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1 Introduction and Summary  

The PhD work described in this thesis was developed in the context of a 

cooperation between the Laboratory of Peptide & Protein Chemistry & 

Biology of the University of Florence (Prof. Anna Maria Papini) and the 

Laboratory for Translational Research of Harvard Medical School (Prof. 

Michael Chorev).  

The present thesis describes some applications of modified peptides to the 

study of diabetes and cancer disease forms with a special attention to the 

development of diagnostic/prognostic assays based on molecular tools. To this 

aim, we developed non proteinogenic modified amino acids, orthogonally 

protected for Solid Phase Peptide Synthesis peptide sequences bearing post-

translational modifications and possible stabilized conformation to be used in 

various biochemical applications. 

The goal of the diabetic project has been the development of a 

diagnostic/prognostic tool for type I and type II diabetes. A convergent 

approach of multiple different strategies proceeding in parallel has been 

adopted (section 1). 

To this aim, a panel of new Fmoc-Lysine derivates bearing a glycation 

modification has been developed for SPPS of glycated peptides and proteins 

(section 1.1). 

A systematic approach to the synthesis of a glycated hCD59(37-50) peptide 

antigen has been carried out (section 2.2.3). 

The glycated antigen has been used to produce specific anti-glycated hCD59 

antibodies that efficiently recognize the glycated protein (hCD59) in vivo 

(section 2.2.5). 

A panel of glycated antigenic peptide probes has been generated and tested 

with un-competitive ELISA experiments against type I diabetic patients’ sera 

(section 2.3.5). Preliminary results show the presence of specific 
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autoantibodies anti-glycated-hCD59 in a subfamily of diabetic patients 

(section 2.4.2). 

The strategy for total synthesis by Native Chemical Ligation of glycated and 

un-glycated hCD59 protein has been set up (section 2.5.1). 

Future developments will be the optimization of the biochemical assays base 

on the synthetic peptide probes and antibodies generated as well as the 

completion of the NCL synthesis of hCD59; it will also be undertaken an 

analytical study of the glycated metabolites in diabetic patients’ sera; and 

finally, the synthetic peptide probes will be tested in uncompetitive ELISA 

assays against type II diabetic patients’ sera (section 2.6.2). 

The goal of the cancer project has been the development of new eIF4E 

Binding Protein (4E-BP) peptide inhibitors with stabilized conformation to be 

used as suppressors of Translation Initiation in a context of cancer therapy 

(section 3.3). 

A collection of Nα-Fmoc protected unnatural amino acids bearing on the side 

chain azido or alkynyl functions was synthesized and introduced by SPPS in 

the fluoresceinated-4E-BP (621-636) peptide sequence to afford by Cu(I) 

catalyzed Huisgen reaction, a new collection of cyclopeptides containing the 

triazolyl moiety (section 3.5). The side-chain-to-side chain cyclization of 

linear peptides generated via click chemistry lead to cyclopeptides containing 

the triazolyl moiety linked to the α-carbon of the amino acids by alkyl chains 

of different lengths. 

The collection of linear and cyclic peptides has been tested with Fluorescence 

Polarization Assay to measure the affinity for the eIF4E protein. The position 

and length of the triazole-bridge appears to play a critical role in enhancing 

and decreasing the affinity of the binding protein peptide analogs (4E-BP) for 

the target protein (eIF4E) (section 3.6.1). 

A NMR/CD conformational study has been carried out on the cyclopeptides 

analogs containing triazolyl moiety. From preliminary data the triazole bridge 



 

 7 

seems, as expected, to stabilize the α-helical structure of the peptides (section 

3.7.1). 

The completion of the synthesis and characterization of the 4E-BP 

cyclopeptides collection is in progress. The peptides presenting the best 

affinity with eIF4E will be selected for experiments of templated click 

cyclization free from metal catalyst and in presence of the protein (eIF4E) 

(section 3.5.2.4). The cell membrane permeability of the fluoresceinated 

peptides will also be assessed with a confocal microscope. 
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2 PART A: Glycation in diabetes; a post-translational 

modification useful for the development of biomarkers. A 

convergent approach aimed to diagnostic tools. 

 
We have undertaken a convergent development of a 

diagnostic/prognostic tool for type I and type II diabetes. The 

designation of “convergent” points out that, different approaches have 

been forsaken in parallel in order to maximize the possibility of success 

(Scheme 2-1). 

Our proof-of-concept is that aberrant post-translational modifications 

(PTMs) affecting specific proteins can trigger an autoimmune response. 

This process could be one of the factors contributing to autoimmune 

diseases development or being just a side effect of the autoimmune 

condition. In either case we concentrated our efforts in taking advantage 

of the biunivocal correlation between pathology and aberrant 

modifications in order to develop efficient diagnostic/prognostic tools. 

The second step is the selection of a panel of potential biomarkers of a 

given disease on the base of previously identified PTMs, synthetically 

reproduced. 

The definition of a biological marker (biomarker) is the following:  

a characteristic that is objectively measured and evaluated as an 

indicator of normal biological processes, pathogenic processes, or 

pharmacologic responses to a therapeutic intervention1. 

                                                 
1 Biomarkers Definitions Working Group (2001) Clinical Pharmacology and Therapeutics, 
Bethesda, Md, 3. 



 

 9 

                     

Scheme 2-1 Convergent development of a diagnostic/prognostic tool 

 

The third stage is to set up a biochemical experiment that allows 

identifying and quantifying the selected biomarker in a statistical 

significant number of biological samples (i.e., urines or sera). The most 

promising and successful of those biochemical assays will be optimized 

to deliver a prototype to be transferred for technical industrialization 

and becoming a fully reliable diagnostic/prognostic tools for final 

marketing. 

We have focused our work on the subject of glycation in diabetes and 

we have selected four different types of biomarkers versus which we 

have directed our experiments as shown in Table 2–1. 

 

Selection of a panel of biomarkers

Identification of Post-Translational Modifications and 
minimal epitopes  

Strategies to monitor the biomarkers  
in biological samples 

From the study of a given  
autoimmune disease 

Development of bio-chemical assays 

in vitro synthetic reproduction 
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Strategy Biomarker Molecular tool Application 
 

Experiment 
 

 
Glycated hCD59 

 
Glycated hCD59(37-50) peptide antigen Rise of mono and polyclonal anti 

glycated hCD59 antibodies 
Identification of glycated CD59 rich 
tissues in diabetic patients biopsies Direct approach 

(synthetic antibodies)  
Glycated hCD59 

 

Glycated hCD59 protein 
(complete sequence, total synthesis by 

NCL) 

Rise of mono and polyclonal anti 
glycated hCD59 antibodies with high 

specificity 

Identification of glycated CD59 rich 
tissues in diabetic patients biopsies 

 
Anti-glycated hCD59 

auto-antibodies 
 

Glycated hCD59(37-50) peptide antigen Recognition of anti-glycated hCD59 
autoantibodies in diabetic patient sera 

Uncompetitive ELISA screening of 
patient sera 

Reverse approach 
(synthetic antigenic probes)  

Unspecific anti-glycated 
auto-antibodies 

 

Glycated antigenic probe 
(CSF114) 

Recognition of anti-glycation 
autoantibodies in diabetic patient sera 

Uncompetitive ELISA screening of 
patients sera 

 
Free glycated Lysine metabolites 

 
Synthetic glycated Lysine 

Synthetic glycated Lysine is used as a 
standard for metabolic free glycated 

Lysine in patient sera 

UPLC-MS/HPLC analysis of patient 
sera 

Amino acid analysis 
Glycated Lysine residues 

(from hydrolysis of the proteins 
of patient sera) 

Synthetic glycated Lysine 
Synthetic glycated Lysine is used as a 
standard for metabolic free glycated 
Lysine in patient sera hydrolyzate 

UPLC-MS/HPLC analysis of patient 
sera hydrolyzate 

Table 2-1 Strategies for the development of a diagnostic-prognostic tool for diabetes based on the glycation process. 
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2.1 Glycation  

Glycation of proteins through non-enzymatic reactions between glucose or 

other reducing sugars and reactive amino groups represents one of the most 

abundant processes involved in post-translational modification of proteins2. 

Spontaneous and reversible condensation of a reducing sugar and a free amino 

group of a protein forms an aldimine also known as the “Schiff base” that 

undergoes a rearrangement into the more stable ketoamine known also as the 

Amadori product3 (Scheme 2.1-1). In the case of glucose, the initially formed 

Schiff base rearranges into the more stable 1-deoxyfructosyl moiety. 

Subsequent dehydration, condensation, fragmentation, oxidation, and 

cyclization reactions lead to the irreversible formation of Advanced Glycation 

End Products (AGEs). This process leads to inactivation of proteins and is 

involved in pathologies such as senile cataract4, arteriosclerosis5, vascular 

complications of diabetes6, dysfunction of skin collagen7, and 

neurodegenerative diseases such as Alzheimer’s disease8,9 and Parkinson 

disease10.  

 

 

 

 

 

 

                                                 
2 Doyle, H.A. and Mamula, M.J. (2001) Trends Immunol., 22, 443.  
3 Ulrich, P. and Cerami, A. (2001) Recent Prog. Horm. Res., 56, 1. 
4 Lyons, T.J., Silvestri, G., Dunn, J.A., and Dyer, D.G. (1991) Diabetes, 40, 1010. 
5 Price, C.L. and Knight, S.C. (2007) Curr. Pharm. Des., 13, 3681. 
6 Gugliucci, A.J. (2000) Am. Osteopath. Assoc., 100, 621. 
7 Avery, N.C. and Bailey, A.J. (2006) Pathol. Biol. (Paris), 54, 387.  
8 Yan, S.D., Chen, X., Schmidt, A.M., Brett, J., Godman, G., Zou, Y.S., Scott, C.W., Caputo, 
C., Frappier, T., and Smith, M.A. (1994) Proc.Natl. Acad. Sci. U.S.A., 91, 7787. 
9 Takeuchi, M. and Yamagishi, S. (2008) Curr. Pharm. Des., 14, 973. 
10 Munch, G., Gerlach, M., Sian, J., Wong, A., and Riederer, P. (1998) Ann. Neurol., 44, 85. 
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Scheme 2.1-1 The glycation reaction. 

 

The function of a glycated protein may be impaired if an amino group affected 

by glycation is in, or close to, its active site. For example, glycation of the b 

chains of hemoglobin gives rise to the glycated hemoglobins (HbA1), in which 

responsiveness to 2,3-diphosphoglycerate is decreased and oxygen affinity 

increased11. Also, glycation of the major thrombin inhibitor of the coagulation 

system, antithrombin III, decreases its affinity for heparin, possibly 

contributing to the hypercoagulable state associated with diabetes12. Even 

though proteins contain many surface amino groups, only a few are 

preferentially glycated. This intriguing observation was explained when the  

identification of glycated amino groups in proteins with known three-

dimensional structure revealed that glycation preferably occurs at amino 

groups that are either close to an imidazole moiety or part of a Lysine doublet. 

Proximity ('5 Å) of an amino group to an imidazole moiety is the strongest 

                                                 
11 McDonald, M.J., Bleichman, M., and Bunn, H.F. (1979) J. Biol. Chem., 254, 702. 
12 Ceriello, A., Giugliano, D., Quatraro, A., Stante, A., Consoli, G., Dello Russo, P., and 
D’Onofrio, F. (1987) Diabete Metab., 13, 16. 
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predictor of susceptibility to glycation13. This site specificity of protein 

glycation is the consequence of localized acid–base catalysis of the 

aldimineyketoamine tautomerization14,15. In conclusion the glycation 

phenomenon, thought non enzymatic, is sequence dependent 

                                                 
13 Fluckiger, R. and Strang, C.J. (1995) Protein Sci. 4, 186. 
14 Iberg, N. and Fluckiger, R. (1986) J. Biol. Chem. 261, 13542. 
15 Watkins, N.G., Neglia-Fisher, C.I., Dyer, D.G., Thorpe, S.R., and Baynes, J.W. (1987) J. 
Biol. Chem., 262, 7207. 
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2.1.1 Diabetes 

Changes in human behavior and lifestyle over the last century have resulted in 

a dramatic increase in the incidence of diabetes worldwide. The number of 

adults with diabetes in the world will rise from 135 million in 1995 to 300 

million in the year 202516 (Figure 2.1-1). Most cases will be of type II 

diabetes, which is strongly associated with a sedentary lifestyle and obesity17. 

This trend of increasing prevalence of diabetes and obesity has already 

imposed a huge burden on health-care systems and this will continue to 

increase in the future. Although type II diabetes is numerically more prevalent 

in the general population, type I diabetes is the most common chronic disease 

of children. But with the increasing prevalence of type II diabetes in children 

and adolescents, the order may be reversed within one to two decades18.  

 

 
Figure 2.1-1 Number of people with diabetes (in millions) for 2000 and 2010 (top and 

middle values, respectively), and the percentage of increase. 

 

                                                 
16 King, H., Aubert, R.E., and Herman, W.H. (1998) Diab. Care., 21,1414. 
17 Kahn, B.B. and Flier, J.S. (2000) J. Clin. Invest.,106, 171.  
18 Fagot-Gampagna, A. (2000) J. Pediatr,. 136, 664. 
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Current estimates from different countries in Europe and the United States 

have shown that diabetes and its complications account for 8–16% of the total 

health costs for society and these will increase dramatically unless major 

efforts are made to prevent the ongoing epidemic19. 

 

 

 

 

 

 

 

 

                                                 
19 Torben, H. (2002) CURRENT SCIENCE, 83, 25. 
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2.1.1.1 Type I diabetes 

 
Type I diabetes encompass several diabetic forms characterized by 

immunologically-mediated β-cell destruction, usually leading to absolute 

insulin deficiency and represent the 10% of all diabetic cases. Around the 

world there is a great variation in the type I diabetes incidence which is raising 

3-5% per year due to environmental causes (Figure 2.1–2).  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.1-2 Type I diabetes incidence in caldron aged 0-14 other 100.000individuals. 

 

The most common of this disease forms is known as Insulin-Dependent 

Diabetes Mellitus (IDDM) or juvenile-onset diabetes, results from 

autoimmune mediated destruction of the insulin-producing beta cells of the 

pancreas20.The rate of destruction is quite variable, being rapid in some 

individuals and slow in others21. The rapidly progressive form is commonly 

                                                 
20 K.G., Alberti, and Zimmet, P.Z. (1998) Diabetic Med., 15, 539. 
21 Zimmet, P.Z., Tuomi, T., Mackay, R., Rowley, M.J., Knowles, W., and Cohen, M. (1994) 
Diabetic Med., 11, 299. 
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observed in children, but also may occur in adults22. The slowly progressive 

form generally occurs in adults and is sometimes referred to as Latent 

Autoimmune Diabetes in Adults (LADA). Some patients, particularly children 

and adolescents, may present with ketoacidosis as the first manifestation of the 

disease23.Others have modest fasting hyperglycemia that can rapidly change to 

severe hyperglycemia and/or ketoacidosis in the presence of infection or other 

stress. Still others, particularly adults, may retain residual beta cell function, 

sufficient to prevent ketoacidosis, for many years24.  

Type I diabetes is characterized by severe complicances such as macro and 

microangiopathy, arteriosclerosis, retinopathy, nefropathy and neuropathy 

(Figure 2.1–3). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.1-3 Type I diabetes complications. 

 

                                                 
22 Humphrey, A.R., McCarty, D.J., Mackay, I.R., Rowley, M.J., Dwyer, T., and Zimmet, P. 
(1998) Diabetic Med., 15, 113. 
23 Japan and Pittsburgh Childhood Diabetes Research Groups (1985) Diabetes, 34, 1241. 
24 Zimmet, P.Z. (1995) Diabetes Care, 18, 1050. 
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Markers of immune destruction, including islet cell autoantibodies, and/or 

autoantibodies to insulin, and autoantibodies to Glutamic Acid Decarboxylase 

(GAD65) are present in 85–90 % of individuals with type I diabetes mellitus 

when fasting diabetic hyperglycemia is initially detected25. The peak incidence 

of this form of type 1 diabetes occurs in childhood and adolescence, but the 

onset may occur at any age, ranging from childhood to the ninth decade of 

life26. There is a genetic predisposition to autoimmune destruction of beta 

cells, and it is also related to environmental factors that are still poorly defined. 

Although patients are rarely obese when they present with this type of 

diabetes, the presence of obesity is not incompatible with the diagnosis. These 

patients may also have other autoimmune disorders such as Graves’ disease, 

Hashimoto’s thyroiditis, and Addison’s disease27. 

There are some forms of type 1 diabetes, called Idiopathic, which have no 

known etiology. Some of these patients have permanent insulinopenia and are 

prone to ketoacidosis, but have no evidence of autoimmunity28. This form of 

diabetes is more common among individuals of African and Asian origin. In 

another form found in Africans an absolute requirement for insulin 

replacement therapy in affected patients may come and go, and patients 

periodically develop ketoacidosis29. 

Studies measuring the expression of diabetes related autoantibodies in young 

children from birth suggest that the appearance of these markers is a major risk 

for the future development of type I diabetes,30. However, the role of 

                                                 
25 Verge, C.F., Gianani, R., Kawasaki, E., Yu, L., Pietropaolo, M., and Jackson, R.A., Diabetes 
(1996), 45, 926. 
26 Mølbak, A.G., Christau, B., Marner, B., Borch-Johnsen, K., and Nerup, (1994) J. Diabetic 
Med, 11, 650. 
27 Betterle, C., Zanette, F., Pedini, B., Presotto, F., Rapp, L.B., and Monsciotti, C.M. (1983) 
Diabetologia, 26, 431. 
28 McLarty, D.G., Athaide, I., Bottazzo, G.F., Swai, A.B., and Alberti, K.G. (1990) Diabetes, 
Res Clin Pract, 9, 219. 
29 Ahre´n, B. and Corrigan, C.B. (1984) Diabetic Med, 2, 262. 
30 Yu, L., Robles, D.T., Abiru, N., Kaur, P., Rewers, M., and Kelemen, K., (2000) Proc Natl 
Acad Sci USA, 97, 1701. 
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autoantibodies in the actual pathogenesis of type I diabetes has not been 

established in humans. In fact, a recent case report showed the development of 

type 1 diabetes in a patient with X linked agammaglobulinaemia, suggesting 

that autoantibodies are not needed for either the initiation or the progression of 

type I diabetes31. In general, type I diabetes is considered primarily a T cell 

mediated disease, and extensive evidence exists in both man and mouse to 

support this. Examination of islet tissue obtained from pancreatic biopsy from 

patients with recent onset type I diabetes confirms insulitis, with the presence 

of an infiltrate composed of CD4 and CD8 T lymphocytes, B lymphocytes, 

and macrophages, suggesting that these cells have a role in destruction of the _ 

cells32. Early studies in mice showed that anti-CD3 treatment prevented 

diabetes, and a trial using humanized anti-CD3 antibody in patients with new 

onset type I diabetes is under way33. Figure 2.1–4 describes a general model of 

β-cell destruction leading to type I diabetes. The initial interaction of genes 

and environmental factors seem to trigger an immune mediated response, with 

the appearance of autoantibodies as the first sign of β-cell destruction, 

followed eventually by the loss of the first phase insulin response. The 

progression to overt diabetes resulting in significant β-cell destruction is 

triggered by the development of a more aggressive T cell phenotype and a 

change in the Th1 to Th2 balance towards a more proinflammatory milieu. The 

expression of FasLigand on cytotoxic T cells also marks the progression to 

overt diabetes. Examination of islets during insulitis suggests that Fas 

mediated apoptosis occurs and therefore provides one possible mechanism of 

β-cell destruction34. 

                                                 
31 Martin, S., Wolf-Eichbaum, D., Duinkerken, G., Scherbaum, W.A., Kolb, H., and Noordzij, 
J.G. (2001) N. Engl. J. Med., 345, 1036. 
32 Imagawa, A., Hanafusa, T., Itoh, N., Waguri, M., Yamamoto, K. and Miyagawa, J. (1999) 
Diabetologia, 42, 574. 
33 Herold, K.C., Hagopian, W., Auger, J.A., Poumian-Ruiz, E., Taylor, L., and Donaldson, D. 
(2002) N. Engl. J. Med., 346, 1692. 
34 Foulis, A.K., Liddle, C.N., Farquharson, M.A., Richmond, J.A., and Weir, R.S (1986) 
Diabetologia, 29, 267. 
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Figure 2.1-4 Model of phatogenesis and natural history of type I diabetes 

 

Individuals with underlying islet autoimmunity who are at risk for type I 

diabetes can be identified years before symptomatic presentation by the 

presence of circulating autoantibodies to specific islet antigens: (pro)insulin, 

the molecular weight 65,000 isoform of glutamic acid decarboxylase 

(GAD65), tyrosine phosphatase-like insulinoma antigen 2 (IA2) and beta cell-

specific zinc transporter 8. As can be seen in Figure 2.1-4 the preclinical 

factors mentioned above lay on the second half of the secondary prevention 

window. The environmental promoters (mostly un-known) lay upstream. Thus 

the decision to focus on glycation that can be considered as a factor 

characteristic of the early onset of the disease and that could be the core of a 

biochemical assay for type I diabetes early diagnosis. 
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2.1.1.2 Type II diabetes 

 
Type II diabetes is not a single entity but a group of metabolic disorders 

characterized by the clinical feature of hyperglycemia which is due to insulin 

resistance or elative insulin deficiency, either of which may be present at the 

time that diabetes becomes clinically manifest35 (Figure 2.1-5). 

  

 

Figure 2.1-5 Pathway of the raising of glucose blood level in type II diabetes 

 

There is continuing debate as to the primary aetiological factor for the 

syndrome. Genetic factors, visceral obesity, insulin resistance and endothelial 

dysfunction may all contribute either solely or jointly36. 

Type II diabetes complicances are very similar to those given by type I 

diabetes, namely the macro and microangiopathy, arteriosclerosis, retinopathy, 

nephropathy and neuropathy (Figure 2.1–4). This is due to the fact that such 

                                                 
35 Narayan, K.M. (2003) JAMA, 290, 1884. 
36 Reaven, G. (1988) Diabetes, 37, 1595. 
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complications are primary generated by an excess of glucose37 in the blood 

which is a common feature of all diabetic types. Glucose is responsible for 

glycation of the plasma soluble proteins and generation of the Advanced 

Glycation End Products, which play a key role in the complicances. 

Type II diabetes is increasingly common, indeed epidemic, primarily because 

of increases in the prevalence of a sedentary lifestyle and obesity. Prevention 

of complications is a key issue because of the huge premature morbidity and 

mortality associated with the disease. The possibility of preventing the disease 

by interventions that affect the lifestyles of subjects at high risk for the disease 

is now the subject of numerous studies These have focused on people with 

Impaired Glucose Tolerance (IGT) commonly referred as “pre-diabetics”38. 

IGT is defined as hyperglycemia (with glucose values intermediate between 

normal and diabetes) following a glucose load39, and affects at least 200 

million people worldwide. It represents a key stage in the natural history of 

type II diabetes as these people are at much higher future risk than the general 

population for developing diabetes40. 

The type II diabetes diagnosis is established when it is observed a raise of the 

blood glucose level which is kept within a very narrow range of 7-12 mmol/L 

under normal physiological conditions41 (Table 2.1-1). 
 

                                                 
37 Stitt, A.W., Jenkins, A.J., and Cooper, M.E. (2002) Expert Opin. Investig. Drugs., 11, 1205. 
38 Eastman, R., Javitt, J., Herman, W., Dasbach, E. and Harris, M. (1996) In Diabetes Mellitus: 
A Fundamental and Clinical Text, eds Le-Roith, D., Taylor, S. and Olefsky, J. (Lippincott-
Raven, New York) 621. 
39 World Health Organization. Definition, Diagnosis and Classification of Diabetes mellitus 
and itsComplications, (1999) Department of Noncommunicable Disease Surveillance, 
Geneva,12. 
40 Shaw, J., Hodge, A., de Courten, M., Chitson, P., and Zimmet, P. (1999) Diabetologia, 42, 
1050. 
41 Zimmet, P., Alberti, K.G., and Shaw, J. (2001) NATURE, 414, 782. 
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Table 2.1-1 Values for diagnosis of diabetes and other types of hyperglycemia 

 
Interestingly the measurement of glycated hemoglobulin (HbA1c) is no more 

recommended as a diagnostic test for diabetes because of lack of standardized 

methodology resulting in varying nondiabetic reference ranges among 

laboratories42. 

The latter consideration adds value to our commitment of developing a new 

diagnostic/prognostic tool for diabetes based on the recognition of specific 

glycated sequences, amino acids and metabolites. 

 

                                                 
42 The Expert Commitee on the Diagnosis and Classification of Diabetes Mellitus (2003) 
Biabetes Care, 26, 15. 
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2.1.2 Correlation between glycation of hCD59 and complement-

mediated diabetes complicances 

 

Humans are particularly prone to develop proliferative micro and 

macrovascular disease that mediating some of the most common long-term 

complicances of diabetes mellitus43. These vascular complicances of diabetes 

are caused by elevated blood glucose levels over long periods of time44. 

Understanding the molecular mechanisms that link hyperglycemia and the 

vascular proliferative disease in humans is essential for designing adequate 

animal models and therapeutic strategies for a condition that represents a 

leading cause of morbidity and mortality in the adult population. Glycation is 

considered a major pathophysiological mechanism causing tissue damage in 

diabetic subjects45. Reports of increased deposition of the membrane attack 

complex of complement (MAC) in blood vessels and kidneys of diabetic 

patients46,47 suggest that there may be a link between complement activation 

and the development of chronic proliferative diabetic complications.  

The complement system consists of a group of >12 soluble proteins that 

interact with one another in three distinct enzymatic activation cascades 

known as the classical, alternative, and lectin pathways. All activation 

pathways converge to form the membrane attack complex (MAC). The MAC 

is a circular polymer of 12–18 monomers of the C9 complement protein with 

the capacity to insert into cell membranes and form a transmembrane pore of 

an effective internal radius of 5–7 nm. Influx of salt and water through the 

MAC pore induces colloidosmotic swelling and lysis of MAC-targeted cells 

such as gram-negative bacteria or heterologous erythrocytes. We have 

                                                 
43 Duhault, J., and Koenig-Berard, E. (1997) Therapie, 52, 375. 
44 Nathan, D.M. (1996) Ann. Intern. Med. 124, 86. 
45 Brownlee, M., Vlassara, H., and Cerami, A. (1984) Ann. Intern. Med., 101, 527. 
46 Weiss, J.S., Sang, D.N., and Albert, D.M. (1990) Cornea, 9, 131. 
47 Falk, R.J., Sisson, S.P., Dalmasso, A.P., Kim, Y., Michael, A.F., and Vernier, R.L. (1987) 
Am. J. Kidney Dis., 9, 121. 
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demonstrated that during the assembly of the MAC pore, there is a phase when 

the MAC pore is transient and reversible, permitting opening and 

closing/resealing of the plasma membrane48,49,50. These transient MAC pores 

can generate significant changes in the membrane permeability of autologous 

cells without compromising their viability and thereby mediate physiological 

and/or pathological responses51. 

Indeed, the MAC stimulates proliferation of fibroblasts and smooth muscle, 

mesangial, and other cells52,53, in part by releasing growth factors such as basic 

fibroblast growth factor and platelet-derived growth factor from MAC-targeted 

endothelium54. The MAC also induces increased synthesis of extracellular 

matrix proteins by mesangial cells55. Thus, increased MAC deposition in 

diabetic tissues may induce the release of growth factors that would stimulate 

cell proliferation in the vascular wall and contribute to the development of 

vascular proliferative disease. In the kidneys, MAC-induced vascular 

proliferation and expansion of the extracellular matrix may contribute to the 

characteristic glomerulosclerosis of diabetic nephropathy56. Increased MAC 

deposition in diabetes is well documented but the underlying mechanism is 

poorly understood. Autologous MAC deposition is normally restricted because 

cells express complement regulatory membrane proteins such as DAF and 

CD59, which limit complement activation and MAC formation. In particular, 

CD59, a glycan phosphatidylinositol-linked membrane protein that is 

universally expressed in cells, restricts MAC assembly by interacting with the 

                                                 
48 Halperin, J.A., Nicholson-Weller, A., Brugnara, C., and Tosteson, D.C. (1988) J. Clin. 
Invest., 82, 594. 
49 Halperin, J.A., Taratuska, A., Rynkiewicz, M., Nicholson-Weller, A. (1993) Blood, 81, 200. 
50 Acosta, J.A., Benzzaquen, L.R., Goldstein, D.J., Tosteson, M.T., and Halperin, J. (1996) 
Mol. Med., 2, 755. 
51 Nicholson-Weller, A. and Halperin, J. (1993) Immunol Res., 12, 244. 
52 Halperin, J.A., Taratuska, A. and Nicholson-Weller, A. (1993) J. Clin. Invest. 91,1974. 
53 Torzewski, J., Oldroyd, R., Lachmann, P., Fitzsimmons, C., Proudfoot, D., and 
Bowyer, D. (1996) Arterioscler. Thromb. Vasc. Biol. 16, 673. 
54 Benzaquen, L.R., Nicholson-Weller, A., and Halperin, J.A. (1994) J. Exp. Med., 179, 985. 
55 Wagner, C., Beer, M., Rother, K., and Hansch, G.M. (1994) Exp.Nephrol. 2, 51. 
56 Ziyadeh, F.N. (1993) Am. J. Kidney Dis., 22, 736. 
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terminal complement proteins C8 and C9, thus preventing C9 polymerization57 

(Figure 2.1-6). 

 

 

 

 

 

 

 

 

Figure 2.1-6 Complement/MAC regulation by CD59. 

 

It has been demonstrated that hCD59 is prone to glycation at a specific Lysine 

site thanks to a glycation motif or consensus sequence58. The NMR structure 

of human CD5959 reveals that Lysine-41 (K41) should be susceptible to 

glycation because of its critical proximity to the unique Histidine, Histidine-44 

(H44), in the protein Figure 2.1-7. Furthermore, the fact that K41 is adjacent to 

tryptophan-40 (W40), a conserved amino acid that is essential for CD59 

function60,61 (18, 19), suggests that glycation of K41 may hinder the activity of 

CD59.  

 

                                                 
57 Ninomiya, H. and Sims, P.J. (1992) J. Biol. Chem. 267, 13675. 
58 Acosta, J., Hettinga, J., Fluckiger, R., Krumrei, N., Goldfine, A., Angarita, L., Halperin, J. 
(2000) PNAS, 97, 5450. 
59 Fletcher, C.M., Harrison, R.A., Lachmann, P.J., and Neuhaus, D. (1994) Structure, 2, 185. 
60 Bodian, D.L., Davis, J.S., Morgan, B.P., and Rushmere, N.K. (1997) J. Exp. Med., 185, 507. 
61 Yu, J., Abagyan, R., Dong, S., Gilbert, A., Nussenzweig, V. and Tomlinson, S. (1997) J. 
Exp. Med., 185, 745. 
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Figure 2.1-7 NMR structure of the protein backbone of human CD59. The figure 
shows the 20 lowest energy structures of human CD59 with all Lysine side chains and 

H44. The structures were superimposed for the backbone of the β-turn 41–44. The 
square highlights the K41–H44 glycation motif. The K41 is within 5.91 ± 1.44 Å of 

the D1 imidazolic nitrogen of H44. 

 

Haplerin et al. extensively demonstrated that selective Lys 41 glycation 

deactivated hCD59 and destabilize MAC homeostasis: 

(i) in vitro glycation of human CD59 inhibits its homologous restriction 

activity, (ii) replacement by site-directed mutagenesis of either K41 or H44 

abolishes the sensitivity of human CD59 to glycation–inactivation, (iii) 

glycation of CD59 in human RBC (hRBC) increases their sensitivity to MAC-

mediated lysis, (iv) glycation of human umbilical vein endothelial cells 

(HUVEC) renders them more sensitive to MAC-mediated growth factor 

release, and (v) glycated CD59 is present in human urine, indicating that CD59 

is glycated in vivo 

Thus glycation inhibiting the principal MAC inhibitor destabilize MAC 

regulation and promote diabetic complication. Glycation as a an aberrant-post-

translational modification it is the key molecular factor that links complement 

to diabetic complications  

Importantly, the H44 residue of human CD59 is not present in any other 

species in which CD59 has been sequenced (Table 2.1-2).  
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Table 2.1-2 Alignment of CD59 amino acid sequences from different species 

around residue W40 
 

It has been propose that the presence of the glycation motif K41–H44 in 

human CD59 provides a possible molecular explanation for the propensity of 

humans to develop the combination of vascular complications that characterize 

human diabetes. Indeed most of the existing diabetic animal models do 

develop diabetes, for example iperglycemia, but don’t show any or little trace 

of diabetic complication. 
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2.2 Building blocks for the synthesis of post-translationally 

modified glycated peptides and proteins. 

 
Glycation of proteins through non-enzymatic reactions between glucose or 

other reducing sugars and reactive amino groups represent one of the more 

abundant processes involved in post-translational modification of proteins2. 

Spontaneous and reversible condensation of a reducing sugar and a free amino 

group of a protein forms an aldimine also known as the Schiff base that 

undergoes a rearrangement into the more stable ketoamine known also as the 

Amadori product3 In the case of glucose, the initially formed Schiff base 

rearranges into the more stable 1-deoxyfructosyl moiety. 

Growing evidence suggests that glycation occurs preferentially at specific 

glycation motifs characterized by acidic amino acids, mainly glutamate and 

Lysine residues that catalyze the glycation of nearby Lysines62,63. Proximity to 

histidine either in the primary or secondary structure was also suggested to 

promote glycation of adjacent Lysines64,65. Recent interest to fully characterize 

the glycation products and to use them as biomarkers and antigens for 

diagnosis and prognosis of disease, monitoring its progress and evaluation of 

the efficiency of therapy generated the need for glycated peptides representing 

the glycation motifs specifically modified by the 1-deoxyfructosyl. Today, 

syntheses of site-specific Amadori modified peptides are carried out on 

partially protected synthetic peptides in which only the lysyl residues 

designated for glycation are exposed while the rest are protected66,67,68,69 . This 

                                                 
62 Johansen, M.B., Kiemer, L., and Brunak, S. (2006) Glycobiology, 16, 844. 
63Venkatraman, J., Aggarwal, K., and Balaram, P. (2001) Chem. Biol., 8, 611. 
64 Baynes, J.W., Watkins, N.G., Fisher, C.I., Hull, C.J., Patrick, J.S., Ahmed, M.U.; Dunn, and 
J.A.; Thorpe, S.R. (1989) Clin. Biol. Res., 304, 43. 
65 Acosta, J., Hettinga, J., Fluckiger, R., Krumrei, N., Goldfine, A., Angarita, L., and Halperin, 
J., (2000) Proc. Natl. Acad. Sci. U.S.A., 97, 5450. 
66 Frolov, A., Singer, D., and Hoffmann, R. (2006) J. Pept. Sci., 12, 389. 
67 Frolov, A., Singer, D., and Hoffmann, R. (2007) J. Pept. Sci., 13, 862. 
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approach involves orthogonal protection strategies and suffers from low yields 

and elaborated purification schemes. 

Stepwise assembly of site-specific Amadori modified peptides requires Nα-

protected-Nε-glycated-Lys s and represents a fully controlled and effective 

synthetic strategy. Herein, we report the synthesis, purification, and 

characterization of Nα-Fmoc, Nε-Boc, Nε-(1-deoxyfructosyl)Lysine s needed 

for Fmoc-based solid phase synthesis of Amadori modified peptides. 

