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a b s t r a c t

We investigate optimal strategies to defend valuable goods against the attacks of a thief.
Given the value of the goods and the probability of success for the thief, we look for the
strategy that assures the largest benefit to each player irrespective of the strategy of his
opponent. Two complementary approaches are used: agent-based modeling and game
theory. It is shown that the compromise between the value of the goods and the probability
of success defines the mixed Nash equilibrium of the game, that is compared with the
results of the agent-based simulations and discussed in terms of the system parameters.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction 1

In this note we shall study a particular example of how to protect a property from criminal actions. More precisely, we 2

consider a classical security problem, which in its arguably simplest form can be formulated as follows: one security guard 3

has to protect two different sites, where valuable goods are deposited, from the attack of a criminal. Each side, guard and 4

criminal, has to select a strategy that best fits their own purpose: catching a pricey booty (and getting away with it) in one 5

case, and keeping goods safe (and perhaps getting rid of marauders) on the other. 6

General qualitative results can be obtained by using a game theory approach [1–3]. Essentially, game theory seeks the 7

best strategy a player has to play to optimize a certain payoff, for instance the largest benefit. Our problem can be defined as 8

a zero-sum game with a payoff matrix that depends on the value of the sites and the probabilities of success for every 9

choice of the players (guard and criminal). This is done in detail in Section 2. To shed more light on this problem, in 10

Section 3, we address the simulation of a dynamic scenario where one guard and one thief move and fight each other for 11

the booty. Unfortunately, even for this simple problem, agent-based models require to consider specific factors explicitly 12

and, consequently, they need include a large number of parameters [4]. Both approaches complement each other since 13

the information obtained from one of them allows the calibration of some of the parameters involved in the other [5]. For 14

instance, as itwill be seen, themixedNash equilibriumwill provide information about the preferences of the agents,whereas 15

the strategies of the agents give estimations of the probabilities of success for each of the players. 16

The article is organized as follows: in Section 2, we define a 2 × 2 zero-sum game and study its equilibria in terms of 17

the ratio of the value of the two sites and the probability of success of the thief for each of the four possible pairs of player 18

choices. In Section 3 an agent-based approach is used to implement a spatial game thatmimics the theoretical game. Finally, 19

in Section 4 we compare the two approaches and conclude with some general considerations. 20

∗ Corresponding author. Tel.: +34 913367107; fax: +34 913363230.
E-mail address: juancarlos.nuno@upm.es (J.C. Nuño).
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2. The game of the two goods1

Let us consider a simple mathematical gamewith two players: one thief R and one guard C . Since the benefits of the thief2

are the losses of the guard, the game is defined as a zero-sum one. The goal of the guard is to minimize his losses, whereas3

the goal of the thief is to maximize his benefits. Each player can choose between two sites A and B. Each choice constitutes4

one of their strategies.5

It is assumed that the payoff each player obtains for each of the four possible pairs of strategies depends on both the6

probability of success of the thief if he chooses to attack site i and the guard chooses to protect site j (Πij) and the value7

of each site (αi). Besides, it can be supposed that the thief’s success is only prevented by the encounter with the guard and8

thus, ΠAB = ΠBA = 1. If we rename ΠAA = ΠA and ΠBB = ΠB, the payoff matrix for the thief is given by1:9

Guard
A B

Thief A αAΠA αA
B αB αBΠB

10

A solution of the game corresponds to a pair of strategies adopted by each player. Since each player seeks the best payoff, if11

one player plays at random, the other one could find a strategy that maximizes his benefits and then, in a zero-sum game,12

thatmaximizes the losses of the opponent. It is well known that for a zero-sum game at least a Nash equilibrium exists and it13

coincides with the one produced by maximin and minimax strategies. Indeed, minimizing the opponent’s maximum payoff14

(minimax rule) is identical to minimizing one’s own maximum loss and to maximizing one’s own minimum gain (maximin15

rule) [6].16

It seems reasonable to assume that (i) the thief R always prefers the site without surveillance (i.e. that one not chosen by17

the guard C) and (ii) the guard C always prefers going to the same site chosen by the thief R. The first condition means that:18

