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Abstract 

Background 

Patterns of genetic divergence between populations of facultative metallophytes have been 

investigated extensively. However, most previous investigations have focused on a single 

plant species making it unclear if genetic divergence shows common patterns or, conversely, 

is species-specific. The herbs Rumex acetosa L. and Commelina communis L. are two 

pseudo-metallophytes thriving in both normal and cupriferous soils along the middle and 

lower reaches of the Yangtze River in China. Their non-metallicolous and metallicolous 



populations are often sympatric thus providing an ideal opportunity for comparative 

estimation of genetic structures and divergence under the selective pressure derived from 

copper toxicity. 

Results 

In the present study, patterns of genetic divergence of R. acetosa and C. communis, including 

metal tolerance, genetic structure and genetic relationships between populations, were 

investigated and compared using hydroponic experiments, AFLP, ISSR and chloroplast 

genetic markers. Our results show a significant reduction in genetic diversity in metallicolous 

populations of C. communis but not in R. acetosa. Moreover, genetic differentiation is less in 

R. acetosa than in C. communis, the latter species also shows a clustering of its metallicolous 

populations. 

Conclusions 

We propose that the genetic divergences apparent in R. acetosa and C. communis, and the 

contrasting responses of the two species to copper contamination, might be attributed to the 

differences in their intrinsic physiological and ecological properties. No simple and 

generalised conclusions on genetic divergence in pseudo-metallophytes can thus be drawn. 

Background 

Understanding the genetic basis of how organisms adapt to extreme and novel environments 

remains as one of the major challenges facing evolutionary biologists. Intraspecific 

differentiation of metallophytes is one of the most striking adaptive changes that result from 

natural outcrops of heavy metal-rich rock or mining activities [1-3]. Metallophytes refer to 

plant species that have developed metabolic mechanisms to resist, tolerate, or even thrive on 

toxic metalliferous soils [4-6]. Populations of metallophytes growing in metalliferous soils 

are often genetically distinct from those living in nearby non-metalliferous soils [7]. 

Metalliferous habitats are always characterized by their patchy distribution and therefore 

have been considered as ecological islands, which provide ideal opportunities to investigate 

the population differentiation in plants under severe edaphic pressure [8]. In the course of 

evolution, plants have adapted to widely differing metal availabilities in soils and therefore 

represent an important source of natural variation of metal homeostasis networks [9]. In the 

past 50 years, genetic differentiation within and among populations of metallophytes has 

attracted uninterrupted interest. Yet, the evolution of metallophytes remains heatedly debated 

[10-13]. Previous studies on genetic divergence of metallophytes have mainly focused on the 

following two aspects: (1) the effects of heavy metal pollution on genetic diversity, and (2) 

the origin and evolutionary history of metallicolous populations. In general, substantial 

founder and bottle-neck effects have been presumed to occur during the colonization of 

metallophytes in a heavy metal contaminated area. Therefore, a reduction in genetic diversity 

in metallicolous populations would be theoretically expected. This idea has been well-

supported by several studies [14,15]. Conflicting results, however, have also been obtained in 

some cases where recently established tolerant populations maintain a high level of genetic 

variation comparable to that in non-metallicolous populations [16,17]. On the other hand, 

Schat et al. [18] have suggested that geographically distant conspecific metallicolous 

populations could have evolved independently and therefore constitute a polyphyletic group. 

The hypothesis of multiple and independent origins has been validated in metallicolous 



populations of several metallophytes such as Noccaea caerulescens (formerly known as 

Thlaspi caerulescens), Silene paradoxa, Arabidopsis halleri and A. lyrata [17,19-21]. Beyond 

all doubt, both mosaic environments and edaphic conditions should contribute to the multiple 

origins of metallicolous populations. However, it is still not clear whether or not edaphic 

conditions played a more important role than geographical factors in this event. The 

conflicting results associated with such an issue might be due to: (1) differences in biological 

traits, ecological properties, population size, and history of individual populations of different 

species; and/or (2) various molecular markers (i.e. RAPD, RFLP, ISSR, and AFLP) 

employed in different studies. Moreover, it should also be noted that until now, most previous 

studies have focused on a single plant species only, which inevitably influences the 

comparability of results from different studies. Therefore, choosing two or more sympatric 

metallophytes with similar geographic distributions and population history, and then 

comparing their characteristics of genetic divergence might shed light on the evolutionary 

processes of plants under heavy metal pressure. 

The copper (Cu) belts distributing along the middle and lower reaches of the Yangtze River 

are one of the largest areas of Cu mining in China. In this area, there are considerable spoil 

heaps and mineral deposits, some of which are currently in practice. A national ruin of an 

ancient Cu mine built over 1000 years ago (Da-Gong Mountain Mining Ruin) is located in 

this area, suggesting a long history of mining activities. Extensive Cu mining activities in this 

area have resulted in many waste heaps with elevated concentrations of Cu in soils, and the 

plant species growing in this area have experienced long-term selection under Cu toxicity 

derived from mining activities dating back to at least 1000 years. Although these waste heaps 

are often far away from each other, they harbor similar assemblages of metallophytes, which 

are distinctly different from the surrounding communities in non-metalliferous soils [22-24]. 

