, as previously underlined in the case of selenol esters, such as the 

use of expensive and unstable reagents, the limited availability of the starting 

materials, the difficulties of purification, particularly evident for diacyl selenides 

and diselenides, and the high number of steps required. 

 An interesting procedure to obtain diacyl selenides involved the reactivity of 

selenoamides, prepared by the reaction of aryl nitriles with sodium hydroselenide, 

towards acyl chlorides (Scheme 71). The yields were satisfactory, but the method 

required the long preparation of selenoamides, which were very unstable.78 

 

 

 

 

O

SeR2

O

R2

R2COCl R1CN
CHCl3

+

Se

NH2R1

+

O

R2CSeCR2

O

R1-C=N-H

Cl

2 eq.

Scheme 71
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In 2002 a paper dealing with LiAlHSeH as useful selenating reagent for the 

synthesis of a wide range of selenium-containing molecules, included diacyl 

selenides and diacyl diselenides, has been reported. This method allowed to 

isolate diacyl selenide in high yields by a single step, instead of  

the long previously reported procedures (Scheme 72).68, 79 

 

 

 

 

Nevertheless, the selenating agent LiAlHSeH, synthesized in situ with elemental 

selenium and LiAlH4, was unstable and it required to be used quickly once 

prepared, so limiting the applicability of such procedure. 

Moreover, in the literature few examples have been described concerning the 

synthesis of diacyl diselenides.  

A possible synthetic route to diacyl diselenides has been reported in the same 

paper,79 in which oxidation in the presence of I2 of the intermediate, arising from 

the already reported reaction of LiAlHSeH with one equivalent of acyl chloride, 

led to the isolation of the corresponding diacyl diselenide in good yields (Scheme 

73). 
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The present paper gave the selective preparation method of diacyl selenides and 

diacyl diselenides through the control of the reaction conditions, but the lability of 

LiAlHSeH was a drawback of this approach. 

Finally, a direct way to the synthesis of such compounds was described by 

Nishiyama, where the possibility of the selective synthesis of bis(acyl) selenides 

or diselenides was investigated through the reaction of selenoate anions (HSe- or 

HSe2
-) with acyl chlorides, but the reaction conditions were quite drastic.73 

In this context, our approach to the synthesis of diacyl selenides and diselenides 

was based on the reactivity of HMDSS, induced by fluoride ion catalysis, in the 

presence of acyl chlorides.  

Selective obtainment of diacyl selenides or diselenides was possible only by 

changing the equivalent ratio of acid chloride used. 

Actually, the reaction of HMDSS 23 with two equivalents of acyl chloride 35, 

under fluoride ion catalysis in anhydrous THF, led to the selective isolation of 

diacyl selenides 37 in good yields (Scheme 74).  

 

 

 

The reactivity proved quite general and was applied successfully to aromatic, 

heteroaromatic  

and aliphatic acid chlorides (Table 23).  

These results were very satisfactory, mostly considering the difficulties in 

obtaining aliphatic derivatives due to their instability; in our case it was possible 

to isolate the compound 37f in 50% yield, after purification on silica gel column 

chromatography (Table 23, entry 5).  
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                          Table 23.  Synthesis of diacyl selenides 

 

entry R product yield (%)a,b 

1 C6H5 (35a) 37a 80 

2 p-Cl-C6H4 (35b) 37b 76 

3 p-CH3O-C6H4 (35c) 37c 75 

4 CH3(CH)Cl (35f) 37f 50 

5 thienyl (35g) 37g 70 
                                          

                                         a Based on isolated yields.   
                                          b All the products were characterized by 1H-NMR, 13C-NMR, 77Se-NMR. 
 

 

With our delight, the reaction of HMDSS 23 in the same reaction conditions, but 

using an equimolar amount of acyl chloride 35, allowed to obtain directly and 

selectively diacyl diselenides 38 (Scheme 75). 

 

 

 

 

Also in this case the reactivity was general and, due to the mild conditions, it was 

possible to extend the scope of the reaction to aromatic, heteroaromatic and 

aliphatic acyl chlorides with good yields (Table 24). 
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                                Table 24. Synthesis of diacyl diselenides 

 

entry R product yield (%)a,b 

1 C6H5 (35a) 38a 83 

2 p-Cl-C6H4 (35b) 38b 78 

3 p-CH3O-C6H4 (35c) 38c 72 

4 CH3(CH)Cl (35f) 38f 54 

5 thienyl (35g) 38g 73 
                                          

                                           a Refers to isolated products.   
                                            b All the products were characterized by 1H-, 13C-, 77Se-NMR. 
 

 

The possibility to obtain diacyl selenides 37 or diselenides 38 with selectivity has 

shown fundamental  importance, because of  the extreme difficulty to separate 

selenide and diselenides by chromatography. 

This methodology allowed a selective synthesis of such compounds by a simple 

change of reaction stoichiometry, so confirming the high versatility of HMDSS as 

selenating reagent in the obtaining selenated products of different nature. 

The structure determination of diacyl selenides  and diselenides was possible 

through 77Se-NMR spectroscopy, in agreement with chemical shifts already 

reported in the literature.79  
77Se-NMR is one of the most useful methods to distinguish between selenides and 

diselenides; in fact on the base of 1H-NMR and 13C-NMR spectroscopy, the 

univocal assignment of the structures was not possible. For example, the chemical 

shift differences of C=O in the 13C-NMR spectra of diacyl selenides and 

diselenides were not enough to distinguish between them, because usually the 

resonances were completely similar (around 1 ppm of difference).  

On the other hand, the differences in the 77Se-NMR chemical shifts were 

substantial and it was possible to devise two specific ranges for the two classes of 

compounds, which were distant more than 100 ppm (Table 25). 
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                        Table 25. Typical 77Se-NMR chemical shifts of compounds 37 and 38 

 

 77Se-NMR (δ ppm) 

R compound 38   -   compound 37 

C6H5                  613                      743 

p-Cl-C6H4                  619                      749 

p-CH3O-C6H4                  598                      730 

thienyl                  614                      777 

CH3(CH)Cl                  601                      784 

 

 

 

5.3. Conclusions 

 

In this section was reported the synthesis of selenol esters, diacyl selenides and 

diselenides through the reaction of selenosilanes, activated under fluoride ion 

catalysis, with acyl chlorides.  

This methodology proved general and selective, leading to the chemoselective 

synthesis of different selenocarboxylate acid derivatives, by the simple control of 

the reaction conditions.  
77Se-NMR studies allowed the assignment of the structures and the individuation 

of specific chemical shift ranges for these classes of compounds. 
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Experimental section 
 

1. General Methods. 

 

NMR spectra were acquired on a Varian Gemini 200 Spectrometer, running at 

200, 50.3 and 38.1 MHz for 1H, 13C and 77Se respectively. Chemical shifts (δ) are 

reported in ppm relative to residual solvent signals (CHCl3, 7.26 ppm for 1H 

NMR, CDCl3, 77.0 ppm for 13C NMR; 77Se NMR analysis are performed in 

CDCl3 and chemical shifts (δ) are reported in ppm relative to signal of PhSeSePh, 

(461 ppm)). The following abbreviations are used to indicate the multiplicity in 
1H NMR spectra: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; bs, broad 

signal. 13C NMR spectra were acquired on a broad band decoupled mode. Mass 

spectra were recorded on a Shimadzu spectrometer connected with 

Gascromatograph (apolar column ZB-5 30m, 0.25 mm) using electron impact 

ionization techniques (EI-70eV). Analytical thin layer chromatography (TLC) was 

performed using pre-coated aluminium-backed plates and glass-backed plates 

(Merck Kieselgel 60 F254) and visualized by ultraviolet irradiation or KMnO4 

dip. For flash chromatography (FC) silica gel (Silica gel 60, 230-400 mesh, Fluka) 

was used. Optical rotations were measured on a Perkin-Elmer polarimeter (λ=589 

nm). The enantioconservation of the products was determined by chiral stationary 

phase HPLC-Gilson (Kromasil 5-Cellucoat, 4.6 m X 250 mm column). THF was 

dried by a first distillation over Na and a second distillation over Na and 

benzophenone. Unless otherwise noted, analytical grade solvents and 

commercially available reagents were used without further purification.  
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2. Synthesis of 2-trimethyl-silyl-1,3-dithiolanes. 

 

General procedure.  A solution of methoxymethyl trimethylsilane 8 (400 µL, 

2.57 mmol) in CCl4 (5 mL), was treated dropwise with a solution of bromine (132 

µL, 2.57 mmol) in CCl4 (4 mL). The mixture was stirred, with release of HBr, 

until it became pale orange (around 6 h). The solvent was then evaporated under 

reduced pressure, and a solution of dithiol 10 (2.57 mmol, 1 equiv.) in CH2Cl2 (5 

mL) was added and the mixture was stirred overnight. After washing with water 

and brine, the organic layer was dried over Na2SO4. Evaporation of the solvent 

gave the crude product, which was purified by chromatography on silica gel, to 

afford the pure compound 2. 

 

2a  2-trimethyl-silyl-1,3-dithiolane 

 

Following the general procedure, 2a was isolated by 

chromatography on silica gel (petroleum ether/Et2O 20:1)  in 65 % 

yield as a yellowish oil. 
 

1H-NMR δ(ppm): 0.18 (9H, s, -Si(CH3)3), 3.06-3.29 (4H, m, -

CH2CH2-), 3.53 (1H, s, CH). 

 
13C-NMR δ(ppm): -2.3 (Si(CH3)3), 37.6, 39.4. 

 

MS m/z (%): 178 (2, M+), 135 (17), 73 (100, SiMe3
+), 59 (16, CH2CHS+). 

 

2c (4-(isopropoxymethyl)- 1,3-dithiolan-2-yl)trimethylsilylane 

 

Following the general procedure, 2c was isolated 

by TLC (petroleum ether/Et2O 100:1) in 44% 

yield as a yellowish oil, as a mixture of cis and 

trans diastereoisomers in ratio 2.5:1 respectively. 

The assignment of the diastereomeric structures, 

as well as of the d. r., were made by correlation 

spectroscopy (NOESY experiments). 

S S

SiMe3

S S

SiMe3

O
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Cis diastereoisomer: 
1H-NMR δ(ppm): 0.16 (9H, s, -Si(CH3)3); 1.14 (3H, d, J=6.2 Hz, (CH3)2-), 1.15 

(3H, d, J=6.2 Hz, (CH3)2-), 2.92 (1H, dd, J=5.8, 12.2 Hz, CH2S-), 2.93 (1H, dd, 

J=6.2, 12.2 Hz, CH2S-), 3.2-3.42 (3H, m, -CH2O + CH(CH3)2), 3.56 (1H, s, S-

CH-S), 3.76-3.88 (1H, m CH-CH2O-).  

 
13C-NMR δ(ppm): -2.3 (Si(CH3)3), 22.1 (CH3)2), 22.2 (CH3)2), 37.6; 42.1, 53.7, 

70.1, 71.9. 

 

MS m/z (%): 250 (3, M+), 177 (3), 150 (12), 135 (28), 73 (100, SiMe3
+), 59 (13, i-

PrO+). 

 

Trans diastereoisomer: 
1H-NMR δ(ppm): 0.16 (9H, s, -Si(CH3)3), 1.15 (6H, d, J=5.8 Hz, (CH3)2), 3.12 

(1H, dd, J=5.2, 11.4 Hz, CH2S-), 3.27 (1H, dd, J=5.6, 11.8 Hz, CH2S-), 3.4-3.62 

(3H, m, -CH2O + CH(CH3)2), 3.56 (1H, s, S-CH-S), 3.8-3.92 (1H, m, CH-CH2O).  

   
13C-NMR δ(ppm): -2.4 (Si(CH3)3), 22.1 (CH3)2), 22.2 (CH3)2), 36.1; 41.7, 54.9, 

69.9, 72.1. 

 

MS m/z (%): 250 (3, M+), 177 (3), 150 (11), 135 (27), 73 (100, SiMe3
+), 59 (12, i-

PrO+). 

 

2d (4-(benzyloxymethyl)- 1,3-dithiolan-2-yl)trimethylsilylane 

 

Following the general procedure, 2d 

was isolated by TLC 

(cyclohexane/Et2O 100:1) in 37% 

yield as a yellowish oil, as a mixture 

of cis and trans diastereoisomers in 

ratio 1.5:1 respectively. The 

assignment of the diastereomeric 

structures, as well as of the d. r., were 

S S

SiMe3

O
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made by correlation spectroscopy (NOESY experiments). 

 

Cis diastereoisomer: 
1H-NMR δ(ppm): 0.16 (9H, s, -Si(CH3)3), 2.95 (1H, dd, J=5.6, 12 Hz, CH2S-), 

2.96 (1H, dd, J=6.4, 11.8 Hz, CH2S-), 3.38-3.6 (2H, m, CH-CH2-O), 3.56 (1H, s, 

S-CH-S), 3.84-3.96 (1H, m, CH-CH2O-), 4.53 (2H, s, CH2Ph), 7.3-7.4 (5H, m, 

Ph).    

 

MS m/z (%): 298 (1, M+), 207 (10, M+-OC6H5), 147 (45), 135 (38), 91 (84, 

OC6H5
+), 73 (100, SiMe3

+). 

 

Trans diastereoisomer: 
1H-NMR δ(ppm): 0.16 (9H, s, -Si(CH3)3), 3.12 (1H, dd, J=5.2, 11.4 Hz, CH2S-), 

3.30 (1H, dd, J=5.6, 11.6 Hz, CH2S-), 3.38-3.6 (2H, m, CH-CH2-O), 3.57 (1H, s, 

S-CH-S), 3.98-4.1 (1H, m, CH-CH2O-), 4.55 (2H, s, CH2OBn), 7.28-7.36 (5H, m, 

Ph).    

 

MS m/z (%):298 (1, M+), 207 (9, M+-OC6H5), 147 (33), 135 (28), 91 (70, 

OC6H5
+), 73 (100, SiMe3

+). 

 

[α]rt
D

 = +26.3 (c=0.9, CHCl3)    2e, major diastereoisomer. 

[α]rt
D

 = +53.1 (c=0.77, CHCl3)  2e, minor diastereoisomer. 

 

 

3. Functionalization of 2-trimethyl-silyl-1,3-dithiolanes. 

 

Typical procedure: A solution of PhONBu4 (prepared in accord with the 

literature)iI (0.09 mmol, 0.4 equiv.) in dry DMF (0.2 mL) was added under inert 

atmosphere drop by drop with aldehyde 4 (0.24 mmol, 1.1 equiv.) and 2-

trimethyl-silyl-1,3-dithiolane 2 (0.22 mmol, 1 equiv.). Progress of the reaction 

was monitored by TLC (petroleum ether/ethyl acetate 5:1) and GC/MS, and after 

3.5 h the mixture was diluted with diethyl ether and washed with a saturated 

solution of NH4Cl. The acqueous phase was extracted with diethyl ether and the 

combined organic phases were washed with brine and dried over Na2SO4. 
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Filtration and evaporation of solvent gave the crude α-hydroxy dithiolane 5 as 

yellow oil, that was purified on TLC  to afford the pure compound. 

  

5a (1,3-dithiolan-2-yl)(phenyl)methanol 

 

Following the general procedure, 5a was isolated by 

TLC (petroleum ether/ethyl acetate 5:1) in 87% yield 

as a yellowish oil. 
 

1H-NMR δ(ppm): 3.14-3.32 (4H, m, -CH2CH2-), 

4.62 (1H, d, J=7 Hz, CHOH,, 4.79 (1H, d, J=7 Hz, S-

CH-S), 7.3-7.46 (5H, m, Ph). 

 

MS m/z (%): 135 (0.5, M+-77); 107 (18); 105 (100, PhCO+); 79 (15); 77 (22). 

 

5c (4(isopropylmethyl)-1,3-dithiolan-2-yl)(phenyl)methanol 

 

Following the general procedure, 5c was 

isolated by TLC (petroleum ether/ethyl 

acetate 5:1) in 49% yield as a mixture of 

cis and trans stereoisomers, as a 

yellowish oil. Unluckily, the separation 

of the diastereoisomers was not 

possible. 

 
1H-NMR δ(ppm): 1.147-1.182 (6H, m, 

(CH3)2), 2.99-3.01 (1H, bs, OH), 3.21-

3.64 (6H, m, CH2S + CH-CH2-O + 

CH(CH3)2), 4.63-4.79 (2H, m, SCHS + CHOH), 7.33-7.40 (5H, m, Ph).    

 

MS m/z (%): 284 (1, M+), 225 (3, M+-Oi-Pr), 193 (2, M+-91), 177 (48), 135 (5), 

119 (100), 91 (15, OC6H5
+), 73 (76, i-PrOCH2

+). 

 

 

S S

OH

S S

OH

O
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5d (1,3-dithiolan-2-yl)(thiophen-2-yl)methanol. 

 

Following the general procedure, 5d was isolated by 

TLC (petroleum ether/ethyl acetate 4:1) in 88% yield 

as a yellowish oil. 

 
1H-NMR δ(ppm): 3.21-3.23 (4H, m, -CH2-CH2-), 

4.80 (1H, d, J=6.6 Hz, S-CH-S), 4.88 (1H, dd, J=6.6, 

2.8 Hz, CH-OH); 7.02 (1H, dd, J=5.2, 3.6 Hz, CH 

(Het)), 7.11 (1H, dd, J=3.6, 1.2 Hz, CH (Het)), 7.31 (1H, dd, J=5, 1 Hz, CH 

(Het)). 

 
13C-NMR δ(ppm): 38.2 (CH2), 39.0 (CH2), 60.9 (S-CH-S), 74.0 (CHOH), 125.4 

(CH, Het), 125.5 (CH, Het), 126.7 (CH, Het). 

 

MS m/z (%): 221 (2), 200 (31, M+-H2O), 172 (12, M +-SCH2), 113 (25), 105 (100, 

[dithiolan]+), 45 (39). 

 

5e (4-bromophenyl)(1,3-dithiolan-2-yl)methanol. 

 

 

Following the general procedure, 5e was 

isolated by TLC (petroleum ether/ethyl acetate 

3:1) in 70% yield as a yellowish oil. 

 
1H-NMR δ(ppm): 3.19-3.21 (4H, m, -CH2-

CH2-), 4.57 (1H, dd, J=6.8, 2.4 Hz, CH-OH), 

4.70 (1H, d, J=7 Hz, S-CH-S), 7.28-7.32 (2H, 

m, Ph), 7.47-7.51 (2H, m, Ph). 

 
13C-NMR δ(ppm): 38.1 (CH2), 39.1 (CH2), 60.6 (S-CH-S), 76.7 (CHOH), 122.1, 

128.6, 131.3, 139.4. 

MS m/z (%): 291 (M+-1), 212 (13, M+-Br), 194, 105 (37, [dithiolan]+), 91 (100, 

PhCH2
+). 

S S

OH

S

S S

OH

Br
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5f (E)-1-(1,3-dithiolan-2-yl)-3-phenylprop-2-en-1-ol. 

 

 

Following the general procedure, 5f was 

isolated by TLC (petroleum ether/ethyl 

acetate 5:1) in 78% yield as a yellowish oil. 

 
1H-NMR δ(ppm): 3.19-3.31 (4H, m, -CH2-

CH2-), 4.26 (1H, t, J=6.14 Hz, CH-OH), 

4.49 (1H, d, J=6.22 Hz, S-CH-S), 6.23 (1H, 

dd, J=16, 6.1 Hz, Csp2H-CHOH), 6.72 (1H, d, J=15.8 Hz, CH-Ph), 7.2-7.5 (5H, m, 

Ph). 

 
13C-NMR δ(ppm): 38.2 (CH2), 39.0 (CH2), 59.6 (S-CH-S), 75.8 (CHOH), 126.7 

(CH), 127.9 (CH), 128.2, 128.5, 128.6, 132.7. 

 

MS m/z (%): 220 (13, M+-H2O), 128 (100), 115 (81), 77 (33, C6H5
+), 45 (81). 

 

5g cyclohexyl(1,3-dithiolan-2-yl)methanol. 

 

Following the general procedure, 5g was isolated by 

TLC (petroleum ether/ethyl acetate 4:1) in 60% yield 

as a yellowish oil. 

 
1H-NMR δ(ppm): 1.0-1.57 (4H, m), 1.6-2.1 (7H, m), 

3.15-3.32 (5H, m, -CH2-CH2-, CH-OH), 4.72 (1H, d, 

J=6 Hz, S-CH-S). 
 

13C-NMR δ(ppm): 25.9, 26.2, 27.6, 29.7, 30.1, 38.2 (CH2), 39.0 (CH2), 42.0, 57.3 

(S-CH-S), 78.4. 

MS m/z (%): 218 (1, M+), 200 (1, M+-H2O), 106 (100), 105 (50, ([dithiolan]+), 78 

(13), 55 (25). 

 

 

S S

OH

S S

OH
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5h 1-(1,3-dithiolan-2-yl)-3-methylbutan-1-ol. 
 

Following the general procedure, 5h was isolated by 

TLC (petroleum ether/ethyl acetate 3:1) in 30% yield 

as a yellowish oil. 
 

1H-NMR δ(ppm): 0.88-0.96 (6H, 2d, (CH3)2), 1.3-1.5 

(2H, m, CH2), 3.1-3.4 (5H, m, S-CH2-CH2-S + 

CH(CH3)2), 3.54-3.63 (1H, m, CH-OH), 4.44 (1H, d, J=6 Hz, S-CH-S). 

 

MS m/z (%): 192 (1, M+), 174 (1, M+-H2O), 106 (96); 105 (100, ([dithiolan]+); 78 

(26); 69 (10); 61 (30). 

 

 

4. Synthesis of ILs 

 

Synthesis of 1-n-butyl-3-methylimidazolium tetrafluoroborate [BMI][BF4] 

 

 

The procedure by Dupont et al. was 

followed.iII  

To a solution of 1-n-butyl-

methylimidazolium chloride (BMIC) (4.65 g, 26.64 mmol) in acetone (50 mL) at 

room temperature was added sodium tetrafluoroborate (2.92 g, 26.64 mmol). 

After 24 h stirring, the reaction mixture was filtered through a plug of celite and 

the volatiles were removed under reduced pressure to give the compound in 91% 

yield as a yellow dense oil. 

 
1H-NMR δ(ppm; DMSO-d6, ref. 2.54 ppm) = 0.95 (3H, t, J=7.4 Hz, CH2CH3), 

1.28-1.46 (2H, m, CH2CH2CH3), 1.78-1.93 (2H, m, CH2CH2CH2), 3.96 (3H, s, 

NCH3), 4.18 (2H, t, J=7.4 Hz, NCH2CH2), 7.28 (1H, s, NCHCHNCH3), 7.32 (1H, 

s, CHCHNCH3), 8.84 (1H, s, NCHN). 

 

N N
BF4

S S

OH
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13C-NMR δ(ppm) = 12.7 (CH2CH3), 18.9 (CH2CH2CH3), 31.5 (CH2CH2CH2), 

35.4 (NCH3), 49 (NCH2CH2), 122 (NCHCHNCH3), 123.4 (CHCHNCH3), 136.4 

(NCHN). 

 

Synthesis of 1-n-butyl-3-methylimidazolium hexafluoroborate [BMI][PF6]  

 

The procedure by Dupont et al. was 

followed.iII  

To a solution of 1-n-butyl-

methylimidazolium chloride (BMIC) (4.65 g, 26.64 mmol) in acetone (50 mL) at 

room temperature was added sodium hexafluoroborate (4.47 g, 26.64 mmol). 

After 24 h stirring, the reaction mixture was filtered through a plug of celite and 

the volatiles were removed under reduced pressure to give the compound in 83% 

yield as a yellow dense oil. 
 

1H-NMR δ(ppm; DMSO-d6, ref. 2.54 ppm) = 0.94 (3H, t, J = 7.6 Hz, CH2CH3), 

1.20-1.40 (2H, m, CH2CH2CH3), 1.70-1.94 (2H, m, CH2CH2CH2), 3.88 (3H, s, 

NCH3), 4.19 (2H, t, J=7.4 Hz, NCH2CH2), 7.73 (1H, s, NCHCHNCH3), 7.79 (1H, 

s, NCHCHNCH3), 9.14 (1H, s, NCHN).  