αB > αAΠA ⇒ ρ =
αA

αB
<

1
ΠA

19

αA > αBΠB ⇒ ρ =
αA

αB
> ΠB.20

Therefore, condition (i) implies that:21

ΠB < ρ <
1

ΠA
.22

Condition (ii) imposes the trivial inequalities:23

αA ΠA < αA ⇒ ΠA < 124

αB ΠB < αB ⇒ ΠB < 1.25

In order to compute the mixed Nash equilibrium, let us suppose that the thief R chooses a mixed strategy qR, where qR is26

the probability that R plays strategy A.2 The payoff for the guard C is:27

• −αAΠA qR − αB (1 − qR) if it chooses A and28

• −αA qR − αBΠB (1 − qR) if it chooses B.29

As it is well known, qR represents a mixed Nash equilibrium if every C ’s strategy is a best response to it, that is, once R has30

chosen qR, C gets the same payoff for every strategy he chooses. Therefore,31

−αAΠA qR − αB (1 − qR) = −αA qR − αBΠB (1 − qR).32

By solving this equation we obtain the mixed Nash equilibria as a function of ρ (Fig. 1):33

q∗

R =



0 if ρ < ΠB
0,

1 − ΠB

1 − ΠAΠB


if ρ = ΠB

1 − ΠB

(1 − ΠA)ρ + (1 − ΠB)
if ΠB < ρ <

1
ΠA

ΠA(1 − ΠB)

1 − ΠAΠB
, 1


if ρ =

1
ΠA

1 if ρ >
1

ΠA

34

1 Appendix A presents a brief analysis of the general case.
2 qR = 1 corresponds to pure strategy A and qR = 0 to pure strategy B (and similarly for C).
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Fig. 1. Graphs of q∗

R (left) and q∗

C (right) on ρ > 0 with αA = 1, ΠA = 0.2 and ΠB = 0.8. The red dots on the ρ-axis are the values for which q∗

R = 1/2 and
q∗

C = 1/2, i.e. the values for which the player changes his preference on the places.

q∗

C =


0 if ρ ≤ ΠB

ρ − ΠB

(1 − ΠA)ρ + (1 − ΠB)
if ΠB < ρ <

1
ΠA

1 if ρ ≥
1

ΠA
.

1

2

The partial derivatives of q∗

R with respect to every parameter show that it always decreases with ρ and ΠB and increases 3

with ΠA. Moreover, it presents jumps at ρ = ΠB and ρ = 1/ΠA that indicate that the thief is indifferent to his strategies 4

because both of them provide him the same payoff, but he will prefer the one that allows the guard to maintain this 5

indifference. In addition, q∗

C increases with ρ, that means that the guard tends to choose A as it becomes more attractive. 6

Therefore the thief prefers going towards B in order to avoid the guard, but if A becomes too valuable to be ignored then he 7

goes to A even if sometimes he fails. The threshold value ρ = 1/ΠA represents the risk the thief can afford to take the most 8

valuable good. Fig. 1 depicts both equilibrium probabilities q∗

R and q∗

C for the thief and the guard. Figs. 2 and 3 show a more 9

predictable behavior: the interest of both players for a site (in particular, site A) increases if its level of protection decreases. 10

This is obvious for the thief and thus for the guard too, who prefers to follow and hinder the thief. The corresponding payoffs 11

of the players are given in Appendix A. 12

Further understanding of the behavior of the model can be obtained by considering some particular cases. When the 13

probability of success of the thief is the same in both sites, i.e. ΠA = ΠB = Π , then the mixed Nash equilibria reduce for 14

Π < ρ < 1/Π to: 15
q∗

R =
1

ρ + 1

q∗

C =
ρ − Π

(1 − Π)(ρ + 1)
.

16

As it can be seen, q∗

R < q∗

C if ρ > 1. That is, as A is more valuable than B, the preference of the guard to protect A is greater 17

than the preference of the thief to attack this site. Besides, it can be noted that the following identity holds: 18

q∗

R|ρ=Π + q∗

R|ρ=
1
Π

= q∗

C |ρ=Π + q∗

C |ρ=
1
Π

= 1 ∀Π 19

or equivalently, for q∗

R: 20

q∗

R|ρ=Π = 1 − q∗

R|ρ=
1
Π

∀Π . 21
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Fig. 2. Graphs of q∗

R (left) and q∗

C (right) on ΠA ∈ [0, 1] with ρ = 1.2 and ΠB = 0.8.
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Fig. 3. Graphs of q∗

R (left) and q∗

C (right) on ΠB ∈ [0, 1] with ρ = 0.8 and ΠA = 0.2.

