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Introduction

Modal logic has been mostly developed from a semantic perspective. Although the

adjective “semantic” can be interpreted in various ways, in the standard literature

on modal logic it is usually a synonymous of “model-theoretic” (see Blackburn et al.

2001). The model theory of modal logic studies the interplay between the modal

language and the models for that language. Thus, modal logic is considered an

useful tool designed for talking about a certain kind of mathematical structures

by means of which many concrete situations can be formally described. Flows

of time, states of knowledge, transitions between computational states can be all

represented as relational structures, that is, non-empty sets together with an

accessibility relation on their members. From this perspective, modal logic is a lan-

guage equipped with a suitable relational semantics, rather than a set of axioms

and inference rules. Even when modal logics are presented in an axiomatic style,

formal derivations have a little role to play. On the other hand, when the purpose

is to find derivations or the analysis of their structural properties, sequent cal-

culi have been preferred to the axiomatic Hilbert-style approach. However, the

traditional sequent systems for modal logic fail to satisfy most of the properties

usually required on sequent calculi and the difficulties of finding cut-free sequent

systems are encountered already for quite simple modal systems such as S5. The

problem of a satisfactory proof-theoretic account to modal logic can be partially

solved by generalizing the notion of sequent in a more rich and complex syntax,

and various attempts will be reviewed in the later chapters. Nevertheless, the con-
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ceptual unification made possible by the relational semantics for modal logics has

been not achieved yet at the corresponding syntactic level. In the present work

that unification is obtained through the direct internalization of the relational se-

mantic into the syntax of sequent rules, following the labelled approach to modal

logic of Negri (2005). The internalization of the semantics makes it possible to

talk about relational structures in proof-theoretic terms. Our attention will focus

mainly on epistemic modal logic (see Fagin et. al. 1995) and, more generally,

on the large variety of problems concerning the logical notions of knowledge and

belief. Sequent systems for epistemic logic are obtained as modular extensions of a

basic modal calculus, through the addition of appropriate mathematical rules that

correspond to the properties of epistemic frames. All the calculi enjoy remarkable

structural properties, in particular they are contraction and cut free.

The first chapter provides a general background on labelled sequent systems and

offers an inferentialist justification of the logical rules through a system of natural

deduction with general elimination rules. The chapter can also be read as a general

introduction to the problems that structural proof theory generally deals with,

in particular the admissibility of the structural rules and cut elimination.

The second chapter is entirely devoted to the cut-elimination theorem, and the

complexity of cut-elimination methods are discussed: a numerical bound on cut-

free derivations is calculated following the pattern of the proof of the same theorem

for first-order logic. The aim is to provide a labelled sequent system in which all

the structural rules are admissible, the logical rules are invertible, and the cut rule

can be dispensed with. The system so obtained allows a systematic proof-search

procedure and can be effectively used for finding derivation in basic modal logic.

In the third chapter is shown how to extend the techniques and results of the

previous parts in order to get sequent systems for logics that extend basic modal

logic. The problem of how to treat axioms in sequent calculus is introduced and
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the solution of Negri and von Plato (2001, 2011) is applied to the multi-modal

logic of knowledge and belief. Sequent systems for epistemic and doxastic logic

are obtained by adding suitable inference rules for the accessibility relation that

express the properties of the corresponding relations in Kripke frames.

The last two chapters constitute the core of the research project on the proof theory

of modal epistemic logic. The fourth chapter presents a labelled sequent system

for the logic of public announcements (see Plaza 1989 and van Ditmarsch et.

al. 2007). The formal study of the dynamics of knowledge and of process of infor-

mation are nowadays among the most prominent developments of epistemic modal

logic. Nevertheless, model-theoretic aspects have been dominant and an adequate

proof-theoretic treatment is still an open question. Most of the material of this

chapter has been presented in Maffezioli and Negri (2010, 2011).

The last chapter consists in a proof-theoretic analysis of the Church-Fitch para-

dox of knowability (see Fitch 1963). By exploiting the semantic features of a

labelled sequent system it is shown how to give a cut-free reconstruction of the

Fitch derivation and to isolate the semantic frame condition that correspond to

the principle at the base of the paradox. The aim of this analysis is to provide an

adequate proof theory governing the interaction among the modalities involved in

Fitch’s proof and to give a logical framework for dealing with the Fitch paradox

(knowability logic). Moreover, it is argued in favor of the use of intuitionsitic logic

as a solution of the paradox and it is shown that the paradoxical conclusion is

only classically derivable, but neither intuitionistically derivable nor intuitionisti-

cally admissible. The material presented in this chapter can be found, with minor

modifications, in Maffezioli et al. (2011).

We conclude this introduction by recalling the fundamentals of the language and

of the semantics of epistemic logic, and we briefly discuss the basic notions we will

deal with in what follows.
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The language

The language of epistemic logic consists of a countable set of atomic formulas P

and a finite set of (names for) agents A. From P it is possible to form compound

formulas by the usual propositional connectives: ∧ (conjunction), ∨ (disjunction),

⊃ (implication), so that if A and B are formulas, so are A ∧ B, A ∨ B, A ⊃ B. The

language contains also the symbol ⊥ which stands for any contradiction. In addi-

tion, there is a knowledge operator Ka for each agent a in A. Intuitively, Ka A

means: “the agent a knows that A”. In the following we shall use some notational

conventions: ¬A will be an abbreviation for A ⊃ ⊥ and A ⊃⊂ B a shorthand for

implication in both directions, that is, (A ⊃ B) ∧ (B ⊃ A). We omit the outer-

most parentheses when this does not lead to confusion. Despite its simplicity, this

language permits to express rather complex information about what agents know

about other agents’ knowledge. For instance, the formula P ∧ ¬KaP says that P is

true but a doesn’t know it, whereas ¬KbKcP ∧ ¬Kb¬KcP says that b does not know

whether c knows P.

The formal semantics

The most influential model of knowledge is the well-known possible-world se-

mantics or, relational semantics. The idea is that besides the actual state of

affairs there are a number of other possible states which describe the world as it

could be, if the things were different. An agent may have access to some possible

state, whereas some others are inaccessible. Among the accessible states, an agent

a may not be able to tell the difference with respect to the actual one, since in both

the same proposition P holds. When P holds in every state that a considers possible

it is said that a knows that P. Thus, the basic components of the formal semantics

for knowledge are a set of possible states and a collection of arrows between states.

Definition (Epistemic Frame). An epistemic frame is a structure F = 〈X,Ra〉where
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X is a non-empty set and Ra is a collection of binary relations on X, one for each

a ∈ A. Furthermore, each Ra is an equivalence relation. The standard notation for

〈x, y〉 ∈ Ra is xRay.

In an epistemic frame, the elements in X may be intuitively interpreted as possible

worlds. However, there is no reason for limiting oneself to a specific interpretation

and in the following we shall generally speak of possible states. In the standard

mono-modal logic the binary relation gets interpreted as an accessibility relation

between states, but, in the field of multi-modal epistemic logic, relations are bet-

ter understood when they are interpreted as indistinguishability relations: an

agent a cannot distinguish between two states x and y when they are related by

Ra. Thus, xRay can be read as: “as far as a concerns, the state x might be y as well”.

The idea is that the fewer states an agent considers possible, the less is his uncer-

tainty, and more he knows. Finally, in order to describe formally the properties of

Ka it is assumed that each relation is an equivalence relation, that is, it is reflex-

ive, symmetric and transitive. In fact, no agent is supposed to distinguish a state

x from itself, and if x is indistinguishable from y so is y from x; finally, if x and y

cannot be distinguished and also y cannot be distinguished from z then x cannot be

distinguished from z. However, weaker notions of knowledge are possible and in

the last chapter we shall assume only the reflexivity of the accessibilities relations.

An epistemic frame becomes an epistemic model when atomic formulas receive an

evaluation. This can be obtained by adding a new relation, indicated by  and

called forcing, between possible states and atoms. Intuitively, x  P says that the

formula P is true at the state x.

Definition (Epistemic Model). An epistemic model is a structure M = 〈F,〉where

F is an epistemic frame and  is a binary relation between elements in X and

atomic formulas P. The standard notation for 〈x, P〉 ∈  is x  P.

The relation  is extended in a unique way to arbitrary formulas by means of the
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following inductive clauses.

x  ⊥ for no x

x  A ∧ B if and only if x  A and x  B

x  A ∨ B if and only if x  A or x  B

x  A ⊃ B if and only if x  A implies x  B

x  Ka A if and only if for all y, xRay implies y  A

Epistemic models get easily represented with diagrams. In the picture below,

agent b considers possible at x the state x itself and the state y. However, while he

knows that P, since P is true at all states Rb-accessible, he does not not know Q,

since y is Rb-accessible but the atom Q is not forced at y.

x

P Q

y

P ¬Q

Rb

Rb

Rb

A similar semantics can be given for the belief operator Ba A: “the agent a be-

lieves that A”. In contrast with knowledge, a belief is not necessarily true and we

must modify the semantics accordingly. In fact, knowledge is supposed to imply

truth, whereas it is natural to think that agents may believe something even if

it is false. In other words, although we may believe something false, if we know

something then it must be true. Given that what is known is true semantically

corresponds to the reflexivity of the accessibility relations, in a frame for belief

the reflexivity of the accessibility relations will not be assumed. Despite believing

something is weaker than knowing we still assume that our beliefs are consistent,
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so that contradictions are not believed. Semantically, this is equivalent to impos-

ing seriality of the accessibility relation Ra, for each agent a: for each state x there

is a state y such that xRay.

Properties of knowledge

The properties of knowledge are described in terms of validity in an epistemic

frame. A formula A is valid in an epistemic frame F when it is forced at every

state x in every model M based on F. An important property of knowledge is the

distributivity of the Ka operator over implicative formulas, that is, the validity

of the formula Ka(A ⊃ B) ⊃ (Ka A ⊃ KaB). This suggests that agents are very

powerful reasoners since distributivity implies that agents know all the logical

consequences of their knowledge: if an agent a knows both A ⊃ B and A, then A ⊃

B and A hold in all possible states he considers possible, so also B must holds in all

these states. But if B holds in every possible state then B is known by the agent.

Another important property is expressed by the knowledge generalization rule (or,

necessitation): if A is valid then Ka A is valid too. This is not to say that the

formula A ⊃ Ka A is valid. Agents do not necessarily know all the true facts, and

in the last chapter we will consider this formula as a form of paradox. Conversely,

it is instead the case that if an agent knows something that this fact must be true,

a principle expressed by the formula Ka A ⊃ A. As we have already said, this

formula has been taken to be characteristic of knowledge as distinguished from

belief. The property of factivity follows from the reflexivity of each accessibility

relation in an epistemic frame: since the actual state is always accessible from

itself, if A holds at every state accessible then, in particular, it holds at the actual

one. Finally, the agents have complete introspection concerning their knowledge,

that is, they know what they know and what they do not know. In terms of validity,

positive and negative introspection correspond to the formulas Ka A ⊃ KaKa A
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and ¬Ka A ⊃ Ka¬Ka A. Validity of positive introspection follows from transitivity of

Ra, whereas the negative introspection follows from transitivity and symmetry.

Historically, the modern epistemic modal logic originated with the work of the

Finnish logicians H.G. von Wright and J. Hintikka, especially with the pioneering

contributions von Wright (1951) and Hintikka (1962). The former is one of the

earliest attempt to formalize the properties of knowledge and belief in terms of ax-

iomatic systems. The latter is the most influential treatment of the modal logic of

knowledge and helped to carry the subject of epistemic logic into mainstream epis-

temology, game theory, economics, and computer science. Since Hintikka’s book

epistemic notions have been strictly connected with the familiar possible-world se-

mantics. The applications of epistemic logic to computer science (see Meyer and

van der Hoek 2004) and the modern extensions of it with dynamic modal operators

(see van Ditmarsch et. al. 2007) are still in the tradition of that early studies.
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Chapter 1
Labelled Sequent Systems

In this chapter, basic modal logic is formulated as a labelled sequent system

through an internalization of Kripke semantics within the syntax of the rules. In

a labelled system, each formula A receives a label x, and this is indicated by x : A.

The labels are interpreted as possible states and the labeling specifies the state

at which a formula is true. Moreover, labels may occur also in expressions for ac-

cessibility relation as xRy. The rules of a labelled system operate on the labels

and on the relations between them. More specifically, the language of sequents

in enriched in such a way that in a sequent Γ → ∆ two kinds of expression may

occur: labelled formulas x : A and relational atom xRy. A labelled formula corre-

sponds to forcing relation x  A, whereas xRy is the accessibility relation between

worlds. As usual, Γ and ∆ are multisets (lists without order) of labelled formulas

or relational atoms. The sequent rules are found from (and justified by) the corre-

sponding rules of natural deduction: the introduction rules get translated directly

into right sequent rules, whereas the elimination rules, written in the manner of

disjunction elimination, are converted into a left sequent rules by cut.

In this chapter, and also in the next one, we take into account the case of basic

mono-modal logic: the language contain only two modal operators � and ♦, inter-

preted as necessity and possibility operators, respectively. Intuitively, a formula as
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�A means that A is necessarily true, whereas ♦A means that A is possibly true.

The semantics is modified accordingly, and we assume that there just a single ac-

cessibility relation R.

1.1 Labelled natural deduction

The sequent rules for each connective and for the modalities� and ♦ are presented

as a formalization of the derivability relation of their corresponding natural deduc-

tion rules, following the pattern of Negri and von Plato (2001). In turn, the rules

of natural deduction are found from the meaning explanation of connectives and

modalities in terms of Kripke semantics and an inversion principle. First, we con-

sider the inductive definition of forcing for a modal formula �A

x  �A if and only if for all y, xRy implies y  A

This equivalence gives at once the sufficient and necessary conditions for �A to be

forced at an arbitrary state x. By considering only the if-direction of this definition,

the sufficient condition is found:

If for all y, xRy implies y  A then x  �A

In terms of proof system, this part corresponds to a derivability condition of the

form

If for all y, xRy derives y : A then x : �A can be derived

The latter gives an introduction rule of natural deduction for the � operator (see

also Simpson 1994, p.66 and Viganò 2000, p. 20). If on the assumption that y is

an arbitrary world accessible from x, we can show that A holds at y then we can

conclude that A holds at x. Formally,
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[
1

xRy]....
y : A

x : �A
�I1

Note that in this formulation of rule �I only the active assumption xRy is dis-

played. I� combines the features of introduction rules for ∀ and ⊃. As the intro-

duction rule for universal quantifier of first order logic,�I must meet the condition

that the label y is different from x. Moreover, for implication introduction, the as-

sumption xRy is discharged. The introduction rules for propositional connectives

are found similarly. As a conjunction A ∧ B is forced at x when both A and B are

forced at x, we find

x : A x : B
x : A ∧ B ∧I

A disjunction A ∨ B is forced at x if either A or B is forced at x, so we have two

introduction rules for x : A ∨ B

x : A
x : A ∨ B ∨I1

x : B
x : A ∨ B ∨I2

Finally, the rule for introducing an implication is

[
1

x : A]....
x : B

x : A ⊃ B
⊃I1

Elimination rules are found from introduction rules. The idea of a justification

of elimination rules in terms of the introduction rules was already present in the

work of Gentzen (see Gentzen 1969, p. 80), when he noted that
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It should be possible to display the E-inferences [elimination rules] as

unique functions of their corresponding I-inferences [introduction rules],

on the basis of certain requirements.

The requirement was made explicit by D. Prawitz in his monograph on natural

deduction (see Prawitz 1965), and it is nowadays known as inversion principle.

This idea is that nothing is gained if an introduction rule is followed by an elimi-

nation rule, or more precisely

Inversion Principle (Prawitz). The conclusion of an elimination rule R with major

premise A ? B is already contained in the assumptions used to derive A ? B from

?-introduction rules, together with the minor premises of the rule.

However, Gentzen’s and Prawitz’s principle justifies but does not uniquely deter-

mine the elimination rules. We consider here a generalization of the inversion

principle, one that leads to elimination rules that are more general than the usual

ones. The general inversion principle and general elimination rules were intro-

duced to obtain a simpler proof of normalization theorem and to achieve a full

correspondence between natural deduction and sequent calculus. However, we use

them here only to justify the sequent calculus rules. In an elimination rule, the

formula x : �A occurs as major premise and we ask what conditions are needed to

satisfy the following (see Negri and von Plato 2001, p. 6).

Inversion Principle (General). Whatever follows from the direct grounds for deriv-

ing a proposition must follows from that proposition.

The elimination rules for propositional connectives are the general elimination

rules of von Plato (2001), with the exception that here formulas are labelled. How-

ever, in systems for classical logic, propositional rules do not change the labels,

when applied on formulas with a propositional connective as principal connective.

Thus, the general elimination rule for conjunction is

4



x : A ∧ B

[
1

x : A, x : B]....
u : C

u : C
∧E1

The standard rules of conjunction elimination are special cases of the general one,

when u is x and C is either A or B.

x : A ∧ B
x : A ∧E1 x : A ∧ B

x : B ∧E2

The general elimination of disjunction was found already by Gentzen. The labelled

version of the rule is as follows

x : A ∨ B

[
1

x : A]....
u : C

[
1

x : B]....
u : C

u : C
∨E1

The elimination of an implication is more complicated because the direct ground

for deriving x : A ⊃ B is not a formula, but, in turn, a derivation of x : B from

the assumption x : A. In fact, in Schroeder-Heister (1984, 2010) the rule gets

formulated as an higher-level unlabelled rule

A ⊃ B

[
1

A ` B]....
C

C
⊃E′1

where the symbol ` denotes the derivability relation and expresses the fact that

B is derivable from A. However, the existence of this derivation can be expressed

by saying that if C follows from B then it already follows from A. In the labelled

formalism, this gives the following elimination rule for x : A ⊃ B

5



x : A ⊃ B x : A

[
1

x : B]....
u : C

u : C
⊃E1

When u is x and B is C, the special elimination rule obtained is the labelled version

rule of modus ponens

x : A ⊃ B x : A
x : B ⊃E

Finally, the zero-ary connective ⊥ has only an elimination rule. Given that there

is no ground for deriving ⊥, from the inversion principle we obtain an elimination

rule that has only the major premise x : ⊥. The rule is also known as rule of ex

falso quodlibet

x : ⊥
u : C

EFQ

The same reasoning of general elimination of ⊃ holds for the general elimination

rule of �. In Read (2008) is proposed the heigher-level general elimination rule for

�

x : �A

[
1

xRy ` y : A]....
u : C

u : C
�E′1

Analogously to the case of implication elimination, the direct ground for deriving

x : �A is the existence of a hypothetical derivation of y : A from xRy. However, our

rule �E is justified, as above, by the fact that the existence of such derivation can

be expressed by saying that if u : C follows from y : A, then it already follows from

xRy. Thus,
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x : �A xRy

[
1

y : A]....
u : C

u : C
�E1

The rule specializes in the standard elimination rule of Simpson (1994) when u is

y and C is A

x : �A xRy
y : A �E

The same considerations apply, mutatis mutandis, to the possibility operator ♦.

From the semantic clause we get the sufficient condition for a formula as ♦A to be

forced, that is,

If for some y, xRy and y  A then x  ♦A

In the labelled system, this condition is expressed in terms of derivability and we

have that

If for some y, xRy and y : A can be derived then x : ♦A can be derived

Thus, the same introduction rule for ♦ of Simpson (1994) is found

xRy y : A
x : ♦A

♦I

The corresponding elimination rule is obtained through the inversion principle

x : ♦A

[
1

xRy, y : A]....
u : C

u : C
♦E1
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where again y must be different form x and u and must not appear in any assump-

tion other than xRy and y : A.

1.2 From natural deduction to sequent calculus

Sequent calculus is designed for keeping track locally of open assumptions, a fea-

ture that natural deduction lacks: in natural deduction only active formulas are

shown, leaving implicit the other assumptions. Sequent calculus can be under-

stood as a formal theory of derivability relation ` in the corresponding system of

natural deduction. As usual, we use two different symbols ` and → in order to

keep separated the metalevel expressions as Γ ` u : C in natural deduction from

the sequent Γ→ u : C which is part of object language of sequent calculus. In this

way, a sequent

Γ→ u : C

is interpreted as the assertion in natural deduction

Γ ` u : C

where formulas in Γ are the assumptions u : C on which depends. In a sequent

Γ → u : C the multiset Γ is called the antecedent and the formula u : C the

succedent. A translation from natural deduction to sequent calculus was already

present in Gentzen’s original work and it is discussed deeply in the context of gen-

eral elimination rules in von Plato (2001, 2003). Each introduction rule is trans-

lated into a sequent rule that introduces the principal formula in the antecedent.

The elimination rules are translated in two phases and a left sequent rule for each

elimination rule in natural deduction is found by cut.
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Translation of propositional rules

In natural deduction, a derivation can start with any formula A as assumption

and assumptions, in general, can be discharged. However, it may happen that

the formula assumed is the same formula that is discharged. In other words, the

same formula can be an assumption and conclusion in a derivation. For instance,

the law of identity needs that x : A can act as both assumption and conclusion

of an application of L ⊃. The same behavior is encountered in a labelled natural

deduction system, so we have

[
1

x : A]

x : A ⊃ A
⊃I1

In sequent calculus, the fact that the same formula can be assumed and derived at

the same time gives initial sequents A→ A. In labelled systems, initial sequents

are of the form

x : A→ x : A xRy→ xRy

Often, initial sequents are called logical axioms, and the derivation of the law of

identity is immediate

x : A→ x : A
→ x : A ⊃ A

R⊃

Thus, discharge in natural deduction corresponds to the application of a sequent

calculus rule that has an active formula in the antecedent of a premise.

The introduction rules of natural deduction get translated into right rules in

sequent calculus, where the comma replaces the set-theoretic union. Conjunction

introduction can be written with the assumptions made explicit as

9



Γ....
x : A

∆....
x : B

x : A ∧ B ∧I

and it is converted to the following sequent calculus rule

Γ→ x : A ∆→ x : B
Γ, ∆→ x : A ∧ B R∧

Note that the rule has independent contexts, that is, Γ and ∆ need not be the same

multiset. On the other hand, from general elimination rules of natural deduction,

left rules of sequent calculus are found. With explicit assumptions, the general

elimination rule for ∧ becomes

Γ....
x : A ∧ B

[
1

x : A, x : B], ∆....
u : C

u : C
∧E1

We want to translate it into a left sequent rule of the form

x : A, x : B, Γ, ∆→ u : C
x : A ∧ B, Γ, ∆→ u : C L∧

The translation is in two steps. The general elimination rule is immediately

rewritten into

Γ→ x : A ∧ B x : A, x : B, ∆→ u : C
Γ, ∆→ u : C L∧′

Then, it is shown that L∧′ is derivable from L∧ by cut.

Γ→ x : A ∧ B
x : A, x : B, ∆→ u : C
x : A ∧ B, ∆→ u : C L∧

Γ, ∆→ u : C CUT

10



As to disjunction introduction we consider only one of the two cases. The rule

Γ....
x : A

x : A ∨ B ∨I1

is immediately converted into a sequent calculus right rule

Γ→ x : A
Γ→ x : A ∨ B R∨

The corresponding elimination rule, that is,

Γ....
x : A ∨ B

[
1

x : A], ∆....
u : C

[
1

x : B], Θ....
u : C

u : C
∨E1

is first translated in sequent calculus

Γ→ x : A ∨ B x : A, ∆→ u : C x : B, Θ→ u : C
Γ, ∆, Θ→ u : C L∨′

Then, the labelled version of the standard context-independent left rule for dis-

junction is considered:

x : A, Γ→ u : C x : B, ∆→ u : C
x : A ∨ B, Γ, ∆→ u : C L∨

Finally, L∨′ is proved to be derivable in presence of the latter as follows

Γ→ x : A ∨ B
x : A, ∆→ u : C x : B, Θ→ u : C

x : A ∨ B, ∆, Θ→ u : C L∨

Γ, ∆, Θ→ u : C CUT

Now, the case of implication. Its introduction rule with explicit assumptions is
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[
1

x : A], Γ....
x : B

x : A ⊃ B
⊃I

and gets translated immediately into a right sequent calculus rule

Γ→ x : A ⊃ B
x : A, Γ→ x : B

R⊃

Consider now the corresponding elimination, that is,

Γ....
x : A ⊃ B

∆....
x : A

[
1

x : B], Θ....
u : C

u : C
⊃E1

The immediate translation gives

Γ→ x : A ⊃ B ∆→ x : A x : B, Θ→ u : C
Γ, ∆, Θ→ u : C L⊃′

Once again, the latter is shown to be derivable from the following L ⊃, by cut

Γ→ x : A x : B, ∆→ u : C
x : A ⊃ B, Γ, ∆→ u : C

L⊃

In fact,

Γ→ x : A ⊃ B
∆→ x : A x : B, Θ→ u : C

x : A ⊃ B, ∆, Θ→ u : C
L⊃

Γ, ∆, Θ→ u : C CUT

As we already said, the logical symbol ⊥ has no introduction rule because there

are no grounds for asserting ⊥. Thus, ⊥ has only an elimination rule, known as

rule of ex falso quodlibet, and written with explicit assumptions
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Γ....
x : ⊥
u : C

EFQ

First, it is translated into

Γ→ x : ⊥
Γ→ u : C L⊥′

Then, it is shown that this rule in derivable in presence of the following zero-ary

rule L⊥

x : ⊥ → u : C L⊥

Again, using cut,

Γ→ x : ⊥ x : ⊥ → u : C L⊥

Γ→ u : C CUT

Observation. Along with initial sequents, also sequents x : ⊥ → u : C are con-

sidered as initial rather than a zero-ary inference rule. However, such sequents

cannot be properly taken as initial from the perspective of the translation from

natural deduction because L⊥, being a translation of an inference rule, must be,

in turn, an inference rule. Thus, they are considered here as a zero-ary inference

rules as in Negri and von Plato (2001) and in Negri (2005).

Negation is not primitive, but it is defined in terms of ⊃ and ⊥ so that x : ¬A

stands for x : A ⊃ ⊥. In this way, the rules for negation are derived from those for

⊃, accordingly. For negation introduction we have
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[
1

x : A], Γ....
x : ⊥

x : ¬A
¬I1

An immediate translation into a sequent rule gives

x : A, Γ→ x : ⊥
Γ→ x : ¬A R¬′

The general elimination rule for negation takes the form

Γ....
x : ¬A

∆....
x : A

[
1

x : ⊥], Θ....
u : C

u : C
¬E1

The direct translation into sequent calculus gives

Γ→ x : ¬A ∆→ x : A x : ⊥, Θ→ u : C
Γ, ∆, Θ→ u : C L¬′

Now, consider the left rule for negation

Γ→ x : A
x : ¬A, Γ→ L¬

Thus, L¬′ is derivable in presence of L¬ as follows

Γ→ x : ¬A

∆→ x : A
∆→ x : A, x : ⊥ R-W

x : ¬A, ∆→ x : ⊥ L¬

Γ, ∆→ x : ⊥ CUT x : ⊥, Θ→ u : C
Γ, ∆, Θ→ u : C CUT
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Translation of modal rules

We turn now to the translation from natural deduction to sequent calculus for

modal rules. The rule I� with explicit assumptions

[
1

xRy], Γ....
y : A

x : �A �I

corresponds to the right sequent rule

xRy, Γ→ y : A
Γ→ x : �A R�0

R�must meet the usual condition that the label y is different from x and must not

occur in Γ, that is, y must not be in the conclusion of the rule. It is said that y is

the eigenvariable of the rule. The general elimination rule is

Γ....
x : �A

∆....
xRy

[
1

y : A], Θ....
u : C

u : C �E

It is translated into a left sequent rule of the form

Γ→ x : �A ∆→ xRy y : A, Θ→ u : C
Γ, ∆, Θ→ u : C L�′

Consider the left sequent rule with independent contexts

Γ→ xRy y : A, ∆→ u : C
x : �A, Γ, ∆→ u : C L�0

As above, L�′ can be derived from L�0 by cut

15



Γ→ x : �A
∆→ xRy y : A, Θ→ u : C

x : �A, ∆, Θ→ u : C L�0

Γ, ∆, Θ→ u : C CUT

Finally, we deal with the ♦ operator. The rule of ♦ introduction is

Γ....
xRy

∆....
y : A

x : ♦A
♦I

It is translated into a right sequent rule straightforwardly

Γ→ xRy ∆→ y : A
Γ, ∆→ x : ♦A

R♦0

The ♦-elimination with explicit contexts gets formulated as

Γ....
x : ♦A

[
1

xRy, y : A], ∆....
u : C

u : C
♦E1

where y is different from x and u and it does not appear in Γ, ∆. Its immediate

translation is

Γ→ x : ♦A xRy, y : A, ∆→ u : C
Γ, ∆→ u : C L♦′

L♦′ is derivable in presence of the standard left rule

xRy, y : A, Γ, ∆→ u : C
x : ♦A, Γ, ∆→ u : C

L♦

by cut as follows
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Γ→ x : ♦A
xRy, y : A, ∆→ u : C

x : ♦A, ∆→ u : C
L♦

Γ, ∆→ u : C CUT

Structural rules

Strictly speaking, natural deduction has no structural rules. This means that in

natural deduction no structural rule is explicitly assumed, but it does not mean

that it is not possible to manage assumptions. Assumptions can be discharged

and the discharge is optional: it is possible to leave an assumption open, even if

it could be discharged. The way in which assumptions are managed in natural

deduction has a correspondence in the usual structural rules of sequent calculus.

In particular, it is possible to discharge assumptions which have been not made as

in the derivation of the a fortiori law,

[
1

x : A]

x : B ⊃ A
⊃I

x : A ⊃ (B ⊃ A)
⊃I1

In sequent calculus, the vacuous discharge corresponds to the structural rule of

weakening, that is,

Γ→ u : C
x : A, Γ→ u : C L-W

In fact, by weakening, we obtain a sequent calculus derivation of the a fortiori law

as follows

x : A→ x : A
x : A, x : B→ x : A L-W

x : A→ x : B ⊃ A
R⊃

→ x : A ⊃ (B ⊃ A)
R⊃
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However, in some cases we may also need to discharge more than one occurrence

of the same assumption, as in the following derivation

[
2

x : A ⊃ (A ⊃ B)] [
1

x : A]

x : A ⊃ B
⊃E

[
1

x : A]

x : B ⊃E

x : A ⊃ B
⊃I1

x : (A ⊃ (A ⊃ B)) ⊃ (A ⊃ B)
⊃I2

The multiple discharge of the assumption x : A corresponds, in sequent calculus,

to the rule of contraction

x : A, x : A, Γ→ u : C
x : A, Γ→ u : C L-C

In fact, the above formula is derivable in the presence of contraction.

x : A→ x : A
x : A→ x : A x : B→ x : B

x : A ⊃ B, x : A→ x : B
L⊃

x : A ⊃ (A ⊃ B), x : A, x : A→ x : B
L⊃

x : A ⊃ (A ⊃ B), x : A→ x : B
L-C

x : A ⊃ (A ⊃ B)→ x : A ⊃ B
R⊃

→ x : (A ⊃ (A ⊃ B)) ⊃ (A ⊃ B)
R⊃

The rule of exchange was primitive in the original Gentzen’s systems LK and LJ,

but the use of multisets of formulas instead of lists makes it superfluous. Finally,

in natural deduction, derivations can be composed. If x : A has been derived from

the open assumptions Γ and u : C has been derived from x : A along with the open

assumptions ∆ then u : C can be derived from the open assumptions Γ, ∆. This

corresponds, in sequent calculus, to the rule of cut

Γ→ x : A x : A, ∆→ u : C
Γ, ∆→ u : C CUT

Cut is the only rule that makes a formula disappear in a derivation. This feature
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has the consequence that when we want to determine whether a sequent Γ→ u : C

is derivable we could always try to reduce the task into Γ → v : A and v : A, ∆ →

u : C, where v : A is an arbitrary new formula, with no end. Because of this lack of

determinism introduced by cut, the main task of structural proof theory is to prove

that the rule of cut is redundant in a given system of rules. The redundancy of

the cut rule is expressed formally in terms of rule admissibility: for every cut-free

derivation of the premises of cut there exists a derivation of its conclusion that uses

only primitive rules or rules already proved to be admissible. Moreover, the proof

of cut admissibility we shall give in the following is constructive: we effectively

show how to find a derivation of the conclusion of cut from all derivations of its

premises. In this sense, we can also say that the redundancy of cut for a system

of rules means that the system is closed under cut in a strong sense. Else, it can

be also said that cut is eliminable: if cut is considered as a primitive inference

rule, cut admissibility reduces to the proof of cut elimination. The latter version

corresponds to the celebrated main theorem, or Hauptsatz, of Gerhard Gentzen

who gave its first proof for systems LJ and LK of intuitionistic and classical logic.

Subformula property

Among the consequences of cut elimination is the subformula property: every

formula in a derivation is subformula of the formulas in the endsequent. As al-

ready noted by Gentzen (see Gentzen 1934, p. 88)

Intuitively speaking, these properties of derivations without cuts may

be expressed as follows: the S–formulas [formulas in sequents] become

longer as we descend lower down in derivation, never shorter. The final

result is, as it were, gradually built up from its constituent elements.

The proof represented by the derivation is not round-about in that it

contains only concepts which recur in the final result.
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Here, the notion of subformula is generalized in order to match the setting of la-

belled formulas. In particular, we consider for an arbitrary label y, a formula such

a y : A as a (proper) subformula of x : �A.

Definition (Subformula Set). Let L be the set of labels. The subformula set SF of a

formula x : B is defined inductively.

SF(x : P) = {x : P};

SF(xRy) = {xRy};

SF(x : ¬B) = SF(x : B) ∪ {x : ¬B};

SF(x : B ◦ C) = SF(x : B) ∪ SF(x : C) ∪ {x : B ◦ C}, if ◦ is ∧, ∨, ⊃;

SF(x : �B) =
⋃

y∈L
SF(y : A) ∪ {x : �B}.

Consequently, x : A is a subformula of x : B when x : A ∈ SF(x : B). Finally, proper

subformulas of a formula x : B are all the subformulas of x : B, except x : B itself.

The subformula property is usually the main consequence of cut elimination. How-

ever, in labelled systems is not any longer so. In fact, the modal rules do not satisfy

subformula property, since the relational atom xRy occurring in the premise of R�

and L♦ disappears in the conclusion. The lack of the subformula property is surely

an unpleasant feature because it constitutes a serious obstacle to the possibility of

ensuring decidability. Nevertheless, a closer inspection of the modal rules reveals

that when a relational atom as xRy disappears by an application of R� or L♦, what

is irremediably lost is the eigenvariable y, whereas x still occurs in the conclusion

as the label of principal formula x : �A or x : ♦A. The same happens with the rules

R∀ and L∃ of LK. Therefore, no variable, except for eigenvariables, disappears and

a more refined result can be given in the form of the subterm property: all labels

in a derivation are either eigenvariables or labels in the endsequent.
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1.3 A system for basic modal logic

Modal logic is mostly presented as based on classical logic. More precisely, ax-

iomatic systems of modal logic consist of the axioms of the classical propositional

calculus together with specific axioms concerning the modal operators. However,

all sequent rules we have considered so far have at most one formula in the succe-

dent of the sequent, so they give a system which is weaker than classical logic. In

natural deduction, classical logic can be obtained by adding the rule of excluded

middle, or rule of tertium non datur.

[
1

x : A], Γ....
u : C

[
1

x : ¬A], ∆....
u : C

u : C
EM1

In the presence of EM, the law of excluded middle is derivable as follows

[
1

x : A]

x : A ∨ ¬A
∨I1

[
1

x : ¬A]

x : A ∨ ¬A
∨I1

x : A ∨ ¬A
EM1

EM generalizes the rule of indirect proof, or rule of reductio ad absurdum, consid-

ered in Prawitz (1965)

[
1

x : ¬A]....
u : ⊥
x : A

RAA1

The translation of EM in sequent calculus gives the rule

x : A, Γ→ u : C x : ¬A, ∆→ u : C
Γ, ∆→ u : C LR¬

21



The rules for negation we considered so far do not give a derivation of the law of

excluded middle, whereas LR¬ does.

x : A→ x : A
x : A→ x : A ∨ ¬A R∨ x : A→ x : A

x : ¬A→ x : A ∨ ¬A R∨

→ x : A ∨ ¬A LR¬

However, rule LR¬ is not the only way to get classical logic in sequent calculus.

Alternatively, we may extend the notion of sequent so that a sequent can have an

arbitrary multiset ∆ as succedent, instead of a single formula u : C. By allowing

multi-succedent sequents, the rules for negation become the labelled version of the

rules already considered in Gentzen’s original work, that is,

Γ→ ∆, x : A
x : ¬A, Γ→ ∆ L¬

x : A, Γ→ ∆
Γ→ ∆, x : ¬A R¬

Using contraction, the law of excluded middle can now be derived

x : A→ x : A
→ x : A, x : ¬A R¬

→ x : A ∨ ¬A, x : ¬A R∨

→ x : A ∨ ¬A, x : A ∨ ¬A R∨

→ x : A ∨ ¬A R-C

With multi-succedent sequents, we obtain a labelled sequent calculus with the

same propositional rules of G0c (without quantifiers) of Negri and von Plato (2001),

p. 95. In addition, here we have rules for � and ♦. We shall refer to this system as

G0K, where K stands for Kripke. G0K is a labelled sequent calculus for the basic

modal logic K. All the two-premise rules of G0K have independent contexts be-

cause they are translated from the rules of natural deduction. This feature makes

G0K not suitable for the systematic search of derivations, since two-premise rules

are not invertible and they cannot be applied backwards. Later, only context shar-

ing two-premise rules will be used, in order to have contraction admissible.
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Logical rules of G0K

x : A→ x : A xRy→ xRy

x : A, x : B, Γ→ ∆
x : A ∧ B, Γ→ ∆ L∧

Γ→ ∆, x : A Γ′ → ∆′, x : B
Γ, Γ′ → ∆′, ∆, x : A ∧ B

R∧

x : A, Γ→ ∆ x : B, Γ′ → ∆′

x : A ∨ B, Γ, Γ′ → ∆′, ∆
L∨ Γ→ ∆, x : A

Γ→ ∆, x : A ∨ B R∨1
Γ→ ∆, x : B

Γ→ ∆, x : A ∨ B R∨2

Γ→ ∆, x : A x : B, Γ′ → ∆′

x : A ⊃ B, Γ, Γ′ → ∆′, ∆
L⊃ x : A, Γ→ ∆, x : B

Γ→ ∆, x : A ⊃ B
R⊃

x : ⊥ → ∆
L⊥

xRy, Γ→ ∆, y : A
Γ→ ∆, x : �A R�0

Γ→ ∆, xRy y : A, Γ′ → ∆′

x : �A, Γ, Γ′ → ∆′, ∆
L�0

Γ→ ∆, xRy Γ′ → ∆′, y : A
Γ, Γ′ → ∆′, ∆, x : ♦A

R♦0
xRy, y : A, Γ→ ∆

x : ♦A, Γ→ ∆
L♦0

With negation defined in terms of ⊃ and ⊥, the corresponding rules are derived

from those for ⊃, and will be used only to shorten derivations. Note that initial se-

quent have an arbitrary labelled formula x : A as principal. As in G0c of Negri and

von Plato (2001), weakening and contraction are primitive, and not admissible, in-

ference rules of G0K. They can have as active formulas either labelled formulas or

relational atoms.
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Structural rules of G0K

Γ→ ∆
x : A, Γ→ ∆ L-W Γ→ ∆

Γ→ ∆, x : A R-W Γ→ ∆
xRy, Γ→ ∆ L-W

Γ→ ∆
Γ→ ∆, xRy R-W

x : A, x : A, Γ→ ∆
x : A, Γ→ ∆ L-C

Γ→ ∆, x : A, x : A
Γ→ ∆, x : A R-C

xRy, xRy, Γ→ ∆
xRy, Γ→ ∆ L-C

Γ→ ∆, xRy, xRy,
Γ→ ∆, xRy R-C

As we already said, the rule of cut

Γ→ ∆, x : C x : C, Γ′ → ∆′

Γ, Γ′ → ∆′, ∆
CUT

is not assumed as a primitive rule, but it can be proved to be admissible in G0K.