This study offers a controlled side-specific introduction of Nε-Amadori-

modified Lys residue into synthetic peptides during a stepwise assembly either 

in solution or solid phase methodologies. This strategy will overcome tow 

major problems associated with the modification of already assembled 

peptides: 1) lack of site-specificity in the introduction of the modification. 2) 

elaborate orthogonal protection scheme in an effort to achieve site-specificity. 

And 3) extremely low yields and complicated reaction mixtures due to side 

reactions following the direct thermal glycation. Adapting the conditions for 

generating Amadori peptides by direct thermal glycation in the presence of 

excess D-glucose66 to the direct glycation of Nα-Fmoc-Lysine led to the 

synthesis of Nα-Fmoc-Lys[Nε-1-deoxyfructosyl)]-OH (1a) in 67% yield 

(Scheme 2.2–1, pathway A). Preliminary attempt to use 1a as a in stepwise 

assembly of peptides suggested that further protection of the ε-amino by the 

orthogonal Boc group may eliminate some of the observed side products. To 

this end Boc protection of 1a yielded the pure Nα-Fmoc-Lys[Nε-1-

deoxyfructosyl, Nε-Boc)]-OH (1) in 45% yield.  

                                                                                                                      
68 Stefanowicz, P., Kapczynska, K., Kluczyk, A., and Szewczuk, Z. (2007) Tetrahedron Lett., 
48, 967. 
69 Jakas, A., Vinkovic, M., Smrecki, V., Sporec, M., and Horvat, S. (2008) J. Pept. Sci., 14, 
936. 
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Scheme 2.2-1.Synthesis of Nα-Fmoc-Lys[Nε-1-deoxyfructosyl, Nε-Boc)]-OH (1) and 
Nα-Fmoc-Lys[Nε-(2,3;4,5-di-O-isopropylidene-1-deoxyfructosyl, Nε-Boc)]-OH (2). 

 

Anticipating that quantitative incorporation of 1 may require highly activated 

Nε-Amadori modified building block and extended reaction times we sought 

the synthesis of an exhaustively protected product in which in addition to the 

primary and secondary amino function we also protected the hydroxyls on the 

carbohydrate moiety. To this end, reductive alkylation of the Nα-Fmoc-Lys-

OH by 2,3:4,5-di-O-isopropylidene-aldehydo-β-D-arabino-hexos-2-ulo-2,6-

pyranose70,71,72 in the presence of NaCNBH3 led to the formation of 2a in 22% 

(Scheme 2.2–1, pathway B). The pure fully protected Nα-Fmoc-Lys[Nε-

(2,3;4,5-di-O-isopropylidene-1-deoxyfructosyl, Nε-Boc)]-OH (2) was obtained 

in 67% yield. Figure 1 depicts the analytical RP-HPLC tracings obtained for 

the purified s 1 and 2, and their precursors 1a and 2a. 

In conclusion, we have developed Nα-Amadori-containing Nα-Fmoc-Lys-OH 

derivatives as new s for the synthesis of site specific Amadori-modified 

peptides. Contrary to previously published post-synthetically Amadori-

                                                 
70 Brady, R.F. Jr. (1970) Carbohydr. Res., 15, 35. 
71 Cubero, I., and Lopez-Espinosa, M. (1990) Carbohydr. Res., 205, 293. 
72 Yuasa, Y., Ando, J., and Shibuya, S. (1996) J. Chem. Soc., Perkin Trans. 1, 343, 793. 
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modified peptides, these building blocks will enable efficient and site specific 

incorporation of a major post-translational modification into bioactive and 

antigenic peptides by stepwise assembly.  
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2.2.1 Peculiarities of the Nε-1-deoxyfructosyl sugar moiety 

 
We have observed for those bulding block products carrying the unprotected 

sugar moiety, 1 and 1a, a curious behavior on LC-MS. The mass 

chromatogram appears as a collection of peaks placed at precise intervals 

(Figure 2.2–1). We have realized that such peaks reproduce the fragmentation 

pattern of 1-deoxyfructosyl derivates reported in literature for ESI-MS-MS73 

(Scheme 2.2–2). Basely the 1-deoxyfructosyl residue looses water and 

formaldehyde units generating the oxonium, bis-dehydrated, pyrylium, 

furylium and immonium ions. However in our measures we have use the 

standard conditions of mild ionization of LC-ESI-MS which don’t fragment 

most organic molecules.  

 

 

Figure 2.2-1 ESI-MS chromatogram of Nα-Fmoc-Lys(Nε-1-deoxyfructosyl)-OH, 
product 1a, with the labeled peaks of the fragmentation ions [531=Amadori(I), 513= 

oxonium (II), 495=-2H2O (III), 477= pyrylium (IV), 447=furylium (V) and 
immonium (VI)]; in the small box is reported the analytical HPLC chromatogram      

of 1a. 

                                                 
73 Frolov, A., Hoffmann, P., and Hoffmann, R. (2006) J. Mass Spectrom., 41, 1459. 
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From this consideration we speculate that the sugar moiety is particularly 

sensitive to ionization.  

O O O
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Scheme 2.2-2 Mass Fragmentation pattern of the Amadori forms(531=Amadori, 513= 
oxonium, 495=-2H2O, 477= pyrylium, 447=furylium and immonium). 

 

Another interesting feature has been displayed by glycated building block 1, 

with the free glucose moiety and the Boc protection on the ε-amino. The LC 

chromatograms show a characteristic pattern of four peaks with exactly the 

same mass (Figure 2.2–2). Despite numerous attempts it has been impossible 

to isolate the different isomers because each fraction collected generated the 

same pattern regardless of the solvent and/or pH conditions applied. We 

speculate, in accordance from what was previously reported for short post-

synthetically glycated peptides74,75, that the incorporated sugar moiety 

presents, in solution, several tautomeric forms in equilibrium similarly to what 

free sugar do in solution (Scheme 2.2-3). In fact, the saccaridic unit of 

reducing sugars is in equilibrium between an open form (thermodynamically 

un-favored, less than 1%) and several closed forms, notably α-pyranose, β-

                                                 
74 Horvat, S. and Jakas, A. (2004) J. Pept. Sci., 10, 119. 
75 Jakas, A., Katic, A., Bionda, N., and Horvat, S. (2008) Carbohydr. Res., 343, 2475. 
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pyranose, α-furanose and β-furanose forms (with the pyranose adducts 

generally being the most favoured, especially the β form).  
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Figure 2.2-2 Above is reported the analytical HPLC chromatogram of product 1 with 
the zoom of the peak region from LC-MS. Below is reported the mass spectrum of the 

four peaks. 

 
Interestingly among the four glycated Lysine derivate we have generated, only 

product 1 displayed such putative tautomerization. Our explanation is that in 

the case of products 2 and 2a the equilibrium of isomeric forms is suppressed 

by the isopropylide protection that doesn’t allow the sugar moiety to assume 

the open form and sub sequentially to tautomerize. However, in the case of  
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Scheme 2.2-3 In solution tautomeric equilibrium of the glycated adducts. 

 
analog 1a we have seen none of the tautomerization regardless of the sugar 

being free from protection. We speculate that the chemical environment 

influences the tautomerization allowing it to be a thermodynamically driven 

process or a kinetically driven one. With a simple glycated Lysine we are in 

the first case, thermodynamic control meaning that the sugar moiety is almost 

exclusively in the β-pyranose form and the LC chromatogram shows only one 

peak. With hindered, semi-protected glycated Lysines and with glycated 

peptides we are in the second case, kinetical control that makes the closed 

forms over than β-pyranose less un-favored and thus detectable as separate 

peaks in LC. In this theoric frame, the peaks are not actually the isomeric 

forms but an effect of the different distribution isomers and each peak area 

should be proportional to an isomer relative probability of forming. 

Finally regarding the purification of Amadori building block, reverse phase 

flash chromatography (RPFC) proved to be more efficient than direct phase 

which may be used only with the fully-protected building block (product 2) 

with is the less polar one (Figure 2.2–3). Products 1 and 1a, both with free 
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hydroxyls, were not separated by RPFC without the presence of acid in the 

solvents and appear as a single peak However when acid (TFA 0.1-0.05 %) is 

added the two peaks separates accordingly to the analytical HPLC behavior. 

Probably without acid the products are in form of corresponding TEA salts 

while after the TFA addition the free acids are formed and polarity is more 

relevant in the chromatographic separation. 

 

 

 

Figure 2.2-3 Above is reported the RP flash chromatogram of a mixture of product 1 
and 1a without acid in the solvents (A) and with acid (B). 

B 

A 
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2.2.2 Nα-Fmoc-Lys[Nε-(2,3:4,5-Di-O-Isopropylidene-1-

Deoxyfructopyranosyl),Nε-Boc]-OH 

 
As expected, the fully protected building block, bearing a Boc protection on 

the ε-amino and two isopropilidene protections on the vicinal hoxydryls of the 

sugar moiety, proved to be completely stable to the condition of solid phase 

peptide elongation by Fmoc/tBu strategy. 

The sugar moiety is unaffected by the concentrated TFA treatment required for 

cleavage of the peptide from the resin and side chain deprotection. The 

isopropilidene protection however are only partially removed by 2-3 hours 

TFA exposure and the resulting crude peptide (Figure 2.2–4 A) is a mixture of 

fully deprotected sugar product, mono-protected isopropylidene form and di-

protected form. The latter two adducts at progressively longer retention time 

compare to the unprotected one.  

 

 
Figure 2.2-4 LC-MS chromatogram of a glycated peptide cleavage after 30 min (A), 

2h (B) and second TFA treatment (overall 4h) (C). 
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An additional TFA treatment is required to completely remove the 

isopropylidene protection (Figure 2.2–4 B and C). Scavenger must be added to 

the deprotecting mixture to prevent undesired alkylation due to the presence of 

carbocations generated in the previous cleavage. 

In conclusion the glycated building block represents a highly relabile tool for 

introducing glycation modifications in specific positions of a peptide sequence 
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2.2.3 Systematic approach to the synthesis of a glycated hCD59 

peptide antigen 

 

The ultimate goal of this project was the generation of specific glycated-CD59 

antibodies to be used as diagnostic/prognostic tool for diabetes. In order to 

produce the desired glycated CD59 antigen, to be use for mice and rabbit 

immunization, five different convergent strategies were carried out (Scheme 

2.2–4): (A) in solution direct glycation, (B) on resin direct glycation, (C) on 

resin reductive amination, (D) in solution reductive amination and stepwise 

synthesis (E).  

 

 

 

 

 

 

 

 

Scheme 2.2-4 Convergent strategies for the synthesis of glycated hCD59(37-50) 

 

A first problem that we had to address was the requirement of selectivity for 

glycation of hCD59(37-50) Lysine41 since the sequence contains the close by 

Lysine38. Post-synthetic approaches (A,B,C and D) are not selective and 

require orthogonal protection schemes to achieve a selective glycation on a 

given position otherwise all the accessible amino groups will react in similar 

way. On-resin post-synthetic modification (B and C) was achieved by 

protecting Lysine 41 orthogonally to  
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Scheme 2.2-5 Synthetic routs of the five convergent strategies attempted. 
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only there the glycation could take place (Scheme 2.2-5). This was achieved 

using the 1-(4,4’-dimethyl-2,6-dioxocyclohexylidene)-3-methylbutyl (ivDde)76 

protection, cleavable with 2% hydrazine in DMF. The hCD59(37-50) sequence 

was synthesized by SPPS using Fmoc/tBu strategy obtaining intermediate 

peptide I. After selective deprotection of Lys41 was obtained intermediate 

peptide Ia on which was performed on resin direct glycation and on resin 

reductive amination. 

For the in-solution approaches (A and D) we synthesized the intermediate 

peptide II, a hCD59(37-50) sequence with Lysine38 and Lysine41 

respectively protected with ivDde and Boc groups. The product was obtained 

after concentrated TFA cleavage (with all positions unprotected but Lysine38)  

Direct glycation is the oldest among post-synthetic glycation strategies and is 

normally performed by incubating peptides and proteins in presence of a high 

excess (50to100 fold) of aldose sugars, glucose usually. In spite of the excess 

of reactants the glycation is slow and usually the reaction is held for 30 days. 

We have adopted a recently described method which describes glycation with 

glucose incubation at 110° in DMF for 30 min77. This strategy represents an 

improvement of the former method because it is faster and the yield of 

glycation product III is good (ca. 70%) but there is a serious problem with 

undesired byproducts. Such undesired reactions caused probably by oxidation, 

degradation and polymerization reactions, that gave side products almost 

impossible to separate from the desired product. The on-resin approach was 

superior in terms of yield to the in-solution one due to the protection of side 

chain residues. 

The other post-synthetic strategy attempted was reductive amination of the 

Lysine residue with a specific D-ribose aldehyde derivate, the 2,3:4,5-di-O-

isopropylidene-aldehydo-β-D-arabino-hexos-2-ulo-2,6-pyranose, which after 

                                                 
76 Chhabra, S.R., Hothi, B., Evans, D.J., White, P.D., Bycroft, B.W., and Chan, W.C. (1998) 
Tetrahedron Lett., 39, 1603. 
77 Frolov, A, Singer, D., and Hoffmann, R. (2006) J. Pept. Sci., 12, 389. 
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the formation of the corresponding Schiff base can be reduced to the 1-

deoxyfructosyl form that is indistinguishable from the derivate form of D-

glucose glycation occurring in Nature78 This strategy proved to be more 

successful in-solution than on resin where the rate of reaction was slow and 

remained a substantial amount of un-glycated form. On the contrary in 

solution, reductive amination was fast and proceeded almost to completion. 

The draw back of the latter strategy was the necessity of many purification 

steps which influenced the final yield. 

On the other hand, step wise synthesis using our building block 2, the specific 

glycated Fmoc-Lysine derivate, Nα-Fmoc-Lys[Nε-1-deoxyfructosyl, Nε-

Boc)]-OH79, proved to be completely reliable with no side effects or 

shortcomings.  

                                                 
78 Brady, R.F. Jr. (1970) Carbohydr. Res., 15, 35. 
79 Carganico, S., Rovero, P., Halperin, J.A., Papini, A.M., and Chorev, M. (2009) J. Pept. Sci., 
15, 67. 
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2.2.4 Post-synthetic strategies versus building-block approach 

 
One important feature common to all the preparations was the realization that 

the glycated, 1-deoxyfructosyl-form, of a the peptide had the retention times in 

C18, C8 and C4 very close to the corresponding un-glycated form. Under a 

very shallow, almost isocratic gradient, the glycated and un-glycated forms of 

our antigen barely starts to separate (Figure 2.2-5).  

 
C:\Xcalibur\...\2007\12-21-07\fra8 12/20/2007 2:35:52 PM

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time (min)

0

50

100
16.08

19.37

16.48
16.6815.98 17.58

12.050.48 11.310.56
8.768.134.33 13.71 14.309.247.483.532.84 6.585.632.43

NL:
3.97E4
Total Scan  
PDA fra8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Time (min)

0

50

100
19.44

17.75
16.61

16.25
12.2311.53 12.33

11.240.06 0.57 14.128.237.88 8.933.501.54 4.17 5.27 14.937.05 9.985.953.04

NL:
9.06E7
TIC  M S fra8

200 400 600 800 1000 1200 1400 1600 1800 2000
m/z

0

50

100
964.00

643.03
974.83 1203.64209.21 1305.43882.97659.65630.96148.96 1463.90 1581.07 1768.48391.03 444.66 1870.39 1958.13

200 400 600 800 1000 1200 1400 1600 1800 2000
m/z

0

50

100
883.12

589.01 932.45 1667.78 1957.24988.48 1144.50 1220.56 1574.49168.76 1812.631374.23643.67 868.84532.73219.18 334.27

 

Figure 2.2-5 LC-MS method 15 to 17 % acetonitrile in water in 15 min, 
chromatogram of a mixture of un-glycated peptide ( at 11.31 min, [M+2H]2+=883.12) 

and glycated peptide ( at 12.05 min, [M+2H]2+=964.00) and glycated peptide. 

 

Further purification by semi-preparative reverse phase HPLC using very 

shallow and isocratic gradients was unsatisfactory in terms of yield due to the 

poor separation of the two forms (glycated and un-glycated ones).  
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In conclusion semi-preparative C18 purification of glycated peptide 

preparations were found to be strongly dependent on the presence of the un-

glycated form of the peptide antigen.  

This purification shortcoming undermined the success of the post synthetic 

strategies (A), (C), and (D), due to the fact that a complete conversion of the 

starting material into the glycated product was not achieved regardless of the 

different synthetic conditions attempted. Longer reaction times, higher 

temperatures or higher excess of reactants lead to formation of di-glycation, 

that again displayed overlapping retention time with the glycated and un-

glycated form suggesting some kind of compensation between the increased 

polar nature of a glycated form versus the increased steric hindrance. Taking 

into account the fact that even free Lys and glycated Lysine have very similar 

retention times, we believe that the introduction of a glycation modification 

into a peptide sequence generates no significant net change in reverse phase 

chromatography reaction time. 

Method (B) was the only post-synthetic strategy that afforded selectively the 

desired glycated product however the yield is lowered by the necessity of 

several purification steps (after peptide synthesis, reductive amination and 

ivDde deprotection). 

Finally, the step-wise pathway using a specific glycated building block proved 

to be by far the most successful pathway, affording the desired product in high 

yield, with no trace of the un-glycated form, requiring just one purification 

step. 
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2.2.5 Generation and characterization of monoclonal anti glycated 

hCD59 antibodies. 

 

The glycated peptide antigen of hCD59(37-50) was used to immunize rabbits 

with the aim to generate specific anti-glycated-hCD59 antibodies to be used 

for identification of the glycated protein in biological samples. 

The combined efforts of a specialized private company (Epitomics) and the 

Laboratory for Translationa Research susseccfully isolate rabbit spleen cells 

producing a monoclonal antibody that efficiently recognizes glycated hCD59 

from urine (Figure 2.2-6). From the comparison of Figure 2.2-6 with Figure 

2.2-7 it is possible to conclude that the headlight band corresponds to the same 

molecular entity and this corresponds to glycated hCD59 because the N-20 

antibody only binds to the C-terminus sequence of hCD59. It can be argued 

that exists the possibility that the protein recognized it is un-glycated hCD59 

and not the glycated hCD59. However upon treatment of the samples with 

NaCNBH3 the monoclonal supernatants are not able any more to recognize the 

protein (the reducing agent transforms the glycated protein into the 

correspondent glucitoLysine-derivate). At the same time N-20 still recognized 

the protein as does a specific anti-glucitoLysine antibody that has been 

previously developed80 in the Laboratory for Translational Research.   

 

                                                 
80 Sonya Chantel et al. (2009) JACS, in press. 
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60-5       60-4      60-3 60-1     56-10 56-460-5       60-4      60-3 60-1     56-10 56-4  

56-5     62-9      62-8 62-6 62-2      62-156-5     62-9      62-8 62-6 62-2      62-1

 
Figure 2.2-6 Western blot to detect β-ME treated human CD59 with different 

supernatants of rabbit clones (risen with glycated hCD59(37-50) peptide antigen). In 
red is headlined the glycated CD59 band. Prominent signal is seen for monoclonal 60-

3, 56-10, and 62-6 antibodies. 

 

 
 

Figure 2.2-7 Blot 60-3 is reprobed with N-20 (anti-C-terminus-hCD59 commercial 
antibody) which only binds to β-ME treated CD59. 
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2.3 Synthesis of glycated antigenic probes for auto-antibodies 

recognition in diabetes 

2.3.1 Antigen-Antibody interactions 

The antigen (Ag) is a substance eliciting an immune response (e.g., the 

production of specific antibody molecules) when into the tissues of a 

susceptible animal. It is able to combine antibodies molecules or a receptor for 

T lymphocytes.81 Antigens are simple compounds like metabolic ones (i.e. 

sugars, lipids, and hormones), as well as macromolecules (as complex 

carbohydrates, phospholipids, nucleic acids, and proteins). 

Antigens are generally of high molecular weight and commonly are proteins or 

polysaccharides, despite of antibodies that are proteins and secreted by B cells 

after triggering an immune response. 

Antibodies (Abs, also known as immunoglobulins) are proteins, found in 

blood or other body fluids of vertebrates, and used by the immune system to 

identify and neutralize foreign objects, such as bacteria and viruses. 

Polypeptides, lipids, nucleic acids and many other molecules can be 

recognized as antigenic compounds by an antibody, while T lymphocytes can 

only recognize peptides and proteins, as well as hapten proteins and peptides.  

The question of T cell recognition of glycopeptides may be important in the 

immune defense against microorganisms, because many microbial antigens are 

glycosylated. Bäcklund et al. 82 provide evidence that T cell recognition of 

protein glycans may be crucial also for T cell responses to autoantigens in the 

course of autoimmune diseases. Glycopeptides with simple sugars have been 

suitable for studies of the antigen fine specificity of glycopeptide-specific T 

cells. 

                                                 
81 Davies D.R., and Cohen, G.H. (1996) Proc. Natl. Acad. Sci. USA, 93, 7. 
82 Bäcklund, J., Carlsen, S., Hoger, T., Holm, B., Fugger, L., Kihlberg, J., Burkhardt, H. and 
Holmdahl, R. ( 2002) Proc. Natl. Acad. Sci. USA, 99, 9960. 
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However, immune responses may also be generated against little molecules, 

termed haptens, if these are chemically coupled to a larger carrier protein, such 

as bovine serum albumin, or other synthetic matrices. Moreover, this specific 

immune response is highly variable and depends also on size, structure and 

composition of antigens.  

Only the small site on an antigen to which a complementary antibody may 

specifically bind is called an epitope. This is usually one to six 

monosaccharides or 5–8 amino acid residues on the surface of the antigen. 

Because antigen molecules are spatially oriented, the epitope recognized by an 

antibody may be dependent upon the presence of a specific three-dimensional 

antigenic conformation (a unique site formed by the interaction of two native 

protein loops or subunits). Moreover, an epitope may correspond to a simple 

primary sequence region. Such epitopes are described as conformational and 

linear, respectively. In conformational epitopes, the antibody interacts with 

amino acids not sequentially linked but spatially closed one to each other, 

because of the protein folding. The range of possible binding sites is 

enormous, with each potential binding site having its own structural properties 

derived by covalent bonds, ionic bonds and hydrophilic and hydrophobic 

interactions (Figure 2.3–1). 

 

 

Figure 2.3-1 MHC-I bound epitope is scanned by T-cell receptor. 
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Proteins can undergo post-translational modifications or proteolysis altering 

their covalent structure and generating new epitopes. These modified regions 

are termed neo-antigenic epitopes and can be recognized by other specific 

antibodies. 

The specific association of antigens and antibodies is dependent on hydrogen 

bonds, hydrophobic interactions, electrostatic forces, and Van der Waals 

forces. All antigen-antibody binding is reversible, but follows the basic 

thermodynamic principles of any reversible bimolecular interaction. 

 

2.3.2 Autoimmunity 

The immune system can occasionally attack self-antigens triggering an 

autoimmune response, with damages to the tissues on which these antigens are 

expressed. An autoimmune response can be triggered by several factors. In 

some cases infections are the starting triggering cause. 

Molecular mimicry is the process by which a viral or bacterial infection 

activates an immune response cross-reacting with self-antigens. Mimicry 

cannot be simply explained by the structural similarity of two peptides, as 

elucidated by the original model of autoimmune mimicry,83 in which a foreign 

antigen is sufficiently similar to a self-antigen to trigger an autoimmune 

response (Figure 2.3–2). 

 

Figure 2.3–2 Molecular mimicry. 

                                                 
83 Oldstone, M.B. A. Cell 1987, 50, 819-820. 
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Thus, pathogen epitopes very similar to molecules of the organism may trigger 

an autoreactive reaction. By this model, autoimmunity can be explained by a 

response of the immune system towards self-antigens no more tolerated and 

thus recognized as non-self (Figure 2.3–3). 

 

 

Figure 2.3–3 Autoimmune response. 

 

Autoimmune diseases are generally triggered by T lymphocytes further 

inducing an autoantibody response. An autoimmune response can cause 

inflammation and damages to the hit tissue (Figure 2.3–4). Localization of the 

autoimmune response and damages depends on the disease. In some 

autoimmune diseases the damages are localized to single organs, while others 

are systemic. 
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Figure 2.3–4 Mechanism of autoimmune response. 

 

2.3.3 Chemical Reverse Approach to characterize autoantibodies as 

autoimmune disease biomarkers 

Autoimmune diseases are due to an "error of evaluation" of the immune 

system, which no more recognizes self-antigens.84 It is well-known that 

autoimmune diseases have a multifactor origin, which includes: genetic 

predisposition, endogenous, and exogenous elements. Different hypotheses 

can be made to explain autoimmune processes because of the intricate 

pathogeneses of such diseases and of the natural complexity of the 

biochemical mechanisms. Autoimmune diseases are very frequent (they affect 

at least 5% of the whole population) and have a high social impact, because 

patients have a long expectation of life during which are subordinated to the 

follow up of the disease by means of very expensive techniques such as 

Magnetic Resonance Imaging (MRI) that are not suitable for routine use.  

Sera from patients suffering from autoimmune disorders often contain multiple 

types of autoantibodies. Some autoantibodies can be exclusive of a disease and 
                                                 
84 Rose, N., and Mackay, I. (2006) In The Autoimmune Diseases, Elsevier Academic Press, 4th 
edition, 55. 
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thus used as biomarkers for diagnosis; others fluctuate with disease 

exacerbations or remissions and are extremely valuable in the follow-up of 

patients.85 Therefore, the antibodies present in patients’ serum can be used as 

disease biomarkers. 

A biomarker is an anatomical, physiological, biochemical parameter, which 

can be easily determined and used as pointer of normal physiological or 

pathogenic processes. Molecules present in biological fluids can be identified 

as biomarkers and used to set up diagnostic/prognostic tools and for 

monitoring the effects of a therapeutic treatment. 

The identification of synthetic peptides as antigenic probes for the 

characterization of autoantibodies as biomarkers can be achieved by a 

“Chemical Reverse Approach”. This approach is defined “Reverse” because 

the screening of the antigenic probes is guided by autoantibodies circulating in 

autoimmune disease patients’ biological fluids. The autoantibody recognition  

drives the selection and optimization of the “Chemical” structure of defined 

focused peptide libraries. Thus, autoantibodies circulating in patients’ 

biological fluids allow the definition of synthetic post-translationally modified 

peptides mimicking the neo-antigenic epitopes. Peptides identified by this 

approach, selectively and specifically recognizing autoantibodies, can be used 

as antigenic probes in immunoenzymatic assays to detect disease biomarkers.86 

Summarizing, in the Direct Approach antigenic peptides are used to immunize 

animals in order to generate antibodies that recognize those specific proteins 

that the antigens mimic (Scheme 2.3-1). In the Reverse Approach antigenic 

peptides are used as synthetic probes to recognize autoantibodies in patients’ 

sera. In the first case the native proteins are the biomarkers of the disease, in 

the second the biomarkers are represented by the autoantibodies.  

 

                                                 
85 Leslie, D., Lipsky, P., and Notkins, A.L. (2001) J Clin Invest, 108, 1417. 
86 Alcaro, M.C., Lolli, F., Migliorini, P., Chelli, M., Rovero, P., and Papini, A.M. (2007)  
Chemestry Today, 25, 14. 
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Scheme 2.3-1 The Direct and Reverse Appoarch for the development of 
diagnostic/prognostic tools of autoimmune disease. 
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2.3.4 CSF114: universal scaffold for synthetic antigenic probes 

 
In previous studies, performed at the Laboratory of Peptide & Protein 

Chemistry & Biology, it was demonstrated that the glycopeptide 

[Asn31(Glc)hMOG(30-50)], containing a β-D-glucopyranosyl residue linked to 

the Asn31 residue by an N-glucosydic bond, is able to detect autoantibodies in 

Multiple Sclerosis patients’ sera by ELISA experiments.87 

Conformational studies performed on hMOG(30-50) and its glucosylated 

analogue established the fundamental role of the glucosyl moiety in 

autoantibody recognition (Figure 2.3–5). It was observed that the active 

glucosylated peptide [Asn31(Glc)hMOG(30-50)] and the inactive 

unglucosylated peptide hMOG(30-50) adopted similar conformations in 

solution.88 Therefore, it was hypothesized that the ability of the glucosylated 

peptide to detect autoantibodies in Multiple Sclerosis was linked to 

characteristics other than conformation and that the specific autoantibody 

binding site on MOG glycopeptide was related to the N-linked glucosyl 

moiety. This result, together with the observation that the N-glucosylated 

asparagine alone was able to bind Multiple Sclerosis autoantibodies in a 

solution-phase competitive ELISA experiment, allowed to define that the 

minimal epitope is the Asn(Glc) moiety. 

                                                 
87 Mazzucco, S., Mata, S., Vergelli, M., Fioresi, R., Nardi, E., Mazzanti, B., Chelli, M., Lolli, 
F., Ginanneschi, M., Pinto, F., Massacesi, L., and Papini, A.M. (1999) Bioorg. Med. Chem. 
Lett., 9, 167. 
88 Carotenuto, A.; D'Ursi, A. M.; Nardi, E.; Papini, A. M., and Rovero, P. (2001) J. Med. 
Chem., 44, 2378. 
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Figure 2.3–5 Conformational analysis of peptides hMOG(30-50) (in red) and 
[Asn31(Glc)hMOG(30-50)] (in blue).88 

 

Hence, the recognition properties of the molecule were optimized through the 

design and screening of focused libraries of glycopeptides. A specific 

antigenic probe, CSF114(Glc), was developed to identify a family of 

autoantibodies, as biomarkers of Multiple Sclerosis correlating with disease 

activity.  

The CSF114(Glc) structure was obtained after a structure-based design 

confirming that antigen conformation is fundamental for the correct exposition 

of the minimal epitope Asn(Glc) recognizing specific antibodies. CSF114(Glc) 

is characterized by a β-hairpin structure in which the Asn(Glc) epitope is on 

the tip of type I’ β-turn.89 CSF114(Glc) showed a high specificity for Multiple 

Sclerosis autoantibodies, because no antibody reactivity was detected in other 

autoimmune diseases or other infective neurological diseases.90 Therefore, 

CSF114(Glc) is the first MSAP for detecting specific autoantibodies that can 

be used as relabile biomarkers for the practical evaluation of the disease 

activity in a subpopulation of MS patients. CSF114(Glc) was selected by an 
                                                 
89 Carotenuto, A., D’Ursi, A.M., Mulinacci, B., Paolini, I., Lolli, F., Papini, A.M., Novellino, 
E., and Rovero, P. (2006) J. Med. Chem., 49, 5072. 
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innovative “Chemical Reverse Approach” that starting from synthetic peptides 

univocally characterized, can screen autoantibody populations present in sera 

of patients (Figure 2.3–6).  

It was demonstrated that specific probes characterised by β-hairpin structures 

are able to follow up disease activity in a statistically significant number of 

Multiple Sclerosis patients. It was hypothesized that CSF114(Glc) β-hairpin 

structures could be mimetic of aberrantly glucosylated native antigens. 

Moreover a specific immunoaffinity column based on CSF114(Glc) allowed 

isolation of disease specific autoantibodies recognising only myelin and 

olygodentriocytes. 91 

 
Figure 2.3–6 Calculated structures of CSF114(Glc). Ribbon diagram of the lowest 
energy conformer of 200 calculated structures of CSF114(Glc) derived from NMR 

data. 

 

                                                 
90 Lolli, F., Mazzanti, B., Pazzagli, M., Peroni, E., Alcaro, M.C., Sabatino, G., Lanzillo, R., 
Brescia, M., Santoro, V., Gasperini, L., Galgani, C., D’Elios, S., Zipoli, M.M.; Sotgiu, V., 
Pugliatti, S., Rovero, P., Chelli, M. and Papini, A.M. (2005) J. Neuroimmunol, 167, 131. 
91 “Glycopeptides, their preparation and use in the diagnosis or therapeutic treatment of 
Multiple Sclerosis”. Inventors: Papini, A.M., Rovero, P., Chelli, M. and Lolli, F. Applicant: 
University of Florence, Italy. PCT International application (2003) WO 03000733 A2. Italian 
Patent n. 0001327122 (27/04/2005). 
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Up to now, glucosylation, a post-translational modification not common in 

eucariotic proteins, has been detected only in bacterial glycoproteins.92 

Putative glucosylation of myelin proteins, by still unknown mechanisms, could 

transform self-antigens in non-self ones and trigger an autoimmune response. 

More than one protein could be aberrantly glucosylated creating neo 

autoantigens. 

To further investigate the role of sugars and linkage between sugar and the 

amino acid, in autoantibody recognition, a collection based on glycoamino 

acids diversity is fundamental to understand this special molecular mechanism 

of an antibody mediated Multiple Sclerosis. 

                                                 
92 Wieland, F., Heitzer, R., and Schaefer, W. (1983) Proc. Natl. Acad. Sci. U.S.A., 80, 5470. 
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2.3.5 Generation of a panel of Synthetic Antigenic Probes for the 

diagnosis of type I and type II diabetes 

 
Three different peptides bearing posttranslational modifications and 

corresponding unmodified analogs (without the PTMs, Table 2.3-1) were 

synthesize to be used as synthetic antigenic probes for the identification of 

anti-glycated-epitopes autoantibodies in type I and II diabetes patient sera. 

The peptide scaffold CSF114 was selected for it is capacity to expose in best 

way to the solvent a residue in position 7 which is the top of a β-turn. On that 

specific position was introduced a glycated Lysine using the glycated Fmoc-

Lysine derivate 2 obtaining peptide IV. On CSF114 position 7 was also 

introduced a residue of N-glycosylated Asparagine (using a specific developed 

for this purpose in PeptLab) affording peptide V. 

Product VII was obtained introducing building block 2 into position 41 of 

hCD59(37-50). 

 
(8Lys(1-deoxyfructosyl) CSF114 TPRVERuGHSVFLAPYGWMVK IV 
[(8Asn(Glc)] CSF114 TPRVERvGHSVFLAPYGWMVK V 
CSF114 TPRVERNGHSVFLAPYGWMVK VI 
[41Lys(1-deoxyfructosyl)]hCD59(37-50) NKAWuEHANFNDC VII 
hCD59(37-50) NKAWKEHANFNDC VIII 

Table 2.3-1 Sequences of the synthesized antigenic probes u= glycated Lysine,          
v= glycosylated Asparagine. 
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2.4 Screening of diabetic patient sera by non-competitive ELISA 

The following section describes the work originated by the collaboration with 

Dr. Francesco Dotta of the Diabetic Department of the University of Siena 

who provided the sera of type I and type II diabetic patients.  

 

2.4.1 Enzyme-Linked Immunosorbent Assay  

This technique can exploit the capability of antibodies to detect biomolecules 

with a high sensibility. Immunoassays are based on an antigen/antibody 

interaction to identify a target compound or a class of compounds. 

Concentrations of analytes are identified through the use of a sensitive 

colorimetric reaction. The concentration of the analyte depends on the 

Lambert-Beer equation and is thus determined by the intensity of color in the 

sample. The concentration can be determined accurately with a photometer or 

a spectrophotometer. 

Immunoassays take advantage of the ability of antibodies to bind selectively to 

a target antigen present in a sample matrix and characterized by a specific 

chemical structure.  