 
13C-NMR δ(ppm) = 12.9 (CH2CH3), 19.1 (CH2CH2CH3), 31.6 (CH2CH2CH2), 

35.9 (NCH3), 50.0 (NCH2CH2), 122.6 (NCHCHNCH3), 123.5 (CHCHNCH3), 

136.9 (NCHN).  

 

 

5. Synthesis of (R)-2-(benzyloxymethyl)oxirane 12f 

 

In a dried two-necked flask under inert 

atmosphere, was added NaH (60% dispersion in 

mineral oil) (594.6 mg, 14.86 mmol) to dry DMF 

(15 mL), and the mixture was cooled at -20°C. Then a solution of (S)-glycidol 

(896 µL, 13.5 mmol) in dry DMF (15 mL) was added dropwise to the suspension. 

The solution was stirred for 20 min, then benzyl bromide (1.6 mL, 13.5 mmol) 

was added dropwise. The solution was stirred for 4 h at -20°C, and for an 

N N
PF6

O

OPh
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additional 1 h at room temperature. It was then diluted with diethyl ether and 

extracted with water (3X15 mL). The resulting organic phases were washed with 

brine and dried NaSO4. The volatiles were remouved under reduced pressure to 

give the compound which was purified by FC (petroleum ether/ethyl acetate 8.1) 

on silica gel affording 12f in 97% yield as a colorless oil. 

 
1H-NMR δ(ppm) = 2.63 (1H, dd, J = 2.4, 5 Hz, CH2OCH2Ph), 2.81 (1H, dd, J = 

4.4, 5 Hz, CH2OCH2Ph), 3.14-3.24 (1H, m, OCHCH2), 3.44 (1H, dd, J = 5.8, 11.4 

Hz), 3.78 (1H, dd, J = 3, 11.4 Hz), 4.55 (1H, d, J = 12 Hz, CH2Ph), 4.63 (1H, d, J 

= 12 Hz, CH2Ph), 7.27-7.35 (5H, m, Ph). 

 

MS m/z (%) = 164 (17, [M+•]); 107 (87, [OBn] +); 91 (100, PhCH2
+); 87 (36, [M+•-

Ph]); 65 (67), 77 (45, [Ph]+). 

 

Optical rotation : [α]rt
D

 = +55 (c=1, CHCl3). 

This procedure afforded 12f without loss of optical purity, as confirmed by 

HPLC-Gilson (Kromasil 5-Cellucoat, 4.6 m X 250 mm column; ee=98.3%). 

 

 

6. Synthesis of thiiranes 16 

 

General procedure. The procedure by Mobashery et al. was followed.iIII In a 

dried two-necked flask under inert atmosphere, were added, to anydrous MeOH 

(20 mL), epoxide 12 (8.62 mmol, 1 equiv.) and thiourea (10.34 mmol,1.2 equiv.). 

The solution was stirred at room temperature overnight then, after monitoring the 

reaction by TLC, it was concentrated under reduced pressure, diluted with 7 mL 

of DCM and quenched with 7 mL of water. The organic product was extracted 

with DCM (3X7 mL) and the combined organic layers were dried over dry 

NaSO4.  The volatiles were remouved under reduced pressure to give compound 

16 which was used without purification.  
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16a 2-(allyloxymethyl)thiirane 

 

Following the general procedure 16a was 

isolated in 67% yield as a yellow oil.   

1H-NMR δ(ppm) = 2.22 (1H, dd, J = 1, 5.2 Hz, 

CH2S), 2.53 (1H, d, J = 6.2 Hz, CH2S), 3.0-3.21 (1H, app. pent, J = 5.8, CHS), 

3.45 (1H, dd, J = 6.6, 10.6 Hz, CHCH2O), 3.65 (1H, dd, J = 5.8, 10.6 Hz, 

CHCH2O), 4.03-4.07 (2H, m, CH2All), 5.18-5.734 (2H, m, CH2=CH), 5.82-6.02 

(1H, m, CH2=CH).   

 
13C-NMR δ(ppm) = 23.6 (CH2S), 46.9 (CHS), 71.7 (CHCH2O), 74.4 

(CH2CH=CH2), 116.9 (CH2=CH), 134.1 (CH2=CH). 

 

MS m/z (%) = 130 (0.5, M+•), 73 (100), 57 (25, [OAll] +). 

 

16c 2-(isopropoxymethyl)thiirane 

 

Following the general procedure 16c was isolated 

in 74% yield as a yellow oil.   

1H-NMR δ(ppm) = 1.17 (3H, d, J = 6.4 Hz, 

(CH3)2), 1.18 (3H, d, J = 6.4 Hz, (CH3)2), 2.21 (1H, dd, J = 5.6, 1.2 Hz, CH2S), 

2.53 (1H, dd, J = 6.2, 1 Hz, CH2S), 3.0-3.12 (1H, m, CHCH2O), 3.38 (1H, dd, J = 

10.6, 7.0 Hz, CH2O), 3.59-3.72 (2H, m, CH2O + OCHi-Pr).   

 
13C-NMR δ(ppm) = 22.0 (CH3), 22.1 (CH3), 24.0 (CH2S), 32.6 (CHS), 71.9 

(CH(O)), 72.8 (CH2O).  

 

MS m/z (%) = 134 (0.76, [M+•+2]), 132 (62, [M+•]), 99 (35, [M+•-SH]), 73 (95, 

[M+•-OC3H7]), 59 (100, [C2H3S]). 

 

 

 

 

S

O

S
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16e (R)-2-(benzyloxymethyl)thiirane 

 

Following the general procedure (employing 

epoxide 12f), 16e was isolated in 78% yield as a 

colorless oil.   

1H-NMR δ(ppm) = 2.21 (1H, dd, J = 5.6, 1.2 Hz, CHCH2S), 2.53 (1H, app d , J = 

6.2 Hz, CHCH2S), 3.11 (1H, pent, J = 6.2 Hz, SCHCH2), 3.49 (1H, dd, J = 10.6, 

6.6 Hz, CHCH2OBn), 3.69 (1H, dd, J = 10.6, 5.8 Hz, CHCH2OBn), 4.59 (2H, s, 

CH2Ph), 7.25-7.4 (5H, m, Ph). 

13C-NMR δ(ppm) = 23.8 (CH2S), 32.2 (CHCH2), 73.0 (CH2Ph), 74.6 (CH2O), 

127.4, 127.6, 128.2, 137.7. 

 

MS m/z (%) = 180 (16, [M+•]), 147 (44, [M+•-SH]), 103 (87, [M+•-Ph]), 91 (100, 

PhCH2
+). 

 

This procedure afforded 16e, through a SN2 type mechanism, without loss of 

optical purity, as confirmed by HPLC analysis (Kromasil 5-Cellucoat, 4.6 m X 

250 mm column; n-hexane (A) : 2-propanol (B); isocratic at 0% of B for 55 min, 

in 5 min to 5% of B for 5 min, in 20 min to 40% of B; τmajor = 94.9 min, τminor = 

99.5 min (ee>98%)).  

 

7. Synthesis of 1,2-dithiols 10 and β-mercapto alcohols 11 

  

Method A: synthesis of 1,2-dithiols in THF, under catalysis of TBAF. 

 

General procedure. A solution of thiirane 16 (1 mmol, 1 equiv.) and HMDST 13 

(1,2 mmol, 1.2 equiv.) in THF (2.5 mL) was treated at 0°C with TBAF (1M in 

THF; 0.24 mmol, 0.2 equiv.) under inert atmosphere. The mixture became bright 

green and after few minutes pale yellow. After 10 minutes at 0°C, the mixture was 

warmed at room temperature, and the reaction was carried out for 30 min; the 

progress of the reaction was monitored by TLC. After addition of citric acid (50% 

S

OPh
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aq solution; 0.5 mL) the mixture was stirred for 10 min, then diluted with Et2O. 

The organic phase was then washed with citric acid (20% aq solution; 0.5 mL), 

extracted with Et2O and dried over NaSO4. Evaporation of the solvent afforded 

dithiol 10 which was pure enough to be used without purification. 

 

Method B: synthesis of 1,2-dithiols and β-mercapto alcohols in THF, under 

catalysis of PhONBu4. 

 

General procedure. A solution of PhONBu4 (0.24 mmol, 0.2 equiv.) in THF (2.5 

mL) was added with thiirane 16 or epoxide 12 (1 mmol, 1 equiv.) and HMDST 13 

(1,2 mmol, 1.2 equiv.) at 0°C under inert atmosphere. The mixture became pale 

blue and after few minutes pale yellow. After 10 minutes at 0°C, the mixture was 

warmed at room temperature, and the reaction was carried out for 30 min; the 

progress of the reaction was monitored by TLC. After addition of citric acid (50% 

aq solution; 0.5 mL) the mixture was stirred for 10 min, then diluted with Et2O. 

The organic phase was then washed with citric acid (20% aq solution; 0.5 mL), 

extracted with Et2O and dried over NaSO4. Evaporation of the solvent afforded 

product as a yellow oil, which was pure enough to be used without purification. 

 

Method C: synthesis of 1,2-dithiols and β-mercapto alcohols in IL, under 

catalysis of TBAF. 

 

General procedure. A mixture of IL ([BMI][BF4]  or [BMI][PF6], 300 µL), 

HMDST 13 (0.22 mmol, 1.2 equiv.) and thiirane 16 or epoxide 12 (0,18 mmol, 1 

equiv.) at room temperature under an inert atmosphere, was treated dropwise with 

TBAF (1M in THF; 0.04 mmol, 0.2 equiv.). After addtion of TBAF, the mixture 

became pale green and after few minutes, yellow. The reaction was carried out for 

around 1 h and 30 min and the progress was monitored by TLC. After addition of 

Et2O in the reaction flask, the organic product was directly extracted from IL 

(3X1 mL) and the combined organic phases were treated with citric acid (50% aq 

solution; 1.0 mL). The resulting organic phase was then washed with citric acid 

(20% aq solution; 1.0 mL), and dried over NaSO4. Evaporation of the solvent 

afforded product which was pure enough to be used without purification. 
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Method D: synthesis of 1,2-dithiols and β-mercapto alcohols in IL, under 

catalysis of PhONBu4. 

 

General procedure. A mixture of IL ([BMI][BF4]  or [BMI][PF6], 300 µL) and 

PhONBu4 (0.04 mmol, 0.2 equiv.) was added under inert atmosphere drop by drop 

with HMDST 13 (0.22 mmol, 1.2 equiv.) and thiirane 16 or epoxide 12 (0,18 

mmol, 1 equiv.) at room temperature. The mixture became grey after few minutes. 

The reaction was carried out for around 2 h min and the progress of the reaction 

was monitored by TLC. After addition of Et2O in the reaction flask, the organic 

product was directly extracted from IL (3X1 mL) and the organic phases were 

treated with citric acid (50% aq solution; 1.0 mL). The resulting organic phase 

was then washed with with citric acid (20% aq solution; 1.0 mL), and dried over 

NaSO4. Evaporation of the solvent afforded product. 

 

10a 3-allyloxypropane-1,2-dithiol 

 
1H-NMR δ(ppm) = 1.45-1.62 (1H, m, 

CH2SH), 1.87 (1H, d, J =8.6 Hz, CHSH), 

2.67-3.28 (3H, m, CH2S + CHSH), 3.47-3.74 

(2H, m, CH2O), 4.00 (2H, bs, OCH2All), 

5,16-5.32 (2H, m, CH=CH2), 5.83-5.95 (1H, 

m,CH=CH2). 

 
13C-NMR δ(ppm) = 23.4, 31.8, 71.6, 74.3, 117.0, 134,1. 

 

MS m/z (%) = 131 (4, [M+•-HS]), 106 (18), 73 (83, PhCH2
+), 59 (100). 

 

Yield:  

Method A : 54% 

Method C : 64%. 

 

 

 

 

SH
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10b 1-phenylethane-1,2-dithiol 

 
1H-NMR δ(ppm) = 1.49 (1H, dd, J = 7.4, 9.2 Hz, 

CH2SH), 2.30 (1H, d, J =5.2 Hz, CHSH), 2.86-3.20 

(2H, m, CH2S), 4.04-4.14 (1H, m, CHSH), 7.18-7.44 

(5H, m,Ph). 

 
13C-NMR δ(ppm) = 34.6, 63.1, 128.5, 129.0, 129.3, 

131,4. 

 

Yield:  

Method A : 75%. 

 

10c 3-isopropoxypropane-1,2-dithiol 

 
1H-NMR δ(ppm) = 1.15 (6H, d, J=6 Hz, 

CH(CH3)2), 1.58 (1H, app t, J =8.6 Hz, CH2SH), 

1,87 (1H, d, J = 8.8 Hz, CHSH), 2.81-2.93 (2H, 

m, CH2SH), 2.97-3.10 (1H, m, CHSH), 3.42-3.67 

(3H, m, OCH(CH3)2+ CH2Oi-Pr). 

 
13C-NMR δ(ppm) = 21.9 ((CH3)2), 29.8 (CH2SH), 42.4 (CHSH), 70.5 (CH2Oi-

Pr), 71.9 (OCH(CH3)2). 

 

MS m/z (%) = 166 (0.33, [M+•]), 132 (22, [M+•-H2S]), 119 (1, [M+•-CH2SH]), 106 

(56, [M+•-Oi-Pr-H]), 99 (35, [M+•-SH-H2S]), 73 (100, [CH2Oi-Pr]), 59 (62, [Oi-

Pr]). 

 

Yield:  

Method A : 74% 

Method B : 61% 

Method C : 64%. 
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10e (R)-3-benzyloxypropane-1,2-dithiol 

 
1H-NMR δ(ppm) = 1.54 (1H, t, J = 8.8 

Hz, CH2SH), 1.89 (1H, d, J =4.4 Hz, 

CHSH), 2.88 (2H, dd, J=5.4, 8.8 Hz, 

CH2S), 3.1-3.17 (1H, m, CHSH), 3.56 

(1H, dd, J= 7.0, 9.6 Hz, CH2O), 3.69 

(1H, dd, J= 5.2, 9.6 Hz, CH2O), 4,54 

(2H, s, CH2Ph), 7.3-7.4 (5H, m,Ph). 

 
13C-NMR δ(ppm) = 29.9 (CH2SH), 42.1 (CHSH), 72.4 (CH2OBn), 73.0 (CH2Ph), 

127.6, 127.8, 128.4, 137,8. 

 

MS m/z (%) = 214 (0.34, [M+•]), 181 (4, [M+•-SH]), 149 (2, [M+•-SH-S]), 123 (14, 

[M+•-91]), 108 (15, [C3H8S2]), 91 (100, PhCH2
+), 77 (6, [Ph] +), 65 (18). 

 

Optical rotation :  [α]rt
D

 = -15 (c=1.1, CHCl3). 

Methods A-C afforded 10e with total enantioconservation, as confirmed by HPLC 

analysis (Kromasil 5-Cellucoat, 4.6 m X 250 mm column; n-hexane (A) : 2-

propanol (B); isocratic at 0% of B for 20 min, then ramp 30%, flow rate 0.8 

mL/min; τmajor = 31.04 min, τminor = 33.09 min (ee>98%)).  

Yield:  

Method A : 10e was isolated in 77% yield; (±)-3-benzyloxypropane-1,2-dithiol 

(10d) was isolated in 80% yield. 

Method C :  10e was isolated in 77% yield (reaction carried in [BMI][PF6]); 10d 

in 75% yield (reaction carried in [BMI][BF4]). 

Method D : 10d was isolated by TLC (petroleum ether/ethyl acetate 5:1) in 40% 

of yield. 
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11f (S)-1-(benzyloxy)-3-mercaptopropan-2-ol 

 
1H-NMR δ(ppm) = 1.45 (1H, app t, 

J = 8.6 Hz, CH2SH), 2.54 (1H, bs, 

OH), 2.64-2.72 (2H, m, CH2SH), 

3.53-3.56 (2H, m, CH2O), 3.80-3.91 

(1H, m, CHOH), 4,56 (2H, s, 

CH2Ph), 7.30-7.40 (5H, m, Ph). 

 
13C-NMR δ(ppm) = 28.1 (CH2SH), 71.2 (CHOH), 72.1 (CH2OBn), 73.5 

(CH2Ph), 127.7, 127.8, 127.9, 131.8.      

 

MS m/z (%) = 198 (0.63, [M+•]), 180 (14, [M+•-H2O]), 165 (5, [M+•-SH]), 122 

(74, [M+•-76]), 107 (4, [M+•-91]), 91 (100, PhCH2
+). 

 

Optical rotation : [α]rt
D

 = -9 (c=1, THF). 

Method C afforded 11f with total enantioconservation, as confirmed by HPLC 

analysis (Kromasil 5-Cellucoat, 4.6 m X 250 mm column; n-hexane (A) : 2-

propanol (B); isocratic at 10% of B for 80 min; flow rate 0.5 mL/min; τmajor = 17.6 

min, τminor = 19.4 min (ee>98%)).  

Yield:  

Method B : (±)-1-(benzyloxy)-3-mercaptopropan-2-ol (11a) was isolated in 85% 

yield. 

Method C : 11f was isolated in 60% yield (reaction performed in [BMI][BF4]); 

11a was isolated in 69% yield (reaction performed in [BMI][PF6]). 

Method D : 11a was recovered in 51% yield, when carrying the reaction in 

[BMI][PF6]. 
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11b 1-isopropoxy-3-mercaptopropan-2-ol 

 
1H-NMR δ(ppm) = 1.16 (6H, d, J=6.2 Hz, 

CH(CH3)2), 1,48 (1H, app t, J = 8.8 Hz, SH), 2.20 

(1H, bs, OH), 2.63-2.71 (2H, m, CH2SH), 3.44 

(1H, dd, J=6.2, 9.4 Hz, CH2O), 3.52 (1H, dd, J= 

4.4, 9.2 Hz, CH2O), 3.55-3.67 (1H, m, 

CH(CH3)2), 3.73-3.84 (1H, m, CHOH). 

 
13C-NMR δ(ppm) = 22.1 (CH(CH3)2), 28.1 (CH2SH), 70.0 (CH2O), 71.4 

(CHOH), 72.2 (OCH(CH3)2). 

 

MS m/z (%) = 151 (0.17, [M+•+1]), 132 (11, [M+•-H2O]), 99 (88, [M+•-SH- H2O]), 

91 (13, [M+•-Oi-Pr]), 73 (94, [CH2OCH(CH3)2]), 61 (100). 

 

Yield:  

Method C : 57% yield in [BMI][BF4];  73% yield in [BMI][PF6]. 

 

11g 1-mercaptopropan-2-ol 

 
1H-NMR δ(ppm) = 1.22 (3H, d, J=6.2 Hz, CHCH3), 1.46 

(1H, dd, J = 9 Hz, CH2SH), 2.26 (1H, bs, OH), 2.47 (1H, m, 

CH2SH), 2.72 (1H, m, CH2SH), 3.72-3.86 (1H, m, CHOH). 

 

Yield:  

Method C : 35% yield in [BMI][BF4]. 
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8. Synthesis of β-hydroxy and β-mercapto phenylthio-derivatives 

 

Method A: synthesis of β-hydroxy and β-mercapto phenylthio-derivatives in 

THF, under catalysis of PhONBu4. 

 

General procedure. A solution of PhONBu4 (0.04 mmol, 0.2 equiv.) in THF (0.4 

mL) was added with thiirane 16 or epoxide 12 (0.2 mmol, 1 equiv.) and PhSTMS 

17 (0,22 mmol, 1.1 equiv.) under inert atmosphere. The mixture was stirred at r.t. 

for around 1h and 30 min and the progress of the reaction was monitored by TLC. 

After quenching with water (in case of epoxide) or citric acid (50% aq solution, in 

case of episulfide) the mixture was diluted with Et2O. The resulting organic phase 

was extracted with Et2O and then washed with citric acid (20% aq solution; 1 mL) 

and dried over NaSO4. Evaporation of the solvent afforded crude product, in 

mixture with PhSSPh, that was purified on TLC. 

 

Method B: synthesis of β-hydroxy and β-mercapto phenylthio-derivatives in 

IL, under catalysis of TBAF. 

 

General procedure. A mixture of IL ([BMI][BF4] or [BMI][PF6], 350 µL), 

PhSTMS 17 (0.22 mmol, 1.1 equiv.) and thiirane 16 or epoxide 12 (0,2 mmol, 1 

equiv.) at room temperature under inert atmosphere, was treated dropwise with 

TBAF (1M in THF; 0.044 mmol, 0.2 equiv.). After the addtion of TBAF the 

mixture became pale yellow. The reaction was carried out for around 1 h and 30 

min and the progress of the reaction was monitored by TLC. After addition of 

Et2O in the reaction flask, the organic product was directly extracted from IL 

(3X1 mL) and the organic phases were quenched with water (in case of epoxide) 

or citric acid (50% aq solution; 1 mL, in case of thiirane). The resulting organic 

phase was then washed with citric acid (20% aq solution), and dried over NaSO4. 

Evaporation of the solvent afforded crude product, which was purified on TLC. 
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Method C: synthesis of β-hydroxy and β-mercapto phenylthio-derivatives in 

IL, under catalysis of PhONBu4. 

 

General procedure. A mixture of IL ([BMI][BF4]  or [BMI][PF6], 350 µL) and 

PhONBu4 (0.044 mmol, 0.2 equiv.) was added, under inert atmosphere, drop by 

drop with PhSTMS 17 (0.22 mmol, 1.1 equiv.) and thiirane 16 or epoxide 12 (0,2 

mmol, 1 equiv.) at room temperature. The mixture became grey after few minutes. 

The reaction was carried out for around 2 h min and the progress of the reaction 

was monitored by TLC. After addition of Et2O in the reaction flask, the organic 

product was directly extracted from IL (3X1 mL) and the organic phases were 

quenched with water (in case of epoxide) or citric acid (50% aq solution; 1 mL, in 

case of thiirane). The resulting organic phase was then washed with with citric 

acid (20% aq solution), and dried over NaSO4. Evaporation of the solvent 

afforded crude product as a yellow oil, which was purified on TLC. 

 

18a 1-(benzyloxy)-3-(phenylthio)propan-2-ol 

 
1H-NMR δ(ppm) = 2.58-2.76 (1H, 

bs, OH), 3.02 (1H, dd, J=6.8, 13.4 

Hz, CH2S), 3.12 (1H, dd, J=5.8, 13.8 

Hz, CH2S), 3.50 (1H, dd, J= 5.4, 9.6 

Hz, CH2O), 3.57 (1H, dd, J= 4.0, 9.6 

Hz, CH2O), 3.84-3.96 (1H, m, 

CHOH), 4.50 (2H, s, CH2Ph), 7.17-7.34 (10H, m, Ph). 

 
13C-NMR δ(ppm) = 37.51 (CH2S), 68.9 (CHOH), 72.4 (CH2Ph), 73.4 (CH2O), 

127.4, 127.7, 129.6, 128.2, 128.4, 129.0, 135.3, 137.7. 

 

MS m/z (%) = 274 (13, [M•]), 165 (13, [M+•-PhS]), 123 (51, [PhSCH2]), 109 (29, 

[PhS]), 91 (100, PhCH2
+), 77 (25,  [Ph] +). 

 

Yield:  

Method A : 18a was purified by TLC (petroleum ether/EtOAc, 9:1), affording 

78% yield. 
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Method B : 73% yield (reaction carried in [BMI][BF4]); 75% (reaction carried in 

[BMI][PF6]). 

Method C : 69% (reaction carried in [BMI][PF6]). 

 

18b 1-isopropoxy-3-(phenylthio)propan-2-ol 
 

1H-NMR δ(ppm) = 1.14 (6H, d, J = 5.8 Hz, 

CH(CH3)2), 2.69-2.78 (1H, bs, OH), 3.05-3-10 

(2H, m, CH2SPh), 3.35-3.65 (3H, m, CH(CH3)2 + 

CH2O), 3.76-3.9 (1H, m, CHOH), 7.1-7.4 (5H, 

m, Ph). 

