

Presenting and communicating statistics. Principles, components and assessment

Filomena Maggino Università degli Studi di Firenze

The study presented here is the result of a project developed by myself and

Marco Fattore

Università degli Studi di Milano-Bicocca and

Marco Trapani

Università degli Studi di Firenze

1. Communication: full component of the statistical work

2. Communicating statistics

3. Assessing the quality of communication in statistics

1. Communication: full component of the statistical work

2. Communicating statistics

3. Assessing the quality of communication in statistics

Communication in statistics: From DATA to MESSAGE

DATA PRODUCTION	\rightarrow	objective observation		aseptic data
•				
DATA ANALYSIS, RESULTS AND INTERPRETATION	\rightarrow	data	transformed in	information
PRESENTATION	\rightarrow	information		message

Communication in statistics: From DATA to MESSAGE

data production	data analysis	representation	communication
			Ħ
			11
		not o	nly a technical problem

a formula...

$VAS=N*[(QSA*MF)*RS*TS*NL] \rightarrow Giovannini, 2008$

This detailed formula, including many relevant aspects like the role of media and users' numeracy, can be reconsidered by including also aspects concerning "quality" e "incisiveness" of the message:

$VAS = f(N,QSA,MF,RS,TS,NL,QIP) \rightarrow additional component$

VAS Value added of official statistics

N Size of the audience

QSA Statistical information produced

MF Role of media

RS Relevance of the statistical information

TS Trust in official statistics

NL Users' "numeracy"

QIP Quality and incisiveness of presentation

statistics ...

in an aseptic and impartial way by leaving interpretation to the audience

Interpretation ...

... can be accomplished through different even if correct perspectives

"the glass is half-full" $\leftarrow \rightarrow$ "the glass is half-empy"

through a dynamic perspective

"the glass is getting filled up" $\leftarrow \rightarrow$ "the glass is getting empty"

The message will be transmitted and interpreted by the audience without realizing the mere numeric aspect.

Communication in statistics: from DATA to MESSAGE

statistician ↓ facilitator

between reality and its representation

COMPLEXITY

Contents

Communication: full component of the statistical work

2. Communicating statistics

3. Assessing the quality of communication in statistics

Contents

2. Communicating statistics

- 1. Fundamental aspects
- 2. Main components
- 3. The codes

1. Fundamental aspects

Aspects of statistical presentations	Corresponding discipline
Content	Ethics
Appeal	Aesthetics
Persuasion	Rhetoric
	4
	Theory of presentation

2. Main components

3. Codes

in statistical communication

- **A.** Outline → telling statistics
- **B. Tools** → depicting statistics
- C. Clothes -> dressing statistics

1- INVENTIO (INVENTION) allows arguments to be argued

Who → the subject of telling

What → the fact

When \rightarrow the time location

Where \rightarrow the field location

Why → the causes

2- *Dispositio* (Layout) allows topics to be put in sequence

- deductive
- inductive
- time-progression
- problems-related

- advantages-disadvantages
- from-points-of-view
- top-down approaches

2- DISPOSITIO (LAYOUT)

3- ELOCUTIO (EXPRESSION)

allows each piece of the presentation to be prepared by selecting words and constructing sentences

Language should be

- appropriate to the audience
- consistent with the message

- wording
- languages
- tongues

3- ELOCUTIO (EXPRESSION)

Figures of	Definition
Thinking	change in words' or propositions' invention and imaginative shape
Meaning (or tropes)	change in words' meaning
Diction	change in words' shape
Elocution	choice of the most suitable or convenient words
Construction	change in words' order inside a sentence
Rhythm	phonic effects

4- Actio (EXECUTION) concerns the way in which the telling is managed

in terms of

- introductiondevelopmentscomments
 - time space use
 - ending

Refer to all instruments aimed at depicting statistics

- graphs
- tables
- pictograms

The tools should preserve the message

FUNCTIONS

Supporting attention

Activating and building prior knowledge

Minimizing cognitive load

Building mental models

Supporting transfer of learning

Supporting motivation

PERCEPTION OF STATISTICAL GRAPHS

Recognizing the code

Recognizing regularities

Carrying out comparisons and identifying differences

GRAPH PRINCIPLES

Categories		Principles
Connect with	Message should connect with the goals and	Relevance
the audience	interests of your audience.	Appropriate knowledge
Direct and hold attention	Presentation should lead the audience to pay attention to what is	Salience
		Discriminability
	important.	Perceptual organization
Promote understanding and memory	Presentation should be easy to follow, digest,	Compatibility
		Information changes
	and remember.	Capacity limitations

(I) CHOOSING A GRAPH ...

