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Abstract. It is known that the iterated Steiner symmetrals of any given
compact sets converge to a ball for most sequences of directions. However,

examples show that Steiner symmetrization along a sequence of directions

whose differences are square summable does not generally converge. Here we
show that such sequences converge in shape. The limit need not be an ellipsoid

or even a convex set.

We also consider uniformly distributed sequences of directions, and extend
a recent result of Klain on Steiner symmetrization along sequences chosen from

a finite set of directions.

1. Introduction

Steiner symmetrization is often used to identify the ball as the solution to geo-
metric optimization problems. Starting from any given body, one can find sequences
of iterated Steiner symmetrals that converge to the centered ball of the same vol-
ume as the initial body. If the objective functional improves along the sequence,
the ball must be optimal.

Most constructions of convergent sequences of Steiner symmetrizations rely on
auxiliary geometric functionals that decrease monotonically along the sequence. For
example, the perimeter and the moment of inertia of a convex body decrease strictly
under Steiner symmetrization unless the body is already reflection symmetric [15, 6],
but for general compact sets, there are additional equality cases. The (essential)
perimeter of a compact set decreases strictly under Steiner symmetrization in most,
but not necessarily all directions u ∈ Sn−1, unless the set is a ball [7]. Steiner
symmetrization in an arbitrary direction strictly decreases the moment of inertia,
unless the set is already reflection symmetric up to a set of measure zero.

Recently, several authors have studied how a sequence of Steiner symmetrizations
can fail to converge to the ball. This may happen, even if the sequence of directions
is dense in Sn−1. Steiner symmetrizations of a convex body along any dense se-
quence of directions can be made to converge or diverge just by re-ordering [4], and
any given sequence of Steiner symmetrizations (convergent or not) can be realized
as a subsequence of a non-convergent sequence [5, Proposition 5.2].

In contrast, a sequence of Steiner symmetrizations that uses only finitely many
distinct directions always converges [11]. The limit may be symmetric under all
rotations or under a non-trivial subgroup, depending on the algebraic properties of
those directions that appear infinitely often.

A number of authors have studied Steiner symmetrizations along random se-
quences of directions. If the directions are chosen independently, uniformly at
random on the unit sphere, then the corresponding sequence of Steiner symme-
trals converges almost surely to the ball simultaneously for all choices of the initial
set [14, 16, 17]. Others have investigated the rate of convergence of random and
non-random sequences [3, 5, 8, 12].
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We will address several questions that were raised in these recent papers. The
examples of non-convergence presented there use sequences of Steiner symmetriza-
tions along directions where the differences between successive angles are square
summable. Our main result, Theorem 2.2, says that such sequences will converge if
the Steiner symmetrizations are followed by suitable rotations. Convergence occurs
both in Hausdorff distance and in symmetric difference. The limit is typically not
an ellipsoid (or a convex set) unless the sequence starts from an ellipsoid (or a con-
vex set, respectively). Some relevant examples and the statement of the theorem
are contained in Section 2.

The proof of the theorem poses two technical challenges: to show convergence
of a sequence of symmetrals to an unknown limit, rather than a ball; and to show
convergence in Hausdorff distance for an arbitrary compact initial set. This is more
delicate than convergence in symmetric difference, because Steiner symmetrization
is not continuous and Lebesgue measure is only upper semicontinuous on compact
sets (see for instance [9, p. 170]).

In Section 3, we collect the tools to address these challenges. Lemmas 3.1 and 3.2
relate convergence of a sequence of compact sets in Hausdorff distance to con-
vergence of their parallel sets in symmetric difference. For sequences of Steiner
symmetrals, convergence in Hausdorff distance implies convergence in symmetric
difference; in particular, the limit has the same measure as the initial set. To ad-
dress the geometric problem of identifying the limits of convergent subsequences,
we use the functionals

Ip(K) = λn({x : d(x,K) ≤ δ, |x− p| ≥ r}) ,

where K is a compact set, p a point in Rn, and r, δ ≥ 0. We show that Ip(K)
decreases under simultaneous Steiner symmetrization of K and p, with equality for
all δ, r > 0 only if K and p agree with their Steiner symmetrals up to a common
translation, see (3.4) and Lemma 3.3. By allowing p 6= o, we obtain information
about the intersections of the limiting shape with a family of non-centered balls
and half-spaces. Lemma 3.4 implies that these intersections uniquely determine
the shape.