Both common sorrel Rumex acetosa L. (Polygonaceae) and Asiatic dayflower Commelina 

communis L. (Commelinaceae) have consistently been documented as dominant plants on 

most of these cupriferous habitats and are also present in surrounding non-metalliferous sites 

[21,22]. Besides, R. acetosa is well-known metallophyte thriving on metalliferous soils of 

NW & SW Europe. Many edaphic ecotypes of R. acetosa from a wide range of soil types 

have been reported, some of which exhibit high potential for phytoremediation of 

contaminated soils [2,25,26]. 

Rumex acetosa is a perennial herb with an erect stem, about 40 to 120 cm high. Its flowering 

season ranges from March to May and the fruiting season ranges from April to June. 

Unisexual and dioecious flowers are arranged in acrogenous panicle inflorescences. Plants 

are capable of producing large numbers of small achenes encircled with an aliform membrane 

and therefore can be easily dispersed by wind. The species is commonly found along 

roadsides, in forests, and in habitats along rice fields in most regions of China [27]. In 

contrast, C. communis is an annual multi-branched herb with erect stems in the upper part and 

creeping stems in the lower part. It is able to grow clonally by elongation of the creeping 

stem, which bears a number of erect ascending shoots. It flowers from May to September and 

fructifies from June to November. Bisexual flowers are arranged in a cyme. Commelina 

communis often occupies habitats similar to those of R. acetosa and is mainly distributed in 

southeastern China [28]. 

Despite their similarities, the two pseudo-metallophtes R. acetosa and C. communis have 

different life histories (perennial vs annual) and reproductive systems (obligately outcrossing 

vs potentially selfing), which result in them being in different functional groups. Therefore, 

their metallicolous and non-metallicolous populations provide an ideal opportunity to study 



genetic divergence under selective pressure derived from Cu toxicity between taxa of two 

distinct functional groups. 

Previous studies have shown that many factors such as life history and reproductive system 

may significantly influence population genetic divergence through their effects on genetic 

drift and gene flow [8,15-17]. We therefore hypothesized that the two sympatric pseudo-

metallophytes R. acetosa and C. communis would differ greatly in population genetic 

divergence. To test our hypothesis, twelve R. acetosa populations and thirteen C. communis 

populations collected from different sites along the Yangtze River of Eastern China were 

used to investigate comparative genetic differentiation patterns. AFLP (Amplified Fragment 

Length Polymorphism) and ISSR (Inter-Simple Sequence Repeats) were employed to assess 

genetic diversity and population structures. Six R. acetosa and 10 C. communis populations 

were selected to determine Cu tolerance of the metallicolous and non-metallicolous 

populations. In addition, two cpDNA regions (psbJ-petA and 3′rps16-5′trnK) were sequenced 

and analyzed to infer uniparental patterns of colonization. 

Results 

Cu concentrations in soils 

Sampling locations for 12 R. acetosa and 13 C. communis populations were investigated at 

areas along the Yangtze River (Figure 1). The soil Cu concentrations recorded at these 

different sampling sites are shown in Table 1. In general, contaminated sites contained high 

concentrations of total and DTPA-extractable Cu, about 100 times greater than those in 

uncontaminated sites. Large differences in Cu concentrations were detected between 

cupriferous sites; the highest total and extractable Cu concentrations were 8586 and 2194 mg 

kg
−1

 at TLS, whilst the lowest values were 2787 and 359 mg kg
−1

 at FHS, respectively. 

Figure 1 The sampling locations of 12 Rumex acetosa and 13 Commelina communis 
populations.     NM populations of R. acetosa;     NM populations of C. communis;    M 

populations of R. acetosa;    M populations of C. communis.(1, 3: AJS; 2: JHS; 4, 5: JSCK; 6: 

TJ; 7, 8: DGSCK; 9, 10: DGS; 11, 12: FHS 13, 14: TLCK;15, 18: SZS; 16, 17: CZCK; 19, 

20: SCCK; 21, 22: CZ; 23: HZCK; 24: TLS; 25: TSK) 



Table 1 Locations of populations of Rumex acetosa and Commelina communis, and the total and extractable Cu concentrations in the 

substrates associated with plants sampled 

Edaphic type Latitude/Longitude 
Populations 

(Abbreviation) 

R. acetosa C. communis 
Concentration of Cu in substrates 

(mg kg
-1

, mean ± SD) 

Ni est. Sample size Ni est. Sample size Total Cu Extractable Cu 

M 30°52´N, 118°01´E Fenghuangshan, Anhui (FHS) > 500  13 > 1000 15 2787 ± 827 b** 359 ± 85 b 

M 30°55´N, 117°53´E Shizishan, Anhui (SZS) 100-500 11 500-1000 15 7966 ± 1197 a 1778 ± 314 a 

M 30°56´N, 118°09´E Dagongshan, Anhui (DGS) > 500 15 500-1000 12 7033 ± 1819 a 1769 ± 610 a 

M 30°26´N, 117°16´E Tongshan, Anhui (CZ) > 5000 15 > 5000 15 3941 ± 1228 b 594 ± 279 b 