One of the most used immunoassay technique is the Enzyme Linked 

ImmunoSorbent Assay (ELISA) (Scheme 2.4-1), a technique introduced by 

Engvall and Perlmann,93 and used for the detection of antigens and antibodies. 

The sensitivity of this technique is comparable to that of a radioimmunoassay.  

The two components involved in ELISA are: a solid phase, to which a specific 

antigen or antibody is coated, and an enzyme-labeled anti-antibody conjugated 

to the corresponding antibody or antigen. The enzyme acts on an appropriate 

substrate, releasing a coloured compound that can be easily detected by a 

spectrophotometer. 

                                                 
93 Egall, E., and Perlmann, P. (1972) J. Immunol., , 109, 129. 
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Scheme 2.4-1 A sandwich ELISA. (1) Plate is coated with a capture antibody; (2) 
sample is added, and any antigen present binds to capture antibody; (3) detecting 
antibody is added, and binds to antigen; (4) enzyme-linked secondary antibody is 
added, and binds to detecting antibody; (5) substrate is added, and is converted by 

enzyme to detectable form. 

 

2.4.1.1 Types of ELISA 

Direct ELISA is used to detect an antigen after it has been coated to the solid 

phase. An antibody, conjugated with a label, is then incubated with the 

captured antigen. After washing off excess of the conjugate and incubating 

with a substrate and a chromogen, the presence of an expected color indicates 

a specific antibody-antigen interaction. 

Indirect ELISA is useful for the detection of antibodies using specific antigens. 

Once again an antigen is adsorbed onto a solid phase. The first, or primary 

antibody, is incubated with the antigen, then the excess is washed off. The 

bound antibody is detected after incubation with an enzyme labeled with 

specific anti-immunoglobulin (secondary antibody) followed by the enzyme 

substrate. 

Competitive ELISA is useful for identification and quantitation of either 

antigens or antibodies. In antigen determination, the antigen present in the 

sample competes for sites on the antibody with labeled antigen added to the 

medium. The color change will be inversely proportional to the amount of 

antigen in the sample. Competition principle can be exploited in different 
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ways. In a competitive ELISA, a patient’s serum and an antigen-specific 

conjugate are co-incubated with a captured antigen. The amount of color 

developed is inversely proportional to the amount of antigen-specific patient Ig 

present. 

Inhibition ELISA works similarly to competitive. One antigen is coated on the 

plate and the other is added at various concentrations in the presence of the 

antibody. The antibody binds to the free antigen in solution rather than to the 

coated antigen. In this case, the free antigen inhibits the antibody binding to 

the coated antigen. This is particularly useful in determining the identity of 

specific antigens or antibodies. 
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2.4.1.2 Immunological assays using CSF114 analogues as antigens 

 
The autoantibody recognition by CSF114 analogues as antigens was evaluated 

by competitive ELISA on Multiple Sclerosis patients’ sera. The inhibition 

curves (Figure 2.4-1) showed that the glycopeptides Asn7RibCSF114 does not 

present activity, in fact it was not able to inhibit anti-CSF114(Glc) 

autoantibodies in Multiple Sclerosis patients. On the other hand, glycopeptide 

Phe7GlcCSF114 displayed inhibitory activity only at higher concentration. 

CSF114(Glc) is the glycopeptide with the lower IC50 value (concentration 

required for 50% inhibition).  

In conclusion, the glycopeptide containing the Asn(Glc) residue showed the 

higher affinity to autoantibodies in Multiple Sclerosis patients’ sera. These 

results demonstrate again the crucial importance of the N-glycosydic bond 

between the sugar and the amino acid and the role of the sugar moiety for 

autoantibody recognition in Multiple Sclerosis patients’ sera. 
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Figure 2.4-1 Inhibition curves of anti-CSF114(Glc) antibodies with the three CSF114-
type glycopeptides. Results are expressed as % of a representative Multiple Sclerosis 
positive serum (y axis). Concentrations of peptides as inhibitors are reported on the x 

axis. 
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2.4.2 ELISA screening of type I diabetes patients’ sera  

 
The interaction between a given peptide and the ELISA plate depends on 

several factors including plate type, dilution buffer, pH, and temperature. 

Moreover, each peptide binds to the plate surface in a different way and this is 

mostly unpredictable. In order to find the best conditions for the assay, each 

synthetic antigen peptide was tested on a standard non-competitive ELISA 

versus a reduced number of healthy blood donors and patients’ sera. Eight 

different conditions were used for each product (four different coating 

solutions each one applied to two different blocking solutions). 

After optimization of the coating/blocking conditions the peptides IV-VIII 

(Table 2.4-1) were tested under the optimized conditions.  

 
(8Lys(1-deoxyfructosyl) CSF114 TPRVERuGHSVFLAPYGWMVK IV 
[(8Asn(Glc)] CSF114 TPRVERvGHSVFLAPYGWMVK V 
CSF114 TPRVERNGHSVFLAPYGWMVK VI 
[41Lys(1-deoxyfructosyl)]hCD59(37-50) NKAWuEHANFNDC VII 
hCD59(37-50) NKAWKEHANFNDC VIII 

Table 2.4-1 Sequences of the synthesized antigenic probes. u= glycated Lysine,         
v= glycosylated Asparagine. 

 

To each set of values we associated a cut-off of + 2 SD (the average of the 

healthy blood donors’ values plus two times the standard deviation of the 

healthy blood donors’ values). The cut-off represents the minimum value of 

absorbance that can be taken as positive during the assay. The second SD 

addition minimizes the possibility to have a false positive. 

Peptides IV-VI didn’t show any recognition for IgG but displayed significant 

signals for IgM, in particular peptide VI (bearing the glucosylated Asparagine) 

Figure 2.4-2 A and B. The data, in spite of being preliminary (not fully 
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optimize testing conditions and low number of patients’ and healthy donors), 

have been object of a standard diagnostic treatment. In fact, to each value for 

patient sera has been subtracted the blank sera values average and the healthy 

donors blank average. In addition a cut-off of ā (healthy signals average) + 2 

SD (standard deviation) and not just merely ā was used. Under a less strict 

treatment, that does not consider the standard deviation, the recognition 

increases as is shown in Table 2.4-2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4-2 Non-competitive ELISA assay of peptides IV-VI against type I diabetic 
patients’ sera and cut-off from healthy blood donors values. Results for IgG (A) and 

IgM(B). TB_E 20 is an unrelated peptide. 
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IgG IV V VI IgM IV V VI 
Recognition* 6 0 0 Recognition* 17 0 0 
Recognition** 17 0 0 Recognition** 16 10 28 

Table 2.4-2 IgM and IgG autoantibodies recognition in patients’ sera (%) for peptides 
IV-VI with strict standard diagnostic treatment* and with preliminary data 

treatment**. 

 

Glycated hCD59 VII displayed a high recognition for both IgG and IgM under 

a preliminary treatment of the data (Figure 2.4-4, Figure 2.4-4, and Table 

2.4-3) and retains a significant recognition (10-15%) even upon addition of 

twice the standard deviation to the cut off.  
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Figure 2.4-3 Non-competitive ELISA test of peptides glycated hCD59 VII (A) and 
un-glycated hCD59 VIII (B) against type I diabetic patients’ sera and cut-off from 

healthy blood donors values. Results for IgG. 
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On the other hand, unglycated hCD59 VIII showed, as expected, less 

recognition compared to its glycated analog under both data treatments 
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Figure 2.4-4 Non-competitive ELISA test of peptides glycated hCD59 VII (A) and 
un-glycated hCD59 VIII (B)against type I diabetic patients’ sera and cut-off from 

healthy blood donors values. Results for IgM. 

 
IgG VII VIII IgM VII VIII 
Recognition* 10 0 Recognition* 15 13 
Recognition** 60 33 Recognition** 45 20 

Table 2.4-3 IgM and IgG autoantibodies recognition in patients’ sera (%) for peptides 
VII and VIII with strict standard diagnostic treatment* and with preliminary data 

treatment**. 
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Figure 2.4–5 and Figure 2.4–6 report the difference between the values 

of glycated hCD59(37-50) and of unmodified hCD59(37-50) for IgG 

and IgM in type I diabetic patients’ sera (A) and healthy blood donors 

(B).  
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Figure 2.4–5 Difference between the values of glycated hCD59(37-50) and of 
unmodified hCD59(37-50) for IgG in type I diabetic patients’ sera (A) and healthy 

blood donors (B). 

 

As can be seen from Figure 2.4–6 A the, almost every single patients’ 

serum has IgG antibodies recognizing the glycated peptide with higher 

A 

B 



 

 69 

affinity compared to the un-glycated one (the difference is a positive 

value). This may be explained by the presence of specific anti-glycated 

antibodies in patients’ sera. 
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Figure 2.4–6 Difference between the values of glycated hCD59(37-50) and of 
unmodified hCD59(37-50) for IgM in type I diabetic patients’ sera (A) and healthy 

blood donors (B). 
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2.5 Protein synthesis by Native Chemical Ligation  

 

Chemical Ligations (CL) as methods to link together two or more peptide 

fragments have long been used for the synthesis of small proteins and have 

been an alternative to the strategy of fragment condensation of fully protected 

peptides in organic solvents94. The CL strategies are based on the presence in 

each peptide fragment of a unique, mutually reactive functionality, which 

enables a chemoselective reaction between the two components. The 

advantage is that this reaction can be performed using partially protected 

peptides in aqueous or semi-aqueous solvents. One example of CL is the 

famous synthesis of human immunodeficiency virus-1 protease (HIV-1 PR)95 

whose chemical basis was a nucleophilic substitution reaction between an SH 

group of a thioacid attached to the C-terminus of a peptide sequence, and an 

alkyl bromide attached to the N-terminus of the second fragment, leading to 

the formation of a thioester bond at the ligation site (Scheme 2.5-1). However 

the drawback of CL methodologies is the generation of an unnatural, meaning 

not amide, bond at the ligation point. 

 

 

Scheme 2.5-1 Total synthesis through chemical ligation of the HIV-1 PR analogue. 

 
 

                                                 
94 Kimmerlin, T. and Seebach, D. (2005) J. Peptide Res., 65, 229. 
95 Schnolzer, M. and Kent, S.B. (1992) Science, 256, 221. 



 

 71 

In recent years, there was an explosion of interest in protein assembly 

technologies such as native chemical ligation (NCL)96 and its related expressed 

protein ligation (EPL)97. NCL rely on the principle of chemoselective reaction 

between two protein fragments, one containing a C-terminal thioester and the 

other containing a free N-terminal Cysteine residue The reaction is performed 

in aqueous solution in the presence of excess of thiols with unprotected 

peptides (a protection is needed only in the presence of 2 equivalents of N-

terminal Cysteine residues. The components combine to give a peptide with an 

amide bond therefore “native” at the point of ligation differently from the bond 

formed in other types of ligation (which is not an amide one). 

 

 

 

 

 

 

 

 

 
 

Scheme 2.5-2 Mechanism of Native Chemical Ligation. 

 
The mechanism involved is a rate-determining transthioesterification between 

the thiol group of the N-terminal Cysteine and the peptide-2 and the C-

terminal thioester group of peptide-1 followed by a rapid S->N acyl shift, 

which occurs via a five-member-ring transition state ( 

                                                 
96 Dawson, P.E., Muir, T.W., Clark-Lewis, I., and Kent, S.B. (1994) Science, 266, 776. 
97 T.W., Muir, D., Sondhi, and P.A. Cole, (1998) Proc. Natl. Acad. Sci. USA, 95, 6705. 
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Scheme 2.5-2)98. The ability of NCL strategies to reproduce natural peptide 

bonds and the fact that it is possible to form it in aqueous solution and in the 

absence of protecting groups, has placed this powerful technology at the 

forefront of protein synthesis. 

Nonetheless, two limitations remain associated with NCL99: the necessity to 

have an N-terminal free Cysteine and a C-terminal thioester.  

Several approaches have been developed to overcome the prerequisite of 

having an N-terminal Cysteine residue. For example, homoCysteine can be 

used for NCL and then can be methylated after ligation to render the Met-

containing protein100. Furthermore, Cys itself can be desulfurized to give an 

Ala residue101. This strategy opens the possibility of using peptides containing 

thio-derivatives of the common amino acids, which after chemical ligation and 

desulfurization can give peptides with other proteinogenic amino acids102.  

 

 
Scheme 2.5-3 Extended applicability of NCL by using N-ethanethiol (a) and N-2-

sulfanylbenzyl (b) auxiliaries or by Staudinger ligation (c) 

                                                 
98 Macmillan, D. (2006) Angew. Chem. Int. Ed., 45, 7668. 
99 Albericio, F. (2004) Current Opinion in Chemical Biology, 8, 211. 
100 Tam, J.P. and Yu, Q. (1998) Biopolymers, 46, 319. 
101 Yan, L.Z. and Dawson, P.E. (2001) J Am Chem Soc, 123, 526. 
102 Clive, D.L., Hisaindee, S., and Coltart, D.M. (2003) J Org Chem, 68, 9247. 
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Furthermore, N-ethanethiol [Scheme 2.5-3(a)]103 and N-2-sulfanylbenzyl 

auxiliaries [Scheme 2.5-3(b)]104 have been investigated. These moieties, which 

contain the thiol required for the ligation, are removed after the protein is 

formed by treatment with Zn/AcOH and under acid conditions, respectively. 
A more general strategy involves Staudinger ligation between a C-terminal 

phosphinothioester and an N-terminal azide, which gives an amide that does 

not have residual atoms [Scheme 2.5-3(c)]105. The initial intermediate is an 

iminophosphorane and this rearranges to an amidophosphonium salt that after 

hydrolysis gives the amide. 

The second and most serious limitation of NCL is related to the preparation of 

the thioester peptide, a stage that has mainly been performed using Boc/Bzl 

chemistry106. For larger polypeptide domains and protein domains intein-based 

bacterial expression systems are used107. Unfortunately, the Boc methodology 

requires the use of HF, which is extremely toxic and not well suited for 

synthesis of phospho-108 and glycopeptides109. The Fmoc–based methodology, 

on the other hand, is an attractive alternative as it does not employ HF and 

hence provides access to the synthesis of phospho- and glycopeptides in good 

yield. However, the poor stability of the thioester functionality to strong 

nucleophiles such as piperidine, which are used for the deprotection of the Nα-

Fmoc group, seriously limits the use of this methodology110.  

In order to overcome this limitation different approaches have been described 

for C-terminal peptide thioester formation with Fmoc/tBu-SPPS usually 

involving the use of special resins that release the peptide as a C-terminal 

                                                 
103 Canne, L.E., Bark, S.J., and Kent, S.B. (1996) J Am Chem Soc, 118, 5891. 
104 Vizzavona, J., Dick, F., and Vorherr, T. (2002) Bioorg Med Chem Lett, 12, 1963. 
105 Nilsson, B.L., Hondal, R.J., Soellner, M.B., and Raines, R.T. (2003) J. Am. Chem. Soc., 
125, 5268. 
 

106 Camarero, J.A., Cotton, G.J., Adeva, A., and Muir, T.W. (1998) J.Pept. Res., 51, 303. 
107 Perler, F.B., and Adam, E. (2000) Curr. Opin. Biotechnol.,10, 377. 
108 Huse, M., Holford, M.N., Kuriyan, J., and Muir, T.W. (2000) J. Am. Chem. Soc., 122, 8337. 
109 Macmillan, D. and Bertozzi, C.R. (2004) Angew. Chem. Int. Ed.Engl., 43, 1355. 
110 Camarero, J.A. and Mitchell, A.R. (2005) Protein and Peptide Letters, 12, 723. 
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thioester under specific cleavage conditions such as the acylsulfonamide111, the 

aryl-hydrazine112, BAL113, PAM114 resins. 

We have chosen a different approach which consists on the direct 

thioesterification of the free carboxylic acid of a fully protected peptide115.. 

 

 

 
 

                                                 
111 Ingenito, R., Bianchi, E., Fattori, D., and Pessi, A. (1999) J. Am. Chem. Soc., 121, 11369. 
112 Camarero, J.A., de Yoreo, J.J., and Mitchell, A.R., (2004) J. Org. Chem., 69, 4145. 
113 Brask, J., Albericio, F., and Jensen, K.J. (2003) Org. Lett., 5, 233. 
114 Swinnen, D. and Hilvert, D. (2000) Org. Lett., 2, , 789. 
115 von Eggelkraut-Gottanka, R., Klose, A., Beck-Sickingera, A.G., and Beyermann, M. (2003) 
Tetrahedron Letters, 44, 3551. 
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2.5.1 Total synthesis of glycated hCD59 by Tandem Native Chemical 

Ligation 

 
Our working hypothesis is that hyperglycemia-driven glycation of the hCD59 

protein destabilizes the Membrane attach complex homeostasis leading to 

diabetic complication in humans50. In order to achieve a diagnostic-prognostic 

tool for diabetes and diabetes complications, we have raised anti-glycated 

hCD59 antibodies using synthetic peptide antigens. Those antibodies are able 

to evidence the presence of glycated hCD59 in diabetic patient’s biopsies116. 

Now we plan the generation of more specific monoclonal antibodies, to be 

risen from the immunization of rabbits using as an antigen the whole glycated 

hCD59. 

Since ex vivo extraction of glycated hCD59 is highly problematic due to its 

low concentration we have set up a synthetic strategy for the total synthesis of 

the protein both wild type and bearing the posttranslational modification 

(glycation).  

We proposed the total synthesis of hCD59(1-77) by tandem Native Chemical 

Ligation which allows the sequential ligation of multiple peptide fragments 

(Scheme 2.5-4). The sequence has been divided into six peptide units (Table 

2.5-1) shaped as C-terminal p-acetamidophenol thioesters and N-terminal 

thioazolidine (Thz) protected Cysteine except the C-terminal fragment which 

has been left with a free N-terminal Cysteine and free C-terminal carboxylic 

acid. The Thz protecting group allows the tandem mode by masking the N-

terminal Cysteine of the incoming peptide fragment during the ligation 

reaction.  

 

                                                 
116 Halperin, J. and Chorev, M., unpablished results. 
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Scheme 2.5-4 Strategy for the totals synthesis of Bio-PEG-hCD59(1-77) wild type (41K=H)                                
and glycated (41K =1-deoxyfructosyl). 
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and, after deprotection with methoxylamine, leaving it accessible at a later 

stage for the following coupling. 

 

IX H-45CNFNDVTTRLRENELTYYCCKKDLCNFNEQLE77N-OH 
X Thz-39CWK*FE44H-COSR 
XI Thz-39CWKFE44H-COSR 
XII Thz-26CLITKAGLQVYN38K-COSR 
XIII Thz-13CKTAVNCSSDFD25A-COSR 
XIV Thz-3CYNCPNPTA12D-COSR 
XV BioPEG3500-GGSSG-IEGRIEGR1LQ-COSR 

 

Table 2.5-1 Sequence of the six ligation fragments of glycated and unglycated 
hCD59(1-77). K* is Lysine(1-deoxyfructosyl); Bio is Byotine; PEG3500 is a 

Polyetylene-glycol chain of ca. 3500 of MW; GGSSG is a spacer; IEGRIEGR is the 
factor Xa cleavage motif. 

 
The direct thioesterification of the C-terminal carboxylic acid with p-

acetamidophenol has two advantages with respect to other strategies to obtain 

a C-terminal thioester. First of all it is relatively stable compared to benzyl and 

phenyl thioesters commonly used in NCL so that thioester group can survive 

several weeks if the peptide is maintained lyophilized at -4°C. Moreover the 

synthesis of the peptide thioester is straightforward, involving a 

thioesterification with p-acetamidothiophenol115 of the peptide fully protected 

but in the C-terminal carboxylic position as shown in Scheme 2.5-5 (the 

procedure applies for all the peptide fragments except the C-terminal one). The 

peptide is synthesized on a super-acido labile 2Cl-trityl resin. Cleavage of the 

peptide from the resin occurs with dilute acetic acid. Under this conditions all 

the side chain protection are left in place. No special resins, auxiliaries or 

cleavage protocols are needed and, in addition, p-acetamidothiophenol is a 

solid were the common thiols use for similar purposes are volatile liquids toxic 

and with a very bad smell.  

The proposed synthesis of hCD59 incorporates at the N-terminal portion a 

Biotin-polietylene-glycol residue in order to give to the final adduct additional 
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biochemical properties and a better aqueous solubility. Finally, the Bio-PEG 

portion will be separated from the protein sequence by a spacer and a protease 

Xa cleavage motif that would allow selective cleavage of the unnatural tail to 

obtain the free protein sequence for structural characterization. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Scheme 2.5-5 Synthesis of the second ligation fragment bearing the glycation(a) Fmoc 
SPPS on 2-Cl-Trt resin; (b) acetic acid/TFE/DCM (1:1:8); (c) 3eq p-acetamidophenol, 

3q PyBOP, DIEA; (d)  TFA/H2O/TIS (95:2.5:2.5) 3h. 

 

Preliminary attempts demonstrated that the ligation is highly favored and 

proceeds with excellent yields up to the second coupling stage. The week 

points of the “Tandem” synthetic strategy are the semi-preparative HPLC 

purifications cycles needed after each ligation and Thz deprotection steps. To 

othercome this difficulty we are undertaking molecular size-mediated 

centrifuge-filtration of the products on the assumption that the big ligate 

fragment will be retained on filter with a specific pore size while the much 
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lighter incoming peptide fragments will be filtrated together with the small 

molecules as thiol catalysts, methoxylamine, detergents, salts etc. 
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2.6 Monitoring glycation by amino acid analysis  

 
Recent improvements in HPLC and mass spectroscopy technologies allow to 

detected metabolites in biological fluids even at extremely low concentrations. 

This can be applied to the diagnosis-prognosis of various despises provided 

that a solid correlation is established between a specific biomarker and the 

pathology. 

We have decided to apply the concept of glycation to the analysis of 

metabolites in the urine and sera of type I and type II diabetic patients. 

 

2.6.1 Amino acids and short peptide sequences in biological fluids 

 
The presence of free amino acids in human sera has been identified since 

1912117. The concentration of a given amino acids is the result of a balance 

between its consumption during protein synthesis, its uptake from the diet and 

its formation through endogenous protein degradation Some common values 

of free amino acid concentrations in human sera are reported in Table 2.6-1. It 

must be remembered, however, that those concentration change importantly 

depending on a number of physiological conditions such as age, sex, lifestyle 

etc. Interestingly, they vary according to pathological conditions also. The 

latter consideration can be used to set up diagnostic prognostic assays working 

on the assumption that a given disease may generate a specific pattern of free 

amino acids both natural and post-translationally modified in the sera. In our 

diabetic study we assume the existence of free glycated amino acids, 

especially Lysine residues. 

 

                                                 
117 Stein, A. (1954), J.of Biological Chemistry, 7, 24 
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Amino acids  Serum concentration 

mg/mL 

Aspartic acid 0.21 

Threonine 1.73 

Serine 1.27 

Proline 2.05 

Glycine 1.65 

Alanine 2.42 

Valine 2.12 

Cysteine 1.05 

Methionine 0.24 

Isoleucine 0.58 

Leucine 1.19 

Tyrosine 0.83 

Phenylalanine 0.78 

Ornitine 0.61 

Lysine 1.51 

Histidine 1.24 

Arginine 1.49 

Table 2.6-1 Common values of free amino acid concentration in human serum. 

 
An excessive rise or decrease of the plasma-a.a. concentration often leeds to 

pathological conditions as is the case of a prolonged protein-poor diet which 

brings insufficient plasma amino acid content and problems in children 

developing. The regulatory activity of a.a. has been demonstrated for several 

cases of gene expression of specific enzymes118 The details of such 

mechanisms are however unknown. Off-balanced amino acids homeostasis is 

held responsible of several pathological conditions Table 2.6-2  

 

                                                 
118 Roger, W.J. (1998) In Biochemical Individuality The basis for genetotrophic concept, Keats 
Publishing, New Canaan, Connecticut, , 40.  
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Disease Incidence Therapy 

PKU 

(phenylketonuria) 
1:10000 diet 

MSUD 

(maple syrup urine disease) 
1:100000 Diet 

OmoCysteineuria 1:150000 Vitamin B6 Betain 

Ipertyrosinemia 1:1000000 Diet 

Citrulinemia 1:100000 
glucose,sodium 

benzoate, phenylacetate 

Ipoarginasis 1:100000 Diet 

Table 2.6-2 Disease cause by off-balanced amino acids homeostasis. 
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2.6.2 Analysis of free glycated amino acids in diabetic patients’ sera 

 
We planned to investigate wether free glycated Lysine could be present in type 

I and type II diabetic patients’ sera and if its presence could be used to set up a 

diagnostic/prognostic tool for diabetes. At the same time the presence of 

glycated Lysine could detected among the free amino acids generated from 

overall hydrolysis of the proteins of diabetic patients’ sera, provided that the 

glycation moiety survives the hydrolysis conditions (HCl 6M at 110°) which is 

something that should be investigated. In both cases we planned to use as an 

HPLC analytical standard the free glycated form of Lysine (Scheme 2.6-1) 

obtained by TFA deprotection of Nα-Boc-LysNε-(2,3;4,5-di-O-isopropylidene-

1-deoxyfructosyl)-OH. 

BocNH CO2H

NH2
O O

O
O

O

BocNH CO2H

NH

CHO
O O

O
O

O

O OH

OH
OH

OH

N2H CO2H

NHTFANaCNBH3 in THF/H2O
70o C, 5h

 

Scheme 2.6-1 Synthesis of the free form of glycated Lysine. 
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2.7 Conclusions and future developments A 

 
Final goal of this project is the development of a diagnostic/prognostic tool for 

type I and type II diabetes. A convergent approach of multiple different 

strategies proceeding in parallel has been adopted (section 1). 

To this aim, a panel of new Fmoc-Lysine derivates bearing a glycation 

modification has been developed for the SPPS of glycated peptides and 

proteins (section 1.1). 

A systematic approach to the synthesis of a glycated hCD59(37-50) peptide 

antigen has been carried out (section 2.2.3). 

The glycated antigen has been used to produce specific anti-glycated hCD59 

antibodies that efficiently recognize the glycated protein (hCD59) in vivo 

(section 2.2.5). 

A panel of glycated antigenic peptide probes has been generated and tested 

with un-competitive ELISA experiments against type I diabetic patients’ sera 

(section 2.3.5). Preliminary results showed the presence of specific 

autoantibodies anti-glycated-hCD59 in a subfamily of diabetic patients 

(section 2.4.2). 

The strategy for total synthesis by Native Chemical Ligation of glycated and 

un-glycated hCD59 protein has been set up (section 2.5.1). 

Future developments will be the optimization of the biochemical assays based 

on the synthetic peptide probes and antibodies generated as well as the 

completion of the NCL synthesis of hCD59. It will also be undertaken an 

analytical study of the glycated metabolites of diabetic patients’ sera (section 

2.6.2); and finally, the synthetic peptide probes will be tested in uncompetitive 

ELISA assays for type II diabetic patients’ sera. 
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3 PART B: Cyclic clicked peptides as anticancer drugs 

 
The following section describes the synthesis and properties of clicked 

cyclopeptides derived from the binding site of eIF4E binding protein. Such 

peptides are proposed as new anticancer drugs in the context of inhibition of 

translation initiation. The introduction of a triazole-bridge in a peptide 

sequence by click chemistry is proposed as a way to stabilize the secondary 

structure of the sequence and hence enhancing the affinity in peptide-protein 

interactions. At the same time, the presence of the bridge may improve the 

peptide bio-stability and favoring intracellular drug-delivery. 

 

3.1 Stabilization of peptides in α-helical conformation 

 

Examination of complexes of proteins with other biomolecules reveals that 

proteins tend to interact with partners via folded subdomains, in which the 

backbone possesses secondary structure. α-Helices constitute the largest class 

of protein secondary structures, and play a major role in mediating protein–

protein interactions119. Significantly, the average length of helical domains in 

proteins is rather small and spans two to three helical turns (or eight to twelve 

residues)120. These complexes suggest that it may be possible to develop short 

helices that potentially participate in selective interactions with biomolecules. 

However, peptides rarely retain their conformation once excised from the 

protein. Much of their ability to specifically bind their intended targets is lost 

because they adopt an ensemble of shapes rather than the biologically relevant 

one. This happens because a short peptide in solution does not give rise to a 

                                                 
119 Guharoy, M., and Chakrabarti, P. (2007) Bioinformatics, 23, 1909. 
120 Barlow, D.J. and Thornton, J.M. (1988) J Mol Biol, 201, 601. 
 



 

 86 

number of weak interactions (hydrogen bond and van der Waals interactions) 

big enough to stabilize a specific conformation. The proteolytic instability of 

peptides is an additional factor that limits their utility as reagents in molecular 

biology and drug discovery. Finally, peptides have a low tendency to penetrate 

biological membranes due to their mostly hydrophylic nature that is in contrast 

with the highly hydrophobic nature of the central core of the phospholipidic 

bilayer. Figure 3.1–1 illustrates the different approaches121 that have been 

adopted either to stabilize or mimic an α-helix, with the overall aim of 

endowing peptidic and non-peptidic oligomers with conformational rigidity, 

proteolytic stability, and the desired array of protein-like functionality. These 

approaches can be divided into three general categories: helix stabilization, 

helical foldamers, and helical surface mimetics.  

Helix stabilizing methods based on side chain crosslinks and hydrogen-bond 

surrogates preorganize amino acid residues and initiate helix formation; mini-

proteins that display helical domains are also part of this category. Helical 

foldamers, such as β-peptides and peptoids, are composed of amino acid 

analogs and are capable of adopting conformations similar to those found in 

natural proteins. Helical surface mimetics utilize conformationally restricted 

scaffolds with attached functional groups that resemble the i, i + 4, i + 7 

pattern of side chain positioning along the face of an α-helix.  

Stabilization of peptides in the helical structure not only reduces their 

conformational heterogeneity but also substantially increases their resistance 

to proteases. In fact these enzymes typically bind their substrates in the 

extended conformation. In addition it has recently been reported that peptides 

with a stabilized α-helical conformation display a high membrane 

permeability. 

 

                                                 
121 Henchey, L.K., Jochim, A.L., and Arora, P.S. (2008)Current Opinion in Chemical Biology, 
12, 692. 
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Figure 3.1–1 Stabilized helices and non-natural helix mimetics: Several strategies to 

stabilize the α-helical conformation in peptides or mimic this domain with non-natural 
scaffolds have been described. Recent advances include β-peptide helices, terphenyl 
helix-mimetics, mini-proteins, peptoid helices, side chain crosslinked α-helices, and 
the hydrogen bond surrogate (HBS) derived α-helices. Green circles represent amino 

acid side chain functionality. 

 

In fact, Verdine and coworkers122 have applied the olephin methatesis reaction 

for the formation of peptide side-chain to side-chain hydrocarbon bridge, 

Figure 3.1–2 (A). The bridge constraint or “staple” stabilizes the α-helical 

conformation of a peptide that efficiently promotes apoptosis of cancer cells 

by triggering intracellular receptors. As shown in Figure 3.1–2 (B) and (C) 

such peptides almost completely enter the cells. 

                                                 
122 Kim, Y.W.and. Verdine G.L (2009)Bioorganic and Medicinal Chemistry Letters, 19, 2533. 
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Figure 3.1–2 (A) Stapled peptides with side chain to side chain hydrocarbon bridge 

(C) and (D) Confocal microscope images of HeLa cells treated with 10 μM of 
fluoresceinated peptides S,S-SAHBa (C) and R,R-SAHBa (D). 

 

Moving from the considerations described above, we have focused our efforts 

on the synthesis of peptides with an α-helical conformation stabilized by a 

side-chain to side-chain triazole bridge generated by an intermolecular click 

reaction. 

A

B C
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3.1.1 Tridimensional active conformation 

 
In nature, protein functions including enzyme activities are often regulated 

through conformational change triggered by ligand binding or post-

translational modification at specific sites.123 For example systems that control 

protein–protein and peptide–protein interactions, have been designed by 

introducing mutations into the protein at the interface of the interaction to 

reduce the binding affinity and by addition of small compounds to restore 

binding conformation.124  

The conformational state of receptor protein determines the functional state of 

a receptor. Peptides are flexible molecules, which tend to adopt a large number 

of conformations in solution but assume well-defined conformation only when 

bound to their receptors. Peptides should have active conformation that 

requested receptor to trigger the biological response. The peptide conformation 

generated by a given amino acid sequence is fundamental to express its 

biological activity. Peptides or proteins that do not have the correct 

conformation do not display their biological role. 

Therefore, the binding alters the chemical conformations, i.e. the three 

dimensional structure. The receptor bound conformation may be poorly 

populated in solution but this structure may be promoted by incorporating 

conformational constraints into the peptide. If the conformation stabilized by 

the constraint closely resembles the structure responsible for bioactivity, this 

modification can increase potency and selectivity of the resulting peptide. 

Some flexibility should be retained in the constrained molecule so that the 

side-chain pharmacophoric groups may adopt orientations analogous to those 

in the bioactive conformation of the native peptide. The conformation of a 

peptide can be stabilized by introduction of bridges of various sizes between 

                                                 
123 Pearl, L.H., and Barford, D. (2002) Curr. Opin. Struct. Biol., 12, 761. 
124 Guo, Z., Zhou, D., and Schultz, P.G. (2000) Science, 288, 2042. 
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different parts of the molecule. The bridge can either be local and occurring 

within a single amino acid residue or being global and linking distant parts of 

the sequence. In this context most combinatorial libraries have been developed 

in order to modify R-groups appended to a common core scaffold where R-

groups are typically chosen to maximize diversity, but their relative spatial 

orientations are usually fixed by the geometric constraints of the scaffold. 

Cyclic peptides offer the possibility of conveniently varying both scaffold 

geometry and R-group functionality. For example, parameters such as ring size 

can have a dramatic effect on cyclopeptides conformations, allowing access to 

structurally diverse species based on simple modifications in their linear 

sequences. Cyclization affects the degrees of freedom of all residues within the 

ring and thus a macrolyte should adopt a more defined conformation than the 

equivalent linear sequence. In fact, the active conformation in cyclic peptides 

can give superpotent analogues in matched cases.125 In addition 

conformational constraints provide the basis for receptor selectivity; often 

different receptors bind the same flexible substrate in different conformations 

(Figure 3.1–3). 

 

 

Figure 3.1–3 Differences concerning the interactions ligand-receptor between a linear 
peptide and cyclic peptide. 

                                                 
125 Kessler H. (1982)Angew. Chem. Int. Ed. Engl., 21, 512. 
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It was shown that conformational constraints of peptide structures can induce 

conformations in an often predictable way.126 If the bioactive conformation is 

unknown, the spatial orientation of pharmacophoric groups on a distinct 

backbone conformation can be systematically screened. The procedure 

involves a shift of one (or more) D-amino acid around a distinct scaffold. The 

functional groups of the side-chains and their neighborhoods are retained but 

their spatial arrangement can be adjusted. If one of these conformations 

matches the bound conformation (e.g. the conformation of its biological 

receptor) superactivity can be expected. In addition, the constraints often 

prevent binding to related receptor subtypes resulting in higher selectivity. 

This procedure is applied to design a potent lead structure for an anticancer 

drug. 

A peptide mimetic thus embodies the conformational and molecular 

characteristics thought to be important for biological activity of the native 

sequence. Mimetics may exhibit enhanced potency and can be more selective 

for various receptor sub-types than their parent sequence but several 

generations of variants may need to be prepared before a drug candidate 

emerges. 

