
10 April 2024

High-altitude exposure of three weeks duration increases lung diffusing capacity in humans / P.
Agostoni;E. R.  Swenson;M.  Bussotti;M.  Revera;P.  Meriggi;A.  Faini;C.  Lombardi;G.  Bilo;A.  Giuliano;D.
Bonacina;P. A.  Modesti;G.  Mancia;G.  Parati. - In: JOURNAL OF APPLIED PHYSIOLOGY. - ISSN 8750-7587. -
STAMPA. - 110:(2011), pp. 1564-1571. [10.1152/japplphysiol.01167.2010]

Original Citation:

High-altitude exposure of three weeks duration increases lung
diffusing capacity in humans

Published version:
10.1152/japplphysiol.01167.2010

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/777206 since: 2016-08-19T09:39:54Z

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

DOI:



doi:10.1152/japplphysiol.01167.2010
 110:1564-1571, 2011. First published 24 March 2011;J Appl Physiol

Daniele Bonacina, Pietro A. Modesti, Giuseppe Mancia and Gianfranco Parati
Meriggi, Andrea Faini, Carolina Lombardi, Grzegorz Bilo, Andrea Giuliano, 
Piergiuseppe Agostoni, Erik R. Swenson, Maurizio Bussotti, Miriam Revera, Paolo
increases lung diffusing capacity in humans
High-altitude exposure of three weeks duration

You might find this additional info useful...

51 articles, 35 of which can be accessed free at:This article cites 
 http://jap.physiology.org/content/110/6/1564.full.html#ref-list-1

including high resolution figures, can be found at:Updated information and services 
 http://jap.physiology.org/content/110/6/1564.full.html

 can be found at:Journal of Applied Physiologyabout Additional material and information 
http://www.the-aps.org/publications/jappl

This infomation is current as of November 23, 2011.
 

ISSN: 0363-6143, ESSN: 1522-1563. Visit our website at http://www.the-aps.org/.
Physiological Society, 9650 Rockville Pike, Bethesda MD 20814-3991. Copyright © 2011 by the American Physiological Society.
those papers emphasizing adaptive and integrative mechanisms. It is published 12 times a year (monthly) by the American 

 publishes original papers that deal with diverse areas of research in applied physiology, especiallyJournal of Applied Physiology

 on N
ovem

ber 23, 2011
jap.physiology.org

D
ow

nloaded from
 

http://jap.physiology.org/content/110/6/1564.full.html#ref-list-1
http://jap.physiology.org/content/110/6/1564.full.html
http://jap.physiology.org/


High-altitude exposure of three weeks duration increases lung diffusing
capacity in humans

Piergiuseppe Agostoni,1,2,3 Erik R. Swenson,2 Maurizio Bussotti,4 Miriam Revera,5,6 Paolo Meriggi,5

Andrea Faini,5 Carolina Lombardi,5,6 Grzegorz Bilo,5 Andrea Giuliano,5 Daniele Bonacina,5