Read it in this way: q∗

R|ρ=Π is the probability of choosing A when αA = 1 and αB = 1/Π , i.e. when A is the less attractive1

site and the ratio between the most attractive goods and the less attractive one is 1/Π ; 1 − q∗

R|ρ=1/Π is the probability of2

choosing B when αA = 1 and αB = Π , i.e. when B is the less attractive goods and the ratio between the most attractive3

goods and the less attractive ones is still 1/Π . Hence the thief has the same probability of choosing the less attractive goods4

once the ratio has been fixed.5
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Π
, q∗

C =
ρ−Π

(1−Π)(ρ+1) . Out of this range, it takes constant values 0 and 1, respectively,
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Fig. 5. Graphs of q∗ on ΠA ∈ [0, 1] and ΠB ∈ [0, 1].

Consider now q∗

R. It does not depend on Π (the thief does not choose which site to attack in terms of the probability of 1

winning in that place because he has the same probability of
∧
success in both sites A and B) and it decreaseswhen ρ increases, 2

i.e. themore B decreases its value, themore the thief prefers it. Finally consider the expression of q∗

C : if ρ = 1 then q∗

C = 1/2 3

that is the case of equivalent goods randomly chosen; instead, as Π increases then q∗

C decreases if ρ < 1 while it increases 4

if ρ > 1. Hence, the more the thief’s probability of success increases, the more the guard prefers the most attractive site. 5

With Π fixed, q∗

C increases as ρ increases: hence the more B decreases its value, the more the guard prefers A. So the guard 6

prefers to protect the most valuable goods and the thief takes advantage of this by choosing the other site, less valuable but 7

easier to be attacked. Note that out of the range Π < ρ < 1
Π
, q∗

C takes constant values 0 and 1, for ρ < Π and ρ > 1/Π , 8

respectively (see Fig. 4). 9

Another interesting particular case occurs when ρ = 1, i.e. when the two goods have the same attractiveness α. Then, 10

for every value of ΠA and ΠB, the mixed Nash equilibrium for both players can be written as follows (see Fig. 5): 11

q∗
=

1 − ΠB

2 − ΠA − ΠB
. 12

13

WithΠB fixed, q∗ increaseswhenΠA increases,whilewithΠA fixed, q∗ decreaseswhenΠB increases. That is: both players 14

choose the goods that the thief can get easier. Obviously, in the particular case with ΠA = ΠB = Π (the goods are perfectly 15

equivalent) the following values are obtained: 16

q∗

R = q∗

C =
1
2

P∗

R = −P∗

C =
α(1 + Π)

2
. 17

Hence, both players give the same importance to the sites and gain the mean value of the payoffs for pure strategies. 18

Theoretical approaches face the serious handicap of calibration of the parameters. Since empirical data are scarce, 19

computer simulations are a good alternative to obtain reference values for some parameters. The probabilities of a thief’s 20

success in sites A and B, respectively, ΠA and ΠB, are of special importance. In the next section, we present an agent-based 21

model that simulates the spatial dynamics of two agents that allows an estimation of these two probabilities. 22
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3. Simulating the game in the plane: an agent-based model1

A natural implementation of the game defined in the previous section is in a bidimensional space. If we look at a citymap2

we see that banks are located in fixed points, separated by a certain distance that could be measured in terms, for instance,3

of city blocks. It could be considered that two players, a thief and a guard,move on the citymap and play to obtain the largest4

payoff. At each time step, they play a strategy according to their payoff matrices that now are a function of their position as5

well as the location of the (two) goods (banks). Essentially, during the simulation they are playing an attack-defend-pursuit-6

scape game whose dynamics can not be deduced from the theoretic game analyzed in the previous section. As we are going7

to see, the agent-based simulations provide a good calibration of the probabilitiesΠA andΠB for different parameter setups.8

Our city map is defined as a rectangular grid formed by 20 × 14 points (obtained as regular partition of each side of the9

rectangle) with a 1-norm distance. Formally, if P(x1, x2) and Q (x2, y2) are two points in the grid, the distance between them10

is given by:11

d(P,Q ) = |x1 − x2| + |y1 − y2|. (1)12

We consider two separate sites A and B3 with values αA and αB, respectively, and two agents: a thief R that wants to get the13

goods from the sites and a guard C that protects the sites in order to minimize the possible losses. The thief (resp. guard)14

must decide which site he prefers to attack (resp. to defend) and, once there, he has to select the strategy to follow.15