 

                                                 
126 Matter, H., and Kessler H. (1995) J. Am. Chem. Soc., 117, 3347. 
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3.1.2 Types of cyclopeptides 

 
Characterization of possible relationship between peptide structure and 

biological activity are often aided by reduction in diversity of the possible 

conformational states that a linear peptide can adopt by generating cyclic 

analogues.127 Intramolecular side-chain-to-side-chain cyclization is an 

established approach to achieve stabilization of specific conformations, and 

has been employed to achieve rigidification that results in restricting the 

conformational freedom. Biologically active cyclic peptides designed and 

prepared specifically from a linear cyclic peptide approach, have been used to 

possess several additional attributes including: (i) increased agonist or 

antagonist potency; (ii) prolonged biological activity and extended 

pharmacokinetics; (iii) increased stability to enzymatic degradation; and (iv) 

increased specificity for a particular receptor.128  

Cyclic peptides are polypeptide chains whose amino and carboxyl termini, or 

two amino acids side chains, are themselves linked together by an amide (CO-

NH), disulfide (S-S), carbon-carbon (CH2-CH2 or CH=CH), reduced amide 

(CH2-NH), methylene thioester (CH2-S), methylene sulfoxide (CH2-SO), 

methylene ether (CH2-O), thioamide (CS-NH), keto methylene (CO-CH2), aza 

(NH-NR-CO) bond or recently 1,4-[1,2,3]triazolyl bridge (Figure 3.1–4). 

                                                 
127 Felix, A.M., Wang, C.T., Heimer, E.P., and Fournier, A. (1988) Int. J.Peptide Protein Res., 
31, 231. 
128 Hruby, V.J. (1982) Life Sci. 31: 189. 
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Figure 3.1–4 Common types of cyclopeptides. 

 
In a number of studies, side-chain-to-side-chain cyclization has been 

performed by lactam bridge formation between N- and C-termini, side-chain 

and the N- or C-terminus, or two side-chains, to generate highly helical and 

biologically active peptides.129, 130 Moreover the introduction of the amide 

isosteres also results in local and global changes dipole moments and in the 

pattern of intramolecular and peptide-receptor hydrogen-bond formation. 

Thus, incorporation of amide bond isosteres cannot only improve in vivo 

stability as the mimetic is no longer a substrate for peptidases, but can improve 

selectivity towards receptor sub-types, changing pharmacological functions 

and enhancing pharmacokinetic properties. 

On the other hand cyclization in the form of a disulfide bridge between two 

Cysteines, or other thiol-containing amino acids, is the most abundant post-

translational modification resulting in side-chain-to-side-chain cyclization. 

However, under certain redox potentials, the disulfide bridge will behave as a 
                                                 
129 Kapurniotu, A. and Taylor, J.W. (1995) J. Med. Chem., 38, 836. 
130 Chorev, M., Roubini, E., McKee, R.L., Gibbons, S.W., Goldman, M.E., Caufield, M.P., and 
Rosenblatt, M. (1991) Biochemistry, 30, 5968. 
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relatively transient modification yielding either the reduced linear form or 

generate a variety of intermolecular disulfide containing products. 

On the other hand, ruthenium complexes have been applied to the ring closing 

metathesis (RCM) reactions of a number of dienic substrates. The substrate 

scope includes rings of 6 to 20 members. In addressing macrocyclic peptides, a 

class of tetrapeptide disulfides inspired the synthesis of the carbon-carbon 

bond analogs. For example, replacement of Cysteine residues by allylglycines 

resulted in the acyclic precursors which were subjected to RCM to afford the 

corresponding macrocycles. In addition, several macrocycles, which were not 

based upon disulfide bridge-containing species found in nature , were 

prepared.131 Moreover the carba replacement (CH2-CH2) is non-polar and does 

not allow the possibility of intramolecular or peptide-receptor hydrogen 

bonding, while the reduced amide (CH2-NH) unit is conformationally different 

from the amide bond because it does not have any double-bond character. 

All of these types of cyclization require orthogonal protection of side chains to 

afford a peptide cyclization. While side-chain to side-chain cyclization of 

peptide sequences has been successful in many instances, a number of factors 

are known to significantly influence the efficiency of the cyclization reaction 

and the yield of the desired cyclic peptide product.  

Therefore cyclizations, which do not require complicated orthogonal 

protection schemes, are of great interest. The recently Cu(I)-catalyzed azide–

alkyne 1,3-dipolar Huisgen’s cycloaddition 132, 133, 134 as a prototypic “Click 

chemistry reaction”135 presents a promising opportunity to develop a new 

paradigm for intramolecular side-chain-to-side-chain cyclization in peptides. 

                                                 
131 Miller, S.J., Blackwell, H.E., Grubbs, R.H. (1996) J. Am. Chem. Soc., 118, 9606. 
132 Huisgen, R. (1984) In 1,3-Dipolar Cycloaddition Chemistry (Ed: A. Padwa), Wiley, New 
York, 1.  
133 Rostovtsev, V.V., Green, L.G., Fokin, V.V., and Sharpless, K.B. (2002) Angew. Chem. Int. 
Ed. Engl., 41, 2596. 
134 Tornoe, C.W., Christensen, C., and Meldal, M. (2002) J. Org. Chem., 67, 3057. 
135 Kolb, H.C. and Sharpless, K.B., (2001) Angew. Chem. Int. Ed. Engl., 40, 2004. 
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In fact, the 1,4-[1,2,3]triazolyl bridge offers interesting mode to generate a 

structural constraint.  

 

3.2 Click Chemistry 

 
Click chemistry is an entire reaction group in which new substances are 

generated by joining small units together with heteroatom links (C−X−C).135 A 

set of stringent criteria that a process should meet to be useful in this context 

are defined as follows: 

− simple reaction conditions (ideally, the process should be insensitive 

to oxygen and water); 

− very high yields; 

− only inoffensive by-products that can be removed without using 

chromatographic methods; 

− to be stereospecific (but not necessarily enantioselective); 

− high thermodynamic driving force, usually greater than 20 kcal.mol-1. 

One of the most interesting reactions that can enter in the “click chemistry” 

definition are the cycloaddition reactions involving heteroatoms, such as 

Diels-Alder and, especially, 1,3-dipolar cycloaddition, that provide fast access 

to a variety of five- and six-membered heterocycles. In particular, Huisgen 

dipolar cycloaddition of azides and alkynes can ideally meet all prerequisites 

for an efficient “click chemistry”.  

The chemistry of alkynyl and azido group is completely orthogonal to the 

chemistry of all endogenous functional groups in proteins; an example of their 

unique reactivity is the irreversible formation of triazole rings (Scheme 

3.2-1). 
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Scheme 3.2-1 [1,2,3]-Triazole formation by [3+2] cycloaddition of an alkyne and an 
azide. 

 
Usually the cycloaddition between azides and alkynes is carried out in 

refluxing toluene leading to mixture of the 1,4- and 1,5- regioisomers, but 

modified proteins and peptides may not survive in these strong conditions. On 

the other hand, what makes azides unique for click chemistry purposes is their 

stability toward H2O and O2. Meldal and co-workers134 and Sharpless and co-

workers133 developed a mild and efficient method to generate 1,4-disubstituted 

[1,2,3]-triazoles by metal-catalyzed reaction using Cu(I) salts as catalyst even 

in the presence of H2O. 

The catalytic cycle of the Cu(I)-catalized cycloaddiction, proposed by 

Sharpless and coworkers133 (Scheme 3.2-2), starts with the formation of a 

copper(I) acetylide I (as expected, no reaction is observed with internal 

alkynes) The reaction procedes either through a concerted [2+3] cycloaddition 

(B-direct) or with a stepwise, annealing sequence (B-1, B-2, and B-3), which 

proceeds via the a six-membered copper-containing intermediate III. 
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Scheme 3.2-2 Catalytic cycle of the Cu(I)-catalized cycloaddiction. 
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3.2.1 Development of a new strategy based on click chemistry reaction 

to generate cyclopeptides  

 
We generated 1,4-[1,2,3]triazolyl-containing cyclopeptides by Huisgen 1,3-

dipolar cycloaddition, designing appropriate modified non-coded amino acids 

bearing on the side-chain alkynyl or azido functions, and correctly protected 

on the α-functions to be introduced in peptide sequences using Fmoc/tBu 

solid-phase strategy. This cycloaddition is a simple chemical transformation 

that improves the resistance towards proteolytic degradation in vivo, and 

allowing the selective formation of covalent adducts in order to obtain 

modified bioconjugates.136 

The 1,4-disubstituted [1,2,3]triazolyl serves as a rigid linking unit mimicking a 

trans-amide bond positioning the substituents in positions 1 and 4 at 5.1 Å 

apart, which is only slightly longer than the distance between two carbons 

separated by a trans-amide bond (3.9 Å). It has a slightly larger dipole moment 

(~5 Debye), which bisects the ring plane near atoms N3 and C5, and has the 

capacity of the N2 and N3 electron lone pairs to serve as hydrogen bond 

acceptors (Figure 3.2–1). 

 

 
Figure 3.2–1 Topological similarities between amides and 1,2,3-triazoles. 

                                                 
136 Köhn, M., and Breinbauer, R. (2004)Angew. Chem. Int. Ed., , 43, 3106. 
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3.3 Inhibition of translation initiation in anticancer therapy, role 

of eIF4E binding protein  

 
Anticancer therapy by inactivation of Translation Initiation is one of the most 

important projects developed at the Laboratory for Translational Research of 

Harvard Medical School. Principles and methodologies of peptide click 

chemistry have been applied to this subject. 

Most cancer therapies target some specific characteristic of cancer cell in order 

to suppress or hinder their proliferation. Unfortunately few approaches are 

fully selective and in most cases the strategy of action relays on the concept of 

damaging cancer cells more than normal cells. This means that most existing 

treatments target one peculiar metabolic feature that is more important for 

cancer cells than for normal ones. For example genetic instability, which is 

higher for cancer cells (and essential for tumor developing) can be enhanced 

(by radiation or mutagenic compounds) to a point that is unbearable for cancer 

cells and damaging but still acceptable for normal cells. Similarly it has been 

demonstrated that cancer cells need to overexpress a set of proteins critical for 

their proliferation. It is possible to take advantage of this need by inhibiting 

translation initiation and thus making the protein synthesis of cancer cells not 

efficient enough for their proliferation. 

Protein synthesis is regulated at multiple levels but most of the regulation 

occurs at the initiation stage of translation that is the process by which the 

genetic information transcripted into m-RNA is converted into proteins137 

(Figure 3.3–1). The 3’ and 5’ terminal portions of eukaryotic m-RNA bind a 

protein complex colle eIF4E which in turn is linked to the ribosomes.  

 

                                                 
137 Sonenberg, N.and Hinnebusch, A.G. (2009) Cell 136, 731.  
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Figure 3.3–1 Regulation of Translation Initiation in eukaryotic cells. 

 

The most important stage of translation initiation is the assembly of the eIF4F 

complex of proteins. The molecular basis of this process has being studied 

intensively and one of its key stages is considered to be the binding of the cap-

protein eIF4E to the 5’-cap extremity of m-RNA. However, if the regulatory 

protein 4E-BP (4E binding protein) binds to eIF4E the mRNA is not able any 

more to interact with eIF4E and thus Translation is suppressed. Figure 3.3–2. 
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Figure 3.3–2 Repression/activation of Translation Initiation depending on the binding 

of eIF4E-mRNA to the eIF4A/eIF4G complex and regulated by 4E-BP. 

 

Our goal is the generation of synthetic modified peptides whose sequence 

reproduces the binding site of the 4E-BP. By inhibiting Translation Initiation 

such peptides represent potential anticancer agents. We plan moreover to 

stabilize with side-chain to side-chain triazole bridges the secondary structure 

of those peptides that are known to assume an α-helical conformation.  
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3.3.1 Selection of the model system, eIF4E binding protein peptide 

 
The development and study of the new intermolecular side-chain-to-side-chain 

[1,2,3]triazole containing peptide modification was carried out in the context 

of a molecular model for those structural and biological information still 

known. In previous work a peptide bearing a fluorescein residue, 4GII-FITC, 

was synthesized in the Laboratory for Translational Research of the Harvard 

Medical School: 

KKQYDRELLDFQFK(Fluorescinyl)  
The 14 amino acid sequence of such peptide reproduces the sequence of the 

binding site of 4GII (also called 4E-BP) which is the main eIF4E binding 

protein and acts as an inhibitor (Figure 3.3–2 shows the structure, determined 

by x-ray analysis, of an eIF4E/eIF4E binding protein peptide complex149). The 

synthetic peptide has proved to possess a high affinity for the protein and 

remarkable inhibiting effects.  

 

 

Figure 3.3–3 Structure, determined by x-ray analysis, of a eIF4E/eIF4E binding 
protein peptide complex. 
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Our aim was to develop cyclic, clicked eIF4E b.p. peptide analogs modifying 

the sequence of 4GII-FITC with non-coded alkynyl and azido amino acids 

specifically synthesized for click chemistry (Scheme 3.3-1).The triazole 

bridge in i/i+4 positions, stabilizing the α-helical structure of the peptide, 

should be able to increase its affinity for eIF4E: The fuorescein residue should 

be useful for Fluorescence Polarization assays for binding affinity 

measurements. 

 

KKQYDRELLDFQFK(Fluorescinyl)

KK-NHCHCO-YDR-NHCHCO-LLDFQFK(Fluorescinyl)
N3

KK-NHCHCO-YDR-NHCHCO-LLDFQFK(Fluorescinyl)
N

NN

Q3 substituted with Norleucine and
E7 with propargyl glycine

Click Cu catalized

4GII-FITC

linear modif ied
4GII-FITC

cyclic modif ied
4GII-FITC

  
Scheme 3.3-1 Scheme of 4GII-FITC modification and cyclization of the linear eIF4E 

b.p. peptide analogs. 
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3.4 New collection of amino acids to develop clicked peptides 

 
The 1,4-disubstituted-1,2,3-triazolyl moiety as an amide bond surrogate, 

specifically assembled through biorthogonal CuI-catalyzed Huisgen 1,3-

dipolar [3 + 2] cycloaddition of an alkynyl to an azido function, generated an 

unmet need for specifically designed amino-acid-derived building blocks. To 

this end, there have been several reports in which non-coded α-amino acids 

modified by ω-azido and ω-alkynyl functionalities were used as biorthogonal 

reporter peptides and proteins.134, 138, 139, 140  In addition to intermolecular side-

chain-to-side-chain click reaction between α-amino acids modified by ω-azido 

and ω-alkynyl functions these non-coded amino acids can be used also to 

conjugate the peptide of interest through an orthogonal reaction with haptens, 

tags, and labels to generate special reagents.  

To date, diazo transfer reaction was used to generate α-azido-acids in solution 

and α-azido-peptides on solid support.141 ω-Azido α-amino acids such as β-

azidoalanine were prepared from either the salt of α-amino-β-propiolactone142 

or the protected homoserinol. On the other hand only propargylglycine (Pra) is 

commercially available. It is evident that there is an unmet need for syntheses 

that will furnish an extensive homologous series of ω-azido and ω-alkynyl-Nα-

protected amino acid as s tools to generate 1,4-disubstituted-1,2,3-triazolyl 

containing peptides or for various applications. For example, combinatorial 

libraries of peptides containing ω-azido- or ω-alkynyl-α-amino acids can be 

used to generate libraries of higher order by diversifying their structure 

through click reactions with a variety of respective alkynyl and azido-

containing reagents.  
                                                 
138 Deiters, A., Cropp, T.A., Mukherji, M., Chin, J.W., Anderson, C., and Schultz, P.G. (2003) 
J. Am. Chem. Soc., 125, 11782. 
139 Dondoni, A., Giovannini, P.P. and Massi A. (2004) Org Lett., 6, 2929.  
140 Lin, H. and Walsh, C. T. (2004) J Am Chem Soc., 126, 13998. 
141 Punna, S., Kuzelka, J., Wang, Q., and Finn, M. G. (2005) Angew. Chem., Int. Ed., 44, 2215.  
142 Arnold, L.D., May, R.G., and Vederas, J.C. (1988) J. Am. Chem. Soc., 110, 2237.  
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Therefore, we developed an efficient and convenient synthetic pathway to 

generate non-coded Nα-Fmoc-ω-azido- and Nα-Fmoc-ω-alkynyl-amino acids 

suitable for Fmoc/t-Bu SPPS (Figure 3.4–1). The structural diversity enabled 

by the small library of building blocks will allow the introduction of 1,4-

disubstituted-1,2,3-triazolyl moieties into peptides of interest as modifiers of 

physicochemical and biological properties.  

 

Fmoc
H
N

OH

O

N3

Fmoc
H
N

OH

O

m = 1-3 n = 1-3
m n

 
Figure 3.4–1 Nα-Fmoc-ω-azido- and Nα-Fmoc-ω-alkynyl-α-amino acids for Fmoc/t-

Bu SPPS. 
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3.4.1 Nα-Fmoc-ω-azido-α-amino acids 

 
An efficient and convenient methodology for generating organic azides is CuII-

catalyzed diazo transfer from amines by trifluoromethanesulfonyl azide.143 

Diazo transfer from triflic azide occurs effectively with Cu2+, Ni2+ or Zn2+ as 

catalysts. The process is amenable to scale-up, can be carried out using 

commercially available reagents and does not require anhydrous conditions. 

Since the transformation does not involve the Cα, it is accomplished with a 

complete retention of the original configuration of the α-amino acid residues. 

In this manner Nα-Boc-Lysine, Nα-Boc-Ornithine, and Nα-Boc-AminoButirric 

acid were converted in good yield to the respective Nα-Fmoc-ε-azido-

Norleucine (3), Nα-Fmoc-δ-azido-Norvaline (4) and Nα-Fmoc-γ-azido-hSerine 

(5) (Scheme 3.4-1). 

 

 
Scheme 3.4-1 General procedure for the synthesis of building blocks 3, 4 and 5. 

 
This strategy required the use of the Nα-Boc-protected amino acids as starting 

material because of their stability in these reaction conditions. 

                                                 
143 Nyffeler, P.T., Liang, C.H., Koeller, K.M. Wong, C.-H. (2002) J. Am. Chem. Soc. 124, 
10773. 
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3.4.2 Nα-Fmoc-ω-alkynyl-α-amino acids  

 
The strategy to synthesize the ω-azido-α-amino acid homologs containing 

(CH2)n (where n=2,3 and 4) on the side chain, employed elaboration of glycine 

by chiral synthesis. The NiII complex of the Schiff base [NiII-(S)BPB-Gly] (14) 

derived from glycine and (S)-2-(N-benzylprolyl)aminobenzophenone (BPB) 

(13) was used as a chirality inducer during the Cα-alkylations (Scheme 

3.4-2).144 

 

 

Scheme 3.4-2 Synthesis of the chirality inducer [NiII-(S)BPB-Gly]. 

Alkylations through the si-face of the glycine enolate are largely favored to 

lead to (S)-α-amino acids. 

 

                                                 
144 Belokon, Y.N., Bulychev, A.G., Vitt, S.V., Struchkov, Y.T., Batsanov, A.S., Timofeeva, T. 
V., Tsyryapkin, V.A., Ryzhov,M.G., Lysova, L.A., Bakhmutov, V.I. and Belikov, V.M. (1985) 
J. Am. Chem. Soc., 107, 4252.  
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Scheme 3.4-3 Chiral synthesis of L-ω-alkynyl-α-amino acids employing the chirality 
inducer [NiII-(S)BPB-Gly]. 

 
This method is based on a reaction between [NiII-(S)BPB-Gly] and alkynyl 

bromides (Scheme 3.4-3). Alkylation of glycine by alkynyl bromides in the 

presence of the chirality inducer [NiII-(S)BPB-Gly], which was carried out 

according to a procedure described in the literature144, yielded the 

corresponding ω-alkynyl-α-amino acids in good diastereoisomeric excess 

(monitored by UPLC, Table 3.4-1). The separation of the diastereoisomers was 

successfully achieved by FCC.  

 
Products of alkylation of the 

Gly-Ni-BPB complex with 

S,S-diastereoisomeric 

excess (%) 

Alkylation  

yield (%) 

6-Bromohex-1-yne (9) 88 68 

5-Bromopent-1-yne (10) 71 58 

4-Bromobut-1-yne (11) 63 41 

Table 3.4-1 Diastereoisomeric excess of the alkynylated complexes. 
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The coupling step between N-benzyl-(S)-proline (BP) (12) and 2-

aminobenzophenone was accomplished in situ by PCl5-mediated 

transformation of the carboxyl function into the acyl chloride, which was used 

to acylate the 2-aminobenzophenone at pH 8. Alkylation of [NiII-(S)BPB-Gly] 

by an excess of ω-alkynyl bromide (1.4 equiv.), in the presence of NaOH in 

anhydrous acetonitrile, proceeded for 5 hours and resulted in a good yield. The 

ω-alkynyl bromides were prepared in moderate yields from the corresponding 

alcohols by treating them with TsCl (product 6, 7, and 8) followed by LiBr 

(product 9, 10, and 11) (Table 3.4-2). 

 

 

n OTs (yield %) Br (yield %) 

3 (96) (31) 

2 (93) (28) 

1 (95) (30) 

Table 3.4-2 Synthesis of the ω-alkynyl bromides. 

 
Hydrolysis of the resultant alkylated complex in 2M HCl was complete in one 

hour. Workup afforded a pale green solid containing the free alkynylated 

amino acids in the presence of Ni0 and BPB. The chirality inducer BPB was 

recovered by washing the crude with acetone and separated from traces of Ni 

by redissolving the solid in DCM, and washing it with water. The removal of 

traces of Ni0 from the free and crude ω-alkynylated α−amino acids, which 

interfered in the following Fmoc-protection reaction, was accomplished by 

overnight solid phase extraction of its MeOH/H2O solution with Na+ Chelex 

resin.  
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Finally, the free ω-alkynylated α-amino acids were Nα-protected as Fmoc to 

yield the building blocks (18, 19, and 20) in quantities adequate for SPPS by 

Fmoc/tBu strategy (Table 3.4-3).  

 

Amino acids Yield (%) Pure compound 

Nα-Fmoc-ε-alkynyl-Norleucine (18) 32 90 mg 

Nα-Fmoc-δ-alkynyl-Norvaline (19) 39 90 mg 

Nα-Fmoc-γ-alkynyl-hSerine (20) 29 80 mg 

Table 3.4-3 Yield and scale of building blocks (18, 19, and 20). 

 
We hypothesized that the low yields of the final products are due to the 

difficulties to obtain the pure free amino acids without the presence of salts 

found after neutralization of the solution, and therefore we used an excess of 

Fmoc-succinimmide that leads to side products formation decreasing yields of 

final products. 
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3.5 Collection of eIF4E binding protein cyclopeptides analogs  

 

Aim of this study is to enhance the affinity of eIF4E binding protein peptide 

with eIF4E by stabilizing the secondary structure of the peptide. This will be 

achieved by introduction of a 1,2,3-triazole ring in positions i and i+4 at 

different levels of the sequence. Under the constraint of such bridge the 

peptide will assume an α-helical conformation which is the conformation of 

the binding site of eIF4E binding protein from which the peptide sequence is 

derived. Moreover, we synthesized a panel of new modified Fmoc-amino acids 

bearing alkynyl and azide function on the side chains (Figure 3.5–1). 

Fmoc
H
N

OH

O

N3

Fmoc
H
N

OH

O

m = 1-3 n = 1-3
m n

 
Figure 3.5–1 Nα-Fmoc-ω-azido- and Nα-Fmoc-ω-alkynyl-α-amino acids for Fmoc/t-

Bu SPPS. 

 
Regarding the position of the sequence in which introducing the triazole 

bridge, initially we decided to modified the C-terminal portion (i-

i+4=positions 3-7) and we have generated an eIF4E b.p. peptide analog 

N4+C1 type, product XVI, having an azido function on the left and an alkynyl 

one on the right (Table 3.5-1).  

This choice for the triazole position has been shown, with Fluorescence 

Polarization Assay (see section 3.6.1), to be unfavorable for improving the 

affinity of the peptide for eIF4E.  
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 Peptide sequence CH2 
ring 

XVI Ac-1Lys-Lys-Gln-Tyr-Asp-Arg-Glu-Phe-Leu-Leu-Asp-Phe-Gln-Phe-15Lys-NH - 

XVII Ac-Lys-Lys-3Nrl(ε-N3)-Tyr-Asp-Arg-7Pra-Phe-Leu-Leu-Asp-Phe-Gln-Phe-Lys-NH 5 

Table 3.5-1 Peptide sequences of eIF4E binding protein peptide analogs XV and XVI. 
Non-coded amino acids [Pra= propargyl-Glycene and Nrl(ε-N3)= ε-azidoNorleucine] 

are outlined. 

 

Therefore we chose to shift the triazole bridge position in the middle of the 

sequence (positions 7-11, Figure 3.5–2 )  

 

 

Figure 3.5–2 Triazole bridge positions 3-7 and 7-11 of the eIF4E binding protein 
peptide analogs. 

 
Moreover two sets of modified amino acids (three alkynes and three azides) in 

two given positions of a sequence (i-i+4 to stabilize an α-helix) can generate 

18 combinations’ of triazole bridges with different number of methylenes and 

different orientations of the triazole. This number comes from the 32=9, 

Nm+Cn, possible combinations having the azide on the left side (position i) 

with the alkyne on the right (position i+4) (Figure 3.5–3) plus the other 32=9 

Cn+Nm, possible combinations generated by alkyne on the left side and the 

azide on the right (Figure 3.5–4). 
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Figure 3.5–3 The 32=9 possible combinations of Nm+Cn triazole bridges having the azide on the left side        
(position i) and the alkyne on the right side (position i+4). 

Nm+Cn permutations  
m=2,3,4 n=2,3,4 
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Figure 3.5–4 The 32=9 possible combinations of Cn + Nm triazole bridges having the azide on the left side (position i) and 
the alkyne on the right side (position i+4). 

Cn+Nm permutations 
m=2,3,4 n=2,3,4 
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Based on previous experiments on cyclic, clicked peptides145 we have 

discarded those combinations generating triazole bridges either too short (4 

methylene units) or too long (7-8 methylene units). A number of methylene 

between 5 and 6 has been shown to be the most favorable for α-helix 

stabilization. Thus we have planned to focus on 10 out of 18 possible 

combinations (Table 3.5-2 ). 

 
N°CH2 XVIII XIX XX XXI 

5 N2+C3 C3+N2 N3+C2 C2+N3 
     

N°CH2 XXII XXIII XXIV XXV 
6 N2+C4 C4+N2 N4+C2 C2+N4 
     

N°CH2 XXV XXVI   
6 N3+C3 C3+N3   

Table 3.5-2 The selected 10 eIF4E binding protein click peptide with triazole length 
of 5-6 methylene units. Those products that are under characterization are outlined in 

green. 

 

Peptide analogs XVIII, XIX, and XX (Table 3.5-3) have been synthesized 

purified and characterized both with in solution NMR and with Fluorescence 

Polarization Assay. 

 

 Peptide sequence CH2 
ring 

XVIII Ac-Lys-Lys-Gln-Tyr-Asp-Arg-7hSer(γ-N3)-Phe-Leu-Leu-11Nvl(δ-yl)-Phe-Gln-Phe-Lys-NH 5 

XIX Ac-Lys-Lys-Gln-Tyr-Asp-Arg-7Nvl(δ-yl)-Phe-Leu-Leu-11hSer(γ-N3)-Phe-Gln-Phe-Lys-NH 5 

XX Ac-Lys-Lys-Gln-Tyr-Asp-Arg-7Nvl(δ-N3)-Phe-Leu-Leu-11hSer(γ-yl)-Phe-Gln-Phe-Lys-NH 5 

Table 3.5-3 Peptide sequences of eIF4E binding protein peptide analogs XVIII-XX. 
Non-coded amino acids [hSer(γ-N3)= hSerine(γ-N3), Nvl(δ-yl)= Norvaline(δ-yl), 

Nvl(δ-N3)= Norvaline(δ-N3), hSer(γ-yl)= hSerine(γ-yl)] are outlined. 

                                                 
145 Scrima, M., Le Chevalier-Isaad, A., Rovero, P.,  Papini, A.M., Chorev, M., and 
D'Ursi A.M. (2009) Eur JOC in press. 
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3.5.1 Linear peptides  

 

Peptides XVI-XX were generated as described in section 5.6 on an automatic 

synthesizer starting from Rink amide resin. The first Lysine residue in the C-

terminal position was introduced with an ivDde side chain protection for 

fluorescein coupling. The non-coded amino acids were inserted by manual 

SPPS in the peptide sequence in the positions i, i+4 as reported in Table 

3.5-4.  

 

Linear 
peptide 

Xaa Yaa 

XVI NH
OH2N

O

  
XVII 

NH

ON3

NH

O

 
XVIII 

  
XIX 

 
XX 

NH

O
N3  

NH

O
 

Table 3.5-4 Non-coded amino acids introduced in the peptide sequences in the 
i, i+4 positions. Peptide XVI does not contain any non-coded amino acid. 
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At the end of the synthesis and after N-terminal α-amino acetylation 

ivDde group was removed with 2% hydrazine in DMF from the C-

terminal Lysine and the ε-amino was coupled to a carboxy-fluorescein 

residue. The peptides were purified by semi-preparative HPLC and 

characterized by ESI-MS. Analytical data are reported in Table 3.5-5. 

 

MS+(ESI) m/z Linear peptide Rt(min) 
HPLC found calculated 

XVII 6.3 [M+H]+=2354.92 
[M+H]2+=1177.96 [M+H]+=2355.62 

XVIII 15.4 [M+H]+=2411.28 
[M+H]2+=1206.14 [M+H]+=2410.7 

XIX 15.5 [M+H]+=2410.98 
[M+H]2+=1205.99 [M+H]+= 2410.7 

XX 14.1 [M+H]+=2411.44 
[M+H]2+=1206.53 [M+H]+= 2410.7 

Table 3.5-5 Chemical data of linear peptides XVIII-XIX. All HPLC were performed 
with a gradient 30to70% B in A. 

 

3.5.2 Cyclopeptides  

3.5.2.1 General features on click chemistry reaction conditions 

The catalytic cycle of the Cu(I)-catalyzed alkyne-azide “click” cycloaddition 

(Scheme3.5-1) shows that a source of Cu(I) is fundamental for the 

regioselectivity. Meldal and co-workers134 described the use of Cu(I) salts in 
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the solid phase, while Shrarpless133 reported solution phase by in situ reduction 

of Cu(II) salts. It is also possible to envisage the formation of Cu(I) from the 

oxidation of metallic copper. 

Alkyne π complexation requires ligand dissociation and is endothermic in 

acetonitrile. However, in aqueous solution the formation of copper species 4 

(Scheme 3.5–1) is exothermic, a result consistent with experimental findings 

of a rate acceleration in water. 

Moreover, the copper coordination lowers the pKa of the alkyne CH, thus 

making deprotonation in aqueous systems possible without the addition of a 

base; DIPEA and 2,6-lutidine minimizes the side-product formation. 

In this context, the choice of the condition reaction (solvent, base) is crucial 

for cycloaddition.  

 

Scheme3.5-1 Proposed outline of species involved in the catalytic cycle of the CuI-
catalyzed alkyne-azide “click” cycloaddition.146 

 

                                                 
146 Bock, V.D., Hiemstra, H., and van Maarseveen, J.H. (2006)Eur. J. Org. Chem., 14, 51. 
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3.5.2.2 Synthesis and characterization of cyclopeptides 

 
Copper catalyzed click cyclization was performed on peptides XVII-XX using 

an excess of copper sulfate (10eq) and ascorbic acid (20eq) in 1:1 tBuOH/H2O. 

The reaction was monitored by HPLC and LC-MS. It is important to note that 

the cyclic, clicked forms have exactly the same mass of the corresponding 

linear forms so that cannot be distinguished by conventional LC-MS. However 

the two forms has different retention times, in particular all clicked peptides 

synthesized so far have a shorter retention time with respect to their 

corresponding linear forms The cyclic peptides were purified by solid phase 

extraction (SPE) followed by semi-preparative HPLC purification and 

characterized by HPLC and ESI-MS (Table 3.5-6). 

 

MS+(ESI) m/z 
Peptide 

Linear 
Rt (min) 
HPLC 

Clicked 
Rt (min) 
HPLC found Calculated 

XVIIc 6.3 4.8 [M+H]+=2354.72 
[M+H]2+=1177.86 [M+H]+=2355.62 

XVIIIc 15.4 15.4 [M+H]+=2411.35 
[M+H]2+=1206.17 [M+H]+=2410.7 

XIXc 15.5 15.5 [M+H]+=2410.99 
[M+H]2+=1206.00 [M+H]+= 2410.7 

XXc 14.1 14.01 [M+H]+=2411.21 
[M+H]2+=1206.10 [M+H]+= 2410.7 

Table 3.5-6 Chemical data of clicked peptides XVIIc-XXc. 
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3.5.2.3 Side reactions during peptide click-mediated cyclization 

 
Previous experiments147 showed that spontaneous cyclization (in absence of 

metal catalysts) of linear peptides bearing alkyne and azide functions occur to 

a very little extent as can be seen from Figure 3.5–5. 

 

 

Figure 3.5–5 Example of a typical evolution of the HPLC chromatogram (method : 
10% to 60% of B in A for 20 minutes, A = 0.1% TFA in H2O, B = 0.1% TFA in 
CH3CN) obtained in 12 days of solution of a linear peptide developed for click 

chemistry. 

 

Moreover alkyne-azido functions of modified peptides are stable if kept in dry 

solid form under low temperature. During peptide click reaction 

intermolecular cyclization obviously competes with intermolecular oligo-

polimerizations between alkyne and azide residues of different molecules. 

Under a high dilution, of the order of 0.1 μmM, the latter intermolecular 

reactions are suppressed. However the triazole orientation, the size of the 

bridge and the position of the bridge itself in the peptide sequences seems to 

play a role. In our preliminary studies no undesired oligomerization was 

                                                 
147 Le Chevalier-Isaad A., PhD Thesis 2008. 
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detected when the triazole was closed to the N-terminal residue of the peptide 

(analog XVII). On the contrary a certain degree of oligomerization was 

present when the bridge was in the middle of the sequence, as for the case of 

peptides XVIII-XX. The reaction rate itself was slower and complete 

exhaustion of the linear precursors took longer (3-4 days) compared to XVII 

(12 h). This may imply that a more central position for the bridge could hinder 

the intermolecular cyclization making the intermolecular reaction more 

favorable. At the same time we noticed a higher degree of oligomerization for 

peptide XVIII (C3+N2) compared to peptide XIX (N2+C3) and peptide XX 

(N3+C2) suggesting that the orientation of the triazole influences the rate of 

the cyclization. Figure 3.5–6 reports the LCMS chromatogram for click 

reaction of peptide XIX. Together with the linear and cyclic peptides, two 

more peacks are present being the dimmer and trimer oligomers (the 

correspondent mass is shown in Figure 3.5–7. More systematic studies will be 

necessary to elucidate the peptide click cyclization dynamics. 
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Figure 3.5–6 UPLC-MS of the cyclization reaction of peptide XIX, method 20to60% 
B in A (215nm, 254nm, TIC). The chromatograms show the trimer adduct at 1.62 min, 

the dimer adduct at 1.77 min, the clicked peptide at 2.02 min, and the linear peptide    
at 2.16min. 
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Figure 3.5–7 Mass spectrums of the purified dimmer form (A) and trimer form (B) 
with corresponding calculated [M+H]+ values. 