Pietro A. Modesti,7 Giuseppe Mancia,6 and Gianfranco Parati5 on behalf of the HIGHCARE Investigators
1Centro Cardiologico Monzino, IRCCS, Milan, Italy; 3Dipartimento di Scienze Cardiovascolari, Università di Milano, Milan,
Italy; 2Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, VA Puget
Sound Health Care System, Seattle, Washington; 4Cardiologia Riabilitativa, Fondazione S. Maugeri, IRCCS, Milan, Italy;
5Department of Cardiology, S. Luca Hospital, Istituto Auxologico Italiano, Milan, Italy; 6Department Clinical Medicine and
Prevention, University of Milano-Bicocca, Milan, Italy; 7Dipartimento di Area Critica Medico Chirurgica, Università di
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Agostoni P, Swenson ER, Bussotti M, Revera M, Meriggi P,
Faini A, Lombardi C, Bilo G, Giuliano A, Bonacina D, Modesti
PA, Mancia G, Parati G. High-altitude exposure of three weeks
duration increases lung diffusing capacity in humans. J Appl
Physiol 110: 1564 –1571, 2011. First published March 24, 2011;
doi:10.1152/japplphysiol.01167.2010.—Background: high-altitude
adaptation leads to progressive increase in arterial PaO2. In addition to
increased ventilation, better arterial oxygenation may reflect improve-
ments in lung gas exchange. Previous investigations reveal alterations
at the alveolar-capillary barrier indicative of decreased resistance to
gas exchange with prolonged hypoxia adaptation, but how quickly this
occurs is unknown. Carbon monoxide lung diffusing capacity and its
major determinants, hemoglobin, alveolar volume, pulmonary capillary
blood volume, and alveolar-capillary membrane diffusion, have never
been examined with early high-altitude adaptation. Methods and Results:
lung diffusion was measured in 33 healthy lowlanders at sea level (Milan,
Italy) and at Mount Everest South Base Camp (5,400 m) after a 9-day
trek and 2-wk residence at 5,400 m. Measurements were adjusted for
hemoglobin and inspired oxygen. Subjects with mountain sickness were
excluded. After 2 wk at 5,400 m, hemoglobin oxygen saturation in-
creased from 77.2 � 6.0 to 85.3 � 3.6%. Compared with sea level, there
were increases in hemoglobin, lung diffusing capacity, membrane diffu-
sion, and alveolar volume from 14.2 � 1.2 to 17.2 � 1.8 g/dl (P � 0.01),
from 23.6 � 4.4 to 25.1 � 5.3 ml·min�1·mmHg�1 (P � 0.0303), 63 �
34 to 102 � 65 ml·min�1·mmHg�1 (P � 0.01), and 5.6 � 1.0 to 6.3 �
1.1 liters (P � 0.01), respectively. Pulmonary capillary blood volume
was unchanged. Membrane diffusion normalized for alveolar volume
was 10.9 � 5.2 at sea level rising to 16.0 � 9.2 ml·min�1·mmHg�1·l�1

(P � 0.01) at 5,400 m. Conclusions: at high altitude, lung diffusing
capacity improves with acclimatization due to increases of hemoglobin,
alveolar volume, and membrane diffusion. Reduction in alveolar-capil-
lary barrier resistance is possibly mediated by an increase of sympathetic
tone and can develop in 3 wk.

hypoxia; respiration; heart failure; ventilation; oxygen

HIGH-ALTITUDE ASCENT leads to arterial oxygen desaturation,
which lessens over time with adaptation to the hypoxic envi-
ronment. The initial drop in arterial oxygenation with ascent
results directly from a lower inspired PO2. During the first few
days at altitude, arterial oxyhemoglobin saturation (SpO2) is
decreased (30), not only due to low inspired PO2, but also to gas
exchange impairment at altitude, possibly as a result of in-

creased ventilation perfusion inequality from a subclinical
increase in interstitial lung fluid (2, 11, 47). The evidence for
this, however, is equivocal (13). With further time and accli-
matization at high altitude there is a significant progressive
increase in arterial oxygenation occurring over days to weeks
from an augmented hypoxic ventilatory response and more
hyperventilation (6, 30, 52). In addition to greater ventilation,
improved arterial oxygenation may also reflect an increase in
pulmonary gas exchange efficiency (30). This has been
demonstrated in studies of animals raised under high-alti-
tude conditions (23, 25) and in high-altitude human popu-
lations (8, 12, 42, 51). Whether this occurs in lowlanders in
the immediate weeks to months after arrival at high altitude
is unknown.

One easily measured index of gas exchange efficiency is the
carbon monoxide diffusing capacity of the lung (DLCO) with
the reciprocal of DLCO, 1/DLCO, being the resistance to gas
transfer across the alveolar-capillary membrane (1). Roughton
and Foster (44) proposed the existence of two resistances in
series, the alveolar-capillary membrane resistance (1/DM)
and the red cell resistance (1/� VC), with � as the rate of
blood transfer conductance for the gas, in this case CO,
measured in vitro for a given PO2 and VC the amount of
blood undergoing gas exchange, the so-called pulmonary
capillary blood volume. Thus 1/DLCO � 1/DM � 1/� VC

with each of the two being responsible for �50% of 1/DLCO

(22). Numerous variables may influence DLCO, including
hemoglobin and carboxyhemoglobin concentrations, in-
spired oxygen partial pressure, alveolar-capillary barrier
thickness, pulmonary capillary blood volume, gas exchange
surface area, and cardiac output (1, 22, 44). Recently atten-
tion has been focused on the possible role of active sodium
and fluid transport across the alveolar-capillary membrane
in modulating DLCO possibly at the level of the alveolar-
capillary barrier thickness (3, 19, 36). Several groups have
measured DLCO at variable times after arrival at high altitude
(13, 27, 47, 52), and, in general, they found that DLCO (when
corrected for hemoglobin and inspired oxygen differences)
does not increase in the first several days, but begins to rise
within several weeks.