Let us denote qR and qC the probabilities, respectively, for the thief and for the guard to choose A. These probabilities16

depend on the specific characteristics of the problem. In particular, the probability qR is a function of the values of the goods17

placed in each site and of the protection of the sites. If ρ = αA/αB is the ratio between the values of site A ad B, we postulate18

that:19

qR = 1 − (1 − fR)ρ (2)20

where fR is the preference of thief for site Awhen αA = αB (i.e. ρ = 1). A similar definition applies for qC .21

Simulations can be divided in two phases. Firstly, agents just have to choose a site. Secondly, if both agents have chosen22

the same site, theyplay a spatial game. Eachof themhas a probabilitypkR and pkC to approach the chosen site k and aprobability23

1−pkR and 1−pkC to move randomly.4 On the contrary, if the agents choose different sites, then the thief automatically wins24

the value of the site. A schematic description of each simulation is given in Appendix C.25

Each simulation is a possible realization of the process and the outcome depends on the parameter setup used. Note that,26

as defined above, the goods are the agents’ main interest (independently of the opponent strategy). Nevertheless, only few27

changes in the dynamical rules would allow to take into account also the case in which the thief simultaneously wants both28

to get the goods and to escape from the guard and the guard wants both to protect the goods and to catch the thief. This29

consideration opens the question of the role of repetition in playing this game; if the thief is not caught in his first try, he30

can try again but, of course, with a different risk.31

In order to illustrate the behavior of the model and to compare it with the game of the two goods (Section 2), we report32

here the results of some simulations that reproduce the choices of the agents according to the previous scheme. Simulations33

were performedwith aMATLAB codewhose inputs are fR and fC , pAR , p
B
R and pAC , p

B
C and ρ. Each situation (particular parameter34

setup) has been repeated 100 times. The game is implemented with random initial conditions to avoid their influence
∧
on35

the final results. Players move a unit length at each time step on the grid formed by the regular partition of the rectangle36

[−10, 10] × [−7, 7]. The goods are placed at the origin of coordinates (0, 0). The guard catches the thief if they are in the37

same position at the same time; the thief gets the goods if he reaches the point (0, 0) before being caught by the guard. The38

final time for each simulation is Tf = 150. In this period, practically no draws occur in all simulations.39

We focus our study on the case where the goods placed in A are more valuable than those placed in B. In particular, we40

take ρ =
3
2 . ∧

As a consequence, we assume that the guard mainly prefers to defend the more valuable site. Hence, we take41

fC = 0.9. (3)42

Besides, we assume that the probabilities that drive the thief’s movement are given by the following setup:43

pAR = 0.4; pBR = 0.8; (4)44

which represents an agent that has a different strategy depending on the site chosen: it points towards the target
∧
double45

the amount of times in B than in A. Similarly, we assume for the guard the following setup:46

pAC = 0.8; pBC = 0.5; (5)47

whichmeans that the guard has a greater tendency to defend (without pursuing) in A than in B. Note that, in a certain sense,48

the strategies of the two players complement each other: because the guard devotes larger efforts to defend the goods in A,49

3 The sites are separated in the sense that, once one agent has decided to go towards one of them, it cannot change its choice and go to the other one.
4 For the guard, 0 < pC < 1 represents a situation between patrolling and guarding. Similarly, a value of pR < 1 introduces some randomness in the

thief movements to scape the guard.
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a direct attack of the thief is quite difficult and then, he prefers to move randomly and wait for his opportunity. Instead, in 1

site B, since the guard alternates patrolling and guardianship, the thief tries more often to
∧
directly approach the goods. 2

In what follows, we study the behavior of the system for three different values of the thief’s preferences for both sites, 3

i.e. we take fR as the control parameter. 4

The thief and guard have the same preference. Assume first that thief has a strong preference for site A. Concretely, we 5

take: 6

fR = 0.9. (6) 7

In this case, both thief and guard meet most of the
∧
time in site A. There, the defensive strategy of the guard allows 8

him to catch the thief 65% of the
∧
time. The thief only gets the goods 35% of

∧
the time. Note that, as we said, no draws 9

occur in the time interval [0, 150]. 10

The thief has equal preferences. Let us nowassume that the thief has no special preference for any site (i.e. he does notmind 11

about the value of goods), whereas the guard still maintains his strong preference to defend themost valuable site. 12

