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ABSTRACT

In the functional design process of a mechanical component, the tolerance allocation stage is
of primary importance to make the component itself responding to the functional requirements and
to cost constraints, Present state-of-the-art approach to tolerance allocation is based on the use of
Statistical Tolerance Analysis (STA) software packages which, by means of Monte Carlo simulation,
allow forecasting the result of a set of user-selected geometrical and dimensional tolerances. In
order to completely automate and optimize this process, this work presents a methodology to allow
an automatic tolerance allocation, capable to minimize the manufacturing cost of a single part or
assembly. The propoesed approach 1s based on the Monte Carlo methoed to compute the statistical
distribution of the critical to quality characteristics and uses an optimization technique based on
Genetic Algorithms. The resulting procedure has been integrated in an off-the-shelf variation
analysis software: eM-TolMate (by Siemens AQ). Both the description of the optimization algorithm
and some practical applications are presented in order to demonstrate the effectiveness of the
proposed methodology.,
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INTRODUCTION

The design methods based on the concurrent engineering philosophy always demand for more
powerful computer tools, capable of reducing both the cost and the development time of new
products. In mechanical design, the tolerance allocation stage is one of the most demanding in
terms of time. Such operation is normally carried cut manually by an iterative process, based on
subjective criterions and on the designer’s skill (Ramani et al., 1998).

Several commercial software packages are available to help the designer in the evaluation of
a given set of tolerance (or configuration) of a mechanical part or assembly. These software
packages facilitate an accurate analysis of a user defined tolerance set in order to validate it on the
basis of the functional requirements the part or the assembly must satisfy. However, there are only
a few tools capable of performing an automatic tolerance choice, according to functional
requirements and cost criteria. Furthermore, they work on simple problems invelving only
dimensional tolerances (Bjorke, 1978). In this work, a software tool will be presented which has
been integrated in wvariation analysis software (eM-TolMate) and is capable to automatically
perform an optimized tolerance allocation for any kind of mechanical assemblies.
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In commercial varation analysis software packages, the functional requirements a mechanical
assembly has to fulfill are usually expressed by means of control measurements between different,
parts of the assembly. In order to choose the proper optimization technique, due to the unfeasibility
of determining the mathematical relationship between the tolerances and the control
measurements, a thorough investigation on the optimization methods has to be carried out
(Chase ef al., 1995).

Many optimization techniques have been applied to the automatic tolerance allocation problem;
the Lagrange Multiplier method (Rajasekera and Fang, 1995), the artificial neural networks
{(Kopardekar and Anand, 1995; Al-Mchammed e al., 2001), the fuzzy logic (Kopardekar and
Anand, 1995; Mao et al., 2009) and the genetic algorithms (Kanai et al., 1995; Singh ef al., 2004)
are a few examples of such techniques.

On the basis of both our previous experiences and the characteristics of the problem, we chose
the Genetic Algorithms (GA) heuristic technique which 1s described by Al-Bastala and Awad (2010).

The idea of combining the GA with Monte Carlo analysis has been used by Lee (1993) and by
lannuzzi and Sandgren (1994). In this study, several modifications to Iannuzzi‘s approach are
proposed and evaluated.

Moving from these considerations, the main aim of this study is to deseribe a new methodology
to provide an automatic telerance allocation, capable of minimizing the manufacturing cost of a
single part or assembly. The newly devised procedure allows setting the variability range for each
tolerance, the cost model chosen for the corresponding manufacturing process and an obhjective
maximum variability range for a set of user selected Control Measurements (CMs). In particular,
several tolerance configurations are analyzed by means of the Monte Carlo method (integrated in
eM-TolMate) coupled with the GA-based procedure; on the basis of the obtained results, the
configuration satisfying the functional requirements and minimizing the manufacturing cost is
attained.

MATERIALS AND METHODS

The proposed approach for automatic tolerance allocation is based on a GA oriented procedure,
implemented and integrated in the commercial software package eM-TolMate. As widely known
{(Goldberg, 1989), GA is an optimization technique based on the biclogical genetic processes which
simulates the natural evolution: the individuals which are more suitable to the environment
(fit individuals) have more opportunities to survive and reproduce themselves; the others will die
and will probably have no children.