The present study was undertaken to analyze pulmonary gas
exchange in high altitude-acclimatized healthy lowlanders to
specifically explore whether changes in DLCO play a role in
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high-altitude adaptation and, if so, what components of the
diffusing capacity contribute to its improvement.

METHODS

Lung diffusion measurements were performed at sea level and at
Mount Everest South Base Camp after �3 wk of high-altitude sojourn
within the framework of the HIGHCARE (HIGHaltitude CArdiovas-
cular REsearch) research project. The expedition included a total of 47
subjects. As part of a larger study examining the effects of angiotensin
II receptor antagonism at high altitude, the subjects were randomly
treated with either telmisartan 80 mg once daily (n � 24) or placebo
(n � 23). Telmisartan/placebo treatment started at least 1 mo before
ascending and continued until subjects returned to Milan. Drugs were
not allowed for acute mountain sickness (AMS) prevention, but
whenever it was deemed clinically necessary, subjects were treated
and withdrawn from analysis. Thirty-seven (18 on placebo and 19 on
telmisartan) of these 47 subjects were randomly assigned to diffusing
capacity evaluation, of which 34 were nonsmokers and 3 were
smokers. Professional climbers, athletes, and subjects with recent (�6
mo) exposure to altitude were excluded from this set of experiments.
The three smokers abstained from tobacco use 24 h before the DLCO

measurements. All subjects underwent standard spirometry in Milan
(altitude: 337 ft or 102 m).

High-altitude ascent technique, safety controls, and laboratory
setting. Mount Everest South Base Camp is located at 5,400 m in
Nepal on the south face of Mt. Everest below the “Ice Fall” Glacier
and was reached by the subjects in a 9-day hike. During the sojourn
at Mount Everest South Base Camp, subjects were not allowed to
perform any further ascent (�300 m), relevant trekking, or strenuous
physical activity. Gas exchange evaluation was done 12–14 days after
arrival at Mount Everest South Base Camp. The experiments were
performed in a heated tent with temperature and barometric pressure
always recorded. Sea level evaluation was done in Milan in the month
before arriving in Nepal.

During the HIGHCARE Expedition, mandatory medical checks
were performed at Namche Bazar (3,400 m) and 1 and 2 days after
arrival at Mount Everest South Base Camp. During these sessions
several parameters were measured including heart rate, systemic
blood pressure, respiratory rate, transcutaneous oxygen saturation
(SpO2, pulse oximeter, Life Scope I, Nihon Kohden, Tokyo, Japan)
and pulmonary artery systolic pressure (PASP) by echo guided Dopp-
ler ultrasounds (Vivid I, General Electric, Tirat Carmel, Israel). SpO2

and PASP were also measured before each DLCO measurement. The
occurrence and severity of AMS was assessed by means of the Lake
Louise Score (43) during each safety check and before DLCO mea-
surements at Mount Everest South Base Camp. Norepinephrine
plasma concentrations were measured in Milan by HPLC (reagents:
CHROMSYSTEMS Instruments & Chemicals, Munich, Germany;
instrumentation: HPLC Cromat, BioRad Laboratories, Hercules, CA)
on blood collected at Milan and at Mount Everest South Base Camp
where plasma samples were stored in liquid nitrogen.

Acclimatization parameters. Evaluation of high-altitude acclimati-
zation was done at Namche Bazar and at Mount Everest South Base
Camp 1–2 days after arrival and then again between days 12 and 13
before the gas exchange measurements. Acclimatization parameters
included Lake Louise Score, SpO2, hemoglobin, venous total carbon
dioxide concentration, heart rate, respiratory rate, systemic blood
pressure, and pulmonary artery systolic pressure.