M 30°02´N, 115°01´E Tonglvshan, Hubei (TLS) n.a n.a > 1000 15 8587 ± 920 a 2194 ± 219 a 

M 29°56´N, 114°53´E Tongshankou, Hubei (TSK) n.a. n.a < 500 13 4519 ± 988 b 679 ± 142 b 

M 31°45´N, 118°33´E Tongjing, Jiangsu (TJ) < 100 11 n.a. n.a 3895 ± 76 b 927 ± 17 b 

M 32°06´N, 119°04´E Anjishan, Jiangsu (AJS) < 100 10 < 100 10 6572 ± 238 a 1832 ± 75 a 

M 32°04´N, 119°05´E Jiuhuashan, Jiangsu (JHS) 100-500 12 n.a. n.a 3341 ± 100 b 633 ± 20 b 

NM 30°56´N, 117°49´E Tongling, Anhui (TLCK) < 100 11 < 100 12 50 ± 0.3 c 5.1 ± 0.3 c 

NM 31°12´N, 116°47´E Shucheng, Anhui (SCCK) 100-500 13 100-500 14 3.7 ± 0.4 c 2.0 ± 0.1 c 

NM 30°28´N, 117°17´E Chizhou, Anhui (CZCK) 100-500 14 < 100 12 28 ± 18 c 6.4 ± 0.2 c 

NM 30°57´N, 118°09´E Nanling, Anhui (DGSCK) < 100 11 100-500 15 28 ± 0.4 c 7.2 ± 0.3 c 

NM 32°02´N, 118°55´E Nanjing, Jiangsu (JSCK) < 100 12 < 100 11 62 ± 28 c 11 ± 0.3 c 

NM 30°15´N, 120°08´E Hangzhou, Zhejiang (HZCK) n.a. n.a 100-500 12 23 ± 4.3 c 6.4 ± 0.1 c 

*: M, metallicolous; NM, non-metallicolous; Ni est., approximative population size; n.a., data not available, the species is not present in the 

indicated site. 

**: Data with different letters in the same column indicate a significant difference (P < 0.05, LSD test). 



Cu tolerance 

Tolerance indices based upon growth quotients of relative root length under the four Cu 

treatments for the different populations are shown in Figure 2. Overall, Cu tolerance indices 

for the 6 R. acetosa populations and 10 C. communis populations under four Cu treatments 

were significantly different between the metallicolous (M) and non-metallicolous (NM) 

populations; tolerance indices of M populations were significantly higher than those of NM 

populations for both species. Interestingly, tolerance indices of NM populations of both 

species were also similar. Commelina communis M populations exhibited higher tolerances 

than those of R. acetosa in the 160 μM and 320 μM Cu treatments. Shoot elongation was, 

with few exceptions, considerably depressed in all NM populations investigated when 

seedlings were treated with 40 μM Cu or above. Moreover, the treatment with 320 μM Cu 

which killed all NM plants revealed a higher tolerance in C. communis M populations than R. 

acetosa M populations (Additional file 1: Figure S1 and S2). 

Figure 2 Tolerance indices (%) based on relative root length of different populations of 

Rumex acetosa and Commelina communis under four Cu treatments in hydroculture 

(0.25, 40, 160, and 320 μmol L
-1

 CuSO4, respectively; M: metallicolous; NM: non-

metallicolous). Different letters on the error bars indicate a significant difference at P < 0.05 

(LSD test) under the same treatment 

Genetic diversity of rumex acetosa and commelina communis populations 

The six primer combinations used in the AFLP analysis yielded 212 and 238 bands in total 

and the percentage of polymorphic loci was 84.4% and 86.5% for R. acetosa and C. 

communis, respectively. ISSR markers scored were 65 and 77 in total and the percentage of 

polymorphic loci was 66.2% and 74% for R. acetosa and C. communis, respectively. Nei’s 

gene diversity and Shannon indices of each population based on AFLP and ISSR data are 

given in Tables 2 and 3. 

Table 2 Genetic diversity statistics presented as Nei′s gene diversity (H) and Shannon 

index (H′) in Rumex acetosa and Commelina communis based on AFLP data (for each 

population separately and also divided in two types according to edaphic conditions) 

Edaphic 

type 
Populations 

H H′ 

R. acetosa C. communis R. acetosa C. communis 

M DGS 0.178 0.1536 0.258 0.222 

M FHS 0.143 0.1453 0.207 0.209 

M SZS 0.161 0.1429 0.233 0.206 

M CZ 0.181 0.1608 0.261 0.232 

M AJS 0.185 0.1244 0.267 0.179 

M JHS 0.185 n.a. 0.266 n.a. 

M TJ 0.196 n.a. 0.280 n.a. 

M TLS n.a. 0.1464 n.a. 0.210 

M TSK n.a. 0.1305 n.a. 0.188 

 Mean ± SD 
0.175 ± 

0.018 a 

0.143 ± 

0.013 b 

0.253 ± 

0.025 a 

0.206 ± 

0.018 b 

N DGSCK 0.1777 0.231 0.256 0.332 

N TLCK 0.1731 0.229 0.249 0.331 

N CZCK 0.1812 0.230 0.260 0.331 



N SCCK 0.1541 0.232 0.221 0.334 

N JSCK 0.1885 0.235 0.272 0.339 

N HZCK n.a. 0.222 n.a. 0.320 

 Mean ± SD 
0.175 ± 

0.023 a 

0.23 ± 0.005 

a 

0.252 ± 

0.019 a 

0.331 ± 

0.006 a 

*: M, metallicolous populations; N, non-metallicolous populations; n.a., data not available. 