... by taking into account

- number of involved variables
- nature of data (level of measurement)
- statistical information to be represented

... by preferring

- a simple graph with reference to the audience
- a clear graph instead of an attractive one
- a correct graph with reference to data

(II) PREPARING A GRAPH

Scale definition	correctly defining and showing scale/s
Dimensionality	reducing dimensionality as much as possible by showing few variables for each graph using no meaningless axis
Colours as statistical codes	using colours consistently with statistical information
Rounding off values	rounding up and down through standard criteria
Dynamics presentation	dynamic perspective should reflect a dynamic phenomenon
Legibility	few elements as possible. Wise use of legends and captions

C. Clothes → dressing statistics

Refer to the process of dressing statistics

Different aspects:

- >text arrangement
- > characters and fonts
- > colours
- **>**...

With reference to:

- **→** balance
- harmony
- proportion
- elegance
- style

Example

outline

Communication: full component of the statistical work

2. Communicating statistics

3. Assessing the quality of communication in statistics

Contents

3. Assessing the quality of communication in statistics

- 1. The conceptual model
- 2. The application

1. The conceptual model

- A. THE DIMENSIONS TO EVALUATE
- B. THE EVALUATING CRITERIA
- C. THE COMPONENTS OF THE TRANSMISSION PROCESS

A. The dimensions to evaluate

I. OUTLINE

→ telling statistics

2. TOOLS

depicting statistics

- 3. CLOTHES
- dressing statistics

B. The evaluating criteria

They refer to the transmitter's ability to use the codes in terms of

(A) appropriateness → pertinence
 (B) correctness → accuracy
 (C) clarity

Evaluating scale →

Polarity	Labels	Scores
Bipolar	No	0
	Yes	1

C. The component of the transmission process


```
    (i) Audience → tourists, harvesters, miners (*)
    (ii) Channel → auditory, visual, ....
    (iii) Context → seminars, conferences, books, booklets, ...
```

```
But also
(iv) Topic
(v) Data → message
```

C. The component of the transmission process

(i) Audience	expertspoliticians and policy makersstudentsstatistical data usersnot specialized
(ii) Channel	 auditory channel ("listening", requiring oral explanation) visual channel ("looking", requiring explicative slides) kinetic channel ("doing", requiring practical exercises)
(iii) Context	 occasions (seminars, conferences, meetings, press conferences,) settings (rooms, tables,)

The assessment model

The dimensions of the code

have to be evaluated -through the defined crieria-

with reference to the components of the transmission process

- 1. Outline
- 2. Tools
- 3. Clothes

- **A.** Appropriateness (→ pertinence)
- **B. Correctness** (→ accuracy)
- C. Clarity

- i. Audience
- ii. Channel
- iii. Context
- iv. Topic
- v. Data

2. The application

- A. The assessing table
- B. Study planning and data collection
- C. Data analysis

The conceptual model can be consistently assessed by developing an Assessing Table through which

each judge can evaluate presence (I) or absence (0)

• • • •

• • • •

of the criterion

(A) appropriateness (B) correctness (C) clarity

in each code

1. outline 2. tools 3. clothes

with reference to

(i) audience (ii) channel (iii) context (iv) topic (v) data

Assessing Table I

Assessing Table II synthesis of the previous one

		EVALUATING CRITERIA														
		AP	(A) APPROPRIATENESS							(C) CLARITY						
Quality of Comm	unication in Statistics:	with reference to														
ASSESSING TABLE II		(i)audience	(ii)channel	(iii)context	(iv)topic	(v)data	(i)audience	(ii)channel	(iii)context	(iv)topic	(v)data	(i)audience	(ii)channel	(iii)context	(iv)topic	(v)data
1. OUTLINE	a. Invention															
	b. Layout															
	c. Expression															
	d. Execution															
2. TOOLS	a. Tables															
	b. Graphs															
	c. Pictograms															
3. CLOTHES																