Diffusing capacity measurements. DLCO at low altitude (Milan) and
at the end of the 2-wk sojourn at 5,400 m was measured with the
single breath-constant expiratory flow technique (exhalation rate �
0.5 l/s; Sensor Medics 2200, Yorba Linda, CA) and calculated
according to American Thoracic Society 1995 update and ATS-ERS
2005 guidelines (1, 24, 31, 53). We performed duplicate DLCO

measurements. While it was our intention to measure DLCO sequen-
tially in all subjects while ascending to Mount Everest South Base

Camp and immediately on arrival (roughly day 9 at high altitude), we
could not obtain these data due to logistical difficulties in the timely
delivery of the gases and equipment during the trek. To rigorously
compare changes in DLCO with time at altitude, it is necessary to
account and correct for differences in inspired O2 (PIO2) due to
differences in barometric pressure and changes in hemoglobin con-
centration due to altitude-induced erythropoiesis, both of which lead
to an increased DLCO independent of any adaptive changes in lung
structure or function. Thus DLCO at Mount Everest South Base Camp
corrected for inspired PO2 was calculated as DLCO measured 	 [1.0 �
0.0031(PIO2 � 150)] (31). Normative DLCO values were those of
Crapo et al. (10) who used the single breath technique. Wilson et al.
(53) showed normative values for single breath and intra-breath
techniques to be comparable. DLCO was also corrected for hemoglobin
concentration using the following formula: DLCO measured 	 [(10.15 �
hemoglobin)/1.7 	 hemoglobin] (9). Diffusion subcomponents, DM

and VC, were also measured by applying the Roughton and Forster
(44) method to hemoglobin corrected DLCO. For these measurements,
subjects inhaled gas mixtures containing 0.3% methane (CH4), 0.3%
CO, with three different oxygen fractions equal to 0.2, 0.4, and 0.6,
respectively, balanced with nitrogen (9). Due to differences in PIO2 the
1/� values used for the different FIO2 were 1.71 (FIO2 20% ), 2.21 (FIO2

40%), 3.17 (FIO2 60%) in the Milan laboratory and 1.44 (FIO2 0.2),
1.68 (FIO2 0.4), and 1.99 (FIO2 0.6) at Mount Everest South Base
Camp, respectively (44). VA was measured by CH4 decay slope
during single breath constant expiratory flow measurements (39). At
Mount Everest South Base Camp we also assessed DLCO repeatability
over a 1-h interval in 16 subjects.

The study was approved by the ethical committee of Istituto
Auxologico Italiano, IRCCS, with a registration code number of
EudraCT 2008-000540-14. All subjects provided written informed
consent.

Statistical analysis. Data are reported as means � SD. Gas diffu-
sion repeatability was assessed by the Bland and Altman method.
Effects of high altitude on gas diffusion were analyzed by paired
t-test. Effects of telmisartan on DLCO were measured by unpaired
t-test. Changes during high-altitude exposure were assessed by repeat-
ed-measures ANOVA followed by post hoc analysis corrected by
Bonferroni method. P values �0.05 were considered as significant.
All tests were two-sided and were performed using SAS statistical
package V9.13 (SAS Institute, Cary, NC).

To account for the effect of heart rate increase, DLCO at altitude was
analyzed by repeated-measures ANCOVA including heart rate change
as a covariate.

RESULTS

Four subjects developed severe AMS early after reaching
Mount Everest South Base Camp, which required medical
treatment and urgent temporary descent to a lower altitude. All
four subjects returned a few days later and remained on
medical treatment. Of these four subjects, one was on telmis-
artan and three were on placebo. None of the data measured in
Milan could identify subjects who developed AMS (Table 1).
In these subjects, at the end of the Mount Everest South Base
Camp stay, Lake Louise Score, hemoglobin, and SpO2 were
1.8 � 2.1, 18.5 � 1.1 g/dl, 84.0 � 2.2%, respectively, while
DLCO decreased from 24.3 � 5.6 predicted in Milan to 16.3 �
4.9 at Mount Everest South Base Camp (P � 0.05).