Hence, we take: 13

fR = 0.5. (7) 14

In this case, the thief gets the goods 65% of the
∧
time and the rest of the

∧
time is caught by the guard. Nonetheless, 15

since αA > αB, the total payoff of the thief is lower than in the
∧
previous case. 16

The thief has a strong preference for the less valuable site. Let us finally assume that the thief prefers to move to the site B, 17

less protected by the guard. For instance, let us take: 18

fR = 0.2. (8) 19

This strategy could be viewed as a reasonable response to the strong preference of the guard for site A. In this case, 20

the thief succeeds in getting the goodsmost of the
∧
time, concretely 86%, whereas he is caught only 14% of the

∧
time. 21

Obviously, as we said before, this choice could be considered as successful if the final payoff of the thief is large 22

enough. This, as we have discussed in the previous section, depends on ρ, the ratio between the value of the goods. 23

∧
As a consequence, sometimes it seems more convenient for the thief to go toward the less precious treasure in order 24

to avoid the encounter with his opponent, even if this means not getting the maximum benefit. Obviously, reacting to the 25

strategies of the thief, the guard could change his preference for A or the way of protecting the goods in order to lower the 26

number of the thief’s successes. 27

To study how the system parameters affect the output of the agent-based model, we have simulated the process using 28

different values of fR and fC . In Fig. 6 we can see how the number of victories of the thief changes with fC : in Fig. 6A, when 29

fC ≃ 0 (the guard goes almost always to B) the thief winsmore or less 80 times
∧
in 100; as fC increases, so does the probability 30

of success and, in the limit, for fC = 1 the thief always wins (because they choose different sites). In Fig. 6C the situation is 31

just the contrary: when fC = 0 the thief always wins and when fC ≃ 1 he wins more or less 20 times out of 100. 32

Fig. 6D shows that with the strategy obtained from the theoretic game studied in Section 2 the thief wins more or less 33

always the same number of times for every strategy chosen by the guard. We use the value of qi obtained at the Nash 34

equilibrium as a function of ρ and, then, we find an optimal fi by inverting the formula (2): 35

fi = 1 − (1 − qi)1/ρ . 36

37

The agent-based model can be applied to calibrate the probabilities PA and PB. As before, let us assume that A is more 38

valuable than B. Then, we can suppose that the guard has a larger preference to choose site A and to stay close to the goods 39

than to patrol.
∧
As a consequence, we can expect that the thief has a lower preference to attack this site. Instead, when the 40

guard is in B, he can decide also to patrol around and so the thief ismore enticed to attack this site. For example, this situation 41

can be described by the following parameter setup for the probabilities of choosing each site for the players: pAR = 0.4 and 42

pAC = 0.8 and pBR = 0.8 and pBC = 0.5. The second phase of the agent-based model has been implemented with these values 43

for pR and pC . It turns out that the thief gets the goods 19% of the time in A and 78% of the time in B. Hence, it would yield 44

the following values for the probabilities of victory for the thief in each site: ΠA = 0.19 and ΠB = 0.78. 45

4. Discussion and concluding remarks 46

The protection of valuable goods from the attack of offenders is one of the main challenges faced by security forces. This 47

is a complex adaptive problem that depends on multiple factors, in particular on the value of the goods and the security 48

measures that protect them. In this paper we have presented a simple model that has been studied by means of two 49

complementary approaches: game theory and agent-based modeling. 50

In Section 2, we consider a game model where one guard protects two valuable sites from the attack of one thief. This is 51

a zero-sum game whose static properties can be completely solved in terms of its mixed Nash equilibria. These equilibrium 52
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Fig. 6. Output of the simulations with pAR = 0.4, pBR = 0.8, pAC = 0.8, pBC = 0.5, ρ = 1.1765 and for different values of fR varying fC ∈ [0, 1]. The red
squares are the times the thief gets the goods and the blue points are the times the guard catches the thief.