 

MS m/z (%) = 226 (58, [M+•]), 135 (63, [M+•-91]), 123 (69), 110 (68,  [PhSH]+), 

99 (100). 

 

Yield:  

Method B : the product was purified by TLC (petroleum ether/EtOAc, 8:1), 

affording 81% yield in [BMI][BF4]. 

 

18c 1-phenyl-2(phenylthio)ethanol 

 
1H-NMR δ(ppm) = 2.8 (1H, s, OH), 3.09 (1H, dd, J 

=9.2, 13.6 Hz, CH2SPh), 3.34 (1H, dd, J =3.8, 13.4 

Hz, CH2SPh), 4.73 (1H, dd, J =3.6 Hz, CHOH), 

7.24-7.45 (10 H, m,Ph). 

 
13C-NMR δ(ppm) = 43.9 (CH2SPh), 71.9, 126.1, 

126.8, 128.1, 128.7, 129.3, 130.2. 

 

MS m/z (%) = 230 (9, [M•+]), 124 (100, [PhSCH2]+), 107 (37), 91 (14, PhCH2
+), 

77 (32, [Ph] +). 
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18c' 2-phenyl-2(phenylthio)ethanol 

 
1H-NMR δ(ppm) = 2.02 (1H, bs, OH), 3.89-3.92 (2H, 

m, CH2OH), 4.32 (1H, t, J =3.8 Hz, CHPh), 7.23-7.35 

(10 H, m,Ph). 

 
13C-NMR δ(ppm) = 55.6 (CH2OH), 67.2, 127.3, 

127.6, 127.9, 128.5, 128.8, 132.3. 

 

MS m/z (%) = 230 (42, [M•+]), 199 (78), 121 (97, M•+-PhS), 110 (99), 103 (76), 

91 (100, PhCH2
+). 

 

Yield:  

Method B : the reaction was performed in [BMI][BF4]. The product was purified 

by TLC (petroleum ether/EtOAc, 8:1), affording the pure product in 67% yield, as 

mixture of both regioisomers 18c and 18c' in ratio 6:1. 

Method C : the reaction was carried in [BMI][BF4]. The crude was purified by 

TLC (petroleum ether/EtOAc, 9:1), affording the pure product in 51% yield, as 

mixture of both regioisomers 18c and 18c' in ratio 2:1. 

 

18d 2-(phenylthio)cyclohexanol 

 
1H-NMR δ(ppm) = 1.13-1.45 (4H, m), 1.52-2.03 (2H, m), 

2.06-2.31 (2H, m), 2.65-2.83 (1H, m, CHSPh) 2.9-3.01 

(1H, bs, OH), 3.23-3.45 (1H, m, CHOH), 7.3-7.57 (5 H, m, 

Ph).      

 
13C-NMR δ(ppm) = 24.3, 26.2, 32.7, 33.9, 56.4 (CHSPh), 72.0 (CHOH), 127.5, 

128.7, 132.5, 133.5.      

 

MS m/z (%) = 208 (25, [M+•]), 110 (100), 98 (16), 81 (20), 65 (12). 
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PhS

OH

SPh



 127

Yield:  

Method B : 18d was isolated by TLC (petroleum ether/EtOAc, 9:1) in 59% yield 

as a yellow oil.The reaction was carried in [BMI][PF6]. In the crude, cyclohexene-

oxide was recovered in 15%. 

 

18e 1-chloro-3-(phenylthio)propan-2-ol 

 
1H-NMR δ(ppm) = 2.64 (1 H, bs, OH), 3.07 (1H, dd, J 

= 7, 13.8 Hz, CH2SPh), 3.18 (1H, dd, J = 5.4, 13.8 Hz, 

CH2SPh), 3.67-3.69 (2H, m, CH2Cl), 3.87-3.4 (1H, m, 

CHOH), 7.25-7.43 (5 H, m, Ph).      

 
13C-NMR δ(ppm) = 38.3 (CH2SPh), 48.0 (CH2Cl), 69.5 (CHOH), 126.9, 129.1, 

130.1, 134.5.         

 

MS m/z (%) = 204 (14, [M+•+2]), 202 (39, [M+•]), 158 (17), 123 (100), 77 (22, 

[Ph]+). 

 

Yield:  

Method B : the reaction was carried in [BMI][PF6]. 18e was isolated in 47% yield 

as a yellow oil. 

 

19a 1-(allyloxy)-3-(phenylthio)propane-2-thiol 

 
1H-NMR δ(ppm) = 2.05 (1H, bs, SH), 3.23.-

3.34 (3H, m, CH2SPh + CHSH), 3.56-3.71 

(2H, m, OCH2CH), 3.92-4.0 (2H, m, 

OCH2CH=CH2), 5,15-5.32 (2H, m, 

CH=CH2), 5.78-5.97 (1H, m,CH=CH2), 7.24-

7.41 (5H, m, Ph). 

 
13C-NMR δ(ppm) = 39.4 (CH2SPh), 60.4, 69.9, 72.0 (OCH2CH=CH2), 117.2, 

126.4, 128.9, 129.3, 129.7, 134.3. 
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MS m/z (%) = 240 (0.5, M+•), 182 (20, [M+•-OAll]), 149 (24), 110 (64, PhSH+), 

73 (100). 

 

Yield:  

Method B : the product was isolated by TLC (petroleum ether/EtOAc, 8:1) in 43% 

yield as a yellow oil. The reaction was carried out in [BMI][PF6]. 

 

19c 1-(isopropoxy)-3-(phenylthio)propane-2-thiol 
 

1H-NMR δ(ppm) = 1.14 (6H, d, J = 6.2 Hz, 

CH(CH3)2), 2.11 (1H, d, J = 7.2 Hz, SH), 3.04-

3-37 (3H, m, CHSH + CH2SPh), 3.48-3.70 (3H, 

m, CH(CH3)2 + CH2Oi-Pr), 7.19-7.41 (5H, m, 

Ph).      

 
13C-NMR δ(ppm) = 22.1 ((CH3)2), 39.3 (CH2SPh), 39.9 (CHSH), 70.7 (CH2Oi-

Pr), 72.1 (CH(CH3)2), 126.0, 128.9, 129.6, 129.1.         

 

MS m/z (%) = 244 (2, [M+•+2]), 243 (3, [M+•+1]), 242 (24, [M+•]), 208 (4, [M+•-

H2S]), 182 (5, [M+•-Oi-Pr-H]), 133 (21, [M+•-SPh]),  123 (20, [M+•-CHSHCH2Oi-

Pr]), 110 (73, [PhSH]+), 99 (53, [M+•-H2S-PhS]), 73 (100, [CH2Oi-Pr]+). 

 

20c 1-(isopropoxy)-3-(phenylthio)propyl-2-disulfide 

 
1H-NMR δ(ppm) = 1.11 (12 H, d. J = 6.2 Hz, 

CH(CH3)2), 2.97-3.09 (2H, m, CH(CH3)2), 3.25-

3.29 (4H, m, CH2SPh), 3.44-3.75 (6H, m, 

CH(CH3)2 + CH2Oi-Pr), 7.16-7.40 (10 H, m, Ph). 

 

MS m/z (%) = 482 (0.5, [M+•]), 273 (1), 209 (44), 167 (49, [M+•-PhS 

CH2CHCH2O]), 123 (100, [PhSCH2]+), 73 (17, [CH2Oi-Pr]+). 

 

Yield:  

Method A: 19c was isolated in 61% yield. 
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Method B : 19c was isolated by TLC (petroleum ether/EtOAc, 8:1) in 37% yield, 

as a yellow oil.  

In the crude, 20c was also detected in 23% yield, when carrying the reaction in 

[BMI][BF4]. 

When carrying the reaction in [BMI][PF6], only 19c was detected in the crude and 

it was obtained, after purification, in 64% yield. 

 

19d 1-(benzyloxy)-3-(phenylthio)propane-2-thiol 

 
1H-NMR δ(ppm) = 2.12 (1H, d, J = 

7.6 Hz, CHSH), 3.09-3.36 (3H, m, 

CH2SPh + CHSH), 3.60 (1H, dd, J= 

5.2, 9.6 Hz, CH2OBn), 3.73 (1H, dd, 

J= 4.8, 9.6 Hz, CH2OBn), 4,48 (2H, 

s, CH2Ph), 7.19-7.40 (10 H, m, Ph). 

 
13C-NMR δ(ppm) = 39.4 (CH2SPh), 39.6 (CHSH), 72.7 (CH2O), 73.8 (CH2OBn), 

126.1, 126.3, 127.5, 128.2, 128.8, 129.6, 135.5, 137.7.  

 

MS m/z (%) = 292 (0.82, [M+•+2]), 291 (1, [M+•+1]), 290 (11, [M+•]), 256 (1, 

[M+•-H2S]), 181 (7, [M+•-SPh]), 147 (10, [M+•-SPh-H2S]), 123 (7, [M+•-

BnOCH2CHSH]), 110 (15, [PhSH]+), 91 (100, PhCH2
+). 

 

20d bis(1-(benzyloxy)-3-(phenylthio)propyl)-2-disulfide 

 
1H-NMR δ(ppm) = 3.02-3.09 (2H, m, CHSS), 

3.24-3.27 (4H, m, CH2SPh), 3.63 (2H, dd, J= 4.8, 

10.2 Hz, CH2OBn), 3.73 (2H, dd, J= 5.8, 10.4 Hz, 

CH2OBn),  4,42 (4H, d, J = 2.6 Hz, CH2Ph), 7.19-

7.41 (20 H, m, Ph). 

 

MS m/z (%) = 578 (0.4, [M+•]), 321 (1), 290 (0,7), 257 (35), 123 (8, [M+•-

BnOCH2CHSH]), 91 (100, PhCH2
+). 
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Yield:  

Method B : 19d was purified by TLC (petroleum ether/EtOAc, 9:1), affording 

55% yield, when performing the reaction in [BMI][BF4]. In the crude, the 

corresponding disulfide 20d was also detected in 10% yield. 

 

When carrying the reaction in [BMI][PF6], 19d was obtained in 69% yield. 

Method C : 19d was obtained in 48% yield in [BMI][PF6]. 

 

 

9. Synthesis of β-functionalized disulfides in ILs, without catalysis 

 

General procedure. A mixture of IL ([BMI][BF4], 350 µL) and thiirane 16 or 

epoxide 12 (0,2 mmol, 1 equiv.) at room temperature under inert atmosphere, was 

added dropwise with HMDST 13 (0.24 mmol, 1.2 equiv.). The reaction was 

carried out for around 2-4 days and the progress was monitored by TLC. Due to 

the long reaction time and to low conversion degree, the system was heated at 80-

90°C, nevertheless epoxide (or episulfide) was recovered in the crude.After 

addition of Et2O in the reaction flask, the organic product was directly extracted 

from IL (3X1 mL) and the organic phases were treated with citric acid (50% aq 

solution; 1 mL in case of thiirane) or with water (in case of epoxide). The 

resulting organic phase was then washed with citric acid (20% aq solution), and 

dried over NaSO4. Evaporation of the solvent afforded crude product, which was 

purified on TLC. 

 

21f (2S, 2'S)-3,3'-disulfanediylbis (1-benzyloxypropan-2-ol) 

 
1H-NMR δ(ppm) = 2.72 (2H, bs, OH), 2.82 

(2H, dd, J = 7.2, 13.8 Hz, CH2S), 2.92 (2H, dd, 

J = 5.2, 13.6 Hz, CH2S), 3.50 (2H, dd, J = 5.8, 

9.4, CH2O), 3.60 (2H, dd, J = 4, 9.6, CH2O), 

4.02-4.15 (2H, m, CHOH), 4,56 (4H, s, 

CH2Ph), 7.26-7.42 (10H, m, Ph). 
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13C-NMR δ(ppm) = 42.5 (CH2SH), 69.3 (CHOH), 72.5 (CH2Ph), 73.5 (CH2O), 

127.7, 127.8, 128.4, 137.7.      

 

MS m/z (%) = 394 (7, [M+•]), 197 (14), 124 (6), 107 (9, [OBn]+), 91 (100, 

PhCH2
+). 

 

[α]rt
D

 = - 25  (c=1, CHCl3). 

 

Yield 

21f was isolated by TLC (petroleum ether/EtOAc 2:1.5) in 31% yield. 

(±)-3,3'-disulfanediylbis (1-benzyloxypropan-2-ol) (21a) was isolated in 27% 

yield. 

 

21b  3,3'-disulfanediylbis (1-isopropoxypropan-2-ol) 

 
1H-NMR δ(ppm) : 1.17 (12H, d, J = 6 Hz, 

CH(CH3)2), 2.28 (2H, bs, OH), 2.83 (2H, dd, J = 

5.8, 13.6 Hz, CH2S), 2.92 (2H, dd, J = 5.4, 13.6 

Hz, CH2S), 3.4-3.68 (6H, m, CH2O + CH(CH3)2), 

4.0-4.05 (2H, m, CHOH). 

 
13C-NMR δ(ppm) = 22.07 (CH(CH3)2), 22.1 (CH(CH3)2), 42.5, 42.6 (CH2SH), 

69.3 (CHOH), 70.4 (CH2O), 72.3 (OCH(CH3)2). 

 

MS m/z (%) = 298 (4, [M+•]), 207 (2), 99 (88), 99 (22), 89 (18), 73 (37), 57 (100). 

 

Yield 

21b was isolated by TLC (petroleum ether/EtOAc 1:1.5) in 25% yield as a yellow 

oil. 
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21g 1,1'-disulfanediyldipropan-2-ol 

 

 
1H-NMR δ(ppm) = 1.31 (6H, d, J= 5.6 Hz, CHCH3), 

2.21 (2 H, bs, OH), 2.82-2.93 (2H, m, CH2SH), 3.10 

(2H, dd, J = 4.6, 12 Hz, CH2SH), 4.15-4.22 (2H, m, 

CHOH). 

 

MS m/z (%) = 182 (8, [M+•]), 138 (6), 91 (11), 59 (53), 45 (100). 

 

Yield 

21g was isolated by TLC (petroleum ether/EtOAc 2:1.5) in 21% yield, as a yellow 

oil. 

 

22c 3,3'-disulfanediylbis (1-isopropoxypropane-2-thiol) 

 
1H-NMR δ(ppm) = 1.13 (12H, d, J=6.2 Hz, 

CH(CH3)2), 2.1 (2H, d, J= 7.0 Hz, SH), 2.91-2.99 

(2H, m, CH(CH3)2), 3.2-3.3 (4H, m, CH2S), 3.50-

3.70 (6H, m, CH2O + CHSH). 

 

Yield 

22c was isolated by TLC (petroleum ether/EtOAc 1:1) in 19% yield, as a yellow 

oil. 
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10. Synthesis of β-hydroxy and β-mercapto phenylselenides 

 

Method A: synthesis of β-hydroxy and β-mercapto phenylseleno-derivatives 

in THF, under catalysis of PhONBu4. 

 

General procedure. A solution of PhONBu4 (0.044 mmol, 0.2 equiv.) in dry 

THF (0.4 mL) was treated under inert atmosphere with thiirane 16 or epoxide 12 

(0.2 mmol, 1 equiv.) and PhSeTMS 28 (0,22 mmol, 1.1 equiv.). The mixture was 

stirred at r.t. for 1h and the progress of the reaction was monitored by TLC. After 

a quenching with water (in case of epoxide) or citric acid (50% aq solution, in 

case of episulfide) the mixture was diluted with Et2O. The organic phase was 

extracted with Et2O and then washed with citric acid (20% aq solution) and dried 

over NaSO4. Evaporation of the solvent afforded crude product, in mixture with 

PhSeSePh, which was purified on TLC. 

 

 

Method B: synthesis of β-hydroxy and β-mercapto phenylseleno-derivatives 

in IL, under catalysis of TBAF. 

 

General procedure. A mixture of IL ([BMI][BF4] or [BMI][PF6], 350  µL), 

PhSeTMS 28 (0.23 mmol, 1.1 equiv.) and thiirane 16 or epoxide 12 (0,21 mmol, 1 

equiv.) at room temperature under inert atmosphere, was treated dropwise with 

TBAF (1M in THF; 0.046 mmol, 0.2 equiv.). The reaction was carried out for 

around 1 h and 30 min and the progress of the reaction was monitored by TLC. 

After addition of Et2O in the reaction flask, the organic product was directly 

extracted from IL (3X1 mL) and the organic phases were treated with water (in 

case of epoxide) or citric acid (50% aq solution; 0.5 mL, in case of thiirane). The 

resulting organic phase was then washed with citric acid (20% aq solution), and 

dried over NaSO4. Evaporation of the solvent afforded crude product, in mixture 

with PhSeSePh. 
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Method C: synthesis of β-hydroxy and β-mercapto phenylseleno-derivatives 

in IL, under catalysis of PhONBu4. 

 

General procedure. A mixture of IL ([BMI][BF4]  or [BMI][PF6], 350 µL) and 

PhONBu4 (0.046 mmol, 0.2 equiv.) was added under inert atmosphere drop by 

drop with PhSeTMS 28 (0.23 mmol, 1.1 equiv.) and thiirane 16 or epoxide 12 

(0,21 mmol, 1 equiv.) at room temperature. The mixture became grey after few 

minutes. The reaction was carried out for around 1 h and 30 min and the progress 

of the reaction was monitored by TLC. After addition of Et2O in the reaction 

flask, the organic product was directly extracted from IL (3X1 mL) and the 

organic phases were treated with water (in case of epoxide) or citric acid (50% aq 

solution, in case of thiirane). The resulting organic phase was then washed with 

with citric acid (20% aq solution; 0.5 mL), and dried over NaSO4. Evaporation of 

the solvent afforded crude product, which was purified by TLC. 

 

29f (S)-1-(benzyloxy)-3-(phenylselanyl)propan-2-ol 

 
1H-NMR δ(ppm) = 2.36 (1H, bs, 

OH), 3.03 (1H, dd, J=7.0, 12.4 Hz, 

CH2Se), 3.12 (1H, dd, J=5.8, 12.8 

Hz, CH2Se), 3.51 (1H, dd, J=6.0, 

9.6 Hz, CH2O), 3.58 (1H, dd, 

J=4.4, 9.6Hz, CH2O), 3.88-3.99 

(1H, m, CHOH), 4.50 (2H, s, CH2Ph), 7.24-7.39 (10H, m, Ph). 

 
13C-NMR δ(ppm) = 31.9 (CH2Se), 69.4 (CH2Ph), 72.8 (CH2OBn), 73.3 (CHOH), 

127.1, 127.6, 127.7, 128.3, 129.1, 129.5, 132.7, 137.7. 

 
77Se-NMR. δ(ppm) = 241.5. 

 

MS m/z (%) = 322 (15, [M+•]); 201 (4, [M+•-CH2OBn]); 183 (12, [M+•-CH2OBn-

H2O]); 157 (11, [SePh]+); 91 (100, Bn+). 

 

Optical rotation : [α]rt
D

 = -48 (c=2.1, CHCl3). 

SePh

HO

O
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Method B afforded 29f with total enantioconservation, as confirmed by HPLC 

analysis (n-hexane (A) : 2-propanol (B); isocratic at 0% of B for 55 min, then 

ramp 30%, flow rate 0.8 mL/min; τmajor = 71.9 min, τminor = 72.3 min (ee>98%)).  

Yield:  

Method A : (±)-1-(benzyloxy)-3-(phenylselanyl)propan-2-ol (29a) was isolated by 

TLC (petroleum ether/EtOAc, 9:1) in 89% yield as a yellow oil. 

Method B : 29a was isolated by TLC (petroleum ether/EtOAc, 9:1) in 73% yield; 

the reaction was carried in [BMI][BF4]. 

29f was isolated in 75% yield; the reaction was carried in [BMI][BF4]. 

Method C : 29a was isolated in 78% yield; the reaction was carried in 

[BMI][PF6]. 

 

29b 1-isopropoxy-3-(phenilselanyl)propan-2-ol 

 
1H-NMR δ(ppm) = 1.15 (6H, d, J=6.4 Hz, 

CH(CH3)2), 2.72-2.82 (1H, bs, OH), 3.03 (1H, 

dd, J=6.6, 12.6 Hz, CH2Se), 3.10 (1H, dd, 

J=6.2, 12.8 Hz, CH2Se), 3.43 (1H, dd, J=6.2, 

9.4 Hz, CH2O), 3.54 (1H, dd, J= 4, 9.4 Hz, 

CH2O), 3.54-3.63 (1H, m, CH(CH3)2), 3.84-

3.95 (1H, m, CHOH), 7.25-7.30 (5H, m, Ph). 

 
13C-NMR δ(ppm) = 22.1 (CH(CH3)2), 31.9 (CH2Se), 69.6 (CH2O), 70.7 

(OCH(CH3)2), 72.2 (CHOH), 126.9, 129.0, 129.6, 132.5. 

 
77Se-NMR. δ(ppm) = 243.2. 

 

MS m/z (%) = 274 (26, [M+•]), 201 (8, [M+•-CH2OCH(CH3)2]), 183 (30); 157 (3, 

[SePh]+); 99 (59, [M+•-OH-SePh]), 73 (48, [CH2OCH(CH3)2]+), 57 (100). 
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Yield:  

Method B : 29b was isolated by TLC (petroleum ether/EtOAc, 8:1) in 83% yield, 

when carrying the reaction in [BMI][BF4]. 29b was isolated in 85% yield, when 

carrying the reaction in [BMI][PF6]. 

 

30c 1-(isopropoxy)-3-(phenylselanyl)propane-2-thiol 

 
1H-NMR δ(ppm) = 1.12 (6H, d, J=6.2 Hz, 

CH(CH3)2), 2.12 (1H, d, J= 7.4 Hz, SH), 3.05-

3.36 (3H, m, CH2Se + CHSH), 3.45-3.58 (2H, 

m, CH2O + CH(CH3)2), 3.65 (1H, dd, J=4.8, 

9.6 Hz, CH2O), 7.24-7.27 (5H, m, Ph). 

 
13C-NMR δ(ppm) = 22.0 (CH(CH3)2), 33.8 (CH2Se), 40.5, 69.2 (CH2O), 72.0 

(OCH(CH3)2), 126.9, 129.1, 130.0, 131.4. 

 
77Se-NMR. δ(ppm) = 277.6. 

 

MS m/z (%) = 290 (2, [M+•]), 157 (6, [SePh]+), 133 (13), 91 (21), 73 (100, 

[CH2OCH(CH3)2]+), 57 (27). 

 

Yield:  

Method A : 30c was isolated by TLC (petroleum ether/EtOAc, 10:1) in 53% yield 

as a yellow oil. 

Method B : 30c was isolated by TLC (petroleum ether/EtOAc, 10:1) in 45% yield 

when carrying the reaction in [BMI][BF4].  

30c was isolated in 71% yield, when carrying the reaction in [BMI][PF6]. 

Method C : 30c was isolated in 55% yield; the reaction was carried in [BMI][PF6]. 
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30d 1-(benzyloxy)-3-(phenylselanyl)propane-2-thiol 

 
1H-NMR δ(ppm) = 2.12 (1H, d, J = 

7.6 Hz, CHSH), 3.15-3.33 (3H, m, 

CH2SePh + CHSH), 3.59 (1H, dd, 

J= 4.6, 9.4 Hz, CH2OBn), 3.71 (1H, 

dd, J= 4.8, 9.4 Hz, CH2OBn), 4,44 

(2H, s, CH2Ph), 7.20-7.51 (10H, m, 

Ph). 

 
13C-NMR δ(ppm) = 33.8 (CH2SePh), 51.1 (CHSH), 73.0 (CH2Ph), 73.3 

(CH2OBn), 127.1, 127.11, 127.6, 128.3, 129.1, 130.0, 132.5, 137.8. 

 
77Se-NMR. δ(ppm) = 280.7. 

 

MS m/z (%) = 340 (0.7, [M+•+2]), 338 (4, [M+•]), 230 (0.3, [M+•-OBn-H]), 181 

(15, [M+•-SePh]), 157 (3, [PhSe]), 107 (4, [OBn]+), 91 (100, Bn+). 

 

Yield:  

Method B : 30d was isolated by TLC (petroleum ether/EtOAc, 9:1) in 68% yield; 

the reaction was carried in [BMI][PF6]. 