Mean atmospheric pressure and oxygen pressure were 402
and 75 mmHg at Mount Everest South Base Camp during
DLCO measurements. Furthermore, we show that that DLCO

measurements at high altitude demonstrate excellent reproduc-
ibility over a 1-h interval (Fig. 1). Telmisartan treatment did
not influence DLCO in Milan or at Mount Everest South Base
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Camp (Table 2) as expected according to previous studies done
in heart failure patients (20). Furthermore, the two groups
(placebo � 15 and telmisartan � 18) did not differ with regard
to SpO2, heart rate, respiratory rate, and systemic and pulmo-
nary artery systolic pressure. Most importantly, results in the
placebo-treated subjects paralleled those of the entire group
and DLCO, DM and DM/VC all were significantly higher at Mount
Everest South Base Camp compared with Milan (Figs. 2–5, Table
2). Therefore, data from the telmisartan and the placebo group
were analyzed together (Table 3). In the 33 AMS-free subjects,
acclimatization was achieved by all as demonstrated by im-
provement in the Lake Louise Score, an increase in hemoglo-
bin and SpO2, and decreases in venous total carbon dioxide
(Table 3). Heart rate, respiratory rate, venous total carbon
dioxide, plasma norepinephrine, and systolic pulmonary artery
pressure are also reported in Table 3.

In the AMS-free subjects after 12 days at Mount Everest
South Base Camp, hemoglobin concentration increased from
14.2 � 1.2 (sea level) to 17.2 � 1.8 g/dl (P � 0.001). Table 4
gives the DLCO data at Milan and after 12 days at Mount
Everest South Base Camp. The measured DLCO increased from
23.8 to 35.1 ml·min�1·mmHg�1. When corrected for actual
hemoglobin concentration, the DLCO rose to 32.7 � 6.9
ml·min�1·mmHg�1. Correcting for both hemoglobin and
PIO2

differences, the DLCO nonetheless still rose significantly
from 23.6 � 4.4 to 25.1 � 5.3 ml·min�1·mmHg�1 (P �
0.033) at Mount Everest South Base Camp (Fig. 2). DM, VC,
and VA are shown in Fig. 3. We found that DM rose from
63 � 34 to 102 � 65 ml·min�1·mmHg�1 (P � 0.01) while
VC was 67.8 � 20.0 and 70.8 � 33.3 ml (P � 0.88) in Milan
and Mount Everest South Base Camp, respectively. An
increase of DM at altitude was still present after normaliza-
tion for VA and VC. DM/VA rose from 10.9 � 5.2 to 16.0 �
9.2 ml·min�1·mmHg�1·l�1 (P � 0.01) and DM/VC rose from
0.94 � 0.5 to 1.8 � 1.3 ml·min�1·mmHg�1·ml�1 (P �
0.01).

We also analyzed the correlations between norepinephrine
and lung diffusion parameters increases between Milan and
Mount Everest South Base Camp. Statistical relevance was

observed between norepinephrine increase and DM/VA in-
crease (r � 0.505, P � 0.014). In contrast DLCO increase at
altitude was not significantly related to heart rate changes and
the DLCO increase remained statistically significant also after
adjustment for heart rate change (P � 0.021).

DISCUSSION

The results of the present research demonstrate that high-
altitude acclimatization over several weeks is associated with a
relevant increase in SpO2 and diffusing capacity of the lung.
The novel contribution of our study is the demonstration that
the increase in diffusing capacity is in large part related to an
increase in the membrane diffusing capacity (DM).

To our knowledge DLCO and its subcomponents have never
been measured in acutely acclimatizing lowlanders. Two pre-
vious studies (27, 49) comprising six and five subjects at lower
altitudes (�4,600 m) did not find an increase in DLCO over a
period of 10–20 days, although in the study by Vincent et al.
(49) DM did rise and VC fell. Finally De Bisschop et al. (12)
showed in 16 subjects at high altitude (4,000 m) a reduction of
DM and DM/VA at the fourth day. Thus, compared with our
study, the De Bisschop data were obtained at lower altitude and
after a much shorter acclimatization period. Compared with
previous studies, we examined a larger set of subjects (n � 33,
placebo 15, telmisartan 18) at a higher altitude (5,400 m), and
we demonstrated that DLCO and its subdivisions can be reliably
measured at high altitude in a field laboratory setting. At
altitude the reduction in atmospheric PO2 per se increases DLCO

values, because there is less competition by oxygen for CO-
hemoglobin binding. Furthermore, the rise in hemoglobin with
adaption will also increase DLCO due to the greater number of
heme binding sites that CO can occupy. Nonetheless, it is
possible to account for ambient PO2 differences and hemoglo-
bin changes in the calculation (26, 31) so that the corrected
values can be made comparable with those obtained at sea
level, and indicative of actual changes at the level of the
alveolar-capillary surface occurring at high altitude. The
Roughton and Forster (15) method used to calculate DM and
VC was also adjusted for PIO2

at Mount Everest South Base
Camp.