Data followed by different letters in the same column indicate a significant difference 

(P < 0.001). 

Table 3 Genetic diversity statistics presented as Nei′s gene diversity (H) and Shannon 

index (H′) in Rumex acetosa and Commelina communis based on ISSR data (for each 

population separately and also divided in two types according to edaphic conditions) 

Edaphic 

type 
Populations 

H H′ 

R. acetosa C. communis R. acetosa C. communis 

M DGS 0.1532 0.1997 0.2476 0.3116 

M FHS 0.1641 0.1870 0.2610 0.2936 

M SZS 0.1616 0.1914 0.2553 0.2967 

M TS 0.1860 0.1958 0.2842 0.3060 

M AJS 0.1556 0.1646 0.2439 0.2558 

M JHS 0.1611 n.a. 0.2515 n.a. 

M TJ 0.1619 n.a. 0.2536 n.a. 

M TLS n.a. 0.1538 n.a. 0.2446 

M TSK n.a. 0.1528 n.a. 0.2391 

 Mean ± SD 
0.163 ± 

0.011a 

0.178 ± 

0.020 b 

0.257 ± 

0.013a 

0.278 ± 

0.031 b 

N DGSCK 0.1543 0.2048 0.2472 0.3169 

N TLCK 0.1422 0.2016 0.2280 0.3108 

N TSCK 0.1813 0.2089 0.2776 0.3241 

N SCCK 0.1480 0.2584 0.2305 0.3899 

N JSCK 0.1603 0.2360 0.2464 0.3572 

N HZCK n.a. 0.2558 n.a. 0.3830 

 Mean ± SD 
0.157 ± 

0.015a 

0.228 ± 

0.026 a 

0.246 ± 

0.020a 

0.347 ± 

0.035 a 

*: M, metallicolous; N, non-metallicolous; n.a., data not available. 

Data followed by different letters in the same column indicate a significant difference 

(P < 0.05). 

For R. acetosa no significant difference in Nei’s gene diversity between M populations and 

NM populations was detected. Further, there was no significant correlation between Nei’s 

gene diversity and the DTPA-extractable Cu concentrations in associated soils within each 

population (Pearson’s correlation coefficient rS = 0.119, P = 0.712, and rS = −0.045, P = 0.890, 

for AFLP data and ISSR data, respectively). In contrast, for C. communis significant 

(P < 0.001) differences in genetic diversity were detected between the M and NM 

populations, the latter having higher values than the former. Furthermore, significantly 

negative correlations between genetic diversity and DTPA-extractable Cu concentrations 

were detected (Pearson’s correlation coefficient rS =–0.793, P = 0.001; rS =–0.652, P = 0.016 

for AFLP and ISSR, respectively). 



Genetic structure analysis 

The genetic structure of R. acetosa and C. communis populations was investigated by an 

Analysis of Molecular Variance (AMOVA). Relatively high genetic differentiation among 

populations of both C. communis, (FST = 0.129, P < 0.0001) and R. acetosa (FST = 0.11, 

P < 0.0001) was detected from AFLP data. Conversely, for R. acetosa ISSRs were not able to 

detect significant differentiation among populations (FST = 0.003, P > 0.05), whilst a low 

differentiation was detected for C. communis (FST = 0.029, P < 0.0001). Mantel’s tests carried 

out to investigate the existence of any correlations between geographical and genetic 

distances (Additional file 2: Table S1) did not detect significant correlations for AFLP data in 

either plant species. In contrast, differentiation at ISSR loci did show significant correlation 

with geographical distance especially for R. acetosa (r = 0.88, P < 0.0001). 

Genetic relationships among populations were then investigated by computing NJ 

dendrograms from Slatkin’s linearized pairwise FST (Additional file 2: Table S2). Results are 

reported in Figures 3 and 4 for C. communis and R. acetosa, respectively. In general, only 

dendrograms based on AFLP were supported by significant P-values for pairwise FST for all 

pairwise comparisons. For C. communis (Figure 3), in both AFLP and ISSR data, M 

populations were more differentiated that NM populations, these latter being grouped in a 

single cluster (except for CZ population). Conversely, the Rumex acetosa populations were 

clustered into several groups which approximately reflected their geographic locations, 

supporting the results of the Mantel’s test. For example, the four populations sampled from 

Jiangsu Province (JSCK, TJ, AJS, and JHS) were clustered in one main branch in both AFLP 

and ISSR analyses (Figure 4). 