 

 

11. Synthesis of bis(trimethylsilyl)selenide (HMDSS) 23 

 

In a flame-dried Schlenk flask under 

nitrogen atmosphere, NaBH4 (27.8 mmol, 

2.2 equiv.) was added portionwise to 

anhydrous THF (30 mL). The mixture was 

stirred at rt for 10 minutes, then elemental 

Se (12.65 mmol, 1 equiv.) was added in portions. The heterogeneous mixture, 

firstly dark brown, became quickly pale brown and after few hours white, with 

release of hydrogen. After 24 hours strirring at rt, the mixture was cooled at 0°C 

and TMSCl (29.1 mmol, 2.3 equiv.) was added drop by drop. After additionally 4 

SePh

HS

O

Si Se Si

H3C

H3C

H3C

CH3

CH3
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h at rt, the mixture was diluted with 150 mL of pentan, to allow the precipitation 

of inorganic salts. The organic layer was filtered through a plug of celite under 

inert atmosphere, due to the tendency of the compound to oxidation, and the salts 

were washed with pentane. The filtered organic layers were combined and the 

solvent was evaporated under reduced pressure to give 23 in 60% yield, as a 

yellow oil, which was used without further purification. 

 
1H-NMR δ(ppm) = 0.46 (18H, CH3) 

 
13C-NMR δ(ppm) = 4.7 

 
77Se-NMR. δ(ppm) = -337.2 

 

MS m/z (%) = 226 (27, [M+•]), 211 (56, [M+•- CH3]), 73 (100, [(CH3)3-Si]). 

 

 

12. Synthesis of β-hydroxy and β-mercapto diselenides 

 

The assignment of the structures was confirmed by synthesizing the products 

through an alterantive synthetic route.iIV 

 

Method A: synthesis of β-hydroxy and β-mercapto diselenides in THF, under 

catalysis of PhONBu4. 

 

General procedure. A solution of PhONBu4 (0.056 mmol, 0.2 equiv.) in dry 

THF (0.4 mL) was added with thiirane 16 or epoxide 12 (0.2  mmol, 1 equiv.) and 

drop by drop with HMDSS 23 (0,28 mmol, 1.4 equiv.) at 0°C under inert 

atmosphere. After 10 minutes at 0°C, the mixture was warmed at room 

temperature, and the reaction was carried out for 1 h; the progress of the reaction 

was monitored by TLC. After addition of citric acid (50% aq solution) the mixture 

was stirred for 10 min, then diluted with Et2O. The organic phase was then 

washed with citric acid (20% aq solution), extracted with Et2O and dried over 

NaSO4. Evaporation of the solvent afforded crude product, which was purified on 

TLC. 
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Method B: synthesis of β-hydroxy and β-mercapto diselenides in IL, under 

catalysis of TBAF. 

 

General procedure. A mixture of IL ([BMI][BF4]  or [BMI][PF6], 800 µL), 

HMDSS 23 (0.4 mmol, 2.2 equiv.) and thiirane 16 or epoxide 12 (0,18 mmol, 1 

equiv.) at room temperature under inert atmosphere, was treated dropwise with 

TBAF (1M in THF; 0.08 mmol, 0.2 equiv.). The reaction was carried out for 

around 1 h and 30 min and the progress was monitored by TLC. After addition of 

Et2O in the reaction flask, the organic product was directly extracted from IL 

(3X1 mL) and the organic phases were treated with citric acid (50% aq solution; 1 

mL). The resulting organic phase was then washed with citric acid (20% aq 

solution), and dried over NaSO4. Evaporation of the solvent afforded crude 

product, which was purified on TLC. 

 

 

Method C: synthesis of β-hydroxy and β-mercapto diselenides in IL, under 

catalysis of PhONBu4. 

 

General procedure. A mixture of IL ([BMI][BF4]  or [BMI][PF6], 800 µL) and 

PhONBu4 (0.08 mmol, 0.2 equiv.) was added under inert atmosphere drop by drop 

with HMDSS 23 (0.4 mmol, 2.2 equiv.) and thiirane 16 or epoxide 12 (0,18 

mmol, 1 equiv.) at room temperature. The reaction was carried out for around 2 h 

and the progress of the reaction was monitored by TLC. After addition of Et2O in 

the reaction flask, the organic product was directly extracted from IL (3X1 mL) 

and the organic phases were treated with citric acid (50% aq solution; 1 mL). The 

resulting organic phase was then washed with with citric acid (20% aq solution), 

and dried over NaSO4. Evaporation of the solvent afforded crude product, which 

was purified on TLC. 
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24f (2S,2S')-3,3'-diselanediylbis(1-(benzyloxy)propan-2-ol) 

 
1H-NMR δ(ppm) = 2.30 (2H, 

bs, OH), 3.09 (2H, dd, J=4.8, 

12.8 Hz, CH2Se), 3.16 (2H, 

dd, J=7.6, 12.8 Hz, CH2Se), 

3.50-3.62 (4H, m, CH2O), 4.03-4.08 (2H, m, CHOH), 4.56 (4H, s, CH2Ph), 4.6-

4.8 (2H, bs, OH), 7.30-7.36 (10H, m, Ph). 

 
13C-NMR δ(ppm) = 34.1 (CH2Se), 70.2, 72.9, 73.5, 127.6, 127.7, 128.3, 137.6. 

 
77Se-NMR. δ(ppm) = 277.5 

 

MS m/z (%) = 488 (1, [M+•]), 367 (17), 244 (52), 91 (100, Bn+). 

 

Optical rotation : [α]rt
D

 = -82 (c=1.1, CHCl3). 

 

Yield 

Method A : (±)-3,3'-diselanediylbis(1-(benzyloxy)propan-2-ol) (24a) was isolated 

by TLC (1.5:1 petroleum ether/ethyl acetate) in 59% yield as a yellow oil. 

24f was isolated by TLC (1.5:1 petroleum ether/ethyl acetate) in 62% yield. 

Method B : 24a was isolated by TLC (1.5:1 petroleum ether/ethyl acetate) in 61% 

yield. In the crude the corresponding selenide 26a was also detected (15%). The 

reaction was carried in [BMI][PF6]. 

 

24b 3,3'-diselanediylbis(1-isopropoxypropan-2-ol) 

 
1H-NMR δ(ppm) = 

1.16 (12H, d, J=5.8 

Hz, CH(CH3)2), 

2.7-2.85 (2H, bs 

OH), 3.09-3.15 

(4H, m, CH2Se), 

3.44-3.68 (6H, m, CH2O + CH(CH3)2), 3.9-4-09 (2H, m ,CHOH). 
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13C-NMR δ(ppm) = 22.2 (CH(CH3)2), 34.2 (CH2Se), 70.4 (CHOH), 70.9 

(CH2O), 72.3 (OCH(CH3)2). 

 
77Se-NMR. δ(ppm) = 279.8, 280.4 (mix of two diastereoisomers). 

 

 Yield: 

Method A : 24b was isolated in 57% yield as a yellow oil. 

Method B : 24b was isolated by TLC (petroleum ether/ethyl acetate 2:1) in 40% 

yield. The reaction was carried in [BMI][PF6]. In the crude the corresponding 

selenide 26b was also detected. 

Method C : 24b was isolated in 45% yield in mixture with the corresponding 

selenide in ratio 2:1. 

 

24c 2,2'-diselanediylbis(1-phenylethanol) 

 
1H-NMR δ(ppm) = 3.17-3.40 

(4H, m, CH2Se), 4.91-4.98 

(2H, m, CHOH), 7.22-7.43 

(10H, Ph). 
 

13C-NMR δ(ppm) = 39.6, 39.8 

(CH2Se, mix of two diastereoisomers), 73.2, 73.3 (CHOH, mix of two 

diastereoisomers), 125.8, 127.9, 128.6, 142.3. 

 
77Se-NMR. δ(ppm) = 280.8, 281.4 (mix of two diastereoisomers). 

 

 

 

 

 

 

 

 

HO
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24c' 2,2'-diselanediylbis(2-phenylethanol) 

 
1H-NMR δ(ppm) = 3.44-3.63 (4H, m, 

CH2O), 5.03-5.11 (2H, m, CHSe), 7.28-

7.39 (10H, Ph). 
 

13C-NMR δ(ppm) = 41.4 (CH2Se), 72.6, 

125.2, 125.4, 128.1, 141.8. 

 
77Se-NMR. δ(ppm) = 262.5, 264.5 (mix of 

two diastereoisomers 

 

Yield 

Method A : 24c +24c' were isolated by TLC (2.5:1 petroleum ether/ethyl acetate) 

in 57% yield in regioisomeric ratio 75:25. 

 

24g  1,1'-diselanediyldipropan-2-ol 

 
1H-NMR δ(ppm) = 1.25 (6H, d, J=6.2 Hz, 

CH3), 2.40 (2H, bs, OH), 2.90-3.15 (4H, m, 

CH2Se), 3.98-4.07 (2H, m, CHOH). 
 

13C-NMR δ(ppm) = 22.5 (CH3), 39.8 (CH2Se), 67.1. 

 
77Se-NMR. δ(ppm) = 268.2. 

 

MS m/z (%) = 278 (9, [M+•]), 219 (0.6), 160 (14), 121 (3), 93 (4), 59 (100, 

[CH3CH(OH)CH2]+). 

 

Yield 

Method A : 24g was isolated by TLC (1:1 petroleum ether/ethyl acetate) in 60% 

yield as a yellow oil. 
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24h 3,3'-diselanediylbis(1-methoxypropan-2-ol) 

 
1H-NMR δ(ppm) = 2.94-3.05 

(4H, m, CH2Se), 3.40 (6H, s, 

CH3O), 3.42-3-53 (4H, m, 

CH2O), 4.0-4.05 (2H, m, 

CHOH). 
 

13C-NMR δ(ppm) = 32.8, 32.9 (CH2Se, mix of two diastereoisomers), 62.26, 

62.34 (CHOH), 69.5, 71.6. 

 
77Se-NMR. δ(ppm) = 280.3. 

 

25c 3,3'-diselanediylbis(1-isopropoxypropane-2-thiol) 

 
1H-NMR δ(ppm) = 1.16 

(12H, d, J=6.2 Hz, 

CH(CH3)2), 2.04 (2H, d, J= 

7.2 Hz, SH), 2.89-2.96 (2H, 

m, CH(CH3)2), 3.18-3.29 (4H, m, CH2Se), 3.49-3.68 (6H, m, CH2O + CHSH). 

 
13C-NMR δ(ppm) = 22.2 (CH(CH3)2), 36.36, 36.42 (CH2Se, mix of two 

diastereoisomers), 41.1 (CHSH), 71.6 (CH2O), 72.2 (OCH(CH3)2). 

 
77Se-NMR. δ(ppm) = 311, 312.4 (mix of two diastereoisomers). 

 

MS m/z (%) = 344 (4), 99 (28), 73 (100, CH2Oi-Pr +). 

 

Yield 

Method A : 25c was isolated by TLC (3:1 petroleum ether/ethyl acetate) in 43% 

yield as a yellow oil. 

Method B : 25c was isolated in 38% yield. In the crude the corresponding selenide 

was also detected (around 10%). 
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Method C : 25c was isolated in 37% yield in mixture with the corresponding 

selenide 27c in 26% yield. 

 

25e (2R,2R')-3,3'-diselanediylbis(1-benzyloxypropane-2-thiol) 

 
1H-NMR δ(ppm) = 2.04 (2H, 

d, J=7.8 Hz, SH), 3.21-3.37 

(6H, m, CH2Se + CHSH), 

3.55-3.75 (4H, m, CH2O), 

4.54 (4H, s, CH2Ph), 7.34 (10H, m, Ph). 

 
13C-NMR δ(ppm) = 33.9 (CH2Se), 54.6 (CHSH), 68.1, 75.6, 127.6, 128.1, 129.8, 

136.2. 

 
77Se-NMR. δ(ppm) = 310.8. 

 

Optical rotation : [α]rt
D

 = +14 (c=1.2, CHCl3). 

 

Yield 

Method A : (±)-3,3'-diselanediylbis(1-benzyloxypropane-2-thiol) (25d) was 

isolated by TLC (3:1 petroleum ether/ethyl acetate) in 40% yield as a yellow oil. 

Method B : 25d was isolated in 42% yield. In the crude the corresponding 

selenide was also detected (12%). 
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13. Synthesis of β-hydroxy and β-mercapto selenides 

 

The assignment of the structures was confirmed by synthesizing the products 

through an alterantive synthetic route.iV 

 

Method A: synthesis of β-hydroxy and β-mercapto selenides in THF, under 

catalysis of TBAF. 

 

General procedure. A solution of thiirane 16 or epoxide 12 (0.2 mmol, 2 equiv.) 

and HMDSS 23 (0.14 mmol, 0.7 equiv.) in dry THF (0.4 mL) was treated at 0°C 

with TBAF (1M in THF; 0.028 mmol, 0.2 equiv.) under inert atmosphere. After 

addition of TBAF, the mixture became bright green and after few minutes pale 

yellow. After 10 minutes at 0°C, the mixture was warmed at room temperature, 

and the reaction was carried out for 1 h; the progress of the reaction was 

monitored by TLC. After addition of citric acid (50% aq solution) the mixture was 

stirred for 10 min, then diluted with Et2O. The organic phase was then washed 

with citric acid (20% aq solution; 1 mL), extracted with Et2O and dried over 

NaSO4. Evaporation of the solvent afforded crude product, which was purified on 

TLC. 

 

Method B: synthesis of β-hydroxy and β-mercapto selenides in THF, under 

catalysis of PhONBu4. 

 

General procedure. A solution of PhONBu4 (0.028 mmol, 0.2 equiv.) in dry 

THF (0.4 mL) was added with thiirane 16 or epoxide 12 (0.2 mmol, 1 equiv.) and 

dropwise with HMDSS 23 (0,14 mmol, 0.7 equiv.) at 0°C under inert atmosphere. 

After 10 minutes at 0°C, the mixture was warmed at room temperature, and the 

reaction was carried out for 1 h; the progress of the reaction was monitored by 

TLC. After addition of citric acid (50% aq solution; 1 mL) the mixture was stirred 

for 10 min, then diluted with Et2O. The organic phase was then washed with citric 

acid (20% aq solution), extracted with Et2O and dried over NaSO4. Evaporation of 

the solvent afforded crude product, which was purified on TLC. 
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Method C: synthesis of β-hydroxy and β-mercapto selenides in IL, under 

catalysis of TBAF. 

 

General procedure. A mixture of IL ([BMI][BF4]  or [BMI][PF6], 340 µL), 

HMDSS 23 (0.13 mmol, 0.7 equiv.) and thiirane 16 or epoxide 12 (0,18 mmol, 1 

equiv.) at room temperature under inert atmosphere, was treated dropwise with 

TBAF (1M in THF; 0.03 mmol, 0.2 equiv.). After the addtion of TBAF the 

mixture became yellow. The reaction was carried out for around 1 h and 30 min 

and the progress was monitored by TLC. After addition of Et2O in the reaction 

flask, the organic product was directly extracted from IL (3X1 mL) and the 

organic phases were treated with citric acid (50% aq solution; 1 mL). The 

resulting organic phase was then washed with citric acid (20% aq solution), and 

dried over NaSO4. Evaporation of the solvent afforded crude product, which was 

purified on TLC. 

 

Method D: synthesis of β-hydroxy and β-mercapto selenides in IL, under 

catalysis of PhONBu4. 

 

General procedure. A mixture of IL ([BMI][BF4]  or [BMI][PF6], 340 µL) and 

PhONBu4 (0.03 mmol, 0.2 equiv.) was added under inert atmosphere drop by drop 

with HMDSS 23 (0.13 mmol, 0.7 equiv.) and thiirane 16 or epoxide 12 (0,18 

mmol, 1 equiv.) at room temperature. The reaction was carried out for around 2 h 

and the progress of the reaction was monitored by TLC. After addition of Et2O in 

the reaction flask, the organic product was directly extracted from IL (3X1 mL) 

and the organic phases were treated with citric acid (50% aq solution; 1 mL). The 

resulting organic phase was then washed with with citric acid (20% aq solution; 1 

mL), and dried over NaSO4. Evaporation of the solvent afforded crude product, 

which was purified on TLC. 

 

26f (2S,2S')-3,3'-selenobis(1-benzyloxypropan-2-ol) 

 
1H-NMR δ(ppm) = 2.70 (2H, dd, 

J=7.2, 12.8 Hz, CH2Se), 2.81 (2H, 

dd, J=4.4, 12.8 Hz, CH2Se), 3.41-

HO
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OH

BnO OBn
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3.58 (4H, m, CH2O), 3.9-4.04 (2H, m, CHOH), 4.54 (24H, s, CH2Ph), 4.6-4.8 

(2H, bs, OH), 7.24-7.39 (10H, m, Ph). 

 
13C-NMR (APT) δ(ppm) = 28.9 (CH2Se), 69.9 (CHOH), 73.2, 73.3, 127.6, 127.8, 

128.2, 137.4. 

 
77Se-NMR. δ(ppm) = 71.2. 

 

MS m/z (%) = 410 (3, [M+•]), 358 (73), 343 (16), 136 (21), 91 (100, Bn+). 

 

Optical rotation : [α]rt
D

 = -61 (c=1.1, CHCl3). 

 

Yield:  

Method A : (±)-3,3'-selenobis(1-benzyloxypropan-2-ol) (26a) was isolated by 

TLC (petroleum ether/EtOAc, 2:1) in 56% yield as a yellow oil. 

26f was isolated in 59% yield as a yellow oil. 

Method B : 26f was isolated by TLC (petroleum ether/EtOAc, 1:1) in 54%.  

Method C : 26a was isolated in 65% yield; the reaction was carried in  

[BMI][BF4]. 

26f was isolated in 59% yield; the reaction was carried in  [BMI][BF4]. 

Method D :  26a was isolated in 79% yield; the reaction was carried in  

[BMI][PF6]. 

 

26h 3,3'-selenobis(1-isopropoxypropan-2-ol) 

 
1H-NMR δ(ppm) = 2.70 (2H, dd, 

J=7.2, 12.8 Hz, CH2Se), 2.81 (2H, 

dd, J=4.8, 13.2 Hz, CH2Se), 2.90-

3.10 (2H, bs, OH), 3.38 (6H, s, 

CH3O), 3.41-3-50 (4H, m, CH2O), 

3.91-3.97 (2H, m, CHOH). 
 

13C-NMR δ(ppm) = 28.9 (CH2Se), 59.2 (CHOH), 69.9, 75.7. 

 

HO
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77Se-NMR. δ(ppm) = 69. 

 

MS m/z (%) = 258 (6, [M+•]), 195 (8, [M+•- (CH3O)2]), 151 (9), 71 (100). 

 

Yield:  

Method A : 26h was isolated by TLC (petroleum ether/EtOAc, 1:1) in 61% yield 

as a yellow oil. 

Method C : 26h was isolated by TLC in 69%; the reaction was carried in  

[BMI][BF4]. 

 

27c 3,3'-selenobis(1-isopropoxypropane-2-thiol) 

 
1H-NMR δ(ppm) = 1.15 (12H, d, 

J=5.8 Hz, CH(CH3)2), 2.06 (2H, d, 

J= 7.6 Hz, SH), 2.8-3.05 (4H, m, 

CH2Se), 3.4-3.72 (8H, m, CH2O + 

CH(CH3)2 + CHSH). 

 
13C-NMR δ(ppm) = 22.2 (CH(CH3)2), 31.3 (CH2Se), 40.9 (CHSH), 71.7 (CH2O), 

72.1 (OCH(CH3)2). 

 
77Se-NMR. δ(ppm) = 121.9, 122.9 (mix of two diastereoisomers). 

 

MS m/z (%) = 346 (5, [M+•]), 313 (1, [M+•-SH]), 153 (10), 133 (15), 99 (38), 73 

(100, CH2Oi-Pr +). 

 

Yield:  

Method A : 27c was isolated by TLC (petroleum ether/EtOAc, 2.5:1) in 50% yield 

as a yellow oil. 

Method B : 27c was isolated by TLC in 41% yield. 

Method C : 27c was isolated in 48% yield; the reaction was carried in 

[BMI][BF4]. 

 

 

HS

Se

SH

i-PrO Oi-Pr
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27d 3,3'-selenobis(1-benzyloxypropane-2-thiol) 

 
1H-NMR δ(ppm) = 2.05 (2H, d, 

J=7.8 Hz, SH), 2.80-3.05 (4H, m, 

CH2Se), 3.4-3.8 (6H, m, CHSH + 

CH2O), 4.53 (4H, s, CH2Ph), 7.19-

7.4 (10H, m, Ph). 

 
13C-NMR δ(ppm) = 31.3 (CH2Se), 40.5 (CHSH), 73.1, 73.6, 127.5, 127.6, 128.2, 

137.6. 

 
77Se-NMR. δ(ppm) = 27d: 123.5, 124.4 (mix of two diastereoisomers). (2R,2R')-

3,3'-selenobis(1-benzyloxypropane-2-thiol) (27e): 123.6. 

 

MS m/z (%) = 442 (4, [M+•]), 409 (0.4, [M+•-SH]), 181 (14), 147 (10), 107 (29, 

[PhCH2O]+), 91 (100, Bn+). 

 

Yield:  

Method A : 27d was isolated by TLC (petroleum ether/EtOAc, 2.5:1) in 52% 

yield as a yellow oil. 

27e was isolated in 49% yield as a yellow oil. 

Method C :  27d was isolated by TLC (petroleum ether/EtOAc, 2.5:1) in 59% 

yield as a yellow oil; the reaction was carried in [BMI][PF6]. 

27e was isolated in 55% yield. 

Method D :  27d was isolated by TLC (petroleum ether/EtOAc, 2.5:1) in 49% 

yield; the reaction was carried in [BMI][PF6]. 
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14. Synthesis of β-hydroxy selenols 

 

General procedure. A solution of PhONBu4 (0.005 mmol, 0.02 equiv.) in THF 

(0.4 mL) was added with epoxide 12 (0.15 mmol, 1 equiv.) and HMDSS 23 (0,26 

mmol, 1.7 equiv.) at 0°C under inert atmosphere. After 10 minutes at 0°C, the 

mixture was warmed at room temperature, and the reaction was carried out for 45 

min; the progress of the reaction was monitored by TLC. After addition of solid 

citric acid, the mixture was stirred under inert atmosphere for 15 min, then diluted 

with Et2O. H2O was then added, and the organic phase was extracted with Et2O 

(2x3 mL) and dried over NaSO4. Evaporation of the solvent afforded product as a 

yellow oil, which was pure enough to be used without purification. 

 

31a 1-(benzyloxy)-3-hydroselenopropan-2-ol 

 

Following the general procedure 31a 

was isolated in 67% yield. 

 
1H-NMR δ(ppm) = -0.60 (1H, t, 

J=7.4 Hz, SeH), 2.69-2.78 (2H, m, 

CH2Se), 3.52-3.59 (2H, m, CH2O), 

3.84-3.95 (1H, m, CHOH), 4.56 (2H, s, CH2Ph), 7.3-7.4 (5H, m Ph). 

 
13C-NMR δ(ppm) = 21.5 (CH2Se), 70.9 (OCH2Ph), 72.6 (CH2CH), 73.4 

(CHOH), 127.6, 127.7, 128.4, 137.6. 

 
77Se-NMR. δ(ppm) = -79.4 

 

31b 1-hydroseleno-3-isopropoxypropan-2-ol 

 

Following the general procedure 31b was 

isolated in 62% yield. 

 
1H-NMR δ(ppm) = -0.58 (1H, t, J=7.6 Hz, 

SeH), 1.16 (6H, d, J=6.2 Hz, (CH3)2), 2.68-2.76 

HO

SeHO

HO

SeHO
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(2H, m, CH2Se), 3.39-3.68 (3H, m, CH2O + CHi-Pr), 3.94-4.02 (1H, m, CHOH). 

 
77Se-NMR. δ(ppm) = -78.6 

 

31c 2-hydroseleno-1-phenylethanol 

 

Following the general procedure 31c was isolated in 

44% yield. 