High-altitude acclimatization is a long process involving
numerous organs with variable time courses (6, 30, 52). The

Table 1. Anthropometric data of subjects with and without
acute mountain sickness

33 Subjects 4 Subjects

Without acute mountain
sickness

With acute mountain
sickness

Sex, M/F 22/11 2/2
Age, yr 40.8 � 10.4 33.8 � 5.9
Placebo/Telmisartan 15/18 3/1
Actual smokers 2 1
Weight, kg 68.4 � 12.6 60.0 � 14.9
High, cm 173 � 8 176 � 12
BMI, kg/m2 22.8 � 3.2 19.3 � 3.2
FEV1, liters 3.5 � 0.6 3.0 � 0.8
FVC, liters 4.4 � 0.7 4.1 � 1.2
FEV1/FVC, % 80 � 7.6 75 � 8.6
DLCO, ml �mmHg�1 �min�1 23.8 � 4.9 24.3 � 5.6

Data are expressed as means � SD and were obtained in Milan before
ascent. M, male; F, female; BMI, body mass index; FEV1, forced expiratory
volume in 1 s; FVC, forced vital capacity; DLCO, diffusing capacity of the
lung for carbon monoxide; DM, membrane diffusion; VC, pulmonary capillary
blood volume.

Fig. 1. Bland and Altman plot of the first and second lung diffusion for carbon
monoxide (DLCO) recorded at Mount Everest South Base Camp in 16 subjects.
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present experiments were conducted after a 9-day climb and a
12- to 14-day stay at Mount Everest South Base Camp. There-
fore it is likely that acclimatization processes may not have
been complete. Regardless, we found a considerable degree of

acclimatization, as evidenced by resolving symptoms of AMS,
increase in arterial hemoglobin saturation, reduction in plasma
norepinephrine, and fall in arterial carbon dioxide pressure.
The progressive SpO2 increase during the sojourn at high
altitude, although reflective of increasing ventilation as indi-
cated by the fall in arterial carbon dioxide pressure, also
suggests that the efficiency of gas exchange improved as well
(2). In normal lungs, gas exchange efficiency at sea level is
largely dependent on regional ventilation-perfusion (V/Q)
matching, but at high altitude and with exercise, diffusion
limitation can occur (16). Studies in humans performed with
multiple inert gas elimination technique found that V/Q match-
ing does not improve over time at high altitude (38), although
the alveolar-arterial PO2 difference (A-a PO2) is reduced (7). A
decrease in the A-a PO2 without a reduction in V/Q mismatch-
ing is consistent with less diffusion limitation (7). Histological
analysis of dogs and guinea pigs raised at high altitude show a
detectable lower thickness of the blood-gas diffusion barrier
corresponding physiologically to greater DLCO and DM and
reduced A-a PO2 (23, 25, 41). Our study offers the first, albeit
indirect, demonstration of this phenomenon in humans, devel-
oping within 2 wk in the course of high-altitude adaptation.
The advantage of diminished alveolar capillary diffusion re-
sistance at high altitude will be to promote alveolar-capillary
PO2 equilibration and thus greater arterial oxygenation in the
face of altitude associated decrement in the driving gradient for
lung oxygen uptake, greater hemoglobin concentration, and
shorter capillary transit times with higher cardiac output (50).
These factors become especially limiting on arterial oxygen-

Table 2. DLCO and DLCO subcomponents measured in subjects without acute mountain sickness receiving telmisartan or
placebo (33 subjects)

Milan
Mount Everest South

Base Camp DELTA
Lower Confidence

limit
Upper Confidence

limitn mean SD mean SD Test T mean SD

DLCO, ml �mmHg�1 �min�1

Placebo 15 24.7 �3.9 27.3 �5.4 P � 0.01 2.6 �3.1 0.9 4.4
Telmisartan 18 22.7 �4.6 23.3 �4.5 NS 0.5 �3.8 �1.4 2.4
Combined 33 23.6 �4.4 25.1 �5.3 P � 0.03 1.5 �3.6 0.2 2.7