A 

B 
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3.5.2.4 Peptide templated click cyclization 

 
Sharpless and co-worker148 have demonstrated that the in situ click-chemistry 

approach can be successfully applied to the formation of HIV-1-Pr inhibitors. 

HIV-1 Protease assembles its own potent inhibitor through formation of the 

triazole linkage from azide- and alkyne-containing fragments that are 

themselves poor binders. In fact the protein itself acts as a template for the 

reaction and greatly increases the rate of formation of the 1,4-triazole product. 

In this context, to study the ring size influence, we have set up the synthesis of 

a collection of linear peptides containing alkynyl- and azido-moiety on the side 

chain backbone for in situ template cyclization. The assumption is that eIF4E 

binding protein peptide analogs in presence of eIF4E will fit the protein 

binding site assuming an α-helical conformation (this is known to happen from 

x-ray crystal studies of eIF4E/eIF4E b.p. peptides)149. Under these conditions 

the alkyne and azido side chain functions will find themselves in close contact 

and will cyclise without any need of metal catalysts as has been the case of 

HIV-1-Pr inhibitors. 

Templated click cyclization studies are currently held on linear peptide 

analogs XIX and XX. 

                                                 
148 Whiting, M., Muldoon, J., Sharpless, K.B., Elder, J.H. and Fokin, V. V. Angew. Chem. Int. 
Ed. 2006, 45, 1435. 
149 Marcotrigiano, J.,  Gingras, A.D., Sonenberg, N., Burley, S.K. (1999) Molecular Cell, 3, 
707. 
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3.6 Fluorescence Polarization Assay studies 

Fluorescence anisotropy is a method for measuring the binding interaction 

between two molecules, and can be used to measure the binding constant (or 

the inverse, the disassociation constant) for the interaction.150 The basic idea is 

that a fluorophore excited by polarized light (light whose "waves" only go into 

one direction) will also emit polarized light. However, if a molecule is moving, 

it will tend to "scramble" the polarization of the light by radiating at a different 

direction from the incident light (Figure 3.6–1). The "scrambling" effect is 

greatest with fluorophores freely tumbling in solution and decreases with 

decreased rates of tumbling. Protein interactions can be detected when one of 

the interacting partners is fused to a fluorophore: upon binding of the partner 

molecule a larger, more stable complex is formed which will tumble more 

slowly (thus, increasing the polarization of the emitted light and reducing the 

"scrambling" effect).  

              

Figure 3.6–1 The principle of Fluorescence Polarization. 
                                                 
150 Jolley, M.E., Stroupe, S.D., Schwenzer, K.S., Holen, J. T., and Kelso, D.M. (1981) CLIN. 
CHEM. 27, 1575. 
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This technique works best if a small molecule is fused to a fluorophore and 

binds to a larger partner151 (this maximizes the difference in signal between 

bound and unbound states). If the fluorophore is attached to the larger protein 

in a binding pair, the difference in polarization between bound and unbound 

states will be smaller (because the unbound protein will already be fairly stable 

and tumble slowly to begin with) and the measurement will be less precise.By 

titrating the amount of one of the proteins, a binding curve can be generated 

(the amount of polarization observed is proportional to the amount of protein 

complex formed, which is proportional to the concentration of the binding 

partners in solution). Mathematical models can be applied to this binding 

curve to determine the binding constant of the protein interaction152. In another 

application of this technique, it is also possible to measure the folding of a 

protein, since an unfolded peptide chain will tumble differently than a folded 

one, giving a difference in polarization  

                                                 
151 A. Fowler, D. Swift, E. Longman, and M. Coldwell (2002) Analytical Biochemistry, 308, 
223. 
151 Hess Kenny, C., Kriz, R., and Ellestada, G. (2003) Analytical Biochemistry, 323, 224. 
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3.6.1 Measurement of eIF4E-affinity of eIF4E binding protein 

peptide analogs. 

 
In a first experiment three FP assays have been done on the linear unmodified 

peptide XVI, linear modified peptide XVII and cyclic peptide XVIIc. We 

tested the affinity for eIF4E, applying a 10nM concentration of those peptides 

to all the plate positions and using an increasing concentration of protein. The 

results showed that linear peptide XVI (4GII-FITC), unmodified peptide 

coming from the sequence of an eIF4E b.p. (4GII), and his modified linear 

analog (peptide XVII with two residues modified with alkynyl and azido 

groups), has a similar affinity (ca. 150nM) towards eIF4E (Figure 3.6–2). 

These remarkable findings suggested that the introduction into a peptide 

sequence of non-coded, alkynyl and azido amino acids doesn’t affect its 

biological properties. 
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Figure 3.6–2Fluorescence polarization assay for the measure of binding affinity 

towards eIF4E of 4GII-FITC (unmodified linear peptide XVI) (A) and linear modified 
peptide XVII (B). 

 
On the other hand, the clicked, cyclic form of peptide XVII (peptide XVIIc) 

had a very poor affinity (even with high concentration of protein, 500uM, the 

curve didn’t reach saturation) (Figure 3.6–3). These data imply that the triazole 

bridge formation completely suppress the ability of the sequence to fit the 

B 

A 
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proteins binding site. This suggested that the bridge was set in a non 

convenient position and, as can be seen in Figure 3.6–3, where is shown the  
structure of the complex eIF4E/eIF4E binding protein peptide, at the bottom of 

the peptide, because of the introduction of the triazole bridge, a new helix turn 

was formed where originally there was a coil. Besides, the Tyrosine at position 

4, which is the most important residue of the motif, is moved from its correct 

position when the bridge is formed.  
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Figure 3.6–3 Fluorescence polarization assay for the measure of binding affinity 

towards eIF4E of peptide XVIIc (clicked, cyclic form of linear modified            
peptide XVII). 

 

Starting from these results we planned the synthesis of new modified analogs 

of 4GII-FITC with the bridge stabilizing the helix part of the structure between 

positions 7 and 11. 

We synthesized a small collection of cyclic, clicked peptides, generated by 

click chemistry reaction with different ring sizes (section 3.5). 

In Figure 3.6–4 are summarized the Fluorescence Polarization measurements 

of 4E-BP linear peptide analogs XVII-XX and the corresponding cyclic 

peptides XVIIc-XXc against the eIF4E protein. 
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Figure 3.6–3 Structures of the complex eIF4E/eIF4E binging protein (from x-ray 

analysis). In evidence the position of the triazole bridge 3-7 in peptide XVIIc (between 
residue 3 and 7) and the tyrosine residue in position 4 that is destabilized by the bridge 

formation. 

 

The titration curves show that the new cyclic analogs (XVIIIc, XIXc, and 

XXc) has a far better affinity for eIF4E than the first developed cyclic peptide 

(XVIIc), around 15 nM of kd versus no affinity. This implies that the decision 

to shift the triazole bridge position from residues 3-7 to residues 7-11 was the 

correct one. The fact that the new cyclic peptides bind consistently one order 

of magnitude less tightly (kd ca. 150 nM) than the linear counterparts.  
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Figure 3.6–4 Fluorescence Polarization mesurments of 4E-BP linear peptide analogs 

XVII-XX and the corresponding cyclic peptides XVIIc-XXc against eIF4E. 

 

The latter conclusion means that under the chosen ring size parameters (a 

2+3/3+2 triazole bridge) the cyclization does not improve affinity over the 

linear peptides. However the fact that different cyclic analogs have different 

affinity towards the protein is a proof that our hypothesis of side-chain to side-

chain triazole bridge α-helix stabilization is indeed correct.  

As future developments, it remains to find which is the best combination of 

modified alkyne and azido amino acids to get the best α-helical stabilization. 
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3.7 Conformational studies  

 
In solution, most of the peptides assume multiple flexible conformations. 

Determination of the dominant conformers and evaluation of their populations 

is the aim of peptide conformational studies, in which theoretical and 

experimental methods play complementary roles.153 Cyclic peptides typically 

assume multiple conformations; these conformations are rather flexible, with 

torsional angles of the backbone (φ, ψ) as well as of the side chain groups (χi) 

fluctuating within large intervals (Figure 3.7–1). 

In addition, coupling constants between NH and CαH can give information 

about the average values of the peptide backbone torsional ϕ angles. 

 

 

Figure 3.7–1 φ and ψ Dihedral angles. 

 
Moreover, another goal of conformational investigations is to determine the 

relationship between conformation and activity of biologically important 

peptides (e.g. SAR: structure-activity relationships studies). Numerous 

biological results are strongly supported by conformational investigations, 

clearly indicating that biological peptide activity is determined not only by the 

                                                 
153 Bierzyñski, A. (2001) Acta Biochimica Polonica, 48, 1091.. 
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presence of specific functions binding to a target protein, but also dramatically 

depends on the conformational properties of the whole peptide structure. 

Cyclopeptides XIXc (C3+N2) and XXc (N3+C2) (Figure 3.7–2) were 

analyzed by NMR and CD, to understand the influence of the alkyl ring size 

containing the triazolyl moiety, the spatial orientation of triazole ring and the 

spatial arrangement of all the side chains that is fundamental for the 

interactions with the eIF4E protein. 

 

 
Figure 3.7–2 Triazole bridge orientation in eIF4E b.p. peptide analogs XIXc and XXc 

which are isomers having a different triazole orientation. 
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3.7.1 NMR and CD structural characterization of cyclopeptides XIXc 

and XXc 

 
This part of research was followed in cooperation with Prof. A. M. D’Ursi and 

M. Scrima of the department of Pharmaceutical Sciences of the University of 

Salerno. 

A preliminary screening of the conformational preferences of XIXc and XXc 

[1,2,3]triazolyl-containing peptides as a function of the environment was 

performed by means of circular dichroism (CD) spectroscopy. CD is a form of 

spectroscopy based on the differential absorption of left- and right-handed 

circularly polarized light. It can be used to determine the structure of 

macromolecules, including the secondary structure of proteins. In fact, CD 

spectroscopy is widely used to determine the secondary structures of proteins. 

Within the UV region from 180 up to 240 nm each of the structures α-helices, 

β-sheets, and the remaining, unordered part of the polypeptide backbone, 

usually referred as “random coil”, contribute in different ways to the peptide 

spectrum. 

CD spectra of both XIXc and XXc recorded in water (pH=5) presented a 

negative band at 201 nm. CD spectra (Figure 3.7–3 and Figure 3.7–4) recorded 

in water and water/HFA (50:50, v/v) mixtures154 (a secondary structure 

stabilizing solvent), show for XXc the negative bands at 208 and 222 nm and 

an additional positive band at 192 nm, for XIXc presented  two minima around 

220nm. A single value deconvolution method154 estimates for both 

cyclopeptides in water almost 80% of random coil structures, for cyclopeptides 

in water/HFA high amounts of alfa-helical structures for XXc and significant 

amounts of beta-structures for XIXc. 

                                                 
154 Johnson, J.W. (1990) In Protein secondary structure and circular dichroism: a practical 
guide, 205. 
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Figure 3.7–3 CD spectra of XXc (Continue line) and XIXc (dotted line) in H2O pH 

5. 

 

 
Figure 3.7–4 CD spectra of XXc (Continue line) and XIXc (dotted line) in H2O/HFA 

50/50 v:v. 
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These preliminary results require further detailed analyses, nevertheless, they 

prelminarly suggest a different conformational behavior of XIXc and XXc 

which on chemical point of view are different only for the orientation of the 

triazolyl ring. 

A preliminary NMR analysis was undertaken in water solution. NMR spectra 

of sc152 were acquired in water solution at pH 5.5. To exclude potential 

aggregation, we recorded the 1D proton spectra of the cyclopeptides at a 

concentration range spanning 1-0.1 mM. At a peptide concentration of 0.1 

mM, the peptides did not display any noticeable effect of aggregation. 

Chemical shift assignments of the proton spectra of XXc (Table 3.7-1) were 

achieved via the standard systematic application of DQF-COSY,155 

TOCSY,156 and NOESY157 experiments, using the SPARKY158 software 

package according to the procedure of Wüthrich.159 

It is well known that water solutions are considered the most biocompatible 

media suitable for NMR analysis of biomolecules. However water solutions 

enhance the flexibility of short peptides and avoid the collection of a sufficient 

NMR data to build reliable 3D models. To overcome this proble usually 

mixtures of water and organic solvents are used. The preliminary screening of 

the conformational analysis in water solution is advisable. 

In our case the preliminary NMR investigation of XXc strted with the 

acquisition of NMR experiments in water solutions. Figure 3.7–5 shows the 

low-field region of NOESY spectrum of XXc in water solution. In agreement 

with the expectations for a spectrum in water solution a high number of 

TOCSY and NOESY correlations is not observable. In any case a careful 

                                                 
155 Piantini, U., Sorensen, O.W., Ernst, R.R., (1982) J. Am. Chem. Soc., 104, 6800. 
156 Bax, A. and Davis, D.G. (1985) J. Magn. Res., 63, 207. 
157 Jeener, J., Meyer, B.H., Bachman, P., and Ernst, R.R. (1979) J. Chem. Phys., 71, 4546. 
158 Goddard, T.D., Kneller, D.G., SPARKY 3 NMR software. University of California, San 
Francisco (2001). 
159 Wüthrich, K. NMR of Proteins and Nucleic Acids. John Wiley and Sons: New York, (1986), 
44. 
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analysis of the correlations present, allowed the assignment of a high percent 

of proton resonances (Table 3.7-1). 

The amide and fingerprint regions of NOESY spectra of peptide XXc in water 

(Figure 3.7–5) showed a significant number of non-trivial dNN(i, i+1) dαN(i, 

i+3) medium-range NOE correlations. These correlations suggest that in spite 

of the flexibility of the peptide and the polarity of the aqueous environment, 

XXc has an intrinsic tendency to assume ordered turn-helical structures.  
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                                   Table 3.7-1 Chemical shifts of XXc in water solution pH 5.5 (600MHz, 300K). 

Cyclopeptide XXc in Water 
Residue HN CαH CβH CγH CδH CεH Others 

Lys1 8.105 4.673 1.879/1.624 1.259 1.532 2.814 Qζ7.759 
Lys2 8.167 4.144 1.756/1.532 1.226 1.449 2.782 Qζ7.637 
Gln3 8.107 4.112 2.831 2.411    
Tyr4 8.278 4.546 2.740/2.607  7.204 7.123  
Asp5 7.911 4.682 2.569     
Arg6 8.082 4.679 1.412 1.645  2.952 Qζ7.755 
Orn7 7.847 4.387 1.653 1.705 3.694   
Phe8 8.395 4.362 2.828  6.490 7.165 Hζ6.884 
Leu9 8.468 4.451 1.760 1.490 0.797/0.724   
Leu10 8.454 4.672 1.499 1.396  0.752/0.700   
Orn11 7.751 4.391 1.602 1.982    
Phe12 8.262 4.724 2.946  7.290 7.400 Hζ7.270 
Gln13 7.922 4.451 3.399 3.029      
Phe14 8.261 4.675   2.821    7.254 7.277 Hζ 7.269 
Lys15 8.399 4.100   1.855/1.721 1.278   1.516   2.836  7.751  
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Figure 3.7–5 CH-α (top) and NH-NH (bottom) regions of NOESY spectrum of XXc 
in water pH. 5.5. The spectra were recorded at 600MhH and 300K. 
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3.8 Conclusions and future developments B 

 
The goal of this project was the development of new eIF4E binding protein 

peptide inhibitors with stabilized conformation to be used as suppressors of 

Translation Initiation in a context of cancer therapy (section 3.3). 

A collection of Nα-Fmoc protected unnatural amino acids bearing on the side 

chain azide or alkynyl functions was synthesized and introduced by SPPS in 

the fluoresceinated-4E-BP(621-636) peptide sequence to afford by Cu(I) 

catalyzed Huisgen reaction, a new collection of cyclopeptides containing the 

triazolyl moiety (section 3.5). The side-chain-to-side chain cyclization of 

linear peptides generated via click chemistry lead to cyclopeptides containing 

the triazolyl moiety linked to the α-carbon of the amino acids by alkyl chains 

of different lengths. 

The collection of linear and cyclic peptides has been tested with Fluorescence 

Polarization Assay to measure the affinity for the eIF4E protein. The position 

and length of the triazole-bridge appears to play a critical role in enhancing 

and decreasing the affinity of the binding protein peptide analogs (4E-BP) for 

the target protein (eIF4E) (section 3.6.1). 

A NMR/CD conformational study has been carried out on the cyclopeptides 

analogs containing triazolyl moiety. From preliminary data the triazole bridge 

seems, as expected, to stabilize the α-helical structure of the peptides (section 

3.7.1). 

The completion of the synthesis and characterization of the 4E-BP 

cyclopeptides collection is in progress. The peptides presenting the best 

affinity with eIF4E will be selected for experiments of templated click 

cyclization free from metal catalyst and in presence of the protein (eIF4E) 

(3.5.2.4). The cell membrane permeability of the fluoresceinated peptides will 

also be assessed with a confocal microscope.  
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4 PART C: The Fmoc/tBu Solid Phase Peptide Synthesis  

The following section contains material coming from the book chapter 

“Orthogonal protecting group in Fmoc/tBu strategy” edited by the author 

together with Prof. Anna Maria Papini under press in “Amino, Peptides, and 

Proteins in Organic Chemistry”, Wiley. 

4.1 The Fmoc/tBu-strategy 

The Fmoc/tBu combination is an orthogonal system that was described in 

1978160, a decade and a half after Boc/Bzl chemistry, and it nowadays, by far, 

the most widely used strategy for the SPPS. It is based on the Nα-protecting 

group 9-fluorenylmethoxycarbonyl developed by Carpino and coworkers in 

1970161. Nα-Deprotection is mediated by a base, usually piperidine (Scheme 

4.1-1), so the amino group is available for the next coupling as soon as the 

protector is removed, and there is no loss of side-chain protectors during chain 

assembly162.  

O N
RH

N
H

O

H
-CO2 + H2N R

N

 
Scheme 4.1-1 Piperidine mediated Fmoc deprotection 

                                                 
160 Chang, C.D. and Meienhofer, J. (1978) International Journal of peptide and Protein 
research, 539. 
161 Carpino, L.A. and Han, G.Y. (1970) Journal of the American Chemical Society, 92, 5748. 
162 Benoiton, N.L. (2006) In Chemistry of Peptide Synthesis, Taylor and Frensis, 142. 



 

 140 
 

Final deprotection is by acid of moderate strength, so no special equipment is 

necessary (contrary of what is required for Boc/Bzl strategy), and the linker 

need not be especially stable to acid. Fmoc–amino acids cost more than Boc–

amino acids, but their use involves one step less (since the acid employed for 

Nα-Boc deprotection leaves the amino group protonated, a neutralization step 

is required to convert the amino group to a nucleophile), thus reducing 

consumption of solvent, which is a significant cost savings163. 

                                                 
163 Atherton, E., Logan, C.J., and Sheppard, R.C. (1981) Journal of the Chemical Society 
Perkin Transactions 1, 538. 
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4.1.1 Orthogonal protecting groups in Fmoc/tBu strategy 

4.1.1.1 Arginine  

 
During SPPS the three nitrogen atoms of the guanidine group of Arginine 

(Figure 4.1–1) being strongly nucleophilic are prone to alkylation and sub 

sequential Ornitine formation upon base–mediated decomposition164 and 

therefore need to be protected. However, in common practice, most protecting 

groups block only the ω-nitrogen. In addition, free unprotected Arginine 

residues tend to cyclize upon activation of the α-carboxylic group to form δ-

lactams  

 

 

 

 

 

 

Figure 4.1–1 The guanidino group of Arginine. 

In Fmoc/tBu strategy the most commonly used protecting groups of Arginine 

are the arylsulfonyl-based derived from the tosyl group (Tos)165 such as 4-

methoxy-2,3,6-trimethylbenzenesulfonyl (Mtr) group 1, now superseded by 

the two cyclic ether derivates 2,2,5,7,8-pentamethylchroman-6-sulfonyl (Pmc) 

2 and 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl (Pbf) 3 group. Mtr 

removal requires several hours of TFA treatment and often causes sulfonation 

of Trp residues166, which can be avoided using 1M TMSBr in TFA167. 

                                                 
164 Rink, H., Sieber, P., and Raschdorf, F. (1984) Tetrahedron Letters, 25, 621. 
165 Ramage, R., Green, J., and Blake, A.J. (1991) Tetrahedron, 47, 6353. 
166 Sieber, P. (1987) Tetrahedron Letters, 28, 1637.  
167 Fujii, N., Otaka, A., Sugiyama, N., Hatano, M., and Yajima, H. (1987) Chemical and 
Pharmaceutical Bulletin, 35, 3880. 
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Moreover long TFA treatment can cause O-sulfonation of Ser and Thr which 

can be suppressed adding thiocresol to the cleavage cocktail168. Pmc group 

being much acid sensitive than Mtr can be removed faster and the Trp/Tyr 

modifications are less pronounced169 and can be overcome if the Trp indole 

ring is Boc protected170. The Pbf group171, the dihydrofuran analog of Pmc 

group, is at present the most widely used Arginine protecting group. It has 

proved to be more acid labile than Pmc (its removal is 1-2 time faster) and 

generates less alkylation than the other arylsulfonyl-protecting groups.  
Me
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Other reported protecting strategies have not gained popularity due to several 

different shortcomings. For example, the nitro group (NO) is used to protect 

the ω-Nitrogen and can be removed with H2/Pd or with hydrazinium 

monoformate and magnesium172 but it is not completely stable under coupling 

conditions173. It generally requires long deprotection times and it is prone to 

                                                 
168 Jaeger, E., Remmer, H.A., Jung, G., Metzger, J., Oberthur, W., Rucknagel, K.P., Schafer, 
W., Sonnenbichler, J., and Zetl, I. (1993) Biological Chemistry Hoppe Seyler, 5, 349.  
169 Green, J., Ogunjobi, O.M., Ramage, R., and Stewart, A.S. (1988) Tetrahedron Letters, 29, 
4341. 
170 White, P. (1992) in Peptides, Chemistry, Structure and Biology, Pro. 12th American peptide 
Symposium, Smith, J.A. and Rivier, J.E. (Eds.), ESCOM, Leiden, 537. 
171 Carpino, L.A., Shroff, H., Triolo, S., Mansour, E.M., Wenschuh, H., and Albericio, F. 
(1993) Tetrahedron Letters, 34, 7829. 
172 Gowda, D.C. (2002) Tetrahedron Letters, 43, 311. 
173 Wunsch, E. (1974) In Houben-Weyls methods der Organischen Chemie, Muller, E. (Ed.), 
15, Parts 1 and2, Thieme, Stuttgart. 
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generate partially reduced products174. The urethane protections, ω-Boc175 and 

δ, ω-bis adamantyloxycarbonyl (Adoc)2
 176 4 are unable to completely suppress 

the guanidine group nucleophilicity. On the other hand bis-urethane Arginine 

derivate with both ω and ω’-Nitrogen Boc protected177 does not show any side 

reaction on deprotection but it is highly hindered adduct and the coupling time 

need to be extended. The trityl group is not normally used for Arginine 

protection because it gives an adduct with poor solubility in DMF/DCM178. 

A completely different approach to the problem of Arg protection is the use of 

a suitably protected Ornitine residue that can be converted into Arginine at the 

end of the synthesis by guanylation with reagents such as 1H-pyrazole-1-

carboxamide hydrochloride179. An additional level of orthogonality is needed 

for the Ornitine δ-amino group, which has to be selectively deprotected before 

the conversion. Protecting groups such as the 1-(4-

methoxyphenyl)ethyloxycarbonyl (Mpeoc) 180 4a, cleavable under mild acidic 

conditions, have been specifically developed for this application. 

 
 

                                                 
174 Turàn, A., Patthy, A., and Bayusz, S. (1975), Acta Chimica Academiae Scientiarum, 85, 
327. 
175 Gronvald, F.C., Johansen, N.L., and Lundt, F.G. (1981), In Peptides 1980, Brunfeldt K. ed, 
Scriptor. Copenhagen, 111. 
176 Presentini, A. and Antonui, G. (1986), International Journal of Peptide and Protein 
Research, 27, 123. 
177 Verdini, A., Lucietto, P., Fossati, G., and Giordani, C. (1992) Tetrahedron Letters, 33, 
6541. 
178 Caciagli, V. and Verdini, A.S. (1988) In Peptide Chemistry 1987, (Shiba T. and Sakakibara 
S. eds.), Protein Research Foundation Osaka, 283. 
179 Bernatowicz, M.S., Wu, Y., and Matsueda, G.R. (1992), The Journal of Organic Chemistry, 
57, 2497. 
180 Bernatowicz, M.S. and Matsueda, G.R. (1994) In Peptides, Chemistry, structure and 
Biology, proc. 13th American Peptide Symposium, Hodges, R.S. and Smith, J.A. (Eds.) 
ESCOM, Leiden, 107. 
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4.1.1.2 Asparagine and Glutamine 

Asparagine and Glutamine could in principle be incorporated into peptides 

without protection but the unprotected derivates display a low solubility in 

solvents commonly used in peptide synthesis and have low coupling rates. In 

addition the amide side chain, especially Asparagine’s one, can suffer partial 

dehydratation on activation181. Finally, although more common for the 

Boc/Bzl chemistry, Glutamine in the N-terminal position can undergo weak 

acid catalized cyclization forming pyroglutamyl residues that cause the 

truncation of the peptide sequence182.   

Side chain protection prevents all this undesired reactions and, in addition, 

inhibits hydrogen bond interactions of the amide, which stabilizes secondary 

structures causing incomplete deprotection and reduced coupling rate.  

The most common amide protecting group for Fmoc/tBu SPPS is the  

triphenylmethyl group (Trt)183 5, which requires care in the choice of the 

cleavage scavengers since it generates stable carbocations that tend to alkylate 

Tryptophan. Such alkylation is reduced by using the 9-xanthenyl (Xan) group 

6 and its 2-methoxy derivate (2-Moxan)184 7 but, on the other hand, it 

generates less soluble derivates. 

 

                                                 
181 Gausepohl, H., Kraft, M., and Frank, R. (1989) International Journal of Peptide and 
Protein Research, 34, 287.  
182 Dimarchi, R., Tam, J., and Merrifield, R. (1982) Journal of Peptide Research, 19, 88. 
183 Sieber, P. and Riniker, B. (1991) Tetrahedron Letters, 32, 739. 
184 Han, Y., Solè, N., Tejibrant, J., and Barany, G. (1996) Journal of Peptide Research, 9, 166. 
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When Asn is the N-terminal amino acid, trityl deprotection it is slower, due to 

the vicinity of the free α-amino group185. In this case cleavage time needs to be 

extended or methyltrityl protection can be used instead of Trt.  

N-dimethylcyclopropylmethyl (Dcmp) group 8 represents a convenient 

alternative to Trt with several advantages like rapid removal (even at the N-

terminal position), faster coupling rate (due to the minor steric hindrance) and 

better solubility in DMF186. 

To overcome the problem of the slow and troublesome attachment to most 

resins the resin can be linked to the amide side chain187 (Figure 4.1–2) instead 

to the carboxylic function (that needs to be protected during the synthesis) 

 

Figure 4.1–2 Side chain anchoring of C-terminal Asn and Gln containing peptides 

More used in the past than now, before the Trt protection gained popularity, 

are 2,4,6-trimethoxybenzyl group (Tmob)188 9 and 4,4’-dimethoxybenzhydryl 

group (Mbh)189  10 both less acid-labile and soluble than Trt183.  

 
                                                 
185 Friede, M., Denery, S., Neimark, J., Kieffer, S., Gausepohl, H., and Briand, J. (1992) 
Journal of Peptide Research, 5, 145. 
186 Carpino, L.A., Chao, H., Ghassemi, S., and Mansour, E.M. (1995) The Journal of 
Organic Chemistry, 60, 7718. 
187 Greipohl, G., Knolle, J., and Stuber, W. (1990) International Journal of Peptide and 
Protein Research, 35, 281. 
188 Weyand, F., Steglich, W., Bjarnason, J., Ahktar, R., and Chytil, N. (1968) Chemische 
Berichte, 101, 3623. 
189 Konig, W. and Geiger, R. (1970) Chemische Berichte, 103, 2041. 
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4.1.1.3 Aspartic and Glutamic acid  

 
The carboxylic acid side chains of Asp and Glu need to be protected during 

peptide synthesis in order to prevent amide bond formation with incoming 

amino acids and, as a consequence, branching of the peptide190. 

Although protected Asp and Glu residues could still be affected from side 

reactions, particularly acid or base (particularly in Fmoc/tBu-chemistry) 

catalized cyclization to form aspartimides and glutarimides respectively191. 

Subsequent hydrolysis of the imide-containing peptides lead to a mixture of 

the desired peptide along with a product, called β-peptide in which the side 

chain carboxylic group forms part of the backbone and a β-piperidide 

adduct192. 

The reaction occurs less often with Glu193 and is highly sequence dependent. 

Susceptible sequences are Asp-Xxx with Xxx being Gly, Asn, Ala, and Gln194.  

Since the beginning of Fmoc/tBu SPPS, Asp and Glu have been successfully 

protected by t-butyl (tBu) 11 group, which is base stable and TFA labile288.  

Equally favourable properties are displayed by 1-adamantyl (1-Ada) 

protection195 12. Both tBu and 1-Ada minimize piperidine-catalized 

aspartimide formation although several bulky tBu derivates give better results 

in this respect like the 3-methylpent-3-yl (Mpe)196 group 13 and β-2,4-

dimethyl-3-penty (Dmp)197 group 14.  

                                                 
190 Natarajan, S. and Bodanszky, M. (1976) The Journal of Organic Chemistry, 41,1269. 
191 Tam, J., Riemen, M., and Merrifield, R. (1988) Journal of Peptide Research, 1, 6. 
192 Dolling, R., Beyermann, M., Haenel, J., Kernchen, F., Krause, E., Franke, P., Brudel, M., 
and Bienert, M. (1994) Journal of the Chemical Society, Chemical Communications, 853. 
193 Kates, S. and Albericio, F. (1994) Letters in Peptide Science, 1, 213. 
194 Yang, Y., Sweeney, V., Schneider, K., Thornqvist, S., Chait, B., and Tam, J. (1994) 
Tetrahedron Letters, 35, 9689. 
195 Okada, Y., Igushi, S., and Kawasaki, K., (1987) Journal of the Chemical Society, Chemical 
Communications, 1532.  
196 Karlstrom, A. and Unden, A. (1996) Tetrahedron Letters, 37, 4243. 
197 Karlstrom, A. and Unden, A. (1995) Tetrahedron Letters, 36, 3909. 
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Aspartimide formation is also greatly reduced by adding either 1-

hydroxybenzotriazole (HOBt) or 2,4-dinitrophenol to the piperidine 

deprotection solution198 but can be completely eliminated, especially with 

susceptible sequences in long peptide sequences, only by employing amide-

backbone protection for the introduction of residues preceding Asp. This is 

achieved using the 2-hydroxy-4-methoxybenzyl (Hmb)199 15 or the 2,4-

dimethoxybenzyl (Dmb)200 16 (only applied to glycine residues) amide 

protecting groups. Hmb and Dmb, removed contemporary with the final 

cleavage, prevent undesired side reactions and suppress aggregation during 

chain extension. 

 
When an additional degree of orthogonality is required, as for example in the 

case of lactam-bridged peptide synthesis, a number of different Asp and Glu 

protecting groups exist. For example the benzyl group (Bzl) 201 17, the 2-

amantyl (2-Ada) 202 18, and allyl eters277 (thought more prone to imide 

                                                 
198 Martinez, J. and Bodansky, M. (1978) International Journal of Peptide and Protein 
Research, 12, 277. 
199 Quibell, M., Owen, D., Packmann, L., and Johnson, T. (1994) Journal of the Chemical 
Society, Chemical Communications, 2343. 
200 Zahariev, S., Guarnaccia, C., Pongor, C.I., Quaroni, L., Cemazarc, M. and Pongora, S. 
(2006) Tetrahedron Letters, 47, 4121. 
201 Benoiton, L. (1962) Canadian Journal of Chemistry, 40, 570. 
202 Okada, Y. and Igushi, S., (1988) Journal of the Chemical Society, Perkin Transactions I, 
2129. 
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formation than tBu) all removed by palladium-catalized transfer to a suitable 

nucleophile. Alternatively super-acid-labile groups can be used such as the 2-

phenyl isopropyl (Pp)203 group 19, removable in presence of tBu/Boc with 1% 

TFA in DCM and the phenyl-3,4-ethylenedioxy-2-thenyl (EDOT-Ph)204 20 

cleaved by 0.1-0.5% TFA in DCM. 

 
Another orthogonal protecting group is 4-[N-[1-(4,4’-dimethyl-2,6-

dioxocyclohexylidene)-3-methylbutyl]aminobenzyl group (Dmab)205 21, 

removed with 2% hydrazine in DMF. With aspartimide susceptible sequences 

it is recommended to use Dmab along with additional precautions such as 

backbone-amide protection206. 

For applications in native chemical ligation it has recently been described a 

new photo-labile protecting group, {7-[bis(carboxymethyl)amino]coumarin-4-

yl}methyl (BCMACM)207 group 22, removed with UV irradiation at 405 nm. 

                                                 
203 Kunz, H., Waldmann, H., and Unverzagt, C. (1985) International Journal of Peptide and 
Protein Research, 26, 493. 
204 Isidro-Llobet, A., Alvarez, M., and Albericio, F. (2008) Tetrahedron Letters, 49, 3304. 
205 Chan, W., Bycroft, B., Evans, D., and White, P. (1995) Journal of the Chemical Society, 
Chemical Communications, 2209. 
206 Nski, J.R., Lewandowska, B., Mucha, P., and Retowski, P. (2008) Journal of Peptide 
Science, 14, 335. 
207 Briand, B., Kotzur, N., Hagen, V., and Beyermann, M. (2008) Tetrahedron Letters, 49, 85. 
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Figure 4.1–3 Internal solvation with the TEGBz group. 

 
A special carboxylic protecting group, the 4-(3,6,9-trioxadecyl)oxybenzyl 

(TEGBz)208 23, has been developed to suppress aggregation of those ‘difficult 

sequences’, in which intermediate resin-bound peptide chains associate into 

extended β-sheet type structures. TEGBz forms hydrogen bond with the 

backbone amino groups enabling the so called ‘internal solvation’ that inhibits 

aggregation by enhancing backbone linearity (Figure 4.1–3). 

                                                 
208 Kocsis, L., Bruckdorfer, T., and Orosz, G. (2008) Tetrahedron Letters, 49, 7015. 
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4.1.1.4 Cysteine 

 
In SPPS protection of the Cysteine side chain sulfhdryl group is mandatory 

otherwise it would easily undergo alkylation and acylation. Free Cysteine 

residues are also prone to oxidation, even by atmospheric oxygen, to form 

intra- and inter-molecular disulfide bonds. 

The chemistry of Cysteine protecting groups is particularly rich due to the key 

importance of this amino acid in forming inter- and intra-molecular disulfide 

bridges and in consideration of the versatile reactivity of the thiol group.  