In this study, each GA population 1s formed by a number of tolerance configurations describing
the problem to be analyzed. The GA procedure starts working from an initial random population
and derives the following ones by means of the classical GA operators, working according to a
standard five-step procedure:

Step 1: Encoding of the design variables. In this step, the values of the design variables
representing the individual are encoded into a binary string; the combinations of all the
possible design variables make up the algorithm’s search space (Mukhopadhyay ef al.,
2009)

Step 2: Computation of the Objective Function (OF). In this step, each individual's performance
is caleulated; the performance is expressed by OF value fitness score

Step 3: Selection of the best-performing individuals. In this step, the best performing individuals
are preserved and the worst performing ones are discarded according to a statistical
criterion
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Fig. 1: GA flow chart

Step 4: Crossover. In this step, the individual’s subparts are mixed so that new individuals are
born in order to improve the whole population

Step 5: Mutation. In this step, variability is introduced to prevent early algorithm convergence and
to guarantee a sufficient exploration of the design space

The tolerance allocation procedure works according to the block diagram shown in Fig. 1. The
GA are a very robust technique and do not necessitate the formal knowledge of the function to be
maximized but only a way of computing its value for a given set of variables values (Alma and

Bulut, 2012).

eM-TolMate: The variation analysis software eM-TolMate, which is described and reviewed in
Chiesi and Governi (2003), simulates the assembly procedures of mechanical parts and enables the
user to define a complete tolerance configuration both using ASME and [S0 standards (statistical
tolerancing can be used). The tolerances are defined by means of eM-TolMate features (planes,
holes, pins, ete.) which rely, in turn, on the CAD model of the mechanical part. The definition of
the CMs 15 performed on the basis of the previcusly defined features; the requirements on the CMs
are expressed by means of the well-known statistical coefficients C_ and C,, which are related to
process capability.

eM-TolMate computes the statistical distributions of the CMs and provides, if required, a
contribution analysis indicating the tolerances more remarkably affecting them. eM-TolMate
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performs the tolerance analysis by means of the Monte Carle method and can carry out the
simulation even if an analytical relationship between the input variables and the output one is not
available, In this study, eM-TolMate is the tool which serves to compute the OF value (i.e., the
performance) of each single tolerance configuration generated by the GA.

For a generic tolerance configuration, each CM i1s estimated by means of its mean wvalue,
standard deviation of its statistical distribution and indexes C_ and C_; on the basis of the
computed values, the corresponding OF value is calculated according to the formulations described
below.

The problem definition and the tolerances data: The first step of the procedure consists of the
usual definition of the CAD model and of the assembly tree; secondarily, it is required to state the
upper and lower limits for each tolerance. Such limits represent the research space of the
optimization procedure and depend on the different manufacturing process involved in the
achievement of each tolerance.

After that, it is necessary to define all the parameters related to the computation of the cost
associated to each single tolerance. Several cost models can be found in the scientific literature; all
of them estimate the cost associated to a certain tolerance by a function which can be more or less
complex (Wu et al., 1998), decreasing while the tolerance wvalue increases. As far as a
comprehensive investigation on the cost models is not the primary objective of this work, in order
to validate the proposed routines we used Hillier's cost model which evaluates the cost associated
to a tolerance simply assuming that it i1s inversely proportional to the second power of its amplitude.
Consequently the overall cost of a set of tolerances with amplitudes t, is provided by the following
equation:

Co = 32 (1)

where, the coefficients a;, are user defined coefficients which are related to the manufacturing
process.

The autoematic allocation procedure allows the user to define the cost models which more closely
fit the company data and to choose different kinds of tolerances:

* Tolerances continuously varying inside a user defined range
* Tolerances which may assume only discrete values defined by the user

Together with the tolerances, also the CMs data must be defined; for each of them it is
requested to choose:

¢ The allowed upper limit value
+  The allowed lower limit value
* The objective C, value which, at least, must be achieved for the given CM

The objective function definition: The functional requirements in a mechanical component. or

assembly design may be represented by a number of control measurements whose values must lay
into a specified range. Onece such measurements are defined, the user is asked to set, for each of
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them, the acceptable variability range. Each range corresponds to the objective tolerance on the
correspondent. CM (Obj, ). On this basis, by means of a Monte Carlo simulation (Hahn and Shapiro,
1994; Hossin ef al., 2011), the capability of a given tolerance configuration to suit the target
functional requirements can be expressed by the statistical coefficients C, and C,, computed with
respect to the required Obj,, values. The C | index, specifically, can provide a useful estimate even
if the process statistical distribution is not centered.

The cost corresponding to each tolerance configuration is evaluated by means of the cost models
selected for each tolerance. Throughout this work, several OF formulations have been devised and
investigated.