DM, ml �mmHg�1 �min�1

Placebo 11 80.3 �39.6 124.2 �75.5 P � 0.05 56.9 �75.4 6.3 107.5
Telmisartan 18 51.9 �25.0 84.0 �49.0 P � 0.01 32.0 �43.4 10.5 53.6
Combined 29 62.7 �33.7 102.3 �64.7 P � 0.01 41.5 �57.6 19.6 63.4

VC, ml
Placebo 11 67.2 �17.2 87.0 �26.3 NS 24.0 �36.5 0.7 47.2
Telmisartan 18 68.2 �22.2 59.1 �33.5 NS �9.1 �43.9 �30.9 12.7
Combined 29 67.8 �20.0 70.8 �33.3 NS 4.1 �41.2 �12.2 20.4

VA, liter
Placebo 15 5.7 �0.7 6.5 �1.0 P � 0.01 0.8 �0.5 0.5 1.1
Telmisartan 18 5.6 �1.1 6.2 �1.2 P � 0.01 0.7 �0.6 0.4 1.0
Combined 33 5.6 �0.9 6.3 �1.1 P � 0.01 0.7 �0.5 0.6 0.9

DLCO/VA, ml �min�1 �mmHg�1 � l�1

Placebo 15 4.4 �0.8 4.2 �0.8 NS �0.2 �0.4 �0.4 0.1
Telmisartan 18 4.1 �0.5 3.8 �0.5 P � 0.05 �0.3 �0.7 �0.7 0.0
Combined 33 4.2 �0.7 3.9 �0.7 P � 0.01 �0.3 �0.6 �0.5 �0.1

DM/VA, ml �min�1 �mmHg�1 � l�1

Placebo 11 13.5 �5.9 19.0 �10.4 P � 0.05 8.6 �10.5 2.3 14.9
Telmisartan 18 9.4 �4.1 13.7 �7.7 P � 0.05 4.3 �6.9 0.9 7.7
Combined 29 10.9 �5.1 16.0 �9.3 P � 0.01 6.1 �8.7 2.9 9.3

DM/VC, ml �min�1 �mmHg�1 �ml�1

Placebo 11 1.2 �0.6 1.7 �1.2 NS 0.7 �1.2 �0.1 1.5
Telmisartan 18 0.8 �0.3 1.8 �1.4 P � 0.01 1.0 �1.4 0.3 1.7
Combined 29 0.9 �0.5 1.8 �1.3 P � 0.01 0.9 �1.3 0.2 1.3

Data are expressed as means � SD. DM, mMembrane diffusion; VC, pulmonary capillary blood volume; VA, alveolar volume.

Fig. 2. DLCO, corrected for Hb and PIO2, at Milan and after �3 wk residence
at Mount Everest South Base Camp in 33 subjects who did develop severe
acute mountain sickness. �, Placebo group; shaded triangles, telmisartan
group. �, Mean of the 33 subjects � SD. *P � 0.01.
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ation with exercise. In a theoretical analysis of pulmonary
factors determining maximal oxygen consumption (V̇O2max) at
high altitude, Wagner (50) found that only increasing lung
diffusing capacity and alveolar ventilation improved V̇O2max

significantly, in contrast to any increases in cardiac output or
hemoglobin.

Several mechanisms may be responsible for the DLCO in-
crease we observed, including increases in hemoglobin, gas
exchange surface area, and VC, in addition to a reduction in the
alveolar-capillary barrier thickness. As expected, a relevant
increase of hemoglobin was observed after 2 wk at Mount
Everest South Base Camp (6). The hemoglobin increase ac-
counts for �30% of the DLCO (PIO2

adjusted) increase. Mansell
et al. (34) showed a relevant increase of total lung capacity at
altitude. Similarly we observed a VA increase of �12% ac-
counting for some additional DLCO increase. However, VA and
hemoglobin changes were not the sole reason for DLCO im-
provement. Indeed DM/VA and DM/VC remained significantly
higher at Mount Everest South Base Camp compared with sea
level. Although high-altitude ascent is associated with pulmo-
nary artery pressure and cardiac output increases that could
play a role in altering DLCO (6, 11, 32, 33) acting mainly to
increase VC, due to vessel recruitment and distension, VC was
unchanged in our subjects.