In Section 4, we combine the lemmas to prove Theorem 2.2. It will be apparent
from the proof that similar results should hold for other classical rearrangements.
Lemmas 3.2 and 3.3 remain valid for every rearrangement that satisfies (2.1) and
(2.2), including the entire family of cap symmetrizations studied by van Schaftin-
gen [16], in particular polarization, spherical symmetrization, and the Schwarz
rounding process.

Lemmas 3.2 and 3.3 are also useful for establishing convergence of Steiner sym-
metrals in Hausdorff distance in other situations, without the customary convexity
assumption on the initial set. In the remaining two sections, we illustrate this with
two more examples and pose some open questions.

In Section 5, we consider Steiner symmetrization in the plane along non-random
sequences of directions that are uniformly distributed (in the sense of Weyl) on S1,
a property more restrictive than being dense. Theorem 5.1 shows that a sequence
of Steiner symmetrals along a Kronecker sequence of direction always converges to
a ball. In the opposite direction, we give examples where convergence to a ball fails
for certain uniformly distributed sequences.

Finally, Section 6 is dedicated to a recent result of Klain [11] on Steiner sym-
metrization along sequences chosen from a finite set of directions. Klain proves that
when K is a convex body the sequence of Steiner symmetrals always converges. We
extend this result to compact sets.
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2. Main Results

We start with some definitions. Let o denote the origin in Rn. For p ∈ Rn and
r > 0, let Br,p denote the closed ball of radius r centered at p. If p = o, we drop
the second subscript and write simply Br. We write λk for the Lebesgue measure
on k-dimensional subspaces of Rn. Directions in Rn are identified with unit vectors
u ∈ Sn−1, and u⊥ refers to the (n− 1)-dimensional subspace orthogonal to u.

Let K and L be compact sets in Rn. For δ > 0, we denote by Kδ = K +Bδ the
outer parallel set of K. The distance between compact sets will be measured in the
Hausdorff metric, defined by

dH(K,L) = inf
{
δ > 0 | K ⊂ Lδ and L ⊂ Kδ

}
.

Another measure of the distance between K and L is their symmetric difference
distance defined as λn(K4L). Note that this distance function does not distinguish
between sets whose symmetric difference has measure zero. We will say that a
sequence of compact sets (Km) converges in symmetric difference to a compact set
L, if

lim
m→∞

λn(Km4L) = 0 .

Given a direction u ∈ Sn−1, let SuK denote the Steiner symmetral of K along
u. The mapping Su that sends each set to its symmetral is called Steiner sym-
metrization. We use here the variant that maps compact sets to compact sets,
which is defined as follows. Denote by `y the line parallel to u through the point
y ∈ u⊥. If `y ∩ K is non-empty, then `y ∩ SuK is the closed line segment of the
same one-dimensional measure centered at y; if the measure is zero, the line seg-
ment degenerates to a single point. Otherwise, `y intersects neither K nor SuK.
Clearly, SuK is symmetric under reflection at u⊥.

By Cavalieri’s principle, the symmetral SuK has the same Lebesgue measure
as the original set K. It is well known that Steiner symmetrization preserves
convexity, compactness, and connectedness, and that it respects inclusions and
reduces perimeter. For more information about Steiner symmetrization, we refer
the reader to the book of Gruber [9, Chapter 9].

We have that Su(K ∩L) ⊂ SuK ∩SuL, since Su respects inclusions. By writing
λn(SuK \ SuL) as λn(SuK)− λn(SuK ∩ SuL), this inclusion relation implies

(2.1) λn(SuK \ SuL) ≤ λn(K \ L),

an inequality that we repeatedly use. It also implies that

λn(SuK4SuL) ≤ λn(K4L),

which means that Steiner symmetrization is continuous in the symmetric difference
metric on the space of compact sets modulo sets of measure zero.

Moreover SuK + SuL ⊂ Su (K + L), see [9, Proposition 9.1(iii)]. This in partic-
ular implies that for δ > 0

(2.2) (SuK)δ ⊂ SuKδ.

The following observation motivates our main result.