Figure 3 NJ dendrogram of C. communis populations. A, AFLP data; b ,ISSR data. In 

bold M populations. Scale bar, Slatkin’s linearized pairwise FST 

Figure 4 NJ dendrogram of R. acetosa populations. a, AFLP data; b ,ISSR data. In bold M 

populations. Scale bar, Slatkin’s linearized pairwise FST 

Hierarchical partition was then computed at three levels (groups, populations and 

individuals). Groupings were related to both edaphic and geographic differences (Additional 

file 2: Table S3 and S4 for C. communis and R. acetosa, respectively). Edaphic differentiation 

was strongly supported for C. communis (18.51% and 6.64% of total variance for ISSR and 

AFLP data respectively), whereas lower levels were found for R. acetosa (3.68 and 4.04% for 

ISSR and AFLP data). However, for C. communis, a geographical structuring of populations 

was also strongly supported by the ISSR data (11.01% of total variance). 

Chloroplast markers analysis 

Two cpDNA non-coding regions (psbJ-petA and 3′rps16-5′trnK) of each population 

investigated were sequenced (GenBank accession numbers HM041054-HM041103, 

Additional file 2: Table S5). For C. communis, the aligned concatemers formed linearly 

combining the sequences of psbJ-petA and 3′rps16-5′trnK regions resulted 1492 bp long. The 

number of variable sites was 60, 37 of which were parsimony-informative. For R. acetosa, 

the alignment was 1688 bp long, with 22 variable sites, only 3 of which were parsimony-

informative. However, due to the low sequence variability, haplotype network was not 

informative on R. acetosa, while for C. communis populations some clustering of haplotypes 

was recognized (Figure 5). In particular on C. communis, four out of five metallicolous 



populations (TSK, CZ, TLS, SZS, DGS, and FHS) were included in one single group, 

suggesting a common chloroplastic (i.e. maternal) origin. 

Figure 5 Haplotype network of Commelina communis populations baseden on combined 

sequences of psbJ-petA and 3′rps16-5′trnK regions 

Discussion 

Divergence of metallophytes under heavy metal selection has been characterized by other 

researchers, with a focus on only a few species, notably N. caerulescens [29-33], A. halleri 

[1,16,34-36], Cistus ladanifer [37] and species in the genus Silene [15,18,33,38,39]. To our 

knowledge, the present study is the first report on a comparison of the genetic divergence of 

two sympatric metallophytes. 

Heavy metal tolerance in higher plants is a well-documented example of micro-evolution and 

is a basic necessity for survival in metal-contaminated soils [9,40]. Based on the assumption 

that genotypes with a sufficiently high level of metal tolerance are rare in non-metallicolous 

populations, the founder effect was hypothesized to be a result of strong selection occurred 

during the colonization of contaminated areas by metallophytes [8]. A comparison of heavy 

metal tolerance among populations from metalliferous and non-metalliferous sites would 

provide an estimation of the levels of stress occurred during the colonization of heavy metal-

rich areas. Differences in heavy metal tolerance among populations of metallophytes have 

been reported widely (see [41-44] for examples). In general, populations or ecotypes growing 

in contaminated soils exhibit higher levels of heavy metal tolerance than those from 

uncontaminated sites. 

Tolerance index is a measure that can be used to assess the relative degree of tolerance of 

various plant varieties [45]. In this sense, it is important to test the Cu tolerance of non-

tolerant species (or non-metallicolous populations in our case) as a control. On the other 

hand, in most of the relevant literature [4,45], heavy metal tolerances of non-metallicolous 

species (populations) have been compared to those of metallicolous ones. We therefore 

believe that this kind of comparison is suitable for a relative assessment within our two 

species. Yet, it should be noted that we cannot establish the presence of any baseline 

(constitutive) tolerance above that of other local species. 

In the present study, significant differences in Cu tolerance at the population level were 

detected. Further, differences in Cu tolerance between the two species under investigation 

were also detected. Under the similar level of Cu stress, C. communis exhibited higher Cu 

tolerance than R. acetosa, especially when Cu concentration reached the maximum of 320 

μmol L
−1

, Cu tolerances of the 4 C. communis populations from cupriferous sites were 

significantly higher than those of the 4 R. acetosa populations from the same sites (P < 0.05). 

Interestingly, there was no significant difference in Cu tolerance of non-metallicolous 

populations between the two species, suggesting a possible similar level of selective pressure 

on the ancestral non-tolerant colonizers of metalliferous sites. Although the concentrations of 

Cu in the contaminated sites we sampled were extremely high when compared with those of 

the non-metalliferous sites, distinct differences in Cu concentration were also observed 

among contaminated sites. Therefore, heterogeneity in the metalliferous sites could partly 

explain the difference in Cu tolerance among metallicolous populations. However, 

considering that the Cu concentrations in contaminated sites were generally 100 times greater 



than those in uncontaminated sites, the significant differences in Cu tolerance should be 

mostly attributed to the intense and long-term selection due to heavy metal stresses and to the 

differences in biological traits of the two metallophytes. Because they were sympatric in most 

sampling sites, and so subjected to the similar edaphic conditions. On the other hand, it is 

possible that the heterogeneous nature of the metalliferous sites could also partly explain the 

difference of Cu tolerance between the two species. Because there were some significant 

differences in Cu concentration among the metalliferous sites (Table 1). However, it should 

also be noted that we cannot exclude the potential contribution of maternal environmental 

effects on Cu tolerance of different populations of the two species, since field collected seeds 

were used and in the present study measurements were taken on young seedlings. 