In general, a rule R with premises S1, . . . , Sn and conclusion S is admissible in a

system G if, whenever an istance of S1, . . . , Sn is derivable in G, the corresponding

istance of S is derivable in G. The presence of contraction complicates the proof

of cut admissibility. Already Gentzen met the problem of finding a suitable per-

mutation of cut and contraction in the proof of the Hauptsatz for LK. If the right

premise of cut is derived by contraction, the permutation of cut and contraction

does not guarantees that the istance of cut is admissible by the inductive hypoth-

esis. The solution proposed by Gentzen is to consider a version of cut that permits

to eliminate m > 1 occurrences of the cut formula. Then it is proved that the calcu-

lus with multicut is equivalent to the calculus with cut, that is, they derive exactly

the same sequents. For details of the Hauptsatz with multicut see Takeuti (1987)
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and for a proof without multicut see von Plato (2001a). The system G0K is strictly

similar to the unlabelled system G0c of Negri and von Plato 2001. The translation

of natural deduction rules into sequent calculus rules are discussed at length in

the introductory chapter of Negri and von Plato (2011).
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Chapter 2
Cut Elimination

The aim of this chapter is to find a labelled sequent calculus in which all the struc-

tural rules (weakening and contraction) are admissible and cut is eliminable. Se-

quent systems in which cut is eliminable permit to find derivations in a systematic

way and to check whether a sequent Γ→ ∆ is derivable by a root-first proof search

procedure: given Γ → ∆, we can decompose its formulas and get simpler sequents

until we arrive at sequents in which there is nothing to decompose left. However,

the possibility of building a derivation starting from the sequent to be derived rests

not only on cut elimination, but also on the possibility to apply logical rules back-

wards. This is to say that the logical rules must be invertible: from the derivabil-

ity of the conclusion of an inference rule, the derivability of its premises follows.

The property of inversion has been first isolated by Ketonen (see Ketonen 1944

and von Plato 2009 for historical backgrounds) and can be achieved for classical

propositional logic by considering all the two-premise rule in their context-sharing

formulation. The rules with independent context are similar to (and derived di-

rectly from) those of natural deduction but they do not support proof search. The

context-independent rules impose that we know how the contexts in the conclusion

should be divided in the premises. However, when we search for a derivation we

do not divide the context at all but repeat it fully in both premises. Therefore rules
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R∧, L∨ and L ⊃ become:

Γ→ ∆, x : B Γ→ ∆, x : B
Γ→ ∆, x : A ∧ B R∧

x : A, Γ→ ∆ x : B, Γ→ ∆
x : A ∨ B, Γ→ ∆ L∨

Γ→ ∆, x : A x : B, Γ→ ∆
x : A ⊃ B, Γ→ ∆

L⊃

Also for the two-premise modal rules L�0 and R♦0 a context-sharing formulation

is possible.

Γ→ ∆, xRy y : A, Γ→ ∆
x : �A, Γ→ ∆ L�0

Γ→ ∆, xRy Γ→ ∆, y : A
Γ→ ∆, x : ♦A

R♦0

Moreover, instead of two rules for right disjunction we can consider a single rule,

which restores the duality between ∧ and ∨

Γ→ ∆, x : A, x : B
Γ→ ∆, x : A ∨ B R∨

In the presence of weakening, contraction, and the rules of G0K, these new rules

are derivable. For instance, the new R∨ is derivable by contraction and the previ-

ous R∨, indicated as R∨′′.

→ x : A, x : B
→ x : A ∨ B, x : B R∨′′

→ x : A ∨ B, x : A ∨ B R∨′′

→ x : A ∨ B R-C

The latter derivation is similar to that of the law of excluded middle given in the

previous chapter, but using R∨, the law of excluded middle can be derived without

any application of contraction and, more importantly, a systematic proof-search

procedure from the conclusion becomes possible

x : A→ x : A
→ x : A, x : ¬A R¬

→ x : A ∨ ¬A R∨
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In fact, contraction can be as “bad” as cut as for as the problem of finding deriva-

tions as concerned: reading contraction bottom-up (from the conclusion to the

premise), formulas in the antecedent are multiplied with no end. Proof search

is irremediably lost as long as contraction is primitive and not admissible in our

system. The rules of weakening become admissible when initial sequents and L⊥

are formulated in a form that allows both left and right contexts.

x : A, Γ→ ∆, x : A xRy, Γ→ ∆, xRy

x : ⊥, Γ→ ∆
L⊥

In this way, weakening is built into initial sequents: consider the derivation of the

a fortiori law of the previous chapter and note that the application of weakening

can be dispensed with because x : A, x : B→ x : A is an initial sequent and should

not be derived from x : A → x : A. However, initial sequents should be modified

further. Note that in the formulation above initial sequents can have x : A and

xRy as principal formulas, where x : A is an arbitrary labelled formula and xRy a

relational atom. Actually, the latter can be left out, provided that the modal rules

with xRy in the succedent are replaced by rules in which xRy appears only in the

antecedent. This can be achieved by considering the following rule L�1 (resp. R♦1)

instead of L�0 (resp. R♦0)

y : A, Γ→ ∆
x : �A, xRy, Γ→ ∆ L�1

Γ→ ∆, y : A
xRy, Γ→ ∆, x : ♦A

R♦1

It easy to show that L�1 is derivable in the presence of L�0 and initial sequents

with xRy as principal formulas, as follows

xRy, Γ→ ∆, xRy y : A, Γ→ ∆
x : �A, xRy, Γ→ ∆ L�0

Analogously, R♦1 is derivable in the presence of R♦0 and relational initial sequents
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xRy, Γ→ ∆, xRy Γ→ ∆, y : A
xRy, Γ→ ∆, x : ♦A

R♦0

Viceversa, L�0 is derivable in the presence of L�1 and cut

Γ→ ∆, xRy
y : A, Γ→ ∆

x : �A, xRy, Γ→ ∆ L�1

x : �A, Γ→ ∆ CUT

Analogously, R♦0 is derivable in presence of R♦1 and cut

Γ→ ∆, xRy
Γ→ ∆, y : A

xRy, Γ→ ∆, x : ♦A
R♦1

Γ→ ∆, x : ♦A CUT

When L�0 is replaced with L�1 and R♦0 with R♦1, no rule of G0K removes a

relational atom xRy from the succedent and initial sequents with xRy as principal

formulas can be left out. Moreover, there is no need to impose that initial sequents

x : A, Γ → ∆, x : A have an arbitrary labelled formula as principal: we can limit

ourselves to atomic initial sequents and prove that arbitrary ones are derivable

(Lemma 2.1.1). Thus, from now on the only initial sequents we will consider are

those of the form x : P, Γ → ∆, x : P, where x : P is a labelled atom. With such

sequents as initial we will able to prove a stronger result concerning invertibil-

ity: not only the inverse rules are admissible but also their application does not

increase the height of the derivation.

Contraction is more complicated to build in. Its admissibility requires the invert-

ibility of the logical rules. Although explained in greater details in the following

Lemma 2.1.5, the proof of contraction admissibility consists in showing that every

application of contraction can be reduced to an application on smaller formulas,

until it acts only on atoms. In order to see how invertibility permits the admissibil-

ity of contraction, consider a derivation in which the last step is by an application
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of contraction and one of the occurrences of the contracted formula is concluded by

an invertible logical rule

....
x : A ⊃ B, Γ→ ∆, x : A

....
x : A ⊃ B, x : B, Γ→ ∆

x : A ⊃ B, x : A ⊃ B, Γ→ ∆
L⊃

x : A ⊃ B, Γ→ ∆ L-C

Suppose that L ⊃ is invertible. Therefore, from the derivability of its premises it

follows that the sequents Γ → ∆, x : A, x : A and x : B, x : B, Γ → ∆ are derivable,

and contraction can be applied on the smaller formulas x : A and x : B. Then, an

application of L ⊃ gives x : A ⊃ B, Γ → ∆. However, not every rule considered so

far is invertible. In particular, L�1 and R♦1 are not invertible. Thus, we follow the

method adopted in Kleene (1952) for intuitionistic logic where L ⊃ is not invert-

ible with respect to its left premise, and we repeat the principal formulas in the

premise. In this way, from L�1 and R♦1 we obtain the rules L� and R♦ of Negri

(2005)

y : A, x : �A, xRy, Γ→ ∆
x : �A, xRy, Γ→ ∆ L�

xRy, Γ→ ∆, x : ♦A, y : A
xRy, Γ→ ∆, x : ♦A

R♦

Thus, L� are and R♦ are strictly cumulative and their invertibility follows triv-

ially from admissibility of weakening. Following the terminology of Troelstra and

Schwichtenberg (2000), we shall call the system just outlined G3K. Although both

G3K and the system of Troelstra and Schwichtenberg (2000, pp. 284–8) are G3-

systems for modal logic, G3K is labelled.

31



Logical rules of G3K

x : P, Γ→ ∆, x : P x : ⊥, Γ→ ∆
L⊥

x : A, x : B, Γ→ ∆
x : A ∧ B, Γ→ ∆ L∧

Γ→ ∆, x : B Γ→ ∆, x : B
Γ→ ∆, x : A ∧ B R∧

x : A, Γ→ ∆ x : B, Γ→ ∆
x : A ∨ B, Γ→ ∆ L∨

Γ→ ∆, x : A, x : B
Γ→ ∆, x : A ∨ B R∨

Γ→ ∆, x : A x : B, Γ→ ∆
x : A ⊃ B, Γ→ ∆

L⊃
x : A, Γ→ ∆, x : B
Γ→ ∆, x : A ⊃ B

R⊃

y : A, x : �A, xRy, Γ→ ∆
x : �A, xRy, Γ→ ∆ L�

xRy, Γ→ ∆, y : A
Γ→ ∆, x : �A R�

xRy, y : A, Γ→ ∆
x : ♦A, Γ→ ∆

L♦
xRy, Γ→ ∆, x : ♦A, y : A

xRy, Γ→ ∆, x : ♦A
R♦

G3K has no structural rule as primitive because they are built in the logical rules.

Therefore we do not assume any structural rule but we prove their admissibility

in G3K. Given that relational atoms xRy can occur only in the antecedent, we

need not take into account the structural rules with such atom as principal in the

succedent, but only the following

Γ→ ∆
x : A, Γ→ ∆ L-W Γ→ ∆

Γ→ ∆, x : A R-W Γ→ ∆
xRy, Γ→ ∆ L-W

x : A, x : A, Γ→ ∆
x : A, Γ→ ∆ L-C

Γ→ ∆, x : A, x : A
Γ→ ∆, x : A R-C

xRy, xRy, Γ→ ∆
xRy, Γ→ ∆ L-C

In contrast with G0K, we assume cut as a primitive rule in G3K and we shall

give a proof of cut elimination, rather than cut admissibility. Consequently, in
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the proof of the cut-elimination theorem we do not assume that in a given deriva-

tion there is at most one istance of cut, but we permit that the derivations of the

premises of cut can contain, in turn, other applications of cut. When cut is explic-

itly present in the system, it can be formulated as the other two-premise rule, that

is, with shared contexts.

Cut rule of G0K

Γ→ ∆, x : C x : C, Γ→ ∆
Γ→ ∆ CUT

2.1 Admissibility of the structural rules

We said that the most important property of G3K is that all the structural rules

are admissible in it. Recall that admissibility in a system G corresponds to the

possibility of finding, for every derivation in G with some application of an infer-

ence rule R, a new derivation of the same conclusion in which all the applications

of R can be dispensed with. In addition, weakening and contraction are height-

preserving admissible, that is, whenever their premises are derivable, the conclu-

sion is also derivable with derivation height bounded by the derivation height of

the premise.

Measure of derivations

Before going into the details of the structural properties of G3K, we need to pro-

vide a precise definition of formal derivation in G3K and introduce the two main

parameters, the height and the rank, by means of which they are measured.

Definition (G3K-derivation). A derivation in G3K is either an initial sequent, or

an instance of L⊥, or an application of a logical rule to the derivation(s) concluding
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its premise(s). A sequent Γ → ∆ is derivable in G3K if there exists a derivation d

for it. This is indicated by

d ` Γ→ ∆

In some cases it is useful to reason inductively on the the height of a formula which

is the length of the longest branch of its construction tree, minus 1.

Definition (Formula-height). The height h of A is defined inductively.

h(P) = h(⊥) = 0;

h(◦A) = h(A) + 1, when ◦ is �,♦;

h(A ◦ B) = max(h(A), h(B)) + 1, when ◦ is ∧,∨,⊃.

The height of a labelled formula x : A is defined as the height of A and relational

atoms xRy have height 0.

Example. The height of ¬P ⊃ (Q ∨ ¬R) is 3 and its construction tree is

¬P ⊃ Q ∨ ¬R

¬P

P

Q ∨ ¬R

Q ¬R

R

There is another parameter that measures derivations in G3K and we call it the

rank of a derivation. Derivation rank measures the height of cut formulas and it

is defined as the smallest n ∈ N such that every cut formula x : C in d has height

< n. It follows that a derivation with rank 0 is a derivation without cuts, and

conversely. The inductive definitions of derivation height and rank are as follows:

Definition (Derivation-height). The height h of d is defined inductively.

If d is an initial sequent or a conclusion of L⊥ then h(d) = 0;
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If the last rule of d is a one-premise rule R then h(d) = h(d′) + 1, where d′ is the

derivation of the premise of R;

If the last rule of d is a two-premise rule R then h(d) = max(h(d′), h(d′′)) + 1, where

d′ and d′′ are the derivations of the premises of R.

Definition (Derivation-rank). The rank r of d is defined by induction.

If d is an initial sequent or a conclusion of L⊥ then r(d) = 0;

If the last rule of d is a one-premise rule R then r(d) = r(d′), where d′ is the deriva-

tion of the premise of R;

If the last rule of d is a two-premise rule R other than cut then r(d) = max(r(d′), r(d′′)),

where d′ and d′′ are the derivations of the permises of R;

If the last rule of d is cut then h(d) = max(r(d′), r(d′′), (h(x : C) + 1)), where d′ and

d′′ are the derivations of the premises of cut and x : C is the cut formula.

Notational convention. By writing

d ` Γ n−→
p

∆

we shall indicate that d is a derivation of Γ → ∆ and that h(d) 6 n, r(d) 6 p.

Moreover, ` Γ n−→
p

∆ (or even Γ n−→
p

∆) means that there is a derivation d such that

d ` Γ n−→
p

∆. Thus, the parameter n (resp. p) is considered as an upper bound of the

height (resp. of the rank) of d. Note that according to this notational convention

we have that for every n 6 n′ and p 6 p′, if d ` Γ n−→
p

∆ then d ` Γ n′−→
p′

∆. In what

follows we frequently make (tacit) use of this fact.

Example. Suppose ` 2−→
1

x : �(P ∧Q) and recall that h(x : �(P ∧Q)) = 2. Then the

following derivation has height 4 and rank 3.
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2−→
1

x : �(P ∧Q)

y : P, y : Q, xRy, x : �(P ∧Q)
0−→
0

y : P

y : P ∧Q, xRy, x : �(P ∧Q)
1−→
0

y : P
L∧

xRy, x : �(P ∧Q)
2−→
0

y : P
L�

x : �(P ∧Q)
3−→
0

x : �P
R�

4−→
3

x : �P
CUT

Arbitrary initial sequents

Derivations in G3K start with initial sequents with atoms as principal formulas.

The reason why it is preferable to have atomic initial sequents is that it guaran-

tees height-preserving invertibility of all the logical rules (cf. Lemma 2.1.5) and

this is needed in order to prove that contraction is an admissible rule (cf. Theo-

rem 2.1.6). For instance, by allowing general initial sequents as primitive, height-

preserving invertibility of R� would fail. However, even if we take as primitive

initial sequents with atomic formulas as principal, it is possible to prove that ini-

tial sequents with arbitrary formulas are derivable in G3K.

Lemma 2.1.1. In G3K it holds that

` x : A, Γ
2·h(A)−−−→

0
∆, x : A

for every labelled formula x : A.

Proof. By induction on h.

If h = 0 then A is P and the claim holds, since x : P, Γ → ∆, x : P is initial. Else, A

is ⊥ and again x : ⊥, Γ→ ∆, x : ⊥ is derivable because it is a conclusion of L⊥.

If h = k + 1 assume by inductive hypothesis (IH) that the claim holds for h = k and

prove that it holds also for h = k + 1. We argue by distinction of cases according to

x : A.
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If x : A is x : B ∧ C we find a derivation of x : B ∧ C, Γ→ ∆, x : B ∧ C as follows.

x : B, x : C, Γ
2·h(B)−−−→

0
∆, x : B x : B, x : C, Γ

2·h(C)−−−→
0

∆, x : C

x : B, x : C, Γ
max(2·h(B),2·h(C))+1−−−−−−−−−−−−→

0
∆, x : B ∧ C

R∧

x : B ∧ C, Γ
max(2·h(B),2·h(C))+2−−−−−−−−−−−−→

0
∆, x : B ∧ C

L∧

where the topmost sequents are derivable by IH, since h(B), h(C) < h(B ∧ C).

Moreover, max(2 · h(B), 2 · h(C)) + 2 = 2 · (max(h(B), h(C)) + 1) = 2 · h(B ∧ C).

If x : A is x : B ∨ C then sequents as x : B ∨ C, Γ→ ∆, x : B ∨ C are derivable by

x : B, Γ
2·h(B)−−−→

0
∆, x : B, x : C x : C, Γ

2·h(C)−−−→
0

∆, x : B, x : C

x : x : B ∨ C, Γ
max(2·h(B),2·h(C))+1−−−−−−−−−−−−→

0
∆, x : B, x : C

L∨

x : B ∨ C, Γ
max(2·h(B),2·h(C))+2−−−−−−−−−−−−→

0
∆, x : B ∨ C

R∨

where the topmost sequents are derivable by IH, since h(B), h(C) < h(B ∨ C). As

above, max(2 · h(B), 2 · h(C)) + 2 = 2 · h(B ∨ C).

If x : A is x : B ⊃ C the sequent x : B ⊃ C, Γ → ∆, x : B ⊃ C has the following

derivation.

x : B, Γ
2·h(B)−−−→

0
∆, x : B, x : C x : B, x : C, Γ

2·h(C)−−−→
0

∆, x : C

x : B ⊃ C, x : B, Γ
max(2·h(B),2·h(C))+1−−−−−−−−−−−−→

0
∆, x : C

L⊃

x : B ⊃ C, Γ
max(2·h(B),2·h(C))+2−−−−−−−−−−−−→

0
∆, x : B ⊃ C

R⊃

where the topmost sequents are derivable by IH, since h(B), h(C) < h(B ⊃ C) and

max(2 · h(B), 2 · h(C)) + 2 = 2 · h(B ⊃ C).

If A is �B we have a derivation of x : �B, Γ→ ∆, x : �B as follows
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y : B, xRy, x : �B, Γ
2·h(B)−−−→

0
∆, y : B

xRy, x : �B, Γ
2·h(B)+1−−−−−→

0
∆, y : B

L�

x : �B, Γ
2·h(B)+2−−−−−→

0
∆, x : �B

R�

where the topmost sequent is derivable by IH, since h(B) < h(�B). Moreover,

2 · h(B) + 2 = 2 · (h(B) + 1) = 2 · h(�B).

If A is ♦B we have a derivation of x : ♦B, Γ→ ∆, x : ♦B as follows

xRy, y : B, Γ
2·h(B)−−−→

0
∆, x : ♦B, y : B

xRy, y : B, Γ
2·h(B)+1−−−−−→

0
∆, x : ♦B

R♦

x : ♦B, Γ
2·h(B)+2−−−−−→

0
∆, x : ♦B

L♦

where the topmost sequent is derivable by IH, since h(B) < h(♦B) and, as above,

h(B) + 2 = 2 · h(♦B).

�

In the proof of the cut-elimination theorem we also need the following result which

states that formulas such as x : ⊥ can be freely removed when occurring in the

succedent.

Lemma 2.1.2. In G3K it holds that

If ` Γ n−→
p

∆, x : ⊥ then ` Γ n−→
p

∆

Proof. By induction on n.

If n = 0 then Γ → ∆, x : ⊥ is initial or conclusion of L⊥, then either Γ and ∆ have

an atom in common, or u : ⊥ is in Γ. In either case, Γ → ∆ is initial or conclusion

of L⊥.
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If n = k + 1 assume by inductive hypothesis (IH) that the claim holds for n = k and

prove that it holds also for k + 1. Consider the rule R that concluded Γ → ∆, x : ⊥.

Apply IH on its premise(s) and the conclusion follows by an application R. Note

that x : ⊥ is never principal because no rule introduces x : ⊥ in the succedent. For

instance, when R is R�,

....
uRv, Γ k−→ ∆′, x : ⊥, v : A

Γ k+1−−→ ∆′, x : ⊥, u : �A
R�

where v does not appear in the conclusion. By IH on the premise uRv, Γ k−→ ∆′, v : A

and by R� again Γ k+1−−→ ∆′, u : �A. The other cases are analogous.

�

Substitution of labels

Owing to the presence of labels in the language, there is a strong analogy between

G3K and systems for predicate logic. Labels in G3K, as well as free variables in

predicate logic, can be replaced and the replacement does not increase the height

and the rank of the derivation (cf. the analogous result Lemma 4.1.2 in Negri

and von Plato 2001). Moreover, substitution of labels is essential in the proof of

admissibility of the necessitation rule of the basic modal logic.

Definition (Substitution). The substitution of labels in relational atoms and la-

belled formulas is defined by cases:
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(xRy)[z/w] ≡ xRy if w 6= x and w 6= y

(xRy)[z/x] ≡ zRy if x 6= y

(xRy)[z/y] ≡ xRz if x 6= y

(xRx)[z/x] ≡ zRz

(x : A)[z/y] ≡ x : A if y 6= x

(x : A)[z/x] ≡ z : A

and it is extended to multisets thereof componentwise.

Lemma 2.1.3. The substitution of labels is height- and rank-preserving admissible

in G3K, i.e.

If ` Γ n−→
p

∆ then ` Γ[y/x] n−→
p

∆[y/x]

for every label x and y.

Proof. By induction on n.

If n = 0 then Γ→ ∆ is initial or conclusion of L⊥ and so is Γ[y/x]→ ∆[y/x].

If n = k + 1 assume by inductive hypothesis (IH) that the claim holds for n = k and

prove that it holds also for n = k + 1. We distinguish the following cases, according

to the last rule R of d. First, we deal with propositional rules and modal rules

without variable condition, that is L� and R♦, and then with modal rules with

eigenvariable. When R is not cut the parameter p is omitted in order to simplify

the notation. As for the propositional rules we deal only with the ∧-rules, the other

cases being analogous, and we go into all the details when R is a modal rule.

If R is a propositional rule then the lemma is proved by applying IH on the premise

of R and then R again. Suppose R is L∧ and its principal formula is labelled by u.

Then the derivation ends with
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....
u : B, u : C, Γ k−→ ∆

u : B ∧ C, Γ k+1−−→ ∆
L∧

By IH on the premise of L∧ we obtain

(u : B)[y/x], (u : C)[y/x], Γ[y/x] k−→ ∆[y/x]

An application of L∧ gives the desired conclusion. When R is R∧ and its principal

formula is labelled by u, the last step of the derivation is

....
Γ k−→ ∆, u : B

....
Γ k−→ ∆, u : C

Γ k+1−−→ ∆, u : B ∧ C
R∧

A new derivation is found by applying IH on both the premises of R∧

Γ[y/x] k−→ ∆[y/x], (u : B)[y/x] and Γ[y/x] k−→ ∆[y/x], (u : C)[y/x]

and by another application of R∧ we obtain the conclusion.

If R is a modal rule without variable condition then the case is similar to that of

propositional rules. Suppose the last step of the derivation is by L�:

....
v : B, u : �B, uRv, Γ′ k−→ ∆

u : �B, uRv, Γ′ k+1−−→ ∆
L�

An application of IH on the premise gives

(v : B)[y/x], (u : �B)[y/x], (uRv)[y/x], Γ′[y/x] k−→ ∆[y/x]
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and the claim holds by another application of L�.

When R is R� or L♦, that is, a modal rule with variable condition some care is

needed in order to avoid clash of labels. If R is R� we have several subcases,

according to the eigenvariable of R�: it could be either x, or y, or else some z

distinct from x and y. In the first case, the principal formula cannot be labelled by

x and x does not appear in Γ and ∆ because of the variable condition: therefore the

substitution is vacuous because there is no occurrence of x. In the second case, if y

is the eigenvariable and the principal formula is labelled by x we have a derivation

the last step of which is

....
xRy, Γ k−→ ∆, y : B

Γ k+1−−→ ∆, x : �B
R�

where y does not appear in the conclusion. Replacing directly x with y would make

R� inapplicable, therefore we need to replace by IH the eigenvariable y with a new

label z.

xRz, Γ k−→ ∆, z : B

Note that by the variable condition this substitution does not involve formulas in

Γ, ∆. Now by applying IH once again:

yRz, Γ[y/x] k−→ ∆[y/x], z : B

and finally the rule R� in order to conclude

Γ[y/x] k+1−−→ ∆[y/x], y : �B

The case in which the principal formula is labelled by a variable other that x is

analogous. In the third case neither x nor y is the eigenvariable. Suppose the
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principal formula is labelled by u, so the derivation is

....
uRv, Γ k−→ ∆, v : B

Γ k+1−−→ ∆, u : �B
R�

By IH we have

(uRv)[y/x], Γ[y/x] k−→ ∆[y/x], (v : B)[y/x]

and, consequently, by R�, we obtain the desired conclusion. The case of L♦ is

similar to R�.

If R is cut with u : C as principal formula and h(u : C) < p then

....
Γ k−→

p
∆, u : C

....
u : C, Γ k−→

p
∆

Γ k+1−−→
p

∆
CUT

By applying IH on its premises of cut

Γ[y/x] k−→
p

∆[y/x], (u : C)[y/x] and Γ[y/x] k−→
p

∆[y/x], (u : C)[y/x]

and the claim holds by another application of cut.

Γ[y/x] k+1−−→
p

∆[y/x]

�
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Admissibility of weakening

The calculus G3K is closed under weakening, that is if a sequent Γ → ∆ is deriv-

able then x : A, Γ→ ∆, Γ→ ∆, x : A, and xRy, Γ→ ∆ are derivable. In addition, the

height and the rank of the derivation are preserved.

Theorem 2.1.4. Weakening is height- and rank-preserving admissible in G3K, i.e.

i) If ` Γ n−→
p

∆ then ` x : A, Γ n−→
p

∆

ii) If ` Γ n−→
p

∆ then ` Γ n−→
p

∆, x : A

iii) If ` Γ n−→
p

∆ then ` xRy, Γ n−→
p

∆

Proof. By induction on n.

If n = 0 then Γ → ∆ is initial or conclusion of L⊥ and so are x : A, Γ → ∆ and

Γ→ ∆, x : A and xRy, Γ→ ∆.

If n = k + 1 assume by inductive hypothesis (IH) that the claim holds for n = k and

prove that it holds also for k + 1. We distinguish the following cases, according to

the last rule R applied.

If R is propositional rule or a modal rule without variable condition, apply IH on

the premise(s) of R and then R again. For instance, if R is L∧ then Γ is u : B ∧ C, Γ′

and the last step of the derivation is

....
u : B, u : C, Γ′ k−→ ∆

u : B ∧ C, Γ′ k+1−−→ ∆
L∧

By the IH we have

i) x : A, u : B, u : C, Γ′ k−→ ∆

ii) u : B, u : C, Γ′ k−→ ∆, x : A

iii) xRy, u : B, u : C, Γ′ k−→ ∆
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from which by L∧ conclude

i) x : A, u : B ∧ C, Γ′ k+1−−→ ∆

ii) u : B ∧ C, Γ′ k+1−−→ ∆, x : A

iii) xRy, u : B ∧ C, Γ′ k+1−−→ ∆

The proof is analogous when R is one of the other one-premise propositional rule,

i.e. when it is R∨ and R ⊃.

If R is R∧ then ∆ is ∆′, u : B ∧ C and the derivation ends with

....
Γ k−→ ∆′, u : B

....
Γ k−→ ∆′, u : C

Γ k+1−−→ ∆′, u : B ∧ C
R∧

By IH we have

i) x : A, Γ k−→ ∆′, u : B and x : A, Γ k−→ ∆′, u : C

ii) Γ k−→ ∆′, u : B, x : A and Γ k−→ ∆′, u : C, x : A

iii) xRy, Γ k−→ ∆′, u : B and xRy, Γ k−→ ∆′, u : C

and by R∧ we conclude

i) x : A, Γ k+1−−→ ∆′, u : B ∧ C

ii) Γ k+1−−→ ∆′, u : B ∧ C, x : A

iii) xRy, Γ k+1−−→ ∆′, u : B ∧ C

Analogously, when R is a two-premise rule, i.e. L∨, L ⊃ and cut.

If R is a modal rule without the variable condition, say L�, then Γ is u : �B, uRv, Γ′

and last step of the derivation is

....
v : B, u : �B, uRv, Γ′ k−→ ∆

u : �B, uRv, Γ′ k+1−−→ ∆
L�
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By IH we have

i) x : A, v : B, u : �B, uRv, Γ′ k−→ ∆

ii) v : B, u : �B, uRv, Γ′ k−→ ∆, x : A

iii) xRy, v : B, u : �B, uRv, Γ′ k−→ ∆

and another application of L� yields

i) x : A, u : �B, uRv, Γ′ k+1−−→ ∆

ii) u : �B, uRv, Γ′ k+1−−→ ∆, x : A

iii) xRy, u : �B, uRv, Γ′ k+1−−→ ∆

When R is a modal rule with variable condition then we need to replace the eigen-

variable with a label z not occurring in Γ, ∆′ and distinct from x and u. Suppose

that the last step of the derivation is by R� and its eigenvariable is x. Then ∆ is

∆′, u : �B, and the derivation ends with

....
uRx, Γ k−→ ∆′, x : B

Γ k+1−−→ ∆′, u : �B
R�

We apply Lemma 2.1.3 on the premise in order to replace x with a new variable z.

uRz, Γ k−→ ∆′, z : B

and then IH

i) x : A, uRz, Γ k−→ ∆′, z : B

ii) uRz, Γ k−→ ∆′, z : B, x : A

iii) xRy, uRz, Γ k−→ ∆′, z : B

Given that z does not appears anywhere else but in the principal formulas of R�

we conclude by R�
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i) x : A, Γ k+1−−→ ∆′, u : �B

ii) Γ k+1−−→ ∆′, u : �B, x : A

iii) xRy, Γ k+1−−→ ∆′, u : �B

�

Inversion Lemma

All the rules of G3K are invertible with the preservation of height and rank. In-

vertibility is needed in order to prove admissibility of contraction and it is funda-

mental for a systematic proof-search procedure.

Lemma 2.1.5. All the rules of G3K are height- and rank-preserving invertible, i.e.

i) If ` x : A ∧ B, Γ n−→
p

∆ then ` x : A, x : B, Γ n−→
p

∆

ii) If ` Γ n−→
p

∆, x : A ∧ B then ` Γ n−→
p

∆, x : A and d ` Γ n−→
p

∆, x : B

iii) If ` x : A ∨ B, Γ n−→
p

∆ then ` x : A, Γ n−→
p

∆ and d ` x : B, Γ n−→
p

∆

iv) If ` Γ n−→
p

∆, x : A ∨ B then ` Γ n−→
p

∆, x : A, x : B

v) If ` x : B ⊃ C, Γ n−→
p

∆ then ` Γ n−→
p

∆, x : B and ` x : C, Γ n−→
p

∆

vi) If ` Γ n−→
p

∆, x : B ⊃ C then ` x : B, Γ n−→
p

∆, x : C

vii) If ` x : �A, xRy, Γ n−→
p

∆ then ` y : A, x : �A, xRy, Γ n−→
p

∆

viii) If ` Γ n−→
p

∆, x : �A then ` xRy, Γ n−→
p

∆, y : A, for every y

ix) If ` xRy, Γ n−→
p

∆, x : ♦A then ` xRy, Γ n−→
p

∆, x : ♦A, y : A

x) If ` x : ♦A, Γ n−→
p

∆ then ` xRy, y : A, Γ n−→
p

∆, for every y

Proof. For the propositional rules we consider in detail only case v, all the other

being analogous. The proof is by induction on n. As usual, we leave out the param-

eter p when the cut rule is not explicitly applied.
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If n = 0 then x : A ⊃ B, Γ→ ∆ is initial or conclusion of L⊥; then both Γ→ ∆, x : A

and x : B, Γ → ∆ are initial or conclusion of L⊥. Note that the claim holds for the

base case only if initial sequents are assumed to have atoms as principal formulas.

If n = k + 1 assume by inductive hypothesis (IH) that the claim holds for n = k

and prove that it holds also for k + 1. If x : A ⊃ B, Γ k+1−−→ ∆ has been derived by

L ⊃ with x : A ⊃ B as principal formula then we have a derivation of Γ k−→ ∆, x : A

and x : B, Γ k−→ ∆, so the claim holds also for n = k + 1. If x : A ⊃ B, Γ k+1−−→ ∆ is

conclusion of a rule different from L ⊃ or has been concluded by L ⊃ with principal

formula distinct from the displayed occurrences of x : A ⊃ B, then we apply IH to

the premise(s) x : A ⊃ B, Γ′ k−→ ∆′ (and x : A ⊃ B, Γ′′ k−→ ∆′′) in order to obtain

Γ′ k−→ ∆′, x : A and x : B, Γ′ k−→ ∆′ (and Γ′′ k−→ ∆′′, x : A and x : B, Γ′′ k−→ ∆′′); then by

an application of R we can conclude Γ k+1−−→ ∆, x : A (and x : B, Γ k+1−−→ ∆).

For the modal cases (vii – x), we distinguish rules in which the principal formulas

are repeated in the premise from those without repetition. L� (resp.R♦) of case vii

(resp. ix) is invertible because the conclusion can be derived from its premise by

an application of weakening which is admissible by Lemma 2.1.4. On the contrary,

modal rules with variable condition as R� (resp. L♦) corresponding to viii (resp. x)

is proved to be height- and rank-preserving invertible by induction on n. Consider

case viii. If n = 0 then Γ → ∆, x : �A is initial or conclusion of L⊥; then so is

xRy, Γ → ∆, y : A. If n = k + 1, assume by IH that the claim holds for n = k and

prove that it holds also for k + 1. If Γ k+1−−→ ∆, x : �A is concluded by R� with x : �A

as principal formula then there is a label z not occurring in Γ, ∆ and different from

x such that xRz, Γ k−→ ∆, z : A. By an application of the Lemma 2.1.3 we obtain that

for every y, it holds that xRy, Γ k−→ ∆, y : A and the claim holds by IH. On the other

hand, if it has been derived by a rule R or by R� with principal formula different

from x : �A, then we can apply IH, but some care is needed when R is in turn a

modal rule with variable condition. For instance, suppose that Γ k+1−−→ ∆, x : �A

is the conclusion of L♦ with principal formula u : ♦B then we have the following
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derivation

....
uRv, v : B, Γ k−→ ∆, x : �A

u : ♦B, Γ′ k+1−−→ ∆, x : �A
L♦

We want to prove xRy, x : ♦B, Γ′ k+1−−→ ∆, y : A for every y. If v, the eigenvariable

of L♦, is different from y then we apply IH on the premise and obtain the sequent

xRy, uRv, v : B, Γ k−→ ∆, y : A and the conclusion is obtained by L♦ again. Other-

wise, if v is y we need Lemma 2.1.3 on the premise of L♦ in order to replace the

eigenvariable y with a new z

uRz, z : B, Γ′ k−→ ∆, x : �A

Now, by IH we obtain

xRy, uRz, z : B, Γ′ k−→ ∆, y : A

and then by L♦ again

xRy, u : ♦B, Γ′ k+1−−→ ∆, y : A

�

Admissibility of contraction

In this section we shall prove that contraction is admissible with the preservation

of the height and the rank of derivations. This result, as we have already said, is

fundamental for the proof-search in G3K.
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Theorem 2.1.6. Contraction is height- and rank-preserving admissible in G3K,

i.e.

i) If ` x : A, x : A, Γ n−→
p

∆ then ` x : A, Γ n−→
p

∆

ii) If ` Γ n−→
p

∆, x : A, x : A then ` Γ n−→
p

∆, x : A

iii) If ` xRy, xRy, Γ n−→
p

∆ then ` xRy, Γ n−→
p

∆

Proof. By simultaneous induction on n.

If n = 0 then x : A, x : A, Γ → ∆ (resp. Γ → ∆, x : A, x : A) is initial or conclusion of

L⊥. In both cases also x : A, Γ → ∆ (resp. Γ → ∆, x : A) is initial or conclusion of

L⊥.

If n = k + 1 assume by inductive hypothesis (IH) that the claim holds for n = k

and prove that it holds also for k + 1. We distinguish two cases: if none of the

contraction formulas is principal in the last rule, then both occurrences are in the

premise(s) and we apply IH to the premise(s) and then the rule. If one of the

contraction formulas is principal, we first apply Lemma 2.1.5 to the premise(s), IH

and then the rule. The latter case has three subcases: if R is a propositional rule,

say L ⊃, then x : A is x : B ⊃ C and the derivation ends with

....
x : B ⊃ C, Γ k−→ ∆, x : B

....
x : B ⊃ C, x : C, Γ k−→ ∆

x : B ⊃ C, x : B ⊃ C, Γ k+1−−→ ∆

By applying Lemma 2.1.5, item v, we obtain

Γ k−→ ∆, x : B, x : B and x : C, x : C, Γ k−→ ∆

By IH for left and right contraction simultaneously we conclude

Γ k−→ ∆, x : B and x : C, Γ k−→ ∆
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and by L ⊃ we have a derivation of the desired conclusion

x : B ⊃ C, Γ k+1−−→ ∆

In the case of right contraction we start from

....
x : B, Γ k−→ ∆, x : C, x : B ⊃ C

Γ k+1−−→ ∆, x : B ⊃ C, x : B ⊃ C
R⊃

By Lemma 2.1.5, item vi, we have

x : B, x : B, Γ k−→ ∆, x : C, x : C

from which by IH simultaneously for left and right contraction and L ⊃ we con-

clude

Γ k+1−−→ ∆, x : B ⊃ C

If R is L� or R♦ the proof is straightforward because the principal formula is

repeated in the premises and IH can be applied directly without any appeal to

invertibility. For instance, suppose we have a derivation of a sequent with two

occurrences of x : �A and one of them is the principal formula of an application of

L�, i.e.