Example 2.1 (Non-convergence). Let (αm) be a sequence in (0, π/2) with

(2.3)

∞∑
m=1

αm =∞ ,

∞∑
m=1

α2
m <∞ ,

and set γ =
∏∞
m=1 cosαm. For each positive integer m, let βm =

∑m
k=1 αk and

um = (cosβm, sinβm).
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Note that γ ∈ (0, 1). Indeed (2.3) implies that αm ∈ (0, 1) for each m larger than
a suitable ν. We have cosαm ≥ 1−α2

m/2, and we also have ln(1−x) ≥ −(1+o(1))x
when x ∈ (0, 1/2). Thus

lim
n→∞

n∑
m=1

ln cosαm ≥
ν∑

m=1

ln cosαm − (1 + o(1)) lim
n→∞

n∑
m=ν+1

α2
m

2
> −∞.

This inequality implies γ > 0 because γ = limn→∞ e
∑n

m=1 ln cosαm .
Let K be a convex body that has area smaller than a disc of diameter γ and

contains a vertical line segment ` of length 1. Apply the sequence of Steiner sym-
metrizations Sum to K and ` to obtain a sequence of convex bodies Km and line
segments `m. Each symmetrization Sum projects the previous line segment `m−1

onto u⊥m, thereby multiplying its length by cosαm. Since βm diverges, the segments
`m spin in circles forever while their length decreases monotonically to γ.

For each m, the diameter of Km exceeds γ, because Km ⊃ `m. If the sequence
converges, its limit must contain a disc of diameter γ. On the other hand its area
equals that of K, a contradiction. �

It turns out that the sequences from Example 2.1 converge in shape, in the
sense that there exist isometries Im such that (ImSum

. . .Su1
K) converges for each

compact set K. The sequence (Im) depends only on (um).

Theorem 2.2. Let (um) be a sequence in Sn−1 with um−1 · um = cosαm, where
(αm) is a sequence in (0, π/2) that satisfies

∑∞
m=1 α

2
m <∞. There exists a sequence

of rotations (Rm) such that for every non-empty compact set K ⊂ Rn, the rotated
symmetrals

(2.4) Km = RmSum
. . .Su1

K

converge in Hausdorff distance and in symmetric difference to a compact set L.

What can we say about the limit of the sequence (Km) in (2.4)? Since Steiner
symmetrization transforms ellipsoids into ellipsoids, one may wonder whether the
limit is always an ellipsoid [4, 11]. The following examples show that this is not the
case.

Example 2.3 (The limit need not be an ellipse). Let the sequence (um) and
γ =

∏∞
m=1 cosαm be as in Example 2.1. Observe that dropping, if necessary, a few

initial terms we can make
∑∞
m=1 α

2
m arbitrarily small and hence γ arbitrarily close

to 1. In particular we may suppose γ > 2/π. Let K be the convex envelope of the
line segment ` from Example 2.1 and a centered ball Br for some r > 0. If the
sequence (2.4) converges, its limit contains both Br and a line segment of length γ.
Any ellipse that contains these sets has area at least πγr/2. On the other hand its

area agrees with the area of K, which is bounded from above by r/
√

1− 4r2, the
area of the rhombus circumscribed to the circle centered at o whose longer diagonal
is a segment of length 1. Since this is smaller than πγr/2 if r is small enough, by
our choice of γ, the limit cannot be an ellipse. �

Example 2.4 (The limit can be non-convex). Take the sequence (um) as in Ex-
ample 2.1, and let K be the union of a line segment ` and a ball Br. The limit
of the sequence (2.4) contains Br and a line segment of length γ. Any convex set
that contains these sets has area at least γr/2. Since the area of K is πr2, the limit
cannot be a convex set if πr < γ/2. �
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3. Some lemmas

The first lemma concerns the measure of parallel sets.

Lemma 3.1. If K is a compact set, then λn(Kδ) is continuous in δ > 0, and

lim
δ→0

λn(Kδ) = λn(K) .

Proof. Since the parallel sets are nested compact sets, and⋂
ρ>δ

Kρ = Kδ ,
⋂
ρ>0

Kρ = K ,

their measure is continuous from the right and converges to λn(K) as δ tends to 0.
Similarly, since ⋃

ρ<δ

Kρ = {x : d(x,K) < δ} =: K̃δ ,

we have limρ→δ− λn(Kρ) = λn(K̃δ). To conclude the proof it thus suffices to prove

that K̃δ differs from Kδ by a set of measure zero.
Let y ∈ Kδ. By definition of Kδ, there exists a point p ∈ K with y ∈ Bδ,p.