In order to determine more thoroughly whether the different phenotypes observed are linked 

to population histories and are reflected in the genetic diversity of populations, three different 

molecular techniques (AFLP, ISSR, and cpDNA) were employed to analyze the genetic 

structures and genetic relationships among different populations of the two metallophytes. 

Firstly, we found that levels of genetic diversity in the two co-occurring species were 

distinctly different. For R. acetosa, no significant difference in genetic diversity between 

metallicolous and non-metallicolous populations was found, whereas significantly lower 

levels of genetic diversity were detected in metallicolous populations than in non-

metallicolous populations of C. communis. Similarly, Mengoni et al. [15] reported a 

significant decrease in genetic diversity of populations in Silene paradoxa collected from Cu 

deposits. However, contrasting results were obtained in studies on other species. For 

example, the metallicolous and non-metallicolous populations of A. halleri [16], N. 

caerulescens [31] and Onosma echioides [46] maintained similar levels of genetic diversity. 

In a more recent study on N. caerulescens, genetic differentiation linked to heavy metal 

concentrations in soil was detected, and the gene flow observed at some nuclear loci was 

shown to be significantly reduced between plants encountering different levels of heavy 

metal contamination in the soil, suggesting that natural selection limits gene flow between 

metalliferous and non- metalliferous locations [32]. In the present study, the reduction of 

genetic diversity in metallicolous populations of C. communis might be due to a strong 

selective pressure during the colonization of Cu-contaminated sites by this species, coupled 

with a limited gene flow from surrounding non-metallicolous populations (as suggested by 

the relatively high values of pairwise FST). In contrast, the similar levels of genetic diversity 

in metallicolous and non-metallicolous populations of R. acetosa might be due to substantial 

gene flow between populations, as indicated by the low values of pairwise FST. High levels of 

gene flow between metallicolous and non-metallicolous populations of metallophytes have 

previously been reported in some other comparable studies [16,17,31]. In addition, non-

metallicolous populations of R. acetosa showed higher levels of background tolerance to Cu 

(especially for DGSCK) compared to those of C. communis. Considering that metallicolous 

populations are presume to evolve from non-metallicolous populations, this evidence may 

imply that selection for Cu tolerance in C. communis has been greater than in R. acetosa, 

although present-day levels of Cu tolerance in metallicolous populations are lower in R. 

acetosa. 

Concerning that the habitats of metallicolous populations of metallophytes are often 

fragmented and disjunct, it is unlikely that dispersal from a single tolerant ancestral 

population could have produced the wide ranges of geographic distribution today. Hence, the 

hypothesis of polyphyletic origin is proposed and has been subsequently corroborated by 

considerable data [15,17-19,31]. In the case of R. acetosa, metallicolous populations 

branched in separate positions in the NJ dendrograms obtained by AFLP and ISSR data, 



supporting the hypothesis of independent origins from nearby normal populations. 

Furthermore, we also found that there was a direct correlation between genetic differentiation 

and geographical distances between pairs of R. acetosa populations (in particular for ISSR 

markers, Additional file 2: Table S1). For C. communis, we also speculate that the 

metallicolous populations evolved independently, since the site-to-site distances of the 

metallicolous populations were too far to be overcome by natural dispersal. However, 

metallicolous and non-metallicolous populations of C. communis had a distinct branching 

pattern in the NJ dendrograms with AFLP and ISSR data. The non-metallicolous populations 

were included in one group, whilst the metallicolous populations dispersed into single long 

branches. Additionally, components of variance of differentiation between populations of C. 

communis were also higher than those of R. acetosa. These results suggested a low gene flow 

in C. communis not only between metallicolous and non-metallicolous populations, but also 

among metallicolous populations, supporting higher levels (and possibly rates) of genetic 

differentiation. 

The contrasting pattern of genetic differentiation between C. communis and R. acetosa was 

also confirmed by the analysis of chloroplast markers. Though this analysis was performed 

on only one individual per population, results for C. communis were similar with those 

obtained with AFLP, suggesting the presence of one main cluster of metallicolous 

populations. On this basis, it could be reasonable to hypothesize that metallicolous 

populations of C. communis may derive from seeds of one single ancestral population. 

Interestingly, we observed a very low variability of chloroplast sequences of R. acetosa, 

which seemed to be consistent with the idea of a recent spread and low differentiation 

between metallicolous and non-metallicolous populations. 

The contrasting results of the two metallophytes also implied that populations of C. 

communis were more remarkably influenced by heavy metal stress than those of R. acetosa, 

although the genetic structures of the two species were influenced by geographic isolation 

and heavy metal contamination. 

Although ecogeographic isolation has long been viewed as the most important reproductive 

barrier in plants [47], barriers to gene flow were also demonstrated between non-

metallicolous and closely adjacent metallicolous populations of some species such as the 

grass Anthoxanthum odoratum [48]. Additionally, it has been reported that heavy metal 

contamination could have a greater impact on the population structure of the 

hyperaccumulator Sedum alfredii than geographic distance [49]. Based on our results, we can 

therefore speculate that both heavy metals and geographic distance play a significant role in 

determining the population structure of R. acetosa. In contrast, Cu contamination seemed to 

play a more important role in determining the population structure of C. communis than 

geographic distance. 