....
y : B, x : �B, x : �B, xRy, Γ′ k−→ ∆

x : �B, x : �B, xRy, Γ′ k+1−−→ ∆
L�

Given that the principal formula x : �B appears also in the premise we can apply
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directly IH

y : B, x : �B, xRy, Γ′ k−→ ∆

from which by L� again

x : �B, xRy, Γ′ k+1−−→ ∆

If R is a modal rule with variable condition, i.e. R� or L♦, the last step of the

derivation is

....
xRy, y : B, x : ♦B, Γ k−→ ∆

x : ♦B, x : ♦B, Γ k+1−−→ ∆
L♦

By Lemma 2.1.5, item x, on the premise of L♦ we obtain

xRy, y : B, xRy, y : B, Γ k−→ ∆

in order to make IH applicable

xRy, y : B, Γ k−→ ∆

Then, by L♦ again we get

x : ♦B, Γ k+1−−→ ∆

�
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2.2 Cut elimination

In this section we shall indicate the system G3K with cut as G3KC and we shall

prove that in G3KC the cut-elimination theorem holds. Furthermore, our aim is

to take into account the problem of the rate of growth of derivations during cut

elimination. In particular, this proof shows that there is a hyperexponential

upper bound on growth of derivations under the procedure of cut elimination,

that is, when a derivation is converted into a cut-free one the latter is at most

hyperexponentially heigher than the former. This bound is calculated following

the proof of cut elimination for first order logic in Schwichtenberg (1977). However,

we argue that this bound is not sharp and that a better result might be achieved

by a modification of the rule L�.

Definition (Hyp2). Let 2k : N2 −→N be a function defined recursively as

20(m) = m and 2k+1(m) = 22k(m)

2k is called hyperexponential function (with base 2).

Observation. The argument k of 2k refers to the height of the “exponentiation

tower”. In fact, 2k(m) is 22. . .2
m

︸ ︷︷ ︸
k times

. Moreover, it is easy to see that 2k increases fast:

20(0) = 0; 21(0) = 1; 22(0) = 2; 23(0) = 4; 24(0) = 16; 25(0) = 65.536; . . .

A property of the hyperexponential functions we shall use in the following is:

Proposition 2.2.1. For any k, m ∈N it holds that

2k+1(m) = 2k(2
m)
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Main Lemma

The following lemma shows that cuts can be permuted upward in a derivation until

they reach an initial sequent or a conclusion of L⊥. The proof presents the deriva-

tion transformations that are at the core of the original Gentzen’s Hauptsatz and

in the proof of cut admissibility of Negri (2005), with two basic differences. First,

the cut here considered is context sharing, that is, the context in premises of cut is

the same. Secondly, in the proof of cut admissibility of Negri (2005) and in Negri

and von Plato (2001, 2011) the topmost cut of a given derivation is considered, and

it is shown that this choice is not restrictive. In the following proof instead we deal

with the case in which derivations of the premises of cut can in turn contain other

applications of cut.

Lemma 2.2.2 (Main Lemma). Let d1 and d2 be two derivations in G3KC such that

d1 ` Γ n−→
p

∆, x : C and d2 ` x : C, Γ m−→
p

∆

and let h(x : C) = p. Then there is a derivation d G3KC such that

d ` Γ n+m−−→
p

∆

Observation. Obviously, the conclusion Γ→ ∆ could be easily derived by cut. How-

ever, the derivation d we obtain in this way would be of height max(n, m) + 1 and

rank p + 1, because h(x : C) = p by hypothesis. The Lemma says that the rank can

be reduced from p + 1 to p, provided that the height increases sufficiently. In fact,

max(n, m) + 1 6 n + m for n, m 6= 0.

Proof. By induction on n + m. The proof follows the pattern:

1. Either d1 or d2 is initial or conclusion of L⊥:
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(a) d1 is initial or conclusion of L⊥;

(b) d2 is initial or conclusion of L⊥.

2. Neither d1 nor d2 is initial or conclusion of L⊥ and:

(a) x : C is not principal in d1;

(b) x : C is not principal in d2;

(c) x : C is principal both in d1 and d2.

Case 1a

Suppose that d1 is an initial sequent or a conclusion of L⊥. There are three sub-

cases:

If x : C is principal then C is an atom P and Γ is x : P, Γ′. In this case take d2

x : P, x : P, Γ′ m−→
p

∆

The two occurrences of x : P can be contracted by Theorem 2.1.6, thus

x : P, Γ′ m−→
p

∆

and so, also x : P, Γ′ n+m−−→
p

∆.

If x : C is not principal then Γ and ∆ have an atom in common, say x : P. Therefore,

the conclusion x : P, Γ′ → ∆′, x : P has height 0 and so x : P, Γ′ n+m−−→ ∆′, x : P.

If d1 is conclusion of L⊥ then x : ⊥ is in Γ and also the conclusion x : ⊥, Γ′ → ∆ is

derivable.
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Case 1b

Suppose that d2 is an initial sequent or a conclusion of L⊥ and consider the follow-

ing subcases.

If d2 is an initial sequent and x : C is principal then C is atomic and the atom x : P

is in ∆. In this case, from d1

Γ n−→
p

∆′x : P, x : P

we obtain

Γ n−→
p

∆′, x : P

by admissibility of contraction (Theorem 2.1.6).

If x : C is not principal then Γ and ∆ have an atom in common and also the conclu-

sion x : P, Γ′ 0−→ ∆′x : P is derivable because initial.

If d2 is conclusion of L⊥ then either x : ⊥ is in Γ or it is x : C. In the first case, the

conclusion x : ⊥, Γ′ 0−→ ∆ is derivable because it is concluded by L⊥. In the second

case take d1 which is

Γ n−→
p

∆, x : ⊥

and apply Lemma 2.1.2 in order to conclude Γ n−→
p

∆, and so also Γ n+m−−→
p

∆.

Case 2a

If d1 is neither an initial sequent nor a conclusion of L⊥, consider first of all the

case in which d1 is concluded by a rule R1 with x : C not principal. There are as

many cases as istances of R1.
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If R1 is a one-premise propositional rule, say L∧, then Γ is u : A ∧ B, Γ′ and d1 is

....
u : A, u : B, Γ′ n−1−−→

p
∆, x : C

u : A ∧ B, Γ′ n−→
p

∆, x : C
L∧

First, take d2

x : C, u : A ∧ B, Γ′ m−→
p

∆

and apply inversion of L∧ (Lemma 2.1.5, item i) in order to obtain

x : C, u : A, u : B, Γ′ m−→
p

∆

and then find a derivation d of u : A ∧ B, Γ′ n+m−−→
p

∆ as follows

u : A, u : B, Γ′ n−1−−→
p

∆, x : C x : C, u : A, u : B, Γ′ m−→
p

∆

u : A, u : B, Γ′
(n−1)+m−−−−−→

p
∆

IH

u : A ∧ B, Γ′ n+m−−→
p

∆
L∧

The cases of the other propositional one-premise rules, i.e. R∨ and R ⊃, are analo-

gous.

Let R1 be a two-premise rule as L ⊃. Then Γ is u : A ⊃ B, Γ′ and d1 is

....
Γ′ n−1−−→

p
∆, u : A, x : C

....
u : B, Γ′ n−1−−→

p
∆, x : C

u : A ⊃ B, Γ′ n−→
p

∆, x : C
L⊃

Also in this case, take d2

57



x : C, u : A ⊃ B, Γ′ m−→
p

∆

and apply Lemma 2.1.5, item v, giving

x : C, Γ′ m−→
p

∆, u : A and x : C, u : B, Γ′ m−→
p

∆

Then find a derivation d of u : A ⊃ B, Γ′ n+m−−→
p

∆ as follows

Γ′ n−1−−→
p

∆, u : A, x : C x : C, Γ′ m−→
p

∆, u : A

Γ′
(n−1)+m−−−−−→

p
∆, u : A

IH

u : B, Γ′ n−1−−→
p

∆, x : C x : C, u : B, Γ′ m−→
p

∆

u : B, Γ′
(n−1)+m−−−−−→

p
∆

IH

u : A ⊃ B, Γ′ n+m−−→
p

∆
L⊃

Analogously for other two-premise rules as R∧ and L∨.

When R1 is a modal rule the proof follows the pattern of other one-premise rules.

For instance, suppose R1 is L� then Γ is uRv, u : �B, Γ′ and d1 is

....
v : B, uRv, u : �B, Γ′ n−1−−→

p
∆, x : C

uRv, u : �B, Γ′ n−→
p

∆, x : C
L�

Find a derivation d of uRv, u : �B, Γ′ n+m−−→
p

as follows

v : B, uRv, u : �B, Γ′ n−1−−→
p

∆, x : C

x : C, uRv, u : �B, Γ′ m−→
p

∆

x : C, v : B, uRv, u : �B, Γ′ m−→
p

∆
L-W

v : B, uRv, u : �B, Γ′
(n−1)+m−−−−−→

p
∆

IH

uRv, u : �B, Γ′ n+m−−→
p

∆
L�

If R1 is R� then ∆ is ∆′, u : �B and d1 is
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uRv, Γ n−1−−→
p

∆′, v : B, x : C

Γ n−→
p

∆′, u : �B, x : C
R�

with the condition that v is not in the conclusion of R�. Then we find a derivation

d of Γ n+m−−→
p

∆′, u : �B as follows. By INV we refer to an application of Lemma 2.1.5.

uRv, Γ n−1−−→
p

∆′, v : B, x : C

x : C, Γ m−→
p

∆′, u : �B

x : C, uRv, Γ m−→
p

∆′, v : B
INV

uRv, Γ
(n−1)+m−−−−−→

p
∆′, v : B

IH

Γ n+m−−→
p

∆′, u : �B
R�

The last case is when R1 is cut on a formula u : B different from the displayed x : C

and h(x : B) < p. Then d1 is

....
Γ n−1−−→

p
∆, x : C, u : B

....
u : B, Γ n−1−−→

p
∆, x : C

Γ n−→
p

∆, x : C
CUT

We find a derivation d of Γ n+m−−→
p

as follows. Consider the following two derivations.

The first one takes d2 and applies admissibility of weakening (Lemma 2.1.4) in

order to make IH applicable on the left premise of cut.

Γ n−1−−→
p

∆, x : C, u : B

x : C, Γ m−→
p

∆

x : C, Γ m−→
p

∆, u : B
R-W

Γ
(n−1)+m−−−−−→

p
∆, u : B

IH

The second derivation is similar. It takes d2 and applies admissibility of weakening

so that IH can be applied on the right premise of cut.
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u : B, Γ n−1−−→
p

∆, x : C

x : C, Γ m−→
p

∆

u : B, x : C, Γ m−→
p

∆
L-W

u : B, Γ
(n−1)+m−−−−−→

p
∆

IH

Finally, take the conclusion of the two derivations and apply cut in order to get the

conclusion Γ n+m−−→
p

∆.

Γ
(n−1)+m−−−−−→

p
∆, u : B u : B, Γ

(n−1)+m−−−−−→
p

∆

Γ n+m−−→
p

∆
CUT

Case 2b

Similar to 2a.

Case 2c

When the cut formula x : C is principal in both d1 and d2 we consider what is x : C.

If x : C is x : A ∧ B then d1 and d2 are

....
Γ n−1−−→

p
∆, x : A

....
Γ n−1−−→

p
∆, x : B

Γ n−→
p

∆, x : A ∧ B
R∧

....
x : A, x : B, Γ m−1−−→

p
∆

x : A ∧ B, Γ m−→
p

∆
L∧

Find d as follows
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Γ m−1−−→
p

∆, x : B

Γ n−1−−→
p

∆, x : A

x : B, Γ n−1−−→
p

∆, x : A
L-W

x : A, x : B, Γ m−1−−→
p

∆

x : B, Γ
max(n,m)−−−−−→

p
∆

CUT

Γ
max(m,max(n,m)+1)−−−−−−−−−−−→

p
∆

CUT

Note that max(m, max(n, m) + 1) = max(n, m) + 1 and then the height of the con-

clusion is max(n, m) + 1. As noted above, when m and n are are greater than 0 then

max(n, m) + 1 6 n + m. Therefore, we have also Γ n+m−−→ ∆. Moreover, the rank is p

because h(x : A), h(x : B) < p = h(x : A ∧ B).

If x : C is x : A ∨ B then d1 and d2 are

....
Γ n−1−−→

p
∆, x : A, x : B

Γ n−→
p

∆, x : A ∨ B
R∨

....
x : A, Γ m−1−−→

p
∆

....
x : B, Γ m−1−−→

p
∆

x : A ∨ B, Γ m−→
p

∆
L∨

Find d as follows

Γ n−1−−→
p

∆, x : A, x : B

x : A, Γ m−1−−→
p

∆

x : A, Γ m−1−−→
p

∆, x : B
R-W

Γ
max(n,m)−−−−−→

p
∆, x : B

CUT

x : B, Γ m−1−−→
p

∆

Γ
max(max(n,m)+1,m)−−−−−−−−−−−→

p
∆

CUT

As above, the height of derivation of the conclusion is max(n, m) + 1 and therefore

Γ n+m−−→
p

∆. Moreover, h(x : A), h(x : B) < p = h(x : A ∨ B) and so the rank is p.

If x : C is x : A ⊃ B then d1 and d2 are
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....
x : A, Γ n−1−−→

p
∆, x : B

Γ n−→
p

∆, x : A ⊃ B
R⊃

....
Γ m−1−−→

p
∆, x : A

....
x : B, Γ m−1−−→

p
∆

x : A ⊃ B, Γ m−→
p

∆
L⊃

Find d as follows

Γ m−1−−→
p

∆, x : A

x : A, Γ n−1−−→
p

∆, x : B

x : B, Γ m−1−−→
p

∆

x : B, x : A, Γ m−1−−→
p

∆
L-W

x : A, Γ
max(n,m)−−−−−→

p
∆

CUT

Γ
max(m,max(n,m)+1)−−−−−−−−−−−→

p
∆

CUT

Again, the height of derivation of the conclusion is max(n, m) + 1, so Γ n+m−−→
p

∆.

Furthermore, the rank of d is p because h(x : A), h(x : B) < p = h(x : A ⊃ B).

If x : C is x : �A then Γ is xRy, Γ′ and d1 and d2 are

....
xRz, xRy, Γ′ n−1−−→

p
∆, z : A

xRy, Γ′ n−→
p

∆, x : �A
R�

....
y : A, x : �A, xRy, Γ′ m−1−−→

p
∆

x : �A, xRy, Γ′ m−→
p

∆
L�

where z is not in the conclusion of R�. First, consider the two following deriva-

tions. The first, has as premises the conclusion of R� (with a weakening for match-

ing the contexts) and the premise of L�. The derivation uses IH in order to keep p

as rank. Note that by applying cut instead IH we would have rank p + 1 because

of the cut on h(x : �A) = p.
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xRy, Γ′ n−→
p

∆, x : �A

y : A, xRy, Γ′ n−→
p

∆, x : �A
L-W

y : A, x : �A, xRy, Γ′ m−1−−→
p

∆

y : A, xRy, Γ′
n+(m−1)−−−−−→

p
∆

IH

In the second derivation, Lemma 2.1.3 is applied in order to replace z with y in the

premise of R�. Note that z is eigenvariable and so the substitution does not affect

the context.

xRz, xRy, Γ′ n−1−−→
p

∆, z : A

xRy, xRy, Γ′ n−1−−→
p

∆, y : A
y/z

xRy, Γ′ n−1−−→
p

∆, y : A
L-C

Then, by applying cut on their conclusions we obtain

xRy, Γ′ n−1−−→
p

, ∆, y : A y : A, xRy, Γ′
n+(m−1)−−−−−→

p
∆

xRy, Γ′
max(n−1,n+(m−1))+1−−−−−−−−−−−−−→

p
∆

CUT

Now, max(n− 1, n + (m− 1)) + 1 = max(n, n + m) = n + m because n, m 6= 0. More-

over, the rank is p because cut applies on a formula smaller than x : �A. Therefore,

we conclude xRy, Γ′ n+m−−→
p

∆.

If x : C is x : ♦A then Γ is xRy, Γ′ and d1 and d2 are

....
xRy, Γ′ n−1−−→

p
∆, x : ♦A, y : A

xRy, Γ′ n−→
p

∆, x : ♦A
R♦

....
z : A, xRz, xRy, Γ′ m−1−−→

p
∆

x : ♦A, xRy, Γ′ m−→
p

∆
L♦

where z is not in the conclusion of L♦. As above, consider the following partial

derivations.
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xRy, Γ′ n−1−−→
p

∆, x : ♦A, y : A

x : ♦A, xRy, Γ′ m−→
p

∆

x : ♦A, xRy, Γ′ m−→
p

∆, y : A
R-W

xRy, Γ′
(n−1)+m−−−−−→

p
∆, y : A

IH

and

z : A, xRz, xRy, Γ′ m−1−−→
p

∆

y : A, xRy, xRy, Γ′ m−1−−→
p

∆
y/z

y : A, xRy, Γ′ m−1−−→
p

∆
L-C

By applying cut on the conclusions we obtain

xRy, Γ′
(n−1)+m−−−−−→

p
∆, y : A y : A, xRy, Γ′ m−1−−→

p
∆

xRy, Γ′
max((n−1)+m,m−1)+1−−−−−−−−−−−−−→

p
∆

CUT

Once again, height of the derivation is max((n − 1) + m, m − 1) + 1 = n + m and

rank p because h(y : A) < h(x : ♦A).

�

Observation. In the proof we often use height and rank preserving invertibility of

the logical rules. However, the invertibility can be avoided and the derivation con-

versions can be obtained by an application of weakening and contraction which are

height and rank preserving admissible by Theorems 2.1.4 and 2.1.6. The choice of

applying the Inversion Lemma 2.1.5 is due to the fact that in this way all the ap-

plications of contraction have atomic formulas x : P and xRy as principal formulas.

In fact, the only applications of contraction admissibility required are that of the

case 1a when one of the premise of cut is an initial sequent and the cut formula

x : P is principal in it, and that of the case 2b in which the cut formula is a modal
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formula x : �A and it is principal in both premises of cut. In the latter, contraction

applies on two occurrences of xRy. Thus, there is no need to prove admissibility of

contraction for arbitrary formulas and the proof of Theorem 2.1.6 can be restricted

to the case in which contracted formulas are either propositional x : P or relational

atoms xRy.

Rank reduction Lemma

In the previous lemma, it is shown that if the premises of cut are derivable then

the conclusion of cut is also derivable, and the height and the rank can be kept

constant. Now, we prove that every derivation of a sequent Γ → ∆ can be trans-

formed into a derivation of the same sequent in which the rank of derivations can

be reduced. However, the height increases from m to 2m.

Lemma 2.2.3 (Rank Reduction). Every derivation d in G3KC such that

d ` Γ m−−→
p+1

∆

can be converted into a derivation d∗ such that

d∗ ` Γ 2m
−→

p
∆

Proof. By induction on m.

If m = 0 then d is an initial sequent or conclusion of L⊥. In both cases, we take

d∗ := d and we have d∗ ` Γ 20=1−−→
p

∆.

If m = k + 1 assume by inductive hypothesis (IH) that the claim holds for m = k

and prove that it holds also for k + 1. We argue by distinction of cases according

to the last rule R of d. In all cases d∗ is found by applying IH on the premise(s) of
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R and then R again, the only exception being that of cut rule with cut formula of

rank p when we need Lemma 2.2.2.

If R is a one-premise rule, say L�, then Γ is x : �A, xRy, Γ′ and d ends with

....
y : A, x : �A, xRy, Γ′ k−−→

p+1
∆

x : �A, xRy, Γ′ k+1−−→
p+1

∆
L�

Find d∗ as follows

y : A, x : �A, xRy, Γ′ k−−→
p+1

∆

y : A, x : �A, xRy, Γ′ 2k
−→

p
∆

IH

x : �A, xRy, Γ′ 2k+1−−→
p

∆
L�

Given that 2k + 1 6 2k+1, we can conclude also x : �A, xRy, Γ′ 2k+1
−−→

p
∆.

If R is R� then ∆ is ∆′, x : �A and d is

....
xRy, Γ k−−→

p+1
∆, y : A

Γ k+1−−→
p+1

∆′, x : �A
R�

where y is not in the conclusion of R�. Find d∗ as follows

xRy, Γ k−−→
p+1

∆, y : A

xRy, Γ 2k
−→

p
∆′, y : A

IH

Γ 2k+1−−→
p

∆′, x : �A
R�

Therefore d∗ ` Γ′ 2k+1
−−→

p
∆, x : �A.
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If R is a two-premise rule as L ⊃ we have that x : A ⊃ B, Γ′ and d is

....
Γ′ k−−→

p+1
∆, x : A

....
x : B, Γ′ k−−→

p+1
∆

x : A ⊃ B, Γ′ k+1−−→
p+1

∆
L⊃

and it can be converted into d∗ as follows

Γ′ k−−→
p+1

∆, x : A

Γ′ 2k
−→

p
∆, x : A

IH

x : B, Γ′ k−−→
p+1

∆

x : B, Γ′ 2k
−→

p
∆

IH

x : A ⊃ B, Γ′ 2k+1−−→
p

∆
L⊃

As above, d∗ ` x : A ⊃ B, Γ′ 2k+1
−−→

p
∆.

The case in which R is cut is straightforward when cut formula has height < p and

follows the same pattern of two-premise rules. The most important case is when R

is cut and height of cut formula is p, i.e. h(x : C) = p

Γ k−−→
p+1

∆, x : C x : C, Γ k−−→
p+1

∆

Γ k+1−−→
p+1

∆
CUT

By applying IH on the premises of cut we obtain

Γ 2k
−→

p
∆, x : C and x : C, Γ 2k

−→
p

∆

At this point we use the Main Lemma 2.2.2 in order to get

Γ 2k+1
−−→

p
∆

since 2k + 2k = 2(2k) = 2k+1.
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�

Cut-free derivations

The final step of cut elimination consists in showing that any istance of cut can

be dispensed with, that is, every derivation with rank p can be converted into a

derivation with rank 0. We will show that the procedure of cut elimination has as

consequence an hyperexponential growth of the derivation.

Theorem 2.2.4 (Cut elimination). In G3KC cut is eliminable, i.e. every derivation

d such that

d ` Γ n−→
p

∆

can be converted into a derivation d− such that

d− ` Γ
2p(n)−−−→

0
∆

Proof. By induction on p.

If p = 0 then d has no cuts and we can take d as d−.

If p = k + 1 assume by inductive hypothesis (IH) that the claim holds for p = k and

prove that it holds also for p = k + 1. Thus from

d ` Γ n−−→
k+1

∆

we find d− by applying the rank reduction Lemma 2.2.3:

d− ` Γ 2n
−→

k
∆
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Now, by IH

d− ` Γ
2k(2n)−−−→

0
∆

By Proposition 2.2.1 we have 2k(2n) = 2k+1(n) and therefore

d− ` Γ
2k+1(n)−−−−→

0
∆

�

Observation. We return to the role of contraction in the proof of cut elimination. We

have seen that rule L� (resp. R♦) is trivially invertible, once one has shown that

weakening is admissible: since principal formulas x : �A, xRy (resp. xRy, x : ♦A)

are repeated, the inversion of L� (resp. R♦) holds by Theorem 2.1.4. Therefore,

contraction is admissible (Theorem 2.1.6) without any use of inversion (Lemma

2.1.5) of L� (resp. R♦). This is to say, the repetition of principal formulas builds

contraction into the logical rules. In fact, when the rule without repetition is con-

sidered, i.e. L�1

y : A, Γ→ ∆
x : �A, xRy, Γ→ ∆ L�1

the standard L� becomes derivable by a step of contraction. The double infer-

ence line indicates repeated applications of the structural rules of weakening or

contraction.

y : A, x : �A, xRy, Γ→ ∆
x : �A, xRy, x : �A, xRy, Γ→ ∆ L�1

x : �A, xRy, Γ→ ∆ L-C

The difference between L� and L�1 is that L� derives basic theorems of modal

logic without any application of contraction, whereas with L�1 these applications
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are unavoidable. For example, to derive x : �(P ⊃ Q), x : �P → x : �Q with L�1

contraction is essential.

y : P→ y : Q, y : P y : Q, y : P→ y : Q
y : P ⊃ Q, y : P→ y : Q

L⊃

xRy, y : P ⊃ Q, x : �P→ y : Q L�1

xRy, xRy, x : �(P ⊃ Q), x : �P→ y : Q
L�1

xRy, x : �(P ⊃ Q), x : �P→ y : Q
C

x : �(P ⊃ Q), x : �P→ x : �Q
R�

The situation is analogous in first-order logic to the derivation of the sequent

→ ∃x(Px ⊃ ∀yPy), where a contraction on ∃x(P(x) ⊃ ∀yP(y)) is required if R∃

is without repetition of the principal formula. On the contrary, using L� any ap-

plication of contraction can be dispensed with and the above derivation can be

found by applying a systematic proof-search from the sequent to be derived. How-

ever, on a closer inspection the application of contraction in the above derivation

has xRy as principal formula, whereas in L� both x : �A and xRy are repeated

in the premise. Therefore, we consider a new left rule for � where the relational

atom xRy, but not x : �A, is repeated in the premise.

xRy, y : A, Γ→ ∆
xRy, x : �A, Γ→ ∆ L�2

Still, the standard L� is derivable from L�2 by contraction

y : A, xRy, x : �A, Γ→ ∆
x : �A, xRy, x : �A, Γ→ ∆ L�2

xRy, x : �A, Γ→ ∆ L-C

In contrast to L�1, L�2 proves x : �(P ⊃ Q), x : �P → x : �Q without any

contraction. In fact,
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y : P, xRy→ y : Q, y : P y : Q, xRy, y : P→ y : Q
xRy, y : P ⊃ Q, y : P→ y : Q

L⊃

xRy, y : P ⊃ Q, x : �P→ y : Q L�2

xRy, x : �(P ⊃ Q), x : �P→ y : Q
L�2

x : �(P ⊃ Q), x : �P→ x : �Q
L⊃

Therefore, if we take L�1 as primitive, we need primitive contraction as well oth-

erwise the calculus is not complete: as we have shown, there is a valid sequent

which is not derivable without contraction, i.e. x : �(P ⊃ Q), x : �P → x : �Q.

However, we conjecture that the repetition of x : �A in the the premise of L� is

not needed in G3K. In other words, we could take L�2 as primitive instead of L�,

and still have a cut-free and complete system. However, like L�1, rule L�2 is not

invertible and this constitutes a serious obstacle to the proof of contraction admis-

sibility: if the principal formula x : �A is not available in the premise, there is no

immediate method of converting a derivation of

....
xRy, x : �A, y : A, Γ→ ∆

xRy, x : �A, x : �A, Γ→ ∆ L�2

xRy, x : �A, Γ→ ∆ L-C

into a derivation in which contraction is applied to smaller formulas.

2.3 Correspondence with an axiomatic system

The system G3K corresponds to the Hilbert system K of the basic modal logic.

All the axioms of K are derivable and its rules are admissible in G3K, so K ⊆

G3K. Along with completeness of K, admissibility of rules of K and derivability

of K axioms give an indirect completeness proof for G3K. The full correspondence

between G3K and K with the soundness of G3K rules (see Lemma 2.4.1). We recall

that the standard presentation of an axiomatic system consists of all the axioms
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of the classical propositional logic (A1) together with the distributivity axiom (A2)

and the axiom of duality between modal operators (A3). The rules are the modus

ponens and the generalization of �. For a detailed exposition see from Hughes and

Cresswell (1996).

A1 All the axioms of propositional logic PC

A2 �(A ⊃ B) ⊃ �A ⊃ �B Distributivity

A3 ♦A ⊃⊂ ¬�¬A Duality

R1 From Γ ` A ⊃ B and ∆ ` A infer Γ, ∆ ` B Modus Ponens

R2 From ` A infer ` �A Necessitation

Since, the system G3K allows a systematic proof-search procedure, a derivation

for each axiom of the Hilbert-style system can be systematically found.

Lemma 2.3.1. All the axioms (rules) of K are derivable (resp. admissible) in G3K.

Proof. By a systematic proof-search procedure from the sequent to be derived. The

axioms of PC are derivable straightforwardly. The distributivity axiom A2 has the

following derivation

y : A, xRy, x : �(A ⊃ B), x : �A→ y : B, y : A y : A, y : B, xRy, x : �(A ⊃ B), x : �A→ y : B
y : A, y : A ⊃ B, xRy, x : �(A ⊃ B), x : �A→ y : B

L⊃

xRy, x : �(A ⊃ B), x : �A→ y : B
L�

x : �(A ⊃ B), x : �A→ x : �B
R�

→ x : �(A ⊃ B) ⊃ �A ⊃ �B
R⊃

Note that topmost sequents are derivable by Lemma 2.1.1. The duality axiom A3

is derivable by
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xRy, y : A, x : �¬A→ y : A
y : ¬A, xRy, y : A, x : �¬A→ L¬

xRy, y : A, x : �¬A→ L�

x : ♦A, x : �¬A→ L♦

x : ♦A→ x : ¬�¬A
R¬

→ x : ♦A ⊃ ¬�¬A
R⊃

y : A, xRy→ x : ♦A, y : A
xRy→ x : ♦A, y : ¬A, y : A

R¬

xRy→ x : ♦A, y : ¬A
R♦

→ x : ♦A, x : �¬A
R�

x : ¬�¬A→ x : ♦A
L¬

→ x : ¬�¬A ⊃ ♦A
R⊃

Once again, topmost sequents are derivable by Lemma 2.1.1. Modus ponens (R1)

is proved to be admissible by cut as follows

∆→ x : A
Γ, ∆→ x : B, x : A R-W

Γ→ x : A ⊃ B
Γ, ∆→ x : A ⊃ B L-W

x : A, Γ, ∆→ x : B INV

Γ, ∆→ x : B CUT

The admissibility of necessitation (R2) requires admissibility of substitution (Lemma

2.1.3).

→ x : A
→ y : A

y/x

xRy→ y : A L-W

→ x : �A R�

Note that admissibility of necessitation requires essentially the use of substitution

of labels which is admissible by Lemma 2.1.3. �

2.4 Completeness

There are three main methods for proving the completeness theorem of a sequent

system: One is the indirect method that establishes an equivalence with an ax-

iomatic system known to be complete with respect to a certain class of frames. The

second is through Henkin sets with the canonical frame construction, and the third

by a direct method that shows how root-first proof search in the sequent system

either gives a proof or leads to a countermodel. The results of the previous section
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correspond to the first method for proving the completeness theorem: the sequent

system we have presented for modal logic is closed under the rules of modus po-

nens and necessitation and permits to derive the axioms of a standard axiomatic

presentation. In this section, we follow the proof of Negri (2009) and we prove

that G3K is complete by the method that will permit proofs of underivability and

constructions of countermodels. First, we recall the definitions of frame and model

from previous sections, suitably adapted for the mono-modal logic.

Definition (Frame). A frame is a structure F = 〈X,R〉 where X is a non-empty set

and R is a binary relation on X.

Definition (Model). A model is a structure M = 〈F,〉 where F is a frame and 

is a binary relation between elements of X and atomic formulas P.

The relation  is extended in a unique way to arbitrary formulas by means of the

following clauses

x  ⊥ for no x

x  A ∧ B if and only if x  A and x  B

x  A ∨ B if and only if x  A or x  B

x  A ⊃ B if and only if x  A implies x  B

x  �A if and only if for all x, xRy implies y  A

x  ♦A if and only if for some y, xRy and y  A

Definition (Interpretation). Let L be the set of labels. An interpretation of labels

in a frame F is a function J·K : L −→ X that assigns a possible state JxK of F to each

label x in L, and the accessibility relation R of F to the relational symbol R.

Definition (Validity in a model). A sequent Γ→ ∆ is valid in a model M if for every

interpretation it holds that whenever for all labelled formulas x : A and relational

atoms yRz in Γ, JxK  A and JyKRJzK hold, then for some w : B in ∆, JwK  B.
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Definition (Validity). A sequent Γ→ ∆ is valid when it is valid in every model.

Before proving the completeness of G3K, we show that it is sound, that is in G3K

are derivable only valid sequents.

Theorem 2.4.1 (Soundness of G3K). If Γ→ ∆ is derivable G3K then it is valid.

Proof. By induction on the derivation of Γ→ ∆.

If Γ → ∆ is initial then Γ and ∆ have an atom in common x : P and the claim is

obvious; similarly if Γ→ ∆ is a conclusion of L⊥ since no x can force ⊥.

If Γ → ∆ is a conclusion of a propositional or modal rule assume by inductive

hypothesis (IH) that its premise(s) is (are) valid and prove that also the conclusion

is. We distinguish the following cases according to the last rule applied. If it is L∧

then the derivation ends with

....
x : A, x : B, Γ′ → ∆
x : A ∧ B, Γ′ → ∆

L∧

Assume by IH the validity of the premise, the validity of the conclusion follows

since JxK  A and JxK  B is equivalent to JxK  A ∧ B.

If Γ→ ∆ is a conclusion of L ⊃ then the derivation ends with

....
Γ′ → ∆, x : A

....
x : B, Γ′ → ∆

x : A ⊃ B, Γ′ → ∆
L⊃

By IH the premises are valid. If the left premise is valid then either JxK  A or

JwK  C, for some w : C in ∆. In the latter case, the conclusion is valid. If the right

premise is valid then for all v : D in Γ′ JvK  D and JxK  B. Then JxK  A ⊃ B and

the conclusion is valid too.
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The situation is analogous for the other propositional rules. If Γ → ∆ is a conclu-

sion of a modal rule, say L♦, then the last step of the derivation is

....
xRy, y : A, Γ′ → ∆

x : ♦A, Γ′ → ∆
L♦

Assume by IH that the premise is valid. Let J·K be an arbitrary interpretation that

validates all the formulas in Γ′, x : ♦A. We claim that one of the formulas in ∆

is valid under this interpretation. Since JxK  ♦A, we can choose an element k of

X such that JxKRk and k  A. Let J·K′ be the interpretation identical to J·K except

possibly on y, for which we set JyK′ = k. Clearly J·K′ validates all the formulas in

the antecedent of the premise, so it validates one formula in ∆. Since y does not

occur in ∆, also J·K validates one formula in ∆.

�

The completeness theorem is proved following the pattern of Negri (2009), in anal-

ogy with Kripke’s original proof (see Kripke 1963). Instead of Kripke’s proof, we

do not look for a failed search of a countermodel, but directly for a proof: To see

whether a formula is derivable, we check if it is universally valid, that is, if x  A

for an arbitrary state x. This is translated to a sequent → x : A. The rules of

G3K applied backwards give equivalent conditions until the atomic components of

A are reached. It can happen that we find a proof, or that we find that a proof does

not exist either because we reach a stage where no rule is applicable, or because

we go on with the search forever. In the two latter cases the attempt proof itself

gives a countermodel.

Theorem 2.4.2. For all Γ → ∆ in G3K either Γ → ∆ is derivable or it has a

countermodel.

Proof. We define for an arbitrary Γ → ∆ of G3K a reduction tree by applying the
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rules of G3K root first in all possible ways. If the construction terminates we

obtain a proof, else the tree becomes infinite. By König’s lemma an infinite tree

has an infinite branch that is used to define a countermodel to the end-sequent.

Construction of the reduction tree

The reduction tree is defined inductively in stages as follows: Stage 0 has Γ → ∆

at the root of the tree. Stage n > 0 has two cases:

CASE I: If every topmost sequent is initial or a conclusion of L⊥ the construction

of the tree ends.

CASE II: If not every topmost sequent is initial or a conclusion of L⊥, we continue

the construction of the tree by writing above those sequents that are not initial

nor a conclusion of L⊥, other sequents that are obtained by applying root first the

rules of G3K whenever possible, in a given order.

There are 10 different stages, 6 for propositional rules, 4 for modal rules. At stage

n = 11 we repeat stage 1, at stage n = 12 we repeat stage 2, and so on for every n.

Case of L∧. For each topmost sequent of the form

x1 : B1 ∧ C1, . . . , xm : Bm ∧ Cm, Γ′ → ∆

where B1 ∧ C1, . . . , Bm ∧ Cm are all the formulas in Γ with a conjunction as the

outermost logical connective, we write

x1 : B1, x1 : C1, . . . , xm : Bm, xm : Cm, Γ′ → ∆

on top of it. This step corresponds to applying root first m times rule L∧.

Case of R∧. For each topmost sequent of the form
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Γ→ ∆′, x1 : B1 ∧ C1, . . . , xm : Bm ∧ Cm

where B1 ∧ C1, . . . , Bm ∧ Cm are all the formulas in Γ with a conjunction as the

outermost logical connective, we write on top of it the 2m sequents

Γ→ ∆′, x1 : D1, . . . , xm : Dm

where Di is either Bi or Ci and all possible choices are taken.

Case of L∨. Analogous to R∧.

Case of R∨. Analogous to L∧.

Case of L ⊃. For each topmost sequent of the form

x1 : B1 ⊃ C1, . . . , xm : Bm ⊃ Cm, Γ′ → ∆

where B1 ⊃ C1, . . . , Bm ⊃ Cm are all the formulas in Γ with a conjunction as the

outermost logical connective, we write on top of it the 2m sequents

xi1 : Ci1 , . . . , xik : Cik , Γ′ → ∆, xjk+1 : Bjk+1 , . . . , xjm : Bjm

where i1, . . . ik ∈ {1, . . . , m} and kk+1, . . . im ∈ {1, . . . , m}r {i1, . . . ik}. Although less

transparent, this step corresponds to the root-first application of rule L ⊃ with

principal formulas B1 ⊃ C1, . . . , Bm ⊃ Cm.

Case of R ⊃. For each topmost sequent of the form

Γ→ ∆′, x1 : B1 ⊃ C1, . . . , xm : Bm ⊃ Cm

where B1 ⊃ C1, . . . , Bm ⊃ Cm are all the formulas in Γ with a implication as the
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outermost logical connective, we write on top of it

x1 : B1, . . . , xm : Bm, Γ→ ∆, x1 : C1, . . . , xm : Cm ⊃ Cm

that is, we apply m time the rule R ⊃.

Case of L�. For each topmost sequent of the form

x1 : �B1, . . . , xm : �Bm, x1Ry1, . . . , xmRym, Γ′ → ∆

where �B1, . . . ,�Bm are all the formulas with � as the outermost logical connec-

tive, we write on top of it

y1 : B1, . . . , ym : Bm, x1 : �B1, . . . , xm : �Bm, x1Ry1, . . . , xmRym, Γ′ → ∆

Case of R�. For each topmost sequent of the form

Γ→ ∆′, x1 : �B1, . . . , xm : �Bm

we write on top of it

x1Ry1, . . . , xmRym, Γ→ ∆′, y1 : B1, . . . , ym : Bm

where y1, . . . , ym are fresh variables, not yet used in the reduction tree.

Case of L♦. Analogous to R�.

Case of R♦. Analogous to L�.

For any n, for each sequent that is neither initial, nor conclusion of L⊥, nor treat-

able by any one of the above reductions, we write the sequent itself above it. If the
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reduction tree is finite, all its leaves are initial or conclusions of L⊥, and the tree,

read from the leaves to the root, yields a derivation.

Construction of the countermodel

By König’s lemma, if the reduction tree is infinite, it has an infinite branch. Let

Γ0 → ∆0 ≡ Γ → ∆, Γ1 → ∆1, . . . , Γi → ∆i, . . . be one such branch. Consider the set

of labelled formulas and relational atoms

Γ ≡ ⋃
i≥0

Γi and ∆ ≡ ⋃
i≥0

∆i

We define a model that forces all formulas in Γ and no formula in ∆ and is therefore

a countermodel to the sequent Γ→ ∆.

Consider the frame F the elements of which are all the labels that appear in the

relational atoms in Γ, with their mutual relationship expressed by the xRy’s in Γ.

The model is defined as follows: For all atomic formulas x : P in Γ, we stipulate

that x  P in the frame F, and for all atomic formulas y : Q in ∆, we stipulate

that y 1 Q in F. Since no sequent in the infinite branch is initial, this choice can

be coherently made, for if there were the same labelled atom in Γ and in ∆, then,

since the sequents in the reduction tree are defined in a cumulative way, for some

i there would be a labelled atom x : P both in the antecedent and in the succedent

of Γi → ∆i.