Since K̃δ contains the open ball of radius δ about p, its (lower) Lebesgue density
at y is at least 1/2. Therefore, every point of Kδ is a point of positive density for

K̃δ. Since the Lebesgue differentiation theorem implies that almost every point in

Rn \ K̃δ is a point of density zero for K̃δ, we have λn(Kδ \ K̃δ) = 0. �

The second lemma relates convergence in the Hausdorff metric to convergence
in symmetric difference.

Lemma 3.2. Let L and Km, m ≥ 1, be non-empty compact sets.

(i) The sequence (Km) converges in Hausdorff distance to L if and only if

lim
m→∞

λn((Km)δ4Lδ) = 0

for each δ > 0.
(ii) If (Km) converges in Hausdorff distance to L and each Km is obtained from

a compact set K via finitely many Steiner symmetrizations and Euclidean
isometries, then

lim
m→∞

λn(Km4L) = 0 .

In particular, λn(L) = λn(K).

Proof. For Claim (i), assume that Km converges to L in Hausdorff distance. Fix
δ > 0, and let ε > 0 be given. Since L is compact, λn(Lρ) is continuous in ρ > 0.
Choose ρ ∈ (0, δ) so small that λn(Lδ+ρ)−λn(Lδ) < ε and λn(Lδ)−λn(Lδ−ρ) < ε,
and let m be so large that dH(Km, L) < ρ. Then dH((Km)δ, Lδ) < ρ for each δ > 0.
It follows that

λn ((Km)δ \ Lδ) ≤ λn(Lδ+ρ \ Lδ) < ε

since (Km)δ ⊂ Lδ+ρ, and

λn (Lδ \ (Km)δ) ≤ λn (Lδ \ Lδ−ρ) < ε

since Lδ−ρ ⊂ (Km)δ. Combining the two inequalities, we obtain that

λn((Km)δ4Lδ)) < ε

for m sufficiently large. Since ε > 0 was arbitrary, convergence in symmetric
difference follows.

To see the converse implication, assume that dH(Km, L) ≥ 2ρ > 0. If Km\L2ρ 6=
∅ then (Km)ρ \ Lρ contains Bρ,p, where p is any point in Km \ L2ρ. Otherwise,
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Lρ \ (Km)ρ contains Bρ,p, where p is any point in L \ (Km)2ρ. In either case,
λn((Km)ρ4Lρ) ≥ λn(Bρ).

For Claim (ii), assume that (Km) converges to L in Hausdorff distance. Given
ε > 0, choose ρ > 0 so small that λn(Lρ)− λn(L) < ε, and choose m so large that
dH(Km, L) < ρ. Then Km ⊂ Lρ, and therefore

λn (Km \ L) ≤ λn(Lρ \ L) < ε .

For the complementary inequality, construct (Kρ)m by applying the same sequence
of symmetrizations and isometries to the parallel set Kρ that was used to produce
Km. Then, by (2.2) and since symmetrization does not change volume, we have

λn (L \Km) ≤ λn ((Km)ρ \Km)

≤ λn ((Kρ)m)− λn (Km)

= λn (Kρ)− λn (K)

< ε .

Combining the two preceding inequalities, we conclude as in the proof of the first
claim that λn(Km4L) converges to zero. �

The second part of Lemma 3.2 could have been proved by using (2.2) and a result
of Beer [2, Theorem 1], who also, in [1, Lemma 4], proved the “only if” implication
of the first part of the lemma.

The next lemma provides an equality statement for (2.1) in the case where one
set runs through the family of parallel sets Kδ and the other set is a ball Br,p.

Lemma 3.3. Let u ∈ Sn−1, and let K be a non-empty compact set. If there exists
a point p ∈ u⊥ such that

(3.1) λn(SuKδ \Br,p) = λn(Kδ \Br,p)

for all δ, r > 0, then SuK = K.

Proof. Suppose SuK 6= K, and fix a point q ∈ K \ SuK. Let y ∈ u⊥ be such
that the line `y parallel to u and passing through y contains q. By definition, SuK
intersects `y in a centered line segment of the same one-dimensional measure as
K ∩ `y. Since p ∈ u⊥, we can choose r < |p− q| such that Br,p contains SuK ∩ `y
in its interior.