The first one was based on the formulation proposed by Iannuzz and Sandgren (1994):

o, N,
fithess = — alb +R2 [gj(t)} (2)
i=1 (t,) ! =1

where, a; and b, are the cost coefficients chosen for the ith tolerance, R is a penalty factor, g; is the
funetion expressing the jth funectional requirement. Such a relationship was found to be of little
use, due to the lack of repeatability of the obtainable results: in some cases the algorithm reached
excessively high quality configurations with a very high associated costs, in other cases, on the
contrary, the configurations were characterized by a very low cost but exhibited a totally
insufficient fulfillment of the functional requirements. This behavior can be explained by the strong
dependency of the OF trend on the parameter R in Eq. 2. In order to obtain satisfactory results,
both minimizing the total cost and fulfilling the functional requirements, it is necessary to
recalibrate the parameter R whenever a new mechanical assembly 1s analyzed, since in all our
experiments no general value for parameter R could be determined. The calibration requires several
runs of the allocation procedure on each new assembly, resulting in a totally unacceptable
computation time.

The drawhack of a repeated calibration of parameter R was overtaken by devising a new OF
based on a hierarchical approach. Such an approach consists of computing the OF value by
evaluating the N, terms in Kgq. 2, sequentially: once a tolerance configuration satisfying the
jth functional requirement is found, the optimization algorithm seeks a new configuration
satisfying both the 1st, 2nd,... jth requirement and the (j+1)th. Only after all the terms
in the second summation of Kq. 1 are computed, the term depending on the cost 1s added
(first summation in Eq. 2).

The allecation procedure using the new OF proved to be capable of providing completely
satisfactory tolerance configuration (satisfaction of all the functional requirements and minimum
associated cost); nevertheless this behavior was maintained only for simple case studies
(20 tolerances, 5+6 CMs). In the analysis of more complex cases (100 tolerances, 10+15 CMs), the
OF doees not guarantee the convergence of the allocation procedure to a suitable solution; in the
case a satisfactory tolerance configuration is found, the repetition of the allocation procedure often
leads to considerably different results, usually satisfying the functional requirements but with a
very high associated cost. The main cause for such a behavior is the increasing number of variables
which the GA has to take into account and which prevents a comprehensive exploration of the
search space. According to the described results, a further modification in the OF definition was
introdueced. In the new OF, the evaluation of the functional requirements takes place for all the
CMs at the same time, while the cost factor is added only if all the requirements are satisfied, as
shown in the block diagram of Fig. 2.
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| OF = F'(C )+ 2(Cost) |

Fig. 2: Final objective function block diagram

Introduction of advanced operators in the GA: A further improvement of the performance of
the automatic tolerance allocation procedure was achieved by the introduction of several advanced
operators in the main structure of the GA.

Firstly, an auxiliary mutation operator was devised, working together with the classical GA
mutation. Such an operator is meant to introduce the necessary variability in the set of tolerance
configurations but, unlike the classical operator, may vary a given tolerance configuration only
changing it into a new one characterized by wider tolerance values and consequently by a lower
overall cost. This effect 1s obtained simply allowing the mutation of zeros into ones in the binary
string representing a tolerance configuration but not vice versa. The new operator enables the GA
to explore more completely the search space, with particular reference to the individuals
characterized by a lower cost, thereby improving the overall performance of the algorithm.

Secondarily, a variable mutation probability was introduced for the classical mutation operator.
The variable mutation probability, according to the model proposed by Zimmermann ef ¢f. (1999),
depends on:

* The user selected lower and upper limits for the mutation probability (pm; and pm,,
respectively)
*  The average diversity coefficient (rate) D among the individuals of a population

According to Zimmermann’s definition, if the individuals belonging to the same population are
very similar to the others, the value of the coefficient D is close to 1, otherwise tends to O,

The opportunity of linking the mutation probability value to the average diversity D proved to
be very useful; in fact, in such a way, the mutation operator is used as much as the GA demands
for it. In the initial phase, when the GA is mainly exploring the search space, the mutation
probability value should be low because the characteristics of the best performing individuals have
not spread through the population yet; on the other side, as the number of generations analyzed
by the GA grows, the mutation probability value must increase, since the variety of the “genetic
patrimony” is low.

