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Abstract: - Digital applications such as CG, CAD and GIS are based on vectorial data since all the information about shape, 

size, topology etc. are provided in such kind of data representation rather than raster one. Turning raster images into vector 

ones is a key issue which has been addressed by a number of authors but still far to be exhaustively worked out. Especially in 

the case of 2D images representing technical drawings, fitting analytical curves to point clouds (pixel sets) is a critical matter.   

The present paper provides a novel approach to fit unordered point cloud data. Such an approach integrates a PCA-based 

method, for detecting the main local directions of the point cloud and to order the points, with and a weighted approximation 

of a B-spline curve to the original data, based on pixel gray levels. The methodology, tested against alternative techniques 

based on Least Square (LS) B-spline approximation and on image thinning, proved to be effective in preserving the original 

shape according to human perception.  
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1   Introduction 
 

During the last three decades, image processing techniques 

have been more and more applied in a wide number of 

research and industrial fields [1].  

Independently from the kind of application, image 

processing is based on the acquisition and manipulation of 

digital images composed by data structures generally 

representing a rectangular grid of pixels with assigned color 

values. Such digital structures, known as ―raster‖ data, 

provides a discrete representation of the acquired scene.  

As widely known, digital applications such as CG, CAD 

and GIS seldom manipulate raster data since all the 

information about shape, size, topology etc. are not 

provided in such kind of representation.  The only viable 

approach is to use vectorial data represented, for instance, 

by points, lines, curves, polygons and surfaces defined by a 

mathematical description geometrically related one with the 

other (e.g. points are represented using their coordinates and 

lines are stored as a series of point pairs, where each pair 

represents a straight line segment). Moreover, vector images 

are composed of ―paths‖ representing individual objects that 

may be geometrically and morphologically manipulated  

without a degradation of the image quality since no 

sampling occurs.  

Accordingly, turning raster images into vector ones is a key 

issue which has been addressed by a number of authors but 

still far to be exhaustively worked out.  

One of the most common problem to be faced when 

vectorizing raster data (e.g. images obtained from blueprints 

scanning) is the fitting of analytical curves to pixel clusters 

representing drawing sketches.  

Fitting vectorial curves to point datasets has been widely 

studied and many techniques, theories and commercial 

software tools have been developed. Depending on input 

data typology, the research approaches proposed in the 

scientific literature may be divided into two main families:  

1) Ordered point cloud-based approaches;  when the order 

of data points is assumed to be known, the fitting curve can 

be easily obtained by minimizing error functions or by 

means of computational geometry methods [2,3,4,5]. 

2) Unordered point cloud-based approaches. For many 

practical problems, point cloud data are, usually, unordered 

i.e. the order of data points is unknown. In this case the key 

problem is to transform the unordered point cloud into an 

ordered one. The order, of course, needs to be related to the 

geometry of the point cloud. When the order is known, 

curve reconstruction can be achieved by interpolating or 

fitting an ordered point set with a parametric curve. 

A number of approaches have been developed for solving 

this issue; for instance, Pottmann [6] maps data points to 

binary images, then fits a curve to the image’s medial axis. 

Clustering the point cloud data is another commonly used 

approach: Yan [7], for instance, presents a fuzzy curve-

tracing algorithm that works by means of several clusters 

identified by fuzzy algorithms. In a more recent work, Liu 

et al. [8] devise a new algorithm based on the idea that a 

spline curve can be made to crawl and stretch along the 

curve shape defined by a point cloud.  

Another typical issue for unordered data sets is the presence 

of noise. Levin [9] provides a Moving Least Squares (MLS) 

approach so as to clean noisy point cloud data. Lee [10] 

improves MLS by means of appropriate neighborhoods for 



regressions; the main weakness of this method is 

represented by the computational cost of iterating MLS. 

A common approach, which can also be found in 

commercial vectorization software packages, is to convert 

the original color or grayscale image into a binary ones and, 

subsequently, to perform a thinning procedure prior to 

vectorization step [11]. Such an approach, though usually 

quite effective, is unsuitable in case image gray levels 

convey relevant geometrical information.  

The main idea of the present paper is to provide an 

approach to fit unordered point cloud data with a weighted 

B-spline curve, whose weights are computed on the basis of 

raster data gray levels.  

The method involves a two-steps procedure. The first step, 

in order to preserve the geometry of the point cloud, 

consists of an iterative application of Principal Component 

Analysis (PCA) [12] to point clusters composing the entire 

dataset taking into account their ―relevance‖ by means of 

their gray level (weighting procedure).  

As described in the next section, the result of this first step 

is to detect both the main local directions of the point cloud 

and to order the point set. Once the ordered point cloud has 

been obtained, the second step allows to approximate the 

points with a parametric weighted B-spline whose degree of 

approximation is customized according to a user defined 

tolerance.  

The paper is organized as follows: in section 2 the 

methodology is described; in section 3 a comparison 

between the proposed method and alternative ones is 

provided; finally, conclusions and future works are 

discussed.  