With the Fmoc/tBu strategy trityl (Trt)209 24 is the most used Cysteine 

protection. Since acid S-detritylation is an equilibrium reaction it needs to be 

driven to completion by capture of the forming carbocation. This can be 

achieved by adding H2O, thiols and especially silanes. Triisopropylsilane (TIS) 

in particular has to be preferred over triethylsilane210 which can lead to 

reduction of free Trp residues. In spite of its popularity Cys(Trt) is prone to 

racemization (up to 10-20%) during peptide coupling by base mediated in situ 

activation211, especially with the TBTU/DIPEA system. The use of HBTU, 

PyBOP/HOBt or preactivated reagents such as symmetrical anhydrides, OPfp 

esters and DIPCDI/HOBt minimize this problem212. Enantiomerization occurs 

also with the attachment of Cys(Trt) to Wang type resins and during chain 

extension when Cys(Trt) is the C-terminal residue. The use of Cl-trityl resins 

is recommended213. 

                                                 
209 Fujii, N., Otaka, A., Funakoshi, S., Bessho, K., and Yajima, H., (1987) Journal of the 
Chemical Society, Chemical Communications, 163. 
210 Pearson, D.A., Blanchette, M., Blaker, M.L., and Guindon, C.A., (1989) Tetrahedron 
Letters, 30, 2739. 
211 Kaiser, T., Nicholson, G.J., Kohlbau, H.J., and Voelter, W. (1996) Tetrahedron Letters, 37, 
1187. 
212 Angell, Y.M., Alsina, J., Albericio, F., and Barany, G. (2002) Journal of Peptide Research, 
5, 292. 
213 Fujiwara, Y. (1994) Chemical and Pharmaceutical Bulletin, 42, 724. 
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In alternative to Trt, other protecting groups removed with concentrated 

TFA214 are 1,4,6-trimethoxybenzyl (Tmob) 25 and 9-phenylxanthen-9-yl 

(pixyl) 26 whereas monomethoxytrityl (Mmt) 27, 9H-xanthen-9-yl (xanthyl) 

28 and 2-methoxy-9H-xanthen-9-yl (2-Moxan) 7 are more acid-labile215 and 

can be selectively cleaved in presence of tBu groups.  

 
The t-buthyl (tBu), S-(1-adamantyl) (1-Ada) 29, acetamidomethyl (Acm) 30, 

trimethylacetamidomethyl (Tacm) 31, and phenylacetamidomethy (Phacm) 32 

groups (last two developed to avoid formation of thiazolidine-2-carboxylic 

acid) are stable to acid and compatible with both Boc and Fmoc SPPS 

strategies. Those groups can be removed in several ways (see Table 4.1-1) 

enabling concomitant disulfide bridge formation even multiple, selective 

cyclization if used in combination216. Phacm has an additional level of 

orthogonality since it is enzimatically-cleavable by penicillin G acylase217 

A different protecting approach is to use mixed disulfides such as the S-tert-

butylmercapto (StBu) group 33, which are stable to TFA and are removed with 

thiols218 or tributylphoshine219. Coupling efficiency is reported to be highly 

                                                 
214 Munson, M.C., Garcia-Echevarria, C., Albericio, and F., Barany, G. (1992) The Journal of 
Organic Chemistry, 57, 3013. 
215 Han, Y. and Barany, G. (1997) The Journal of Organic Chemistry, 62, 3841. 
216 Albericio, F. (2000) In Fmoc Solid Phase Peptide Synthesis W. C. Chan and White, P.D. 
(Eds.) Oxford University press, oxford, 77. 
217 Greiner, G. and Hermann, P. (1991) In Peptides (1990) Giralt E., Andreu D., Eds. ESCOM, 
Leiden, 277. 
218 Weber, U. and Hartter, P. (1970) Hoppe-Seyler's Zeitschrift fur Physiologische Chemie, 
351, 1384. 
219 Beekman, N.J., Schaaper, W.M., Tesser, G.I., Dalsgaard, K., Kamstrup, S., Langeveld. J.P., 
Boshuizen. R.S., and Meloen. R.H. (1997) Journal of Peptide Research, 50, 357. 
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sequence dependent220. Allyl-based Cys protecting groups are base labile and 

therefore cannot be used in Fmoc/tBu-SPPS221. 

Finally, several non-conventional protecting groups have been developed for 

those Chemical Ligations based on Cysteine. The thiazolidine (Thz)222 34 

protection has found a special application allowing to mask N-terminal 

Cysteines during Tandem Native Chemical Ligation (TNCL) reaction. It 

simultaneously protects the α-amino and the side chain thiol groups of 

protected N-terminal free Cysteines and is stable to acids and can be removed 

in aqueous conditions in presence of methoxylamine. The thiosulfonate group 

(S2O3)223 can be used as well for Cysteine protection during TNCL. It is 

introduced with sodium tetrathionate (Na2S4O6) in a solvent, which can then be 

removed by treatment with dithiothreitol (DTT). 

 

                                                 
220 Berangere, D. and Trifilieff, E. (2000) Journal of Peptide Science, 6, 372. 
221 Loffet, A. and Zhang, H.X. (1993) International Journal of Peptide and Protein Research, 
42, 346. 
222 Bang, D. and Kent, S.B.H. (2004) Angewandte Chemie International Edition, 43, 2534. 
223 Sato, T. and Aimoto, S., (2003) Tetrahedron Letters, 44, 8085. 
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Protecting group Structure Removed by Stable to 
Trityl  
(Trt) 

 

 Dil TFA/scavengers, Ag(I)224, Hg(II)225, RSCl, 
I2

226, Tl(III) trifuoracetate241 TFA/DMSO/Anisole227 
Base, 

nucleophiles, 
RSH 

1,4,6-trimethoxybenzyl  
(Tmob) 

 

Dil TFA/DCM/silanes228 
I2

229, Tl(III) trifuoracetate 
Base, 

nucleophiles 

monomethoxytrityl  
(Mmt) 

27

MeO

 

Dil TFA/DCM/TIS230, AcOH/TFE/DCM (1:2:7)231, I2
232 Base, 

nucleophiles, 
RSH 

                                                 
224 Zervas, L. and Photaki, I. (1962) Journal of the American Chemical Society, 84, 3887. 
225 Photaki, I., Taylor-Papadimitriou, J., Sakarellos, C., Mazarakis, P. and Zervas, L. (1970) Journal of the American Chemical Society, 2683. 
226 Kamber, B. and Rittel, W. (1968) Helvetica Chimica Acta, 51, 2061. 
227 Otaka, A., Koide, T., Shide, A. and Nobutaka, F. (1991) Tetrahedron Letters, 32, 1223. 
228 Munson, M.C., Garcìa-Echeverrìa, C., Albericio, F. and Barany, G. (1992) The Journal of Organic Chemistry, 57, 3013. 
229 Munson, M.C. and Barany, G. (1993) Journal of the American Chemical Society, 115, 10203. 
230 Pearson, D.A., Blanchette, M. and Baker, M.L. (1989) Guindon CA., Tetrahedron Letters, 30, 2739. 
231 Barlos, K. Gatos, D., Kallitsis, J., Papaphotiu, G., Sotitiu, P., Wenqing, Y., and Scafer, W. (1989) Tetrahedron Letters, 30, 3943. 
232 Barlos, K., Gatos, D., Kallitsis, J. Papaphotiu, G., Poulos, C., and Tsegenidis, T. (1991) International Journal of Peptide and Protein 
Research, 38, 562. 
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9H-xanthen-9-yl  
(Xan) 

 

Dil TFA/TIS233 
I2, Tl(III) trifuoracetate234 

Base, 
nucleophiles 

t-buthyl  
(tBu) 

 

TFMSA235, TMSBr/TFA/RSH236, tetrafluoroboric 
acid237, Hg(II) acetate238, Tl(III) trifuoracetate241, 

MeSiCl3/Ph2SO/TFA239, TFA/DMSO/Anisole 

TFA, Ag(I), base, 
I2, RSH 

1-adamantyl 
(1-Ada) 

 

TfOH/TFA/RSH240, Hg(II) acetate238, Tl(III) 
trifuoracetate241 

TFA, Ag(I), base, 
I2, 

S-tert-buthylsulfanyl  
(StBu),  

 

RSH242, NaBH3
243, phosphines244  TFA, TFMSA, 

base, RSCl 

                                                 
233 Han, Y. and Barany, G. (1997) The Journal of Organic Chemistry, 62, 3841. 
234 Hargittai, B. and Barany, G.J. (1999) Journal of Peptide Research, 54, 468. 
235 McCurdy, S. (1989) Journal of Peptide Research, 2, 147. 
236 Wang, H., Miao, Z., Lai, L., and Xu, X. (2000) Synthetic Communications, 30, 727. 
237 Akaji, K., Yoshida, M., Tatsumi, T., Kimura, T., Fujiwara, Y., and Kiso, Y. (1990) Journal of the Chemical Society, Chemical 
Communications, 288. 
238 Atherton, E., Pinori, M., and Sheppard, R. (1985) Journal of the Chemical Society, Perkin Transactions I, 2057. 
239 Akaji, K., Tatsumi, T., Yioshida, M., Kimura, T., Fujiwara, Y., and Kiso, Y. (1991) Journal of the Chemical Society, Chemical 
Communications, 167. 
240 Fujii, N., Otaka, A., Funakoshi, S., Watanabe, T., Akaji, K., and Yajima, H. (1987) Chemical and Pharmaceutical Bulletin, 35, 2339. 
241 Yajima, H., Fujii, N., Funakoshi, S., Watanabe, T., Murayama, E., and Otaka, A. (1988) Tetrahedron, 44, 805. 
242 Threadgill, M. and Gledhill, A. (1989) The Journal of Organic Chemistry, 54, 2940. 
243 Wunsch, E. (1974) In Houben-Weyl, 15/1, 789. 
244 Moroder, J., Gemeiner, M., Gohring, W., Jaeger, E., and Wunsch, E. (1981) In Peptides 1980 Brunfeldt K., Ed. Scriptor Copenhagen, 121. 
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acetamidomethyl  
(Acm),  

 

Hg(II) acetate245, Ag(I)/TFA246, I2
247, Tl(III) 

trifuoracetate241, AgBF4/TFA248, AgTMS/DMSO-aq. 
HCl249 

TFA, TFMSA, 
base,  RSH 

trimethylacetamidomethyl  
(Tacm)  

 

AgBF4/TFA248, Hg(II) acetate250, I2
251, Tl(III) 

trifuoracetate,  
TFA, TFMSA, 

base RSH 

Thiazolidine 
(Thz) 

S

NH
OH

O

35  

Methoxylamine/H2O252 TFA, base, RSH,  

Table 4.1-1 Deprotection and deprotecti n/oxidation conditions of the most common Cys protecting groups (concomitant disuldife formation in 
green)

                                                 
245 Sakakibara, S. (1995) Biopolymers, 37, 17. 
246 Fujii, N., Otaka, A., Watanabe, T., Okamachi, A. Tamamura, H., Yiajima, H., Inagaki, Y., Nomizu, M., and Asano, K. (1989) Journal of the 
Chemical Society, Chemical Communications, 283. 
247 Kamber, B. (1971) Helvetica Chimica Acta, 54, 927. 
248 Yoshida, M., Akaji, K., Tatsumi, T., Fujiwara, Y., Kimura, T., and Kiso, Y. (1990) Chemical and Pharmaceutical Bulletin, 38, 273. 
249 Tamamura, H., Otaka, A., Nakamura, J., Okubo, K., Koide, T., Ikeda, K., Ibuka, T., and Fujii, N. (1995) International Journal 
of Peptide and Protein Research, 45, 312. 
250 Xu, Y. and Wilcox, D.E. (1998) Journal of the American Chemical Society, 120, 7375. 
251 Kiso, Y., Yoshida, M., Kimura, T., Fujiwara, Y., and Shimokura, M. (1989) Tetrahedron Letters, 30, 1979. 
252 Wu, B., Warren, J.D., Chen J., Chen, G., Hua. Z., and Danishefskya, S.J. (2006) Tetrahedron Letters, 47, 5219. 
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4.1.1.5 Histidine 

 
Under standard SPPS conditions the two imidazole nitrogens of unprotected 

Histidine react with electrophilies such N,N’-cyclohexylcarbodiimide253, 

catalyze acyl-transfer reactions254, and above all, promote the racemisation of 

the chiral α-carbon255. 

To prevent both alkylation and racemisation the π nitrogen of the imidazole 

ring must be protected or rather the protection can be located on the τ 

position, reducing the nucleophilicity of the π nitrogen by inductive effects. 

Between the two non-equivalent nitrogen atoms (π and τ), of the imidazole 

ring a rapid proton exchange takes place and makes the two tautomers 

inseparable (Figure 4.1–4).  

 

Figure 4.1–4 Tautomeric equilibrium of Histidine side chain imidazole ring 

 
The two positions have almost the same basicity, however their 

nucleophilicity is significantly different and upon reaction with electrophiles 

the N-τ product is usually the major one. Thus regiospecific protection of the 

π position first requires an orthogonal protection of the τ nitrogen and counts 

for the fact that the synthesis of π products is often troublesome. 

                                                 
253 Rink, H. and Riniker, B. (1974) Helvetica Chimica Acta, 57, 831. 
254 Bodansky, M., Fink, M., Klausner, Y., Natarajan, S., and Tatemoto, K. (1977) The 
Journal of Organic Chemistry, 42, 149. 
255 Jones, J. and Ramage, W. (1978) Journal of the Chemical Society, Chemical 
Communications, 472. 
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The trytyl group (Trt) 36 on the τ-position is the most commonly used 

protecting group of His for the SPPS with Fmoc strategy256. It is stable, 

commercially available at an affordable price and its mild acidolitic 

deprotection is fast and smooth. Despite early cautious claims, Trt protection 

keeps racemisation at a very low rate under normal SPPS conditions and it is 

regarded to be an exception to the rule that τ-located protection does not 

completely suppress racemisation257. Except in those cases where significant 

steric hindrance is displayed as for the coupling of His to Pro in which case a 

small amount of enantiomerization (5%) occurs258. However racemisation 

becomes a serious issue upon esterification of His carboxylic group. For 

example when hydroxyl-resins are used and His is the first amino acid of a 

sequence. In this case enatiomerization can be reduced using the Trt group 

for the α nitrogen protection as well259. The best solution to this problem is 

the use of 2-clorotrityl resin, which can be estherified without 

racemisation260. The protection with the super acid-labile methyltrityl (Mtt) 

37 and momomethoxytrityl (Mmt) 38 groups have also been described261.  

                                                 
256 Barlos, K., Papaioannu, D., and Theodoropoulos, D. (1982) The Journal of Organic 
Chemistry, 47,1324. 
257 Harding, S., Heslop, I., Jones, J., and Wood, M. (1992) In Peptides 1994, Proceedings of 
the 23th European peptide Symposium, Maia H, Ed ESCOM, Leiden, 641. 
258 Mergler, F., Dick, F., Sax, B., Shwindling, J., and Vorherr, T.H. (2001) Journal of 
Peptide Science, 7, 502. 
259 Sieber, P. and Riniker, B. (1987) Tetrahedron Letters, 28, 6031. 
260 Barlos, K., Chatzi, O., Gatos, D., and Stravropoulos, G. (1991) International Journal of 
Peptide and Protein Research, 37, 513. 
261 Barlos, K., Chatzi, O., Gatos, D., Stravropoulos, G., and Tsegenidis, T. (1991) 
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In the case of His rich peptides the tert-butoxymethyl (Bum) 39 protection of 

the π imidazole position is recommended instead of τ-Trt because it 

minimizes racemization during peptide coupling reactions262. A significant 

drawback, common to all π-protected derivates, is their difficult synthesis 

due to the presence of the more reactive τ-position. Bum cleavage with TFA 

requires slightly longer times compare to tBu, Boc, and Trt.  In the case of  

sequences containing N-terminal Cys,  methoxylamine should be added to 

the cleavage mixture as a scavenger since Bum deprotection generates 

formaldehyde that can mask Cys as thioazolidine (Thz) giving an adduct 

with a 12 mass unit difference 263,258. 

Another protection of the π imidazole position is the 1-adamantyloxymethyl  

(1-Adom) 40, whose derivatives are more soluble in organic solvents than 

Bum ones and give better synthetic yields264.  

 

                                                 
262 Colombo, R., Colombo, F., and Jones, J. (1984) Journal of the Chemical Society, 
Chemical Communications, 292. 
263 Gesquiere, J., Najib, J., Diesis, E., Barbry, D., and Tartar, A. (1992) In Peptides 
Chemistry and Biology, Proceedings of the 12th American peptide Symposium, Smith J. and 
River J Eds. ESCOM, Leiden, 641.  
264 Okada, Y., Wang, J., Yamamoto, T., and Mu, Y. (1996),Chemical and Pharmaceutical 
Bulletin, 44, 871. 
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4.1.1.6 Lysine 

 
Lysine side chain protection it is a must in solid phase peptide synthesis, 

otherwise the ε-amino group would react with acylating agents leading to 

uncontrolled peptide branching. 

The standard protection in Fmoc-strategy is the t-butyloxycarbonyl (Boc) 41, 

cleaved with concentrated TFA, which represents a perfect combination 

together with Fmoc/tBu265. 

Lysine residues are often post-synthetically modified in modern peptide 

synthesis of bioactive and modified peptides. Usually the goal is to 

introduce, on a given sequence, post-translational modifications as for 

example glycations266 and glycosylations267 or taking advantage of the ability 

to form amide bonds between Lysine side chains and molecular devices 

bearing carboxylic groups268. This latter application applies to a broad range 

of peptide modifications like linking to cromophores, chelating agents, 

radioactive molecules and many more substituents each conferring a specific 

property to the modified peptide. The amide bond formation is a 

straightforward one and highly compatible with on resin peptide synthesis. 

For all those applications of selective modifications a broad panel of 

orthogonal Lysine side chain protecting groups was developed. 

                                                 
265 Schwyzer, R. and Rittel, W. (1961) Helvetica Chimica Acta, 44, 159. 
266 Carganico, S., Rovero, P., Halperin, J.A., Papini, A.M., and Chorev, M. (2009) Journal of 
Peptide Science, 15, 67. 
267 Paolini, I., Nuti, F., Pozo-Carrero, M., Barbetti, F., Kolesinska, B., Kaminski, Z.J., Chelli 
M., and Papini, A.M. (2007) Tetrahedron Letters, 48, 2901. 
268 Grandjean, C., Rommens, C., Gras-Masse, H., and Melnyk, O., (1999) Tetrahedron 
Letters, 40, 7235. 
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Particularly popular among orthogonal Lysine side chain protection is  

1-(4,4’-dimethyl-2,6-dioxocyclohexylidene)ethyl group (Dde) 42 removed 

with 2% hydrazine in DMF269 (Scheme 4.1-2). However Dde has same 

limitations, it is partially labile to piperidine (once removed it can migrate to 

other unprotected Lysines), and then hydrazine partially removes the Nα-

Fmoc270. In addition hydrazine can also reduce the Alloc protection 

preventing its subsequent removal271. In order to prevent this, allyl alcohols 

need to be added as scavengers when Dde is deprotected.  

Several hindered Dde variants, in particular 1-(4,4’-dimethyl-2,6-

dioxocyclohexylidene)-3-methylbutyl (ivDde)272 43, and the structurally 

similar 2-acetyl-4-nitroindane-l,3-dione (Nde)273 44, completely overcome 

those side reactions. Dde, ivDde, and Nde deprotection can be monitored 

both spectrophotometrically at various UV wavelengths and by mass 

spectrometry because of the different hydrazine adducts 42a. Nde removal 

can be also followed by a change of colour of the resin and solution.  

                                                 
269 Rohwedder, B., Mutti, Y., and Mutter, M., (1998) Tetrahedron Letters, 39, 1175. 
270 Augustyns, K., Kraas, W., and Jung, G. (1998) Journal of Peptide Research, 51, 127. 
271 Eichler, J., Lucka, W.A., and Houghten, R.A. (1994) Journal of Peptide Research, 7, 300. 
272 Chhabra, S.R., Hothi, B., Evans, D.J., White, P.D., Bycroft, B.W., and Chan, W.C. (1998) 
Tetrahedron Letters, 39, 1603. 
273 Kellam, B., Bycroft, B.W., Chan, W.C. and Chhabra, S.R. (1998) Tetrahedron, 54, 6817. 
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Scheme 4.1-2 Mechanism of hydrazine mediated Lys(Dde) deprotection. 

The acid sensitivity of the trityl group, removed with 20% TFA in DCM, is 

increased by the introduction of electron spending substituents leading to 

super-acid-labile groups as 4-methyltrityl (Mtt)274 45 monomethoxytrityl 

(Mmt) 46, and dimethoxytrityl (Dmt)275 47.  

 
Mtt and Dmt deprotection occurs with 1% TFA in DCM or 

(DCM/HFIP/TFE/TES 6.5:2:1:0.5) allowing selective removal in presence of 

other acid-labile protecting groups, like tBu and Boc, that are cleaved by 

concentrated TFA276. Mmt deprotections takes place at even milder 

conditions, with AcOH/TFE/DCM (1:2:7) and even in the presence of 

                                                 
274 Alestras, A., Barlos, K., Gatos, D., Koutsogianni, S., and Mamos, P. (1995) International 
Journal of Peptide and Protein Research, 45, 488. 
275 Matysiak, S., Bidicke, T., Tegge, W., and Frank, R. (1998) Tetrahedron Letters, 39, 1733. 
276 Barlos, K., Gatos, D., Chatzi, O., Koutsogianni, S., and Schaefer, W. (1993) In Peptides 
1992, Proceedings of the 22th European Peptide Symposium C. H. Schneider and A. N.Eberle 
(Eds), ESCOM, Leiden, 283. 
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hydrophilic resins such as Tentagel and cellulose that display quenching 

effect for Mtt and Dmt removal.   

The N-ε function in Lysine can bear the allyloxycarbonyl (Alloc) protection 

48, compatible with both Boc/Bzl and Fmoc/tBu strategies and can be  

removed by palladium catalyst in presence of nucleophiles like NMM277. 

Other groups removed by palladium catalyzed hydrogenolysis, like 

benzyloxycarbonyl (Z) 49 and 2-chlorobenzyloxycarbonyl (2-Cl-Z)278 50 or 

the benzyl group (Bzl)279 51 are also used. 

 

The trifluoroacetyl group (Tfa) 52, stable to both acid and mild base, 

removed by strong alkaline aqueous solutions or sodium borohydride, 

although more common of the Boc-strategy, has found some applications in 

the Fmoc-chemistry as well280. 

O2N

O

O

F3C

O

52 53  
Another semipermanent side-chain protection of Orn and Lys is  

p-nitrobenzyloxycarbonyl (pNZ) 53 for Fmoc/tBu chemistry that does not 

result in partial removal of Nα-Fmoc that occurs when groups such as Alloc 

derivates are used for the same application due to the formation of highly 

                                                 
277 Lyttle, M. and Hudson, D. (1992) In Peptides Chemistry and Biology. Proceedings of the 
12th American Peptide Symposium, Smith J. River J. ESCOM, Leiden, 583. 
278 Erickson, B. and Merrifield, R., (1973) Journal of the American Chemical Society, 95, 
3757. 
279 Huang, Z., Su, X., Du, J., Zhao, Y., and Li, Y., (2006) Tetrahedron Letters, 47, 5997. 
280 Stetsenko, D.A. and Gait, M.J. (2001) Bioconjugate Chemistry, 12, 576. 
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basic free amine281. Furthermore, pNZ, removed by 6 MSnCl2 and 1.6 mM 

HCl/dioxane in DMF, can be used in conjunction with p-nitrobenzyl ester 

(pNB) to prepare cyclic peptides282. 

Finally, the Fmoc protection of both α- and ε-nitrogen represents a 

specialized derivate for simultaneous multiple peptide synthesis, where side 

chain branching is desired after α-amino deprotection283 . 

 
 

                                                 
281 Farrera-Sinfreu, J., Royo, M., and Albericio, F. (2002) Tetrahedron Letters, 43, 7813. 
282 Llobet, A. I. (2005) Tetrahedron Letters, 46, 7733. 
283 Tam, J. (1988) The Proceedings of the National Academy of Science US, 85, 5409. 
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4.1.1.7 Methionine 

 
The thioether function of Methionine can undergo acid catalyzed oxidation 

forming methionyl sulfoxide and can also be alkylated. In standard Fmoc-

based peptide synthesis is common practise to use unprotected Methionine 

because the use of the proper scavengers like thioanisole284 in the cleavage 

mixture greatly reducing both the side reactions. 

Sulfoxides are also generated by prolonged air exposure but can be reduced 

back to the sulphide in several ways such as NH4I/Me2S in TFA at low 

temperatures285 (Scheme 4.1-3) or NaI/CH3COCl in DMF286 

 

Scheme 4.1-3 Acid NH4I/Me2S mediated Met(O) reduction mechanism. 

 
Another approach to the oxidation problem, although more common of the 

Boc strategy, is introducing Methionine as the sulfoxide derivate Met(O)287 

prepared by treatment with H2O2 and then reducing it at a convenient time of 

the synthesis. 

                                                 
284 Yajima, H., Kanaki, J., Kitajima, M., and Funakoshi, S. (1980) Chemical and 
Pharmaceutical Bulletin, 28, 1214.  
285 Vilaseca, M., Nicolfis, E., Capdevila, F., and Giralt, E. (1998) Tetrahedron, 54, 15273. 
286 Norris, K., Halstrom, J., and Brunfeldt, K. (1971) Acta Chemica Scandinavica, 25, 945. 
287 Iselin, B. (1961) Helvetica Chimica Acta, 44, 61. 
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4.1.1.8 Serine and Threonine  

 
The side reactions affecting unprotecded hydroxyl group of Ser, Thr and Tyr 

side chains, under the standard synthetic conditions used in peptide 

chemistry, are less severe compared to amino and carboxylic function. As a 

consequence a number of synthesis describing unprotected amino acid 

incorporation has been reported, especially in the past. However unprotected 

hydroxyl groups can suffer acylation and dehydratation and it is therefore 

normal practice to protect them. 

Ser and Thr have very similar behaviour and characteristics but the minor 

steric hindrance of the former’s hydroxyl makes it more easy to protect but 

also more reactive toward acylating reagents.   

The classical protection of such amino acids is tBu removed under strong 

acidic conditions288.Selective deprotection of hydroxyl side chains is often 

performed during post-synthetic modification of Ser and Thr, especially with 

phosphorylation and glycosylation. This can be achieved by the trytyl 

protection, removed orthogonally from tBu and Boc under mild acidic 

conditions, 1%TFA and 5% TIS in DCM289 or 20% dichloroacetic acid in 

DCM290. Another acid-lable group is t-butyldimethylsilyl (TBDMS) 54 

which can be removed with AcOH/THF/H2O/ 3:1:1291.  

 

 

                                                 
288 Chang, C., Waki, M., Ahmad, M., Meienhofer, J,. Lundell, E., and Huang, J. (1980) 
International Journal of Peptide and Protein Research, 15, 59. 
289 Barlos, K., Gatos, D., and Koutsogianni, S. (1998) Journal of Peptide Research, 51, 194. 
290 Coba, M.P., Turyn, D., and Pena, C. (2003) Journal of Peptide Research, 61,17. 
291 Fisher P. (1992) Tetrahedron Letters, 33, 7605. 
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The photocleavable 4,5-dimethoxy-2-nitrobenzyl group292 55 has been used 

for Serine protection. Finally Ser and Thr side chains can be protected as 

benzyl esthers, removed with TFA.  

 

                                                 
292 Pirrung, M.C. and Nunn, D.S. (1992) Bioor. Med. Chem. Lett, 2, 1489. 
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4.1.1.9 Tryptophan 

 
The two main side reactions affecting Tryptophan residues in Fmoc-

chemistry are oxidation and alkylation of the indole ring by carbonium ions 

generated during the TFA cleavage293. Alkylation of unprotected Tryptophan 

could be kept under control by using EDT as a cleavage mixture 

scavenger294. However sulfonation by the by-products of Mtr, Pmc and Pbf 

protected Arginines cannot be completely eliminated. This problem has been 

solved by developing t-butoxycarbonyl (Boc) protected Trp295, which 

generates after the cleavage step a TFA stable-N-carboxy indole 

intermediate, capable of reducing the susceptibility of the heterocyclic ring to 

the electrophilic attack296 (Scheme 4.1-4). The carbamic acid derivate, 

associated with a 44 mass unit gain, is not stable in solution and decomposes 

slowly in water during the routine work-up stages, leaving the indole ring 

free. 

 

Scheme 4.1-4 Mechanism of Trp(Boc) deprotection. 

 

                                                 
293 Fields, C. and Fields, G. (1993) Tetrahedron Letters, 34, 6661. 
294 Fields, G., Noble, R. (1990) International Journal of Peptide and Protein Research, 35, 
161. 
295 White, P. (1992) In Peptides, Chemistry, Structure and Biology, Pro. 12th American 
peptide Symposium, J.A. Smith and J.E.Rivier(Eds.), ESCOM, Leiden, 537. 
296 Franzen, H., Grehn, L., Ragnarsson, U. (1984) Journal of the Chemical Society, Chemical 
Communications, 1699. 
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Tryptophan can also suffer partial reduction by triethylsilane used as a 

scavenger of trityl groups297 and is affected by the presence of silver salts 

(used for removal of several Cysteine-protecting groups). The latter side 

effect can be avoided by adding an excess of free Tryptophan in the 

deprotection mixture298 

Also the allyloxycarbonyl (Alloc) protection eliminates the oxidation-

alkyklation problems and, although unstable to 20% piperidine, it is stable to 

DBU that needs therefore to be used for Fmoc removal299. 

Recently a new TFA stable Tryptophan protection has been proposed, 4-(N-

methylamino)butanoyl (Nmbu), whose function is to improve the solubility 

of the peptides in view of HPLC purification300. Nmbu is stable to TFA 

cleavage and on treatment of the purified peptide at pH 9.5 it undergoes an 

intramolecular cyclization reaction (Scheme 4.1-5) that results in the fully 

deprotected peptide and N-methylpyrrolidone. 

 

Scheme 4.1-5 Mechanism of Trp(Nmbu) deprotection. 

 

                                                 
297 Pearson, D., Blanchette, M., Guindon, C. (1989) Tetrahedron Letters, 30, 2739. 
298 Najib, J., Letailleur, T., GesQuire, J., Tartar, A. (1996) Journal of Peptide Science, 2, 309. 
299 Vorherr, T., Trzeciak, A., Bannwarth, W., (1996) International Journal of Peptide and 
Protein Research, 48, 553. 
300 Wahlström, K. and Undén, A.  (2009) Tetrahedron Letters, 50, 2976. 
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4.1.1.10 Tyrosine 

 
Tyrosine side chain, if left unprotected during the peptide synthesis, is prone 

to O-acylation because the basic conditions of Fmoc removal generates the 

phenolate anion which is acylated due to its strong nucleophilicity. Tyrosine 

is commonly protected with tBu group301, which generates very little of the 

3-alkylated product (see side reaction section).  

The TBDMS ether protection 56, although less acid-labile than the 

corresponding analogs of Serine and Threonine, can nethertheless be 

removed selectively using tetrabuthylammonium fluoride (TBAF)291. 

 

Despite some misunderstandings302, the 2,4-dinitrophenyl (Dnp) group 57, 

deprotect with 2-thiophenol/pyridine/DMF 2:1:10, is another suitable choice 

for Tyrosine selective protection as for example during on resin post-

synthetic modifications (such as phosphorilation or glycosylation). However 

since Dnp is readily cleaved by 20% piperidine or 2 % DBU in DMF303, 

Dnp-protected Tyrosine should be employed as the N-terminal residue or 

could be immediately modified after incorporation. Another possibility is 

                                                 
301 Adamson, J., Blaskowitch, M., Groenvelt, H., Lajoie, G. (1991) The Journal of Organic 
Chemistry, 56, 3447. 
302 Doherty-Kirby, A., Lajoie, G. In Solid-Phase Synthesis A Practical Guide (2000), Kates, 
S.A. and Albericio F., Marcel Dekker Inc, 148. 
303 Philosof-Oppenheimer, R., Pecht, I., Fridkin, M. (1995) International Journal of Peptide 
and Protein Research, 45, 116. 
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using the more flexible 2-ClTrt group 58 that can be selectively removed any 

time of the synthesis with 1% TFA / 5% TIS in DMF289.  

Same photo-cleavable Tyrosine protecting groups have been reported, 

particularly useful for the synthesis of those molecular devices whose 

activity is controlled by light (caged compounds). One example is the 2-

nitrobenzyl group (NB) 59, removed by UV light304 (Scheme 4.1-6). Upon 

irradiation the exited nitro compound abstracts a hydrogen from the benzylic 

position and the intermediate rapidly rearranges into a nitoso hemiacetal  

 

 

Scheme 4.1-6 Mechanism of Tyr(NB) deprotection. 
 

                                                 
304 Tatsu, Y., Shigeri, Y., Sogabe, S., Yumoto, N., and Yoshikawa, S. (1996) Biohemical and 
Biophysical Research Communications, 227, 688. 
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5 EXPERIMENTAL PART A 

5.1 Materials and methods 

The chemicals were purchased from Sigma-Aldrich and used without further 

purification. TLC were carried out on silica gel precoated plates (Merck; 60 

Å F254) and spots located with: (a) UV light (254 and 366 nm), (b) 

ninhydrin (solution in acetone), (c) Cl2/toluidine, (d) fluorescamine, (e) I2, (f) 

a basic solution of permanganate [KMnO4 (3 g), K2CO3 (20 g), and NaOH 

(0.25 g) in water (300 ml)], (g) 10% H2SO4 in EtOH. Flash Column 

Chromatography (FCC) was performed on Merck silica gel 60 (230-400 

mesh) according to Still et al.305 
1H and 13C NMR spectra were recorded at 400 and 100 MHz, and 200 and 50 

MHz respectively, on a Varian spectrometer in deuterated solutions and are 

reported in parts per million (ppm), with solvent resonance used as reference. 

Melting points were determined on a Büchi mod. 510 apparatus. Elemental 

analyses were performed on a Perkin Elmer 240 C Elemental Analyzer. 

Infrared spectra were recorded on a Perkin Elmer mod. BX II FT-IR 

spectrometer. The [α]D were obtained on Perkin Elmer mod. 343 polarimeter 

in cell of 1 dm. Products were analyzed and characterized by ACQUITY 

UPLC (Waters Corporation, Milford, Massachusets) coupled to a single 

quadrupole ESCI-MS (Micromass ZQ) using a 2.1 x 50 mm 1.7 μm 

ACQUITY BEH C18 at 30 °C, with a flow rate of 0.45mL/min. The solvent 

systems used were A (0.1% TFA in H2O) and B (0.1% TFA in CH3CN). 

High performance liquid chromatography -grade acetonitrile (MeCN) was 

purchased from Carlo Erba (Italy). 

                                                 
[305] Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923–2925. 
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Protected amino acids were obtained from Novabiochem AG (Laufelfingen, 

Switzerland). TBTU and HOBt were purchased from Iris-Biotech. Peptide-

synthesis grade N,N-dimethylformamide (DMF) was purchased from 

Scharlau (Barcelona, Spain). TFA, DCM, Piperidine, Ac2O, and NMM were 

purchased from Aldrich.  