The relationship for the computation of the mutation probability permutation is provided
in Eq. 3

Puutation — PMy - EXP D-In prn_2 (3)
pm]

It 1s ewvident that, in the case D=0 thenp_ ... = pm; otherwise, if D = 1, then

Prutation = P,
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RESULTS AND DISCUSSION

The results obtained by several test runs on mechanical assemblies characterized by a different
complexity degree, show that the combination of the OF, described in Fig. 2, wath the additional
mutation operator and the variable mutation probability, guarantees the achievement of
satisfactory results (satisfaction of the functional requirements and minimum cost) for any
mechanical assembly of practical interest. To prove this claim, four examples of different
mechanical assemblies have been analyzed with the aim of pointing out the behavior of the
allocation procedure. For each example, the reference tolerance configuration which is the one to
be compared with the optimized tolerance set achieved by the GA based procedure, 1s obtained by
means of the well-known manual optimization process consisting in the contribution analysis and
subsequent modification of the tolerance values until an optimum compromise between cost and
functional requirements is reached.

In order to assess the performance of the devised procedure, a parameter, called “process
capability difference” AC’ |, is defined for each control measurement point.

In particular AC’ ; (where i = 1,...n is the number of control measurement points) is defined
as the difference between the objective values (for each CM) and the optimized ones for any C,,..
By definition of C , when AC’ | >0 a better tolerance allocation for the ith CM is achieved. On the
other hand, when the tolerances fall outside of the specification limits, AC’ ;>0. Finally, AC’ >0
when the obtained configuration (optimized) provides the same process capability of the chjective
tolerance allocation.

Application to a schematic crank motor and its support parts: The first devised example,
a schematic assembly of a crank motor and its support parts, 1s shown in Fig. 3. The complete
eM-TolMate model consists of 5 elements and 9 tolerances. Though, it is not a real industrial case
study, this simple example can be used to emphasize some peculiarities of the GA-based procedure
developed in this study.

The only functional requirement is represented by the CM between the crank and the plane
on which the motor support lays (i.e., a minimum clearance is requested); the functional
relationship between the tolerances and the CM is unknown,

The upper and lower limits for all the tolerance variability range (Zhang and Huq, 1992) are
assumed to be respectively 0.01 and 1.00 mm.

The objective C, value is assumed to be 1.5. The initial tolerance configuration (see first column
of Table 1) 1s obtained, using eM-TolMate, by a classical allocation procedure consisting of a set, of
user selected tolerance values and a subsequent statistical verification of the achieved performance

Motor
Crankshaft
Main saddle
\\\ Cra?k
Y 5

-

Control

measurement

(C™) L 4

Support

Fig. 3: Schematic assembly of a crank motor
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Table 1: Initial and optimized values for the crank motor assembly

Objective values Initial values Optimized values AC AC ;=0
Ca1 = 1.50 C = 1.10 Ca1 = 151 0.01 Yes
Approximately equal to the initial cost Cost = 700.5 Cost =950.6
Cost reduction (%) -36.7
1.8 7
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2 1.0 1
5 0.8
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Fig. 4: Average trend vs. generation number
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Fig. 5: C,, and cost trend vs. generation number

(i.e.,, manual check of the CM value). The C , value for the initial tolerance configuration results
equal to 1.1; the associated cost corresponding to each tolerance t, (evaluated according to the
Eq. 1 where all the a; coefficients are assumed to be equal to 1), results equal to 700. 5.

In Fig. 4, the trend of the average C; as the generation number of the GA increases is shown.
For each generation, the average cost and the cost associated to the best individual are respectively
depicted in Fig. 5. In the first generations the average C , is quite low, meaning that the functional
requirement has not been reached; as the allocation procedure goes on, after the 10th generation,
the C ,, value is approximately equal to the target one but never gets too high because of the cost
term which tends to make the tolerance values low.

On the other side, in the first generations, the cost is very high because a configuration
satisfying the functional requirements is yet to be found. As soon as this occurs, the cost, as
expected (Rho and March, 1997), tends to decrease, approaching its final minimum wvalue,
corresponding to C_,; = 1.51.

As depicted in Table 1, the automatic tolerance allocation procedure allows to cbtain a new
configuration characterized by AC ,, = 0.01. This means that the functional requirements are
fulfilled even slightly better than desired. The difference between the objective wvalues and the
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Fig. 6(a-b): Assembly of a stapler, (a) Upper side view and (b) Rear right view

Tahble 2: Initial and optimized values for the stapler assembly

Objective values Initial values Optimized values AC AC =0
Cypr = 0.50 Cony = 051 Comy = 0.54 0.04 Yes

Cypz = 1.00 Copz = 1.10 Cype = 1.01 0.01 Yes
<than initial cost Cost = 8037850 Cost = 52859

Cost reduction (%) 99.3

initial values obtained using eM-TolMate results equal to -0.4, 1.e.,, the initial value i1s out of
funectional specifications. On the other hand, in order to fulfil the user requirements, a 36% higher
cost, equal to 950.6, proves to be necessary.