 

2   Method 
The proposed method can be synthesized in two principal 

tasks named as follows: 

1. Image processing; 

2. PCA based polyline extraction; 

3. B-Spline based order determination; 

4. B-Spline fitting. 

  

2.1 Image processing 
 

Let J be a digital raster image obtained, for instance, by 

scanning a sketch or a blueprint (Fig. 1). Generally 

speaking, the image is treated as a grid of discrete elements 

(pixels), ordered from top to bottom and left to right.  

Sketch contours are represented by a sequence of pixels jm,n 

characterized by discrete couples of coordinates referred to 

an orthogonal coordinate system  centered on the top left 

corner of the image. Each pixel is, on its side, described by 

a triplet of values in the RGB colour space [13] or, possibly, 

by a single luminance value.  In the first case, a simple 

transformation from RGB to grayscale image is required. 

An adaptive thresholding method [14] is applied to 

determine the pixels composing the sketch contour; in 

particular the image is divided into 9 patches, and each 

patch is thresholded by a value that depends on the patch 

contents. 

 
Fig. 1: Grayscale image detail. 

 

The result of this thresholding is a binary image B where the 

sketch contour is represented by white pixels (i.e. bm,n = 0) 

while the background is represented by black pixels (i.e. 

bm,n = 1).   

As described below, the proposed approach assign a weight 

to each contour pixel on the basis of its luminance. As a 

consequence, the Hadamard product of the 1-complement 

B’ of B and the inverse of the original image J allows to 

obtain a new image W whose non-zero elements wm,n are the 

weight values of the contour pixels (Fig. 2): 
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Fig. 2: Weight image detail. 



2.2 PCA based polyline extraction 
 

In order to extract the local geometric features of the point 

cloud, the Principal Component Analysis (PCA) has been 

used. In fact, PCA is a multivariate method that analyzes a 

dataset in which observations are described by several inter-

correlated quantitative dependent variables [12].  

Such a technique allows to extract the most relevant 

information from the dataset, to represent it as a set of new 

orthogonal variables called principal components, and to 

display the pattern of similarity of the observations and of 

the variables as points in a map. Given a blob of points (Fig. 

3), PCA allows to determine, among other, the principal 

inertia axis and the centroid of the dataset (p1 and p2). 

 

 
Fig. 3: PCA on a blob of points. 

 

By definition, point cloud consists of the only pixels of 

image B’ satisfying the condition bm,n = 1. Let bh,k be a 

―seed point‖ randomly extracted from the point cloud. Let 

us define the first cluster C as the locus of points cm,n whose 

coordinates (m, n) satisfy the following condition:  

 

 2 2 2( ) ( )h m k n r         (2) 

 

where r is a user defined cluster radius (customized 

tolerance). Let us assume that C contains t points (Fig. 4).   

The cluster centroid χ is a vector whose elements are the 

weighted mean values of all the points cm,n:  
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Expressing the coordinates of the pixels belonging to the 

cluster C in a new coordinate system whose origin coincides 

with χ and whose axis are parallel to the original ones it is 

possible to define a matrix ψ of the new pixel coordinates. 

Such a matrix can be processed by means of PCA. 

First, according to the well known Singular Value 

Decomposition (SVD) technique, matrix ψ is expressed as 

follows [15]: 

 

  M S V          (5) 

 

Where M is the 2 x 2 matrix of eigenvectors of ψψT, the 

matrix S is a rectangular diagonal t x 2 matrix with 

nonnegative real values (singular values), and V is a t x t 

square matrix. The first column of M identifies the first 

principal component (i.e. the principal inertia axes of the 

cluster).  

 

 
Fig. 4: First step of the polyline construction procedure. 

 

From matrix S the 2 x 2 eigenvalues matrix Λ of ψψT
 can be 

computed: 
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If the ratio between the smallest and the greatest eigenvalue 

tends to 1 (e.g. is greater than 0.9), the cluster is considered 

to have no ―preferred‖ orientation; thus the cluster radius 

has to be increased. Otherwise the cluster radius is 

considered to be ―correct‖ and the principal inertia axes 

determine the Main Local Direction (MLD) vector of the 

cluster itself. With this approach it is possible to define a 

Size Variable Cluster (SVC) whose MLD is determined 

(Fig. 4).  

The two intersection points between the MLD and the 

circumference with radius r define the geometric centres of 

two new SVCs (Cp1 and Cf1) to be processed as shown in 

Fig 5.   



 
Fig. 5: Second step of the polyline construction procedure. 

 

 

Analogously to the first cluster, two new centroids χf1 and 

χp1 are determined. The segments from χp1 to χ and from χ to  
χf1 define a starting polyline.  

Starting from χf1 the procedure is iteratively carried out 

until, at the ith iteration, one of the following two conditions 

occurs: 

1. the cluster at the ith iteration Ci contains no point that 

are not contained in Ci-1 (i.e. an endpoint of the point 

cloud has been reached);  in this case, since the drafted 

entity is ―open‖, the iterative process has to be 

continued starting from χp1. 