We then show inductively on the structure of formulas that B is forced at x if x : B

is in Γ and B is not forced at x if x : B is in ∆. Therefore we have a countermodel to

the end-sequent Γ→ ∆.

If B is ⊥, it cannot be in Γ because no sequent in the branch contains x : ⊥ in the

antecedent, so it is not forced at any node of the model.

If x : B∧C is in Γ, there exists i such that x : B∧C appears first in Γi, and therefore,

for some j > 0, x : B and x : C are in Γi+j. By IH, x  B and x  C and therefore
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x  B ∧ C.

If x : B ∧ C is in ∆ consider the step i in of the reduction tree. This gives a branch-

ing, and one of the two branches belongs to the infinite branch, so either x : B or

x : C is in ∆. By IH, x 1 B or x 1 C and therefore x 1 B ∧ C.

The case of x : B ∨ C is in Γ is analogous to the case of x : B ∧ C is in ∆.

The case of x : B ∨ C is in ∆ is analogous to the case of x : B ∧ C is in Γ.

If x : B ⊃ C is in Γ, either x : B is in ∆ or x : C is in Γ. By IH, in the former case

x 1 B, and in the latter x  C, so in both cases x  B ⊃ C.

If x : B ⊃ C is in ∆, for some i, x : B is in Γi and x : C is in ∆i, so by IH x  B and

x 1 C, so x 1 B ⊃ C.

If x : �B is in Γ, we consider all the relational atoms xRy that occur in Γ. If there is

no such atom, then the condition that for all y accessible from x in the frame, y  B

is vacuously satisfied, and therefore x  �B in the model. Else, for any occurrence

of xRy in Γ we find, by the construction tree, an occurrence of y : B in Γ. By IH

y  B, and therefore x  �B in the model.

If x : �B is in ∆, consider the step at which the reduction for x : �B applies. We

find y : B in ∆, for some y with xRy in Γ. By IH x 1 B, and therefore x 1 �B.

�

Corollary 2.4.3 (Completeness of G3K). If a sequent Γ → ∆ is valid then it is

derivable in G3K.

The proof of the completeness theorem given in this section is close to Kripke’s orig-

inal argument but without any appeal to a geometric intuition. In fact, Kripke’s

proof was criticized since it makes appeal to intuitive arguments on the geometry

of tableau proofs and lacks the rigor of the alternative set-theoretic approach due

to Henkin. The proof can be extended to systems with mathematical for the acces-
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sibility relation R as the logic of knowledge and belief, and also to systems with

new modal operators as in the dynamic epistemic logic.
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Chapter 3
Extensions of Labelled Sequent

Systems

This chapter is devoted to the labelled sequent systems for logics that extend basic

modal logic. In particular, our aim is to augment the set of the rules of G3K

and find cut-free systems equivalent to well-known systems for modal logics such

as T, S4, B, S5, D, etc. In the Hilbert-style approach various extensions of K

are obtained by simply adding new axioms. Thus, the system T is K together

with �A ⊃ A (axiom T), system S4 is T plus �A ⊃ ��A (axiom 4), and, B is

T with A ⊃ �♦A (axiom B). Finally, system S5 is T with ♦A ⊃ �♦A (axiom

5). Many other systems and axioms are known and we shall deal with them in

the following. For the time being, our aim is to follow the Gentzen-style tradition

and present extensions of G3K by new inference rules, rather than new axioms.

Sequent calculi equivalent to K, T, S4 and S5 are presented in Ono (1998) as

extensions of the original Gentzen’s system LK (without quantifiers rules). The

system GK is LK with the new rule �

Γ→ A
�Γ→ �A �

83



�Γ denotes the list of all the �A for A in Γ. Observe that when Γ is empty, rule

� is the rule of necessitation. When Γ is not empty, with the application of � all

formulas in Γ get prefixed by�. This prevents the derivation of the invalid formula

A ⊃ �A. A system for the modal logic T (G3T) is then obtained from GK by adding

the rule �→

A, Γ→ ∆
�A, Γ→ ∆ �→

The rule permits to derive the axiom �A ⊃ A. The system G3S4 is G3T plus the

following rule �→1 (or, equivalently, LK with �→ and �→1)

�Γ→ A
�Γ→ �A

�→1

With this addition the corresponding axioms �A ⊃ ��A is derivable. Finally,

GS5 is obtained from G3T and the following rule �→2 (or, equivalently, LK with

�→ and �→2)

�Γ→ �∆, A
�Γ→ �∆,�A

�→2

Note that �→1 is a special case of→2 with ∆ empty. In fact, axiom 5, formulated

as ¬�¬A ⊃ �¬�¬A, is derivable as follows

�¬A→ �¬A
→ �¬A,¬�¬A R¬

→ �¬A,�¬�¬A
�→2

¬�¬A→ �¬�¬A L¬

→ ¬�¬A ⊃ �¬�¬A
R⊃

Cut elimination holds for all the systems thus obtained (see also Ohnishi and Mat-

sumoto 1957), with the exception of G3S5. A simple counterexample is given by

the derivation of A ⊃ �♦A (axiom B) which is theorem of S5 but not derivable
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without cut in G3S5,

�¬A→ �¬A
→ ¬�¬A,�¬A R¬

→ �¬�¬A,�¬A
�→2

A→ A
¬A, A→ L¬

�¬A, A→ �→1

A→ �¬�¬A CUT

→ A ⊃ �¬�¬A
R⊃

More recently and also in view of the applications to automated deduction, G3-

systems have been preferred to the original Gentzen’s system LK which has all

the structural rules primitive. Thus, it is reasonable to start from the classical

multi-succedent sequent calculus G3c of Troelstra and Schwichtenberg (2000) (see

also Negri and von Plato 2001) in which all the structural rules are admissible and

all the logical rules are invertible. A cut-free system for the basic modal logic is

considered in Hakli and Negri (2011) and is obtained from G3c by the rule LR�.

Γ→ A
Φ,�Γ→ �A, Ψ LR�

The calculus with LR� is proved to be equivalent to the axiomatic system K and

it is used to show that the standard argument in favor of the failure of deduction

theorem in modal logic is untenable. A sequent system for the modal logic S4 is

presented in Troelstra and Schwichtenberg (2000, ch. 9) by adding to G3c the

following rules for � and ♦, both taken as primitive:

Γ, A,�A→ ∆
Γ,�A→ ∆ L�

�Γ→ A,♦∆
Γ′,�Γ→ �A,♦∆, ∆′

R�

�Γ, A→ ♦A
Γ′,�Γ,♦A→ ♦∆, ∆′

L♦
Γ→ A,♦∆, ∆

Γ→ ♦A, ∆
R♦

The calculus is used to prove that a variant of the Gödel embedding of intuition-

istic logic into modal logic S4 is faithful. However, having a weakening- and

contraction-free calculus does not solve the long-standing problem of cut elimi-

nation for S5. Nowadays, it is a common opinion that a satisfactory account of the
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modal logic S5 cannot be given within the traditional Gentzen systems. As noted

at the very beginning of Avron (1996, p. 3)

The framework of ordinary sequents is not capable of handling all inter-

esting logics. There are logics with nice, simple semantics and obvious

interest for which no decent, cut-free formulation seems to exist.

Therefore, alternative proof systems have been recently proposed in which the

syntax of the rules is enriched. The modifications come in two flavors. On the

one hand, it is possible to generalize sequent calculus so that the semantics is

made implicit part of a more structured syntax. Among the various proposal,

there is the hypersequent approach (see Avron 1996 for an overview). Roughly

speaking, hypersequents are multisets of sequents interpreted disjunctively. If

Γ1 → ∆1 . . . Γn → ∆n are sequents, an hypersequent is a syntactic object of the form

Γ1 → ∆1 | . . . | Γn → ∆n, where the standard interpretation of the | is disjunctive.

In Poggiolesi (2008) the following rules for the � operator, where G stands for an

arbitrary hypersequent, are introduced

G | A,�A, Γ→ ∆
G | �A, Γ→ ∆

�A1
G | �A, Γ→ ∆ | A, Γ′ → ∆′

G | �A, Γ→ ∆ | Γ′ → ∆′
�A2

G | Γ→ ∆ | → A
G | Γ→ ∆,�A

�K

Informally, the rules can be read in terms of relational semantics: the rule�K says

that if �A is false at the actual state then there is some possible state at which

A is false. The existence of such a state is achieved syntactically by inserting one

disjunct on the top of the hypersequent of the conclusion. Conversely, if �A is

true at the actual state then A is true at every possible state (rule �A2), includ-

ing the actual one (rule �A1). The rules for other propositional connectives are

obvious and they do not change the hypersequents but only the formulas within
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the sequents. Moreover, the axiom A ⊃ �¬�¬A which was problematic in the

traditional approach, has a simple cut-free derivation.

A→ A | �¬A→
A,¬A→ | �¬A→ ¬A

A→ | �¬A→
�A1

A→ | → ¬�¬A
¬K

A→ �¬�¬A �K

→ A ⊃ �¬�¬A
⊃K

Systems alternative to hypersequents are carefully surveyed in Wansing (2002)

and they include Došen’s heigher-level sequent systems (see Došen 1985), or 2-

sequents systems (see Martini and Masini 1996), multiple-sequent systems of In-

drzejczak (1998), and others. More recently, systems of tree-sequents (see Cerrato

1996), tree-hypersequents of Poggiolesi (2009, 2010) and systems of deep inference

(see Stewart and Stouppa 2006, Brünnler 2009) have been proposed.

On the other hand, in the labelled approach we employed so far, the notion of

sequent is left untouched and the modal content is achieved by an explicit in-

ternalization of the relational semantics into the syntax of the rules. We already

discussed how the internalization works in the case of basic modal logic, and in the

rest of the chapter we show how to get labelled systems for various modal logics.

The underlying idea it that they are obtained by adding rules that correspond to

the properties of the accessibility relation. Therefore, the new rules do not act on

labelled formulas, but only on relational atoms and they do not directly correspond

to modal axioms, but to first order conditions on the accessibility relation. For in-

stance, instead of adding a sequent rule that corresponds directly to the axiom

�A ⊃ A, we add a rule for reflexivity of R, ∀x(xRx). However, the correspondence

between modal axioms and frame properties does not solve at all the problem of

finding cut-free extensions of G3K. In fact, it does not matter whether axioms are

formulated in the language of modal logic or in that of first order logic. In either
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case, an immediate extension would cause the failure of cut elimination (see Gi-

rard 1987, p. 125). Therefore, before going into the details of modal systems, we

shall shortly outline the general problem concerning axioms and cut elimination.

3.1 Axioms in sequent calculus

In general, an axiom A is added in sequent calculus by permitting derivations to

start with the sequent → A. For instance, a sequent system for first order logic

with equality can be obtained by adding to G3c the reflexivity of equality and the

replacement schema in the form of sequents→ x = x and t = s, P(t)→ P(s), where

P is atomic. However, as a simple counterexample to cut elimination, consider that

the cut applied in the derivation of the symmetry of =, that is, → t = s ⊃ s = t

is not eliminable. Suppose that P(x) is the atom x = t (so, the instance of the

replacement schema is t = s, t = t → s = t), then there is no cut-free derivation of

symmetry,

→ t = t t = s, t = t→ s = t
t = s→ s = t CUT

→ t = s ⊃ s = t R⊃

Instead of axiomatic sequents, one may consider rules of inference. In particular,

one can replace → x = x with the following rule Re f=, and the rule schema Repl,

instead of the axiom schema t = s, P(t)→ P(s).

x = x, Γ→ ∆
Γ→ ∆

Ref=
P(s), Γ→ ∆

t = s, P(t), Γ→ ∆
Repl′

Since the P can be any atomic formula, the latter rule schema specializes into the

following rule when the atom P(x) is x = t.

s = t, Γ→ ∆
t = s, t = t, Γ→ ∆

Repl∗
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Note that the axioms are derivable from the rules, and viceversa. Thus, assume

→ x = x and the premise of Re f=. Then the conclusion of Re f= is derivable by cut

as follows

→ x = x x = x, Γ→ ∆
Γ→ ∆ CUT

In the other direction, find a derivation of→ x = x by applying Re f= on the initial

sequent x = x → x = x:

x = x → x = x
→ x = x Ref=

Also the replacement schema and the rules of replacement are derivable from each

other, as the following derivation show:

t = s, P(t)→ P(s) P(s), Γ→ ∆
t = s, P(t), Γ→ ∆

CUT
P(s)→ P(s)

t = s, P(t)→ P(s)
Repl′

However, axioms and rules are different with respect to the possibility of finding

a cut-free derivations. This is clear in our example of symmetry of equality, since

the sequent→ t = s ⊃ s = t is derivable without any application of cut:

s = t→ s = t
t = t, t = s→ s = t

Repl∗

t = s→ s = t
Ref=

→ t = s ⊃ s = t R⊃

Examples of failure of cut elimination arise also in modal logic. Observe that it is

possible to deal with the accessibility relation R of modal logic in the same way as

equality in first-order logic. Similarly to equality, the relation R can be assumed

to satisfy certain properties. Suppose that R is an equivalence relation, that is, it

is reflexive and euclidean. When these properties are considered as axioms of the

form→ xRx and xRy, xRz→ yRz the following derivation of the symmetry of R
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→ xRx xRy, xRx → yRx
xRy→ yRx CUT

has a cut that cannot be eliminated. Therefore, we can start from G3K and find

the sequent rule corresponding to the reflexivity and euclideaness of R

xRx, Γ→ ∆
Γ→ ∆

Ref
yRz, Γ→ ∆

xRy, xRz, Γ→ ∆ Eucl′

Once again, with Re f and Eucl′ the symmetry of R is derivable without cut:

yRx → yRx
xRy, xRx → yRx Eucl′

xRy→ yRx
Ref

In contrast to Re f , rule Eucl′ reveals an important feature of the new rules, they

are “logic free”. The role of logical connectives in the axiom of euclideaness, that

is, ∧ and ⊃, is absorbed into the combinatorics of the rule: the role of conjunction

is played by the comma in the antecedent, that of implication by the inference

step. When rules such as Eucl′ are deprived of logical content, only relational

atoms appear as principal in them. This is the reason why these rules are called

mathematical or, more generally, non-logical inference rules. Another important

feature of mathematical rules is that they act only on one side of sequents. In this

formulation principal formulas of relational rules appear only in the antecedent,

but an equivalent system can be obtained with rules in which relational atoms

occur only in the succedent.

3.2 The method of axioms-as-rules

The above examples show only the idea of how to get sequent rules from axioms,

but this idea can be made precise and generalized so to get a systematic procedure.
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In Negri and von Plato (1998) a general method of adding axioms to sequent cal-

culus in the form of extra-logical inference rule while preserving cut elimination

is introduced (see also Negri and von Plato 2001, Ch. 6, for a detailed survey and

Negri and von Plato 2011 for further developments). This method covers specific

mathematical theories (apartness, order and lattice theories) and geometric theo-

ries (affine and projective geometry) and, besides, it successfully applies to modal

and non-classical logics in Negri (2005).

We start from the classical multi-succedent sequent calculus G3c and we use the

existence of conjunctive normal form in classical logic: every quantifier-free for-

mula is equivalent to some formula in conjunctive normal form, that is, to a con-

junction of disjunctions of atomic formulas or negation of atomic formulas. Within

each conjunct the positive atomic formulas can be separated from the negation of

atomic formulas

¬P1 ∨ · · · ∨ ¬Pm ∨Q1 ∨ · · · ∨Qn

and this can be converted into the classically equivalent implication

P1 ∧ · · · ∧ Pm ⊃ Q1 ∨ · · · ∨Qn REG

Special cases are with m = 0, where REG reduces to Q1 ∨ · · · ∨Qn, and with n = 0

where REG is ¬(P1 ∧ · · · ∧ Pm). The universal closure of this implication is called

a regular formula. Regular formulas can be converted into a sequent rule in two

ways. One is based on the idea that if each Qj together with other assumptions

Γ is sufficient to derive ∆, then the Pi’s together with Γ are sufficient to derive ∆.

Formally, it corresponds to the following rule schema, where the multiset P1, . . . , Pm

(resp. Q1, . . . , Qn) is abbreviated in P (resp. Q).
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Q1, Γ→ ∆ . . . Qn, Γ→ ∆
P, Γ→ ∆

L-Reg′

A dual schema is found if we start from the idea that if each Pi (together with ∆)

can be derived from Γ then also each Q (together with ∆) can be derived from Γ.

Γ→ ∆, P1 . . . Γ→ ∆, Pn

Γ→ ∆, Q
R-Reg′

In practice, regular rule schemata specialize in many rules, depending on the con-

text of application. We shall give some example of theories that extend system G3c

with the rules following the schema L-Reg′. We already considered the case of first

order logic with equality, where the relation = is reflexive. This corresponds to the

axiom of reflexivity ∀x(x = x) which is a special istance of REG, with m = 0 and

n = 1. In the theory of strict linear order atoms are of the form x < y and, unlike

=, the relation < is irreflexive. However, irreflexivity ∀x¬(x < x) is still a special

case of a regular formula, with m = 0 and n = 1. Thus, the rule of irreflexivity of

strict order is

x < x, Γ→ ∆
Irref<

The relation 6 in the theory of linear order satisfies the property expressed by the

axiom of linearity (or totality), ∀x∀y(x 6 y ∨ y 6 x). Once again, linearity is a

regular formula with m = 0 and n = 2. The corresponding rule is

x 6 y, Γ→ ∆ y 6 x, Γ→ ∆
Γ→ ∆

Lin6

However, the schemata L-Reg′ and R-Reg′ do not satisfy the structural properties

usually required to G3-systems and must be augmented in order to have contrac-

tion admissible. Once again, the method of Kleene (1952) is followed and the prin-
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cipal formulas in the the conclusion of L-Reg′ are repeated in the premises. The

same holds for R-Reg′, mutatis mutandis, and the rule schemata take the form

Q1, P, Γ→ ∆ . . . Qn, P, Γ→ ∆
P, Γ→ ∆

L-Reg

Γ→ ∆, Q, P1 . . . Γ→ ∆, Q, Pm

Γ→ ∆, Q
R-Reg

For the left schema, repetitions in the premises make left contraction commute

with rules following the schema, whereas admissibility of right contraction is not

problematic. This is reversed for the right rule schema. Moreover, it can happen

that instantiation of labels in atoms produces a duplication, so two identical atoms

are in the conclusion of a rule schema: P1, . . . , Pm−2, P, P, Γ → ∆. As every formula

in the conclusion is repeated in the premises, each premise has the duplication

of P to ensure the admissibility of contraction. We must require that the rule

with duplication P, P contracted into a single P is added to the system, that is, we

impose that the system satisfies the following closure condition.

Proposition 3.2.1 (Closure Condition). Given a system with rule following the

regular schema, if it has a rule where a substitution in the atoms produces a rule-

instance of the form

Q1, P1, . . . , Pm−2, P, P, Γ→ ∆ . . . Qn, P1, . . . , Pm−2, P, P, Γ→ ∆
P1, . . . , Pm−2, P, P, Γ→ ∆

then it also contains the rule

Q1, P1, . . . , Pm−2, P, Γ→ ∆ . . . Qn, P1, . . . , Pm−2, P, Γ→ ∆
P1, . . . , Pm−2, P, Γ→ ∆

Symmetrically, for the right rule schema, we have that a system containing a rule-
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instance of the form

Γ→ ∆, Q1, . . . , Qn−2, Q, Q, P1 Γ→ ∆, Q1, . . . , Qn−2, Q, Q, Pm
Γ→ ∆, Q1, . . . , Qn−2, Q, Q

it also contains the rule

Γ→ ∆, Q1, . . . , Qn−2, Q, P1 Γ→ ∆, Q1, . . . , Qn−2, Q, Pm
Γ→ ∆, Q1, . . . , Qn−2, Q

The condition is not problematic, since the number of rules to be added to a given

system is finite and often the closure condition is even superfluous, because the

contracted rule is already a rule of the system or admissible in it. It is clear

that universal axioms are derivable from the schema L-Reg (R-Reg), and that the

schema L-Reg (resp. R-Reg) is derivable from the corresponding axiom, using cut.

A detailed proof of admissibility of the structural rules and cut in the presence of

rules following the schema R-Reg or L-Reg can be found in Negri and von Plato

2001, pp. 131–34.

By the same method, it is possible to convert into rules also existential axioms, or,

more generally, axioms of the form of geometric implications. These are univer-

sal closures of implications A ⊃ B in which A and B do not contain implications

or universal quantifiers. Geometric implications can be turned in a useful normal

form that consists of conjunctions of formulas of the form

∀x(P1 ∧ · · · ∧ Pm ⊃ ∃y1M1 ∨ · · · ∨ ∃ynMn) GEOM

In GEOM, each Pi is an atomic formula, each Mj a conjunction of a list of atomic

formulas Qj, and none of the variables in the vectors yj are free in Pi. In turn, each
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of these formulas can be turned into an inference rule of the following form:

Q1(z1/y1), P, Γ→ ∆ . . . Qn(zn/yn), P, Γ→ ∆

P, Γ→ ∆
L-Gen

The variables yi are called the replaced variables of the schema, and the variables

zi the proper variables, or eigenvariables. In what follows, we shall consider for

ease of notation the case in which the vectors of variables yi consist of a single

variable. The geometric rule schema is subject to the condition that the eigenvari-

ables must not be free in the conclusion of the rule, P, Γ, ∆. In this way the rule

expresses in a logic-free way the role of the existential quantifier in a geometric

axiom. Cut elimination still holds in presence of rules following the general rule

schema and a detailed proof can be found in Negri (2003). An example of geometric

theory is Robinson arithmetic in which the induction schema of PA in replaced by

a weaker axiom: every number is either zero or it is a successor of some number,

that is, ∀x(x = 0∨ ∃y(x = s(y))). Robison’s axiom is a special case of GEOM, with

m = 0 and gets converted into

x = 0, Γ→ ∆ x = s(y), Γ→ ∆
Γ→ ∆ RA

The rule must meet the variable condition that y must not appear in the conclu-

sion. Geometric formulas arise naturally also in modal logic. For instance, the

property of directedness of R, that is, ∀x∀y∀z(xRy ∧ xRz ⊃ ∃w(yRw ∧ zRw)), is a

special case of GEOM with m = 2 and n = 1. The corresponding rule Dir must meet

the condition that w is the eigenvariable and it cannot appear in the conclusion

yRw, zRw, xRy, xRz, Γ→ ∆
xRy, xRz, Γ→ ∆ Dir
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3.3 From frame properties to sequent rules

In the light of the method of axioms-as-rules, modal logic is viewed as a mathe-

matical theory of the accessibility relation R and its axioms as the standard frame

conditions. In this perspective, reflexivity of R can be converted to a left (right)

rule following the schema L-Reg (resp. R-Reg).

xRx, Γ→ ∆
Γ→ ∆

L-Ref
Γ→ ∆, xRx

R-Ref

Next, the modal axioms of the various axiomatic systems become theorems of the

corresponding sequent calculus. Thus, in the presence of L-Re f (R-Re f ) the axiom

T is derivable. Observe that when the mathematical rules follow R-Reg, the modal

rules with relation atoms xRy in the succedent are needed, thus we shall use also

L�0 and R♦0 of G0K, accordingly:

x : A, xRx, x : �A→ x : A
xRx, x : �A→ x : A L�

x : �A→ x : A
L-Ref

→ x : �A ⊃ A
R⊃

→ xRx
R-Ref

x : A→ x : A
x : �A→ x : A L�0

→ x : �A ⊃ A
R⊃

In the same way, transitivity R corresponds to the following left (right) rule,

xRz, xRy, yRz, Γ→ ∆
xRy, yRz, Γ→ ∆ L-Trans

Γ→ ∆, xRz, xRy Γ→ ∆, xRz, yRz
Γ→ ∆, xRz R-Trans

And the axiom 4 has the following derivation by using L-Trans

z : A, xRz, xRy, yRz, x : �A→ z : A
xRz, xRy, yRz, x : �A→ z : A L�

xRy, yRz, x : �A→ z : A L-Trans

xRy, x : �A→ y : �A R�

x : �A→ x : ��A R�

→ x : �A ⊃ ��A
R⊃

Otherwise, by R-Trans
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xRy, yRz→ xRz, xRy xRy, yRz→ xRz, yRz
xRy, yRz→ xRz R-Trans z : A→ z : A

xRy, yRz, x : �A→ z : A L�0

xRy, x : �A→ y : �A R�

x : �A→ x : ��A R�

→ x : �A ⊃ ��A
R⊃

Finally, symmetry of R gets converted into

yRx, xRy, Γ→ ∆
xRy, Γ→ ∆

L-Sym
Γ→ ∆, xRy, yRx

Γ→ ∆, xRy
R-Sym

and axiom B has the following derivations

yRx, xRy, x : A→ y : ♦A, x : A
yRx, xRy, x : A→ y : ♦A

R♦

xRy, x : A→ y : ♦A
L-Sym

x : A→ x : �♦A
R�

→ x : A ⊃ �♦A
R⊃

xRy→ yRx, xRy
xRy→ yRx

R-Sym
x : A→ x : A

xRy, x : A→ y : ♦A
R♦0

x : A→ x : �♦A
R�

→ x : A ⊃ �♦A
R⊃

Note that L-Re f , L-Trans and L-Sym (R-Re f , R-Tran and R-Sym), when added to

G3K, give a system equivalent to S5. In fact, S5 is sound and complete with re-

spect to the class of reflexive, transitive, and symmetric frames. Equivalently, S5

is characterized by the class of reflexive and euclidean frames. Therefore, we can

drop L-Trans and L-Sym (resp. R-Trans and R-Sym), and add the rules correspond-

ing to the property of euclideaness, ∀x∀y∀z(xRy ∧ xRz ⊃ yRz)

yRz, xRy, xRz, Γ→ ∆
xRy, xRz, Γ→ ∆ L-Eucl

Γ→ ∆, yRz, xRy Γ→ ∆, yRz, xRz
Γ→ ∆, yRz R-Eucl

Axiom 5, can be derived by L-Eucl

yRz, xRy, xRz, z : A→ y : ♦A, z : A
yRz, xRy, xRz, z : A→ y : ♦A

R♦

xRy, xRz, z : A→ y : ♦A L-Eucl

xRy, x : ♦A→ y : ♦A
L♦

x : ♦A→ x : �♦A
R�

→ x : ♦A ⊃ �♦A
R⊃

97



or, equivalently, by R-Eucl

xRy, xRz,→ yRz, xRy xRy, xRz,→ yRz, xRz
xRy, xRz,→ yRz R-Eucl z : A→ z : A

xRy, xRz, z : A→ y : ♦A
R♦0

xRy, x : ♦A→ y : ♦A
L♦

x : ♦A→ x : �♦A
R�

→ x : ♦A ⊃ �♦A
R⊃

Besides the property of directedness taken into account in the previous section,

another important geometric formula in modal logic is expressed by the seriality

of R, that is, ∀x∃y(xRy), a special case of GEOM with m = 0 and n = 1. The role

of existential quantifier is reflected by the variable condition that the label y is not

in Γ, ∆.

xRy, Γ→ ∆
Γ→ ∆ L-Ser Γ→ ∆, xRy R-Ser

The axiom �A ⊃ ♦A corresponding to seriality is known in the literature as D,

from deontic logic. With the new rules it has the following derivation.

y : A, xRy, x : �A→ x : ♦A, y : A
xRy, x : �A→ x : ♦A, y : A

L�

xRy, x : �A→ x : ♦A
R♦

x : �A→ x : ♦A
L-Ser

→ x : �A ⊃ ♦A
R⊃

→ xRy R-Ser
→ xRy R-Ser y : A→ y : A

x : �A→ y : A L�0

x : �A→ x : ♦A
R♦0

→ x : �A ⊃ ♦A
R⊃

In the table below some well-known modal logic with its characteristic axioms and

frame properties is presented
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Name Axiom Frame property

T �A ⊃ A ∀x(xRx)

4 �A ⊃ ��A ∀x∀y∀z(xRy ∧ yRz ⊃ xRz)

5 ♦A ⊃ �♦A ∀x∀y∀z(xRy ∧ xRz ⊃ yRz)

B A ⊃ �♦A ∀x∀y(xRy ⊃ yRx)

3 �(�A ⊃ B) ∨�(�B ⊃ A) ∀x∀y∀z(xRy ∧ xRz ⊃ zRy)

D �A ⊃ ♦A ∀x∃y(xRy)

2 ♦�A ⊃ �♦A ∀x∀y∀z(xRy ∧ xRz ⊃ ∃w(yRw ∧ zRw))

The corresponding Gentzen systems are obtained by adding combinations of the

above rules to G3K.

G3T = G3K + Re f

G3K4 = G3K + Trans

G3B = G3T + Sym

G3S4 = G3T + Trans

G3S5 = G3K + Re f + Trans + Sym = G3K + Re f + Eucl

G3D = G3K + Ser

3.4 Multi-modal epistemic logic

Starting from the cut-free calculus G3K we find a system for epistemic logic G3Kn.

As we already said in the introduction, the language of alethic modal logic has a

single modal operator �, whereas epistemic logic has one knowledge K operator

for each agent a in a given set of agents A. Formulas such as Ka A have to be read:

“agent a knows that A”. Consequently, in the corresponding epistemic frame we

have as many accessibility relations R as agents in A. Therefore, xRay says that

the agent a can reach the state y from x, or y is Ra-accessible from x. In order

to formally describe the properties of knowledge, each Ra is also assumed to be
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an equivalence relation, that is, it is reflexive, transitive and symmetrical. The

knowledge formulas are evaluated as follows

x  KaB if and only if for all y, xRay implies y  B

Consequently, G3Kn has the following rules for the Ka operator

Logical rules of G3Kn

y : A, x : Ka A, xRay, Γ→ ∆
x : Ka A, xRay, Γ→ ∆ LK

xRay, Γ→ ∆, y : A
Γ→ ∆, x : Ka A RK

with the usual restriction on RK that y must not appear in the conclusion. The

first order conditions on Ra, that is, reflexivity, transitivity and symmetry of Ra,

are regular formula and so can be converted into mathematical rules following the

regular rule schema. The difference with respect to mono-modal system G3K is

that here we have as many accessibility relations as agents inA, with the following

rules:

Mathematical rules of G3Kn

xRax, Γ→ ∆
Γ→ ∆

Refa
yRax, xRay, Γ→ ∆

xRay, Γ→ ∆
Syma

xRaz, xRay, yRaz, Γ→ ∆
xRay, yRaz, Γ→ ∆

Transa

Starting from G3Kn we can also obtain a sequent system for belief. Belief is

weaker than knowledge as it does not satisfy axiom T. Intuitively, it is natural
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to think that something is believed but not true, and thus, in contrast with knowl-

edge, believing that something is true does not imply that it is indeed true. How-

ever, our beliefs are at least coherent and the only requirement that belief is sup-

pose to satisfy is that contradictions are not believed. Thus, to obtain a system for

belief we first replace the knowledge operators Ka with belief operators Ba, one for

each agent a in A, and we read a formula Ba A as “the agent a believes that A”.

Then, the rules for Ba are obvious:

Logical rules of G3Be

y : A, x : Ba A, xRay, Γ→ ∆
x : Ba A, xRay, Γ→ ∆ LB

xRay, Γ→ ∆, y : A
Γ→ ∆, x : Ba A RB

The axiomatic system for belief G3D is obtained from the multi-modal basic epis-

temic logic by adding the axiom ¬Ba(A∧¬A). The system D is sound and complete

with respect to the class of frames in which each accessibility relation Ra is serial.

Therefore, a labelled sequent system G3Be is found by adding to G3K the geomet-

ric rule of seriality. Rule Sera must meet the condition that the label y does not

appear in the conclusion.

Logical rule of G3Be

xRay, Γ→ ∆
Γ→ ∆

Sera

In the next section we show the admissibility of all the structural rules and cut

elimination for the systems G3Kn and G3Be.
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Admissibility of the structural rules

In this section we show that in the systems G3Kn and G3Be all the structural

rules are admissible and cut is eliminable. Often, the proofs are straightforward

extensions of that of G3K and we shall refer to previous results.

Lemma 3.4.1. In G3Kn and G3Be it holds that

` x : A, Γ
2·h(A)−−−→

0
∆, x : A

for every labelled formula x : A.

Proof. See Lemma 2.1.1. �

Lemma 3.4.2. The substitution of labels is height- and rank-preserving admissible

in G3Kn and G3Be, i.e.

If ` Γ n−→
p

∆ then ` Γ[y/x] n−→
p

∆[y/x]

for every label x and y.

Proof. By induction on n. The proof is the same as Lemma 2.1.3 up to the case

in which Γ → ∆ is concluded by a mathematical rule. All the mathematical rules

of G3Kn follow the regular rule schema and the proof proceeds as for the propo-

sitional case: apply IH on the premise of the mathematical rule R that concluded

Γ → ∆ and then another application of R gives the conclusion. In G3Be we need

to be careful with the variable condition because Sera follows the geometric rule

schema. The problematic case arises when the y is the eigenvariable of Sera.

....
xRay, Γ k−→ ∆

Γ k+1−−→ ∆
Sera
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We first replace y with a new z in order to have ` xRaz, Γ k−→ ∆ and next apply IH

in order to conclude ` xRaz[y/x], Γ[y/x] k−→ ∆[y/x]. Finally, given that z appears

only in yRaz, Sera can be correctly applied. �

Theorem 3.4.3. Weakening is height- and rank-preserving admissible in G3Kn

and G3Be, i.e.

i) If ` Γ n−→
p

∆ then ` x : A, Γ n−→
p

∆

ii) If ` Γ n−→
p

∆ then ` Γ n−→
p

∆, x : A

iii) If ` Γ n−→
p

∆ then ` xRay, Γ n−→
p

∆

Proof. By induction on n. Also in this case, the proof follows that of Theorem 2.1.4.

The cases in which Γ → ∆ is concluded by mathematical rules of G3Kn are dealt

with analogously to the propositional ones. When Γ → ∆ is concluded by Sera

in G3Be, we apply Lemma 3.4.2 in order to avoid label clash, IH, and then Sera

again. �

Lemma 3.4.4. All the rules of G3Kn and G3Be are height- and rank-preserving

invertible.

Proof. The proof is straightforward because the mathematical rules have the rep-

etition of the principal formulas in the premise, so the premise can be obtained

from the conclusion by Theorem 3.4.3. �

Theorem 3.4.5. Contraction is height- and rank-preserving admissible in G3Kn

and G3Be, i.e.

i) If ` x : A, x : A, Γ n−→
p

∆ then ` x : A, Γ n−→
p

∆

ii) If ` Γ n−→
p

∆, x : A, x : A then ` Γ n−→
p

∆, x : A

iii) If ` xRay, xRay, Γ n−→
p

∆ then ` xRay, Γ n−→
p

∆
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Proof. By simultaneous induction on n. For the cases i and ii the proof is an imme-

diate extension of Theorem 2.1.6. Consider now the case iii. If xRay, xRay, Γ → ∆

is initial or conclusion of L⊥ then none of the occurrences of xRay is principal and

therefore also xRay, Γ → ∆ is initial or conclusion of L⊥. Else, if xRay, xRay, Γ → ∆

is concluded by a rule R of G3Kn and none of the occurrences of xRy is principal

then IH is applied to the premise(s) and a derivation of the conclusion is found by

R again. The same holds if R is a rule of G3Be. If one of the occurrences of xRay

is principal then the derivation is concluded by a mathematical rule. This is the

case that requires the repetition of the principal formulas in the premise. In fact,

suppose that xRay, xRay, Γ→ ∆ is concluded by Syma and one of the occurrences of

xRay is principal

....
yRax, xRay, xRay, Γ k−→ ∆

xRay, xRay, Γ k+1−−→ ∆
Syma

Given that both the occurrences of xRay are in the premise, IH can be applied and

the conclusion is obtained by Syma. However, there is another case to deal with:

it may happen that both the occurrences of xRay are principal formulas of Transa.

This is possible when both y and z are are one and the same variable.

xRax, xRax, xRax, Γ→ ∆
xRax, xRax, Γ→ ∆

Transa

In this case, IH can be applied twice and the conclusion follows. Else, xRax, Γ→ ∆

can be derived by IH and Re fa. Else, note that Transa is subject to the closure

condition and therefore if G3Kn contains Transa it must contain also its contracted

istance

xRax, xRax, Γ→ ∆
xRax, Γ→ ∆

Transa
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The latter case is an example of a general result concerning the role of the closure

condition in labelled systems: instances of the closure condition that are just like

contractions on relational atoms need not be added because they are admissible.

More precisely, when R is a frame rule and R? is the corresponding contracted

instance that arises from the closure condition, it is possible to prove that if R? is

an instance of contraction, it is hp-admissible in the system extended with those

rules arising from the closure condition that are not instances of contraction. The

result has been proved for a labelled system for the logic of group acceptance in

Hakli and Negri (2011a).

Cut elimination

The proof of the cut-elimination theorem for G3K can be extended to systems with

mathematical rules following the regular and geometric rule schema. The proof

with all the details can be found in Negri (2005). Here as a case study, we prove

that the systems G3Kn and G3Be satisfy cut elimination. In addition we show

that the upper bound on the growth of cut free derivations is maintained in these

systems.

Lemma 3.4.6 (Main Lemma). Let d1 and d2 be two derivations in G3KnC and

G3BeC such that

d1 ` Γ n−→
p

∆, x : C and d2 ` x : C, Γ m−→
p

∆

and let h(x : C) = p. Then there is a derivation d in G3KnC and G3BeC such that

d ` Γ n+m−−→
p

∆
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Proof. By induction on n + m. The proof is to a large extent similar to the proof

of Main Lemma 2.2.2 for G3K. In addition, we have to consider the cases in

which either d1 or d2 is the conclusion of a mathematical rule following the reg-

ular (G3KnC) or the geometric rule schema (G3BeC). Observe that when at least

one of d1, d2 is initial or conclusion of L⊥, the proof is the same as in Main Lemma

2.2.2 because initial sequents and conclusion of L⊥ do not have relational atoms

xRay as principal. If d1 is neither an initial sequent nor a conclusion of L⊥, we first

give the proof for G3KnC. Suppose that d1 is concluded by either Re fa, or Transa,

or else Syma. Therefore x : C is not principal and d1 is

....
uRu, Γ n−1−−→

p
∆, x : C

Γ n−→
p

∆, x : C
Refa

....
uRw, uRv, vRw, Γ′ n−1−−→

p
∆, x : C

uRv, vRw, Γ′ n−→
p

∆, x : C
Transa

....
vRu, uRv, Γ′ n−1−−→

p
∆, x : C

uRv, Γ′ n−→
p

∆, x : C
Syma

The conclusion d is found from d2 by admissibility of weakening (Theorem 3.4.3)

and IH as follows. For Re fa,

uRu, Γ n−1−−→
p

∆, x : C

x : C, Γ m−→
p

∆

x : C, uRu, Γ m−→
p

∆
L-W

uRu, Γ
(n−1)+m−−−−−→

p
∆

IH

Γ n+m−−→
p

∆
Refa

Similarly, for Transa and Syma,
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uRw, uRv, vRw, Γ′ n−1−−→
p

∆, x : C

x : C, uRv, vRw, Γ′ m−→
p

∆

x : C, uRw, uRv, vRw, Γ′ m−→
p

∆
L-W

uRw, uRv, vRw, Γ′Γ
(n−1)+m−−−−−→

p
∆

IH

uRv, vRw, Γ′ n+m−−→
p

∆
Transa

vRu, uRv, Γ′ n−1−−→
p

∆, x : C

x : C, uRv, Γ′ m−→
p

∆

x : C, vRu, uRv, Γ′ m−→
p

∆
L-W

vRu, uRv, Γ′Γ
(n−1)+m−−−−−→

p
∆

IH

uRv, Γ′ n+m−−→
p

∆
Syma

For G3BeC the proof is analogous. If d1 is concluded by Sera,

....
uRv, Γ n−1−−→

p
∆, x : C

Γ n−→
p

∆, x : C
Sera

where v does not appear in the conclusion of Sera, a derivation d of the conclusion

is obtained from d2, Theorem 2.1.4 and IH as follows. Note that in this case there

is no need to change the eigenvariable v of Sera because v does not appear in d2 too:

uRv, Γ n−1−−→
p

∆, x : C

x : C, Γ m−→
p

∆

x : C, uRv, Γ m−→
p

∆
L-W

uRv, Γ
(n−1)+m−−−−−→

p
∆

IH

Γ n+m−−→
p

∆
Sera

The case in which d2 is concluded by a mathematical rule of G3Kn or G3Be and

the cut formula is not principal is analogous. The case in which both occurrences of
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the cut formula are principal in a mathematical rule of G3KnC or G3BeC simply

does not arise because no relational atom can occur in the succedent.