Application to the assembly of a stapler: The second case study is the assembly of a stapler,
made of 3 components (Fig. 6). In this example there are 2 CMs and 12 tolerances; unlike the
previcus assembly, the limits and the cost coefficients for each tolerance are assumed to be different.

The objective values for the two C ;, shown in Table 2, are assumed to be equal to 0.5 and 1.0,
respectively. The classical manual procedure, carried out using eM-TolMate, provides C ; values
equal to 0.51 and 1.1, respectively.

Using the proposed procedure, the new, optimized values for the two CMs result to be equal
to 0.54 and 1.01, respectively. This demonstrates that the automatic tolerance procedure allows on
one side a considerable cost reduction (equal to 99.3%) and, on the other hand, the tolerance
configuration is acceptable since AC’ |, and AC’ , are both greater than 0.

The obtained results are in line with the ones coming from other studies using GA in mechanical
(Singh et al., 2005) and in software development fields (Ghiduk and Girgis, 2010) where a cost
reduction of more than 75% was reached by using approaches based on GA.

Application to the assembly of a PC mouse: The third, more complex, assembly consists of a
PC mouse and is made of 6 different parts (Fig. 7a, b). Figure 7c shows the eM-TolMate assembly
tree for the model.

The tolerance set consists of 34 different tolerances: 6 dimensional tolerances (linear dimensions
and diameters), 7 flatness tolerances, 1 parallelism tolerance, 2 concentricity tolerances, 15 position
tolerances and 3 profile tolerances. The optimization objective takes into account 6 different control
measurements simultaneously (Fig. 7a, b):

CM 1: Board to base gap, it 1s necessary in order to correctly assemble the board inside the base
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Fig. 7(a-b). (a) Mouse model, (b) Assembly parts and (¢} Assembly tree, CM: Contrel measurement,
point

Table 3: Initial and optimized values for the mouse assembly

Objective values Initial values Optimized values AC AC =0
Cyr = 1.00 Cyy = 1.00 Cp = 1.03 0.02 Yes
Cyre = 1.20 Cyrz = 1.20 Cype = 1.20 0.00 No

Cyrs = 1.20 Cyrs = 1.20 Cpps = 1.23 0.02 Yes
Cyes = 1.50 Cyee = 1.50 Cy = 150 0.02 Yes
Cs = 1.50 Cys = 1.50 Cpps = 151 0.02 Yes
Cops = 1.50 Cows = 1.50 Cos = 1.54 0.02 Yes
<than initial cost Cost =1747.9 Cost = 753.0

Cost reduction (%) 56.9

CM 2 and CM 3: Guiding wheels clearances, they provide the mouse pointing functionality

CM 4: Base pin-board hole clearance, necessary in order to correctly assemble the
board inside the base

CM 5 and CM 6: Board and block holes, they account for the Ax and Ay position between the two
holes centers

Like in the previcous example, the upper and lower limits vary according to the tolerance type.
In this example the objective values are set equal to the ones obtained by using the manual
procedure. Table 3 shows that for all the CMs {except for CM 2 whose C_, remains unchanged and
equal to the optimization target) AC’  ;>0. As a consequence, once more, almost, all the objective C
values have exceeded the optimization objectives, with a much lower manufacturing cost (59.6%
of the initial cne).
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Fig. 8(a-b): Car floor model, {a) Upper left view and (b) Lower right view

Table 4: Initial and optimized values for the car floor

Objective values Initial values Optimized values AC AC >0
Cp1= 1.00 Cpx1 = 1.00 Cp = 1.10 0.00 No
Chz = 1.00 Chz = 1.00 Cpee =1.01 0.04 Yes
Cpues =1.30 Cpes = 1.30 Cpes = 1.32 0.02 Yes
Cpxq = 0.65 Cpxq = 0.65 Cps =0.66 0.04 Yes
Chs = 1.00 Chs = 1.00 Cus=1.10 0.00 Yes
Cus =0.90 Cos = 0.90 Cus =093 0.02 Yes
Cuer =0.95 Cher = 0.95 Cher = 0.95 0.00 No
Chs=1.00 Cpxs = 1.00 Cprs = 1.00 0.00 No
Cpre = 1.00 Cpre = 1.00 Cpe=1.00 0.00 No
Cpx1o = 1.00 Cpx1o = 1.00 Cpr1o = 1.10 0.00 No
<than initial cost Cost = 2536 Cost = 1751

Cost reduction (%) 309

Application to the assembly of a car floor: The last example consists of a car floor (Fig. 8). The
eM-TolMate maodel is made of 89 tolerances and 10 CMs. The limits for the tolerances values (gaps
between sheet metal parts) have been selected according to the experience of a team of skilled
operators working for a well-known car manufacturing company and, thereby, result to be realistic.
The objective values for the functional requirements (C ), shown in Table 4, are set equal to the
ones obtained by using the manual allocation procedure which provided the starting configuration.