We argue that the boundary of Br,p separates a neighborhood of q from SuK∩`z
for z close to y. For δ > 0, consider the nested compact sets

A(δ) = SuKδ ∩ (`y)δ.

By the compactness of K, and because the sets Kδ form a monotonically decreas-
ing sequence with respect to inclusion, the one-dimensional measure of each cross
section Kδ∩`z converges monotonically to the measure of K∩`z as δ tends to zero,
and hence

⋂
δ>0 SuKδ = SuK. It follows that⋂

δ>0

A(δ) =

(⋂
δ>0

SuKδ

)
∩

(⋂
δ>0

(`y)δ

)
= SuK ∩ `y .

Since SuK ∩ `y does not meet {x : |x− p| ≥ r}, by compactness there exists a set
A(δ) that does not meet {x : |x − p| ≥ r} either. This means that the interior of
Br,p contains SuKδ ∩ (`y)δ for some δ > 0. By choosing δ > 0 small enough, we
can further assume that Br,p does not intersect Bδ,q.

By construction,

(3.2) λn
((
SuKδ ∩ (`y)δ

)
\ SuBr,p

)
< λn

((
Kδ ∩ (`y)δ

)
\Br,p

)
,
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because the set on the left-hand side is empty, while the one on the right-hand side
contains Bδ,q. Let C be the closure of Rn \ (`y)δ. Since SuKδ ∩ C = Su(Kδ ∩ C),
it follows from (2.1) that

(3.3) λn((SuKδ ∩ C) \ SuBr,p) ≤ λn((Kδ ∩ C) \Br,p) .
Adding (3.2) and (3.3) and using that (`y)δ and C form an almost disjoint partition
of Rn, we obtain that

λn(SuKδ \ SuBr,p) < λn(Kδ \Br,p) ,
negating (3.1). �

For the proof of the main result, we will combine (2.1) with (2.2) to obtain

(3.4) λn((SuK)δ \ SuBr,p) ≤ λn(Kδ \Br,p)

for each p ∈ Rn and all δ, r > 0. Lemma 3.3 implies that for every given p ∈ u⊥,
the inequality in (3.4) is strict for some δ, r > 0 unless SuK = K.

The last lemma will be used to identify the limit of (2.4).

Lemma 3.4. Let H1, H2 be compact sets in Rn, and let u ∈ Sn−1. Assume that
SuHj = Hj for j = 1, 2, and that

(3.5) λn(H1 ∩ {x · p > t}) = λn(H2 ∩ {x · p > t})
for all non-zero p ∈ u⊥ and all t ∈ R. Then H1 and H2 agree up to a set of
n-dimensional Lebesgue measure zero.

Proof. Denote by `y the line parallel to u through y ∈ u⊥, and consider on u⊥ the
measurable functions fj(y) = λ1(`y∩Hj) for j = 1, 2. By assumption, the difference
f1 − f2 integrates to zero over every half-space {y · p > t} ⊂ u⊥. It follows from a
standard argument that its integral over almost every (n−2)-dimensional subspace
{y · p = t} ⊂ u⊥ vanishes as well [18]. In other words, the (n − 2)-dimensional
Radon transform of f1−f2 is zero almost everywhere, and therefore f1 = f2 almost
everywhere on u⊥ [10, p.28]. Since SuHj = Hj , the sets are uniquely determined
by the functions fj , and we conclude that H1 and H2 agree up to a set of measure
zero. �

4. Proof of Theorem 2.2

We begin with some geometric considerations. Given u ∈ Sn−1, we want to com-
pose a Steiner symmetrization Su with a rotation R′ so that the result is symmetric
at the hyperplane e⊥1 . Note that the commutation rule

(4.1) RSu = SRuR
holds for every rotation R ∈ O(n) and every u ∈ Sn−1.

Let u ∈ Sn−1, with u·e1 = cosα. Replacing u with −u, if necessary, we may take
α ∈ (0, π/2). The Steiner symmetrization Su projects subsets of e⊥1 linearly onto
u⊥. If R′ is the rotation that maps u to e1 and fixes u⊥∩ e⊥1 , then the composition
T = R′Su defines a linear transformation on e⊥1 that satisfies

(4.2) |T x− x| ≤ (1− cosα)|x| , |x| ≥ |T x| ≥ |x| cosα

for all x ∈ e⊥1 . More precisely, the restriction of T to e⊥1 is equivalent to a diagonal
matrix with eigenvalues cosα (simple) and 1 (of multiplicity n− 2).