�

Lemma 3.4.7 (Rank Reduction). Every derivation d in G3KnC and G3BeC such

that

d ` Γ m−−→
p+1

∆

can be converted into a derivation d∗ such that

d∗ ` Γ 2m
−→

p
∆

Proof. By induction on m. The proof extends the proof of Reduction Lemma 2.2.3

with new cases corresponding to mathematical rules. If m = 0 then d is an initial

sequent or conclusion of L⊥ and the claim holds as above. If m = k + 1 we argue by

distinction of cases according to the last rule R of d. If R is a mathematical rule of

G3KnC or G3BeC then IH is applied to its premise and then another application

of R gives the conclusion. For instance, if

....
xRax, Γ k−−→

p+1
∆

Γ k+1−−→
p+1

∆
Refa

by IH on the premise of Re fa, we find that xRax, Γ 2k
−→

p
∆ and, by Re fa, Γ 2k+1

−−→
p

∆ since

2k + 1 6 2k+1. Other mathematical rules of G3KnC or G3BeC are analogously dealt

with.

�

108



Theorem 3.4.8 (Cut elimination). In G3KnC and in G3BeC cut is eliminable, i.e.

every derivation d such that

d ` Γ n−→
p

∆

can be converted into a derivation d− such that

d− ` Γ
2p(n)−−−→

0
∆

Proof. By induction on p. The proof is the same of Theorem 2.2.4 of G3KC. �

Completeness

In this section we shall prove the completeness of the systems G3Kn and G3Be

through the equivalence with their corresponding Hilbert-style systems. In partic-

ular, we prove that all the axioms are derivable and all the rules are admissible.

As a sound and complete axiomatization consider the system Kn of Fagin et al.

(1995).

A1 All the axioms of modal logic K

A2 Ka A ⊃ A Factual Knowledge

A3 Ka A ⊃ KaKa A Positive Introspection

A4 ¬Ka A ⊃ Ka¬Ka A Negative Introspection

R1 From Γ ` A ⊃ B and ∆ ` A infer Γ, ∆ ` B Modus Ponens

R2 From ` A infer ` Ka A Necessitation

An adequate system for belief Be can be easily obtained from the basic modal

system K together with the axiom of consistency for the belief operator Ba.
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A1 All the axioms of modal logic K

A2 ¬Ba(A ∧ ¬A) Consistency

R1 From Γ ` A ⊃ B and ∆ ` A infer Γ, ∆ ` B Modus Ponens

R2 From ` A infer ` Ba A Necessitation

Lemma 3.4.9. All the axioms (rules) of Kn are derivable (resp. admissible) in

G3Kn.

Proof. By root-first proof search from the sequent to be derived. For the derivations

of K axioms see Lemma 2.3.1. For factivity of knowledge (A2), the derivation is

x : A, xRax, x : Ka A→ x : A
xRax, x : Ka A→ x : A LK

x : Ka A→ x : A
Refa

→ x : Ka A ⊃ A
R⊃

where the topmost sequents are derivable by Lemma 3.4.1. Positive introspection

(A3) has the following derivations.

z : A, xRaz, xRay, yRaz, x : Ka A→ z : A
xRaz, xRay, yRaz, x : Ka A→ z : A LK

xRay, yRaz, x : Ka A→ z : A
Transa

xRy, x : Ka A→ y : Ka A RK

x : Ka A→ x : KaKa A RK

→ x : Ka A ⊃ KaKa A
R⊃

Finally, for negative introspection (A4) we have

y : A, z : Ka A, zRay, zRax, xRay, xRaz→ y : A
z : Ka A, zRay, zRax, xRay, xRaz→ y : A LK

z : Ka A, zRax, xRay, xRaz→ y : A
Transa

z : Ka A, xRay, xRaz→ y : A
Syma

xRay, xRaz→ y : A, z : ¬Ka A R¬

xRay→ y : A, x : Ka¬Ka A RK

→ x : Ka A, x : Ka¬Ka A RK

x : ¬Ka A→ x : Ka¬Ka A L¬

→ x : ¬Ka A ⊃ Ka¬Ka A
R⊃
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In either case the topmost sequents are derivable by Lemma 3.4.1. The admissi-

bility of the Kn rules in G3Kn is proved as in Lemma 2.3.1. �

Lemma 3.4.10. All the axioms (rules) of Be are derivable (resp. admissible) in

G3Be.

Proof. The proof reduces to find a derivation of axiom A2 as follows

y : A, xRay, x : Ba(A ∧ ¬A)→ y : A
y : A, y : ¬A, xRay, x : Ba(A ∧ ¬A)→ L¬

y : A ∧ ¬A, xRay, x : Ba(A ∧ ¬A)→ L∧

xRay, x : Ba(A ∧ ¬A)→ LB

x : Ba(A ∧ ¬A)→
Sera

→ x : ¬Ba(A ∧ ¬A)
R¬

where the topmost sequents are derivable by Lemma 3.4.1. Again, for admissibil-

ity of Be rules, see Lemma 2.3.1.

�

3.5 Intuitionistic Logic

It is well known that the semantics of S4 can be used to provide a direct interpreta-

tion of the intuitionistic connectives, the intuitionistic implication being a �-type

modality (see Kripke 1965). The intuitionistic accessibility relation is denoted by

6 and satisfies the properties of reflexivity and transitivity. Therefore, it is pos-

sible to internalize the semantics of intuitionistic implication into the the syntax

of sequent calculus analogously to the internalization of the modal operator � in

G3S4. In fact, the inductive definition of validity of implicative formulas is:

x  A ⊃ B if and only if for all y, x 6 y and y  A implies y  B
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Along with the clauses for the other connectives, the definition can be converted

into a pair of sequent rules with the condition that the label y must not appear in

the conclusion of the right rule for implication. In addition, the forcing relation has

to be proved monotone with respect to the relation 6. That is, for any arbitrary

formula A the following has to hold:

x 6 y and x  A implies y  A

It is enough to impose monotonicity of forcing, in the form of an initial sequent,

with respect to only atomic formulas. This is not a restriction because full mono-

tonicity is then shown derivable. In this way, one of the design principles of G3-

style calculi, namely the restriction of initial sequents to atomic formulas needed

to guarantee the full range of structural properties, is respected. The following

labelled sequent calculus G3I for intuitionistic logic is thus obtained. As usual,

negation is defined in terms of ⊥ and ⊃, the formulas P are atomic, and y /∈ Γ, ∆ in

rule R ⊃.

Rule of G3I

x 6 y, x : P, Γ→ ∆, y : P

x : A, x : B, Γ→ ∆
x : A ∧ B, Γ→ ∆ L∧

Γ→ ∆, x : A Γ→ ∆, x : B
Γ→ ∆, x : A ∧ B R∧

x : A, Γ→ ∆ x : B, Γ→ ∆
x : A ∨ B, Γ→ ∆ L∨

Γ→ ∆, x : A, x : B
Γ→ ∆, x : A ∨ B R∨

x 6 y, x : A ⊃ B, Γ→ ∆, y : A x 6 y, x : A ⊃ B, y : B, Γ→ ∆
x 6 y, x : A ⊃ B, Γ→ ∆

L⊃

x : ⊥, Γ→ ∆
L⊥

x 6 y, y : A, Γ→ ∆, y : B
Γ→ ∆, x : A ⊃ B

R⊃
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If 6 is assumed to be reflexive and transitive, system G3I must contain also the

following rules for 6.

Mathematical rules of G3I

x 6 x, Γ→ ∆
Γ→ ∆

Ref6
x 6 z, x 6 y, y 6 z, Γ→ ∆

x 6 y, y 6 z, Γ→ ∆
Trans6

Full monotonicity of forcing is obtained by the following:

Lemma 3.5.1. In G3I it holds that

i) ` x 6 y, x : A, Γ→ ∆, y : A

ii) ` x : A, Γ→ ∆, x : A

for every labelled formula x : A.

Proof. By simultaneous induction on the height h of A. The proof of ii is done at

each step of the induction by Re f6 and the inductive hypothesis of i. The proof of

(i) is trivial for A atomic and for ⊥, whereas it uses the inductive hypothesis of (ii)

and Trans6 if A is B ⊃ C:

. . . , z : B, Γ→ ∆, z : C, z : B . . . , z : C, Γ→ ∆, z : C
x 6 z, x 6 y, y 6 z, x : B ⊃ C, z : B, Γ→ ∆, z : C

L⊃

x 6 y, y 6 z, x : B ⊃ C, z : B, Γ→ ∆, z : C
Trans6

x 6 y, x : B ⊃ C, Γ→ ∆, y : B ⊃ C
R⊃

The cases in which A is a conjunction or a disjunction are handled by the inductive

hypothesis of i.

�

System G3I enjoys all the structural properties usually required of sequent sys-

tems and the same holds for each extension G3I* with rules that follow the regular

or the geometric rule schema.
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Theorem 3.5.2. In G3I* it holds that:

i) All the logical rules are hp-invertible;

ii) The rules of weakening and contraction are hp-admissible;

iii) Cut is admissible.

Proof. See the proofs of Theorems 12.27–12.29 of Negri and von Plato (2011). �

For our purposes, the most remarkable extension of G3I is obtained by imposing

symmetry of the accessibility relation

y 6 x, x 6 y, Γ→ ∆
x 6 y, Γ→ ∆

Sym6

This extension gives a system equivalent to classical logic and we shall refer to it

as G3C. Given that G3C is an extension of G3I with a rule that follows the regular

rule schema, it admits cut elimination by Theorem 3.5.2. Systems G3I and G3C

will play an important role in the last chapter.
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Chapter 4
Dynamic Epistemic Logics

This chapter takes into account one of the most prominent development of epis-

temic modal logic, the dynamics of knowledge. So far, we have been considering

epistemic logic as a formal investigation concerning what agents statically know or

believe, in the sense that our analysis did not take into account the possibility that

knowledge might change. In fact, epistemic logic traditionally builds on a model

of knowledge which is not formally able to cope with the fact that agents that are

ignorant about a certain P can eventually learn it. However, it is natural to think

that they indeed may come to know that P is the case, once for instance they are

informed to this end by other agents. From this perspective, knowledge is strictly

connected with the practice of communication, and agents’ comprehension of the

world depends not only on what they know, but also on what they eventually may

come to know in the process of information flow.

4.1 Public Announcement Logic

Dynamic epistemic logic (DEL) provides a general account of the problem of knowl-

edge change. However, DEL is a large family and not a single logic, and in this

chapter we shall focus on the simplest type of DEL, the logic of public an-
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nouncements (PAL). Along with the standard epistemic modal operators Ka for

each agent a, and propositional connectives, the language of PAL has formulas for

announcements [A]B, intuitively read as: “after every announcement of A, B”. It is

clear that there is a strong analogy between announcements in PAL and programs

in dynamic logic of programs (PDL, see Harel 2000). In the latter, the modality is

a �-like operator such that [α]B stands for: after every terminating execution of

the program α, B. Public announcements are specific form of programs in which

α is in turn a formula. The dual operation is 〈 〉 and 〈A〉B is defined as ¬[A]¬B

and read as: after some announcements of A, B. Although this perspective on the

PAL language is nowadays dominant, it is not the only one. PAL originated with

the seminal work of Plaza (1989) in which announcements are formalized by the

binary non truth-functional connective + in such a way that a formula as A + B

means: “A is true and after announcing that A, also B is true”. Despite A + B

and 〈A〉B can be considered equivalent, they reveal two different perspectives: the

latter notation takes the operator [ ] as a unary operator applying to formulas that

are postconditions of the program execution, where [ ] is relative to some program

α. The former is simply a binary connective as conjunction or disjunction, with the

basic difference that it is truth-functional.

Formal semantics

The basic idea behind the formal semantics of PAL is that agents can gain new

information by the public announcement of some (true) fact. The consequence of

an announcement is the update of the agents’ knowledge: agents rule out some

situations that are not any longer considered as possible because incompatible

with the announcement. We have said that the standard presentation of PAL in

van Ditmarsch et al. (2007) arises from the seminal work of Plaza (1989): despite

the binary notation A + B employed there, Plaza’s announcements are formulas
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such as 〈A〉B which is true whenever A is true and after A is announced B is

true. Therefore, the dual formula [A]B is satisfied whenever if A is true then af-

ter A is announced B is true. Thus, in Plaza’s interpretation (P-interpretation) of

announcements a formula can be announced only if it is true and hence announce-

ments are considered as a completely truthful resource of information. The truth-

fulness of announcements is formally expressed by the formula (A ⊃ [A]B) ⊃ [A]B

which is is a theorem of PAL when Plaza’s interpretation of announcements is

considered. Thus, “announcement” means “truthful and public announcement”.

However, this is not the whole picture and alternative interpretations are possible

if we drop the requirement that what is announced must be true and allow that

every formula can be announced, no matter what its truth-value is. In contrast

with P-announcements, it may happen that the agents do not assume the truth

of what is announced and could correctly exclude as impossible also the situation

in which the announcement is made. This approach, proposed by Gerbrandy and

Groenveled (1997), modifies the original perspective on truthful announcements

due to Plaza (1989). For a clear and compact presentation of the Gerbrandy and

Groenveled announcements (GG-announcements) see Bucheli et al. (2010). In

what follows we present the formal semantics for both P- and GG-interpretations

of PAL, even though we shall go into the details only of the GG-interpretation. In

either case, the semantics of PAL is based on the semantics of epistemic logic and

consists into a modification of the standard epistemic frames and models by means

of an operation of state and arrow restriction.

Definition (P-Restricted Model). Let A be a formula and M = {X,Ra,} an epis-

temic model. The P-restriction of M to A is the model MA = 〈XA,RA
a ,A〉 where

XA = {x ∈ X | x  A};

RA
a = {〈x, y〉 ∈ XA × XA | xRay} for every agent a ∈ A;

A= {〈x, P〉 | x ∈ XA and x  P} for every atom P.
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Definition (GG-Restricted Model). Let A be a formula and M = {X,Ra,} an

epistemic model. The GG-restriction of M to A is the model MA = 〈XA,RA
a ,A〉

where

XA ≡ X;

RA
a = {〈x, y〉 ∈ X× X | xRay and y  A} for every agent a ∈ A;

A=  .

Observation. From the above definitions we have that in the P-restricted model

MA, for every x, y ∈ X,

xRA
a y if and only if xRay and M, x  A and M, y  A;

MA, x  P if and only if M, x  A and M, x  P.

On the other hand, when MA is a GG-restricted model, we have that for every

x, y ∈ X,

xRA
a y if and only if xRay and M, y  A;

MA, x  P if and only if M, x  P.

Notational convention. In order to simplify the notation we shall write x A P

instead of MA, x  P.

In both P- and GG-announcements the forcing relation  is given on atomic formu-

las and it is extended in a unique way to arbitrary formulas. The clauses for the

propositional connectives and knowledge are the standard ones, whereas there are

two different ways to evaluate announcements. In the P-interpretation the clause

assumes explicitly that what is announced is true.

x  [A]B if and only if x  A implies x A B

Conversely, in GG-interpretation the assumption that A is true is left out.
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x  [A]B if and only if x A B

In order to understand the difference between P- and GG- announcements we use

an example of a formula which is valid in the P-interpretation, but falsified in the

GG-interpretation.

Example. Consider the formula (A ⊃ [A]KaP) ⊃ [A]KaP and the following model:

A ⊃ [A]KaP holds but not [A]KaP, so the model is a countermodel to (A ⊃ [A]KaP) ⊃

[A]KaP.

x

y A

Ra

In fact, x 1 A and then A ⊃ [A]KaP is trivially true at x. On the other hand, we

have x 1 [A]KaP if and only if x 1A KaP. This, in turn, holds if and only if there

is some state s which is RA
a -accessible from x and s 1A P. The latter conjunction

is equivalent to xRas and s  A but s 1 P. It is clear that if y is such s and

y 1 P then we have that x 1A KaP. On the other hand, with P-announcements

(A ⊃ [A]KaP) ⊃ [A]KaP is true in the model because it is valid and this can be

verified by applying the above semantic definitions for P-announcements without

any appeal to the diagram. In fact, suppose that for an arbitrary x it holds that

x  A ⊃ [A]KaP. This is equivalent to x  A implies that if x  A then x A KaP.

This holds if and only if x  A and x  A implies x A KaP by propositional

reasoning. Therefore we have x  A implies x A KaP which is x  [A]KaP.

In the P- and GG-interpretation announcements can be composed: any effect of

two consecutive assertions could also have been produced by making only one as-

sertion. Two consecutive announcements that A and B are equivalent to the single

announcements that A and after the announcement that A, B. In other words,
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two announcements [A][B] can be reduced to the single announcement [A ∧ [A]B].

Another property is the associativity of public announcements, that is, the equiv-

alence between [A][B ∧ [B]C]D and [A ∧ [A]B][C]D.

Proposition 4.1.1 (Associativity). The following are equivalent:

i) x  [A ∧ [A]B][C]D

ii) x  [A][B ∧ [B]C]C

Proposition 4.1.2 (Compositionality). The following are equivalent:

i) x  [A ∧ [A]B]C

ii) x  [A][B]C

Both the properties are provable by induction on the formula announced and they

are similar, so we prove only compositionality of GG-announcements.

Proof. By induction on C. If C is an atom P then by definition x  [A ∧ [A]B]P

if and only x A∧[A]B] P if and only if x  P. In GG-restricted model, the latter

is equivalent to x A P and this, in turn, holds if and only if x A,B P, and,

by definition, x  [A][B]P. If C is D ∧ E we have that x  [A ∧ [A]B](D ∧ E) if

and only if x A∧[A]B (D ∧ E). By definition of conjunction this is equivalent to

x A∧[A]B D and x A∧[A]B E. By inductive hypothesis (IH) we have that x A,B D

and x A,B E which is equivalent to x A,B (D∧ E). Now, by definition, we conclude

x  [A][B](D∧ E). The proof is analogous when C is another propositional formula.

When C is of the form KaD, we have: x  [A ∧ [A]B](KaD) if and only if x A∧[A]B

KaD. The latter holds if and only if for an arbitrary y, xRay and y  A ∧ [A]B

implies y A∧[A]B D. By IH, we obtain: for all y, xRay and y  A ∧ [A]B implies

y A,B D. Now, the antecedent of the conditional holds if and only if xRay and

y  A and y A B. By definition of RA
a in GG-models this is equivalent to xRA

a y

and y A B. Now, we have that for all y, xRA
a y and y A B implies y A,B D
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and this is, by definition of Ka, x A,B (KaD). Finally, when C is of the form [C]D

then we have x  [A ∧ [A]B]([D]E) if and only if x A∧[A]B,D E. By associativity

of public announcements, x A∧[A]B,D E and x A,B∧[B]D E are equivalent. By

IH on the latter we obtain x A,B,D E and from this by definition we conclude

x  [A][B]([D]E).

�

To prove the compositionality of public announcement an inductive argument is

required. This is to say that the validity of the formula [A ∧ [A]B]C ⊃⊂ [A][B]C

cannot be proved schematically as other valid formulas like, for instance, the ax-

ioms of knowledge operator. However, in the labelled system we shall introduce in

the next section compositionality and associativity of public announcements can

be proved schematically and without any induction on formulas.

4.2 A labelled sequent calculus for PAL

In this section we present a labelled sequent system for PAL in which announce-

ments are GG-interpreted and we shall refer to this system as G3PAL. When the

semantics of announcements is internalized into sequent calculus, we have to con-

sider the general case of models restricted to a (possibly empty) list of formulas,

instead of a single formula. Given a list ϕ of formulas, we indicate by Mϕ the

model restricted to ϕ

Mϕ =

 M if ϕ = ε

((MA1)A2 . . . )An) if ϕ = A1, . . . , An

Note that Mϕ,A should be written MϕA , but we prefer a linear notation where the

comma has the same role of the concatenation operator • of Balbiani et al. (2010).
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As usual, the logical rules of G3PAL are obtained by exploiting the definition of

the forcing relation in the restricted model. A labelled formula of G3PAL is an

expression of the form x :ϕ A, where ϕ is an arbitrary list of formulas and indicates

that A is true at the state x in the model restricted to (formulas in) ϕ. Propositional

rules are immediate because their application leaves untouched the formulas in ϕ.

In the case of atomic and knowledge formulas we must distinguish the case in

which the list is empty from that in which it is of the form ϕ, A. In particular, if ϕ

is empty, atoms x : P can appear as principal only in initial sequents, whereas if

the list is of the form ϕ, A we add two rules, L0 and R0, that reflect the definition

of the forcing relation in GG-models

x ϕ,A P if and only if x ϕ P

The rules corresponding to this definition are

x :ϕ P, Γ→ ∆
x :ϕ,A P, Γ→ ∆

L0
Γ→ ∆, x :ϕ P

Γ→ ∆, x :ϕ,A P
R0

Likewise, the rules for the knowledge operator are the standard ones when ϕ is

empty. Instead, when ϕ is a non empty list the last element of which is the formula

A, then the clause becomes

x ϕ,A KaB if and only if for all y, xRϕ,A
a y implies y ϕ,A B

This can be immediately converted in two logical rules following the usual method

y :ϕ,A B, x :ϕ,A y,KaB, xRϕ,A
a y, Γ→ ∆

x :ϕ,A KaB, xRϕ,A
a y, Γ→ ∆

xRϕ,A
a y, Γ→ ∆, y :ϕ,A B
Γ→ ∆, x :ϕ,A KaB

In the presence of such rules we need as primitive also two non-logical rules for

formulas such as xRϕ,A
a y, in analogy to the rules for restricted propositional atoms

L0 and R0. These are found from the definition of GG-models:
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xRϕ,A
a y if and only if xRϕ

a y and y ϕ A

Therefore, we find the rules

xRϕy, y : A, Γ→ ∆
xRϕ,Ay, Γ→ ∆

Γ→ ∆, xRϕy Γ→ ∆, y :ϕ A
Γ→ ∆, xRϕ,Ay

However, these rules make problematic the proof of the admissibility of the struc-

tural rules, in particular the admissibility of cut because relational atoms appears

active both in the antecedent and succedent of a mathematical rule. A possible way

out is to rephrase the semantics of the knowledge operator so that the definition

of restricted relational atoms is embedded in it.

x ϕ,A KaB if and only if for all y, xRϕ
a y and y ϕ A implies y ϕ,A B

The move is analogous to that for the treatment of Gödel-Löb provability logic in

Negri (2005), where a modification in the definition of the �-operator allows to in-

ternalize a condition of the accessibility relation, the property of being Noetherian,

that is not even first order expressible. Thus, from the the sufficient condition for

KaB to be forced at x in a model restricted to a list ϕ, A we have

xRϕ
a y, y :ϕ A, Γ→ ∆, y :ϕ,A B

Γ→ ∆, x :ϕ,A KaB
RK′

As usual, RK′ has the variable condition that y must not appear in the conclusion.

Conversely, from the opposite direction of the definition the following rule is found

y :ϕ,A B, x :ϕ,A KaB, xRϕ
a y, y :ϕ A, Γ→ ∆

x :ϕ,A KaB, xRϕ
a y, y :ϕ A, Γ→ ∆

LK′

Finally, we have also two rules corresponding to the property of compositionality

of public announcements
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x :ϕ,A,B C, Γ→ ∆
x :ϕ,A∧[A]B C, Γ→ ∆

Lcmp
Γ→ ∆, x :ϕ,A,B C

Γ→ ∆, x :ϕ,A∧[A]B C
Rcmp

The system G3PAL can be easily modified in order to deal with the P-interpretation

of announcements. The rules that must be changed are L0, R0, LK′, RK′, L[ ] and

R[ ]. In the P-interpretation, what is announced must be true. So, when atomic

formulas are evaluated in the P-restricted model to a non empty list of formulas,

the inductive clause in the semantic definition is

x ϕ,A P if and only if x ϕ A and x ϕ P

and the corresponding rules are

x :ϕ A, x :ϕ P, Γ→ ∆
x :ϕ,A P, Γ→ ∆

L0′
Γ→ ∆, x :ϕ A Γ→ ∆, x :ϕ P

Γ→ ∆, x :ϕ,A P
R0′

Analogously, the semantics of announcements brings the two following rules

x :ϕ,A B, x :ϕ [A]B, x :ϕ A, Γ→ ∆
x :ϕ [A]B, x :ϕ A, Γ→ ∆

L[ ]′
x :ϕ A, Γ→ ∆, x :ϕ,A B

Γ→ ∆, x :ϕ [A]B
R[ ]′

Finally, in the definition of x ϕ,A KaB we need to take into account also the defini-

tion of restricted relational atom xRϕ,A
a y in a P-restricted model: xRϕ

a y and x ϕ A

and y ϕ A. The rules for the Ka operator become

y :ϕ,A B, x :ϕ,A KaB, xRϕ
a y, x :ϕ A, y :ϕ A, Γ→ ∆

x :ϕ,A KaB, xRϕ
a y, x :ϕ A, y :ϕ A, Γ→ ∆

LK′′

xRϕ
a y, x :ϕ A, y :ϕ A, Γ→ ∆, y :ϕ,A B

Γ→ ∆, x :ϕ,A KaB
RK′′

Thus, the logical rules of G3PAL with GG-announcements are the following:
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Logical rules of G3PAL

x : P, Γ→ ∆, x : P x :ϕ ⊥, Γ→ ∆
L⊥

x :ϕ P, Γ→ ∆
x :ϕ,A P, Γ→ ∆

L0
Γ→ ∆, x :ϕ P

Γ→ ∆, x :ϕ,A P
R0

x :ϕ A, x :ϕ B, Γ→ ∆
x :ϕ A ∧ B, Γ→ ∆

L∧
Γ→ ∆, x :ϕ B Γ→ ∆, x :ϕ B

Γ→ ∆, x :ϕ A ∧ B
R∧

x :ϕ A, Γ→ ∆ x :ϕ B, Γ→ ∆
x :ϕ A ∨ B, Γ→ ∆

L∨
Γ→ ∆, x :ϕ A, x :ϕ B

Γ→ ∆, x :ϕ A ∨ B
R∨

Γ→ ∆, x :ϕ A x :ϕ B, Γ→ ∆
x :ϕ A ⊃ B, Γ→ ∆

L⊃
x :ϕ A, Γ→ ∆, x :ϕ B
Γ→ ∆, x :ϕ A ⊃ B

R⊃

y : A, x : Ka A, xRay, Γ→ ∆
x : Ka A, xRay, Γ→ ∆ LK

xRay, Γ→ ∆, y : A
Γ→ ∆, x : Ka A RK

y :ϕ,A B, x :ϕ,A KaB, xRϕ
a y, y :ϕ A, Γ→ ∆

x :ϕ,A KaB, xRϕ
a y, y :ϕ A, Γ→ ∆

LK′
xRϕ

a y, y :ϕ A, Γ→ ∆, y :ϕ,A B
Γ→ ∆, x :ϕ,A KaB

RK′

x :ϕ,A B, Γ→ ∆
x :ϕ [A]B, Γ→ ∆

L[ ]
Γ→ ∆, x :ϕ,A B

Γ→ ∆, x :ϕ [A]B
R[ ]

x :ϕ,A,B C, Γ→ ∆
x :ϕ,A∧[A]B C, Γ→ ∆

Lcmp
Γ→ ∆, x :ϕ,A,B C

Γ→ ∆, x :ϕ,A∧[A]B C
Rcmp

P- and GG- restricted models were introduced as based on standard epistemic mod-

els. Therefore, we still assume that each accessibility relation Ra is an equivalence

relation and that the rules for Ra are those of G3S5, and we have

125



Mathematical rules of G3PAL

xRϕ
a x, Γ→ ∆
Γ→ ∆

Ref

xRϕ
a z, xRϕ

a y, yRϕ
a z, Γ→ ∆

xRϕ
a y, yRϕ

a z, Γ→ ∆
Trans

xRϕ
a y, yRϕ

a x, Γ→ ∆

xRϕ
a y, Γ→ ∆

Sym

4.3 Admissibility of the structural rules and cut

In this section we prove that the structural rules of weakening and contraction are

hp-admissible and all the logical rules of G3PAL hp-invertible. Furthermore, the

rule of cut is proved to be admissible. All this results hold also in the system for

the P-interpretation of announcements and the proofs can be easily adapted. The

structural rules of PAL are as follows:

Γ→ ∆
x :ϕ A, Γ→ ∆

L-W Γ→ ∆
Γ→ ∆, x :ϕ A R-W

Γ→ ∆
xRϕ

a y, Γ→ ∆
L-W

x :ϕ A, x :ϕ A, Γ→ ∆
x :ϕ A, Γ→ ∆

L-C
Γ→ ∆, x :ϕ A, x :ϕ A

Γ→ ∆, x :ϕ A R-C
xRϕ

a y, xRϕ
a y, Γ→ ∆

xRϕ
a y, Γ→ ∆

L-C

Γ→ ∆, x :ϕ A x :ϕ A, Γ′ → ∆′

Γ, Γ′ → ∆′, ∆
CUT

Note that the cut rule is formulated as a context-independent rule, unlike the

context-sharing formulation employed in G3K. In order to prove these results we

need to extend the straightforward definition of length of a formula as follows:

Definition. The length ` of a formula A is defined by induction.

`(⊥) = 0;
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`(P) = 1;

`(A ◦ B) = `(A) + `(B) + 1, when ◦ is ∧,∨,⊃;

`(Ka A) = `(A) + 1;

`([A]B) = `(A) + `(B) + 1.

For labelled formulas, `(x : A) = `(A) and `(xRay) = 1. Furthermore, if ϕ is the

list A1, . . . , An, we define `(x :ϕ,A B) = `(A1) + · · ·+ `(An) + `(A) + `(B).

Lemma 4.3.1. In G3PAL it holds that:

i) The substitution of labels is hp-admissible;

ii) Arbitrary initial sequents are derivable;

iii) All the rules are hp-invertible.

Proof. (i) Substitution of labels is proved to be hp-admissible by induction on the

height h of the derivation of a sequent Γ → ∆. If h = 0 then the premise is initial

or an istance of L⊥ and also the conclusion is initial or conclusion of L⊥. If h =

n + 1, suppose that the claim holds for derivations of height n and consider the

last rule applied in the derivation. If the last rule is a propositional rule or a

modal rule without variable conditions, apply the inductive hypothesis (IH) to the

premises and then the rule. If the last rule is a rule with a variable condition

such as RK or RK′, we must be careful with the cases in which either x or y is

the eigenvariable of the rule, because a straightforward substitution may result

in a violation of the restriction. In those cases we must apply IH to the premise

and replace the eigenvariable with a fresh variable that does not appear in the

derivation. Consider the case in which Γ → ∆ has been concluded by RK′ with

x :ϕ,A KaB as principal formula and y as eigenvariable. Thus the derivation is
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....
xRϕ

a y, y :ϕ A, Γ→ ∆′, y :ϕ,A B
Γ→ ∆′, x :ϕ,A KaB

RK′

Given that y is the eigenvariable of RK′ we must replace it with a fresh z. Note

that if z is fresh the substitution does not affect the context Γ, ∆′. Then by IH and

RK′ we obtain the desired conclusion.

xRϕ
a y, y :ϕ A, Γ→ ∆′, y :ϕ,A B

xRϕ
a z, z :ϕ A, Γ→ ∆′, z :ϕ,A B

IH

xRϕ
a z, z :ϕ A, Γ[y/x]→ ∆′[y/x], z :ϕ,A B

IH

Γ[y/x]→ ∆′[y/x], x :ϕ,A KaB
RK′

When Γ→ ∆ is concluded by an announcement rule such as

....
u :ϕ,A B, Γ→ ∆

u :ϕ [A]B, Γ→ ∆
L[ ]

we apply IH to the premise of L[ ] and then L[ ] again

....
u :ϕ,A B, Γ[y/x]→ ∆[y/x]

u :ϕ [A]B, Γ[y/x]→ ∆[y/x]
L[ ]

(ii) Derivability of arbitrary initial sequents, that is, ` x :ϕ B, Γ → ∆, x :ϕ B for an

arbitrary list ϕ and an arbitrary formula B, is proved by induction on `(x :ϕ B). If

B is atomic and ϕ has length zero, we have an initial sequent. If B is ⊥ then we

have an istance of L⊥. If B is an atomic formula P and ϕ is of the form ϕ, A, the

rules L0 and R0 are used to reduce the length of the list of announcements and IH

is applied:
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x :ϕ P, Γ→ ∆, x :ϕ P
x :ϕ P, Γ→ ∆, x :ϕ,A P

R0

x :ϕ,A P, Γ→ ∆, x :ϕ,A P
L0

The topmost sequent is derivable by IH because `(x :ϕ P) < `(x :ϕ,A P). If B is a

compound formula, apply root-first the appropriate rules and observe that similar

sequents, of reduced length, appear in the premises. Then the claim holds by IH.

(iii) Invertibility with the preservation of the height is proved for all the logical

rules by induction on the height h of the derivation. The proof of the cases corre-

sponding to the rule for ∧, ∨ and ⊃ is similar to the proof of Lemma 2.1.5. Rules

LK and LK′ are trivially hp-invertible, since their premises are obtained by weak-

ening from the conclusion (see Theorem 4.3.3 in the next). The proof for RK and

RK′ needs some care for the variable condition. Consider the case of RK′: we need

to prove that if Γ → ∆, x :ϕ,A KaB is derivable, also xRϕ
a y, y :ϕ A, Γ → ∆, y :ϕ,A B

is derivable. If Γ → ∆, x :ϕ,A KaB is an initial sequent or an istance of L⊥ then

x :ϕ KaB is not principal and also xRϕy, y :ϕ A, Γ → ∆, y :ϕ,A B is initial or an is-

tance of L⊥. If Γ → ∆, x :ϕ,A KaB is concluded by a derivation of height h > 0, we

have to consider the rule that introduced it. If x :ϕ,A KaB is principal formula of

RK′ and y is its eigenvariable then the premise of RK′ has a derivation of a lower

height and the claim holds by IH. If instead, the eigenvariable of RK′ is a z differ-

ent from y then apply hp-substitution of z with y and, again, the claim holds by IH.

If x :ϕ,A KaB is not principal and it has been introduced by a rule without variable

condition, apply IH and then the rule. If Γ → ∆, x :ϕ,A KaB is a conclusion of RK′

we apply first hp-substitution admissibility in order to avoid clash of variables and

then IH and RK′ again. The last step is

....
uRψy, y :ψ C, Γ→ ∆, y :ψ,C D, x :ϕ,A KaB

Γ→ ∆, x :ϕ,A KaB, u :ψ,C KaD
RK′
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By replacing y with a new z have uRψz, z :ψ C, Γ → ∆, z :ψ,C D, x :ϕ,A KaB. By IH

we get xRϕ
a y, y :ϕ A, uRψz, z :ψ C, Γ → ∆, z :ψ,C D, y :ϕ,A B and an application of RK′

gives xRϕ
a , y :ϕ A, Γ → ∆, y :ϕ,A B. The hp-inversion of L[ ], R[ ], L0, R0, Lcmp and

Rcmp is proved exactly as for the propositional cases: apply IH on the premise of

the last rule applied and then the rule. �

In G3PAL an analogous result of Lemma 2.1.2 of G3K holds. The result will be

useful in the proof the admissibility of cut rule.

Lemma 4.3.2. In G3PAL it holds that

If ` Γ n−→ ∆, x :ϕ ⊥ then ` Γ n−→ ∆

Proof. Similar to the proof of the Lemma 2.1.2. �

Now we can turn to the the admissibility of the structural rules of weakening and

contraction. Also in this case, we shall refer to previous results we the proofs can

be easily adapted.

Theorem 4.3.3. Weakening is height-preserving admissible in G3PAL, i.e.

i) If d ` Γ n−→ ∆ then d ` x :ϕ A, Γ n−→ ∆

ii) If d ` Γ n−→ ∆ then d ` Γ n−→ ∆, x :ϕ A

iii) If d ` Γ n−→ ∆ then d ` xRϕ
a y, Γ n−→ ∆

Proof. By induction on n. The proof follows the pattern of Theorem 2.1.4 to which

we add the following cases. Suppose the premise of d is the conclusion of R0, so ∆

is ∆′, u :ψ,B P and

....
Γ n−1−−→ ∆′, u :ψ P

Γ n−→ ∆′, u :ψ,B P
R0

By inductive hypothesis (IH) on a lower derivation we obtain
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i) x :ϕ A, Γ n−1−−→ ∆′, u :ψ P

ii) Γ n−1−−→ ∆′, u :ψ P, x :ϕ A

iii) xRϕ
a y, Γ n−1−−→ ∆′, u :ψ P

and by R0 once again we get the conclusion. If d has been concluded by R[ ] then it

ends with

....
Γ n−1−−→ ∆′, u :ψ,B C

Γ n−→ ∆′, u :ψ [B]C
R[ ]

By IH we have

i) x :ϕ A, Γ n−1−−→ ∆′, u :ψ,B C

ii) Γ n−1−−→ ∆′, u :ψ,B C, x :ϕ A

iii) xRϕ
a y, Γ n−1−−→ ∆′, u :ψ,B C

from which by R[ ] we conclude

i) x :ϕ A, Γ n−→ ∆′, u :ψ [B]C

ii) Γ n−→ ∆′, u :ψ [B]C, x :ϕ A

iii) xRϕ
a y, Γ n−→ ∆′, u :ψ [B]C

The case in which d is concluded by L[ ] is dealt with in analogous way.