 
1H-NMR δ(ppm) = -0.57 (1H, t, J=7.6 Hz, SeH), 

2.86-2.99 (2H, m, CH2Se), 4.79 (1H, dd, J=4.4, 8 Hz, 

CHOH), 7.28-7.39 (5H, m Ph). 

 
77Se-NMR. δ(ppm) = -48.4 

 

31i 1-hydroselenohexan-2-ol 

 

Following the general procedure 31i was isolated 

in 53% yield. 

 
1H-NMR δ(ppm) = -0.69 (1H, t, J=7.8 Hz, SeH), 

0.90 (3H, t, J=7 Hz, CH3), 1.31-1.53 (6H, m, 

CH3(CH2)3), 2.50-2.64 (1H, m, CH2Se), 2.82 (1H, ddd, J=3.6, 7.4, 11 Hz, 

CH2Se), 3.59-3.70 (1H, m, CHOH). 

 
77Se-NMR. δ(ppm) = -90.2 

 

MS m/z (%) = 164 (15, [M+•-17]), 135 (15, [M+•-17-CH2-CH3]), 69 (32), 55 

(100). 
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15. Synthesis of β-mercapto selenol  

 

32c 1-hydroseleno-3-isopropoxypropane-2-thiol 

 

 A solution of PhONBu4 (0.004 mmol, 0.02 

equiv.) in THF (0.35 mL) was added with 

episulfide 16c (0.12 mmol, 1 equiv.) and 

HMDSS 23 (0,20 mmol, 1.7 equiv.) at 0°C under 

inert atmosphere. After 10 minutes at 0°C, the 

mixture was warmed at room temperature, and 

the reaction was carried out for 45 min; the progress of the reaction was 

monitored by TLC. After addition of solid citric acid, the mixture was stirred 

under inert atmosphere for 15 min, then diluted with Et2O. H2O was then added, 

and the organic phase was extracted with Et2O (2x3 mL) and dried over NaSO4. 

Evaporation of the solvent afforded product 32c as a yellow oil in 63% yield (16.2 

mg, 0.076 mmol), which was pure enough to be used without purification. 

 
1H-NMR δ(ppm) = -0.46 (1H, t, J=7.6 Hz, SeH), 1.15 (6H, d, J=6.2 Hz, 

CH(CH3)2), 1.93 (1H, d, J= 8 Hz, SH), 2.92 (2H, app t, CH2Se), 3.02-3.12 (1H, 

m, CH(CH3)2), 3.42-3.7 (3H, m, CH2O + CHSH).  

 
13C-NMR δ(ppm) = 22.19, 22.23 (CH(CH3)2), 23.7 (CH2Se), 41.9 (CHSH), 71.3 

(CH2O), 72.1 (OCH(CH3)2). 

 
77Se-NMR. δ(ppm) = -57.2 

 

MS m/z (%) = 154 (64, [M+•-iPrO]), 121 (13, [M+•-iPrO-SH]), 73 (54, CH2Oi-Pr 

+), 57 (100). 
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16. Synthesis of 2-trimethylsilyl 1,3-oxaselenolane  

 

33 (5-(benzyloxymethyl)-1,3-oxaselenolan-2-yl)trimethylsilane 

 

 A solution of methoxymethyl trimethylsilane 8 (109 µL, 

0.7 mmol) in CCl4 (1.4 mL), was treated dropwise with a 

solution of bromine (36 µL, 0.7 mmol) in CCl4 (1.0 mL). 

The mixture was stirred, with release of HBr, until it 

became pale orange (around 6 h). Then the solvent was 

evaporated under reduced pressure and a solution of 

selenol 31a (172.2 mg, 0.7 mmol, 1 equiv.) in CH2Cl2 (1.4 mL) was added and the 

mixture was stirred overnight. After washing with water and brine, the organic 

layer was dried over Na2SO4. Evaporation of the solvent gave the crude product, 

which was purified on TLC (petroleum ether/EtOAc 10:1), to afford the pure 

compound in 21% yield (48.5 mg, 0.147 mmol) as a major diastereoisomer. 

 
1H-NMR δ(ppm): 0.14 (9H, s, -Si(CH3)3), 2.65 (1H, dd, J=1.2, 9.2 Hz, CH2Se), 

3.24 (1H, dd, J=5.2, 9.2 Hz, CH2Se), 3.64 (1H, dd, J=4, 10.4 Hz, CHCH2O), 3.71 

(1H, dd, J=6, 10.8 Hz, CHCH2O), 3.90-3.97 (1H, m, OCHCH2), 4.58 (1H, d, J=12 

Hz, CH2Ph), 4.62 (1H, d, J=12 Hz, CH2Ph), 5.05 (1H, s, SeCHO), 7.34 (5H, ap s, 

Ph).    

 
13C-NMR δ(ppm) = -3.2 (Si(CH3)3), 29.3 (CH2Se), 71.0 (CHCH2O), 73.4 

(OCH2Ph), 74.9, 87.7 (CHO), 127.7, 128.39, 128.42, 138.1. 

 
77Se-NMR. δ(ppm) = 245.1. 

 

MS m/z (%): 254 (9, [M+•-Ph]), 239 (3, [M+•-91]), 237 (12), 211 (5), 151 (5), 73 

(100, SiMe3
+). 
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17. Synthesis of 2-trimethylsilyl 1,3-thiaselenolane  

 

34 (5-(isopropoxymethyl)-1,3-thiaselenolan-2-yl)trimethylsilane 

 

 A solution of methoxymethyl trimethylsilane 8 (187µL, 

1.2 mmol) in CCl4 (2.4 mL), was treated dropwise with 

a solution of bromine (62 µL, 1.2 mmol) in CCl4 (2.0 

mL). The mixture was stirred, with release of HBr, 

until it became pale orange (around 6 h). Then the 

solvent was evaporated under reduced pressure and a 

solution of selenol 32c (254.4 mg, 1.2 mmol, 1 equiv.) in CH2Cl2 (2.4 mL) was 

added and the mixture was stirred overnight. After washing with water and brine, 

the organic layer was dried over Na2SO4. Evaporation of the solvent gave the 

crude product, which was purified by TLC (petroleum ether/EtOAc 13:1), to 

afford the pure compound in 26% yield (92 mg, 0.3 mmol) as a mixture of cis and 

trans diastereoisomers in ratio 1.5:1. The assignment of the structure of the 

diastereoisomers was made by correlation spectroscopy (NOESY experiments). 

 
1H-NMR δ(ppm): 0.16 (18H, s, -Si(CH3)3), 1.16 (12H, d, J=6.2 Hz, (CH3)2), 

3.14-3.79 (12H, m), 3.92-4.04 (2H, m, CHS).    

 

Cis-diastereoisomer: 
13C-NMR δ(ppm) = -1.8 (Si(CH3)3), 22.2 ((CH3)2), 26.7 (SeCHS), 34.89 

(CH2Se), 56.3 (CHS), 69.0, 72.1. 

 

Trans-diastereoisomer:  
13C-NMR δ(ppm) = -1.8 (Si(CH3)3), 22.1 ((CH3)2), 26.7 (SeCHS), 34.94 

(CH2Se), 58.3 (CHS), 69.9, 72.1. 

 
77Se-NMR. δ(ppm) = 322.3, 343.7 (mix of trans and cis diastereoisomers, 

respectively). 

 

MS m/z (%): 298 (2, [M+•]), 198 (37), 181 (6), 73 (100, SiMe3
+). 

 

Se S

TMS

O i-Pr
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18.  Synthesis of selenol esters 

 

General procedure. A solution of dry THF (500 µL) and acyl chloride 35 (0.214 

mmol, 1 equiv.) was added under inert atmosphere with PhSeTMS 28 (0.26 

mmol, 1.2 equiv.) and it was cooled at 0°C. Then TBAF (1M in THF; 0.05 mmol, 

0.2 equiv.) was added dropwise. The mixture was warmed at rt and stirred 

overnight. The mixture was then diluted with diethyl ether (2 mL) and washed 

with saturated NaCl solution. The organic layer was dried over NaSO4, and 

evaporated to dryness. The residue was purified by FC on silica gel with 

dichlorometane / n-hexane (1:2), to give the pure product. 

 

36a Se-phenyl benzoselenoato 

 

Following the general procedure, 36a was isolated 

in 73% yield. 

 

 
1H-NMR δ(ppm): 7.21-7.27 (3H, m); 7.43-7.54 (5H, m); 7.59-7.6  (2H, m). 

 
13C-NMR δ(ppm): 125.6; 125.7; 127.2; 127.5; 130.0; 133.4; 133.7; 136.1; 193.2 

(C=O). 

 

MS m/z (%): 264 (0.74, M++2); 262 (4, M+); 157 (10, PhSe+); 155 (5); 105 (98, 

Ph-C=O+); 77 (100, Ph+). 

 
77Se-NMR. δ(ppm) = 637.2. 

 

36b Se-phenyl 4-chlorobenzoselenoato 

 

Following the general procedure, 36b was 

isolated in 75% yield. 

 
1H-NMR δ(ppm): 7.17-7.34 (3H, m); 7.40-

7.51 (4H, m); 7.56-7.60 (2H, m). 

SePh

O

Cl

SePh

O
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13C-NMR δ(ppm): 121.5; 126.3; 127.5; 129.3; 131.4; 132.6; 136.1; 139.9; 192.0 

(C=O). 

 

MS m/z (%): 298 (0.57, M++2); 297 (0.20, M++1); 296 (1, M+); 157 (6.1, -PhSe+); 

141 (50); 139 (100, Cl-Ph-C=O+); 113 (16); 111 (44). 
 

77Se-NMR. δ(ppm) = 638.1. 

 

36c Se-phenyl 4-methoxybenzoselenoato 

 

Following the general procedure, 36c was 

isolated in 70% yield. 
1H-NMR δ(ppm): 3.88 (3H, s, CH3O-); 

6.94-6.98 (2H, m); 7.25-7.27 (1H, m); 

7.41-7.44 (2H, m); 7.58-7.63 (2H, m); 7.90-7.94 (2H, m). 

 
13C-NMR δ(ppm): 55.6 (CH3O); 114.0; 127.6; 129.0; 129.1; 129.5; 131.3; 136.2; 

163.9; 191.0. 

 

MS m/z (%): 294 (0.1, M++2); 292 (0.13, M+); 184 (0.14); 135 (100, 

CH3OPhCO+); 107 (15); 92 (14); 77 (33, Ph+). 
 

77Se-NMR. δ(ppm) = 624.2. 

 

36d Se-phenyl 2-(trifluoromethyl)benzoselenoato 

 

Following the general procedure, 36d was isolated in 

71% yield. 

 
1H-NMR δ(ppm): 7.25-7.28 (1H, m); 7.42-7.45 (3H, 

m); 7.59-7.67 (3H, m); 7.74-7.84 (2H, m). 

 
13C-NMR δ(ppm): 120.3; 126.3; 127.0; 127.8; 129.1; 129.4; 131.2; 131.6; 135.6; 

138.9; 194.0 (C=O). 

CH3O

SePh

O

CF3

SePh
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MS m/z (%): 330 (0.34, M+); 173 (100, CF3-Ph-C=O+); 157 (5, PhSe+); 145 (44, 

CF3-Ph-+); 125 (4); 77 (12). 

 
77Se-NMR. δ(ppm) = 679.1. 

 

36e Se-phenyl butaneselenoato 

 

Following the general procedure, 36e was isolated in 

61% yield. 

 
1H-NMR δ(ppm): 1.00 (3H, t, J=7.4 Hz, CH3); 1.76 (2H, sext, J=7.4 Hz, CH3-

CH2-); 2.69 (2H, t, J=7.4 Hz, -CH2-CO); 7.25-7.30 (1H, m); 7.37-7.42 (2H, m); 

7.49-7.54 (2H, m). 
 

13C-NMR δ(ppm): 13.7; 19.8; 49.4; 126.2; 128.7; 129.1; 135.7; 194.2 (C=O). 

 

MS m/z (%): 230 (1, M++2); 228 (6, M+); 158 (7); 157 (12, PhSe+); 155 (6); 117 

(3); 77 (22, Ph+); 71 (100, CH3(CH2) 2C=O+). 
 

77Se-NMR. δ(ppm) = 655.2. 

 

36f Se-phenyl 2-chloropropane-selenoato 

 

Following the general procedure, 36f was isolated in 59% 

yield. 

 
1H-NMR δ(ppm): 1.75 (3H, d, J=7 Hz, CH3); 4.58 (1H, q, 

J=7 Hz, Cl-CH-); 7.41-7.51 (3H, m); 7.53-7.55 (2H, m). 

 

MS m/z (%): 250 (12, M++2); 249 (3, M++1); 248 (26, M+); 246 (13); 192 (22); 

158 (39); 157 (38, PhSe+); 155 (24); 105 (11); 91 (44, CH3CHCl-C=O+); 77 (50, 

Ph+); 63 (100, CH3CHCl+). 

 
77Se-NMR. δ(ppm) = 650.6. 

O
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19.  Synthesis of diacyl selenides 

 

General procedure. A solution of dry THF (500 µL) and acyl chloride 35 (0.214 

mmol, 2 equiv.) was added under inert atmosphere with TBAF (1M in THF; 0.023 

mmol, 0.2 equiv., with respect to 23). The mixture was cooled at 0°C and 

HMDSS 23 (0.118 mmol, 1 equiv. + 10%) was added dropwise. The mixture 

became red and after 5 min pale yellow. The mixture was warmed at rt and stirred 

for 2-3 h. The mixture was then diluted with diethyl ether (2 mL) and washed with 

saturated NaCl solution. The organic layer was dried over NaSO4, and evaporated 

to dryness. The residue was purified by FC on silica gel with dichlorometane / n-

hexane (1:1), to give the pure product. 

 

37a benzoic selenoanhydride 

 

Following the general procedure, 

37a was isolated in 80% yield, as a 

yellow solid. 

 
1H-NMR δ(ppm): 7.42-7.51 (4H, 

m); 7.59-7.62 (2H, m); 7.95-8.02 (4H, m). 
 

13C-NMR δ(ppm): 128.2; 128.9; 134.5; 138.1; 188.5 (C=O). 

 
77Se-NMR. δ(ppm) = 743. 

 

 

 

37b 4-chlorobenzoic selenoanhydride 

 

Following the general 

procedure, 37b was 

isolated in 76% yield, 

as a yellow solid. 

 Cl
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1H-NMR δ(ppm):  7.45-7.47 (4H, m), 7.85-7.92 (4H, m). 
 

13C-NMR δ(ppm): 129.2, 129.5, 136.2, 139.9, 186.6 (C=O). 
 

77Se-NMR. δ(ppm) = 749.1 

 

37c 4-methoxybenzoic selenoanhydride 

 

Following the 

general procedure, 

37c was isolated 

in 75% yield, as a 

yellow solid. 

 
1H-NMR δ(ppm): 3.88 (6H, s, CH3O); 6.93-6.98 (4H, m); 7.92-7.96 (4H, m). 
 

13C-NMR δ(ppm): 55.6; 114.1; 131.0; 131.5; 164.6; 185.9 (C=O). 
 

77Se-NMR. δ(ppm) = 730.0. 

 

37f 2-chloropropanoic selenoanhydride 

 

Following the general procedure, 37f was 

isolated in 50% yield, as a yellow oil. 

 
1H-NMR δ(ppm): 1.73 (6H, d, J=7 Hz, CH3); 

4.46 (2H, q, J=7.2 Hz, CH). 
 

13C-NMR δ(ppm): 22.2; 63.8; 169.8 (C=O). 
 

77Se-NMR. δ(ppm) = 783.9. 
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37g thiophene-2-carboxylic selenoanhydride 

 

Following the general procedure, 37g 

was isolated in 70% yield, as a yellow 

oil. 

 
1H-NMR δ(ppm): 7.18-7.20 (2H, m); 

7.77-7.89 (4H, m). 
 

13C-NMR δ(ppm): 127.7; 132.9; 133.5; 134.0; 184.7 (C=O). 
 

77Se-NMR. δ(ppm) = 776.8. 

 

37h benzeselenophene-1,3-dione 

 

Following the general procedure, N was isolated in 63% 

yield, as a yellow solid. 

 
1H-NMR δ(ppm): 7.74-7.80 (2H, m); 7.90-7.99 (2H, m). 

 

13C-NMR δ(ppm): 123.6; 134.8; 141.6; 193.9 (C=O). 
 

77Se-NMR. δ(ppm) = 610.2. 
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20.  Synthesis of diacyl diselenides 

 

General procedure. A solution of dry THF (500 µL) and acyl chloride 35 (0.214 

mmol, 1 equiv.) was added under inert atmosphere with HMDSS 23 (0.235 mmol, 

1 equiv. + 10%) and it was cooled at 0°C. Then TBAF (1M in THF; 0.047 mmol, 

0.2 equiv., with respect to 23) was added dropwise. The mixture became red and, 

after 5 min, pale yellow. The mixture was warmed at rt and stirred for 2-3 h. The 

mixture was then diluted with diethyl ether (2 mL) and washed with saturated 

NaCl solution. The organic layer was dried over NaSO4, and evaporated to 

dryness. The residue was purified by FC on silica gel with dichlorometane / n-

hexane (1:1), to give the pure product. 

 

38a benzoic diselenoperoxyanhydride 

 

Following the general procedure, 

38a was isolated in 83% yield as 

a yellow igroscopic solid. 

 
1H-NMR δ(ppm): 7.47-7.54 

(4H, m); 7.61-7.65 (2H, m); 

7.99-8.16 (4H, m). 
 

13C-NMR δ(ppm): 128.0; 129.0; 134.2; 136.6; 186.1 (C=O). 
 

77Se-NMR. δ(ppm) = 613.0. 

 

38b 4-chlorobenzoic diselenoperoxyanhydride 

 

Following the 

general 

procedure, 38b 

was isolated in 

78% yield, as a 

yellow igroscopic 

Se

O
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solid. 

 
1H-NMR δ(ppm): 7.40-7.51 (4H, m); 7.72-8.08 (4H, m). 
 

13C-NMR δ(ppm): 129.4; 129.5; 134.9; 141.0; 186.0 (C=O). 
 

77Se-NMR. δ(ppm) = 619.4. 

 

38c 4-methoxybenzoic diselenoperoxyanhydride 

 

Following the 

general 

procedure, 

38c was 

isolated in 

72% yield. 

 
1H-NMR δ(ppm): 3.88 (6H, s, CH3O); 6.92-6.98 (4H, m); 7.91-8.07 (4H, m). 
 

13C-NMR δ(ppm): 55.6; 114.2; 129.3; 130.5; 164.4; 185.4 (C=O). 
 

77Se-NMR. δ(ppm) = 598.5. 

 

38f 2-chloropropanoic diselenoperoxyanhydride 

 

Following the general procedure, 38f was 

isolated in 54% yield, as a yellow oil. 

 
1H-NMR δ(ppm): 1.68 (6H, d, J=7 Hz, 

CH3); 4.46 (2H, q, J=7 Hz, CH). 
 

13C-NMR δ(ppm): 22.2; 62.2; 170.0 (C=O). 
 

77Se-NMR. δ(ppm) = 601. 
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38g thiophene-2-carboxylic diselenoperoxyanhydride 

 

Following the general procedure, 

38g was isolated in 73% yield, as 

a yellow oil. 

 
1H-NMR δ(ppm): 7.15-7.20 

(2H, m); 7.77-7.89 (4H, m). 
 

13C-NMR δ(ppm): 128.0; 132.9; 133.5; 135.4; 185.0 (C=O). 
 

77Se-NMR. δ(ppm) = 614.4. 

 

 

 

 
iI  R. Goddard, H. M. Herzog, M. T. Reetz, Tetrahedron 2002, 58, 7847. 

 

iII  P. A. Z. Suarez, J. E. L. Dullius, S. Einlot, R. F. De Souza, J. Dupont, Polyhedron 1996, 15 (7), 

1217. 
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Part II 

 

 

Asymmetric organocatalysis: 

a versatile approach for the synthesis of chiral 

compounds. 
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Chapter 1 

 

Organocatalysis: a brief introduction of some fundamental 

principles 

 

 
1.1. Introduction: the genesis and expansion of organocatalysis 

 

Stereoselective synthesis has been the focus for a large number of organic 

chemists for many years, and methods for the construction  and manipulation of 

stereocenters are central tools in organic chemistry. Traditionally, stereocenters 

have been obtained and transformed  from natural sources, but the use of 

asymmetric catalysis has allowed for the 'de novo' construction of non-racemic 

stereocenters using substoichiometric amounts of a catalyst. Obviously, the design 

of these catalysts and the study of their working mechanisms are of fundamental 

importance.  

Prior to the year 2000, the field of  asymmetric catalysis was mainly divided into 

two branches: organometallic catalysis1 and enzymatic catalysis2. Enzymes are 

characterized by high turnover numbers but also high substrate specificity, while 

metal catalysts, that have high turnover numbers and good substrate scopes, are 

sometimes limited by the demands for inert reaction conditions  and by the risk of 

trace metal contaminants in the products. However, starting in the late 1990s, a 

third discipline arose in the field of asymmetric catalysis. Later called 

Organocatalysis3 this new concept was based on the use of small organic 

molecules as rate enhancers and chiral inducers in stereoselective synthesis. 

Precisely, organocatalysis is ''the catalysis with small organic molecules, where an 

inorganic element is not part of the active principle'', as reported by List in 20074.  

Between 1998 and 2008, not less than 1500 publications have evolved on this 

topic, and new developments will continue to arise in the near future (Figure 1)5.  

 

 

 

 



 174

 

Figure 1 

 

A decade ago, organocatalysis had been limited to few reports of selected 

transformations, but today, especially in the field of asymmetric synthesis, 

organocatalysis has become a key player. 

Organocatalysis is still limited by relatively low turnover numbers, but is rarely 

dependent on inert experimental conditions. Furthermore, the diversity with 

respect to substrates and reagents expressed by many organocatalysts make them 

interesting catalysts for the small scale synthesis of chiral molecules. Many 

organocatalysts are now commercially available, which is an important 

improvement towards larger applications. 

Nowadays, a variety of different organocatalytic activation modes have been 

described, such as chiral phase transfer catalysis (PTC)6, amino-catalysis7, 

hydrogen bonding catalysis8. Among the mentioned sub-branches of 

organocatalysis, amino-catalysis and H-bonding catalysis are probably the two 

that have made greatest impact in this research area. 
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1.2. Amino-catalysis 

 

The use of amine-functionality as catalytic motif has been a long recognized 

phenomenon in enzymatic catalysis9. Rutter et al. studied aldolase type enzymes 

in the 1960, describing their activation of carbonyls through iminium-enamine 

formation, so generating an enzyme-bound carbanion equivalent as nucleophilic 

species9b (Scheme 1). 

 

 

 

 

Also in the field of organic chemistry, the use of enamines as nucleophiles to form 

new C-C bonds has been acknowledged for over half a century. The landmark 

leading to the genesis of organocatalysis came in 1971, with the Hajos-Wiechert 

reaction in which a proline catalyzed a Robinson annulation.10 

Nevertheless, the real genesis came in year 2000, when Barbas, Lerner and List, 

during their studies of catalytic antibodies, discovered that proline was able to 

mimic aldolase type enzymes. The use of proline as catalyst in an asymmetric 

catalytic aldol reaction11 demonstrated that simple amino acids could be 

considered as 'open-site' enzymes allowing substrate freedom, when compared 
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with enzymatic catalysis, and however maintaining the activity and 

stereoselectivity (Scheme 2).  

 

 

 

 

 

Today, there are four recognized variants of amino-catalysis in the literature: 

enamine, iminium-ion, SOMO7,12 and dieneamine7,13 catalysis (Scheme 3) .  
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In this section  enamine7, 8a, 14, iminium-ion7, 8a, 15 and hydrogen-bonding catalysis8 

will be briefly introduced, and some specific aspects will be examined in the later 

section.  