Peptides were analyzed by analytical RP-HPLC (Alliance, model 2695 

equipped with a diode array detector, Waters) using a Jupiter C18 (5 μm, 250 

× 4.6 mm) column (Phenomenex) at 1 mL/min. The solvent systems used 

were A (0.1% TFA in H2O) and B (0.1% TFA in CH3CN). Peptides were 

purified by preparative RP-HPLC (model 600, Waters) on a Jupiter C18 or 

C8 column (10 μm, 25 cm × 10 mm) at 4 mL/min by using the same solvent 

systems reported above.  
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5.2 Glycated building blocks for the synthesis of post-

translationally modified glycated peptides and proteins 

5.2.1 Nα-Fmoc-Lys[Nε-(Deoxyfructopyranosyl)]-OH 

Nα-Fmoc-Lys-OH (1 g, 2.71 mmol, 1 eq) and D-glucose (1.22 g, 6.77 mmol, 

2.5 eq) were suspended in 40 ml of anhydrous DMF under N2 atmosphere70. 

The reactionmixture was thenwarmed at 110 ◦C for about 10 min: Fmoc-Lys-

OH dissolved and before the colour of the reaction mixture changed from 

yellow to brown (index of diglycation), the solution was immediately cooled 

in an ice bath. DMF was evaporated under vacuum and the crude residue was 

purified by RP-FC using a gradient 15–40% B in A over 20 min, elution 

occurred at �25% B. Homogeneous fractions were then evaporated and the 

water solution lyophilized yielding pure 1a as a white, highly hygroscopic 

solid (390 mg, 67%).  
LC-ESI-MS (m/z): [M+H]+ calcd for C27H34N2O9 531.23; found, 531.38. 

M.p.= 115°C (caramelization and decomposition were observed). [α]26
D = 

−20.70 (c = 1.015, H2O). Elemental analysis calcd for C27H34N2O9 

·TFA·H2O: C, 49.86; H, 5.92; N, 4.01; found: C, 49.88; H, 6.26; N, 4.10. 
1H NMR (D2O, 400 MHz): δ 7.2 ( broad s, 4H, fluorenyl 4-H, 5-H, 1-H and 

8-H), 6.9 (broad s, 4H, fluorenyl 3-H, 6-H, 2-H and 7-H),  4.1-3.9 (m, 2H, 

CH2, Fmoc), 3.85 ( broad s, CH Fmoc) 3.8 (broad s,CHα, Lys), 3.8-3.7 (m, 

CHOHx3, 1-deoxyfructosyl),  3.6 (t, 2H, J=10.0 Hz, 1-deoxyfructosyl), 3.1-

2.9 (m,CH2NH, 1-deoxyfructosyl), 2.8-2.6 (m, CH2ε, Lys), 1.6-1.2 (m, 4H, 

CH2β,δ), 1.1-0.8 (m, CH2γ, Lys) 
13C NMR (CDCl3, 50 MHz) δ 175.8 (C, COOH), 162.7 (q, J=35.4 Hz, C, 

COOH, TFA), 157.1 (C, CONH, Fmoc), 116.3 (q, J=291.0 Hz, CF3, TFA), 

143.2 (CHAr x2, Fmoc), 140.6 (CHAr x2, Fmoc), 127.5 (CHAr x2, Fmoc), 

126.9 (CHAr x2, Fmoc), 124.7 (CHAr x2, Fmoc), 119.7(CHAr x2, Fmoc), 95.3 
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(C4, C1 1-deoxyfructosyl), 69.5, 69.3, 68.9 (CHOH x3, 1-deoxyfructosyl), 

69.4 (CH2, 1-deoxyfructosyl), 63.9 (CH2, Fmoc), 53.9, 52.8 (CH2NH 

ideoxyfructosyl, Cα Lys) 48.0 (CH2ε, Lys), 46.7 (CH, Fmoc), 30.5 (CH2β, 

Lys), 24.8 (CH2γ, Lys), 22.2 (CH2δ, Lys). 

 

5.2.2 Nα-Fmoc-Lys[Nε-(Deoxyfructopyranosyl),Nε-Boc]-OH 

A solution of Boc2O (514 mg, 2.35 mmol, 2.5 eq) in 5 mL of MeOH was 

added, in N2 atmosphere, under stirring at 0° C, to a solution of 1a (500 mg 

0.94 mmol, 1eq). The reaction was left under stirring at rt for 1.5 h and then 

the solvent was evaporated and the residue purified by RP-FC with a linear 

gradient of 30-55% B in A over 20 min. Elution occurred at ~50% B. 

Homogeneous fractions were then evaporated and the water solution 

lyophilized yielded pure 1 as a white hygroscopic solid (270 mg, 45%). 

LC-ESI-MS (m/z): [M+Na]+ calcd for C32H42N2O11 653.28; found, 653.26. 

M.p. = 105°-106°C. [α]26
D = − 16.18 (c = 0.94, MeOH). Elemental analysis 

calcd for C32H42N2O11·5H2O: C, 53.32; H, 7.27; N, 3.88; found: C, 53.03; H, 

7.09; N, 4.09. 
1H NMR (CDCl3, 400 MHz): δ 7.8-7.6 (m, 2H, fluorenyl 4-H, 5-H), 7.6-7.4 

(m, 2H, fluorenyl 1-H and 8-H), 7.4-7.2 (m, 4H, fluorenyl 3-H, 6-H, 2-H and 

7-H),  4.5-4.3 (m, 2H, CH2, Fmoc), 4.3-4.1 ( m, 2H, CH Fmoc and CHα Lys), 

4.1-3.8 (m, CHOHx3, 1-deoxyfructosyl),  3.8-3.5 (m, 1-deoxyfructosyl), 3.5-

2.9 (m, 4H, CH2NH 1-deoxyfructosyl and CH2ε Lys), 2.0-1.4 (m, 4H, 

CH2β,δ), 1.4 (s, CH3x3, Boc), 1.4-1.0 (m, CH2γ, Lys). 
13C NMR (CDCl3, 50 MHz) δ 174.9 (C, COOH), 158.5 (C, CONH, Boc), 

156.0 (C, CONH, Fmoc), 143.5 (CHAr x2, Fmoc), 141.1 (CHAr x2, Fmoc), 

127.6 (CHAr x2, Fmoc), 127.0 (CHAr x2, Fmoc), 125.0 (CHAr x2, Fmoc), 

119.9 (CHAr x2, Fmoc), 98.7 (C4, C1 1-deoxyfructosyl), 81.4 (C4, Boc), 70.6, 

70.1, 69.5 (CHOH x3, 1-deoxyfructosyl), 67.2 (CH2, 1-deoxyfructosyl), 63.3 
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(CH2, Fmoc) 54.6, 53.6 (CH2NH ideoxyfructosyl, Cα Lys) 50.0 (CH2ε, Lys), 

47.2 (CH, Fmoc), 31.9 (CH2β, Lys), 28.5 (CH3x3, Boc), 27.8 (CH2δ, Lys), 

22.2 (CH2γ, Lys). 

 

5.2.3 Nα-Fmoc-Lys[Nε-(2,3:4,5-Di-O-Isopropylidene-1-

Deoxyfructopyranosyl)]-OH 

A fresh solution of NaCNBH3 (600 mg, 9.5 mmol, 2.5eq) in 5 mL H2O/THF 

(1:1, v/v) was added to a stirred solution of Nα-Fmoc-Lys-OH (1.4 g, 3.8  

mmol, 1eq) and 2,3:4,5-di-O-isopropylidene-aldehydo-β-D-arabino-hexos-2-

ulo-2,6-pyranose70,71,72 (2.45 g, 9.5 mmol, 2.5eq) in 15 mL H2O/THF (1:1, 

v/v) under N2 at 50° C. After 4h the solvent was removed under reduced 

pressure and the crude product was purified by RP-FC, eluted with the linear 

gradient 30-50% B in A over 20 min (eluted at ~37% B). The homogeneous 

fractions were pooled, evaporated and liophylized yielding the pure 2a as a 

white solid (500 mg, 22 %). 

LC-ESI-MS (m/z): [M+H]+ calcd for C33H42N2O9 611.29; found, 611.17. 

M.p.= 92°-93°C. [α]26
D= −12.04 (c= 0.89, MeOH). Elemental analysis calcd 

for C33H42N2O9 ·TFA ·2H2O: C, 55.26; H, 6.23; N, 3.68; found: C, 55.35; H, 

6.15; N, 3.39. 
1H NMR (CDCl3, 400 MHz): δ 7.74 (d, 2H, J= 7.4 Hz, fluorenyl 4-H and 5-

H), 7.59 (d, 2H, J = 7.4 Hz, fluorenyl 1-H and 8-H), 7.37 (t, 2H, J= 7.4 Hz,  

fluorenyl 3-H and 6-H), 7.28 (t, 2H, J= 7.4 Hz,  fluorenyl 2-H and 7-H), 5.85 

(broad d, NHα), 4.65-455 (m, CH Fmoc), 4.4-4.3 (3H, CH2, Fmoc and CHα 

Lys), 4.25-4.15 (m, CHOHx3, 1-deoxyfructosyl),  3.8-3.7 (m, CH2 1-

deoxyfructosyl), 3.35-3.30 (m, CH2NH 1-deoxyfructosyl), 3.30-3.20 (m,CH2ε 

Lys), 1.95-1.65 (m, 4H, CH2β,δ) 1.5-1.45 (m, CH2γ, Lys) 1.47, 1.41, 1.33, 

1.28 (s, CH3x4, isopropylidene). 
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13C NMR (CDCl3, 50 MHz) δ 174.5 (C, COOH), 161.9 (q, J=38.2 Hz, C, 

COOH, TFA), 156.2 (C, CONH, Fmoc), 116.5 (q, J=290.9 Hz, CF3, TFA), 

143.6 (CHAr x2, Fmoc), 141.1 (CHAr x2, Fmoc), 127.6 (CHAr x2, Fmoc), 

127.0 (CHAr x2, Fmoc), 125.1 (CHAr x2, Fmoc), 119.8 (CHAr x2, Fmoc), 

110.0 (C4, isopropylidene), 109.3 (C4, isopropylidene), 99.56 (C4, C1 1-

deoxyfructosyl), 72.2, 70.3, 69.6 (CHOH x3, 1-deoxyfructosyl), 67.1 (CH2, 

1-deoxyfructosyl), 61.58 (CH2, Fmoc) 54.3, 53.7 (CH2NH ideoxyfructosyl, 

Cα Lys) 48.7 (CH2ε, Lys), 47.2 (CH, Fmoc), 31.7 (CH2β, Lys), 26.1, 25.9, 

24.6, 24.1 (CH3x4, isopropylidene), 25.5 (CH2γ, Lys), 22.0 (CH2δ, Lys). 

 

5.2.4 Nα-Fmoc-Lys[Nε-(2,3:4,5-Di-O-Isopropylidene-1-

Deoxyfructopyranosyl),Nε-Boc]-OH 

A stirred solution of 2a (500 mg 0.81 mmol, 1eq) in methanol (5 mL) at 0° C 

was treated with Boc2O (445 mg, 2.07 mmol, 2.5 eq). The reaction was left 

stirring at rt for 1.5 h and then the solvent was evaporated and the residue 

purified by RP-FC employing a linear gradient of 50-100% B in A over 20 

min (the product 2 eluted at ~70% B). Acidification of the concentrate, 

obtained after evaporation of acetonitrile from the pooled fractions, to pH 3 

with acetic acid, resulted in a white precipitate that was filtered off, washed 

with water and dried under vacuum. The pure 2 was obtained as a white solid 

(390 mg, 67 %). LC-ESI-MS (m/z): [M+H]+ calcd for C38H50N2O11 711.34; 

found, 711.43. M.p.= 97-98° C. [α]26
D= −16.97 (c= 1.03, MeOH). Elemental 

analysis calcd for C38H50N2O11 ·H2O: C, 62.62; H, 7.19; N, 3.84; found C, 

62.56; H, 7.29; N, 3.84.  
1H NMR (CDCl3, 400 MHz): δ 7.75 (d, 2H, J= 7.4 Hz, fluorenyl 4-H and 5-

H), 7.59 (d, 2H, J = 7.4 Hz, fluorenyl 1-H and 8-H), 7.38 (t, 2H, J= 7.4 Hz,  

fluorenyl 3-H and 6-H), 7.30 (t, 2H, J= 7.4 Hz,  fluorenyl 2-H and 7-H), 5.45 

(broad d, NHα), 4.6-4.55 (m, CH Fmoc), 4.50-4.5 (m, CHα Lys), 4.45-4-30 
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(m, CHORx3, 1-deoxyfructosyl), 4.25-4.15 (m, CH2 Fmoc) 3.75-3.60 (m, 

CH2 1-deoxyfructosyl), 3.35-3.25 (m, CH2NH 1-deoxyfructosyl), 3.35-2.25 

(m,CH2ε Lys), 2.00-1.70, 1.55-1.45, 1.35-1.25 (m, 6H, CH2β,δ,γ, Lys) 1.44 (s, 

CH3x3, Boc),1.50, 1.47, 1.34, 1.31 (s, CH3x4, isopropylidene).  
13C NMR (CDCl3, 50 MHz) δ 175.5 (C, COOH), 159.1 (C, CONH, Boc), 

156.1 (C, CONH, Fmoc), 143.7 (CHAr x2, Fmoc), 141.1 (CHAr x2, Fmoc), 

127.6 (CHAr x2, Fmoc), 127.0 (CHAr x2, Fmoc), 125.0 (CHAr x2, Fmoc), 

119.8 (CHAr x2, Fmoc), 108.8 (C4, isopropylidene), 108.0 (C4, 

isopropylidene), 104.5 (C4, C1 1-deoxyfructosyl), 80.8 (C4, Boc),  71.4, 70.7, 

70.5 (CHOH x3, 1-deoxyfructosyl), 67.2 (CH2, 1-deoxyfructosyl), 61.3 

(CH2, Fmoc), 53.9, 51.4 (CH2NH ideoxyfructosyl, Cα Lys) 48.5 (CH2ε, Lys), 

47.3 (CH, Fmoc), 32.5 (CH2β, Lys), 28.6 (CH3x3, Boc), 27.4 (CH2δ, Lys), 

26.4, 26.1, 25.1, 24.1 (CH3x4, isopropylidene), 22.7 (CH2γ, Lys). 

 

5.3 Synthesis of a glycated hCD59 antigen 

5.3.1 Synthesis of hCD59(37-50) peptide analogs  

Intermediate peptide I and II for post-synthetic modifications and 

peptide III (stepwise synthesis) were synthesized by SPPS according 

to the methodologies described in chapter 5.6 (Table 5.3-1)  

 

 Sequence and side chain protections 

I Ac-N(Trt)-K(Boc)-A-W(Boc)-K(ivDde)-F-E(OtBu)-H(Trt)-A-N(Trt)-F-N(Trt)-D(OtBu)-C(Trt)-OH  

II Ac-N(Trt)-K(ivDde)-A-W(Boc)-K(Boc)-F-E(OtBu)-H(Trt)-A-N(Trt)-F-N(Trt)-D(OtBu)-C(Trt)-OH 

III Ac-N(Trt)-K(Boc)-A-W(Boc)-K*-F-E(OtBu)-H(Trt)-A-N(Trt)-F-N(Trt)-D(OtBu)-C(Trt)-OH 

Table 5.3-1 Peptide analogs for the convergent synthesis of glycated hCD59(37-50) 
antigen. K* is Fmoc Lysine derivate 2 (section 5.2.4). 
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5.3.2 On resin direct glycation  

The peptide I was synthesized by SPPS and acetylated according to the 

procedures described in section 5.6. Residue 41 was then deprotected from 

ivDde by treatment with hydrazine 2% in DMF for 10min. This removal was 

repeated 3 times and monitored by LCMS (ivDde deprotection-product 

mass=221) obtaining intermediate peptide Ia. Direct glycation was 

performed on resin with a 40-fold excess (base on the resin substitution) of 

Glucose under stirring at 110 C and N2 atmosphere in DMF, stopped after 45 

min. The reaction was monitored with microcleavage LCMS analysis, linear 

gradient of 10-20% B in A over 15 min, Rt=4.66 for peptide III  

The mass spectrometry shows the presence of un-glycated peptide and of an 

overall poor conversion of the free epsilon amino into the Amadori form due 

to the presence of undesired oxidation reactions and di-glycation. 

 

[M+H]+= 1927.2  [M+H]2+= 963.96  glycated product 

[M+H]+= 1765    [M+H]2+= 883  un-glycated product 

[M+H]+= 1969.5  [M+H]2+= 985  oxidation-product 

[M+H]+= 2089   [M+H]2+= 1045  di-glycated-product 

 

The crude peptide was purified by flash chromatography Waters delta 

prep3000, delta-pak cartridge C18 15 microm, 300 Angstrom 2inc (diam) x 

12 inc, 50 mL/min HPLC analysis using a very shallow gradient shown 

indeed two peaks (glycated and un-glycated with the oxidation product, of 

mass 985, present in both. Further purification by semi-preparative reverse 

phase HPLC using very shallow and isocratic gradients was unsatisfactory in 

terms of yield due to the poor separation of the two forms (glycated and un-

glycated).  
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5.3.3 On resin reductive amination  

Peptide I was treated as in 5.3.2 achieving intermediate peptide Ia and the 

Amadori modification was  on Lys 41 by reductive amination treating the 

peptidyl-resin with a 25-fold molar excess of 2,3:4,5-di-O-isopropylidene-β-

D-arabino-hexos-2-ulo-2,6-pyranose and NaCNBH3 2.5 eq in DMF (1mL/g 

of peptidyl-resin) at 70 C under N2 atmosphere and left under agitation for 

4h. The reaction was monitored by LCMS of minicleavages of 2-3 mg of 

resin using reagent R ( TFA:Aniso:Thioanisol:Ethandithiol 90:5:3:2 v/v). 

Cleavage from the resin and work up according to 5.6. LCMS showed 

presence of partially protected isopropylidene so the crude peptide was 

treated with TFA/TIS (95:5) and precipitated in cold ether after 2 h. The 

crude peptide was purified as in 5.3.2. Purified peptide, LCMS linear 

gradient of 10-60% B in A over 20 min, Rt= 4.58 min. The peak appeared in 

the first place to correspond to a pure product by LCMS analysis show it was 

a mixture of glycated ([M+H]2+= 963.9) and non-glycated peptide 

([M+H]2+= 883.1) HPLC analysis using a very shallow gradient shown 

indeed two peaks. Under the described conditions we were unable to 

glycated all the free epsilon-amino groups, at least 40% of them remained 

un-glycated. Under more vigorous conditions as higher T, reaction time and 

excess of reactants the amount of glycated product increased but di-glycation 

was seen to a significant extent. Further purification by semi-preparative 

reverse phase HPLC using very shallow and isocratic gradients was 

unsatisfactory in terms of yield due to the poor separation of the two forms 

(glycated and un-glycated). To solve the problem of isolating the glycated 

product from the non-glycated a purification using a phenyl-boronic column 

was attempted with good results in terms of separation but with poor yield 

due to the low loading capacity of those columns.  
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5.3.4 In solution direct glycation  

Peptide II was synthesized by SPPS, acetylated and cleaved from the resin 

according to the procedures described in section 5.6 obtaining intermediate 

peptide IIa. To a solution of IIa, with position 38 ivDde protected, a 40-fold 

excess of Glucose was added under stirring at 110 C and N2 atmosphere. 

Under this temperature conditions the peptide was found to be not stable. At 

lower temperature the stability increases but the glycation rate is much lower 

and that leaves the problem to separate the glycated product from the un-

glycated one. After purification as in as in 5.3.2 a solution of glycated 

peptide III was treated with 2% hydrazine in DMF 5min repeated three times 

to removed ivDde. The Amadori modification was found to be very 

susceptible to hydrazine. Degradation occurred at >2% or even 2% during 

liophylization. In conclusion it has been impossible to removed ivDde in 

presence of the unprotected Amadori modification without completely 

destroying the sugar moiety.  

 

5.3.5 In solution reductive amination  

Peptide II was treated as in 5.3.45.3.2 achieving intermediate peptide IIa. 

Reductive amination was performed on peptide IIa with a 25-fold molar 

excess of 2,3:4,5-di-O-isopropylidene-β-D-arabino-hexos-2-ulo-2,6-pyranose 

and NaCNBH3 2.5 eq in DMF (1mL/mg of peptide) at 70 C under N2 

atmosphere and left under agitation. The reaction was monitored by LCMS 

and stopped after 20 min. Purification as in 5.3.2. Purified glycated peptide 

IIa was deprotection from ivDde as in 5.3.4. The resulting solution was 

purified again as in 5.3.2. The purified peptide was dissolved in 2mL  

TFA/H2O/TIS (95:2.5:2.5) in order to removed the isopropylidene 

protections affording peptide III. 
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Starting material (intermediate peptide IIa) [M+H]+ =1970 

[M+2H]2+=986.4 [M+3H]3+=658; Glycated peptide III protected [M+H]+ 

=2214 [M+2H]2+=1107.5 [M+3H]3+=738.8; Glycated peptide III (glycated 

peptide, OH free) [M+H]+ =1927.4 [M+2H]2+=964.2 [M+3H]3+=643.2. 

 

5.3.6 Step-wise synthesis by building block approach of Nα-

Ac[Lys41(Nε-1-deoxyfructosyl)]hCD59(37-50)-OH (III) 

Peptide III was synthesized by SPPS, acetylated and cleaved from the resin 

according to the procedures described in section 5.6. The Amadori 

modification in position 41 was stepwise using the glycated Fmoc Lysine 

derivate, 2 (Nα-Fmoc-Lys[Nε-(2,3:4,5-di-O-isopropylidene-1-

deoxyfructosyl,Nε-Boc)] OH ) affording the desired with excellent yield 

The other three synthesized Amadori s, without Boc protection in the ε-NH2 

2a or without isopropylidene protection on the sugar hydroxyls 1 and 1a, 

were successfully incorporated into the peptide sequence with Fmoc SPPS 

strategy. However attempts to couple the subsequent amino acids failed. 

After the standard TFA cleavage the peptide was still partially 

isopropylidene protected and displays three main peaks, corresponding to di-

isopropylidene protected, mono-isopropylidine protected and glycated 

product. To completely remove the isopropylidene protection, additional 

TFA treatment was required (95% TFA, 5% TIS) for 3h. 

The crude product was purified as in in 5.3.2. 
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5.4 Immunological studies 

5.4.1 General procedure for solid-phase non competitive indirect 

ELISA (SP-ELISA) 

Antibody titers were determined in SP-ELISA.306 96-Well activated 

Polystyrene ELISA plates (Limbro Titertek, ICN Biomedicals, Inc., Aurora, 

Ohio, USA) were coated with 1 μg/100 μl/well of peptides or glycopeptides 

in pure carbonate buffer 0.05 M (pH 9.6) and incubated at 4 °C overnight. 

After 5 washes with saline containing 0.05% Tween 20, non-specific binding 

sites were blocked by Fetal Calf Serum (FCS), 10% in saline Tween (100 

μl/well) at r.t. for 60 minutes. Sera diluted from 1:100 to 1:100.000 were 

applied at 4 °C for 16 h in saline Tween 10% FCS. After 5 washes, we added 

100 μl/well of alkaline phosphatase conjugated anti human IgM or IgG Fab2-

specific affinity purified antibodies (Sigma, St. Louis, Missouri, USA) 

diluted 1:500 in saline Tween/FCS. After an overnight incubation and 5 

washes, 100 μl of substrate solution consisting of 2 mg/mL p-

nitrophenylphosphate (Sigma, St. Louis, Missouri, USA) in 10% 

diethanolamine buffer was applied. After 30 minutes, the reaction was 

blocked with 50 μl of 1 M NaOH and the absorbance read in a multichannel 

ELISA reader (SUNRISE, TECAN, Austria) at 405 nm. ELISA plates, 

coating conditions, reagent dilutions, buffers, and incubation times were 

tested in preliminary experiments. Each serum was individually titrated to 

check for parallelism of antibody absorbances in dilutions. Within-assays 

and between-assays coefficient of variations were below 10%. Subclass 

specific anti-IgG conjugates (IgG1, IgG2, IgG3, IgG4, Southern Biotech, 

Birmingham, AL, USA) were used to detect the IgG-antibodies subclasses in 

                                                 
306 Loomans, E.E., Gribnau, T.C., Bloemers, H.P., Schielen, W.J. (1998) J. Immunol. 
Methods, 221, 119. 
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parallel experiments. The antibody levels revealed by SP-ELISA are 

expressed both as antibody titer (sample dilution which reaches the average 

plus three standard deviations of blanks) and as absorbance value at a 

dilution of 1:100 as a ratio of positive controls in the same experiment. 

Positive samples were analysed twice to evaluate the differences between the 

two determinations. The references values were set as the mean + 2 SD of 

the control groups. Within- and between-assays coefficients of variations 

were below 10%. 

 

5.4.2 Coating e blocking optimization 

The ELISA plats were coated in with 10 and 20 μg/mL of peptides dilloved 

in PBS buffer (pH 7.2) and carbonate buffer (pH 9.6). Each plate was then 

treated with two kind of blocking agents BSA 3% and FBS 5% in PBS 

buffer. A reduced number of helthy blood donors and patient sera was tested 

under this conditions as described in section 5.4.1. The best coating/blocking 

conditions for each peptide were those that lowered the most the Abs values 

for helthy blood donors compare to the patient sera 
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5.5 Protein synthesis by Chemical Ligation  

5.5.1 Synthesis of the Bio-PEG-Spacer-hCD59(1-77) fragments for 

NCL 

The seven fragments for the tandem NCL assembly of Bio-PEG-Spacer-

hCD59(1-77) (XVI) glycated and wild type (XVII) (Table 5.5-1) were 

synthesized according to the procedures described in chapter 5.6. The C 

terminal fragment IX was obtained using Wang resin and left with the N-

terminal Cysteine unprotected.  

Fragments from X to XV were synthesized on 2-Cl-Trityl resin which 

allowed a diluted acid cleavage of the peptides with all the positions 

protected but the C-terminal carboxylic function. All those sequences have 

an N-terminal Cysteine masked as a thiazolidine except product XV whose 

N-terminal residue was coupled to a biotin-PEG3500 residue. A glycated 

Lysine residue was in position 41 of peptide X using the glycated Fmoc 

Lysine 2. After cleavage the crude was coupled with an excess of p-

acetamidothiophenol/HOBt/DIPEA (2:4:4) in acetonitrile to afford the 

corresponding fully protected C-terminal p-acetamidothioester peptides 

(Thz-peptide-COSR) in good yields. The crudes were purified by direct 

phase flash chromatography and then deprotected of the side chain 

protections with a standard concentrated TFA cleavage affording the 

corresponding C-ter thioester/N-ter thiazolidine peptides free of side chain 

protections that were purified by reverse phase flash chromatography. 



 

 185 
 

 
IX H-45CNFNDVTTRLRENELTYYCCKKDLCNFNEQLE77N-OH 
X Thz-39CWK*FE44H-COSR 
XI Thz-39CWKFE44H-COSR 
XII Thz-26CLITKAGLQVYN38K-COSR 
XIII Thz-13CKTAVNCSSDFD25A-COSR 
XIV Thz-3CYNCPNPTA12D-COSR 
XV BioPEG3500-GGSSGIEGRIEGR1LQ-COSR 

Table 5.5-1 Fragments for fragments for the tandem NCL assembly of Bio-PEG-
Spacer-hCD59(1-77) (XVI) glycated and wild type (XVII). 

 

5.6 Solid Phase Peptide Synthesis 

5.6.1 General procedure for in batch and manual SPPS  

Peptides were synthesized on a manual batch synthesizer (PLS 4×4, 

Advanced ChemTech) using a Teflon reactor (10 mL), following the 

Fmoc/tBu SPPS procedure. The resin was swelled with DMF (1 mL/100 mg 

of resin) for 20 min before use. 

Peptide synthesis was performed repeating the cycle described as following 

for each amino acid: 

− Swelling: DMF (1 mL/100 mg of resin) for 5 min 

− Fmoc-deprotection: resin is washed twice with 20% piperidine in 

DMF (1 mL/100 mg of resin, one wash for 5 min followed by an 

other wash for 20 min); 

− resin-washings: DMF (3×5 min); 

− coupling: scale employing TBTU/HOBt/NMM (2.5eq.:2.5 eq.:3.5 

eq.) as the coupling system and 2.5 eq. of the Fmoc protected amino 

acids, except for Xaa and Yaa (1.5 eq.), in DMF (1 mL/100 mg of 
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resin) for 40 min. Each coupling was checked by Kaiser test;307 in 

our case all tests were negative therefore it was not necessary to 

repeat the coupling reaction. 

− resin-washings: DMF (3×5 min) and DCM (1×5 min).  

 

Kaiser test procedure: to a small amount of peptide-resin placed in a test 

tube, three drops for each of the following solutions were added: ninhydrin 

(5 g) in ethanol (100 mL); phenol (80 g) in ethanol (20 mL); KCN (2 mL of 

1 mM aqueous solution) in pyridine (98 mL). The tube is heated at 100 °C 

for 5 min. A positive test (resin beads and solution appears strongly blue-

violet) states the presence of at least 5% free amino groups. 

 

5.6.2 General procedure for peptide acetylation 

The amine functions of the N-terminal fragment of peptides were acetylated 

in 2 cycles: the first one in 30 minutes followed by the second one in 1.5 

hour using Ac2O/ NMM as reagents. The reaction was monitored by Kaiser 

test. 

 

5.6.3 General procedure of deprotection, cleavage and purification 

of free peptide 

Peptides cleavage from the resin and deprotection of the amino-acids side 

chains were carried out with TFA/anisole/1,2-ethanedithiol/phenol/H2O 

solution (94:2:2:2:2 v/v/v/v/v). The cleavage was maintained for 3 h with 

vigorous stirring at room temperature. Resins were filtrated and washed with 

TFA. After partial evaporation under nitrogen flux, filtrates were precipitated 

                                                 
307 Kaiser, E., Colescott, R.L., Bossinger, C.D., Cook, P.I. (1970) Anal. Biochem., 34, 595. 
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with cold diethyl ether, collected by centrifugation, dissolved in H2Ο and 

lyophilized with an Edwards apparatus, model Modulyo. 

Peptides were purified by semipreparative RP-HPLC using methods and 

solvent system as reported. Fractions were checked with UPLC-ESIMS. 

 

5.6.4 General procedure for solid-phase extraction SPE 

SPE are performed on RP-C18 LiChroprep columns. Main steps are reported 

here: 

Column washings with MeOH (3 column volumes) and CH3CN (3 column 

volumes) 

Column conditioning with H2O (3 column volumes) 

Dissolving the peptide in H2O (1 column volume), checking the pH that 

should be neutral. 

Adsorbing peptide solution on silica for 3 times 

Eluting with H2O (3 column volumes) 

Eluting with 5%, 10%, 15%, 20% of H2O/CH3CN (column volume for each 

concentration), and 100% of CH3CN.  

Fractions were checked by analytical UPLC-ESIMS, and then lyophilized. 
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6 XPERIMENTAL PART B 

6.1 Synthesis of Nα-Fmoc-ω-azido-α-amino acids 

6.1.1 Synthesis of Nα-Fmoc-ε-azido-Norleucine-OH 

Tf2O (1.35 mL, 8.13 mmol) was added dropwise to a vigorously stirred 

mixture of NaN3 (2.635 g, 40.5 mmol) in H2O (6.5 mL) and CH2Cl2 (11 mL) 

at 0 oC. The resulting mixture was allowed to warm to room temperature and 

stirring was continued for 2 h. The water layer was extracted with CH2Cl2 (2 

× 4 mL) and the combined organic layers were washed with saturated 

aqueous Na2CO3 (12.5 mL). The resulting solution of TfN3 in CH2Cl2 was 

then slowly added to a solution of Nα-Boc-lysine (1.0 g, 4.06 mmol), K2CO3 

(0.84 g, 6.08 mmol), and CuSO4·5H2O (0.01 g, 0.04 mmol) in H2O (13 mL) 

and MeOH (27 mL). The mixture was stirred overnight and the reaction was 

checked by TLC (iPrOH—AcOEt—H2O 6/1/3, revealed with (a) and (b), Rf 

0.81). The organic solvents were evaporated under reduced pressure. The 

water layer was acidified to pH 6 with concd HCl, diluted with 0.25 M of 

phosphate buffer at pH 6.2 (25 mL), and extracted with CH2Cl2 (4 × 50 mL). 

The organic layers were washed with brine (25 mL), dried over Na2SO4, and 

concentrated under vacuum. The colorless oil was purified using column of 

RP-18 LiChroprep by solutions of different concentrations of H2O/CH3CN to 

afford 6-azido-Boc-L-norleucine (0.451 g, 41%).  

Cleavage of the Boc protecting group of 6-azido-Boc-L-norleucine (1.079 g, 

3.96 mmol) was achieved by treatment with an excess of concd HCl (2.5 

mL) at room temperature for 6 h. The residue was dissolved in water (5.0 

mL) and lyophilized. A solution of 2,5-dioxo-1-pyrrolidinyl 9H-fluoren-9-

ylmethyl carbonate (Fmoc-OSu; 1.469 g, 4.36 mmol) in dioxane (20 mL) 

was then added dropwise to a solution of the deprotected amino acid in 
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dioxane (30 mL). A solution of 1 M NaOH was subsequently slowly added 

to pH 8–9 and the reaction mixture was stirred at room temperature for 1 h. 

The reaction was checked by TLC (CH2Cl2—MeOH 9/2, UV, Rf 0.58). 

Water (12 mL) was added and the solution was acidified with 2 M HCl until 

pH 3. The product was extracted with CH2Cl2 (3 × 30 mL), dried with anhyd 

Na2SO4, and the solvent removed under vacuum. The crude material was 

purified by flash chromatography on silica gel (CH2Cl2 to CH2Cl2—MeOH 

10/1) to obtain the pure 6-azido-Fmoc-L-norleucine 3 (496 mg, 32%) as a 

yellow oil. RP-UPLC: Rt 1.51 min (50 to 100% of B in 3 min). IR (KBr): 

2100 cm–1 (N3). ESI-MS: m/z calcd for C21H22N4NaO4 [M + Na]+: 417.15; 

found 417.2. [α]D –2.5 (c 1.0, MeOH). 1H NMR (CDCl3, 400 MHz,): δ 7.74 

(d, 2H, J3,4 = J5,6 = 7.4 Hz, fluorenyl 4-H and 5-H), 7.54 (d, 2H, J1,2 = J7,8 = 

7.4 Hz, fluorenyl 1-H and 8-H), 7.37 (pseudo t, 2H, fluorenyl 3-H and 6-H), 

7.28 (pseudo t, 2H, fluorenyl 2-H and 7-H), 6.19 (broad s, COOH), 5.46 (m, 

1H, NH), 4.49–4.33 (m, 3H, CH2–O and α-H), 4.18 (t, 1H, J = 6.4 Hz, 

fluorenyl 9-H), 3.24–3.21 (m, 2H, ε-H2), 1.70–1.42 (m, 6H, 3 × CH2). 13C 

NMR (CDCl3, 100 MHz): δ 176.97 (COOH), 156.35 (CONH), 143.75, 

143.60, and 141.28 (fluorenyl C-4a, C-4b, C-8a, and C-9a), 127.74, 127.06, 

and 125.01 (fluorenyl C-2 to C-7), 120.00 (fluorenyl C-1 and C-8), 67.14 

(CH2–O), 53.90 (C-α), 51.02 (C-ε), 47.07(fluorenyl C-9), 31.68 (CH2), 28.31 

(CH2), 22.55 (CH2). Anal. Calcd for C21H22N4O4: C, 63.95; H, 5.62; N, 

14.20. Found: C, 64.01; H, 5.58; N, 14.23. 

 

6.1.2 Synthesis of Nα-Fmoc-δ-azido-Norvaline-OH 

Cleavage of the Boc protecting group of 5-azido-Boc-L-norvaline (prepared 

from Boc-L-Orn-OH as in 6.1.1) (1.3 g, 5.01 mmol) was achieved by 

treatment with an excess of concd HCl (6 mL) at room temperature for 6 h. 