�

Theorem 4.3.4. Contraction is height-preserving admissible in G3PAL, i.e.

i) If d ` x :ϕ A, x :ϕ A, Γ n−→ ∆ then d ` x :ϕ A, Γ n−→ ∆

ii) If d ` Γ n−→ ∆, x :ϕ A, x :ϕ A then d ` Γ n−→ ∆, x :ϕ A

iii) If d ` xRϕ
a y, xRϕ

a y, Γ n−→ ∆ then d ` xRϕ
a y, Γ n−→ ∆
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Proof. By simultaneous induction on n. The proof follows the pattern of Theorem

2.1.6. A new case arises when one of the contracted formulas x :ϕ A is principal in

an announcement rule. We have

....
x :ϕ,B C, x :ϕ [B]C, Γ n−1−−→ ∆

x :ϕ [B]C, x :ϕ [B]C, Γ n−→ ∆
L[ ]

From the hp-invertibility of the logical rules of G3PAL (Lemma 4.3.1) the premise

becomes

x :ϕ,B C, x :ϕ,B C, Γ n−1−−→ ∆

and IH is applicable

x :ϕ,B C, Γ n−1−−→ ∆

and we get the conclusion by L[ ]

x :ϕ [B]C, Γ n−→ ∆

�

Theorem 4.3.5 (Cut Admissibility). Cut in admissible in G3PAL, i.e. for every d1

and d2 derivations in G3PAL such that

d1 ` Γ n−→ ∆, x :ϕ C and d2 ` x :ϕ C, Γ′ m−→ ∆′

there is a derivation d in G3PAL such that
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d ` Γ, Γ′ → ∆′, ∆

Proof. The proof has the same structure as the proof of admissibility of cut for the

modal systems G3K of Negri (2005). The proof is by induction on the length of the

cut formula with sub-induction on the sum of the heights of the derivations of the

premises of cut. In the inductive step, we shall refer to the inductive hypothesis

on the length of the cut cut formula as the main inductive hypothesis (MIH), and

to the inductive hypothesis on the sum of the heights as the secondary inductive

hypothesis (SIH). The proof follows the pattern:

1. Either d1 or d2 is initial or conclusion of L⊥:

(a) d1 is initial or conclusion of L⊥;

(b) d2 is initial or conclusion of L⊥.

2. Neither d1 nor d2 is initial or conclusion of L⊥ and:

(a) x : C is not principal in d1;

(b) x : C is not principal in d2;

(c) x : C is principal both in d1 and d2.

Case 1a

If d1 is initial then Γ and ∆ have an atom u : P in common and so also Γ, Γ′ → ∆′, ∆

is initial. Else, x : C is atomic and Γ is x : P, Γ′′. In this case take d2 and apply

hp-admissibility of weakening (Theorem 4.3.3)

x : P, Γ′ → ∆′

x : P, Γ′′, Γ′ → ∆′, ∆
W
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If d1 is conclusion of L⊥ then u :ϕ ⊥ is in Γ and also Γ, Γ′ → ∆′, ∆ is conclusion of

L⊥.

Case 1b

If d2 is initial then either Γ′ and ∆′ have an atom u : P in common and so also

Γ, Γ′ → ∆′, ∆ is initial, or else, x : C is an atom x : P and it is in ∆′. As above, take

d1 and apply hp-admissibility of weakening (Theorem 4.3.3).

Γ→ ∆, x : P
Γ′, Γ→ ∆, ∆′′, x : P

W

where ∆′ is ∆′′, x : P. If d2 is conclusion of L⊥ then either u :ϕ ⊥ is in Γ′ or x :ϕ C is

x :ϕ ⊥. In the first case also the conclusion of cut is derived by L⊥. In the second

case apply Lemma 4.3.2 and weakening on d1.

Γ→ ∆, x :ϕ ⊥
Γ→ ∆

Γ, Γ′ → ∆′, ∆
W

Case 2a

If none of the premises of cut is initial or conclusion of L⊥, consider the case in

which d1 is conclusion of a rule R1 in which the cut formula x :ϕ C is not principal.

If R1 is a propositional rule, say L∧, then Γ is u :ψ A ∧ B, Γ′′ and d1 is

....
u :ψ A, u :ψ B, Γ′′ n−1−−→ ∆, x :ϕ C

u :ψ A ∧ B, Γ′′ n−→ ∆, x :ϕ C
L∧

From d2 and the premise of L∧ we find d by applying IH and L∧
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u :ψ A, u :ψ B, Γ′′ n−1−−→ ∆, x :ϕ C x :ϕ C, Γ′ m−→ ∆′

u :ψ A, u :ψ B, Γ′′, Γ′ → ∆′, ∆
IH

u :ψ A ∧ B, Γ′′, Γ′ → ∆′, ∆
L∧

The proof is similar when R1 is one of the other propositional rules or a modal rule

without variable condition, that is LK and LK′. Suppose that d1 is the conclusion

of an announcement rule like L[ ] or R[ ] with principal formula u :ϕ [A]B

....
u :ψ,A B, Γ′′ n−1−−→ ∆, x :ϕ C

u :ψ [A]B, Γ′′ n−→ ∆, x :ϕ C
L[ ]

A derivation d of the conclusion of cut can be found in this way

u :ψ,A B, Γ′′ n−1−−→ ∆, x :ϕ C x :ϕ C, Γ′ m−→ ∆′

u :ψ,A B, Γ′′, Γ′ → ∆′, ∆
SIH

u :ψ [A]B, Γ′′, Γ′ → ∆′, ∆
L[ ]

The case in which d1 is by L0 or R0 are similar. When the last step of d1 is by a

modal rule with variable condition, say RK′, we have

....
uRψ

a v, v :ψ A, Γ n−→ ∆′′, vψ,AB, x :ϕ C

Γ n−→ ∆′′, uψ,AKaB, x :ϕ C
RK′

where v is the eigenvariable of the rule and does not appear in the conclusion. We

find d by applying IH on the premise of RK′ and d2. We need hp-admissibility of

substitution in order to avoid variable clash because v may occur in Γ′, ∆′. So, let z

be a fresh label
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uRψ
a v, v :ψ A, Γ

(n−1)−−−→ ∆′′, vψ,AB, x :ϕ C

uRψ
a z, z :ψ A, Γ

(n−1)−−−→ ∆′′, zψ,AB, x :ϕ C
z/v

x :ϕ C, Γ′ m−→ ∆′

uRψ
a z, z :ψ A, Γ, Γ′ → ∆′, ∆′′, zψ,AB

SIH

Γ, Γ′ → ∆′, ∆′′, uψ,AKaB
RK′

Finally, we have the cases in which the left premise of cut is concluded by a math-

ematical rule, say Re fa. In this case, d1 is of the form

uRau, Γ n−1−−→ ∆, x :ϕ C

Γ n−→ ∆, x :ϕ C
Refa

The conclusion of cut is found from d2 and the premise of Re fa

uRau, Γ n−1−−→ ∆, x :ϕ C x :ϕ C, Γ′ m−→ ∆′

uRau, Γ, Γ′ →, ∆′, ∆
SIH

Γ, Γ′ → ∆′, ∆
Refa

Analogously, when d1 is concluded by Syma or Transa

....
vRau, uRav, Γ′′ n−1−−→ ∆, x :ϕ C

uRav, Γ′′ n−→ ∆, x :ϕ C
Syma

....
uRaw, uRav, vRaw, Γ′′ n−1−−→ ∆, x :ϕ C

uRav, vRaw, Γ′′ n−→ ∆, x :ϕ C
Transa

In the first case, d is found as follows

vRau, uRav, Γ′′ n−1−−→ ∆, x :ϕ C x :ϕ C, Γ′ m−→ ∆′

vRau, uRav, Γ′′, Γ′ →, ∆′, ∆
SIH

uRav, Γ′′, Γ′ → ∆′, ∆
Syma

Else, if d1 is concluded by Transa, d is

wRau, uRav, vRaw, Γ′′ n−1−−→ ∆, x :ϕ C x :ϕ C, Γ′ m−→ ∆′

uRaw, uRav, vRaw, Γ′′, Γ′ →, ∆′, ∆
SIH

vRau, uRav, Γ′′, Γ′ → ∆′, ∆
Transa
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Case 2b

Similar to case 2a.

Case 2c

Suppose now that the cut formula x :ϕ C is principal in both d1 and d2. We take

into account only the cases arising from announcement and atomic rules, the other

being analogous. We argue by distinction of cases according to the structure of

x :ϕ C. If C is atomic and ϕ non empty, that is, if x : C is of the form x :ϕ,A P, then

d1 and d2 are

....
Γ n−1−−→ ∆, x :ϕ P

Γ n−→ ∆, x :ϕ,A P
R0

....
x :ϕ P, Γ′ m−1−−→ ∆′

x :ϕ,A P, Γ′ m−→ ∆′
L0

At this stage IH is applicable because `(x :ϕ P) < `(x :ϕ,A P) and d is found as

follows.

Γ→ ∆, x :ϕ P x :ϕ P, Γ′ → ∆′

Γ, Γ′ → ∆′, ∆
IH

If the cut formula is of the form x :ϕ [B]C then from d1 and d2 of the form

....
Γ n−1−−→ ∆, x :ϕ,B C

Γ n−→ ∆, x :ϕ [B]C
R[ ]

....
x :ϕ,B C, Γ′ m−1−−→ ∆′

x :ϕ [B]C, Γ′ m−→ ∆′
L[ ]

a derivation d is found as follows

Γ→ ∆, x :ϕ,B C x :ϕ,B C, Γ′ → ∆′

Γ, Γ′ → ∆′, ∆
IH

137



�

The admissibility of cut and other structural rules has as main consequence the

possibility to use the system G3PAL for searching systematically derivations in

PAL. This possibility is precluded with the Hilbert-style system of the next section.

4.4 Completeness

In the table below, we recall from Bucheli et al. (2010) the standard Hilbert-style

system for PAL (PAL). We shall prove that all PAL axioms are derivable and all

PAL rules are admissible in G3PAL. More specifically, PAL axioms can be proved

to be derivable in G3PAL by applying a systematic proof-search procedure. PAL

rules, modus ponens and the necessitation, are admissible in G3PAL by using

the admissible rules of G3PAL. Derivability and admissibility in G3PAL of PAL

axioms and rules give that every theorem of PAL is derivable, that is, PAL ⊆

G3PAL. The completeness theorem for PAL proved in Gerbrandy and Groenveled

(1997) and in Bucheli et al. (2010) permits to conclude that every valid sequent

of PAL is derivable in G3PAL. The proof is indirect proof since it is based on the

completeness of the axiomatic system PAL. The other direction of the inclusion

G3PAL ⊆ PAL can be proved following the pattern of Theorem 2.4.1 and gives the

equivalence between PAL and G3PAL. However, completeness can be established

also directly by extending the proof of the Theorem 2.4.3. The results of this section

also exemplify how G3PAL is used for making proofs in PAL. In fact, PAL axioms

are difficult to use in practice because they reduction axioms: Every formula that

contains announcements can be rewritten into a formula without announcements.

On the contrary, the admissibility of the structural rules in G3PAL allow a proof-

search procedure for G3PAL derivations, that is, permit to construct a derivation

starting from the conclusion: the end-sequent is analyzed in order to determine a
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last possible rule of inference and thus its premise(s). The procedure is iterated

until a node at which no rule can be applied is reached: If every leaf is an initial

sequent or a conclusion of L⊥, we obtain a derivation. Otherwise, the procedure

fails if at least one of the leaves is not an initial sequent or a conclusion L⊥, or if

the proof search does not terminate. The table below shows the axioms and rules

of the axiomatic system given in Bucheli et al. (2010).

A1 All the axioms of modal logic S5

A2 [A]P ⊃⊂ P Atomic Independence

A3 [A](B ⊃ C) ⊃⊂ ([A]B ⊃ [A]C) Normality

A4 [A]¬B ⊃⊂ ¬[A]B Functionality

A5 [A]KaB ⊃⊂ Ka(A ⊃ [A]B) Update

A6 [A][B]C ⊃⊂ [A ∧ [A]B]C Announcements Composition

R1 From Γ ` A ⊃ B and ∆ ` A infer Γ, ∆ ` B Modus Ponens

R2 From ` A infer ` Ka A Necessitation

Through the admissibility of the structural rules and cut it is possible in G3PAL to

find systematically a derivation for each axiom of the list above. The admissibility

of the necessitation and modus ponens are proved as in Lemma 3.4.9.

Lemma 4.4.1. All the axioms (rules) of PAL are derivable (resp. admissible) in

G3PAL.

Proof. By applying a systematic proof-search procedure from the sequent to be

derived. First, axiom A2 is derivable as follows:

x : P→ x : P
x :A P→ x : P

L0

x : [A]P→ x : P
L[ ]

→ x : [A]P ⊃ P
R⊃

x : P→ x : P
x : P→ x :A P

R0

x : P→ x : [A]P
R[ ]

→ x : P ⊃ [A]P
R⊃

The derivation of axiom A3 (left-to-right direction) is
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x :A B→ x :A C, x :A B x :A C, x :A B→ x :A C
x :A B ⊃ C, x :A B→ x :A C

L⊃

x :A (B ⊃ C), x :A B→ x : [A]C
R[ ]

x : [A](B ⊃ C), x : [A]B→ x : [A]C
L[ ]

→ x : [A](B ⊃ C) ⊃ ([A]B ⊃ [A]C)
R⊃

where the top sequents are derivable by Lemma 4.3.1. Axiom A3 (right-to-left

direction) is derivable as follows

x :A B→ x :A C, x :A B
x :A B→ x :A C, x : [A]B

R[ ]
x :A C, x :A B→ x :A C

x : [A]C, x :A B→ x :A C
L[ ]

x : [A]B ⊃ [A]C, x :A B→ x :A C
L⊃

x : [A]B ⊃ [A]C → x :A B ⊃ C
R⊃

x : [A]B ⊃ [A]C → x : [A](B ⊃ C)
R[ ]

→ x : ([A]B ⊃ [A]C) ⊃ [A](B ⊃ C)
R⊃

where the top sequents are derivable by Lemma 4.3.1. Axiom A4 can be derived

by the following derivation

x :A B→ x :A B
x :A ¬B, x :A B→

L¬

x : [A]¬B, x : [A]B→
L[ ]

x : [A]¬B→ x : ¬[A]B
R¬

→ x : [A]¬B ⊃ ¬[A]B
R⊃

x :A B→ x :A B
→ x :A ¬B, x :A B

R¬

→ x : [A]¬B, x : ¬[A]B
R[ ]

x : ¬[A]B→ x : [A]¬B
L¬

→ x : ¬[A]B ⊃ [A]¬B
R⊃

where the top sequents are derivable by Lemma 4.3.1. Axiom A5 (left-to-right

direction) has the following derivation:

y :A B, xRay, x :A KaB, y : A→ y :A B
y :A B, xRay, x :A KaB, y : A→ y : [A]B

R[ ]

xRay, x :A KaB, y : A→ y : [A]B
LK′

xRay, x :A KaB→ y : A ⊃ [A]B
R⊃

x :A KaB→ x : Ka(A ⊃ [A]B)
RK

x : [A]KaB→ x : Ka(A ⊃ [A]B)
L[ ]

→ x : [A]KaB ⊃ Ka(A ⊃ [A]B)
R⊃
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where the top sequent is derivable by Lemma 4.3.1. Axiom A5 (right-to-left direc-

tion) is derivable with the following derivation

x : Ka(A ⊃ [A]B), xRay, y : A→ y :A B, y : A

y :A B, x : Ka(A ⊃ [A]B), xRay, y : A→ y :A B

y : [A]B, x : Ka(A ⊃ [A]B), xRay, y : A→ y :A B
L[ ]

y : A ⊃ [A]B, x : Ka(A ⊃ [A]B), xRay, y : A→ y :A B
L⊃

x : Ka(A ⊃ [A]B), xRay, y : A→ y :A B
LK

x : Ka(A ⊃ [A]B)→ x :A KaB
RK′

x : Ka(A ⊃ [A]B)→ x : [A]KaB
R[ ]

→ x : Ka(A ⊃ [A]B) ⊃ [A]KaB
R⊃

where the top sequents are derivable by Lemma 4.3.1. The derivation of axiom A6

is found as follows

x :A,B C → x :A,B C
x :A,B C → x :A∧[A]B C

Rcmp

x :A,B C → x : [A ∧ [A]B]C
R[ ]

x : [A][B]C → x : [A ∧ [A]B]C
L[ ]

→ x : [A][B]C ⊃ [A ∧ [A]B]C
R⊃

x :A,B C → x :A,B C
x :A∧[A]B C → x :A,B C

Lcmp

x :A∧[A]B C → x : [A][B]C
R[ ]

x : [A ∧ [A]B]C → x : [A][B]C
L[ ]

→ x : [A ∧ [A]B]C ⊃ [A][B]C
R⊃

where the top sequents are derivable by Lemma 4.3.1. The derivation of composi-

tionality axiom A6 requires the rules Lcmp and Rcmp. These rules make derivable

also the other property of PAL, that is, the associativity of public announcements

(see 4.1.1) by the following

x :A,B,C D → x :A,B,C D
x :A,B∧[B]C D → x :A,B,C D

Lcmp

x : [A][B ∧ [B]C]D → x :A,B,C D
L[ ]

x : [A][B ∧ [B]C]D → x :A,B [C]D
R[ ]

x : [A][B ∧ [B]C]D → x :A∧[A]B [C]D
Rcmp

x : [A][B ∧ [B]C]D → x : [A ∧ [A]B][C]D
R[ ]

→ x : [A][B ∧ [B]C]D ⊃ [A ∧ [A]B][C]D
R⊃

and
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x :A,B,C D → x :A,B,C D
x :A,B,C D → x :A,B∧[B]C D

Rcmp

x :A,B,C D → x : [A][B ∧ [B]C]D
R[ ]

x :A,B [C]D → x : [A][B ∧ [B]C]D
L[ ]

x :A∧[A]B [C]D → x : [A][B ∧ [B]C]D
Lcmp

x : [A ∧ [A]B][C]D → x : [A][B ∧ [B]C]D
L[ ]

→ x : [A ∧ [A]B][C]D ⊃ [A][B ∧ [B]C]D
R⊃

The proofs of admissibility of modus ponens and necessitation is the same as in

G3K.

�

It is possible to give also a direct completeness proof for G3PAL following the

pattern of Theorem 2.4.3 of the previous section. The theorem has been proved

for the P-interpretation of announcements in Maffezioli and Negri (2010) and we

shall give here the corresponding proof for the GG-interpretation.

Theorem 4.4.2. For all Γ → ∆ in G3PAL either Γ → ∆ is derivable or it has a

countermodel.

Proof. We define for an arbitrary Γ → ∆ of G3PAL a reduction tree by applying

the rules of G3PAL root first in all possible ways. If the construction terminates

we obtain a proof, else the tree becomes infinite. By König’s lemma an infinite tree

has an infinite branch that is used to define a countermodel to the end-sequent.

Construction of the reduction tree

The reduction tree is defined inductively in stages as follows: Stage 0 has Γ → ∆

at the root of the tree. Stage n > 0 has two cases:

CASE I: If every topmost sequent is initial or a conclusion of L⊥ the construction

of the tree ends.
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CASE II: If not every topmost sequent is initial or a conclusion of L⊥, we continue

the construction of the tree by writing above those sequents that are not initial

nor a conclusion of L⊥, other sequents that are obtained by applying root first the

rules of G3PAL whenever possible, in a give order. There are 14 different stages,

8 for the propositional and atomic rules, 2 for the epistemic rules for each K, 2 for

the announcement rules, and 2 for the composition of announcements. At stage

n = 15 we repeat stage 1, at stage n = 16 we repeat stage 2, and so on for every n.

We will not take into account the details of the proof when the topmost sequents

have either a conjunction, or a disjunction, or an implication, or else an epistemic

formula as principal formula, the proof being similar to the proof given in Negri

(2009). The essentially new cases are as follows.

We start, for n = 1, with L0. For each topmost sequent of the form

x1 :ϕ,A P1, . . . , xm :ϕ,A PmΓ′ → ∆

where P1, . . . Pm are all the formulas in Γ with an atom as the principal formula, we

write

x1 :ϕ P1, . . . , xm :ϕ Pm, Γ′ → ∆

on top of it. This corresponds to applying m times rule L0.

For n = 2, with R0. For each topmost sequent of the form

Γ→ ∆′x1 :ϕ,A P1, . . . , xm :ϕ,A Pm

where P1, . . . Pm are all the formulas in ∆ with an atom as the principal formula,

we write

Γ′ → ∆′x1 :ϕ P1, . . . , xm :ϕ Pm
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on top of it. This corresponds to applying m times rule R0. For the stages from

n = 3 to n = 10, corresponding to propositional and epistemic cases, the proof is

analogous to Negri (2009).

For n = 11, take all the topmost sequents with x1 :ϕ [B1]C1, . . . , xm :ϕ [Bm]Cm in the

antecedent, and write on top of these sequents

x1 :ϕ,B1 C1, . . . , xm :ϕ,Bm Cm, Γ′ → ∆

For n = 12, take all the topmost sequents with x1 :ϕ [B1]C1, . . . , xm :ϕ [Bm]Cm in the

succedent, and write on top of these sequents

Γ→ ∆′, x1 :ϕ,B1 C1, . . . , xm :ϕ,Bm Cm

For n = 13, we consider all the topmost sequents with the multiset of formulas

x1 :ϕ,A∧[A]B C1, . . . , xm :ϕ,A∧[A]B Cm in the antecedent, and write on top of these

sequents

x1 :ϕ,A,B C1, . . . , xm :ϕ,A,B Cm, Γ′ → ∆

that is, apply m times Lcmp.

Likewise, for n = 14, take all the topmost sequents with the multiset of formu-

las x1 :ϕ,A∧[A]B C1, . . . , xm :ϕ,A∧[A]B Cm in the succedent, and write on top of these

sequents

Γ→ ∆′, x1 :ϕ,A,B C1, . . . , xm :ϕ,A,B Cm

that is, apply m times Rcmp.

For any n, for each sequent that is neither initial, nor conclusion of L⊥, nor treat-

able by any one of the above reductions, we write the sequent itself above it. If the

reduction tree is finite, all its leaves are initial or conclusions of L⊥, and the tree,

read from the leaves to the root, yields a derivation.
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Construction of the countermodel

By König’s lemma, if the reduction tree is infinite, it has an infinite branch. Let

Γ0 → ∆0 ≡ Γ → ∆, Γ1 → ∆1, . . . , Γi → ∆i, . . . be one such branch. Consider the set

of labelled formulas and relational atoms

Γ ≡ ⋃
i≥0

Γi and ∆ ≡ ⋃
i≥0

∆i

We define a restricted Kripke model that forces all formulas in Γ and no formula in

∆ and is therefore a countermodel to the sequent Γ → ∆. The construction of the

countermodel is similar to that given in Theorem 2.4.3 and in Negri (2009). The

new cases are:

If x :ϕ [B]C is in Γ, we find x :ϕ,B C in Γ. By IH x ϕ,B C, and therefore x ϕ [B]C in

the model.

If x :ϕ [B]C is in ∆, consider the step at which the reduction for x :ϕ [B]C applies.

We find w :ϕ,B C in ∆. By IH x 1ϕ,B C, and by definition of the semantics x 1ϕ [B]C.

If x :ϕ,A∧[A]B C is in Γ, for some i, x :ϕ,A,B C is in Γi. By IH x ϕ,A,B C and by Lemma

4.1.2 we conclude x ϕ,A∧[A]B C.

If x :ϕ,A∧[A]B C is in ∆, for some i, x :ϕ,A,B C is in ∆i. By IH x 1ϕ,A,B C and by Lemma

4.1.2 we conclude x 1ϕ,A∧[A]B C. �

Corollary 4.4.3. If a sequent Γ → ∆ is valid in every restricted Kripke model then

it is derivable in G3PAL.

4.5 Conclusions

Although we focused mostly on GG-announcements, in the literature on DEL the

P-interpretation of announcement is dominant. In van Ditmarsch et al. (2007, p.
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89) is proposed the following axiomatization for Plaza’s announcements, where it

is clear that it is assumed the truth of what is announced.

A1 All the axioms of modal logic S5

A2 [A]P ⊃⊂ (A ⊃ P) Atomic Permanence

A3 [A](B ∧ C) ⊃⊂ ([A]B ∧ [A]C) Announcement and Conjunction

A4 [A]¬B ⊃⊂ (A ⊃ ¬[A]B) Announcement and Negation

A5 [A]KaB ⊃⊂ (A ⊃ Ka[A]B) Announcement and Knowledge

A6 [A][B]C ⊃⊂ [A ∧ [A]B]C Announcements Composition

R1 From Γ ` A ⊃ B and ∆ ` A infer Γ, ∆ ` B Modus Ponens

R2 From ` A infer ` Ka A Necessitation

Obviously, axioms A1, A3 and A5 cannot be derived using the rules applied so

far. However, if we consider the rules for P-announcements it is possible to find

a derivation of all the axioms listed above. For instance, consider axiom A1 using

and derive it by using the rules L0′, R0′, L[ ]′ and R[ ]′ of the previous section. We

have:

x : A, x : P, x : [A]P, x : A→ x : P
x :A P, x : [A]P, x : A→ x : P

L0′

x : [A]P, x : A→ x : P
L[ ]′

x : [A]P→ x : A ⊃ P
→ x : [A]P ⊃ (A ⊃ P)

R⊃

R⊃

And, in the opposite direction

x : A ⊃ P, x : A→ x : A
x : A→ x : P, x : A x : P, x : A→ x : P

x : A ⊃ P, x : A→ x : P
L⊃

x : A ⊃ P, x : A→ x :A P
R0′

x : A ⊃ P→ x : [A]P
R[ ]′

→ x : (A ⊃ P) ⊃ [A]P
R⊃
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In this chapter, we introduced a sequent system for the logic of public announce-

ments and proved that all the structural properties are satisfied. Moreover, we

proved both indirectly, through equivalence with the axiomatic system, and di-

rectly, through the method of reduction trees, its completeness with respect to the

semantics of restricted Kripke models. As we pointed out, G3PAL is not only a

different formalism, alternative to the standard axiom systems: It is designed for

making explicit the structure of proofs in PAL. The novelty of G3PAL is that the

rules incorporate the notion of model change and the dynamics of information up-

date through the internalization of semantics of restricted forcing into the syntax

of the calculus. The next step should be that of adding rules to deal with the

common knowledge operator (cf. van Ditmarsch et al. 2007) in order to formalize

sentences such as: “After it is announced that A, it is a common knowledge among

the agents that A”. However, the proof theory of the logic of common knowledge

(with or without public announcements) is problematic and requires a rule with

an infinite number of premise. Thus, the possibility of mechanizing proofs is def-

initely lost. A closely related approach is presented in Balbiani et al. (2010) in

which a tableau system for PAL is given. From the point of view of sequent sys-

tems, a tableau proof can be regarded as a single-sided sequent calculus proof, with

formulas only in the antecedent, that aims at a check for satisfiability, whereas a

sequent proof in a labelled system is a check for validity. By the duality in a clas-

sical framework between the unsatisfiability of a formula and the validity of its

negation, the two approaches are duals to each other. The tableau system of Bal-

biani et al. (2010) operates on labelled formulas and accessibility relations: It has

labels that range over natural numbers, which would seem to impose a restric-

tion to linear orders, whereas our system does not assume any underlying implicit

structure on the set of labels, but imposes it with suitable properties of the ex-

plicit accessibility relation. A closed tableau corresponds to a proof in our system,

whereas an open tableau gives a countermodel.
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Chapter 5
The Church-Fitch Paradox

In this chapter, the attention focuses on the Church-Fitch paradox of knowa-

bility (see Fitch 1963 and Salerno 2009 for an historical introduction). The Church-

Fitch’s paradox is a well-known semantic paradox that claims to threaten the anti-

realist position about truth by deriving that every truth is actually known (omni-

science thesis) from the assumption that every truth is possibly known (knowa-

bility principle). The principle gets formalized as A ⊃ ♦KA (“if A is true then

it possible to know that A”), and along with minimal assumptions on K and the

use of classical logic, makes it possible to derive the counter-intuitive conclusion

A ⊃ KA (“if A is true that it is known”). We propose a Gentzen-style reconstruc-

tion of the Church-Fitch paradox following a labelled approach to sequent calculi.

First, it is shown how to identify the semantic condition for A ⊃ ♦KA to be valid

by exploiting cut elimination in labelled systems. This condition is then converted

into non-logical inference rule by applying the method of-axioms-as-rules. Finally,

when the rule is made part of logical system, it is possible to provide an adequate

proof-theory governing the interaction among the modalities involved in Fitch’s

proof and to give a logical framework for dealing with Fitch’s paradox (knowability

logic). Moreover, it is argued in favor of the use of intuitionsitic logic as a solu-

tion of the paradox and it is shown that A ⊃ KA is only classically derivable, but
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neither intuitionistically derivable nor intuitionistically admissible.

5.1 Overview

According to the Dummettian tradition in the philosophy of language, realism /

anti-realism debate can be characterized in terms of the notion of truth involved.

Realism takes the notion of truth either as primitive or as defined over the notion

of “fact”, whereas anti-realism embraces an epistemic conception of truth. One

possible version of this epistemic conception is the following:

(1E) A is true if and only if it is possible to exhibit a direct justification for A.

A justification is something connected to linguistic practice, therefore it is sup-

posed not to transcend our epistemic capacities. This leads to:

(2E) If it is possible to exhibit a direct justification for A, then it is possible to

know that A.

Putting (1E) and (2E) together we get what is called the knowability principle:

(3E) If A is true, then it is possible to know that A.

What is known as the Fitch or Church-Fitch paradox is an argument that threat-

ens the anti-realist position: In the argument, it is concluded from the knowability

principle that all truths are actually known, a paradoxical consequence, known

as the principle of omniscience, that undermines the epistemic conception of

truth. The paradox was presented in Fitch (1963) but, as recently discovered by

Joe Salerno and Julien Murzi, it was actually suggested by Church in a series of

referee’s reports dating back to 1945 and now reproduced in Salerno (2009). The

force of the argument lies in the fact that it is a formal argument, completely devel-

oped in a plainly faultless logical setting. More precisely, the knowability principle
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is formalized with a schema that uses two modal operators, K and ♦. The first is

a zero-agent epistemic operator K to be read as “it is known that . . . ”. The second

is the possibility operator ♦ to be read as “it is possible that . . . ”. In this formal

language, the knowability principle takes the form of the schema

A ⊃ ♦KA KP

In the same manner, omniscience is formalized by the schema

A ⊃ KA OP

The Church-Fitch paradox consists in a formal derivation that starts from KP,

passes through its instance with the Moore sentence1 A ∧ ¬KA, and then leads to

OP by using only logical steps. We shall consider here only the definition of K as a

primitive modal operator, and not the one, alternatively proposed by Fitch at the

end of his paper (1963, p. 141) in which K is defined on the basis of a causation

relation that allows to define knowledge in terms of justified true belief.

Many different ways to block the paradox have been proposed. They can be grouped

into three categories of intervention:

1. Restriction on the possible instances of KP (Dummett 2001, Tennant 1997,

2009, Restall 2009);

2. Reformulation of the formalization of the knowability principle (Edington

1985, Rabinowicz and Segerberg 1994, Martin-Löf 1998, van Benthem 2009,

Burgess 2009, Proietti and Sandu 2010, Artemov and Protopopescu 2011,

Proietti 2011);

3. Revision of the logical framework in which the derivation is made (Williamson

1982, Beall 2000, 2009, Wansing 2002a, Dummett 2009, Giaretta 2009, Priest

2009).
1We extend here to knowledge the usual notion of Moore sentence, originally conceived for belief.
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Even if some of the proposed solutions focus on the type of derivability relation that

connects OP to KP, none of them has taken derivations themselves as objects of

study or analyzes the structure of the derivation of OP from KP. Our precise aim,

instead, is to focus on this analysis. Before proceeding, it is worth noting that the

standard derivation of the Church-Fitch paradox is given in an axiomatic calcu-

lus (Beall 2000, Brogaard and Salerno 2009, Wansing 2002a). This calculus hides

structural operations such as cut, weakening and contraction. For the purposes of

an analysis that leaves no inferential passage implicit, it is therefore preferable to

move to systems of sequent calculus that make these operations explicit, and, by

a suitable design as achieved in the G3-systems, completely eliminable. We begin

with a sequent calculus derivation of the Church-Fitch paradox, built by translat-

ing a natural deduction derivation. The calculus that it is used is contraction free

and cut free, thus a good basis for the structural analysis of the paradox. How-

ever, the presence of an axiomatic assumption in the derivation results in a non-

eliminable cut. As we shall see, the method of axioms-as-rules is not applicable

here because the knowability principle cannot be reduced to its atomic instances.

This fact is established syntactically by means of a failed proof search in the given

sequent system. We turn therefore to the method of labelled calculi and present a

bimodal extension of the system G3I of Ch. 3. We show that the system has all

the structural rules admissible. The system is equivalent to a standard axiomatic

system used in the analysis of the paradox, but the labelled approach allows a

stronger completeness result: We prove completeness in a direct way by showing

that for every sequent in the language of the logic in question, either there is a

proof in the calculus, or a countermodel in a precisely defined frame class is found.

The completeness result is used for showing that the classical standard form of

the Church-Fitch paradox is not derivable intuitionistically: We consider the clas-

sically derivable sequent with KP instantiated with the Moore sentence A ∧ ¬KA

as an antecedent and OP instantiated with A as succedent. Then, by the failed
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proof search, we extract a countermodel for OP. The argument suffices for block-

ing, within an intuitionistic bimodal system, the specific proof of the paradox, but

it is not yet conclusive. To conclude that an intuitionistic system that incorporates

KP as a derivation principle does not derive OP, it is not sufficient to shown that

OP does not follow from a particular instance of KP. Therefore, we make clear,

through an example from classical logic, that the notion to be considered when

comparing principles of proof should be admissibility, rather than derivability. To

clarify the relation between the two principles, it is necessary to make explicit the

conditions that characterize their validity. The semantical assumption behind the

axiom schema KP is determined, and the frame condition KP-Fr is then made part

of the logical system in the form of a block of additional rules of inference, linked by

a variable condition. By this addition, a complete contraction- and cut-free proof

system for intuitionistic bimodal logic extended with the knowability principle is

obtained. We show, using proof search and construction of countermodels, that OP

is not derivable in the system, therefore not valid. We also discuss how an over-

sight on the variable condition could lead to an opposite conclusion. We then show

how, by just adding symmetry of the preorder, OP becomes derivable. The latter

is a cut-free derivation of the Church-Fitch paradox that uses KP as a derivation

principle and that guarantees that the source of the paradox is to be found only in

the assumption on which it depends. It is also shown that the same result can be

obtained for belief-like notions of knowledge that do not assume factivity among

their defining principles.
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5.2 Towards a structural analysis of the Church-

Fitch argument

The Church-Fitch paradox was originally presented in Fitch (1963) without using

an explicit logical system, and it was later formalized using semantic arguments

and various deductive systems for modal logic: linear derivations, natural deduc-

tion, sequent calculus. All these formalizations have contributed to single out a

minimal logical ground that gives rise to the paradox. It consists in a basic bi-

modal logic that extends classical propositional logic with an alethic modality ♦

and an epistemic modality K. No requirement is made on the alethic modality,

whereas the epistemic modality is supposed to satisfy distributivity over con-

junction, K(A ∧ B) ⊃ KA ∧ KB, and factivity, KA ⊃ A. The former property is

indeed derivable for any necessity-like modality in normal modal logic, so the only

requirement added to a normal bimodal logic is factivity of K. A formalization of

the Church-Fitch argument is the first step towards its analysis. We start with a

derivation in natural deduction:

2
[A ∧ ¬KA]

KP
A ∧ ¬KA ⊃ ♦K(A ∧ ¬KA)

♦K(A ∧ ¬KA)
⊃E

1
[K(A ∧ ¬KA)]

KA K∧1

1
[K(A ∧ ¬KA)]

K¬KA K∧2

¬KA KE

⊥ ⊃E

⊥ ♦E1

¬(A ∧ ¬KA)
⊃I2

The conclusion is the weaker intuitionistic version of OP, and intuitionistically

equivalent to A ⊃ ¬¬KA. We will call both of them WOP (for weak omniscience

principle). The conclusion A ⊃ KA is obtained by classical propositional steps

and leads, in conjunction with factivity, to the identification of truth and knowl-

edge, A ⊃⊂ KA. A closer inspection of the derivation above shows that we used
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the following rules

K(A ∧ B)
KA K∧1

K(A ∧ B)
KB K∧2

These are derivable in any system of normal epistemic modal logic. Rule KE corre-

sponds to factivity of knowledge and rule ♦E is the dual of the familiar necessita-

tion rule: observe that the latter can be formulated in natural deduction as

♦A

1
[A]....
⊥

⊥ ♦E1

The minor premise of the rule is ⊥ and may depend on A, discharged by the rule,

similarly to the rule of existence elimination, with falsity, rather than any formula

not containing the eigenvariable, as the minor premise. With a sequent notation

and an empty succedent in place of ⊥, the rule becomes

A→
♦A→

This rule is the dual of the rule of of necessitation:

→ A
→ �A

A further step in the analysis of derivations comes from sequent calculus that

has several advantages over natural deduction. First, structural steps are explicit

and not hidden in vacuous and multiple discharge and in non-normal instances of

rules (see Negri and von Plato 2001, Ch. 1). Secondly, sequent calculus, contrary

to natural deduction, is well suited for classical logic and its modal extensions.

The sequent calculus that we shall use is obtained as an extension of the classical
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propositional contraction-free sequent calculus G3c with the following rules for

the alethic and epistemic modalities, where KΓ denotes the multiset of all the KA

for A in Γ:

Modal rules of G3♦K

Γ→ A
KΓ, Θ→ ∆,KA LR-K A,KA, Γ→ ∆

KA, Γ→ ∆ LK

A→ ∆
♦A, Γ→ Θ,♦∆

LR-♦

The resulting system, called G3♦K, is an extension of the calculus G3K presented

in section 4 of Hakli and Negri (2011), and the proof of its structural properties

follows the lines of the proof for G3K:

Theorem 5.2.1. In G3♦K it holds that:

i) All sequents of the form A, Γ→ ∆, A are derivable;

ii) All the propositional rules are height-preserving invertible;

iii) Weakening and contraction are hp-admissible.

iv) Cut is admissible.

Proof. We show here only one extra case that arises in the proof of cut elimination

because of the addition of rule LK, with the cut formula principal in both premises

of cut, the right one being LK:

Γ→ A
Θ,KΓ→ ∆,KA LR-K

KA, A, Γ′ → ∆′

KA, Γ′ → ∆′
LK

Θ,KΓ, Γ′ → ∆, ∆′
CUT
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The cut is transformed as follows in two consecutive cuts, the upper of decreased

derivation height, the lower of decreased cut formula height. Repeated applica-

tions of LK are denoted by a double inference line.

Γ→ A
Θ,KΓ→ ∆,KA KA, A, Γ′ → ∆′

A, Θ,KΓ, Γ′ → ∆, ∆′
CUT

Θ, Γ,KΓ, Γ′ → ∆, ∆′
CUT

Θ,KΓ, Γ′ → ∆, ∆′
LK

The conversions for a cut formula of the form ♦A principal in both premises of cut

in LR-♦ is symmetric to the conversion of a cut formula of the form KA principal

in both premises of cut in LR-K treated in the above mentioned article. �

The sequent-style reconstruction of the Church-Fitch paradox calls for the follow-

ing

Lemma 5.2.2. The following rules

→ A ∧ ¬KA ⊃ ♦K(A ∧ ¬KA)

A,¬KA→ ♦K(A ∧ ¬KA)
Inv

KA,K¬KA→
K(A ∧ ¬KA)→ Distr

are derivable in G3♦K with cut.

Proof. By the two derivations

→ (A ∧ ¬KA) ⊃ ♦K(A ∧ ¬KA)

A→ A ¬KA→ ¬KA
A,¬KA→ A ∧ ¬KA

R∧
♦K(A ∧ ¬KA)→ ♦K(A ∧ ¬KA)

A,¬KA, (A ∧ ¬KA) ⊃ ♦K(A ∧ ¬KA)→ ♦K(A ∧ ¬KA)
L⊃

A,¬KA→ ♦K(A ∧ ¬KA)
CUT
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A,¬KA→ ¬KA
A ∧ ¬KA→ ¬KA L∧

K(A ∧ ¬KA)→ K¬KA
LR-K

A,¬KA→ A
A ∧ ¬KA→ A L∧

K(A ∧ ¬KA)→ KA
LR-K

KA,K¬KA→
K(A ∧ ¬KA),K¬KA→ CUT

K(A ∧ ¬KA)→ CUT

The topmost sequents, except of the premises of the rules in question, are derivable

by Theorem 5.2.1.