 

  

1.3.1. The concept of enamine activation 

 
This activation concept is based on the reversible condensation of a secondary 

amine catalyst with a ketone or  aldehyde to give an iminium species which, after 

tautomerization, leads to the formation of an enamine intermediate that can be 

subsequently trapped in the presence of an electrophile (Scheme 4). 
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Enamine catalysis involves the highest occupied molecular orbital (HOMO) and 

results in a raise of the energetic potential of carbonyls and adjacent α-carbonyl 

carbons, via formation of electron-rich amine-substituted olefins, that have 

enough π-electron density to give nucleophilic attack onto a variety of 

electrophiles.  

The scope of the enantioselective enamine activation has been developed during 

the recent years, leading to efficient organocatalytic routes to many important 

transformations of carbonyl compounds including α-functionalizations, such as 

aldol-,16 Mannich-,17 α-amination-,18 α-halogenation-,19 and α-hydroxylation-20 

reactions. 

As a consequence of the importance of this activation mode, the choice of the 

catalyst in relation to the specific reaction in which it is involved, as well as the 

development of new catalysts, have attracted a great deal of attention. One of the 

most versatile catalyst for enamine activation has been proline (or its amide, 

Figure 2, 1a-b), which is a cheap amino acid commercially available in both 

enantiomeric forms. However, recently it was demonstrated that proline is not the 

best choice for transformations which involve α-functionalization of carbonylic 

compounds.  

New versatile catalysts, developed by MacMillan (imidazolidinone, Figure 2, 2)21 

and Jørgensen (pyrrolidines, Figure 2, 3a-b)19a for iminium-ion catalysis, showed 

also high efficiency for enamine activation mode, with respect to 

enantioselectivity and versatility towards several reactions.  
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1.3.2. Enamine activation in the α-functionalization of aldehydes 

 

The following section provides some mechanistic clarifications and explanation 

about organocatalytic α-functionalization of aldehydes through the formation of 

enamine intermediates with the catalyst. 

It is interesting to underline how the choice of the catalyst influences the 

stereochemistry of the products, as reported later in this section. 

The mechanism of organocatalytic α-functionalization of aldehydes catalyzed by 

an asymmetric cyclic secondary amine catalyst  is reported in Scheme 5. 
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The cycle is initiated by the formation of an iminium-ion  arising from the 

condensation of an aldehyde  and the catalyst  (Scheme 5, step 1). Deprotonation 

at the α-position in the iminium-ion leads to the nucleophilic enamine 

intermediate  (step 2) which attacks the incoming electrophile  with 

enantioselectivity, while reforming the iminium-ion (step 3). Hydrolysis of the 

iminium-ion releases the α-functionalized aldehyde and the catalyst, which can 

participate in a new catalytic cycle (step 4). Using chiral pyrrolidine catalysts, 

these transformations usually generate products with excellent enantiomeric 

excess.  

The chemical nature of the substituent in the catalyst determinates the 

stereochemical outcome, directing the electrophile either by steric or electronic 

shielding (Figure 3). 19a 
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When the catalyst is a proline (1a-b), the stereochemistry of the product is 

induced by electronic effects through the formation of an hydrogen-bond with the 

incoming electrophile (Figure 3, left), so favouring a Re-faced nucleophilic attack. 

On the other hand, bulky pyrrolidine catalyst (3a-b) shields the Re-face of the 

enamine intermediate, favouring the electrophilic approach to the Si-face (Figure 

3, right). Thus the different effects observed with these two catalysts, lead to the 

formation of  the opposite enantiomers. 

 

 

1.3.3. The concept of iminium activation 

 
In the year 2000, MacMillan's group discovered a new strategy for asymmetric 

catalysis,21 based on the use of chiral amines as enantioselective catalysts for a 

number of transformations that usually involve Lewis acids.  
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The catalytic concept was that the reversible formation of iminium-ion between 

α,β-unsaturated aldehydes and amines could mimic the π-orbital electronics that 

are inherent to Lewis acid catalysis. Actually, by the formation of  an electron 

positive iminium-ion through amine-α,β-unsaturated aldehydes condensation, the 

energetic potential of the lowest unoccupied molecular orbital (LUMO) is lowered 

and rate enhancement and chiral induction are provided in the corresponding 

Michael acceptor (Scheme 6). 

 

 

 

 

This approach has been later generalized to include enantioselective 1,4-additions 

of hydride,22 sulphur,23 amine,24 oxygen25 and carbon 21, 26 nucleophiles to α,β-

unsaturated carbonyl compounds. 

 

 

1.3.4. Iminium-ion activation in the β-functionalization of α, β-unsaturated 

aldehydes 

 
The β-functionalization of  α,β-unsaturated aldehydes is mechanistically close to 

enamine chemistry. In fact, an initial condensation between the secondary amine 

catalyst and the aldehyde  gives an iminium-ion (Scheme 7, step 1), which is the 

reactive species in the catalytic cycle and leads to an energetic lowering of the 

LUMO, thus activating the β-position of the aldehyde for nucleophilic attack. 
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Addition of a nucleophile to the β-carbon of the iminium-ion forms a β-

functionalized enamine (step 2), which is in a tautomeric equilibrium with the 

corresponding iminium-ion (step 3). 

As in the case of α-functionalizations, the iminium-ion is now hydrolyzed to 

release the functionalized, saturated aldehyde and the catalyst, which can re-enter 

the catalytic cycle (step 4). 

 

 

 

Scheme 7 shows a close relationship between enamine and iminium-ion activation 

methods. 

Computational studies have produced models of the structure of various iminium 

ion and transition states, showing an energetic favouring for the trans-trans 
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iminium-ion, with nucleophile leading to an approach to the Re-face of the 

intermediate (Figure 4, left).27 

In contrast to α-functionalizations, in which H-bonding can play an important role 

in directing the incoming electrophile, β-functionalizations depend on steric 

hindrance to shield one diastereotopic face.  

The control of the configuration of both double-bonds, as well as the directing of 

the nucleophile have fundamental importance to ensure high enantioselectivity. 

The chemical nature of the incoming nucleophile has also great importance in β-

functionalizations.  

 

 

 

Among several examples reported in the literature,22-26 the starting point of 

modern β-functionalizations is considered the MacMillan's JACS paper in which 

is reported an imidazolidinone (2) catalyzed asymmetric Diels-Alder reaction 

(Scheme 8).21 
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Conjugate additions of nucleophiles to α,β-unsaturated carbonyl compounds is 

one of the most important C-C, C-N, C-S, C-O bond forming in asymmetric 

synthesis, leading to the formation of products such as α,β-amino acids, 1,3-amino 

alcohols, 1,3-mercapto alcohols, 1,3-diols.  

About 1,4-addition of  nitrogen based nucleophiles, while a number of reports 

based on different Lewis acidic organometallic catalysts have been reported in the 

literature, the same reaction using the amino-catalysis approach seems less 

obvious, since both the catalyst and the nucleophile are nitrogen based. In the 

amino-catalytic approach, the choice of the nucleophile is fundamental, because 

the carbonyl group of the aldehyde could undergo nucleophilic attack and 

condensation with the nitrogen-centred nucleophile, to form the undesired 

iminium-ion intermediate 4, leading to the formation of racemic products 

(Scheme 9, path 2).  
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As a consequence, the nitrogen source of choice must be chemo- and 

regioselective, demonstrating its ability to add to the catalyst activated α,β-

unsaturated aldehyde 5 in an enantioselective pathway (Scheme 9, path 1), and 

limiting the formation of the unwanted 4. 

MacMillan et al. firstly described a solution to this problem, using N,O-

diprotected hydroxylamine as nucleophile in  1,4-addition to α,β-unsaturated 

aldehydes with imidazolidinone 2 as catalyst.24a  

Otherwise, the use of cheaper and commercially available succinimide as 

nucleophile was interestingly reported by Jørgensen et al. in 2007,28 thereby 

offering a more convenient approach to the same β-aminated aldehydes, with 

excellent  regio- and stereoselectivity. This concept will be examined in Chapter 

2. 

The discussion concerning the study of the reaction conditions for the 

organocatalytic β-amination with succinimide will be presented in detail in 

Chapter 2, with the aim to show all the variables that we have to consider in the 

optimizing the reactivity and the enantioselectivity of the process. 

 

 

1.4. Cascade reactions 

 

In the recent years, much effort has also been aimed to one-pot, cascade reactions 

leading to a highly efficient method for multiple bond and stereocenter formations 

without intermediate purifications.29 The simplicity of these reactions which 

minimize the number of manual operations, make them a very interesting choice 

for organic synthesis.  

Due  to the capacity of both enamine and iminium-ion activation mode, amino-

catalysis is perfectly suitable for performing cascade reactions. The number of 

transformations associated with each of the activation modes has in the latest 

years grown explosively, providing a versatile approach to the synthesis of 

complex organic molecules by cascade one-pot processes.  

 

 

 

 



 187

1.5. H-bonding catalysis 

 

Hydrogen bonding catalysis8 is one of the fundamental forces in nature, 

responsible for essential functionalities of life, such as protein folding, DNA base 

pairing and receptor recognition. Moreover, enzymes use H-bonding forces to 

ensure substrate affinity and to stabilize the transition state, facilitating in this way 

nucleophilic attack. Taking inspiration from nature, chemists started to study the 

use of organic hydrogen donors in synthetic catalytic systems.  

Enantioselective hydrogen bonding catalysis, or Brønsted acid catalysis, is an 

important area of organocatalysis, which has grown since last decade.  

Hydrogen bond catalysis involves the activation of the substrate by lowering of 

the LUMO orbital, via proton or hydrogen association.  

Precisely, Brønsted acid activation proceeds through substrate protonation, 

leading to ion-pair formation between the activated substrate (cation) and the 

resulting catalyst conjugate base (anion). In contrast, hydrogen bond catalysis 

involves the sharing of an hydrogen atom by the substrate and the catalyst 

(hydrogen bond donor) with consequent lowering of the energetic potential of the 

substrate LUMO-orbital.  

Nevertheless, in organocatalysis the term hydrogen-bonding activation is used to 

indicate both hydrogen bond catalysis and Brønsted acid catalysis.  

A number of chiral organic molecules, such as guanidine, urea30 and thiourea31 

derivatives (for example cinchona alkaloid-based thiourea catalysts) can give 

hydrogen bond interactions with carbonyl compounds, imines, amides, showing 

wide versatility for enantioselective applications, such as 1,2-, 1,4-additions, 

rearrangements and cycloaddition reactions.8 
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Usually this mechanism involves bi- or multidentate catalysts, which allow the 

formation of strictly oriented hydrogen bonds (Figure 5), with consequent 

limitation of the substrate freedom, thus ensuring high enantioselective 

discrimination. 

 

 

1.6. Conclusions 

 

In this first chapter we reported some  general principles of organocatalysis, with 

particular attention to different activation modes with which chiral organic 

catalysts play an important role in the chirality transfer in different synthetic 

methodologies. 

This brief introduction has been focused on the explanation of the most common 

mechanisms; deepenings concerning iminium-ion catalysis with pyrrolidine 

catalysts 3a-b, have been treated in the Chapter 2, with application to the 

synthesis of propargylic and homo-propargylic compounds. 
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Chapter 2 

 

Organocatalysis in one-pot strategies for the synthesis of chiral 

polyfunctionalized molecules 

 
 

2.1. Iminium-ion activation in the β-amination reactions of α, β-unsaturated 

aldehydes 

 

While the asymmetric addition of carbon-based nucleophiles has achieved 

substantial attention in organocatalysis, considerably less effort has been put in 

the development of conjugate addition of heteroatoms to Michael acceptor 

systems.  

As reported in Chapter 1, MacMillan et al.24a first described in 2006 the direct β -

amination of α, β-unsaturated aldehydes, with N-silyloxy carbamate nucleophiles. 

Subsequently, Cordova et al. presented the application of the simpler N-protected 

hydroxylamines (with an unprotected hydroxyl group) as nucleophiles, catalyzed 

by an O-TMS protected diarylprolinol catalyst.32 

As an alternative to the N-centred nucleophiles reported by MacMillan and 

Cordova, Jørgensen's group reported the addition of N-heterocyclic nucleophiles 

to enals.27a,28 

The use of succinimide as nucleophile for conjugate additions to α, β-unsaturated 

aldehydes 6 led to β-aminated aldehydes 7 (Scheme 10), 28 that could be further 

utilized in interesting transformations, such as α-amination reactions and 

reductive aminations. 
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This method allowed to obtain protected optically active β-amino aldehydes 7 in 

good yields and enantioselectivities. These products represent a common motif in 

bioactive peptidomimetics, such as fibrinogen receptor antagonists.33  

An initial screening revealed that in CH2Cl2 succinimide could react as a 

nucleophile in the conjugate addition towards iminium-ion activated α,β-

unsaturated aldehydes 5, by using pyrrolidine derivative (3b) as catalyst; in the 

absence of the catalyst, no reaction was observed.  

One of the advantage of this methodology was that succinimide was a stable N-

protecting group, which could survive most manipulations, but which could be 

removed, when desired, by easy protocols.34  

The screening process showed that the β-amination reaction was dependent on the 

catalyst, but also on the presence of additives and on the temperature.  

In fact, in presence of  (S)-2-[bis(3,5-bistrifluoromethyl-

phenyl)trimethylsilanyloxymethyl]pyrrolidine (3b) as catalyst, the reaction 

between trans-2-pentenal and succinimide in CH2Cl2 (Scheme 11), in the absence 

of additives, led to moderate conversion. In order to increase the conversion, a 

number of additives were evaluated, and the presence of NaOAc (20 mol%) or 

H2O/NaOAc gave a significant improvement in conversion. Probably, the role of 
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NaOAc was to facilitate the deprotonation of succinimide, making it a better 

nucleophile. The presence of water allowed the reduction of the reaction time, 

probably due to the role of the water to make the catalytic cycle faster.16g 

These conditions led to the isolation of the β-amination product  with 72% of 

yield and 88% ee (Scheme 11). 

 

 

 

 

The use of strong acids as additives, such as HCl, resulted in protonation of the 

secondary amine and deprotection of TMS-group of the catalyst; nevertheless, by 

using a weaker acid such as PhCO2H, the reaction took place, but at a lower rate.  

Moreover, under acidic conditions, as well as in the absence of additive, a number 

of side reactions took place.  

A number of other catalysts were tested, for example proline 1a and proline amide 

1b, but they resulted much less effective, in terms of conversion and 

stereoselective control, than 3b (Figure 6). 
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The reactivity depended also on the temperature, as mentioned before. in fact 

while at -24°C no conversion occurred, at higher temperature (40°C), it was 

possible to increase the conversion, but the enantioselectivity decreased. The best 

results were obtained carrying out the reaction at room temperature.  

Finally, after a screening of the most common solvents with different polarities 

and hydrogen-bonding properties, the solvent which gave better results in terms of 

conversion was CH2Cl2.  

The organocatalytic enantioselective β-amination reaction here reported28 was 

completely general and was applied to a number of α,β-unsaturated aldehydes in 

presence of succinimide with good results in terms of yields and 

enantioselectivities. 

In this first section, we reported in detail some problems (the choice of the 

reagents, catalyst, additives and in general reaction conditions) that we meet when 

performing organocatalytic reactions. We referred to the optimized reaction 

conditions here reported for the β-amination reactions with succinimide, in the 

following section. Moreover, in the following section, we applied such reactivity 

to one-pot syntheses of polyfuctionalized molecules. 
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 2.2. Iminium-ion activation as an efficient strategy for divergent synthesis of 

optically active propargylic and homo-propargylic compounds35 

 

Taking advantage of the previously reported considerations concerning the β-

amination reactions of α, β-unsaturated aldehydes with succinimide as 

nucleophile,28 we turned our attention to the application of the iminium-ion 

activation strategy to the synthesis of chiral compounds, which could be used as 

useful building blocks for the construction of more complex molecules. 

In this context, the acetylenic motif serves as a common synthon in many C-X and 

C-C bond disconnessions.36  

Propargylic and homo-propargylic compounds are particularly important as chiral 

building blocks in the course of stereoselective synthesis,37 due to their 

transformational diversity and their condition tolerance.38 

 The synthesis of propargylic and homopropargylic compounds remains an 

attractive, yet, challenging task pursued by many research groups. Nowadays, 

modern synthesis and synthetic methods oftentimes include new and important 

aspects such as time-cost control and sustainability.  

One of the possible methods to reduce time-costs is the development of more 

chemospecific reactions, thereby avoiding the use of protective groups and 

superfluous redox manipulations.39 An alternative, but equally efficient solution to 

the problem is the incorporation of one-pot procedures, with consequential in situ 

entrapment of intermediates, making product isolation unnecessary. Moreover, 

other issues such as structural lability, a frequent cause for product 

oxidation/reduction/protections, can also be prevailed with high degree by the use 

of one-pot strategies.  

 In this context, organocatalysis is a robust and reliable synthetic tactic, not 

dependent on the presence of air or water, and therefore being exceedingly 

suitable for this type of ”assemble and build strategy”, where simple and available 

components are assembled to form a chiral structural skeleton, upon which 

molecular complexity can be built, in a one-pot fashion. 

Recently, Jørgensen's group reported the enamine-catalyzed enantioselective 

electrophilic fluorination of aldehydes and subsequent Seyferth-Gilmann 

homologation by using the Ohira-Bestmann reagent 8, to form highly 
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enantioenriched propargylic fluorides in one-pot from all commercially available 

reagents (Scheme 12).19d 

 

 

 

 

Due to the importance of optically active acetylenes, conceptual generalization 

leading to diversity-oriented synthesis of optically active propargylic compounds 

was a highly desirable and important synthetic methodology. However this 

approach encountered unavoidable difficulties, such as decomposition of the 

products and racemization, when substituting the α-fluorination reaction with 

other organocatalytic α-functionalizations.  

As a consequence, we turned our attention toward the use of iminium-ion 

activation, assuming better stability of the reaction intermediates and products.  

In this direction, herein it was reported  a series of chiral iminium-ion activated 

conjugate addition – homologation sequences, forming highly enantioenriched 

propargylic and homo-propargylic compounds in a simple and benign way 

(Scheme 13).  
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Explications concerning the mechanism of the processes have been reported in the 

course of this section. 

Terminal propargylic epoxides40 represent a privileged class of intermediates, 

used often for the synthesis of intricate molecular structures and natural 

products.40f,g  

Despite their importance, few methodologies have been reported in the literature 

for their synthesis, and often these required long reaction times. Among these 

synthetic routes, the most common strategies proceeded through the ring-closure 

reaction of chiral halohydrines,40a,b or by enantioselective epoxidation of 

enynes.40c,d 

Recently, in 2001, Martin et al. reported a three-step procedure to the same class 

of compounds, starting from pure epoxyaldehydes.40e 

In this context, we envisioned that a more simple approach could be devised by 

combining the organocatalyzed epoxidation reaction41 of α,β-unsaturated 

aldehydes with the Ohira modification42 of the Seyferth-Gilmann homologation  

(Scheme 14) and the results are as outlined in Table 1.  

To our delight, we discovered that the Ohira-Bestmann modification of the 

Seyferth-Gilmann method provided full compatibility with the organocatalyzed 

approach. 
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Despite the presence of base, no racemization was observed affording the desired 

products in excellent enantioselectivities. 

 

 

                 

       Table 1.  The organocatalytic synthesis of chiral propargylic epoxidesa 

 

entry R d.r.d Product Yield [%] b ee [%] c 
1 n-Butyl  >20:1 9a 83 99 
2 i-Propyl  >20:1 9b 63 99 
3 n-Hexyl  >20:1 9c 81 98 
4 Ph  >20:1 9d 66 98 
5 o-NO2-Ph  >20:1 9e 86 99 
6 CH2OBn  >20:1 9f 73 91 

7 e CO2Et  >20:1 9g 58 97 
 

                   a Reaction performed on 0.2 mmol scale (see experimental section).  
                   b Isolated yields after column chromatography.  
                   c ee determined by chiral stationary phase HPLC or GC. 
                   d Determined by NMR spectroscopy.  
                   e Complete trans-esterification to the methyl ester. 
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The first step in the one-pot formation of optically active epoxides 9a-g was the 

reaction of α,β-unsaturated aldehydes 6 with H2O2, catalyzed by (S)-2-[bis(3,5-

bis-trifluoromethylphenyl)trimethylsilyloxymethyl]pyrrolidine 3b in CH2Cl2. The 

intermediate trans-epoxy aldehydes were subsequently trapped by the Ohira-

Bestmann reagent 8, generated in situ from dimethyl 2-oxopropylphosphonate 10 

and 4-acetamidobenzenesulfonyl azide 11, furnishing the homologated products 

9a-g in high yields and excellent enantioselectivities.  

Both simple or substituted alkyl and aryl side-chains were allowed, furnishing the 

desired trans-propargylic epoxides 9a-e in 63-86% yield and 91-99% ee (Table 1, 

entries 1-5).  

When employing substrates carrying other functional groups, for example ester 

group (Table 1, entry 7) or hydroxybenzyl group (Table 1, entry 6), the same 

levels of yield and optical purity were obtained; however, for compound 9g, 

complete transesterification to the methyl ester was accomplished. It should be 

noted that the reported reaction was almost complete diastereoselective (d.r. 20:1), 

and easily scaled- up to 5 mmol without affecting the obtained yield and 

enantioselectivity.  

The absolute configuration of product 9a was determined by chemical correlation, 

40a confirming the (2R,3R)-configuration, as expected by comparison to the 

epoxyaldehyde intermediates. The remaining configurations are assumed by 

analogy. 

The proposed mechanisms for the formation of propargylic epoxides was outlined 

in Scheme 15. 

The reaction started with the condensation of the catalyst 3b and aldehyde 6, 

leading to the formation of a reactive iminium-ion species, which favoured 

conjugate attack of H2O2 from the Re-face, due to the steric shielding of the Si-

face by the catalyst.  

Next, epoxide formation and catalyst hydrolysis provided the enantiomerically 

enriched trans-epoxyaldehyde 12. The intermediate product 12 was trapped by the 

Ohira-Bestmann reagent 8, which formed the carbene species 13 by methanolysis.  

This reactive species trapped the intermediate 12 to give the species 14, by which 

the epoxide was formed by a 1,2-proton shift and elimination of N2. 
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                                                           Scheme 15 

 

 

As further step, rivaling the intriguing demands for easy access to molecular 

complexity, we aimed to demonstrate the simplicity and diversity with which our 

products can be transformed (Scheme 16). In fact, chiral propargylic epoxides of 

this kind are highly versatile intermediates in organic synthesis, which can be 

transformed by direct and easy procedures in chiral compounds of different 

nature, some of which are reported in Scheme 16. 
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For example, enantiomerically enriched allenes43 are valuable chiral building 

blocks in contemporary organic synthesis. Following the procedure reported by 

Chemla et al.,443c the allenic alcohol 15 was obtained in 74% yield, as a single 

diastereomer, by treating compound 9c with NH4Br, in the presence of copper 

reagents. 

To demonstrate further utility of the propargylic epoxides, ring opening reactions 

of 9c with heteroatom-based nucleophiles, such as halide or nitrogen, were 

conducted, providing the optically active halohydrin 16 in 94 % yield, and 1,2-

aminoalcohol 17 in 55% yield.  

Moreover, the chiral synthesis of propargylic thiiranes44 was accomplished by a 

double SN2 type mechanism in the presence of thiourea, giving the desired 

product 18 (from the epoxide 9f) in 55% yield based on recovered starting 

material, and with no loss of optical purity (Scheme 16). 
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Encouraged by the previous results, we decided to exploit the possibility of 

combining other β-heterofunctionalizations with the in situ homologation strategy.  