Given a non-empty compact set K, let (Sum) be a sequence of Steiner sym-
metrizations as described in the statement of the theorem, and let (Km) be the
sequence of rotated symmetrals defined in the statement of the theorem. We con-
struct the rotation Rm in (2.4) as a composition Rm = R′m . . .R′1, where R′m is
recursively defined as the rotation that sends Rm−1um to e1 and fixes the subspace
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orthogonal to these two vectors, and R′0 = I. Note that R′m is a rotation by αm.
By the commutation rule (4.1),

Rm+1Sum+1
= R′m+1SRmum+1

Rm ,
which gives for (Km) the recursion relation

Km+1 = R′m+1SRmum+1Km .

By Blaschke’s selection principle, (Km) has subsequences that converge in Haus-
dorff distance. Let L1 and L2 be limits of such subsequences. We want to prove
that L1 = L2.

We will first show that

(4.3) λn((L1)δ \Br,q) = λn((L2)δ \Br,q)
for all q ∈ e⊥1 and all r, δ ≥ 0. By the assumption that (αm) is square summable,
γ =

∏∞
m=1 cosαm > 0 (see Example 2.1 for a proof). Let T ′m be the linear transfor-

mation defined byR′mSRm−1um on e⊥1 and consider the composition Tm = T ′m . . . T ′1 .
By (4.2), the sequence (Tm) converges to a linear transformation T that satisfies
|T x| ≥ γ|x| for all x ∈ e⊥1 . In particular, T is invertible on e⊥1 . For each m ≥ 1, let
pm = TmT −1q. Then pm = T ′mpm−1, pm converges to q and

R′mSRm−1um
Br,pm−1

= Br,pm .

Inequalities (2.1) and (2.2) imply that the sequence λn
(
(Km)δ \ Br,pm

)
is mono-

tonically decreasing,

λn((Km)δ \Br,pm) ≥ λn(SRmum+1
(Km)δ \ SRmum+1

Br,pm)

≥ λn((SRmum+1
Km)δ \ SRmum+1

Br,pm)

= λn((Km+1)δ \Br,pm+1),

hence convergent. In the last line, we have used the rotational invariance of
Lebesgue measure and the recursion formula for Km. Passing to the limit along
the subsequences converging to L1 and L2 and using Lemma 3.2 yields (4.3).

Since half-spaces can be written as increasing unions of balls, we can take a
monotone limit in (4.3) to obtain that (3.5) holds, with Hi = (Li)δ, for all q ∈ e⊥1
and all t ∈ R. Lemma 3.4 implies that the parallel sets (L1)δ and (L2)δ agree up to
a set of measure zero. To complete the proof, suppose that L1 6= L2. Then there
exists a point x that lies in one of the two sets but not the other, say x ∈ L1 \ L2.
If we choose δ = 1

2dist(x, L2), then (L1)δ ⊃ Bδ,x while (L2)δ ∩ Bδ,x = ∅. This is
impossible since the parallel sets agree up to a set of measure zero, and we conclude
that L1 = L2. �

5. Uniformly distributed directions in the plane

A sequence (um) in S1 is called uniformly distributed in the sense of Weyl, if the
fraction of terms in the initial segment (um)m≤N that fall into any given arc I in
S1 converges to λ1(I)/(2π) as N tends to infinity, where λ1(I) is the length of I.
A classical example is the Kronecker sequence um = (cosmα, sinmα) for m ≥ 1,
which is uniformly distributed if α is not a rational multiple of π [13, Example 2.1].

Theorem 5.1 (The Kronecker sequence). Let um = (cosmα, sinmα) for m ≥ 1,
and assume that α is not a rational multiple of π. Let K ⊂ R2 be a non-empty
compact set. Then the symmetrals Sum

. . .Su1
K converge in Hausdorff distance

and in symmetric difference to the closed centered ball K∗ equimeasurable with K.