B. The study planning and data collection

Selection of the judges

- I. Competence in survey methodology and statistical issues
- 2. Competence in communication theory

B. The study planning and data collection

Selected publications for the study

(collected at the UNECE Work Session on Communication and Dissemination of Statistics held in Warsaw, Poland – 13-15 May 2009):

- **Central Statistical Office** (2009) *Poland in the European Union*, Central Statistical Office, Warsaw.
- **Eurostat** (2008) *Statistical Portrait of the European Union European Year of Intercultural Dialogue*, Eurostat, Statistical Books, Luxembourg.
- Federal Statistical Office (2009) Statistical Data on Switzerland, Federal Statistical Office, NeuChâtel, Switzerland.
- **Kazakhstan Statistics** (2008) *The Statistical Guidebook*, Agency of the Republic of Kazakhstan on Statistics (Astana).
- **ISTAT** (2009) *Italy in Figures*, Rome, Italy
- United Nations Economic Commission for Europe (2009) UNECE. Countries in Figures, United Nations, New York – Geneva.

assessing each statistical publication through binary data & ordinal dimensions

PROBLEM

how to combine the evaluations on each quality dimension into a final quality assessment

SOLUTION

respecting the ordinal nature of data through a fuzzy approach based on the use of partial order theory

	EVALUATING CRITERIA								
	APPRO	(A) OPRIAT	ENESS	COR	(B)	IESS	С	(C) LARI1	Ϋ́
	with reference to								
	(i)audience	(ii)channel	(iii)context	(i)audience	(ii)channel	(iii)context	(i)audience	(ii)channel	(iii)context
1. OUTLINE	0	1	0)))		
2. TOOLS	1	1	1						
3. CLOTHES	1	1	1						

Each publication has a sequence of [0/1] for each criterion

PROFILE

Best configuration \rightarrow 111111 ... Worst configuration \rightarrow 000000 ...

The analysis was performed for each criterion.

We show just the results concerning

appropriateness and clarity.

Hasse diagrams of quality configurations

audience <u>appropriateness</u> (left) and audience <u>clarity</u> (right)

for the publication outlines

Linked nodes are ordered from top to bottom.

Not linked nodes represent incomparable quality (appropriateness or clarity) configurations.

Definition of thresholds (subjective choices)

which element in the sequence is related with

- high quality configuration (quality degree = 1) → s₂
- poor quality configuration (quality degree = 0) → s₁

Given such thresholds, what quality degrees do other configurations receive, in the appropriateness and clarity posets respectively?

P₂ and P₅ are above the high quality threshold, in both posets,
 they receive quality degree 1 in both appropriateness and clarity

P₄ is below the poor quality threshold, in appropriateness,

It receives appropriateness degree = 0

P₆ is below the poor quality threshold, in clarity,

It receives clarity degree = 0

By analysing **how frequently** a configuration is above the **high quality** threshold (or below the poor quality threshold) in the set of complete orders

we can determine
the degree of appropriateness and clarity
of each configuration (→ publication)

Publication	Audience appropriateness	Audience clarity
P1	0.6	0.6
P2	1.0	1.0
P3	0.9	0.9
P4	0.0	0.2
P5	1.0	1.0
P6	0.6	0.0

Final ranking scatterplot

THE WAY FORWARD ...

Goals

- Improving the assessing model
- New applications
- Promoting an improvement of statisticians' education by proposing a training module on communication

THE WAY FORWARD ...

Final goal is to assess standardized methods and techniques in order to improve the impact of communication in statistics

Developing and adopting standardized codes allow transmitters to warrant:

Objectivity	of data presentation, by avoiding introduction of any subjective component			
Comparability	between different presentations and along time			
Economicity and efficiency	in preparing presentation			
Generalization	by avoiding any kind of "adaptability" of codes to "subjective" messages			
Understanding	of data structure			

ANALYS TOLVOUR STERMAN

Filomena Maggino, Marco Fattore, Marco Trapani

Contact: filomena.maggino@unifi.it