points are studied as a function of the ratio between the values of the goods ρ = αA/αB and the probability of success Πij1

for each of the four pairs of strategies of the game.2

In Section 3 we simulate the theoretic game in a plane by means of an agent-based model. Firstly, both players have to3

choose between the two sites. Secondly, if both of them have chosen the same site, then they play a spatial game whose4

characteristics depend on the parameter setup, namely the tendency to attack (defend) or to escape (patrol) for the thief5

(guard), respectively. As expected, the simulations show a complex dynamics whose dependence on the system parameters6

is not evident.7

The dependence of the Nash equilibria on ρ has a clear meaning. Assume that A and B are two metro stations and that8

their values are the number of passengers passing through them. Hence, it is reasonable that αA and αB vary during the day9

and so, to study how the equilibria react to their changes makes sense. The study of q∗

R and q∗

C in terms of the probabilities10

of winning for the thief is also natural. The change of ΠA or ΠB is equivalent to modifying the level of protection of the11

sites A and B, respectively. Therefore, knowing the Nash equilibria as a function of these two parameters allows to test the12

efficiency of different protection measures. The values of ΠA and ΠB that minimize the losses of the guard for a given ρ13

could represent the optimal protection strategies. A sound conclusion that can be derived from this study is that a thief who14

has to choose to steal one of two different goods will prefer the less valuable one as far as the ratio between the two values15

does not exceed a threshold point related to the protection level of the goods.16

We would like to point out the interplay between the two techniques applied in this paper. We have seen how the17

use of game theory allows to obtain qualitative information about complex problems where several agents interact among18

them and with the environment they move in. In particular, game theory provides optimal strategies as functions of some19

characteristic parameters of the system. Nevertheless, in order to be calibrated, this kind of model needs real data that20

in the field of criminality are really hard to be obtained from any source. To overcome this difficulty, agent-based models21

can be used to accomplish simulations that reproduce the situation under study. In this sense, a relevant question to be22

addressed in future work is how the outputs of the guarding game played in the agent-based model depend on pR and pC .23

With respect to the guard, varying this parameter means choosing different protection strategies: from patrolling (pC = 0)24

to fixed guarding (pR = 1). To knowwhichmixed strategywould produce aminimum loss is of great interest for policewhen25

fighting crime. Finally, the model could be generalized considering a team ofm guards that has to protect n sites: the game26

becomes amulti-player one in which guards and
∧
thieves form two teams (coordinated or not) andwe could investigate how27

cooperation within each team can improve its own payoff.28
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Appendix A 3

The payoff matrix for the thief is then defined as follows: 4

Guard
A B

Thief A αAΠAA αAΠAB
B αBΠBA αBΠBB

5

It is not difficult to obtain the value of qR at the mixed Nash equilibrium: 6

q∗

R =
ΠBA − ΠBB

(ΠAB − ΠAA)ρ + (ΠBA − ΠBB)
. 7

The value of the probability that the guard C plays A, qC can be computed in a similar way: 8

q∗

C =
ρ ΠAB − ΠBB

(ΠAB − ΠAA)ρ + (ΠBA − ΠBB)
. 9

Note that q∗

R ∈ [0, 1] ∀ρ, while q∗

C ∈ [0, 1] for ρ ∈ [
ΠBB
ΠAB

,
ΠBA
ΠAA

]. Out of this range, we obtain the dominant strategies q∗

C = 0 10

when it is negative and q∗

C = 1 when it is larger than 1. If ρ > ΠBA/ΠAA, then αB ΠBA < αA ΠAA and A becomes a dominant 11

strategy for R, i.e. q∗

R = 1. If ρ < ΠBB/ΠAB, then αA ΠAB < αB ΠBB and B becomes a dominant strategy for R, i.e. q∗

R = 0. 12

In particular, when ρ = ΠBB/ΠAB the payoffs of the thief R for the guard playing B are equal for both pure strategies of R. 13

So, the thief is indifferent to which strategy to follow, but he will prefer A with a ‘little’ probability in order to induce C to 14

play B. A ‘little’ probability means: 15

q∗

R ≤
ΠBA − ΠBB

(ΠAB − ΠAA)ρ + (ΠBA − ΠBB)


ρ=

ΠBB
ΠAB

. (9) 16

Therefore, 17

q∗

R


ρ =

ΠBB

ΠAB


=


0,

ΠAB(ΠBA − ΠBB)

ΠABΠBA − ΠAAΠBB


. (10) 18

Similarly, 19

q∗

R


ρ =

ΠBA

ΠAA


=


ΠAA(ΠBA − ΠBB)