�

A proof of the Church-Fitch paradox can now be obtained as a derivation in sys-

tem G3♦K of the sequent → A ⊃ KA from a special instance of the knowability

principle KP, the sequent→ (A ∧ ¬KA) ⊃ ♦K(A ∧ ¬KA), as follows

KP
→ A ∧ ¬KA ⊃ ♦K(A ∧ ¬KA)

A,¬KA→ ♦K(A ∧ ¬KA)
Inv

KA→ KA
KA,¬KA→ L¬

KA,K¬KA,¬KA→ L-W

KA,K¬KA→ LK

K(A ∧ ¬KA)→ Distr

♦K(A ∧ ¬KA)→
LR-♦

A,¬KA→ CUT

A→ ¬¬KA R¬

KA→ KA
→ KA,¬KA R¬

¬¬KA→ KA L¬

A→ KA CUT

→ A ⊃ KA
R⊃

Observe that the presence of the the sequent → A ∧ ¬KA ⊃ ♦K(A ∧ ¬KA) from

which the derivation starts makes the application of cut non-eliminable because,

in general, cut elimination fails when cuts depend on proper axioms. By applying

the method of axioms-as-rules introduced in the previous section, KP should be

converted into a rule of the form

♦KA, Γ→ ∆
A, Γ→ ∆ Kn
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This rule can be easily proved to be equivalent to the sequent→ A ⊃ ♦KA. Then,

it should be reduced to a rule that has only formulas devoid of logical structure as

principal, i.e., a reduction of the general knowability principle to the knowability

principle for only atomic formulas. If such were the case, the rule in the above

derivation could be turned into a left rule of sequent calculus with atomic principal

formulas, of the form

♦KP, Γ→ ∆
P, Γ→ ∆ Kn-At

However, it can be proved that the knowability principle cannot be reduced to its

atomic instances. By the following result, the knowability principle on a conjunc-

tion does not follow from the knowability on its conjuncts.

Lemma 5.2.3. The sequent P ⊃ ♦KP, Q ⊃ ♦KQ → P ∧ Q ⊃ ♦K(P ∧ Q) is not

derivable in G3♦K.

Proof. The result is obtained through a failed proof-search procedure: Start a

derivation tree with the sequent P ⊃ ♦KP, Q ⊃ ♦KQ → P ∧ Q ⊃ ♦K(P ∧ Q) as

a root and apply backwards all the propositional rules:

Q ⊃ ♦KQ, P, Q→ ♦K(P ∧Q), P
♦KP, P, Q→ ♦K(P ∧Q), Q

....
♦KP,♦KQ, P, Q→ ♦K(P ∧Q)

♦KP, Q ⊃ ♦KQ, P, Q→ ♦K(P ∧Q)
L⊃

P ⊃ ♦KP, Q ⊃ ♦KQ, P, Q→ ♦K(P ∧Q)
L⊃

P ⊃ ♦KP, Q ⊃ ♦KQ, P ∧Q→ ♦K(P ∧Q)
L∧

P ⊃ ♦KP, Q ⊃ ♦KQ→ P ∧Q ⊃ ♦K(P ∧Q)
R⊃

Since the rules used are invertible, there is no need of backtracking. The left

premises of the two steps of L ⊃ are initial sequents, and therefore derivability of

the sequent is equivalent to derivability of the rightmost sequent, ♦KP,♦KQ, P, Q→
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♦K(P ∧ Q). Proof search for the latter can be effected in two ways, depending on

the choice of principal formula in LR-♦, each followed by an application of LR-K.

In one case it leads to the sequent Q → P, in the other to P → Q. Since both are

underivable, the proof search fails.

�

By Lemma 5.2.3 we conclude that the rule of knowability on arbitrary formulas

does not follow from its restriction to atomic formulas. The method of conversion

of axiom into rules, successfully employed elsewhere for extending structural proof

analysis from standard sequent calculi to systems with added axioms (see Negri

and von Plato 2001, 2011) thus cannot be applied in this case. We shall therefore

use the more refined labelled deductive machinery.

5.3 Intuitionistic bimodal logic

We start from the cut-free labelled calculi G3I for intuitionistic logic of Ch. 3 and

we consider its language augmented with two modalities K and ♦. The correspond-

ing accessibility relations in Kripke semantics are RK and R♦, and the behavior of

these two modal operators is captured by the following valuation clauses:

x  KA if and only if for all y, xRKy implies y  A

x  ♦A if and only if for some y, xR♦y and y  A

Each definition can be unfolded in the necessary and sufficient conditions and

converted into the following sequent rules, with the condition y 6= x, y /∈ Γ, ∆

for RK and L♦.
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Logical rules of G3IK♦

y : A, xRKy, x : KA, Γ→ ∆
xRKy, x : KA, Γ→ ∆ LK

xRKy, Γ→ ∆, y : A
Γ→ ∆, x : KA RK

xR♦y, y : A, Γ→ ∆
x : ♦A, Γ→ ∆

L♦
xR♦y, Γ→ ∆, x : ♦A, y : A

xR♦y, Γ→ ∆, x : ♦A
R♦

Unlike for the extension with Sym6, in the presence of the new rules it is not

guaranteed that Theorem 3.5.2 is still valid. Moreover, we need to prove that the

full monotonicity property (Lemma 3.5.1) extends also to modal formulas. Indeed,

it is easy to see that if the standard rules for K and ♦ are used, Lemma 3.5.1 does

not hold. A possible way out has been found in Božić and Došen (1984) by requiring

that models satisfy the extra conditions

∀x∀y∀z(x 6 y ∧ yRKz ⊃ xRKz) MonK

∀x∀y∀z(x 6 y ∧ xR♦z ⊃ yR♦z) Mon♦

Observe that these conditions state that the following diagrams can be completed

(the completing arrows are the dotted ones):

x

y z

6
RK

RK

x

y z

6
R♦

R♦

Conditions MonK and Mon♦ are universal axioms and by applying the method of

conversion of axioms into sequent rules they become:
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Mathematical rules of G3IK♦

xRKz, x 6 y, yRKz, Γ→ ∆
x 6 y, yRKz, Γ→ ∆

MonK

yR♦z, x 6 y, xR♦z, Γ→ ∆
x 6 y, xR♦z, Γ→ ∆

Mon♦

We shall call G3IK♦ the extension of G3I with rules LK, RK, L♦, R♦, MonK and

Mon♦. With the new mathematical rules monotonicity of forcing can now be ex-

tended to cover arbitrary formula, including also modal formulas.

Lemma 5.3.1. In G3IK♦ it holds that

i) ` x 6 y, x : A, Γ→ ∆, y : A

ii) ` x : A, Γ→ ∆, x : A

Proof. By simultaneous induction on the height h of A, as in the proof of Lemma

3.5.1. The proof of ii is done at each step of the induction by Re f6 and the inductive

hypothesis of i. The most relevant cases of the proof of i are the following, where

the new mathematical rules are applied.

z 6 z, z : B, xRKz, x 6 y, yRKz, x : KB, Γ→ ∆, z : B
z : B, xRKz, x 6 y, yRKz, x : KB, Γ→ ∆, z : B

Ref6

xRKz, x 6 y, yRKz, x : KB, Γ→ ∆, z : B LK

x 6 y, yRKz, x : KB, Γ→ ∆, z : B
MonK

x 6 y, x : KB, Γ→ ∆, y : KB RK

z 6 z, yR♦z, x 6 y, xR♦z, z : B, Γ→ ∆, y : ♦B, z : B
yR♦z, x 6 y, xR♦z, z : B, Γ→ ∆, y : ♦B, z : B

Ref6

yR♦z, x 6 y, xR♦z, z : B, Γ→ ∆, y : ♦B
R♦

x 6 y, xR♦z, z : B, Γ→ ∆, y : ♦B
Mon♦

x 6 y, x : ♦B, Γ→ ∆, y : ♦B
L♦

where the topmost sequents are derivable by the inductive hypothesis. �
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Finally, the system G3IK♦ satisfies the structural properties of G3-systems, that

is, the admissibility of the structural rules and cut.

Theorem 5.3.2. In G3IK♦ it holds that

i) The substitution of labels is hp-admissible;

ii) All the logical rules are hp-invertible;

iii) The rules of weakening and contraction are hp-admissible;

iv) Cut is admissible.

Proof. (i) By induction on the height h of the derivation of the premise. If h = 0

and the substitution is not vacuous then Γ → ∆ is x 6 y, x : P, Γ′ → ∆′, y : P or

x : ⊥, Γ′ → ∆. In each case, we obtain an initial sequent or a conclusion of L⊥. If

h = n + 1, suppose by induction hypothesis (IH) that we have the conclusion for

derivations of height n and consider the last rule applied. If it is a rule without

a variable condition, apply IH to the premise(s) and then the rule. If the last

rule applied is either R ⊃, or RK, or L♦ we have to consider whether y is the

eigenvariable or not. Consider the case of L♦, the others being analogous. If y is

the eigenvariable then the premise is xR♦y, y : A, Γ′ → ∆ and we have to refresh by

IH y with a new z in order to avoid a variable clash, and we obtain a derivation of

xR♦z, z : A, Γ′ → ∆. Again by IH, we replace x with y and thus obtain the sequent

yR♦z, z : A, Γ′ → ∆. Next, we are allowed to apply L♦ to conclude y : ♦A, Γ′ → ∆.

Note that if the eigenvariable is x, the substitution is vacuous.

(ii) We prove the result for those rules that are not in common with G3I, the oth-

ers have been already proved admissible by Theorem 3.5.2. LK and R♦ are clearly

invertible by hp-admissibility of weakening. We consider only the case of L♦ be-

cause RK is analogous, and we proceed by induction on the height h of premise

x : ♦A, Γ → ∆. If h = 0 and the premise is initial or a conclusion of L⊥, then
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so is xR♦y, y : A, Γ → ∆. If h = n + 1 then x : ♦A, Γ → ∆ has been concluded

by a certain rule R. If x : ♦A is principal, then R is L♦ and its premise, that is

xR♦y, y : A, Γ → ∆, has a derivation with height n. If on the contrary x : ♦A

is not principal, consider what rule R is. If it is a rule without variable condi-

tion, apply the IH to its premise(s) and then R again. If R is, for instance, RK

with x : KB as principal formula, its premise is xRKy, x : ♦A, Γ → ∆′, y : B. Ap-

ply first hp-admissibility of substitution and replace y with a new z, so to obtain

xRKz, x : ♦A, Γ→ ∆′, z : B. Then by IH conclude xRKz, xR♦y, y : A, Γ→ ∆′, z : B and

by one application of RK obtain xR♦z, y : A, Γ→ ∆′, x : KB.

(iii) Consider the case of weakening with a relational atom xRy. The proof is by

induction on the height h of the derivation of the premise. The inductive step is

straightforward if the premise(s) is concluded by a rule without a variable con-

dition. If the last rule is a rule with a variable condition, say RK with x : KB

as principal formula, hp-admissibility of substitution is applied to its premise

xRKy, Γ → ∆′, y : B in order to replace the eigenvariable y with a new z. Then

by the IH and RK, we obtain the conclusion xRy, Γ→ ∆′, x : KB.

(iii) By simultaneous induction on the height h of the derivation. If h = 0, the

premise is an initial sequent or has been concluded by L⊥. In each case the con-

clusion is initial or L⊥. If h = n + 1, suppose the claim holds for derivations of

height n and distinguish what rule R is used to derive the premise. If the contrac-

tion formula is not principal in R, both occurrences are in the premise(s) of R and

by IH we can contract the two occurrences and obtain a smaller derivation height

of the conclusion. If contraction formula is principal of R, we distinguish two cases.

The premise is concluded by a rule with the repetition of the principal formula, as

L ⊃, LK, R♦, and the mathematical rules. In this case the IH is applicable directly

on the premise of R. For instance, if R is R♦, the the last step of the derivation is,

where Γ is xR♦y, Γ′):
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....
xR♦y, Γ′ → ∆, x : ♦A, x : ♦A, y : A

xR♦y, Γ′ → ∆, x : ♦A, x : ♦A
R♦

By IH on the premise we obtain xR♦y, Γ′ → ∆, x : ♦A, y : A and next by R♦ again

xR♦y, Γ′ → ∆, x : ♦A. If R is without repetition of principal formulas we need hp-

inversion on the premise(s), as in the standard proof for G3c. The crucial steps

here are the cases in which R is either R ⊃, or RK, or L♦, that is, rules with

variable condition. Take for instance the case in which R is L♦, the others being

analogous. The premise has the following derivation:

....
xR♦y, y : A, x : ♦A, Γ→ ∆

x : ♦A, x : ♦A, Γ→ ∆
L♦

By the invertibility of L♦, we obtain xR♦y, y : A, xR♦y, y : A, Γ → ∆. Then by IH,

y : A, xR♦y, Γ→ ∆ and, by L♦ again, we conclude x : ♦A, Γ→ ∆.

(iv) By induction on the height of the cut formula with subinduction on the sum

of the heights of the derivations of the premises of cut. We consider in detail only

the case of cut formula principal in modal rules in both premises of cut and in

mathematical rules. As for the latter, consider the case of left premise concluded

by MonK.

xRKz, x 6 y, yRKz, Γ′′ → ∆, x : A
x 6 y, yRKz, Γ′′ → ∆, x : A

MonK
x : A, Γ′ → ∆′

x 6 y, yRKz, Γ′′, Γ′ → ∆′, ∆
CUT

It converts to

xRKz, x 6 y, yRKz, Γ′′ → ∆, x : A x : A, Γ′ → ∆′

xRKz, x 6 y, yRKz, Γ′′, Γ′ → ∆′, ∆
CUT

x 6 y, yRKz, Γ′′, Γ′ → ∆′, ∆
MonK
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Likewise for other mathematical rules. If the cut formula is principal in a K-rule,

it is of the form x : KB and the cut derivation is

xRKz, Γ→ ∆, z : B
Γ→ ∆, x : KB RK

y : B, x : KB, xRKy, Γ′′ → ∆′

x : KB, xRKy, Γ′′ → ∆′
LK

xRKy, Γ′′, Γ→ ∆, ∆′
CUT

It can be converted into

xRKz, Γ→ ∆, z : B
xRKy, Γ→ ∆, y : B

z/y

xRKz, Γ→ ∆, z : B
Γ→ ∆, x : KB RK y : B, x : KB, xRKy, Γ′′ → ∆′

y : B, xRKy, Γ′′, Γ→ ∆, ∆′
CUT

xRKy, xRKy, Γ′′, Γ, Γ→ ∆, ∆, ∆′
CUT

xRKy, Γ′′, Γ→ ∆, ∆′
C

Note that the first cut reduced cut-height and the second is on a smaller formula.

If the cut formula is principal in a ♦-rule, it is of the form x : ♦B and the cut

derivation is

xR♦y, Γ′′ → ∆, x : ♦B, y : B
xR♦y, Γ′′ → ∆, x : ♦B

R♦
xR♦z, z : B, Γ′ → ∆′

x : ♦B, Γ′ → ∆′

xR♦y, Γ′′, Γ′ → ∆′, ∆
CUT

and it can be converted into

xR♦y, Γ′′ → ∆, x : ♦B, y : B x : ♦B, Γ′ → ∆′

xR♦y, Γ′′, Γ′ → ∆′, ∆, y : B
CUT

xR♦z, z : B, Γ′ → ∆′

xR♦y, y : B, Γ′ → ∆′
y/z

xR♦y, xR♦y, Γ′′, Γ′, Γ′ → ∆′, ∆′, ∆
CUT

xR♦y, Γ′′, Γ′ → ∆′, ∆
C

�
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Observe that all the above structural results that have been established for G3IK♦

hold also for any of its extensions with frame rules that follow the regular or ge-

ometric rule schema. The details can be easily spelled out following the general

pattern of the parallel results of basic modal logic in Negri (2005).

We shall sketch the direct completeness proof, along the lines of Negri (2009), be-

cause this is the method that will permit proofs of underivability and constructions

of countermodels in what follows. The proof is similar to the proof of the complete-

ness theorem for G3K and we shall refer to it for the details. First, we adapt the

semantic definition of validity for a sequent Γ → ∆ to the setting of the bimodal

intuitionistic logic.

Definition. Let F = 〈X,6, RK, R♦〉 be a frame that satisfies the properties Ref6,

Trans6, MonK, Mon♦. A model M is a frame together with a binary relation 

between possible states and atomic formulas, x  P. The forcing is also monotone,

that is, if x  P and x 6 y then y  P. Let L be the set of labels, an interpretation

of the labels in a frame F is a function J·K : L −→ X that assigns a possible state JxK

of F to each label x in L, and an accessibility relation of F to the relational symbol

6, RK, R♦.

Forcing is extended in a unique way to arbitrary formulas by means of inductive

clauses.

x  ⊥ for no x

x  A ∧ B if and only if x  A and x  B

x  A ∨ B if and only if x  A or x  B

x  A ⊃ B if and only if for all y, x 6 y and y  A implies y  B

x  KA if and only if for all y, xRKy implies y  A

x  ♦A if and only if for some y, xR♦y and y  A
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Definition. A sequent Γ→ ∆ is valid in a model M if for all labelled formulas x : A

and relational atoms y 6 z, y′RKz′, y′′R♦z′′ in Γ, whenever JxK  A and JyK 6 JzK,

Jy′KRKJz′K, Jy′′KR♦Jz′′K in X, then for some w : B in ∆, JwK  B. A sequent is valid if

it is valid for every model.

The rules of G3IK♦ are sound, that is, the conclusion is valid whenever their

premise(s) are valid.

Theorem 5.3.3 (Soundness). If the sequent Γ→ ∆ is derivable in G3IK♦, it is valid

in every frame with the properties Ref6, Trans6, MonK, Mon♦.

Proof. By induction on the derivation of Γ→ ∆ in G3IK♦. If it is an initial sequent,

there is a labelled atom x : P both in Γ and in ∆ so the claim is obvious, and

similarly if the sequent is a conclusion of L⊥, since for no valuation can ⊥ be

forced at any node. Moreover, if Γ→ ∆ is of the form x : P, x 6 y, Γ′ → ∆′, y : P then

the claim holds by the monotonicity of forcing relation. If Γ → ∆ is the conclusion

of either a propositional or modal rule the proof is similar to the proof of Theorem

2.4.1. If the sequent is a conclusion of a rule for the accessibility relations, let the

rule be for instance Mon♦:

yR♦z, x 6 y, xR♦z, Γ→ ∆
x 6 y, xR♦z, Γ→ ∆

Mon♦

Let JxK 6 JyK and JxKR♦JzK. Since 6 and R♦ satisfy Mon♦ by assumption, we have

JyKR♦JzK, so validity of the premise gives validity of the conclusion.

�

Next, we show that derivability of a formula in the calculus is equivalent to valid-

ity, that is, validity at an arbitrary world for an arbitrary valuation. The latter is

expressed by x  A where x is arbitrary, and it is translated into a sequent→ x : A
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in our calculus. The rules of the calculus applied backwards give equivalent con-

ditions until the atomic components of A are reached. It can happen that we find

a proof, or that we find that a proof does not exist either because we reach a stage

where no rule is applicable, or because we go on with the search forever. In the

two latter cases the attempted proof itself gives directly a countermodel. The two

following results establish the completeness of G3IK♦

Theorem 5.3.4. Let Γ → ∆ be a sequent in the language of G3IK♦. Then either

the sequent is derivable in G3IK♦ or it has a countermodel with properties Ref6,

Trans6, MonK, Mon♦.

Proof. We define for an arbitrary sequent Γ→ ∆ in the language of G3IK♦ a reduc-

tion tree by applying the rules of G3IK♦ root first in all possible ways. If the con-

struction terminates we obtain a proof, else the tree becomes infinite. By König’s

lemma an infinite tree has an infinite branch that is used to define a counter-

model to the endsequent. The reduction tree is constructed in the same way of

Theorem 2.4.3. If the reduction tree is finite, all its leaves are initial or conclu-

sions of L⊥ and the tree, read from the leaves to the root, yields a derivation.

Else, if the reduction tree is infinite, it has an infinite branch. Let Γ0 → ∆0

Γ → ∆ ≡ Γ1 → ∆1 . . . , Γi → ∆i, . . . be one such branch. Consider the sets of la-

belled formulas and relational atoms

Γ ≡
⋃
i>0

Γi ∆ ≡
⋃
i>0

∆i

We define a model that forces all the formulas in Γ and no formula in ∆ and is

therefore a countermodel to the sequent Γ→ ∆. Consider the frame F the nodes of

which are all the labels that appear in the relational atoms in Γ, with their mutual

relationships expressed by the relational atoms in Γ. In general, the construction

of the reduction tree imposes the frame properties of the countermodel, which in

this case are Ref6, Trans6, MonK, Mon♦. The model is defined as follows: For all
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atomic formulas x : P in Γ, we stipulate that x  P, and for all atomic formulas

y : Q in ∆ we stipulate that y 1 Q. Since no sequent in the infinite branch is

initial, this choice can be coherently made. It can then be shown inductively on

the height of formulas that A is forced in the model at node x if x : A is in Γ and

A is not forced at node x if x : A is in ∆. Therefore we have a countermodel to the

endsequent Γ→ ∆. The details are similar to those in Negri (2009) and of Theorem

2.4.3 of the previous chapters.

�

Corollary 5.3.5 (Completeness). If a sequent Γ → ∆ is valid in every model with

the frame properties Ref6, Trans6, MonK, Mon♦, it is derivable in G3IK♦.

Digression: A conceptual analysis of accessibility relations

Before proceeding to the structural analysis of the Church-Fitch paradox by our la-

belled calculus, we shall outline a conceptual analysis of the accessibility relations

introduced in the previous section. This will serve both as an explanation of the no-

tions used, as well as a justification of the formal choices made in defining system

G3IK♦. First, the relation 6 is the standard accessibility relation for the seman-

tics of intuitionistic logic. Its intuitive meaning is clarified in Kripke (1965, pp.

98–99). Because worlds in a model can be identified with the propositions true in

them, the relation gets the following intuitive meaning: A world y is 6-accessible

from a world x if y is a possible development of the information contained in x.

Under this interpretation, worlds are recognized as temporal states in a process

of acquisition of information. The properties of reflexivity and transitivity of the

preorder thus appear obvious, whereas monotonicity of forcing reflects the require-

ment that the acquisition of information is a cumulative process. When agents who

can gain knowledge are added to the scenario, epistemic operators together with

their accessibility relations are needed. Here we have considered just one (imper-
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sonal and generic) epistemic attitude, K, with the accessibility relation RK. The

question naturally arises of what the relation should be between RK and 6. A

minimal requirement is that in the language extended with formulas as KA mono-

tonicity of forcing is preserved: The perfect recall should apply to all formulas, not

just to the purely propositional ones, and this is achieved by imposing the property

MonK. On the other hand, factivity of knowledge, i.e., axiom KA ⊃ A, which is ex-

plicitly assumed in Fitch’s derivation, corresponds to reflexivity of RK. This axiom

states that only true formulas can be known and separates knowledge from what

is the mere belief. Monotonicity and reflexivity of RK imply that what is temporally

accessible is also epistemically accessible, i.e., the condition ∀x∀y(x 6 y ⊃ xRKy)

holds. Notice that this implication does not exclude the possibility of the existence

of epistemically accessible states that are not future states. Our analysis will show

that if this existence is explicitly imposed, i.e., ∃x∃y(xRKy ∧ x 66 y) holds, then the

identification of truth and knowledge is avoided (cf. Proietti 2011). Moreover, KP

fails if Sym6 and Re f♦ are added. Similar formal requirements apply to the ac-

cessibility relation R♦, a relation that expresses logical possibility. A state y is

R♦-accessible from x when y is logically compatible with x, in the sense that y is

a state that can in principle be reachable from x, even if we cannot specify the

nature of this access (temporal, causal, epistemic, etc.). Note that this relation is

temporally upward closed: If a state z is possibly reachable from x, then z is possi-

bly reachable from all the future states of x. We do not want to commit ourselves

in any way to assuming more than the necessary properties of R♦, in particular

we do not identify it with any other of the accessibility relations considered. A dif-

ferent choice is pursued in Proietti (2011) and Artemov and Protopopescu (2011),

where the intuitionistic double negation gets interpreted as a possibility operator,

leading to a reformulation of the knowability principle that employs only the epis-

temic modality. The above interpretations also allow to capture the temporal flavor

ascribed to the knowledge operator in Fitch’s original article. Its core result, Theo-
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rem 5, is based on the existence of “some true proposition which nobody knows (or

has known or will know) to be true” (Fitch 1963, p. 139). The temporal interpre-

tation of 6 suggests that the statement KA has to be evaluated in all situations

temporally accessible from x, where x can be considered as the actual world, but

also as a past world, or better, x can be considered as any world in which A is true.

More generally, the structural reconstruction of Fitch’s derivation will reveal that

every occurrence of KA is always in the scope of a negation or of an implication.

Therefore, reasoning root first, the application of a K-rule is always preceded by

an application of a rule that imposes a temporal-dependent evaluation of KA.

5.4 Proof-theoretical analysis of the Church-Fitch

paradox

We have now all the logical instruments needed for a structural proof analysis

of the paradox. We start with the reconstruction of the standard derivation that

uses the labelled sequent calculus introduced in the previous section. Our analysis

made clear what the ingredients of the Church-Fitch paradox are: distributivity

of K over conjunction, K(A ∧ B) ⊃ KA ∧ KB, and the factivity of knowledge, KA ⊃

A. Distributivity holds for operators that satisfy necessitation and the normality

axiom in any system for normal modal logic. Factivity of knowledge corresponds to

reflexivity of the accessibility relation, i.e., xRKx, for all possible worlds x. Through

the method of conversion of axioms into sequent rules we obtain the following:

xRKx, Γ→ ∆
Γ→ ∆

RefK

Axiom KA ⊃ A is shown derivable by this rule. Both properties are provable in

G3IK♦ and in G3IK♦ with Re fK, respectively. The following two lemmas single out
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the special instances that are needed in the proof of the Church-Fitch paradox:

Lemma 5.4.1. In G3IK♦ it holds that:

i) ` x : K(A ∧ ¬KA)→ x : KA

ii) ` x : K(A ∧ ¬KA)→ x : K¬KA

Proof. By a systematic proof-search procedure from the sequent to be derived. �

Lemma 5.4.2. In G3IK♦ with Re fK it holds that:

` x : K¬KA→ x : ¬KA

Proof. Consider the derivation

x : ¬KA, xRKx, x : K¬KA→ x : ¬KA
xRKx, x : K¬KA→ x : ¬KA LK

x : K¬KA→ x : ¬KA
RefK

where the topmost sequent is derivable by Lemma 5.3.1. �

No further explicit conditions beyond R♦, L♦, and Mon♦ need to be imposed on ♦ to

reconstruct the standard proof of the Church-Fitch paradox. By a proof analogous

to that of Lemma 5.2.2, we have:

Lemma 5.4.3. The following rule

→ x : A ∧ ¬KA ⊃ ♦K(A ∧ ¬KA)

x 6 y, y : A ∧ ¬KA→ y : ♦K(A ∧ ¬KA)
Inv

is derivable in G3IK♦ with Cut.

Proof. Analogous to the proof of Lemma 5.2.2. �

The use of classical logic is a further requirement for obtaining the standard proof

of OP. In particular the following lemma has to be proved.
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Lemma 5.4.4. In G3CK♦ it holds that:

` x : ¬(A ∧ ¬KA)→ x : A ⊃ KA

Proof. By root-first proof search from the sequent to be derived. Note that the

proof is classical because it makes appeal to a non-eliminable application of rule

Sym6. �

We have now all the information that is needed in order to reconstruct the stan-

dard derivation of the Church-Fitch paradox.

Theorem 5.4.5 (Fitch’s Paradox). In G3CK♦ with Re fK, Cut and KP it holds that:

` → x : A ⊃ KA.

Proof. Consider the following derivation

KP
→ x : A ∧ ¬KA ⊃ ♦K(A ∧ ¬KA)

x 6 y, y : A ∧ ¬KA→ y : ♦K(A ∧ ¬KA)
Inv

z : K(A ∧ ¬KA)→ z : KA

yR♦z, z : K(A ∧ ¬KA)→ z : KA, y : ⊥
R-W

z : K(A ∧ ¬KA)→ z : K¬KA z : K¬KA→ z : ¬KA

z : K(A ∧ ¬KA)→ z : ¬KA
CUT

z 6 y, z : K(A ∧ ¬KA), y : KA→ y : ⊥
INV

y : ⊥ → L⊥

z 6 y, z : K(A ∧ ¬KA), y : KA→
CUT

z 6 z, z : K(A ∧ ¬KA), z : KA→
z/y

z 6 z, yR♦z, z : K(A ∧ ¬KA)→ y : ⊥
CUT

yR♦z, z : K(A ∧ ¬KA)→ y : ⊥
Ref6

y : ♦K(A ∧ ¬KA)→ y : ⊥
L♦

x 6 y, y : A ∧ ¬KA→ y : ⊥ CUT

→ x : ¬(A ∧ ¬KA)
R⊃

x : ¬(A ∧ ¬KA)→ x : A ⊃ KA
→ x : A ⊃ KA

CUT

Notice that the topmost sequents, except for KP, are derivable by Lemmas 5.4.1,

5.4.2 and 5.4.4. Furthermore, the applications of the rule of weakening are elim-

inable by pushing them up to the initial sequents of the derivations used for the

proof of Lemma 5.4.1.

�
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Observe that Theorem 5.4.5 states a derivability result: There is a derivation of

OP from KP by means of the rules of G3CK♦, Re fK and cut. In this result, KP

plays the role of a derivation principle, similar to a zero-premise inference rule.

Nonetheless, a crucial difference remains. On the one hand, the inference rules

are valid in the sense that they respect the deductive harmony imposed by the

inversion principle, as it stated in Negri and von Plato (2001, p. 6). On the other

hand, the validity of KP is fixed by stipulation, because, at the syntactic level,

there is nothing that differentiates KP from another sentence of the bimodal lan-

guage under the analysis. A crucial step of our work will be to understand which

class of relational structures KP singles out, so to determine as well in which class

of models KP can be considered as formally true.

5.5 Structural analysis of the Church-Fitch para-

dox

There are two special aspects of the proof of Theorem 5.4.5. The instance of KP

appears in the derivation as a sequent with an empty antecedent of the form→ A.2

Moreover, the proof uses cuts. The presence of cuts makes it difficult to point out

where the paradox arises from, in the first place because the structure of such

derivations is not transparent. Secondly, by a thesis of Tennant, a paradox is a non-

normal derivation the normalization of which enters into a loop (Tennant 1982).

In sequent calculus, the notion of normalization is replaced by cut elimination

that becomes the essential means for analyzing the precise nature of the paradox,

and for distinguishing the case of a derivation without eliminability of cut from

that of a fallacy, in which the latter assumption and the paradoxical conclusion

are equivalent principles. Applying the cut elimination procedure for G3CK♦ with

2Cf. Definition 6.3.1 (a) in Negri and von Plato (2001), p. 134.

175



Re fK to our derivation of OP, we obtain the following derivation in which, to save

space, we have abbreviated with KP(A) the formula (A ∧ ¬KA) ⊃ ♦K(A ∧ ¬KA):

KP
→ x : KP(A)

....
S1

....
S2

x 6 y, yRKz, x : KP(A), y : A→ z : A
L⊃

x 6 y, x : KP(A), y : A→ y : KA
RK

x : KP(A)→ x : A ⊃ KA
R⊃

→ x : A ⊃ KA CUT

The right premise S2 of L ⊃ is derivable as follows

x 6 y, yRKz, yR♦w, wRKw, wRKt, w : A, t : A, t : ¬KA, w : K(A ∧ ¬KA), x : KP(A), y : A→ z : A, t : A
x 6 y, yRKz, yR♦w, wRKw, wRKt, w : A, t : A ∧ ¬KA, w : K(A ∧ ¬KA), x : KP(A), y : A→ z : A, t : A

L∧

x 6 y, yRKz, yR♦w, wRKw, wRKt, w : A, w : K(A ∧ ¬KA), x : KP(A), y : A→ z : A, t : A
LK

x 6 y, yRKz, yR♦w, wRKw, w : A, w : K(A ∧ ¬KA), x : KP(A), y : A→ z : A, w : KA
RK

x 6 y, yRKz, yR♦w, wRKw, w : A, w : ¬KA, w : K(A ∧ ¬KA), x : KP(A), y : A→ z : A
L⊃

x 6 y, yRKz, yR♦w, wRKw, w : A ∧ ¬KA, w : K(A ∧ ¬KA), x : KP(A), y : A→ z : A
L∧

x 6 y, yRKz, yR♦w, wRKw, w : K(A ∧ ¬KA), x : KP(A), y : A→ z : A
LK

x 6 y, yRKz, yR♦w, w : K(A ∧ ¬KA), x : KP(A), y : A→ z : A
RefK

x 6 y, yRKz, y : ♦K(A ∧ ¬KA), x : KP(A), y : A→ z : A
L♦

where the topmost sequent is derivable by Lemma 5.3.1. The right premise of L ⊃

(in S2) is derivable because it is an instance of L⊥, left unwritten here. The left

premise S1 is derivable:

x 6 y, yRKz, y : A→ z : A, y : A

rRKz, x 6 y, yRKz, y 6 r, r 6 y, y : A, r : KA, z : A→ z : A, r : ⊥
rRKz, x 6 y, yRKz, y 6 r, r 6 y, y : A, r : KA→ z : A, r : ⊥ LK

x 6 y, yRKz, y 6 r, r 6 y, y : A, r : KA→ z : A, r : ⊥
MonK

x 6 y, yRKz, y 6 r, y : A, r : KA→ z : A, r : ⊥
Sym6

x 6 y, yRKz, y : A→ z : A, y : ¬KA
R⊃

x 6 y, yRKz, y : A→ z : A, y : A ∧ ¬KA
R∧

There remains one application of cut in the derivation. Unlike the other instances
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of cut, the last one is not eliminable because it depends on an instance of KP that

behaves like a proper axiom. We shall discuss this aspect later. From the previous

proof, just by ignoring the last step, we obtain the following result:

Proposition 5.5.1. In G3CK♦ with Re fK it holds that:

` x : A ∧ ¬KA ⊃ ♦K(A ∧ ¬KA)→ x : A ⊃ KA

without any application of cut.

The result can be stated briefly as follows:

OP is derivable from the special instance KP(A) of KP.

Moreover, we notice that classical logic is used only in the step of symmetry in the

right branch of the derivation S1. Therefore that branch, pruned just before the

application of Sym6, suggests a countermodel to the sequent of Proposition 5.5.1

in the intuitionistic system G3IK♦ with Re fK:

Theorem 5.5.2. In G3IK♦ with Re fK it holds that:

0 x : A ∧ ¬KA ⊃ ♦K(A ∧ ¬KA)→ x : A ⊃ KA

Proof. Consider the model G = 〈W,6, RK, R♦,〉 where W = {x, y, z, r}, x 6 y,

y 6 r, x 6 r, yRKz, xRKz, all the reflexivities for 6 and RK hold, and A is forced in

y and in r but not in z. A diagrammatic representation, with the omission of the

reflexive arrows, takes the form

x

y

y  A

z
z 1 A

r
r  A

66 RK

RK6
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In this model, we have that x  A ∧ ¬KA ⊃ ♦K(A ∧ ¬KA) because x, r 6 A ∧ ¬KA.

To see why, just observe that r  KA and use the definitions to conclude that r,

and therefore also y, do not force ¬KA. On the other hand, x 6 A ⊃ KA, because

y  A, but y 6 KA. �

It is well known that one can obtain a derivation of the weak OP in the intuition-

istic system. More precisely, a cut-free derivation of WOP from the assumption

KP(A) is obtained in our system as follows:

Theorem 5.5.3. In G3IK♦ with Re fK it holds that:

` x : A ∧ ¬KA ⊃ ♦K(A ∧ ¬KA)→ x : ¬(A ∧ ¬KA)

Proof. The sequent is derived as follows:

....
R1

....
R2

x 6 y, x : KP(A), y : A ∧ ¬KA→ y : ⊥ L⊃

x : KP(A)→ x : ¬(A ∧ ¬KA)
R⊃

In the derivation R1 is

y 6 y, x 6 y, x : KP(A), y : A ∧ ¬KA→ y : ⊥, y : A ∧ ¬KA
x 6 y, x : KP(A), y : A ∧ ¬KA→ y : ⊥, y : A ∧ ¬KA

Ref6

whereas R2 is

zRKw, z 6 z, z : A, z : ¬KA, zRKz, yR♦z, z : K(A ∧ ¬KA), w : A, w : ¬KA, x 6 y, x : KP(A), y : A ∧ ¬KA→ y : ⊥, w : A

zRKw, z 6 z, z : A, z : ¬KA, zRKz, yR♦z, z : K(A ∧ ¬KA), w : A ∧ ¬KA, x 6 y, x : KP(A), y : A ∧ ¬KA→ y : ⊥, w : A
L∧

zRKw, z 6 z, z : A, z : ¬KA, zRKz, yR♦z, z : K(A ∧ ¬KA), x 6 y, x : KP(A), y : A ∧ ¬KA→ y : ⊥, w : A
LK

z 6 z, z : A, z : ¬KA, zRKz, yR♦z, z : K(A ∧ ¬KA), x 6 y, x : KP(A), y : A ∧ ¬KA→ y : ⊥, z : KA
RK

z 6 z, z : A, z : ¬KA, zRKz, yR♦z, z : K(A ∧ ¬KA), x 6 y, x : KP(A), y : A ∧ ¬KA→ y : ⊥
L⊃

z : A, z : ¬KA, zRKz, yR♦z, z : K(A ∧ ¬KA), x 6 y, x : KP(A), y : A ∧ ¬KA→ y : ⊥
Ref6

z : (A ∧ ¬KA), zRKz, yR♦z, z : K(A ∧ ¬KA), x 6 y, x : KP(A), y : A ∧ ¬KA→ y : ⊥
L∧

zRKz, yR♦z, z : K(A ∧ ¬KA), x 6 y, x : KP(A), y : A ∧ ¬KA→ y : ⊥
LK

yR♦z, z : K(A ∧ ¬KA), x 6 y, x : KP(A), y : A ∧ ¬KA→ y : ⊥
RefK

y : ♦K(A ∧ ¬KA), x 6 y, x : KP(A), y : A ∧ ¬KA→ y : ⊥
L♦
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and the topmost sequent is derivable by Lemma 5.3.1. �

The countermodel of Theorem 5.5.2 shows, together with the completeness theo-

rem, that the classical version of the Church-Fitch paradox is not derivable in an

intuitionistic setting, thus seemingly confirming the thesis that intuitionistic logic

saves anti-realism from the threat of the paradox (Williamson 1982). To say that

KP implies OP does not require that there is a derivation from a special instance

of KP to the conclusion OP, as in Proposition 5.5.1. In fact, the admission of the

knowability principle corresponds to the assumption that KP is generally valid,

instead of the assumption of just a particular instance. Therefore, the following

admissibility statement should be put under analysis:

If KP is valid, then also OP is valid. (5.1)

Merely to show that OP does not follow intuitionistically from a particular in-

stance of KP is not sufficient for establishing that OP is not derivable in an intu-

itionistic system that incorporates KP as a derivation principle. In other words,

the countermodel given in the proof of Theorem 5.5.2 is not sufficient for showing

that (5.1) does not hold in an intuitionistic setting. An analogy from propositional

logic may clarify this point: The law of double negation ¬¬A ⊃ A follows from the

principle of excluded middle, A ∨ ¬A, in the sense that there is an intuitionistic

derivation of (A ∨ ¬A) ⊃ (¬¬A ⊃ A). The converse (¬¬A ⊃ A) ⊃ (A ∨ ¬A)

instead is not intuitionistically derivable even if the two principles give equiva-

lent extensions of intuitionistic logic. However, A ∨ ¬A follows from a particular

instance of the law of double negation, namely ¬¬(A ∨ ¬A) ⊃ (A ∨ ¬A). In con-

clusion, the cut-free analysis we have made suffices to establish intuitionistic un-

derivability of OP from a particular instance of KP. The latter does not exclude,
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however, the derivability of OP from other instance of KP, a question to which a

definite answer is give in the next section.