Actually, the predicted versatility and robustness of this “assemble and build” 

type tactic for synthesis of homo-propargylic compounds could be realized for 

nucleophiles, such as amines, sulfides and triazoles, as described in Scheme 17 

and in Table 2. 
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Table 2.  Scope of the organocatalytic synthesis of diverse  

homo-propargylic compoundsa 
 
 

entry R  X Product Yield [%] b ee [%]c 
1 n-butyl  suc 19a 43 87 
2 n-propyl  suc 19b 41 87 
3 CH2OBn  suc 19c 40 85 
4 ethyl  suc 19d 44 85 

5 d ethyl  suc ent-19d 42 -85 
6 n-heptyl  suc 19e 43 88 
7 cis-(CH2)2CH=CHC2H5  suc 19f 48 85 
8 (CH2)2Ph  suc 19g 30 88 
9 i-propyl  tBuSH 20a 34 89 
10 Ph  tBuSH 20b 48 85 
11 i-propyl  triaz. 21a 44 79 
12 ethyl  triaz. 21b 47 81 
13 n-propyl  triaz. 21c 49 80 

 
                   a Reaction performed on 0.2 mmol scale; suc=succinimide; triaz=1,2,4-triazole. 
                   b Yields of isolated products, after column chromatography. 
                   c ee determined by chiral stationary phase HPLC. The homo-propargyl triazoles  
                     were transformed in order to determinate the ee (see Experimental Section). 
                   d The enantiomer of catalyst 3b was employed. 

 

 

The use of succinimide as nucleophilic nitrogen source allowed to obtain homo-

propargylic protected amines 19 in quite good yields, by a convenient and one-pot 

methodology, merging the organocatalyzed β-amination reaction of α,β-

unsaturated aldehydes, whose reaction conditions were discussed in detail  in the 

previous section, with the Ohira-Bestmann homologation.  

Homo-propargylic amines have been typically prepared by a Barbier-type reaction 

of propargylic bromides and aldimines, using stoichiometric amounts of metals, 

such as indium.45 Recently Soderquist et al. reported an asymmetric 

allenylboration giving chiral homo-propargylic amines.45b  

In our approach it was possible to avoid the use of metals, with consequent benign 

effect on the pollution, employing an easy and highly efficient methodology 

(Scheme 17, Table 2). 

Table 2 outlined that, with succinimide, the reactivity was generalized to 

aldehydes with different substituting chain sizes (entries 1-2 and 4-6), as well as 
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to aldehydes with unsaturated chains (Table 2, entry 7), leading to the isolation of 

desired chiral products 19a,b,d-f in moderate to good yields and high 

enantioselectivities. In the presence of aldehydes carrying other functionalities, 

such as hydroxybenzyl (Table2, entry 3), or phenyl group (Table2, entry 8), the 

reaction also proceeded smoothly and in 85-88% ee. 

The use of tert-butyl sulfide as nucleophile in the organocatalytic step led to the 

isolation of homo-propargylic sulfides 20a-b (Table 2, entries 9-10) in moderate 

yields but with high enantioselectivity, in the presence of both, aliphatic (Table 2, 

entry 9) and aromatic (Table 2, entry 10) substituents on the substrate. The low 

yield in the case of 20a was due to the volatility of the homo-propargylic 

compound.  

Finally, using 1,2,3-triazole as nucleophile it was possible to isolate, after the one-

pot procedure, homo-propargylic N-heterocycles 21a-c (Table 2, entries 11-13) in 

quite good yields and high enantioselectivities. However, in this case, pre-

prepared Ohira-Bestmann reagent was used, instead of the in situ generated 

reagent, to combat the diminishing yields. 

Having remarked the transformational diversity of the homo-propargylic adducts, 

we next employed the obtained protected optically active amines in several 

general and reliable transformations (Scheme 18).  

In doing so, compound 19e was coupled with an aryl iodide under standard 

Sonogashira conditions46 providing the internal homo-propargylic amine 22 in 

84% yield and with full conservation of the optical integrity.  

Moreover, given the importance of the N-heterocyclic structure in life science, we 

demonstrated that enantiomerically enriched triazoles could be obtained by 

”clicking” the same starting alkyne 19e with organic azides (following the 

Sharpless procedure47), as exemplified by the formation of compound 23 in 80% 

yield and 87% ee. Alternatively, by starting from the homo-propargylic triazoles 

21b-c, optically active 1,2-ditriazoles (24, 25) with differentiated substitution 

pattern were obtained (Scheme 18).    
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Scheme 18 showed how the obtained homo-propargyl compounds can be 

differently reacted through easy strategies, thus underlining their transformational 

diversity for the synthesis of different classes of chiral compounds. 
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2.3. Conclusions 

 

In summary, we have demonstrated that the iminium-ion activation mode could be 

conceptually extended to a highly efficient “assemble and build strategy” for 

divergent synthesis of chiral propargylic, homo-propargylic and allenic 

compounds. The structural types produced by the reactions described in this 

section included propargylic epoxides and thiiranes; homo-propargylic amines, 

sulfides, and triazoles and allenic alcohols, all derived entirely from readily 

available starting materials.  

The flexibility with which organocatalyzed functionalizations was joined with the 

Ohira-Bestmann homologation reaction highlighted the wide versatility of  

organocatalytic strategies, which can be merged with different synthetic 

methodologies for the one-pot synthesis of widely applicable polyfunctionalized 

chiral molecules. 
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Experimental section 
 

 

1. General Methods. 

 

NMR spectra were acquired on a Varian AS 400 spectrometer, running at 400 and 

100 MHz for 1H and 13C, respectively. Chemical shifts (δ) are reported in ppm 

relative to residual solvent signals (CHCl3, 7.26 ppm for 1H NMR, CDCl3, 77.0 

ppm for 13C NMR). The following abbreviations are used to indicate the 

multiplicity in 1H NMR spectra: s, singlet; d, doublet; t, triplet; q, quartet; m, 

multiplet; bs, broad signal. 13C NMR spectra were acquired on a broad band 

decoupled mode. Mass spectra were recorded on a micromass LCT spectrometer 

using electrospray (ES+) ionization techniques. Analytical thin layer 

chromatography (TLC) was performed using pre-coated aluminium-backed plates 

(Merck Kieselgel 60 F254) and visualized by ultraviolet irradiation or KMnO4 

dip. Melting points are uncorrected. Optical rotations were measured on a Perkin-

Elmer 241 polarimeter. The enantiomeric excess (ee) of the products was 

determined by chiral stationary phase HPLC (Daicel Chiralpak AD and Daicel 

Chiralcel OD columns) or by GC using a chiral Chrompack CP Chiralsil-Dex Cβ 

column. Unless otherwise noted, analytical grade solvents and commercially 

available reagents were used without further purification. For flash 

chromatography (FC) silica gel (Silica gel 60, 230-400 mesh, Fluka) or Iatrobeads 

6RS-8060 (spherical silica gel) was used. (E)-4-(benzyloxy)but-2-enal and (E)-5-

phenylpent-2-enal,iI and the Ohira-Bestmann reagent 8iII were synthesized 

according to literature. 
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2. Propargylic epoxides 

 

General Procedure: A vial equipped with a magnetic stirring bar was charged 

with the aldehyde 6 (0.2 mmol, 1 equiv), the catalyst 3b (0.02 mmol, 0.1 equiv), 

35 %wt H2O2 (0.26 mmol, 1.3 equiv) and CH2Cl2 (0.4 mL). Upon completion of 

reaction (usually 5 h), the mixture was diluted with MeOH (1 mL) and 

quantitatively transferred to a pre-stirred (stirred for 2 h) suspension of dimethyl 

2-oxopropylphosphonate 10 (0.27 mmol, 1.35 equiv), 4-acetamidobenzene-

sulfonyl azide 11 (0.27 mmol, 1.35 equiv) and K2CO3 (0.8 mmol, 4 equiv) in 

MeCN (3 mL). After additionally 18 h of stirring, the crude reaction mixture was 

diluted with Et2O and filtered through a short pad of silica (wash with 

Et2O),concentrated in vacuo and purified by FC on silica gel. 

 

9a (2R,3R)-2-Butyl-3-ethynyloxirane 

 

Following the general procedure 9a was isolated by 

FC (gradient: pentane to pentane/Et2O 49:1) in 83% 

yield as a colorless oil.  

1H NMR (400 MHz, CDCl3): 3.12-3.07 (m, 2H), 2.31-2.29 (m, 1H), 1.60-1.52 

(m, 2H), 1.50-1.32 (m, 4H), 0.92 (t, J = 7.1 Hz, 3H).  

13C NMR (100 MHz, CDCl3) : 80.6, 71.7, 60.4, 44.9, 31.3, 27.7, 22.4, 13.9.  

MS (EI): m/z = 124.1 [M+].  

The ee was determined by GC using a chiral Chrompack CP Chiralsil-Dex Cβ 

column; temperature ramp: 70 to 90 °C (10 °C/min), then isotherm for 5 min; 

τmajor = 4.8 min, τminor = 4.7 min (99% ee).  

[α]D
rt: +5.0 (c = 1.0, Et2O). 
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9b (2R,3R)-2-Ethynyl-3-isopropyloxirane 

 

Following the general procedure 9b was isolated by FC 

(gradient: pentane to pentane/Et2O 49:1) in 34% yield 

(Volatile product, 63% yield based on internal standard) as 

a colorless oil. 

1H NMR (400 MHz, CDCl3): 3.13 (dd, J = 1.7, 1.9 Hz, 1H), 2.91 (dd, J = 2.2, 6.7 

Hz, 1H), 2.30 (d, J = 1.7 Hz, 1H), 1.58-1.49 (m, 1H), 1.02 (d, J = 6.7 Hz, 3H), 

0.98 (d, J = 6.9 Hz, 3H).  

13C NMR (100 MHz, CDCl3): 71.6, 65.9, 43.9, 30.3, 18.6, 18.0(2C).  

MS (EI): m/z = 110.1 [M+].  

The ee was determined by GC using a chiral Chrompack CP Chiralsil-Dex Cβ 

column; temperature ramp: 60 °C, isotherm for 10 min; τmajor = 5.3 min, τminor = 

4.8 min (99% ee).  

[α]D
rt: -12.1 (c = 1.3, CHCl3). 

9c (2R,3R)-2-Ethynyl-3-hexyloxirane 

 

Following the general procedure 9c was 

isolated by FC (gradient: pentane to 

pentane/Et2O 49:1) in 81% yield as a 

colorless oil.  

1H NMR (400 MHz, CDCl3): 3.11-3.07 (m, 2H), 2.30 (d, J = 1.5 Hz, 1H), 1.59-

1.50 (m, 2H), 1.49-1.39 (m, 2H), 1.38-1.23 (m, 6H), 0.88 (t, J = 6.8 Hz, 3H).  

13C NMR (100 MHz, CDCl3): 80.6, 71.6, 60.4, 44.8, 31.6(2C), 28.9, 25.5, 22.5, 

14.0.  

MS (EI): m/z = 152.1 [M+].  

O
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The ee was determined by HPLC using a Chiralcel OB column [hexane/i-PrOH 

(99:1)]; flow rate 1.0 mL/min; τmajor = 4.9 min, τminor = 4.6 min (98% ee).  

[α]D
rt: +0.7 (c = 1.66, CHCl3). 

9d (2R,3R)-2-Ethynyl-3-phenyloxirane 

 

Following the general procedure 9d was isolated by FC 

(gradient: pentane to pentane/Et2O 49:1) in 66% yield 

as a colorless oil.  

1H NMR (400 MHz, CDCl3): 7.37-7.30 (m, 3H), 7.27-

7.22 (m, 2H), 4.02 (d, J = 1.9 Hz, 1H), 3.33-3.32 (m, 1H), 2.38 (d, J = 1.6 Hz, 

1H).  

13C NMR (100 MHz, CDCl3): 135.3, 128.8, 128.6(2C), 125.5(2C), 79.8, 72.2, 

59.8, 48.9.  

MS (EI): m/z = 144.0 [M+].  

The ee was determined by GC using a chiral Chrompack CP Chiralsil-Dex Cβ 

column; temperature ramp: 70 to 140 °C (10 °C/min), then isotherm for 5 min; 

τmajor = 7.6 min, τminor = 7.5 min (98% ee).  

[α]D
rt: +96.8 (c = 1.6, CHCl3). 

9e (2R,3R)-2-Ethynyl-3-(2-nitrophenyl)oxirane 

 

Following the general procedure 9e was isolated by FC 

(gradient: pentane to pentane/Et2O 9:1) in 86% yield as 

a yellowish solid.  

1H NMR (400 MHz, CDCl3): 8.21-8.18 (m, 1H), 7.72-7.65 (m, 1H), 7.59-7.49 

(m, 2H), 4.66 (d, J = 1.6 Hz, 1H), 3.28-3.26 (m, 1H), 2.47 (d, J = 1.7 Hz, 1H).  
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13C NMR (100 MHz, CDCl3): 147.5, 134.4, 132.4, 129.2, 127.0, 124.8, 79.0, 

73.0, 57.9, 48.3.  

HRMS: Calculated for [C10H7NNaO3]+: 212.0318; found: 212.0316.  

M.p.: 88 °C.  

The ee was determined by GC using a chiral Chrompack CP Chiralsil-Dex Cβ 

column; temperature ramp: 70 to 180 °C (10 °C/min), then isotherm for 5 min; 

τmajor = 12.0 min, τminor = 11.8 min (99% ee).  

[α]D
rt: +175.0 (c = 1.36, CHCl3). 

9f (2R,3R)-2-(Benzyloxymethyl)-3-ethynyloxirane 

 

Following the general procedure 9f was isolated by FC 

(gradient: pentane to pentane/Et2O 4:1) in 73% yield as 

a colorless oil.  

1H NMR (400 MHz, CDCl3): 7.40-7.28 (m, 5H), 4.56 (s, 2H), 3.73 (dd, J = 2.9, 

11.7 Hz, 1H), 3.55 (dd, J = 4.5, 11.8 Hz, 1H), 3.38-3.36 (m, 1H), 3.35-3.34 (m, 

1H), 2.33 (d, J = 1.6 Hz, 1H).  

13C NMR (100 MHz, CDCl3): 137.5, 128.4(2C), 127.9, 127.7(2C), 79.7, 73.4, 

72.3, 68.4, 58.5, 42.4.  

HRMS: Calculated for [C12H12NaO2]+: 211.0730; found: 211.0733.  

The ee was determined by HPLC using a Chiralcel OD column [hexane/i-PrOH 

(90:10)]; flow rate 1.0 mL/min; τmajor = 12.8 min, τminor = 9.6 min (91% ee).  

[α]D
rt: +3.0 (c = 0.60, CHCl3). 
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9g (2S,3R)-Methyl 3-ethynyloxirane-2-carboxylate 

 

Following the general procedure 9g was isolated by FC 

(gradient: pentane to pentane/Et2O 3:1) in 58% yield as 

a yellowish oil.  

1H NMR (400 MHz, CDCl3): 3.80 (s, 3H), 3.64-3.62 (m, 1H), 3.61-3.59 (m, 1H), 

2.38 (d, J = 1.6 Hz, 1H).  

13C NMR (100 MHz, CDCl3): 167.6, 77.9, 73.1, 53.9, 52.9, 44.5.  

HRMS: Calculated for [C6H6NaO3]+: 149.0215; found: 149.0211.  

The ee was determined by GC using a chiral Chrompack CP Chiralsil-Dex Cβ 

column; temperature ramp: 70 to 100 °C (10 °C/min), then isotherm for 5 min; 

τmajor = 4.3 min, τminor = 4.2 min (97% ee).  

[α]D
rt: +15.5 (c = 0.77, CHCl3). 

 

3. Transformations of the propargylic epoxides 

 15 (2R,4R)-1-Bromodeca-1,2-dien-4-ol  

 

The procedure by Chemla et al. was followed.iIII The 

propargylic epoxide 9c (0.5 mmol, 1 equiv) was 

dissolved in dry Et2O (0.25 mL) under argon and 

cooled to -50 °C. A 48% aqueous solution of HBr 

(0.375 mmol, 0.75 equiv) was then added, followed by CuBr (0.5 mmol, 1 equiv), 

NH4Br (0.25 mmol, 0.5 equiv) and Cu0 (0.05 mmol, 0.1 equiv). The reaction 

mixture was warmed to -5 oC over 3 h, then quenched by addition of a 

NH3/NH4Cl mixture (1:4) and extracted with Et2O (3 x 5 mL). The ether phases 

were washed with NH3/NH4Cl (2 x 5 mL), dried and concentrated in vacuo. The 

residue was subjected to FC on Iatrobeads (gradient: pentane/Et2O 9:1 to 5:1) to 

give the product 15 in 74% yield as a colorless oil.  
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1H NMR (400 MHz, CDCl3): 6.09 (dd, J = 1.8, 5.7 Hz, 1H), 5.44 (apparent t, J = 

5.8 Hz, 1H), 4.34-4.26 (m, 1H), 1.87 (d, J = 4.8 Hz, 1H), 1.69-1.52 (m, 2H), 1.49-

1.23 (m, 8H), 0.88 (t, J = 6.9 Hz, 3H).  
 

13C NMR (100 MHz, CDCl3): 200.5, 104.4, 74.2, 69.2, 37.0, 31.7, 29.1, 25.1, 

22.6, 14.1.  

 

[α]D
rt: -157.7 (c = 2.08, CHCl3). 

 

16 (3S,4R)-3-Bromodec-1-yn-4-ol 

 

The procedure by Martín et al. was followed.iIV To a 

solution of PPh3 (0.57 mmol, 1.2 equiv) in dry CH2Cl2 (3 

mL) was added bromine (0.57 mmol, 1.2 equiv) under 

nitrogen at 0 °C. The mixture was stirred for 15 min after 

which time a solution of 9c (0.47 mmol, 1 equiv) in dry 

CH2Cl2 was added. The mixture was stirred for another 15 min and quenched by 

the addition of water. The aqueous layer was extracted with CH2Cl2 (3 x 5 mL). 

The combined extracts were dried over MgSO4 and concentrated in vacuo. The 

residue was subjected to FC on silica gel (gradient: pentane to pentane/Et2O 3:1) 

to give the product 16 in 94% yield as a colorless oil.  

1H NMR (400 MHz, CDCl3): 4.56 (dd, J = 2.5, 3.8 Hz, 1H), 3.81-3.72 (m, 1H), 

2.71 (d, J = 2.4 Hz, 1H), 2.20 (d, J = 6.0 Hz, 1H), 1.79-1.24 (m, 10H), 0.88 (t, J = 

6.9 Hz, 3H).  

13C NMR (100 MHz, CDCl3): 79.1, 77.3, 74.2, 43.1, 33.7, 31.7, 29.1, 25.6, 22.6, 

14.1.  

HRMS: Calculated for [C10H17BrNaO]+: 255.0355; found: 255.0364.  

[α]D
rt: +2.1 (c = 1.0, CH2Cl2). 
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17 (3R,4S)-4-(Methylamino)dec-1-yn-3-ol 

 

The procedure by Manisse et al. was followed.iV The 

propargylic epoxide 9c (0.2 mmol, 1 equiv) was dissolved in 

0.4 mL of a 30% aqueous solution of MeNH2 and stirred for 

3 d at 55 °C. The reaction mixture was then diluted with 

Et2O, dried over MgSO4 and concentrated in vacuo. Final purification by FC on 

silica gel (gradient: EtOAc/pentane 3:1 to EtOAC/MeOH 4:1) gave the product 17 

in 55% yield as a colorless solid.  

1H NMR (400 MHz, CDCl3): 3.71-3.61 (m, 1H), 3.32-3.29 (m, 1H), 2.51 (s, 3H), 

2.34 (d, J = 2.2 Hz, 1H), 2.04 (bs, 2H), 1.65-1.21 (m, 10H), 0.88 (t, J = 6.6 Hz, 

3H).  

13C NMR (100 MHz, CDCl3): 81.5, 74.0, 72.4, 57.3, 34.3, 33.8, 31.7, 29.2, 25.8, 

22.6, 14.1.  

HRMS: Calculated for [C11H21NNaO]+: 206.1521; found: 206.1511.  

M.p.: 64 °C.  

[α]D
rt: +15.3 (c = 1.52, CHCl3). 

18 (2S,3S)-2-(Benzyloxymethyl)-3-ethynylthiirane 

 

The procedure by Mobashery et al. was followed.iVI To 

a solution of the propargylic epoxide 9f (0.11 mmol, 1 

equiv) in MeOH (0.3 mL) under nitrogen atmosphere 

was added thiourea (0.17 mmol, 1.5 equiv) and the 

reaction mixture was stirred at rt for 24 h, by which time water was added. The 

aqueous layer was extracted with CH2Cl2 (3 x 10 mL), dried over MgSO4, 

concentrated in vacuo and purified by FC on silica gel (gradient: pentane/Et2O 

15:1 to 4:1) to give the product 18 in 55% yield (based on recovered starting 

material) as a colorless oil.  

S
OBn
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1H NMR (400 MHz, CDCl3): 7.43-7.28 (m, 5H), 4.59 (s, 2H), 3.70 (dd, J = 5.5, 

10.6 Hz, 1H), 3.48 (dd, J = 6.6, 10.8 Hz, 1H), 3.32 (dd, J = 5.6, 11.1 Hz, 1H), 

3.10 (dd, J = 2.0, 4.8 Hz, 1H), 2.25 (d, J = 2.0 Hz, 1H).  

13C NMR (100 MHz, CDCl3): 137.6, 128.5(2C), 127.9, 127.7(2C), 81.7, 73.2, 

73.0, 69.9, 40.4, 25.0.  

[α]D
rt: -106.5 (c = 0.38, MeOH). 

 

4. Homo-propargylic amines 

General Procedure: A vial equipped with a magnetic stirring bar was charged 

with the aldehyde 6 (0.2 mmol, 1 equiv), the catalyst 3b (0.02 mmol, 0.1 equiv), 

NaOAc (0.04 mmol, 0.2 equiv), H2O (0.4 mmol, 2 equiv), succinimide (0.3 mmol, 

1.5 equiv) and CH2Cl2 (0.4 mL). Upon completion of reaction (usually 24 h), the 

mixture was diluted with MeOH (1 mL) and quantitatively transferred to a pre-

stirred (stirred for 2 h) suspension of dimethyl 2-oxopropylphosphonate 10 (0.51 

mmol, 2.04 equiv), 4-acetamidobenzene-sulfonyl azide 11 (0.51 mmol, 2.04 

equiv) and K2CO3 (1.52 mmol, 6.08 equiv) in MeCN (6 mL). After additionally 

18 h of stirring, the crude reaction mixture was diluted with Et2O and filtered 

through a short pad of silica (wash with Et2O), concentrated in vacuo and purified 

by FC (gradient: pentane to pentane/Et2O 49:1) on silica gel. 

19a (R)-1-(Oct-1-yn-4-yl)pyrrolidine-2,5-dione 

 

Following the general procedure 19a was isolated by 

FC (pentane/EtOAc 3:1) in 43% yield as a colorless 

oil.  

1H NMR (400 MHz, CDCl3): 4.33-4.22 (m, 1H), 

2.89 (ddd, J = 2.7, 10.0, 16.8 Hz, 1H), 2.70 (s, 4H), 2.54 (ddd, J = 2.6, 5.8, 16.8 

Hz, 1H), 2.03-1.93 (m, 1H), 1.92 (t, J = 2.6 Hz, 1H), 1.75-1.65 (m, 1H), 1.39-1.08 

(m, 4H), 0.86 (t, J = 7.2 Hz, 3H).  
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13C NMR (100 MHz, CDCl3): 177.3(2C), 80.5, 69.9, 51.4, 30.6, 28.6, 27.9(2C), 

22.2, 21.5, 13.9.  

HRMS: Calculated for [C12H17NNaO2]+: 230.1157; found: 230.1153.  

The ee was determined by HPLC using a Chiralcel OD column [hexane/i-PrOH 

(95:5)]; flow rate 1.0 mL/min; τmajor = 13.9 min, τminor = 16.0 min (87% ee).  

[α]D
rt: +3.6 (c = 0.45, MeOH). 

19b (R)-1-(Hept-1-yn-4-yl)pyrrolidine-2,5-dione 

 

Following the general procedure 19b was isolated by 

FC (pentane/EtOAc 3:1) in 41% yield as a colorless oil.  

 

1H NMR (400 MHz, CDCl3): 4.34-4.25 (m, 1H), 2.89 

(ddd, J = 2.7, 16.8 Hz, 1H), 2.73-2.66 (m, 4H), 2.54 (dd, J = 2.6, 16.8 Hz, 1H), 

2.02-1.93 (m, 1H), 1.92 (t, J = 2.6 Hz, 1H), 1.71-1.61 (m, 1H), 1.29-1.16 (m, 2H), 

0.89 (t, J = 7.4 Hz, 3H).  