By means of the automatic tolerance allocation procedure, better values have been reached for
5 out of 10 CMs and the associated cost is considerably lower (30.9%) as depicted in Table 4. The
AC , for the remaining 5 CM result equal to O (i.e., exactly equal to the optimization objective) thus
proving that the optimized configuration is characterized, globally, by a better process capability
with a lower associated cost.

Performance comparison with other methods: A comparison between the overall results of
the proposed method and the ones obtainable by different ones deseribed in the scientific literature
is not, straightforward (Chiong and Beng, 2007). This 1s due to the fact that, as anticipated above,
almost all the authors present their results applied to different case studies, while a relhiable
comparison should be conducted on the same set of case studies. However, a qualitative comparison
can be carried out considering that in all the works describing GA-based methods for tolerance
allocation, a cost associated to the analyzed tolerance configuration is presented. From this point
of view, the method described in this paper can be compared against the results obtained in such
studies.

By way of example, to evaluate the performance of their proposed GA-based approach, Chen
and Fischer (2000) compared 12 different cases solved by means of, respectively, GA and gradient
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based methods. The average absclute difference (in %) between the cost function obtained using
the two different methods resulted to be equal to about 2%.

Kumar et al. (2009) compared the performance of their GA-based method with classical GA,
Simulated Annealing and Complex research methods (Choi et al., 2000) demonstrating a reduction
of the cost function in the range 20-27%. Such a result is comparable with the one provided by
Muthu et al. (2009) that demonstrate an average cost reduction of about 21% using their GA-based
method tested against conventional optimization methods.

As depicted in the four examples discussed above, in the present work the average cost
reduction between the new GA based method and the one obtained by using a classical tolerance
allocation procedure resulted to be about 34.7%. Usually, gradient based optimization techniques,
like the ones used as a term of comparison in the works mentioned above, lead to results similar to
those which can be obtained with manual optimization based on contribution analysis. As a
consequence, the average cost reduction obtained by the method described in this work appears to
be in line with the results described by other authors, thus proving that the proposed integrated
tool 1s effective for automatically optimizing a tolerance set on a mechanical part or assembly.

CONCLUSIONS

In this study a novel approach, based on the Monte Carle method coupled with a modified GA
procedure for automatic tolerance allocation, has been described. Different formulations of the OF
have been investigated and a number of advanced operators have been introduced in order to
provide the necessary repeatability and accuracy. The approach proves to be capable of minimizing
the manufacturing cost of a single part or assembly, as demonstrated by the analysis of four
exemplificative case studies. The procedure allows a global approach to the tolerance allocation
problem, so that all the tolerances can be effectively varied thereby reaching a configuration
characterized by the fulfillment. of all the user-defined functional requirements associated to an
extremely low cost if compared to the well-known manual telerance optimization process based on
contribution analysis. The final result of this work is a software tool which is completely integrated
in eM-TolMate (a commercial variation analysis software by Siemens AG) which can be of valuable
help to the designer involved in the tolerance allocation process of mechanical assemblies. The
presented software tool can be useful both in the initial phase of the work (i.e., when only the
functional requirements have been stated) and in the final optimization stage, when a manually
obtained tolerance configuration is already available.
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NOMENCLATURE

Cost, = Tolerance configuration cost

Cow G, = Capability indexes

C ob; = Objective C, value for a control measurement

C = (Overall cost for the analysed mechanical assembly or part
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Gy = Overall cost for the imitial tolerance configuration on the assembly or part
AC 4 = Process capability difference

D = Diversity coefficient

N, = Number of Control Measurements

N, = Number of tolerances

Obj g = (Objective tolerance on the control measurement (mm)
R = Penalty factor

a;, b, = Tolerance cost coefficients

g = Function expressing the functional requirement

pmy, pm, = Lower and upper limits for the mutation probability
t; = Tolerance value (mm)

th = threshold value for AC’_; and AC” |
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