In previous studies, it has been shown that the genetic divergence and evolutionary processes 

of plants could be affected by various factors, such as edaphic conditions, stress intensity and 

duration, geographic isolation, bottleneck and founder effects, life history, reproductive 

system, and so on [16,29]. Considering that R. acetosa and C. communis populations in the 

present study almost share the same edaphic conditions (mainly Cu toxicity) and geographic 

distribution pattern, the different characteristics of genetic divergence might result largely 

from their different life history and reproductive system. On the one hand, as a perennial, 

unisexual, and dioecious species, R. acetosa may have more opportunities to experience gene 

exchange among individuals and gene flow between populations than the bisexual annual 



plant C. communis. In addition, the winged seeds of R. acetosa are presumed to have higher 

dispersal capacity than those of C. communis, which might enhance the success of 

colonization by R. acetosa [27,28]. 

Conclusions 

Contrasting patterns of genetic divergence in two pseudo-metallophytes that experience 

similar selective pressures provides insight into evolutionary processes under heavy metal 

stress. Our findings indicate that genetic divergence of metallophytes is the result of the 

interactions between biological properties of a species (e.g. seed dispersal, background 

tolerance) and geographical patterns of colonization. Yet, no simplistic conclusions (e.g. the 

presence of founder effects etc.) can be drawn concerning the microevolutionary dynamics of 

all metallophytes. 

Methods 

Sampling sites 

Nine metalliferous sites along the Yangtze River of Eastern China and six nearby non-

metalliferous sites were selected as sampling sites (Table 1 and Figure 1). The sampling was 

conducted during the period from May to June 2007. 

Soil sampling and analysis 

From 3 to 10 soil samples were collected at each sampling site (0–20 cm depth). Soil samples 

were air-dried and passed through a 2-mm sieve. For analysis of total Cu, soil samples were 

digested with 65% HNO3 + concentrated HClO4 (5:1) [50]; for analysis of extractable Cu, soil 

samples were extracted with a diethylenetetraminepentaacetic acid (DTPA) solution [51]. Cu 

concentrations in digested or extracted solutions were then determined by atomic absorption 

spectrometry (Hitachi-Z-5300, Hitachi, Japan). 

Hydroponic experiment 

Six R. acetosa populations and 10 C. communis populations were selected for hydoponic 

experiments to investigate Cu tolerance in each population (Figure 2). A bulk collection of 

mature seeds was made from 5–10 plants sampled in the field, depending on the number of 

seeds on each plant. Seeds were germinated on sand and then 3-week old seedlings were 

transferred to a nutrient solution in a glasshouse equipped with supplementary lighting with 

fluorescent tubes (44 W/m
2
; 14-h photoperiod; 24–26 °C). The composition of the nutrient 

solution was as follows: Ca(NO3)2·4H2O 2.00 mmol L
−1

,KH2PO4 0.10 mmol 

L
−1

,MgSO4·7H2O 0.50 mmol L
−1

,KCl 0.10 mmol L
−1

,K2SO4 0.70 mmol L
−1

,H3BO3 0.01 

mmol L
−1

,MnSO4·H2O 0.50 × 10
−3

 mmol L
−1

,ZnSO4·7H2O 0.50 × 10
−3

 mmol 

L
−1

,CuSO4·5H2O 0.20 × 10
−3

 mmol L
−1

,(NH4)6Mo7O24 0.01 × 10
−3

 mmol L
−1

,Fe-EDTA 0.10 

mmol L
−1

. Hydroponic culture vessels were positioned randomly in the growth chamber and 

rearranged once a week. The nutrient solutions were renewed every 5 days. Before Cu 

treatment, roots of all seedlings were blackened with activated charcoal and rinsed in 

deionized water to remove the excess powder. Seedlings were then treated with a range of Cu 

concentrations (0.25, 40, 160, and 320 μM), supplied as copper sulphate (CuSO4·5H2O). 



Here, 0.25 μM CuSO4 was the control. Because Cu is an essential plant micronutrient and our 

preliminary tests did suggest that 0.25 μM CuSO4 ensured good growth in all populations. 

Each treatment was repeated 6 times. After 25 days of Cu treatment, 6 seedlings were 

harvested from each treatment for Cu tolerance measurement. The presence of new roots 

(uncoated) visible beyond the charcoal-coated roots were recorded. The roots are in direct 

contact with the nutrient solution (or the soil solution in metalliferous soil under field 

conditions) and are therefore the first target for any toxic effect. Hence, the response of root 

growth is generally considered to be a very appropriate measure of the metal tolerance of 

plants. The determination of tolerance indices followed the methods described by Baker & 

Walker [45], and were calculated based on relative root growth (lengths) generated in parallel 

treatment and control units. 

Sampling strategy for populations used in AFLP and ISSR analyses 

For AFLP and ISSR analyses, 12 and 13 populations of R. acetosa and C. communis were 

selected, respectively (Figure 1). For each population, at least 10 individuals were collected 

in the field at irregular intervals of 10–20 m in order to avoid collecting genetically-uniform 

individuals. Each population sampled covered a similar area of about 0.2 ha. All the plant 

materials were dried in silica gel before DNA extraction. 