 
13C NMR (100 MHz, CDCl3): 177.3(2C), 80.5, 69.9, 51.2, 32.9, 27.9(2C), 21.5, 

19.7, 13.6.  

 

HRMS: Calculated for [C11H15NNaO2]+: 216.0995; found: 216.1004.  

 

The ee was determined by HPLC using a Chiralcel OD column [hexane/i-PrOH 

(90:10)]; flow rate 1.0 mL/min; τmajor = 12.4 min, τminor = 14.5 min (87% ee).  

 

[α]D
rt: -3.8 (c = 0.80, CHCl3).  

 

 

 

 

 

 

N OO
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19c (S)-1-(1-(Benzyloxy)pent-4-yn-2-yl)pyrrolidine-2,5-dione 

 

Following the general procedure 19c was isolated by FC 

(pentane/EtOAc 3:1) in 44% yield as a colorless oil.  

1H NMR (400 MHz, CDCl3): 7.38-7.25 (m, 5H), 4.64-

4.57 (m, 1H), 4.55 (d, J = 11.9 Hz, 1H), 4.45 (d, J = 

12.0 Hz, 1H), 3.91 (dd, J = 8.9, 10.0 Hz, 1H), 3.74-3.67 (m, 1H), 2.84 (ddd, J = 

2.7, 9.6, 16.9, 9.6, Hz, 1H), 2.67 (s, 4H), 2.67-2.61 (m, 1H), 1.94 (t, J = 2.7 Hz, 

1H).  

13C NMR (100 MHz, CDCl3): 177.2(2C), 137.7, 128.4(2C), 127.8, 127.6(2C), 

79.7, 72.8, 70.3, 67.9, 50.3, 27.9(2C), 18.4.  

HRMS: Calculated for [C16H17NNaO3]+: 294.1114; found: 294.1106.  

The ee was determined by HPLC using a Chiralcel OD column [hexane/i-PrOH 

(90:10)]; flow rate 1.0 mL/min; τmajor = 20.6 min, τminor = 25.5 min (85% ee).  

[α]D
rt: +10.3 (c = 1.0, CH2Cl2). 

19d (R)-1-(Hex-5-yn-3-yl)pyrrolidine-2,5-dione 

 

Following the general procedure 19d was isolated by FC 

(pentane/EtOAc 3:1) in 44% yield as a colorless oil.  

1H NMR (400 MHz, CDCl3): 4.25-4.11 (m, 1H), 2.89 

(ddd, J = 2.7, 10.0, 16.8 Hz, 1H), 2.70 (s, 4H), 2.56 (ddd, 

J = 2.6, 5.9, 16.8, Hz, 1H), 2.01-1.94 (m, 1H), 1.92 (t, J = 2.7 Hz, 1H), 1.82-1.72 

(m, 1H), 0.85 (t, J = 7.5 Hz, 3H).  

13C NMR (100 MHz, CDCl3) δ 177.4(2C), 80.5, 69.9, 53.0, 27.9(2C), 24.1, 21.3, 

15.3.  

HRMS: Calculated for [C10H13NNaO2]+: 202.0844; found: 202.0838.  
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The ee was determined by HPLC using a Chiralcel OD column [hexane/i-PrOH 

(95:5)]; flow rate 1.0 mL/min; τmajor = 15.6 min, τminor = 18.2 min (85% ee).  

[α]D
rt: -10.3 (c = 0.86, MeOH). 

19e (R)-1-(Undec-1-yn-4-yl)pyrrolidine-2,5-dione 

 

Following the general procedure 19e was isolated by FC 

(pentane/EtOAc 3:1) in 43% yield as a colorless oil.  

1H NMR (400 MHz, CDCl3): 4.32-4.23 (m, 1H), 2.89 

(ddd, J = 2.7, 10.0, 16.8 Hz, 1H), 2.70 (s, 4H), 2.54 (ddd, 

J = 2.6, 5.8, 16.8 Hz, 1H), 2.03-1.93 (m, 1H), 1.92 (t, J = 2.6 Hz, 1H), 1.75-1.65 

(m, 1H), 1.35-1.19 (m, 10H), 0.86 (t, J = 6.9 Hz, 3H).  

13C NMR (100 MHz, CDCl3) δ 177.4(2C), 80.5, 69.9, 51.4, 31.7, 30.8, 29.0, 29.0, 

27.8(2C), 26.4, 22.5, 21.5, 14.0.  

HRMS: Calculated for [C15H23NNaO2]+: 272.1626; found: 230.1633.  

The ee was determined by HPLC using a Chiralcel OD column [hexane/i-PrOH 

(95:5)]; flow rate 1.0 mL/min; τmajor = 13.1 min, τminor = 18.1 min (88% ee).  

[α]D
rt: +5.1 (c = 0.8, MeOH). 

19f (R,Z)-1-(Dec-7-en-1-yn-4-yl)pyrrolidine-2,5-dione 

 

Following the general procedure 19f was 

isolated by FC (pentane/EtOAc 3:1) in 48% 

yield as a colorless oil.  

1H NMR (400 MHz, CDCl3): 5.43-5.32 (m, 

1H), 5.28-5.20 (m, 1H), 4.35-4.26 (m, 1H), 2.88 (ddd, J = 2.7, 9.9, 16.8 Hz, 1H), 

2.69 (s, 4H), 2.55 (ddd, J = 2.6, 5.9, 16.8 Hz, 1H), 2.14-2.03 (m, 1H), 2.02-1.94 

(m, 4H), 1.92 (t, J = 2.6 Hz, 1H), 1.82-1.72 (m, 1H), 0.93 (t, J = 7.6 Hz, 3H).  



 217

13C NMR (100 MHz, CDCl3): 177.3(2C), 132.8, 127.2, 80.4, 70.0, 51.2, 30.7, 

27.9(2C), 24.2, 21.6, 20.5, 14.2.  

HRMS: Calculated for [C14H19NNaO2]+: 256.1313; found: 256.1310.  

The ee was determined by HPLC using a Chiralcel OD column [hexane/i-PrOH 

(95:5)]; flow rate 1.0 mL/min; τmajor = 13.7 min, τminor = 14.7 min (85% ee).  

[α]D
rt: +4.7 (c = 1.8, CHCl3). 

19g (R)-1-(1-Phenylhex-5-yn-3-yl)pyrrolidine-2,5-dione 

 

Following the general procedure 19g was isolated by 

FC (pentane/EtOAc 3:1) in 30% yield as a colorless 

oil.  

 

1H NMR (400 MHz, CDCl3): 7.29-7.13 (m, 5H), 

4.39-4.30 (m, 1H), 2.87 (ddd, J = 2.7, 9.6, 16.8 Hz, 1H), 2.77-2.68 (m, 1H), 2.64-

2.47 (m, 3H), 2.46-2.36 (m, 4H), 2.06-1.97 (m, 1H), 1.94-1.91 (m, 1H).  
 

13C NMR (100 MHz, CDCl3): 177.3(2C), 140.6, 128.3(2C), 128.2(2C), 126.1, 

80.3, 70.1, 51.6, 33.2, 30.9, 27.8(2C), 22.0.  

 

HRMS: Calculated for [C16H17NNaO2]+: 278.1157; found: 278.1144.  

 

The ee was determined by HPLC using a Chiralcel OD column [hexane/i-PrOH 

(95:5)]; flow rate 1.0 mL/min; τmajor = 24.3 min, τminor = 30.4 min (88% ee).  

 

[α]D
rt: -25.3 (c = 0.4, CHCl3). 
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5. Homo-propargylic sulfides 

General Procedure: A vial equipped with a magnetic stirring bar was charged 

with the aldehyde 6 (0.38 mmol, 1.5 equiv), the catalyst 3b (0.025 mmol, 0.1 

equiv), PhCO2H (0.025 mmol, 0.1 equiv) and toluene (1 mL). After cooling the 

reaction mixture to -20 °C, t-butyl sulfide (0.25 mmol, 1 equiv) was added and 

stirring was continued for further 30 h. Upon completion of reaction, the mixture 

was diluted with MeOH (2 mL) and quantitatively transferred to a pre-stirred 

(stirred for 2 h) suspension of dimethyl 2-oxopropylphosphonate 10 (0.27 mmol, 

1.35 equiv), 4-acetamidobenzene-sulfonyl azide 11 (0.27 mmol, 1.35 equiv) and 

K2CO3 (0.8 mmol, 4 equiv) in MeCN (3 mL). After additionally 18 h of stirring, 

the crude reaction mixture was diluted with Et2O and filtered through a short pad 

of silica (wash with Et2O), concentrated in vacuo and purified by FC 

(pentane/Et2O 49:1) on silica gel. 

 

20a (S)-tert-Butyl(2-methylhex-5-yn-3-yl)sulfane 

 

Following the general procedure 20a was isolated by FC in 

34% yield as a colorless oil.  

1H NMR (400 MHz, CDCl3): 2.64-2.52 (m, 3H), 2.29-2.18 

(m, 1H), 2.00 (t, J = 2.5 Hz, 1H), 1.33 (s, 9H), 1.04 (d, J = 6.7 Hz, 3H), 0.90 (d, J 

= 6.8 Hz, 3H).  

13C NMR (100 MHz, CDCl3): 82.8, 69.3, 48.2, 42.7, 31.5(3C), 30.8, 26.1, 20.6, 

17.7.  

The ee was determined by HPLC using a Chiralcel OJ column [hexane/i-PrOH 

(98:2)]; flow rate 1.0 mL/min; τmajor = 3.7 min, τminor = 4.4 min (89% ee).  

[α]D
rt: +16.3 (c = 1.2, CHCl3). 
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20b (S)-tert-Butyl(1-phenylbut-3-ynyl)sulfane 

 

Following the general procedure 20b was isolated by FC in 

48% yield as a colorless oil.  

1H NMR (400 MHz, CDCl3): 7.36-7.15 (m, 5H), 3.95 (dd, J = 8.15, 6.39 Hz, 1H), 

2.72 (ddd, J = 2.6, 6.3, 16.8 Hz, 1H), 2.66 (ddd, J = 2.6, 8.1, 16.9 Hz, 1H), 1.92 (t, 

J = 2.6 Hz, 1H), 1.20 (s, 9H).  

13C NMR (100 MHz, CDCl3): 143.5, 128.3(2C), 127.6(2C), 127.1, 81.6, 70.2, 

46.3, 44.2, 31.3(3C), 28.9.  

HRMS: Calculated for [C14H18NaS]+: 241.1016; found: 241.1024.  

The ee was determined by HPLC using a Chiralcel OJ column [hexane/i-PrOH 

(95:5)]; flow rate 1.0 mL/min; τmajor = 5.5 min, τminor = 8.0 min (85% ee).  

[α]D
rt: -104.3 (c = 0.8, CHCl3). 

 

6. Homo-propargylic triazoles 

General Procedure: A vial equipped with a magnetic stirring bar was charged 

with the aldehyde 6 (0.3 mmol, 1 equiv), the catalyst 3b (0.02 mmol, 0.1 equiv), 

1,2,4-triazole (re-crystallized, 0.2 mmol, 1 equiv), PHCO2H (0.02 mmol, 0.1 

equiv) and toluene (2 mL). The stirring was continued for 20 h and MeOH (4.5 

mL), dimethyl 1-diazo-2-oxopropylphosphonate 8 (0.26 mmol, 1.32 equiv) and 

K2CO3 (0.53 mmol, 2.64 equiv) was added. After additionally 18 h of stirring, the 

crude reaction mixture was diluted with EtOAc and filtered through a short pad of 

silica (wash with EtOAc), concentrated in vacuo and purified by FC (gradient: 

pentane/EtOAc 1:1 to 1:2) on silica gel.  

 

 



 220

Determination of ee: The homo-propargylic triazoles were transformed by a 

simple click-reaction in order to determine the enantiomeric excess. An ordinary 

vial equipped with a magnetic stirring bar was charged with the homo-progargylic 

triazole 21 (0.1 mmol, 1 equiv), sodium ascorbate (0.01 mmol, 0.1 equiv), 

CuSO4·5H2O (0.01 mmol, 0.1 equiv), azidomethyl phenyl sulfide (0.11 mmol, 1.1 

equiv) and 1:1 t-BuOH/H2O (0.5 mL). The mixture was stirred at ambient 

temperature for 18 h, upon which the mixture was diluted with NH4Cl, extracted 

with EtOAc (3 x 5 mL), dried over MgSO4, concentrated in vacuo and purified by 

FC (gradient: pentane/EtOAc 1:1 to pure EtOAc) on silica gel.  

 

21a (S)-1-(2-Methylhex-5-yn-3-yl)-1H-1,2,4-triazole 

 

Following the general procedure 21a was isolated by FC in 

44% yield as a colorless oil.  

1H NMR (400 MHz, CDCl3): 8.14 (s, 1H), 7.97 (s, 1H), 

4.11-3.99 (m, 1H), 2.84 (ddd, J = 2.0, 7.9, 15.8 Hz, 1H), 

2.78 (ddd, J = 2.0, 4.2, 7.5 Hz, 1H), 2.37-2.26 (m, 1H), 1.95 (t, J = 2.6 Hz, 1H), 

1.04 (d, J = 6.8 Hz, 3H), 0.79 (d, J = 6.7 Hz, 3H).  

13C NMR (100 MHz, CDCl3): 151.9, 143.3, 79.5, 71.2, 65.7, 31.9, 22.8, 19.6, 

18.9.  

HRMS: Calculated for [C9H13N3Na]+: 186.1007; found: 186.1014.  

[α]D
rt: -8.1 (c = 0.65, CHCl3). 

26 (S)-4-(3-Methyl-2-(1H-1,2,4-triazol-1-yl)butyl)-1-(phenylthiomethyl)-1H-

1,2,3-triazole 

 

Following the general procedure 26 was 

isolated by FC in 62% yield as a colorless oil. 

 

1H NMR (400 MHz, CDCl3): 7.91 (s, 1H), 7.75 

(s, 1H), 7.32-7.28 (m, 3H), 7.21-7.18 (m, 2H), 
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6.87 (s, 1H), 5.48 (d, J = 14.4 Hz, 1H), 5.43 (d, J = 14.4 Hz, 1H), 4.32-4.24 (m, 

1H), 3.36-3.23 (m, 2H), 2.31-2.19 (m, 1H), 1.10 (d, J = 6.8 Hz, 3H), 0.79 (d, J = 

6.7 Hz, 3H).  

 
13C NMR (100 MHz, CDCl3): 152.0, 144.2, 144.0, 132.3(2C), 131.6, 129.5(2C), 

128.7, 121.2, 66.6, 53.8, 32.7, 28.6, 19.7, 19.0.  

 

HRMS: Calculated for [C16H20N6NaS]+: 351.1362; found: 351.1368.  

 

The ee was determined by HPLC using a Chiralpak AD column [hexane/i-PrOH 

(80:20)]; flow rate 1.0 mL/min; τmajor = 14.2 min, τminor = 24.2 min (79% ee).  

 

[α]D
rt: -16.0 (c = 0.38, CHCl3). 

 

21b (R)-1-(Hex-5-yn-3-yl)-1H-1,2,4-triazole 

 

Following the general procedure 21b was isolated by FC in 

47% yield as a colorless oil.  

1H NMR (400 MHz, CDCl3: 8.14 (s, 1H), 7.97 (s, 1H), 

4.32-4.23 (m, 1H), 2.82-2.67 (m, 2H), 2.11-1.95 (m, 2H), 

2.00 (t, J = 2.6 Hz, 1H), 0.84 (t, J = 7.4 Hz, 3H).  

13C NMR (100 MHz, CDCl3): 152.1, 142.9, 79.2, 71.4, 61.3, 26.7, 25.1, 10.4.  

HRMS: Calculated for [C8H11N3Na]+: 172.0845; found: 172.0851.  

[α]D
rt: -7.6 (c = 0.67, CHCl3). 
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24 (R)-4-(2-(1H-1,2,4-Triazol-1-yl)butyl)-1-(phenylthiomethyl)-1H-1,2,3-

triazole 

 

Following the general procedure 24 was 

isolated by FC in 78% yield as a colorless oil.  

 

1H NMR (400 MHz, CDCl3): 7.94 (s, 1H), 7.79 

(s, 1H), 7.33-7.20 (m, 5H), 6.92 (s, 1H), 5.51 

(d, J = 14.4 Hz, 1H), 5.46 (d, J = 14.4 Hz, 1H), 4.54-4.45 (m, 1H), 3.27 (dd, J = 

9.4, 14.9 Hz, 1H), 3.21 (dd, J = 5.0, 14.8 Hz, 1H), 2.10-1.97 (m, 1H), 1.97-1.88 

(m, 1H), 0.82 (t, J = 7.4 Hz, 3H).  
 

13C NMR (100 MHz, CDCl3): 152.5, 144.1, 143.8, 132.6(2C), 131.6, 129.7(2C), 

129.0, 121.5, 62.6, 54.1, 31.5, 28.0, 10.8.  

 

HRMS: Calculated for [C15H18N6NaS]+: 337.1206; found: 337.1211.  

 

The ee was determined by HPLC using a Chiralpak AD column [hexane/i-PrOH 

(80:20)]; flow rate 1.0 mL/min; τmajor = 15.9 min, τminor = 25.9 min (81% ee).  

 

[α]D
rt: -18.0 (c = 0.25, CHCl3). 

 

21c (R)-1-(Hept-1-yn-4-yl)-1H-1,2,4-triazole 

 

Following the general procedure 21c was isolated by 

FC (pentane/EtOAc 1:1) in 48% yield as a colorless oil.  

1H NMR (400 MHz, CDCl3): 8.13 (s, 1H), 7.96 (s, 

1H), 4.41-4.33 (m, 1H), 2.81-2.65 (m, 2H), 2.12-1.95 

(m, 2H), 1.94-1.84 (m, 1H), 1.33-1.09 (m, 2H), 0.91 (t, J = 7.3 Hz, 3H).  

13C NMR (100 MHz, CDCl3): 152.0, 142.9, 79.2, 71.5, 59.5, 35.5, 25.4, 19.1, 

13.5.  

HRMS: Calculated for [C9H13N3Na]+: 186.1002; found: 186.1010.  
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[α]D
rt: -7.3 (c = 0.6, CHCl3).  

25 (R)-4-(2-(1H-1,2,4-Triazol-1-yl)pentyl)-1-(phenylthiomethyl)-1H-1,2,3-

triazole 

 

Following the general procedure 25 was 

isolated by FC in 66% yield as a colorless 

oil.  

1H NMR (400 MHz, CDCl3): 7.92 (s, 1H), 

7.77 (s, 1H), 7.33-7.27 (m, 3H), 7.23-7.19 (m, 2H), 6.90 (s, 1H), 5.50 (d, J = 14.4 

Hz, 1H), 5.45 (d, J = 14.4 Hz, 1H), 4.64-4.55 (m, 1H), 3.29-3.14 (m, 2H), 2.08-

1.94 (m, 1H), 1.88-1.75 (m, 1H), 1.30-1.04 (m, 2H), 0.88 (t, J = 7.3 Hz, 3H).  

13C NMR (100 MHz, CDCl3): 152.1, 143.8, 143.4, 132.3(2C), 131.6, 129.4(2C), 

128.7, 121.2, 60.4, 53.8, 36.4, 31.4, 19.1, 13.5.  

HRMS: Calculated for [C16H20N6NaS]+: 351.1368; found: 351.1375.  

The ee was determined by HPLC using a Chiralpak AD column [hexane/i-PrOH 

(80:20)]; flow rate 1.0 mL/min; τmajor = 17.0 min, τminor = 29.9 min (80% ee).  

[α]D
rt: -13.6 (c = 0.13, CHCl3). 

 

 

 

 

 

 

 



 224

7. Transformations of the homo-propargylic amines 

22 (R)-1-(1-(4-Bromophenyl)undec-1-yn-4-yl)pyrroli-dine-2,5-dione  

 

The procedure by Hayashi et al. was 

followed.iVII A solution of 19e (0.20 

mmol, 1 equiv), 1-bromo-4-iodobenzene 

(0.4 mmol, 2 equiv), Pd(PPh3)4 (0.01 

mmol, 0.05 equiv) and CuI (0.01 mmol, 

0.05 equiv) in Et3N (0.4 mL) was stirred at 60 oC for 4 h. Upon completion of the 

reaction, the crude mixture was passed through a short pad of celite and silica, 

washed with Et2O and concentrated in vacuo. The residue was subjected to 

column chromatography on silica gel (pentane/EtOAc 3:1 ) to give the product 22 

in 84% yield as a colorless oil.  
 

1H NMR (400 MHz, CDCl3): δ ppm 7.39 (d, J = 8.5 Hz, 2H), 7.17 (d, J = 8.4 Hz, 

2H), 4.39-4.30 (m, 1H), 3.05 (dd, J = 9.8, 17.0 Hz, 1H), 2.74 (dd, J = 5.9, 16.9 

Hz, 1H), 2.67 (s, 4H), 2.09-1.96 (m, 1H), 1.81-1.69 (m, 1H), 1.36-1.13 (m, 10H), 

0.86 (t, J = 6.9 Hz, 3H).  
 

13C NMR (100 MHz, CDCl3): 177.3(2C), 132.9(2C), 131.4(2C), 122.2, 122.0, 

87.4, 81.1, 51.7, 31.7, 30.8, 29.1, 29.0, 27.9(2C), 26.5, 22.6, 22.6, 14.1.  

 

HRMS: Calculated for [C21H26NNaO2Br]+: 426.1045; found: 426.1049.  

 

The ee was determined by HPLC using a Chiralcel OD column [hexane/i-PrOH 

(90:10)]; flow rate 1.0 mL/min; τmajor = 11.9 min, τminor = 18.1 min (87% ee).  

 

[α]D
rt: -24.3 (c = 0.6, CH2Cl2). 
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23 (R)-1-(1-(1-(Phenylthiomethyl)-1H-1,2,3-triazol-4-yl)nonan-2-

yl)pyrrolidine-2,5-dione  

 

An ordinary vial equipped with a magnetic stirring bar was 

charged with the homo-progargylic amine 19e (0.1 mmol, 

1 equiv), sodium ascorbate (0.01 mmol, 0.1 equiv), 

CuSO4·5H2O (0.01 mmol, 0.1 equiv), azidomethyl phenyl 

sulfide (0.11 mmol, 1.1 equiv) and 1:1 t-BuOH/H2O (0.5 

mL). The mixture was stirred at ambient temperature for 

18 h, upon which the mixture was diluted with NH4Cl, 

extracted with EtOAc (3 x 5 mL), dried over MgSO4 and 

concentrated in vacuo. The crude product was purified by 

FC (EtOAc/pentane 9:1) on silica gel to give 23 in 80% yield as a colorless oil.  
 

1H NMR (400 MHz, CDCl3): 7.33 (s, 1H), 7.29-7.21 (m, 5H), 5.54 (d, J = 14.4 

Hz, 1H), 5.49 (d, J = 14.4 Hz, 1H), 4.31-4.20 (m, 1H), 3.40 (dd, J = 10.8, 14.7, 

Hz, 1H), 2.91 (dd, J = 4.9, 14.7 Hz, 1H), 2.58-2.39 (m, 4H), 2.11-1.98 (m, 1H), 

1.73-1.62 (m, 1H), 1.33-1.11 (m, 10H), 0.83 (t, J = 6.9 Hz, 3H).  
 

13C NMR (100 MHz, CDCl3): 177.6(2C), 145.2, 131.9(2C), 131.9, 129.4(2C), 

128.5, 120.9, 53.5, 52.6, 31.7, 31.2, 29.1(2C), 27.8(2C), 27.3, 26.5, 22.5, 14.0.  

 

HRMS: Calculated for [C22H30N4NaO2S]+: 437.1982; found: 437.1985.  

 

The ee was determined by HPLC using a Chiralpak AD column [hexane/i-PrOH 

(90:10)]; flow rate 1.0 mL/min; τmajor = 52.5 min, τminor = 45.4 min (87% ee).  

 

[α]D
rt: -21.4 (c = 0.9, CH2Cl2). 
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