2. the Ci region contains χp1 (i.e. one of the polyline points 

belongs to Ci region); in this case the drafted entity is 

―close‖ so no further iteration is required. The last 

segment of the closed polyline is the one defined by the 

centroid of Ci and χp1. 

 

2.3 B-Spline based order determination 
 

Once the polyline has been built, a B-Spline called 

―ordering curve‖ (OC), intepolating only the polyline 

points, is traced (Fig. 6). The purpose of such a B-Spline 

consists of sorting the point cloud points, according to the 

order of their projection on the OC. 

The point projection problem is to find the closest point on 

the curve to a given point. In this work this problem has 

been solved by a numerical, approximated approach as 

follows:  

1. given a cluster Cu selected among the ones defined in 

section 2.2, the clusters Cu-1 and Cu+1 are considered along 

with their centroids χu-1 and χu+1. 

2. the OC, which by definition interpolates all the centroids 

χi, is uniformly sampled in the interval delimited by χu-1 and 

χu+1. The number of OC samples is set equal to three times 

the global numerosity of the above considered clusters. 

3. the projection of each point p belonging to Cu on the OC 

is the point ps’ that is its nearest among the OC sample 

points ps: 

 

' ':|| || min{|| ||}s s sp p p p p     (7) 

 

4. the procedure carries on iteratively for each cluster. 

Obviously, the points belonging to previously processed 

clusters are not further considered. 

 

The final result of this procedure is an implicit ordered 

point cloud. In order to obtain an explicit ordered point 

cloud, a normalized curvilinear coordinate s on the OC has 

to be defined. Using one of the OC endpoints as the 

coordinate origin, it is possible to assign a value s for each 

point projection. 

 

 
 

Fig. 6: Polyline curve and OC. 

 

  

2.4. B-Spline fitting. 
 

Given an ordered set of points, it is straightforward to fit an 

approximating B-Spline curve called Fitting Curve (FC). 

The B-Spline which is used to fit the original points is built 

so that: its parameter t varies between 1 and a with unitary 

step, where a is the total number of the points belonging to 

the original point cloud; for each integer value ti of t, the 

spline point of parameter ti is biunivocally correspondent to 

the ith point of the ordered cloud. Thanks to this 

correspondence, it is immediate to evaluate the Maximum 

Fitting Error (MFE) as: 
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The fitting task starts with the generation of a two-knot first 

approximation FC; the initial knots, which have a 

multiplicity of 4, are coincident with the two OC endpoints 

(Fig 7). 

This FC, along with the ones subsequently computed, is 

generated according to Weighted Least Squares (WLS) 



technique [16] where the weighting coefficient for each 

point of coordinates (m,n) is wm,n. 

 

 
Fig. 7: First attempt FC. 

 

By means of an iterative procedure (Fig 8), FC is updated 

by adding new knots with the aim of obtaining the 

necessary degree of approximation; in order to guarantee 

the desired accuracy, a user defined tolerance value (tol) is 

required.  

 

 
Fig. 8: Detail of the FC evolution procedure. 

 

3   Results 

 
In Figure 9 the result of the proposed method on a case 

study image is compared to two alternative B-spline fitting 

techniques. 

The first technique (denoted with LS1) performs LS 

approximation obtained by using the same algorithm 

described in this work, considering all the pixels whose gray 

level is lower than 250 (background color is assumed to be 

represented by values greater or equal to 250) but disabling 

any kind of weighting (both for MLD detection and for B-

spline curve computation). The second technique (denoted 

with LS2), implemented by a commercial vectorization 

software package, performs an automatic thresholding of 

the image and a subsequent thinning process. A B-spline is, 

then, fitted to the thinned image according to a LS method.  

More in detail the LS1 technique roughly reproduces the 

shape presented in the image though, due to the lack of 

weighting, the fitting curve approximates the medial curve 

of the ―non-white‖ region. 

LS2 technique provides a more accurate fitting curve which 

approximates more closely the darker region due to the 

preliminary thresholding step eroding mainly the lighter 

areas. Nevertheless, due to the thinning step, spurious 

segments are generated.  

The fitting curve obtained by means of the proposed 

solution proves to be the most effective in preserving the 

original shape according to human perception. 

 
Fig. 9: Comparison between the proposed method and the classic 

one (based on simple LS fitting splines) . 

 

4   Conclusion 
 

In the present work an approach to fit unordered point cloud 

data with a weighted B-spline curve, whose weights are 

computed on the basis of raster data gray levels is 

presented.  

Such an approach may be particularly suitable for the B-

Spline vectorization of raster images (for instance 

representing handmade drawings or sketches) where the line 

fuzziness cannot be neglected. Furthermore, even assuming 

that a carefully selected threshold value may compensate 

the line fuzziness, the proposed method performance 

overcomes the ones of alternative techniques making use of 

image thinning (which is often responsible of spurious 

segments generation). Future work will be addressed to a 

3D generalization of the proposed method  and to the 

implementation of variable cluster dimension in order to 

take into account variable line thickness. 
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