The residue was dissolved in water and lyophilized. A solution of Fmoc-OSu 
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(1.88 g, 4.9 mmol) in dioxane (40 mL) was added dropwise to a solution of 

the deprotected amino acid in dioxane (20 mL). A solution of 1 M NaOH 

was subsequently slowly added until pH 8 and the reaction mixture stirred at 

room temperature for 3 h. The reaction was checked by TLC (CH2Cl2—

MeOH 9/2, UV, Rf 0.58). Water (30 mL) was added and the solution was 

acidified with 2 M HCl until pH 3. The product was extracted with CH2Cl2 

(3 × 50 mL), dried over Na2SO4, and the solvent removed under vacuum. 

The crude was purified by flash chromatography on silica gel (CH2Cl2 to 

CH2Cl2—MeOH 10/1) to obtain the pure 5-azido-Fmoc-L-norvaline 4 (1.3 g, 

69%) as a yellow oil. RP-UPLC: Rt 1.37 min (50 to 100% of B in 3 min). IR 

(KBr): 2100 (N3) cm–1. ESI-MS: m/z calcd for C20H20N4NaO4 [M + Na]+ 

403.14; found 403.3. [α]D –2.3 (c 1.0, MeOH). 1H NMR (CDCl3, 400 MHz,): 

δ 7.76 (d, 2H, J3,4 = J5,6 = 7.6 Hz, fluorenyl 4-H and 5-H), 7.61 (pseudo d, 

2H, J1,2 = J7,8 = 7.6 Hz, fluorenyl 1-H and 8-H), 7.40 (pseudo t, 2H, fluorenyl 

3-H and 6-H), 7.31 (pseudo t, 2H, fluorenyl 2-H and 7-H), 6.16 (broad s, 

COOH), 5.34 (m, 1H, NH), 4.45–4.40 (m, 3H, CH2–O and α-H), 4.22 (t, 1H, 

J = 6.6 Hz, fluorenyl 9-H), 3.37–3.30 (m, 2H, δ-H2), 2.01–1.46 (m, 4H, 2 × 

CH2). 13C NMR (CDCl3, 100 MHz): δ 175.72 (COOH), 156.72 (CONH), 

143.75, 143.57, and 141.33 (fluorenyl C-4a, C-4b, C-8a, and C-9a), 127.76, 

127.08, and 125.00 (fluorenyl C-2 to C-7), 120.02 (fluorenyl C-1 and C-8), 

67.12 (CH2–O), 53.16 (C-α), 50.76 (C-δ), 47.15 (fluorenyl C-9), 29.62 

(CH2), 24.81 (CH2). Anal. Calcd for C20H20N4O4: C, 63.15; H, 5.30; N, 

14.73. Found: C, 63.09; H, 5.25; N, 14.80. 
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6.1.3 Synthesis of Nα-Fmoc-γ-azido-hSerine-OH 

Cleavage of the Boc protecting group of Boc-Abu(γ-N3)-OH (obtained from 

Boc-Abu(γ-N3)-OH as in 6.1.1) (0.748 g, 2.9 mmol) was achieved by 

treatment with an excess of TFA (10 mL) at room temperature for 10 min. 

The reaction was checked by TLC (AcOEt—n-hexane 1/1; revealed with (a), 

Rf 0.10). TFA was removed by flushing with N2 and the residue dissolved in 

water and lyophilized. The methyl ester was hydrolyzed by stirring with 1 M 

NaOH (5 mL) at room temperature for 6 h. The solution was then treated 

with concd HCl to pH 7 and lyophilized to afford the free amino acid. A 

solution of Fmoc-OSu (0.843 g, 2.5 mmol) in dioxane (6 mL) was added 

dropwise to a solution of the deprotected amino acid in dioxane (10 mL). A 

solution of 1 M NaOH was subsequently slowly added until pH 8 and the 

reaction mixture stirred at room temperature for 3 h. The reaction was 

checked by TLC (CH2Cl2—MeOH 9/2, UV, Rf 0.58). Water (7.5 mL) was 

added and the solution was acidified with concd HCl until pH 3. The product 

was extracted with CH2Cl2 (3 × 20 mL), dried over Na2SO4, and the solvent 

removed under vacuum. The crude was purified by flash chromatography on 

silica gel (CH2Cl2 to CH2Cl2—MeOH 10/1) to obtain the pure Nα-Fmoc-γ-

azido-hSerine-OH 5 (124 mg, 27%) as yellow oil. RP-UPLC: Rt 1.31 min 

(50 to 100% of B in 3 min). IR: 2100 cm–1 (N3). ESI-MS: m/z calcd for 

C19H18N4NaO4 [M + Na]+ 389.12; found 389.4. [α]D –11.5 (c 1.0, MeOH). 
1H NMR (CDCl3, 400 MHz,): δ 7.75 (pseudo d, 2H, J = 7.6 Hz, fluorenyl 4-

H and 5-H), 7.54 (pseudo d, 2H, J = 7.4 Hz, fluorenyl 1-H and 8-H), 7.39 

(pseudo t, 2H, fluorenyl 3-H and 6-H), 7.31 (pseudo t, 2H, fluorenyl 2-H and 

7-H), 6.14 (broad s, COOH), 5.63 (m, 1H, NH), 4.53–4.41 (m, 3H, CH2–O 

and α-H), 4.21 (t, 1H, J = 6.8 Hz, fluorenyl 9-H), 3.42–3.39 (m, 2H, γ-H2), 

2.19–1.96 (m, 6H, 3 × CH2). 13C NMR (CDCl3, 100 MHz): δ 172.71 

(COOH), 156.26 (CONH), 143.53 and 141.29 (fluorenyl C-4a, C-4b, C-8a, 
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and C-9a), 127.76, 127.08, 125.04, 124.99 (fluorenyl C-2 to C-7), 120.00 

(fluorenyl C-1 and C-8), 67.17 (CH2-O), 51.70 (C-α), 47.68 (C-γ), 47.09 

(fluorenyl C-9), 31.21 (CH2). Anal. Calcd for C19H18N4O4: C, 62.29; H, 4.95; 

N, 15.29. Found: C, 62.36; H, 4.99; N, 15.24. 

6.2 Synthesis of Nα-Fmoc-ω-alkynyl-α-amino acids 

6.2.1 General procedure for the synthesis of p-toluenesulfonate 

derivatives  

p-Toluenesulfonyl chloride (6.49 mmol) in pyridine (10 mL) was added to a 

stirred solution of the alcohol derivative (5.9 mmol) at 0 °C. The reaction 

was stirred for 4 h at rt and checked by TLC [AcOEt—n-hexane 5/4; 

revealed with (a), (e)]. The reaction mixture was neutralized with 2 M HCl, 

the p-toluensulfonate derivative extracted with CHCl3, and the organic layer 

evaporated under vacuum to afford the product as a pale yellow oil. 

 

5-Hexyn-1-ol 1-(4-methylbenzene sulfonate).(6) Yield 96%. 1H-NMR 

(CDCl3, 200 MHz): δ 7.78 and 7.34 (AA’BB’ system, 4H, J = 8.4 Hz, 

MeC6H4), 3.57 (t, 2H, J = 6.2 Hz, 1-H2), 2.45 (s, 3H, MeC6H4), 2.13–2.09 

(m, 2H, 4-H2), 1.90 (t, 1H, 6-H), 1.93–1.72 (m, 4H, 2-H2 and 3-H2). 

 

4-Pentyn-1-ol 1-(4-methylbenzene sulfonate) (7) Yield 93%. 1H-NMR 

(CDCl3, 200MHz): δ 7.77 and 7.35 (AA’BB’ system, 4H, J = 8.4 Hz, 

MeC6H4), 4.12 (t, 2H, J = 5.8 Hz, 1-H2), 2.43 (s, 3H, MeC6H4), 2.32–2.15 

(m, 2H, 3-H2), 1.93 (t, 1H, 5-H), 1.91–1.82 (m, 2H, 2-H2). 
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6.2.2 General procedure for the synthesis of bromo derivatives 

Lithium bormide (6.67 mmol) was added in portions to a stirred solution of 

the p-toluensulfonate derivative (4.45 mmol) in acetone (10 mL) at rt. The 

reaction mixture was heated at 40 °C for 20 h. The reaction was checked by 

TLC (AcOEt—hexane 5/4; revealed with (e), Rf 0.75). The solvent was 

evaporated by flushing with N2. The residue was treated with n-hexane, 

filtration of the residue and evaporation of DCM under nitrogen flux, 

afforded the bromo derivative as a yellow oil. 

 

6-Bromohex-1-yne. (9) Yield 31%. 1H NMR (CDCl3, 200 MHz): δ 3.41 (t, 

2H, J = 7.2 Hz, 6-H2), 2.21 (dt, 2H, J = 3.0 Hz, 7.4 Hz, 4-H2), 2.02–1.91 (m, 

2H, 3-H2), 1.96 (t, 1H, J = 3.8 Hz, 1-H ), 1.71-1.60 (m, 2H, 5-H2) . 

 

5-Bromopent-1-yne (10) Yield 28%. 1H NMR (CDCl3, 200 MHz): δ 3.44 (t, 

2H, J = 6.4 Hz, 5-H2), 2.75 (dt, 2H, J = 2.6 Hz, 7.0 Hz, 3-H2), 2.02-1.95 (m, 

2H, 4-H2), 1.86 (t, 1H, J = 3.6 Hz, 1-H). 

 

6.2.3 Synthesis of the Chiral Inductor BPB 

A solution of 10 g (86,8 mmol) of (S)-proline and 18,5 g (330 mmol) of 

KOH in 70 mL of iPrOH was prepared with stirring at 40°C. As soon as the 

solution became transparent, slow addition of freshly distilled BnCl (18,30 g, 

130 mmol) was added under stirring at the same temperature for 6h. The 

reaction mixture was neutralized with concentred aqueous HCl until pH 5-6 

(indicator paper), then was added to the reaction mixture CHCl3 (30 mL) 

with stirring. The mixture was left overnight, then filtered and the precipate 

was washed with CHCl3. The CHCl3 solutions were combined and evapored, 

the residue was treated with cold acetone and the precipitate of crude BP 
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filtered and additionally washed with acetone. Some BP was also recovered 

from the acetone washings. The crude material was dried in air and then over 

P2O5 in vacuo to give 10,23 g of (S)-N-benzylproline (BP) (12) ( 57 %).  

Product 12 (3.467g, 16.9 mmol) was added at RT under N2 to a stirred 

freshly-prepared transparent solution of PCl5 (7.035g, 33.8 mmol) in anhyd 

CH2Cl2 (55 mL). After 30 min cold petroleum ether was added and the acyl 

chloride precipitated as an oil. The oil was dissolved in anhyd CH2Cl2 (60 

mL) under N2 and 2-aminobenzophenone (3.33 g, 16.9 mmol) was added in 

one portion, followed by Et3N to pH 8. The mixture was stirred for 4 h at rt, 

then washed with a saturated solution of Na2CO3 and twice with H2O. The 

organic layer was evaporated under reduced pressure. The crude BPB was 

recrystallized from EtOH. Some product was also recovered from the EtOH 

washings. The material was dried under vacuum over P2O5 to give the chiral 

inductor (S)-2-(N-Benzylprolyl)aminobenzophenone (BPB) (13) (1.873 g, 

29%). ESI-MS: m/z calcd for C25H24N2O2 [M + H]+: 385,18; found 385,2. 1H 

NMR (CDCl3, 400 MHz): δ 11.52 (s, 1H, NH), 8.56 (d, 1H, J= 8.4 Hz, Bn), 

7.79-7.36 (m, 9H, Bn), 7.15 (m, 4H, Bn), δA= 3.92, δB= 3.59 (syst AB, 2H, 

JAB= 12.8 Hz, CH2Bn), 3.32 (dd, 1H, Jα,β= 4.4 Hz, Jα,β’=10.0 Hz, Hα), 3.22 

(dd, 1H, Jδ,δ’= Jδ,γ= 6.4 Hz, Hδ), 2.41 (dd, 1H, Jβ,β’= 8.8 Hz, Jβ,γ= 16 Hz, Hβ’), 

2.26 (ddd, 1H, Jδδ’= 6.4 Hz, Jδγ=12.8 Hz, Jδγ’= 22 Hz  Hδ’), 1.96 (ddd, 1H, 

Jβ,β’= 8.8 Hz, Jβ,γ= 4.4 Hz, Jβγ’= 16.4 Hz, Hβ), 1.85-1.76 (m, 2H, H,γ,H,γ’ ). 13C 

NMR (CDCl3, 100 MHz): δ 198.03 (Ph-CO-Ph), 174.64 (COOH), 139.16, 

138.54, 138.12, 133.37, 132.55, 132.48, 130.11, 129.12, 128.30, 128.15, 

127.05, 125.32, 122.19, 121.52 (18 Ar), 68.25 (Cα), 59.82 (CH2Bn), 53.85 

(Cδ), 30.98 (Cβ), 24.14 (Cγ). 
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6.2.4 Synthesis of the [Gly-Ni-BPB] complex  

A solution of KOH 1,02 g (18,2 mmol) in 4 mL of MeOH was poured into a 

variously stirred mixture of BPB 1 g (13) (2,6 mmol), Ni(NO3)2.6H2O 1,511g 

(5,2 mmol), glycine 0,975 g (13 mmol) in 9,1 mL of MeOH under N2 at 40-

50°C. The resulting mixture was stirred at 55-65°C for 1h (a prolonged 

heating of the reaction mixture might result to a partial racemization of the 

BPB moiety), and then neutralized with 1mL of AcOH diluted in 39 mL of 

water. The separated crystalline solid was filtered and washed with water. 

The crude material was dried in air and then over P2O5 in vacuo to give 1,06 

g of product 14 ( 81 %). ESI-MS: m/z calcd for C27H25N3NiO3 [M + H]+: 
498,20 ; found 498,3. 1H-NMR (CDCl3, 200MHz): δ 8.27 (d, 1H, J= 8.8 Hz, 

Bn), 8.07 (d, 1H, J= 7.2 Hz, Bn), 7.51-7.30 (m, 6H, Bn), 7.24-6.69 (m, 6H, 

Bn), δA= 4.48, δB= 3.69 (syst AB, 2H, JAB= 6.2 Hz, CH2Bn), 3.51-3.31 (m, 

2H, Hαpro), 2.63-2.41 (m, 3H, Hδpro, Hαα’Gly), 2.13-1.91 (m, 4H, Hβ’pro, Hδ’Pro, 

HβPro, H,γPro, H,γ’Pro ). 13C-NMR (CDCl3, 50MHz): δ 181.19 (COGly), 177.18 

(CO-N-Ph), 171.49 (C=N), 134.53, 133.11, 132.16, 131.66, 129.67, 129.53, 

129.28, 129.06, 128.87, 126.19, 125.60, 125.12, 124.21, 120.82 (18 Ar), 

69.96 (CαPro), 63.23 (CH2Bn), 61.38 (CαGly), 57.60 (CδPro), 30.90 (CβPro), 23.89 

(CγPro). 

 

6.2.5 General procedure for the alkylation of the Gly-Ni-BPB 

complex with bromoalkynes 

To a stirred mixture of Gly-Ni-BPB (14) (1.99 g, 4 mmol) in anhyd CH3CN 

(17.5 mL) were added, under N2, finely powdered NaOH (0.4 g, 10 mmol) 

and bromoalkyne (6.01 mmol). After 5 h, the reaction mixture was treated 

with 0.1 M HCl (59 ml) and the red product extracted with CH2Cl2 (4 × 40 

mL), dried over MgSO4, and the solvent removed under vacuum. The crude 
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was purified by flash chromatography on silica gel (CH2Cl2—Me2CO 2/1) 

affording the product as a red amorphous solid. 

 

6.2.6 General Procedure for the hydrolysis of the alkylated 

complexes and Fmoc protection of the free amino acid.  

A solution of the alkylated complex (1.33 mmol) in MeOH (22.5 mL) was 

added to warm 2 M HCl (16 mL) and the mixture refluxed for 1 h. After 

cooling to rt, 1 M NaOH was added until pH 6 and the solvent removed 

under vacuum. The solid residue was washed with acetone, the dried solid 

product was dissolved in MeOH—H2O 15/20 (70 mL) and then gently 

swirled overnight with Chelex 100 H+ resin, converted from its Na+ form. 

The mixture was filtered and the resin washed with water, the layers of 

combined filtrates were evaporated under vacuum, and the residue 

lyophilized. 

A solution of FmocOSu (1.51 mmol) in dioxane (15 mL) was added 

dropwise to the lyophilized product (1.37 mmol) dissolved in dioxane (15 

mL) and then 1M NaOH was added until pH 8. The reaction mixture was 

stirred at RT for 4 h, after which time, water (7.5 mL) was added and the 

solution acidified with 2 M HCl to pH 3. The product was then extracted 

with CH2Cl2 (3 × 20 mL), dried over Na2SO4 and the solvent removed under 

vacuum. The crude was purified by FCC (CH2Cl2 to CH2Cl2—MeOH 10/1) 

to obtain the pure amino acid as a yellow oil. 

 

Nα-Fmoc-ε-alkynyl-Norleucine-OH (18) Yield 31%. RP-UPLC: Rt 1.49 min 

(50–100% of B in 3 min). [α]D –3.1 (c 1.0, MeOH). ESI-MS: m/z calcd for 

C23H23NNaO4 [M + Na]+ 400.15; found 400.3. 1H NMR (CDCl3, 400 MHz): 

δ 7.75 (pseudo d, 2H, J = 7.6 Hz, fluorenyl 4-H and 5-H), 7.59 (pseudo d, 

2H, J = 7.6 Hz, fluorenyl 1-H and 8-H), 7.37 (pseudo t, 2H, fluorenyl 3-H 
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and 6-H), 7.28 (pseudo t, 2H, fluorenyl 3-H and 6-H), 5.79 (broad s, COOH), 

5.48(m, 1H, NH), 4.44–4.38 (m, 3H, CH2–O and α-H), 4.21 (t, 1H, J = 6.8 

Hz, fluorenyl 9-H), 2.08–1.99 (m, 3H), 1.94 (t, 1H, J = 2.4 Hz, HC≡C), 

1.80–1.75 (m, 1H), 1.58–1.42 (m, 4H, 2 × CH2). 13C NMR (CDCl3, 100 

MHz): δ 176.63 (COOH), 156.17 (CONH), 143.83, 143.67 and 141.29 

(fluorenyl C-4a, C-4b, C-8a, and C-9a), 127.71, 127.06, 125.04 (fluorenyl C-

2 to C-7), 119.98 (fluorenyl C-1 and C-8), 83.97 (HC≡C), 68.69 (CH2-O), 

67.06 (HC≡C), 53.83 (C-α), 47.15 (fluorenyl C-9), 31.73 and 27.81 (C-β and 

δ), 24.31 (C-γ), 18.15 (C-ε). Anal. Calcd for C23H23NO4: C, 73.19; H, 6.14; 

N, 3.71. Found: C, 73.09; H, 6.19; N, 3.81. 

 

Nα-Fmoc-δ-alkynyl-Norvaline-OH (19) Yield 28%. RP-UPLC: Rt 1.49 min 

(50–100% of B in 3 min). [α]D –3.0 (c 1.0, MeOH). ESI-MS: m/z calcd for 

C22H21NNaO4 [M + Na]+ 386.14; found 386.2. 1H NMR (CDCl3, 400 MHz): 

δ 7.73 (d, 2H, J = 7.2 Hz, fluorenyl 4-H and 5-H), 7.57 (d, 2H, J = 7.4 Hz, 

fluorenyl 1-H and 8-H), 7.39 (pseudo t, 2H, fluorenyl 3-H and 6-H), 7.30 

(pseudo t, 2H, fluorenyl 2-H and 7-H), 6.60 (broad s, COOH), 5.51 (m, 1H, 

NH), 4.43–4.35 (m, 3H, CH2–O and α-H), 4.18 (t, 1H, J = 6.6 Hz, fluorenyl 

9-H), 2.08–1.99 (m, 3H), 1.94 (t, 1H, J = 2.4 Hz, HC≡C), 1.80–1.75 (m, 1H), 

1.58–1.42 (m, 2H, CH2). 13C NMR (CDCl3, 100 MHz): δ 177.06 (COOH), 

156.26 (CONH), 143.81, 143.62 and 141.27 (fluorenyl C-4a, C-4b, C-8a, and 

C-9a), 127.70, 127.06 and 125.05 (fluorenyl C-2 to C-7), 119.96 (fluorenyl 

C-1 and C-8), 83.49 (HC≡C), 69.11 (CH2-O), 67.06 (HC≡C), 53.77 (C-α), 

47.11 (fluorenyl C-9), 31.33 (C-β), 24.28 (C-γ), 18.01 (C-δ). Anal. Calcd for 

C22H21NO4: C, 72.71; H, 5.82; N, 3.85. Found: C, 72.80; H, 5.87; N, 3.80. 

 

. 
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6.3 General procedure for the synthesis of clicked peptides 

Linear eIF4E b.p peptide analogs for click chemistry, XVI-XX, were 

synthesize and purify according to the procedures described in chapter 5.6. 

The modified amino acids carrying the alkynyl and azido modifications 

where introduced on the peptide sequences by manual SPPS using a low 

excess (1.1-1.2) under high concentration of activating agents (4-5 fold) and 

long coupling time (1.5 h). 

For click cyclization the linear pure peptides (3.1 μmol), CuSO4.5H2O (43,4 

μmol), and ascorbic acid (40.3 umol) where dissolved in 4 mL of 

H2O/tBuOH 2:1. The mixture was stirred at room temperature overnight and 

the solution was concentrated and lyophilized. To remove copper derivatives 

from the crude and to purify the clicked peptides, a SPE purification was 

performed followed by semi-preparative HPLC purification to afford pure 

clicked peptide (97% purity). 

The cyclic peptides XVIc-XXc were characterization by UPLC-MS. The 

analytical data are reported in Table 3.5-6 . 

6.4 Circular dichroism spectrometry 

All CD spectra were recorded on a Jasco J-810 spectropolarimeter using cells 

of 1 mm path length. The pH of the samples was adjusted to 6.6 with 

aqueous phosphate buffer. After pH adjustment, samples were lyophilized 

and dissolved in water, or in water containing 50% (v/v) HFA to obtain a 

final peptide concentration of 0.02 mM. Spectra were the average of ten 

scans from 190 to 260 nm, recorded with a band width of 0.5 nm at scan rate 

of 5 nm/min. 
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6.5 NMR spectrometry for conformational studies 

Samples for NMR were prepared by dissolving lactam- and 

[1,2,3]triazolylcontaining peptides in 0.5 mL of aqueous phosphate buffer 

(pH 5.5). NMR spectra were recorded on a Bruker DRX-600 spectrometer. 

One-dimensional (1D) NMR spectra were recorded in the Fourier mode with 

quadrature detection. The water signal was suppressed by a low-power 

selective irradiation in the homogenous mode. DQF-COSY,155 TOCSY,156 

and NOESY157 experiments were run in the phase sensitive mode using 

quadrature detection in ω1 by time-proportional phase increments of the 

initial pulse.308 Data block sizes comprised 2048 addresses in t2 and 512 

equidistant t1 values. Before Fourier transformation, the time domain data 

matrices were multiplied by shifted sin2 functions in both dimensions. A 

mixing time of 70 ms was used for the TOCSY experiments. NOESY 

experiments were run at 300 K with mixing times in the range of 100-250 

ms. The qualitative and quantitative analyses of DQF-COSY, TOCSY and 

NOESY spectra were obtained using the SPARKY158 interactive program 

package. 

                                                 
308 Marion, D. and Wuthrich, K. (1983) Biochem. Biophys. Res. Commun., 113, 967. 



 

 200 
 

7 Supplementary material 

 
 



 

 201 
 

 

 

CChhaarraacctteerriizzaattiioonn  ooff  AAGGEE--mmooddiiffiieedd  ssyynntthheettiicc  HHSSAA  ppeeppttiiddee  ffrraaggmmeennttss  aanndd  ssttuuddyy  ooff  tthheeiirr  
ppoossssiibbllee  rroollee  iinn  DDiiaabbeetteess  aauuttoo--aannttiibbooddyy  rreeccooggnniittiioonn  

  

Synthetic strategies to Advanced Glycation End products 
peptides involved in diabetes 

S. Carganico1, M.A. Bonache1, M.C. Alcaro1, M. Chelli1, P. Rovero1, A.M. Papini1, M. Chorev2, A. Lapolla3, P. Traldi4,  
1Laboratory of Peptide & Protein Chemistry & Biology and CNR-ICCOM, Polo Scientifico e Tecnologico, Università di Firenze, Sesto 
Fiorentino (FI),  
Italy; 2Laboratory for Translational Research, Harvard Medical School, Cambridge, Massachusetts; 3Dipartimento di Scienze Mediche e 
Chirurgiche, Università di Padova, Padova, Italy; 4CNR-ISTM, Padova, Italy  

 

LC/ESI Q-TOF MS  

Chemoselective Synthesis of CarboxyMethylLysine 
(Cml)  protected for Fmoc/tBu Solid Phase-Peptide 

Synthesis (SPPS) 

Automatic Fmoc/tBu SPPS of  
HSA(342-351) and of [Cml347]HSA(342-351) 

Time
5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00 55.00 60.00 65.00 70.00 75.00 80.00 85.00 90.00

%

0

100
ma113_260307 1: TOF MS ES+ 

BPI
1.22e3

46.94

46.79

38.607.206.68
4.60

7.65 17.0112.50 29.9020.80 23.53 26.70 35.7431.32 43.50

47.00

47.09

50.72
47.52

50.39

51.36

51.58
87.6386.8372.6758.17 71.9461.48

74.95
82.2677.46 88.72

m/z
200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

%

0

100
ma113_260307 2320 (46.849) Cm (2296:2345) 1: TOF MS ES+ 

2.32e4632.7398

567.6959

540.7453
246.8654

318.8004 441.8110

633.2509

633.7501

1080.4771634.2616

634.7612 933.4113
660.7217 744.2440

1210.57301081.4631

1082.4812 1212.6102

[M+H]+ 

HSA(342-351) 

[Cml347]HSA(342-351) 

HSA(342-351) 

HSA(342-351) has been characterized by liquid chromatography (CapLC, 
Waters) coupled with a nano electron spray ionization Q-TOF 
mass spectrometer (Micro, Waters) 

Multiple automatic 
synthesizer Apex396 

(Aapptec) 

CapLC-MicroMS 
Waters 

Glycation and AGE products 

 

Diabetes complications seem to be related to the Maillard reaction 
occurring between a free amino group of a protein and glucose or a 
reducing sugar. Early glycation products undergo further complex reactions 
to become irreversibly crosslinked heterogeneous derivatives, usually called 
advanced glycation endproducts (AGEs) [1]. 

Some AGEs have been structurally characterized, including N-
(carboxymethyl)Lysine (Cml), which has been demonstrated to be a major 
immunological epitope among AGEs [3]. However, these structurally identified 
AGEs account for only a small percentage of AGE that occur in vivo.  

 
 

Glycated-
peptide 

Traldi et al. reported the analysis of enzymatic digestions of 
glycated human serum albumin (HSA) by MALDI TOF mass 
spectrometry [2].  
Among the glycated peptides characterized by mass 
spectrometry, we selected 342NYAEAKDVFL351. 

Previous results 

We selected from HSA sequence a peptide fragment known to 
be glycated at a Lysine residue [1]. 

In vitro incubation with glucose can be performed under 
physiological conditions to achieve non enzimatic 
spontaneous glycation of the peptide and successive 
AGE products formation [6]. 

 

342NYAEAKDVF351

Future goals 
Autoantibody recognition through ELISA test in 

diabetes patients’ sera using [Cml347]HSA(342-351) 
as synthetic antigenic probe 

LC-MS monitorig of HSA(342-351) spontaneous 
glycation  

Peptide selection  

Spontaneous glycation of the peptide  

 

[4] 

[5] 
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Our hypothesis on the molecular mechanism of antibody-mediated autoimmune diseases

Changes at the level of protein post-translational modifications (PTMs) may 
create neoantigens triggering an autoimmune response in which 

autoantibodies are biomarkers of disease activity.

Identification of disease biomarkers using a “Chemical
Reverse Approach” based on synthetic post-translational

modified peptides for fishing-out antibodies as biomarkers in 
patients’ biological fluids

Post-translationally modified synthetic 
peptides can be useful tools for mimicking 

neoantigens responsible of the autoimmune 
response.

PTM
CSF114 may be 

proposed as “Universal 
Peptide Scaffold”

because of its β -turn 
structure, exposing at 
the best the aberrant 

PTM specific for antibody 
recognition in 

autoimmune diseases

Epitope

M. C. Alcaro, et al., Chem.Today, (2007), 25, 14; Papini, A.M. J. Pep Sci (2009), in press.

Multiple Sclerosis
The CSF114(Glc)-based not competitive solid phase ELISAsolid phase ELISA enabled the reproducible and effective 

detection of IgM autoantibodies to this glycopeptide in a significant population (30%) of MS patients. The 

antibodies detected in the present study were typical of Relapsing-Remitting patients (RR-MS). 

Therefore, a CSF114(Glc)CSF114(Glc)--based immunoassaybased immunoassay on sera has an important prognostic value in monitoring 

MS disease progression guiding the optimal therapeutic treatment.

Lolli et al. Proc. Natl. Acad. Sci., U.S.A., (2005), 102, 10273; A.M. Papini Nature Medicine (2005) 11(1), 13; A.M. Papini, et al. Applicant: 
University of Florence, Italy. PCT International application (2003) WO 03000733 A2.; F. Lolli, et al. The glycopeptide CSF114(Glc) 
detects serum antibodies in Multiple Sclerosis. J. Neuroimmunol. (2005) 167, 131-137.

CSF114(Glc) is a mimetic of in vivo  auto-antigens 
triggeringauto-immunoresponse
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Ipotetic structure of 
[Lys7(ALA)]CSF114

Lys7(ALA)]CSF114 exposing lipoamide residue on the tip of a β-turn 
structure is able to detect the best antibody titre in PBC patients’ sera
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PrimaryBiliary Cirrhosis (PBC)
More than 95% of PBC patients have detectable levels of autoantibodies to PDC-E2 [Pyruvate
Dehydrogenase Complex (PDC-E2)] and in general these react with a region of the molecule  
containing a lipoamide lysine residue [Lys(ALA)]. It has been hypothesized that the lipoamide in 
PDC-E2 serves as a xenobiotic target becoming immunogenic and initiates or perpetuates an 
antimitochondrial antibodies (AMA) response.
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The O-glycopeptide
[Ser[Ser77(Gal)]CSF114(Gal)]CSF114
recognizes antibodies 
in 30% ca of RA 
analyzed sera

Rheumatoid Arthritis is a common systemic autoimmune disease and it is characterized by 
inflammation of the synovial membrane of diarthrodial joints. Large number of activated leukocytes 
infiltrate the synovial membrane leading to progressive destruction of cartilage and bone.
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[Ser7(Gal)]CSF114      OO--glycopeptideglycopeptide
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In conclusion, modified peptides as synthetic probes characterizing families of 
antibodies in biological fluids are a suitable option for the development of 
multiple diagnostic/prognostic immunoassays, increasing sensitivity of 
diagnostics
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Type I diabetes
Glycation of proteins through non-enzymatic reactions between glucose or other reducing sugars 
and reactive amino groups represents one of the more abundant processes involved in post-
translational modification of proteins. Diabetic pastients, because of their characteristic 
iperglicemia, develop high levels of glycated proteins.
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The CSF114(Glc)-based not competitive solid phase ELISAsolid phase ELISA enabled the reproducible and effective 

detection of IgM autoantibodies to this glycopeptide in a significant population (30%) of MS patients. The 

antibodies detected in the present study were typical of Relapsing-Remitting patients (RR-MS). 

Therefore, a CSF114(Glc)CSF114(Glc)--based immunoassaybased immunoassay on sera has an important prognostic value in monitoring 

MS disease progression guiding the optimal therapeutic treatment.
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8 ABBREVIATIONS 

Ab: antibody 

Ac: acetyl 

Ag: antigen 

AMBER: assisted model building with energy refinement 

ATP: adenosine triphosphate 

BD: blood donors 

Boc: tert-butoxycarbonyl 

BOP : benzotriazole-1-yl-oxy-tris-(dimethylamino)-phosphonium hexafluoro- 

-phosphate 
BP: N-benzyl-(S)-proline 

BPB: (S)-2-(N-benzylprolyl)aminobenzophenone 

BSA: bovine serum albumin 

cAMP: cyclic adenosine monophosphate 

CD: circular dichroism  

CDMT : 2-Chloro-4,6-dimethoxy-1,3,5-triazine 

CNS: central nervous system 

DBU: 1,8-Diazabicycloundec-7-ene 

DCM: dichloromethane 

DIEA: diethylamine 

DMF: N,N-dimethylformamide 

DMTMM-BF4: 4-(4,6-dimethoxy-1,3,5-triazin-2-yl-)-4-methylmorpholinium 

tetrafluoroborate 

DNA: deoxyribonucleic acid 

DQF-COSY: double quantum filtered correlated spectroscopy 

EDT: 1,2-ethanedithiole 

ELISA: enzyme-linked immunosorbent assay 

FCC: flash column chromatography 

Fmoc: 9-H-fluoren-9-yl-methoxycarbonyl 
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Fmoc-OSu: N-(9-fluoren-9-yl-methoxycarbonyloxy)-succinimide 

GABA: γ-aminobutyric acid 

HFA: hexafluoroacetone 

HOBt: 1-hydroxybenzotriazole 

HPLC: high performance liquid chromatography 

IC50: inhibitory concentration of 50 

IP: inositol phosphate 

IP3: inositol 1,4,5-trisphosphate 

MOG: myelin oligodendrocyte glycoprotein 

MRI: magnetic resonance imaging 

mRNA: messenger ribonucleic acid 

MS: multiple sclerosis 

MSAP: multiple sclerosis antigenic probe 

NMM: N-methylmorpholine 

NMR: nuclear magnetic resonance 

NOE: nuclear Overhauser effect 

NOESY: nuclear Overhauser enhancement spectroscopy 

ON: overnight 

PBS: phosphate buffered saline 

Ph: phenyl 

PrG: propargylglycine 

PTH: parathyroid hormone 

PTH1-Rc: human PTH type 1 receptor 

PTHrP: parathyroid hormone-related protein 

PTM: post-translational modification 

RCM: ring-closing metathesis 

RP-HPLC: reverse phase-high performance liquid chromatography 

Rt: retention time 

RT: room temperature  

SPE: solid phase extraction 
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SP-ELISA: solid-phase ELISA 

SPPS: solid-phase peptide synthesis 

TBTU:2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate 

tBu: tert-butyl 

TFA: trifluoroacetic acid 

TFE: trifluoroethanol 

THF: tetrahydrofuran 

TLC: thin layer chromatography 

TOCSY: total correlated spectroscopy 

UPLC: ultra performance liquid chromatogra 
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