Proof. Let R be the rotation that sends u = (cosα, sinα) to e1, and let S = Se1
be the Steiner symmetrization in the direction of e1. It suffices to show that

Km = RmSum . . .Su1K
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converges to K∗.
By the commutation relation (4.1), Km = (SR)mK. Let (Kjm) be a subsequence

that converges in Hausdorff distance to a compact set L. By Lemma 3.2, the
sequence

(
(Kjm)δ

)
converges in symmetric difference to Lδ for each δ > 0. We

estimate

(5.1)

λ2(Lδ \Br) = λ2(RLδ \Br)
≥ λ2(SRLδ \ SBr)
= lim
m→∞

λ2(SR(Kjm)δ \Br)

≥ inf
m
λ2((Kjm+1)δ \Br) .

The inequality in the second line follows from (2.1). The third line uses the con-
tinuity of the Steiner symmetrization with respect to the symmetric difference
metric and that SBr = Br. The fourth line follows from (2.2) and the identity
SRKjm = Kjm+1.

On the other hand, the sequence λ2((Km)δ \ Br) is monotone decreasing, for
each δ, r > 0, by (2.2) and (2.1), hence convergent along the entire sequence, and
by Lemma 3.2, its limit is given by λ2 (Lδ \Br). This means that all inequalities
in (5.1) hold with equality and, in particular,

λ2(RLδ \Br) = λ2(SRLδ \ SBr).

By construction, L is symmetric under reflection at e⊥1 . By Lemma 3.3 and
the fact that RLδ = (RL)δ, we have SRL = RL, i.e., L is also symmetric under
reflection at u⊥. Since α is incommensurable with π, these two reflections generate
a dense subgroup of rotations, and we conclude that L = K∗. Since the subsequence
was arbitrary, the entire sequence (Km) converges to K∗ in Hausdorff distance and
in symmetric difference. �

One may wonder if every uniformly distributed sequence of directions gives rise
to a convergent sequence of Steiner symmetrizations. Since a sequence of directions
chosen independently and uniformly at random from S1 is almost surely uniformly
distributed [13, Theorem 3.2.2] and the corresponding Steiner symmetrizations al-
most surely converge to the ball [14, 16, 17], most uniformly distributed sequences
of directions produce convergent sequence of Steiner symmetrizations.

Remarkably, there are exceptions. In the notation of Example 2.1, let (αm) be
a nonincreasing sequence of positive numbers and set βm =

∑m
k=1 αk for m ≥ 1. If

lim
m→∞

αm = 0 , lim
m→∞

mαm =∞ , and

∞∑
m=1

α2
m <∞ ,

then (um) = (cosβm, sinβm) is uniformly distributed on S1 (see [13, Theorem 2.5]).
This includes in particular sequences of the form αm = ϑm−σ with σ ∈ (1/2, 1)
and ϑ > 0. But the corresponding sequence of Steiner symmetrals of the compact
set in Example 2.1 does not converge.

Uniformly distributed sequences play an important role in quasi-Monte Carlo
methods, because they share many properties of random sequences. In some
cases, they provide even better approximations to integrals than typical random
sequences. The quality of the approximation defined by a sequence (um) in S1 is
determined by its discrepancy

D(N) = sup
I⊂S1

∣∣∣∣#{m ≤ N : um ∈ I}
N

− λ1(I)

2π

∣∣∣∣ ,
which describes how much the fraction of the initial segment (um)m≤N that fall
into any given arc I in S1 differs from λ1(I)/(2π). The best approximations are
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provided by sequences of minimal discrepancy, that is by sequences for which D(N)
is proportional to (logN)/N . Note that the discrepancy of a Kronecker sequence
depends on the diophantine properties of α/π, and that the discrepancy of the
sequence (cosβn, sinβn) which corresponds to αn = ϑn−σ, with σ ∈ (1/2, 1) and
ϑ > 0, has asymptotic behavior n−σ [13].

Open Problem 5.2. If (um) is uniformly distributed in S1 and of minimal dis-
crepancy, do the Steiner symmetrals Sum

. . .Su1
K converge to K∗ for each compact

set K?

6. Steiner symmetrization along a finite set of directions

Our final example concerns sequences of iterated Steiner symmetrization that
use finitely many directions. Klain proved the elegant result that when the initial
set is a convex body then such sequences always converge [11, Theorem 5.1]. The
techniques developed in this paper allow us to extend his result to compact sets.

Theorem 6.1 (Klain’s Theorem holds for compact sets). Let (um) be a sequence of
vectors chosen from a finite set F = {v1, . . . , vk} ⊂ Sn−1. Then, for every compact
set K ⊂ Rn, the symmetrals

Km = Sum . . .Su1K

converge in Hausdorff distance and in symmetric difference to a compact set L.
Furthermore, L is symmetric under reflection in each of the directions v ∈ F that
appear in the sequence infinitely often.