ΠABΠBA − ΠAAΠBB
, 1


. (11) 20

Here, [, ] means a multivalued function. 21

Using these expressions of q∗

R and q∗

C , the payoffs of the players in equilibrium when ΠBB
ΠAB

< ρ <
ΠBA
ΠAA

are given by: 22
P∗

R =
αA(ΠABΠBA − ΠAAΠBB)

(ΠAB − ΠAA)ρ + (ΠBA − ΠBB)

P∗

C = −
αA(ΠABΠBA − ΠAAΠBB)

(ΠAB − ΠAA)ρ + (ΠBA − ΠBB)
.

23

When ρ < ΠBB/ΠAB, then q∗

R = q∗

C = 0 and P∗

R = −P∗

C = αBΠBB, whereas if ρ > ΠBA/ΠAA then q∗

R = q∗

C = 1 and
∧
P∗

R = 24

−P∗

C = αAΠAA. Note that this function is continuous but not derivable in ρ = ΠBB/ΠAB and ρ = ΠBA/ΠAA. 25

In general, it is reasonable to have max{ΠAA, ΠBB} < min{ΠAB, ΠBA} because the presence of the guard in the sites re- 26

duces the probability of success for the thief. When, in particular, it is supposed that ΠAB = ΠBA = 1 we obtain the results 27

presented in Section 2. For this case, it is straightforward to compute the payoffs of the players in the Nash equilibrium: 28

P∗

R = −P∗

C =


αBΠB if ρ ≤ ΠB

αA(1 − ΠAΠB)

(1 − ΠA)ρ + (1 − ΠB)
if ΠB < ρ <

1
ΠA

αAΠA if ρ ≥
1

ΠA
.

29

This function is continuous with respect to every parameter, but it is not derivable for ρ = ΠB and ρ = 1/ΠA. Moreover, in 30

agreement with the theory of zero-sum games, P∗

R is the function that maximizes the income of the thief and the losses of 31

the guard (see Fig. 7). 32
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Fig. 7. Graphs of P∗

R = −P∗

C on ρ > 0 with ΠA = ΠB = 0.5. It is clearly shown that the income of the thief and the losses of the guard are maximized.

Appendix B1

The game presented is perfectly equivalent to the one in which C starts having both goods (αA +αB) and at the end gains2

what R did not steal:3

Guard
A B

Thief A αAΠA, αA(1 − ΠA) + αB αA, αB
B αB, αA αBΠB, αA + αB(1 − ΠB)

4

The previous zero-sum game has been transformed more generally into a constant-sum one, where the benefits and losses5

of all players sum up to the same value αA + αB for every outcome. Since payoffs can always be normalized, constant-sum6

games may be represented as (and are equivalent to) zero-sum games.7

The two games described are equivalent in the sense that the same expressions for the mixed Nash equilibrium, computed8

in the previous section with the first payoff matrix, are found using this new payoff matrix.9

What is changing is the payoff of the guard: if P (1)
C is the payoff found with the first payoff matrix and P (2)

C is that one found10

with the new matrix, then P (1)
C + αA + αB = P (2)

C .11

If players use mixed strategies (ΠB < ρ < 1
ΠA

), it can be found:12

P (2)
C =

αA[(1 − ΠA)ρ + (1 − ΠB)(1 − ΠA + 1/ρ)]

(1 − ΠA)ρ + 1 − ΠB
.13

Appendix C14

The strategies of the players during this spatial game are implemented as follows:15

• Guard16

1. if rand(1)5 ≤ qC17

choose site A18

else19

choose site B20

2. if rand(1) ≤ pC21

minimize the distance from the goods chosen22

else23

patrol around the goods chosen moving randomly.24

• Thief25

1. if rand(1) ≤ qR26

choose site A27

else28

choose site B29

5 textitrand(1) is a random number chosen from a uniform distribution on the interval (0, 1).
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2. if rand(1) ≤ pR 1

minimize the distance to the goods chosen 2

else 3

move randomly around the goods chosen. 4

Here, ‘‘minimize the distance from/to the goods chosen’’ means that the agent moves to the point that is closest to the 5

goods (compared with its neighbor points). When the agent ‘‘moves randomly around the goods’’, he selects one of the four 6

points of his nearest neighborhood by chance and moves towards it. 7
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