5.6 Proof analysis of KP

We proceed to find the necessary and sufficient frame property for the validity of

KP. First, we use our calculus to single out frame rules that suffice for a derivation

of KP. Then we extract from these rules a frame property and show that it is

sufficient and necessary to validate KP. We start root first from the sequent to

be derived. Observe that the only applicable rule as a first step is R ⊃. Next,

for the proof search to continue, to be able to apply R♦ it is necessary to have an

R♦-accessibility. The only rules that make available such relational atom in the

absence of other R♦-atom are Re f♦ or Ser♦. Rule Ser♦ is derivable from Re f♦, and

to make the set of assumptions on the accessibility relations minimal, we choose

the latter. Notice that Ser♦ has the variable restriction that y must not occur in the

conclusion. After that, the only applicable rule is RK. An initial sequent is then

obtained if a rule is used that adds the atom y 6 w, indicated by ♦K-Tr:

x 6 y, y 6 w, yR♦z, zRKw, y : A→ y : ♦KA, w : A
x 6 y, yR♦z, zRKw, y : A→ y : ♦KA, w : A

♦K-Tr

x 6 y, yR♦z, y : A→ y : ♦KA, z : KA
RK

x 6 y, yR♦z, y : A→ y : ♦KA
R♦

x 6 y, y : A→ y : ♦KA
Ser♦

→ x : A ⊃ ♦KA
R⊃

This derivation would seem to suggest that the frame properties needed are those

that correspond to the two extra-logical rules used, namely,

xR♦y, Γ→ ∆
Γ→ ∆

Ser♦
x 6 z, xR♦y, yRKz, Γ→ ∆

xR♦y, yRKz, Γ→ ∆
♦K-Tr
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Rule Ser♦ has the variable condition that y /∈ Γ, ∆, which corresponds to an exis-

tential condition, whereas rule ♦K-Tr corresponds to a universal one:

∀x∃y(xR♦y) Ser♦

∀y∀z∀w(yR♦z ∧ zRKw ⊃ y 6 w) ♦K-Tr

The universal frame property ♦K-Tr is, however, too strong. The instance of rule

♦K-Tr used in the derivation of KP is not applied, root first, to an arbitrary se-

quent, but to one in which the middle term is the eigenvariable introduced by

Ser♦. The requirement that ♦K-Tr has to be applied above Ser♦, and that the mid-

dle term of ♦K-Tr is the eigenvariable of Ser♦, is the side condition of the rule.

Thus the following frame property can be read off from the derivation of KP:

∀x∃y(xR♦y ∧ ∀z(yRKz ⊃ x 6 z)) KP-Fr

It is easy to show that KP-Fr is derivable in a G3-sequent system for intuitionistic

first-order logic extended by the two rules Ser♦ and ♦K-Tr:

xR♦y→ xR♦y

x 6 z, xR♦y, yRKz→ x 6 z
xR♦y, yRKz→ x 6 z

♦K-Tr

xR♦y→ yRKz ⊃ x 6 z R⊃

xR♦y→ ∀z(yRKz ⊃ x 6 z)
R∀

xR♦y→ xR♦y ∧ ∀z(yRKz ⊃ x 6 z)
R∧

xR♦y→ ∃y(xR♦y ∧ ∀z(yRKz ⊃ x 6 z))
R∃

→ ∃y(xR♦y ∧ ∀z(yRKz ⊃ x 6 z))
Ser♦

→ ∀x∃y(xR♦y ∧ ∀z(yRKz ⊃ x 6 z))
R∀

Observe that the side condition on the application of ♦K-Tr is respected. Con-

versely, any derivation that uses the rules Ser♦ and ♦K-Tr in compliance with the

side condition, can be transformed into a derivation that uses cuts with KP-Fr.

If rule ♦K-Tr is used, it is followed by Ser♦ because of the side condition, and the

derivation contains a subderivation of the form
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x 6 z, xR♦y, yRKzΓ′ → ∆′

xR♦y, yRKzΓ′ → ∆′
♦K-Tr

....
D....

xR♦y, Γ→ ∆
Γ→ ∆

Ser♦

We transform it as follows:

→ ∀x∃y(xR♦y ∧ ∀z(yRKz ⊃ x 6 z))

yRKz, yRKz ⊃ x 6 z→ x 6 z x 6 z, xR♦y, yRKz, Γ′ → ∆′

xR♦y, yRKz, yRKz, yRKz ⊃ x 6 z, Γ′,→ ∆′
CUT

xR♦y, yRKz, yRKz ⊃ x 6 z, Γ′,→ ∆′
L-C

xR♦y, yRKz, ∀z(yRKz ⊃ x 6 z), Γ′,→ ∆′
L∀

....
D′....

xR♦y, ∀z(yRKz ⊃ x 6 z), Γ→ ∆
xR♦y ∧ ∀z(yRKz ⊃ x 6 z), Γ→ ∆

L∧

∃y(xR♦y ∧ ∀z(yRKz ⊃ x 6 z), Γ→ ∆
L∃

∀x∃y(xR♦y ∧ ∀z(yRKz ⊃ x 6 z), Γ→ ∆
L∀

Γ→ ∆
CUT

Here D′ is obtained by adding ∀z(yRKz ⊃ x 6 z) to all the antecedents of the

sequents in D. If rule Ser♦ is used alone, namely without occurrences of ♦K-Tr

above it, the conversion is obtained through L∃ applied on the premise of Ser♦ and

a cut with→ ∀x∃yxR♦y; the latter follows from→ ∀x∃y(xR♦y∧∀z(yRKz ⊃ x 6 z)).

We can conclude:

Proposition 5.6.1. The system with rules ♦K-Tr and Ser♦ that respect the side

condition is a cut-free equivalent of the system that employs KP-Fr as an axiomatic

sequent in addition to the structural rules.

The rules corresponding to KP-Fr do not follow the geometric rule schema. How-

ever, all the structural rules are still admissible in presence of such rules. In
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particular, cut elimination holds and the proof follows the pattern of 5.3.2.

Theorem 5.6.2. The rule of cut

Γ→ ∆, x : A x : A, Γ′ → ∆′

Γ, Γ′ → ∆, ∆′
CUT

is admissible in G3IK♦ with Re fK and extended with Ser♦ and ♦K-Tr.

Proof. Suppose that one of the premises of cut has been derived by ♦K-Tr followed

by Ser♦ and that the middle term of the former disappeared by an application of

the latter. We have

Γ→ ∆, x : A

y 6 z, xR♦y, yRKz, Γ′′ → ∆′′

xR♦y, yRKz, Γ′′ → ∆′′
♦K-Tr

........
x : A, xR♦y, Γ′ → ∆′

x : A, Γ′ → ∆′
Ser♦

Γ, Γ′ → ∆, ∆′
CUT

Observe that by hp-admissibility of substitution (Lemma 5.3.2) we can assume

without loss of generality that the variable y does not occur in the left premise of

cut. The derivation is transformed into the following in which the application of

cut is of a lower height and therefore eliminable by the inductive hypothesis

Γ→ ∆, x : A

x 6 z, xR♦y, yRKz, Γ′′ → ∆′′

xR♦y, yRKz, Γ′′ → ∆′′
♦K-Tr

........
x : A, xR♦y, Γ′ → ∆′

xR♦y, Γ, Γ′ → ∆, ∆′
CUT

Γ, Γ′ → ∆, ∆′
Ser♦

�
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It is worth noting that the acceptance of KP as valid implicitly forces us to accept

some properties of the operator ♦, in particular, the derivability of A ⊃ ♦A.

Proposition 5.6.3. In G3IK♦ with Re fK, Ser♦ and ♦K-Tr it holds that:

` → x : A ⊃ ♦A.

Proof. We have the following derivation:

y 6 z, zRKz, yR♦z, x 6 y, y : A→ y : ♦A, z : A
zRKz, yR♦z, x 6 y, y : A→ y : ♦A, z : A

♦K-Tr

yR♦z, x 6 y, y : A→ y : ♦A, z : A
RefK

yR♦z, x 6 y, y : A→ y : ♦A
R♦

x 6 y, y : A→ y : ♦A
Ser♦

→ x : A ⊃ ♦A
R⊃

Observe that the side condition on ♦K-Tr is respected.

�

In monomodal systems, the axiom schema A ⊃ ♦A is characterized by reflexive

frames, i.e., frames in which ∀x(xR♦x) holds. This is not any longer the case in

multimodal systems. The above proposition shows, in fact, that the reflexivity of

R♦ is a sufficient, but not a necessary, condition for the validity of A ⊃ ♦A. We have

a derivation of a purely alethic property that uses properties of the global system,

in particular, of the epistemic accessibility relation. This is a non-conservativity of

the whole system with respect to the system without K. In order to restore conser-

vativity, we add to our set of rules the rule of reflexivity of the alethic accessibility

relation:

xR♦x, Γ→ ∆
Γ→ ∆

Ref♦

With Ref♦ at our disposal, it becomes clear why the unrestricted ♦K-Tr is too

strong. In fact, together with reflexivity of R♦ it would collapse our intuitionis-
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tic system into a classical one because it would permit to derive symmetry of 6, as

in

y 6 x, yR♦x, xRKx, x 6 y, xR♦x → y 6 x
yR♦x, xRKx, x 6 y, xR♦x → y 6 x

♦K-Tr

yR♦x, x 6 y, xR♦x → y 6 x
RefK

x 6 y, xR♦x → y 6 x
Mon♦

x 6 y→ y 6 x
Ref♦

The derivation of the knowability principle in G3IK♦ using Re fK, Ser♦ and ♦K-Tr

guarantees that the two rules are strong enough to capture the force of KP but

does not yet permit to conclude that KP-Fr is the characterizing frame property of

KP. This latter is achieved by the following proposition:

Proposition 5.6.4. The property KP-Fr is necessary and sufficient to validate KP

in intuitionistic bimodal frames.

Proof. For sufficiency, it is enough to use the standard definition of forcing in

Kripke models. Let x be a world in a frame. To show x  A ⊃ ♦KA, let y be such

that x 6 y, and suppose y  A. By KP-Fr and monotonicity of forcing, y  ♦KA.

For necessity, we reason by contraposition. Consider an arbitrary frame and sup-

pose that KP-Fr does not hold in it. Thus,

∃x∀y(xR♦y ⊃ ∃z(yRKz ∧ x 
 z))

Let P an atom and u an arbitrary state. We can define  so that u  P if and only

if x 6 u. Therefore, in the resulting model, KP instantiated with P is not forced at

x.

�

What we have achieved by our analysis is a correspondence between the knowabil-

ity principle in the form of the bimodal axiom KP and the frame property KP-Fr.
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We have also shown that KP-Fr is equivalent to the two rules ♦K-Tr and Ser♦ used

in compliance with a side condition. By this equivalence, the system obtained

by the addition of suitable combinations of these two rules provides a complete

contraction- and cut-free system for intuitionistic bimodal logic extended with KP.

We shall call it knowability logic, and indicate it with G3KP. Thus, G3KP is

defined as G3IK♦ + Re fK + Ser♦ +♦K-Tr with the proper side condition. By KP-Fr

we can establish the following result:

Proposition 5.6.5. There exists an intuitionistic frame that validates KP, but not

OP.

Proof. Take the frame with three worlds, x, y, and z such that xR♦y, x 6 y, and

xRKz. The only RK and R♦-accessibilities from y and z are the reflexive ones:

x

x  P

y

y  P

z
z 1 P

R♦ 6RK

RK

RK R♦RK R♦

The frame respects condition KP-Fr and therefore validates KP (this can be checked

also directly). On the other hand, the valuation defined by x  P, x  y and z 6 P

shows that x 6 P ⊃ KP.

�

This result shows that the admissibility statement 5.1 does not hold for intuition-

istic logic. Our proof system gives a confirmation for this semantic argument

through a syntactic criterion, a failed exhaustive proof search.
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To show that OP is not derivable in G3KP, care is needed with the use of labels.

Consider the following attempt:

y 6 z, x 6 y, yR♦y, yRKz, y : A→ z : A
x 6 y, yR♦y, yRKz, y : A→ z : A

♦K-Tr

x 6 y, yR♦y, y : A→ y : KA RK

x 6 y, y : A→ y : KA
Ref♦

→ x : A ⊃ KA
R⊃

This would seem to be derivation of OP, in contrast to what we would expect from

the semantic argument above. Here, similarly to what happened in the deriva-

tion of symmetry, the application of ♦K-Tr is not correct because the eigenvariable

(here y) appears also where it should not, namely as a first argument of R♦, in

the preorder atom, and in two labelled formulas. The variable condition expresses

formally that rule ♦K-Tr should consider the most general R♦ accessibility. By ad-

mitting only the reflexivity one, actuality and possibility are conflated with “the

mystery of the disappearing diamond” (Jenkins 2009). Replacing reflexivity with

seriality, the search turns into

....
x 6 y, yR♦z, yRKw, y : A→ w : A

x 6 y, yR♦z, y : A→ y : KA RK

x 6 y, y : A→ y : KA
Ser♦

→ x : A ⊃ KA
R⊃

Rule ♦K-Tr is no longer applicable because the upper sequent in the attempted

proof does not match its conclusion. The only applicable rule is MonK that adds

xRKw. The search is exhaustive and we do not get what we would need to close

it, namely the relational atom y 6 w. The failed search can be used instead to

extract a countermodel to OP. The accessibilities are xRKw in addition to those

in the antecedent of the upper sequent; A, is forced at x and at y but not at w.

Clearly x 6 A ⊃ KA. By our analysis, the use of intuitionistic logic blocks the
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paradox in general, not only the specific derivation that uses a specific instance of

the knowability principle (see Theorem 5.5.2).

It is only in classical logic that the paradox may arise. The question remains as

to whether the Moore sentence A ∧ ¬KA is an essential ingredient of the paradox

in its classical derivation. It is a natural question, because of the attempts at cir-

cumventing the paradox through a limitation of KP to certain classes of formulas

that exclude seemingly pathological ones such as A ∧ ¬KA (as in Dummett 2001).

Whether Moore sentences are indispensable in the derivation of OP can be deter-

mined by a root-first proof search. The search in our calculus leads to a sufficient

condition for the derivation of OP, starting with the “compulsory” steps

....
yRKz, x 6 y, y : A→ z : A

x 6 y, y : A→ y : KA RK

→ x : A ⊃ KA
R⊃

A correct derivation is obtained if the atom y 6 z can be added, that is, if the K-

accessibility implies the 6-accessibility, or, in other words, if we are allowed to use

the following rule:

x 6 y, xRKy, Γ→ ∆
xRKy, Γ→ ∆ Know

The rule is the translation of the frame property

∀x∀y(xRKy ⊃ x 6 y) Know

As a diagram, it takes the form

x

y

RK 6
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We then have

Proposition 5.6.6. Rule Know is admissible in G3CK♦ + RefK + Ser♦ +♦K-Tr.

Proof. Using admissibility of weakening we have the following

x 6 y, xRKy, Γ→ ∆
x 6 y, z 6 x, x 6 z, xR♦z, zRKy, zRKz, xRKy, Γ→ ∆ L-W

z 6 x, x 6 z, xR♦z, zRKy, zRKz, xRKy, Γ→ ∆
♦K-Tr

z 6 x, x 6 z, xR♦z, zRKz, xRKy, Γ→ ∆
MonK

x 6 z, xR♦z, zRKz, xRKy, Γ→ ∆
Sym6

xR♦z, zRKz, xRKy, Γ→ ∆
♦K-Tr

xR♦z, xRKy, Γ→ ∆
RefK

xRKy, Γ→ ∆
Ser♦

Observe that two applications of ♦K-Tr, with the same eigenvariable y, are used.

This is a licit use of the block of rules since a double use of ♦K-Tr, followed by a step

of seriality that removes the eigenvariable, corresponds to a multiple discharge of

the minor assumption in the rule of elimination of the existential quantifier in

natural deduction. �

The derivation of OP can be given also directly in the system G3CK♦ + RefK +

Ser♦ +♦K-Tr:

x 6 y, yR♦z, zRKz, y 6 z, z 6 y, yRKw, zRKw, y 6 w, y : A→ w : A
x 6 y, yR♦z, zRKz, y 6 z, z 6 y, yRKw, zRKw, y : A→ w : A

♦K-Tr

x 6 y, yR♦z, zRKz, y 6 z, z 6 y, yRKw, y : A→ w : A
MonK

x 6 y, yR♦z, zRKz, y 6 z, z 6 y, y : A→ y : KA RK

x 6 y, yR♦z, zRKz, y 6 z, y : A→ y : KA
Sym6

x 6 y, yR♦z, zRKz, y : A→ y : KA
♦K-Tr

x 6 y, yR♦z, y : A→ y : KA
RefK

x 6 y, y : A→ y : KA
Ser♦

→ x : A ⊃ KA
R⊃

There are no occurrences of Moore sentences in this derivation. Could we then

conclude that it is not necessary the appeal to them for the derivation of OP? Ac-
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tually, the absence of Moore sentences in this derivation is only fictitious, because

KP-Fr has been identified by considering all possible instances of KP and so, a

fortiori, also the instances with Moore sentences. On the contrary, allowing only a

limited type of instances of KP, it could be the case that we are restricting also the

class of frames validating KP and that these particular frames would not validate

OP.

The cut-free derivation indicates that the source of the paradox has to be found

in the joint use of KP-Fr and classical logic. This means that KP is not per se

paradoxical, but it becomes so when used in a classical frame. Moreover, it is

possible to show in classical logic, that if Re f♦ is included from the beginning in

the derivation system, then KP corresponds to the frame condition Know.

Proposition 5.6.7. The frame property Know is necessary and sufficient to vali-

date KP in classical bimodal frames satisfying Re f♦.

Proof. Necessity can be proved by the following chain of implications: Validity of

KP implies the validity of KP-Fr (Proposition 5.6.4); validity of KP-Fr implies the

admissibility of Ser♦ and ♦K-Tr respecting the side condition (Proposition 5.6.1);

Ser♦ and ♦K-Tr respecting the side condition implies the admissibility of Know

(Proposition 5.6.6).

For sufficiency, consider the derivation

y 6 z, yRKz, yR♦y, x 6 y, y : A→ y : ♦KA, z : A
yRKz, yR♦y, x 6 y, y : A→ y : ♦KA, z : A

Know

yR♦y, x 6 y, y : A→ y : ♦KA, y : KA
RK

yR♦y, x 6 y, y : A→ y : ♦KA
R♦

x 6 y, y : A→ y : ♦KA
Ref♦

→ x : A ⊃ ♦KA
R⊃

�

As we have seen, in classical logic Know is sufficient for deriving OP and even
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has the collapse of truth and knowledge as a consequence:

Proposition 5.6.8. In G3CK♦ + Re fK + Re f♦ + Know the relations 6 and RK col-

lapse to the same relation.

Proof. To preserve the monotonicity of 6 in the presence of RK we have assumed

the validity of MonK. By reflexivity of RK, MonK implies that ∀x∀y(x 6 y ⊃ xRKy),

i.e., 6 ⊆ RK. The other direction of the inclusion, i.e., RK ⊆ 6, holds by Know. �

We have thus shown that if R♦ is reflexive, truth and knowledge coincide in clas-

sical logic. Therefore, in the standard classical presentation of the Church-Fitch

paradox, the assumption KP is semantically equivalent to OP.

Finally, let us consider the indispensability of the principle of factivity of knowl-

edge in the derivation of the Church-Fitch paradox. Mackie (1980) and Tennant

(1997) have maintained that the principle is not necessary, and that the paradox

arises equally for belief-like notions. That such is the case is confirmed by our

analysis as follows. First it is seen that a knowability principle for belief imposes

the same frame condition as it did for knowledge: The characterization result em-

ploys never the rule of reflexivity for epistemic accessibility. Then it can be shown

that a “belief omniscience” is derivable when reflexivity for knowledge accessibil-

ity replaced by seriality and transitivity for belief accessibility, as the following

proposition shows (the names of the rules that have to respect the proper variable

condition are obtained from those for K):

Proposition 5.6.9. In G3CB♦ + SerB + TransB + Ser♦ +♦B-Tr it holds that:

` → x : A ⊃ BA.
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Proof. By the derivation

y 6 t, w 6 y, y 6 w, x 6 y, yR♦z, zRBw, wRBt, zRBt, yRBt, y : A→ t : A
w 6 y, y 6 w, x 6 y, yR♦z, zRBw, wRBt, zRBt, yRBt, y : A→ t : A

♦K-Tr

w 6 y, y 6 w, x 6 y, yR♦z, zRBw, wRBt, yRBt, y : A→ t : A
TransB

w 6 y, y 6 w, x 6 y, yR♦z, zRBw, yRBt, y : A→ t : A
MonB

y 6 w, x 6 y, yR♦z, zRBw, yRBt, y : A→ t : A
Sym6

y 6 w, x 6 y, yR♦z, zRBw, y : A→ y : BA RB

x 6 y, yR♦z, zRBw, y : A→ y : BA
♦K-Tr

x 6 y, yR♦z, y : A→ y : BA
SerB

x 6 y, y : A→ y : BA
Ser♦

→ x : A ⊃ BA
R⊃

�

5.7 Conclusions

In Tennant (2009), the following is written about the prospect of a proof theory

that covers the Church-Fitch paradox: “we are still a long way, of course, from

having a fully adequate proof-theory governing the interaction among [the modal-

ities involved] (let alone a formal semantics, with respect to which one might be

able to establish the soundness and completeness of whatever proof system is de-

vised)” (ibid., p. 237). The proof systems G3IK♦ and G3CK♦ developed in this

chapter, with the analysis of the accessibility relations 6, RK and R♦ and the way

they interact in formal proofs, offer an answer to the first Tennant’s issue. The

completeness theorem with respect to Kripke semantics for these calculi answers

Tennant’s second issue. The results are here formulated for labelled sequent cal-

culi but can be adapted also to proof systems based on natural deduction. Our work

offers a new methodology for a general theory of knowability and, more broadly, of

logical epistemology. We have determined the first-order correspondents of modal

axioms on the basis of a root-first proof search in labelled sequent calculi for bi-

modal logic. The correspondence results have a standing independent of the use of
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labelled calculi. Extending a general Kripke completeness result, we have shown

that the modal logic obtained by the addition of the knowability principle is com-

plete with respect to the class of frames that satisfy the first-order frame condition

which was determined by the procedure. The resulting calculi are complete proof

systems for knowability logic, both in a classical and in an intuitionistic setting.

The strong structural properties of these calculi make it possible to draw con-

clusions not only about questions of derivability, but also about underivability of

the paradox in precisely defined formal systems of intuitionistic and classical bi-

modal logic. The crucial step here is the conversion of a non-geometric axiom, the

frame condition corresponding to KP, into a system of rules so as to achieve full

control over derivations in intuitionistic bimodal logic extended by the knowabil-

ity principle. exploiting the frame property corresponding to KP our work goes a

step further, namely it shows that the use of intuitionistic logic for blocking the

paradox succeeds: Not only OP is intuitionistically underivable from KP instan-

tiated with the Moore sentence, but OP is not even intuitionistically admissible

from KP. On the other hand, the paradox is indeed derivable in classical logic:

the standard proof is reconstructed in our analysis and converted into a cut-free

form. Nonetheless, we claim that this derivation is nothing else than a fallacious

argument in disguise: The reason is that KP and OP are semantically equivalent

in a classical frame. We thus have an argument in favor of the anti-realist posi-

tion, provided that the formalization of the knowability principle corresponds to

KP. If anti-realism is conceived in a strict Dummettian sense, then intuitionistic

logic is already sufficient for blocking Fitch’s argument. Otherwise, if a weaker

anti-realism is embraced and accordingly classical logic is allowed, the paradox

gets reduced to a petitio principii. The conversion of the frame property KP-Fr

into a combination of rules governed by a side condition follows the methodology

of proof analysis in which universal and geometrical axioms have been treated so

far. It is a first successful attempt to extract a general method for transforming a
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much wider type of mathematical axioms into a set of inference rules. From this

perspective, the proof-theoretic analysis KP opens up promising possibilities also

for a more traditional type of foundational study.

Observation. It has been observed3 that in intuitionistic frames the weaker prop-

erty W-Re fK ∀x∃y(xRKy ∧ y 6 x) suffices to characterize factivity of K. In fact, the

sequent → x : KA → A is derivable in the presence of the rule corresponding to

the frame condition W-Re fK

xRKy, y 6 x, Γ→ ∆
Γ→ ∆

W-RefK

Rule W-Re fK has the variable condition that y does not appear in Γ, ∆. Thus, fac-

tivity of knowledge follows from the weaker frame condition as follows

z : A, yRKz, z 6 y, x 6 y, y : KA→ y : A
yRKz, z 6 y, x 6 y, y : KA→ y : A LK

x 6 y, y : KA→ y : A
W-RefK

→ x : KA→ A
R⊃

A similar weaker property W-Re f♦ ∀x∃y(xR♦y ∧ x 6 y) characterizes A ⊃ ♦A. We

consider the following rule with y as eigenvariable

xR♦y, x 6 y, Γ→ ∆
Γ→ ∆

W-Ref♦

Thus, the sequent→ x : A ⊃ ♦A can be derived without any application of Re f♦

yR♦z, y 6 z, x 6 y, y : A→ y : ♦A, z : A
yR♦z, y 6 z, x 6 y, y : A→ y : ♦A

R♦

x 6 y, y : A→ y : ♦A
W-RefK

→ x : A→ ♦A
R⊃

The derivations above show that the conditions are sufficient for KA ⊃ A and
3Pierluigi Minari, personal communication.
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A ⊃ ♦A to be valid. They are also necessary. Suppose that W-Re fK is not satisfied,

that is, let x be such that for all y, xRKy implies y 
 x. It is possible to give a

model in which x  KA but x 1 A, so a countermodel for x  KA ⊃ A. The model

is defined by imposing that for every atom P, y  P if and only if there is an u

such that xRKu and u 6 y. Observe that in this model the monotonicity of  with

respect to 6 is satisfied, that is, it holds that y  P and y 6 y′ implies y′  P. In

this model, for an arbitrary z, if xRKz then xRKz and z 6 z, since 6 is reflexive.

Therefore, there is an u such that xRKu and u 6 z, and we conclude that z  A by

the definition of . Thus, x  KA. On the other hand, suppose by contradiction

that x  A. Then, by the definition of  we have that there is an u such that

xRKu and u 6 x, which is impossible since xRKu implies u 
 x by hypothesis. By a

similar reasoning we can prove that if W-Re f♦ is not satisfied then it is possible to

find a countermodel for A ⊃ ♦A.
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Chapter 6
Conclusions and related work

The idea underlying the labelled approach to the proof theory of modal logics is

that the rules encode the explanation of modalities in terms of relational seman-

tics. This allows to exploit the modularity of the relational semantics so that sys-

tems for various modal logics result by extending the basic system with rules corre-

sponding to the properties of the accessibility relations. This idea has been largely

developed: possible worlds semantics has been internalized in the form of tableaux

in Fitting (1983), Catach (1991), Nerode (1991), Goré (1998), Masacci (2000), and

in the form of natural deduction in Fitch (1966), Simpson (1994). Finally, Mints

(1997), Kushida and Okada (2003), Castellini and Smaill (2002), Castellini (2005)

provide an labelled approach based on sequent systems. The survey by Negri

(2011) gives an overview of the method and references to its applications. In this

final part, we compare our systems with the labelled approach of Viganò (2000)

which is one of the most extensive and comprehensive contribution to the topic. In

the first part (Ch. 2, Part I) a labelled natural deduction system N(K) for basic

modal logic is introduced. System N(K) is basically the same system we intro-

duced in the first chapter, with the exception of the falsity elimination rule which

gets formulated as
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1
[x : A ⊃ ⊥]....

y : A
x : A

⊥E1

Another difference is the formulation of the elimination rules: only special elimi-

nation rules are considered in Viganò’s book, whereas we adapted to labelled sys-

tems the general formulation of von Plato (2001). However, our main goal was

not the analysis of the structural properties of the natural deduction system we

have introduced, but the justification of the corresponding sequent calculus rules.

Although the labelled systems are based on the semantics, it is possible to explain

the meaning of a formula x : A in terms of its use, that is, in terms of the rules

that manipulate it. In fact, in Read (2008) the labelled natural deduction system

of Simpson (1994) is indicated as a possible solution to the problem of finding an

harmonic pair of rules for modal operators. Instead, the structural properties of

derivations N(K) are deeply analyzed in Viganò (2000): the system is proved to be

sound and complete with respect to its semantics, and a detailed proof of the nor-

malization theorem is given. N(K) can be also extended with rules for accessibility

relation: the rules correspond to Horn relational formulas, that is, formulas of

the form ∀x1 . . . ∀xn((s1Rt1∧, . . . ,∧smRtm) ⊃ s0Rt0), where m > 0 and the si and

tj are terms built from labels x1 . . . xn and constant function symbols. Example of

such rules are:

xR f (x)
Ser

xRx
Ref

xRy
yRx

Sym
xRy yRz

xRz Trans

Observe that f (x) in rule Ser is a Skolem function. Correspondence results be-

tween modal axioms and properties of R can be easily obtained by the relational

rules. The proof of the completeness theorem can be extended so that any system

N(L) obtained by extending N(K) with a Horn relational theory N(T ) is sound
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and complete with respect to its semantics. Normalization is proved by consider-

ing several rules for ⊥ (global, universal, local). Therefore, a possible direction for

a future research could be to see how the techniques and results of Viganò’s book

can be adapted to setting of our system of natural deduction, and what kind of

relationship can be stated between them.

In Viganò’s work, labelled sequent systems are introduced because they allow a

finer grained control on the structure of formal derivations, and complexity results

and decidability are more easily established when logics are presented as sequent

systems of rules. The system S(K) introduced in Ch. 6 is strictly related to our

system G0K of the first chapter. Although the rules for the modal operator ♦ and

those for conjunction, disjunction and negation are derived, all the two-premise

rules are formulated as context-independent rules, as in G0K. Initial sequents

have a relational atomic formula xRy as principal, so derivations may start with

sequents xRy → xRy. Like G0K, also S(K) has all the structural rules primitive,

and a partial elimination of contraction is the major issue of the entire second part

of the work, as noted in Negri (2005). An important difference with respect to our

approach is that labelled formulas and the relational atoms occur in a sequent only

separated. A sequent is either an expression of the form ∆ → xRy or Γ, ∆ → Γ′,

where Γ and Γ′ are multisets of labelled formulas, and ∆ is a multisets of relational

atoms1. The two possible forms of sequents correspond to the separation of the

the basic system from the relational theory: ∆ → xRy expresses that a relational

atom follows only from other relational atoms, and Γ, ∆ → Γ′ expresses that la-

belled formulas may follow from other labelled formulas or relational atoms (see

ibid., p. 139). The rules for the modal operator � are then formulated as follows:

∆→ xRy y : A, Γ, ∆→ Γ′

x : �A, Γ, ∆→ Γ′
L�

xRy, Γ, ∆→ Γ′, y : A
Γ, ∆→ Γ′, x : �A

R�

1We maintain the use of the sequent symbol→ instead of that used by the author ` in order to
avoid confusions.
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Since in sequent as ∆→ xRy there is at most one relational atom in the succedent,

the system S(K) does not contain rules for weakening and contraction for such

formulas in the succedent. Thus, the structural rules of S(K) are:

Γ, ∆→ Γ′

xRy, Γ, ∆→ Γ′
L-W

xRy, xRy, Γ, ∆→ uRv
xRy, Γ, ∆→ uRv L-C

Γ, ∆→ Γ′

x : A, Γ, ∆→ Γ′
L-W

Γ, ∆→ Γ′

Γ, ∆→ Γ′, x : A
R-W

x : A, x : A, Γ, ∆→ Γ′

x : A, Γ, ∆→ Γ′
L-C

x : A, x : A, Γ, ∆→ Γ′

Γ, ∆→ Γ′, x : A
R-C

The separation between the basic system and the relational theory (labeling al-

gebra, in the terminology of the author) is maintained in the derivations: in the

relational theory only relational atoms are inferred, whereas in the basic systems

both relational atoms and labelled formulas are used to derive other labelled for-

mulas, “so that a derivation in the base system may depend on a derivation in the

relational theory, but not viceversa” (see ibid., p. 9). Several extensions of S(K) are

then considered. The new rules for the accessibility relation introduce a relational

formula in the succedent, so in our terminology, they follow the schema R-Reg.

Examples of rules in the relational theory are:

→ xR f (x)
Ser → xRx

Ref

∆→ xRy
∆→ yRx

Sym
∆→ xRy ∆→ yRz

∆→ xRz Trans

The admissibility of the cut rule is not given directly by a derivation conversion,

but rather indirectly. It is shown (Theorem 6.3.1., p.149) that the labelled se-

quent and the corresponding natural deduction systems are equivalent, that is,

S(L) = S(K) + S(T ) and N(L) = N(K) + N(T ). Moreover, the subformula prop-

erty is satisfied: in any derivation of a sequent Γ, ∆→ Γ′, only labelled subformulas
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of Γ and Γ′ may occur. Observe that here the definition of subformula is restricted

to the labelled formulas and does not include the relational atoms (see Defini-

tion 2.3.10, p. 46). When cut can be dispensed with and the subformula property

holds, derivations can be built from the sequent to be derived, working towards

the initial sequents. However, contraction duplicates formulas and it is always ap-

plicable, with the consequence that the proof-search procedure may not terminate.

The entire second part (Ch. 8–11) is devoted to the problem of bounding the appli-

cation of contraction in order to ensure the decidability of various modal logics. In

fact, a large number of modal logics are known to be decidable and their decidabil-

ity has been established by using model-theoretic techniques as the finite model

property. The elimination of contraction, or, when it is not possible, a bound on its

application, is then required when the question of decidability and complexity for

modal logics is addressed in proof-theoretic terms. Contraction is indispensable for

modal logics stronger than the basic modal logics: the sequent → ¬�¬(A ⊃ �A)

is not derivable in S(T) without contraction, and so is for→ �¬�A ⊃ �¬��A in

S(K4). The author also gives a list of sequents derivable in S(T) (S(K4)) with the

specification of the the number of contraction required for its derivability in S(T)

(resp. in S(K4)). Although application of left contraction with a modal formula

x : �A as principal cannot be eliminated while retaining the completeness, every

derivable sequent in S(T) has a derivation in which there are no occurrences of

contraction, except for application of left contraction with a modal formula x : �A

as principal; however, these applications are not needed more than pbs(Γ, ∆ → Γ′)

in each branch, where pbs(Γ, ∆ → Γ′) is the number of positive boxed subformulas

of Γ, ∆ → Γ′ (Theorem 10.1.4, p. 210). A similar result (Theorem 11.2.5, p. 235)

holds for the systems S(K4) and S(S4). On the other hand, contraction is elim-

inable once and for all from the system S(K) for basic modal logic (Theorem 9.1.1,

p. 187). The problem is strictly connected to that of the admissibility of contraction

for our labelled system with rule L�2. As we already said, our conjecture is that
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the system G3K where the standard rule L� is replaced by the following

xRy, y : A, Γ→ ∆
xRy, x : �A, Γ→ ∆ L�2

is cut and contraction free, so it is possible to get rid of the repetition of x : �A

without losing the completeness of the system. However, an obstacle to the proof of

contraction admissibility is given by the non-invertibility of L�2. The eliminability

result Viganò could cast light on the our problem.

Finally, we summarize our main contributions and discuss the directions for a fu-

ture research. The methodology of the labelled systems has been motivated by

the attempt to give a modular and uniform presentation for dealing with a large

class of modal epistemic logics. Although the presence of the semantics in the

syntax has been considered disputable from a conceptual point of view, it must be

noted that it does not preclude the possibility of reasoning about modal logic in

proof-theoretic terms: none of the proofs of the main results of this work (cut elim-

ination and admissibility of the structural rules) makes appeal to the infinitary

model-theoretic techniques typically used in modal logics, and they have all been

established through the derivation conversion strategy which is essential in the

proof theory studies. Through the use of labels, the relational semantics can be

successfully employed to make formal derivations. Possible states and accessibili-

ties between them play an important inferential role when we reason about modal

logic: When we prove that a modal axiom characterizes a certain class of frames,

we constantly deduce a property of R from another, or conclude that some formula

A is forced at a state x because x is accessible from another state y. In the labelled

systems, the inferential role of the relational semantics is precisely formalized and

made explicit part of the syntax of sequent rules.

Through the chapters we have pointed out the possible developments of our work,

we briefly summarize the most interesting ones. The material covered by the first
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chapter can be used to give a normalizing labelled system of natural deduction

with general elimination rules for a large class of modal logics. The treatment of

non-logical axioms in natural deduction has been recently investigated in Negri

and von Plato (2011) but its application to modal logic is still material for a future

research.

The second chapter should be further developed in order to show that a better re-

sult on the upper bound on cut-free derivations can be achieved: admissibility of

contraction in the presence of non-invertible logical rules remains an open prob-

lem, and the possibility to find a semantic solution to it should be seriously taken

into consideration. It has been also noted that the proof of the cut elimination

theorem (with context-sharing cut) requires a restricted version of contraction ad-

missibility, that is, when cut gets formulated as a context-sharing rule contraction

has to be proved admissible only for atomic formulas. The conjecture, first sug-

gested by Roy Dyckhoff for the intuitionistic system G3ip, is that it is possible to

prove cut elimination without any contraction at all, since contraction is a special

case of context-sharing cut in which is cut formula is principal of an initial se-

quent. It must be interesting to prove this conjecture for the labelled system G3K.

As we already mentioned in the fourth chapter, a possible development of the sys-

tem G3PAL for the logic of public announcements could be to add rules for dealing

with the common knowledge operator. The problem is due to the iterative inter-

pretation of common knowledge like an infinite conjunction or, equivalently, to the

presence of an accessibility relation defined as the (reflexive and) transitive clo-

sure of each Ra. The same question arises for other logics like LTL (Linear Time

Logic) and the results of finitization given in Boretti and Negri (2010) should lead

the further research in this direction.

The style of analysis of the last chapter on the knowability paradox can be var-

iously applied: it is there shown that the importance of the techniques of proof

theory, as normalization and cut elimination, go beyond their immediate applica-
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tions to logical calculi like, for instance, syntactic proof of consistency, disjunction

property for intuitionsitic system, interpolation theorem. Indeed, when a normal

derivation of the paradox is found, every inferential step is explicit and it is clear

where the paradoxical conclusion comes from. This encourages us to consider other

semantic paradoxes in the light of the method presented. From a more philosophi-

cal perspective, that work takes a stand on the revisionary approach to paradoxes:

any revisionary approach to paradoxes should come after (or, at least, reckon with)

the structural proof analysis of its derivation. The requirement of normal deriv-

ability is unavoidable in the presence of non-logical axioms, because such axioms

could make the application of other logical rules problematic. For this purpose,

natural deduction with general elimination rules and sequent systems with non-

logical inference rules will play a central role in the diagnosis of the logical para-

doxes.
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