DNA extraction 

Genomic DNA was extracted using the cetyltrimethylammonium bromide (CTAB) protocol 

of Lodhi et al. [52] with minor modifications. Both the concentration and purity of the 

extracted DNA were checked using UV absorbance spectrophotometry. The resulting DNA 

samples were stored at −70 °C and −20 °C for long-term and short-term storage, respectively. 

AFLP protocol 

AFLP analysis was carried out according to the method proposed by Vos et al. [53] with 

minor modifications. In brief, genomic DNA samples were digested using the enzyme 

combination EcoRI/MseI and synthetic adaptors were ligated to the restriction fragments 

using T4 DNA ligase. A pre-amplification PCR was performed using AFLP primers having a 

single selective nucleotide (EcoRI + A/MseI + C). PCR products of the pre-amplification 

reaction were diluted 30-fold in sterile water then used as template for selective amplification 

using a combination of AFLP primers. In total, six selective primer pair combinations were 

used to generate fingerprints for the two species (Additional file 2: Table S6). Selective PCR 

products were then mixed with 2 μL of formamide loading dye. Mixtures were heated for 5 

min at 94 °C and then quickly cooled on ice. Three μL of each sample were loaded onto 6% 

denaturing polyacrylamide gel and run for 2 h at 50 W. Band patterns were visualized with a 

silver staining method [54]. The developed gel plate was then air-dried overnight and the 

images of AFLP profiles were recorded electronically with a scanner. 

ISSR protocol 

Two DNA samples (one from the metallicolous population and the other from non-

metallicolous population) from each species were selected to screen the ISSR polymorphisms 

by using 93 primers (UBC Set #9 plus all primers from the ISSR Resource Website 

http://www.biosci.ohio-state.edu/~awolfe/ISSR.html) in duplicate PCR reactions. Totally, 8 



and 9 primers which produced highly readable, reproducible and polymorphic band patterns 

were selected for R. acetosa and C. communis, respectively (Additional file 2: Table S7). 

PCR amplification and gel electrophoresis analysis were carried out according to 

Yakimowski & Eckert [55]. 

Chloroplast DNA sequencing 

One individual from each sampled population was randomly selected for sequencing of two 

cpDNA regions (psbJ-petA and 3′rps16-5′trnK). Primers and PCR protocols are as described 

in Shaw et al. [56]. PCR products were purified using High Pure PCR Product Purification 

Kit (Roche Diagnostics, USA) and were sequenced using an ABI 3730 sequencer. Both 

forward and reverse strands of psbJ-petA and 3′rps16-5′trnK cpDNA regions were sequenced 

with a 100% overlap. 

Statistical and bioinformatic analysis 

Data from hydroponic experiments were analyzed by using the statistical package SPSS 16.0 

for Windows (SPSS Inc., USA) and non-parametric tests were used to assess the statistical 

significance of data. 

Band patterns were scored in AFLP and ISSR fingerprint experiments and binary matrices for 

analysis were constructed for all populations of each species (POPGENE Version 1.32 [57]). 

Genetic diversity within populations was evaluated as the percentage of polymorphic loci, 

Nei’s gene diversity [58] and Shannon information index [59], using the software POPGENE 

Version 1.32 [57]. An independent-samples t-test as available in the SPSS statistical package 

was used to detect the significant differences in genetic diversity values between populations 

from cupriferous sites and those from uncontaminated sites. The same software was used to 

assess the correlation between the values of genetic diversity of each population and the 

associated Cu concentrations in soils. The partitioning of the genetic variance within and 

among populations and groups of populations was obtained with an analysis of molecular 

variance (AMOVA; [60]) conducted by Arlequin 3.5.1 [61]. For each species, two alternative 

groupings of populations were examined: (i) a geographically based arrangement of 

populations with sampling sites located in different provinces of China; and (ii) a strictly 

edaphic arrangement with Cu-contaminated sites vs. uncontaminated sites. The analyses of 

three hierarchical levels were conducted in order to partition the genetic variance into 

components attributable to different hierarchical levels, i.e. between groups, among 

populations, and within populations. The significance levels of variance components were 

calculated by 1000 permutations in each analysis. Dendrograms of the populations of the two 

metallophytes were constructed from Slatkin’s linearized pairwise FST calculated by Arlequin 

3.5.1 [61], using the Neighbor-Joining method implemented in the program MEGA Version 

4.1 [62]. Significance levels of pairwise FST were computed after 1000 random permutations 

Slatkin’s linearized pairwise FST values were compared with geographical distances between 

populations according to the Mantel’s test [63] with the implementation present by Arlequin 

3.5.1 [61]; normalized Mantel Z-statistics were calculated after 1000 permutations. 

Chloroplast DNA sequences were concatenated and then aligned using ClustalW algorithm 

resident within BioEdit (version 7.0.4.1; [64]). Haplotype networks were obtained on aligned 

sequences by NETWORK software ver. 4.6 (Fluxus Technologies Ltd.) by using the Reduced 

Median method. 
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