Proof. We follow Klain’s argument. Dropping an initial segment (Km)m≤N of the
sequence and possibly substituting F with one of its subsets, we may assume,
without loss of generality, that each direction in F appears infinitely often in the
sequence (um). The main idea is to construct a subsequence along which the
directions vi ∈ F appear in a particular order. With each index m, we associate
a permutation πm of the numbers 1, . . . , k that indicates the order in which the
directions v1, . . . , vk appear for the first time among the directions ui with i ≥
m. Since there are only finitely many permutations, we can pick a subsequence
(ujm) such that the permutation πjm is the same for each m. By re-labeling the
directions, we may assume that this permutation is the identity. Passing to a
further subsequence, we may assume that every direction in F appears in each
segment ujm , ujm+1, . . . , ujm+1

.
By the Blaschke selection principle, there is a subsequence (again denoted by

(Kjm)) that converges in Hausdorff distance to some compact set L. We note for
later use that for each δ > 0, the entire sequence

(
λn((Km)δ)

)
is decreasing by

(2.2), hence convergent. By Lemma 3.2, the limit is given by

(6.1) inf
m
λn((Km)δ) = lim

m→∞
λn((Kjm)δ) = λn(Lδ) .

We show by induction that SviL = L for i = 1, . . . , k. For i = 1 observe that
ujm = v1. Therefore (Kjm) is symmetric with respect to v⊥1 and the same is true for
L. Suppose we already know that L is invariant under Steiner symmetrization in
the directions v1, . . . vi−1. If j′m is the index where vi appears for the first time after
jm, then the inductive hypothesis implies that Suj′m−1

. . .Sujm+1
L = L. By (2.1)

and (2.2) we have, for each δ > 0,

(6.2)

λn((Kjm)δ \ Lδ) ≥ λn(Suj′m−1
. . .Sujm+1

(Kjm)δ \ Lδ)
≥ λn((Suj′m−1

. . .Sujm+1
Kjm)δ \ Lδ)

= λn((Kj′m−1)δ \ Lδ) .
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Since ((Kjm)δ) converges to Lδ in symmetric difference, the left hand side of the
inequality converges to zero. Therefore, the right hand side converges to zero, and
by (6.1), the sequence (Kj′m−1)δ likewise converges to Lδ in symmetric difference.
We continue the argument as in (5.1) and estimate

(6.3)

λn(Lδ \Br) ≥ λn(SviLδ \ SviBr)
= lim
m→∞

λn(Svi(Kj′m−1)δ \Br)

≥ inf
m
λn((Kj′m

)δ \Br) .

The inequality in the first line follows from (2.1). In the second line we have used the
convergence of (Kj′m−1)δ in symmetric difference and the continuity of the Steiner
symmetrization with respect to the symmetric difference distance. The inequality
in the third line is a consequence of (2.2) and of the equality SviKj′m−1 = Kj′m

.

Since
(
λn((Km)δ \ Br)

)
is a decreasing sequence by (2.1), and since it contains

the subsequence
(
λn((Kjm)δ \ Br)

)
which converges to λn(Lδ \ Br), the first and

last term in (6.3) are equal. In particular, the first line holds with equality for each
δ > 0. By Lemma 3.3 this implies L = SviL, which concludes the inductive step.

It remains to prove that the entire sequence converges. Since L is invariant under
Steiner symmetrization in each of the directions v1, . . . , vk in F , we have, by the
same reasoning as in (6.2) and in the lines following it, that

λn((Kjm)δ \ Lδ) ≥ λn((Kj)δ \ Lδ)
for every j ≥ jm. We conclude that (Km)δ converges to Lδ in symmetric difference
along the entire sequence, for each δ ≥ 0. By Lemma 3.2, (Km) converges to L
both in Hausdorff distance and in symmetric difference. �

Open Problem 6.2. Do iterated Steiner symmetrals Sum . . .Su1K always converge
in shape, without any assumptions on the sequence of directions?

Open Problem 6.3. Assume that a sequence of directions (um) is such that
(Sum

. . .Su1
C) converges to C∗ for each convex body C. Is it true that (Sum

. . .Su1
K)

converges to K∗ for each compact set K?
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