Our data show that at high altitude DM, DM/VA, and DM/VC

increase. All these changes imply a reduced resistance to gas
transfer across the alveolar-capillary membrane. Functional
changes of the alveolar-capillary membrane might have been
induced through mechanisms that act at the membrane level
(14, 36). One such mechanism is the stimulation of several
active Na� transport mechanisms on the epithelial layer of the
alveolar-capillary barrier (36). These mechanisms are under

2-receptor control and are activated by sympathetic stimula-
tion (5). Indeed, high-altitude pulmonary edema may be pre-
vented by the use of a 
2-stimulating agent (46). Several
observations made in our study suggest that the sympathetic
activity during our high-altitude sojourn increased, such as the
increased heart rate, systemic blood pressure, and the accom-
panying increase of norepinephrine plasma concentrations (21,
35). Another benefit to increased 
2-receptor stimulation is a
tightening of cell to cell contacts in the vascular endothelium,

Fig. 3. Membrane diffusion (DM) at Milan and after �3 wk residence at Mount
Everest South Base Camp in 29 subjects who did not develop severe acute
mountain sickness. In 4 subjects, quality of data was considered not sufficient
to reliably calculate DLCO subcomponents. �, Placebo group; shaded triangles,
telmisartan group. �, Mean of the 29 subjects � SD. P � 0.01.

Fig. 4. Pulmonary capillary blood volume (VC) at Milan and after �3 wk
residence at Mount Everest South Base Camp in 29 subjects who did not
develop severe acute mountain sickness. In 4 subjects, quality of data was
considered not sufficient to reliably calculate DLCO subcomponents. �, Placebo
group; shaded triangles, telmisartan group. �, Mean of the 29 subjects � SD.
P � NS.

Fig. 5. Alveolar volume (VA) at Milan and after �3 wk residence at Mount
Everest South Base Camp in 33 subjects who did not develop severe acute
mountain sickness. �, Placebo group; shaded triangles, telmisartan group. �,
Mean of the 33 subjects � SD. *P � 0.01.
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which would act to reduce capillary permeability and fluid flux
into the lung interstitium (4). These results support the sugges-
tion that prolonged sympathetic stimulation may reduce the
amount of fluid along the alveolar-capillary membrane. Ac-
cordingly, we observed a correlation between norepinephrine
and DM/VA increase. The possibility that this mechanism is at
work and/or can be pharmacologically stimulated in other
hypoxic conditions, such as pulmonary edema, is a fascinating
hypothesis and under study in the acute respiratory distress
syndrome (37).

We acknowledge a few study limitations. First, it is recog-
nized that the number of subjects studied in the present study,
particularly in the placebo arm, was small. However, it was not
possible to have more subjects due to logistic difficulties and to
the relatively high number of subjects who had mountain
sickness needing treatment. Second, the experiments were
conducted only once after a 9-day high-altitude trek and a
subsequent 2-wk stay at high altitude. Consequently, we cannot
describe the complete time course of lung diffusion adaptation
with residence at high altitude. Some acclimatization was
achieved in our subjects; however, it is likely that a more
prolonged sojourn at altitude might have produced additional
adaptive changes. Moreover, different degrees of adaptation
may occur at different altitudes and individuals may adapt at
different rates. Therefore, the results of the present study may
apply only to our experimental settings. Third, the correction
factor we applied for inspired PO2 at Mount Everest South Base
Camp has not been validated below an inspired PO2 of 80
mmHg (31) and thus our use of it is an extrapolation to the
average PIO2

of 75 mmHg. We do not believe this should

introduce a significant over- or underestimation because earlier
work of Lilienthal et al. (29) and Roughton and Darling (45)
found that the relative affinity difference of CO and O2 for
binding to hemoglobin was not altered over a large range of
hemoglobin oxygen desaturation. Fourth, arterial blood gas
data were not measured and, indeed, these measurements
would have significantly strengthened the SpO2 data. Unfortu-
nately repeated arterial blood samples were considered unac-
ceptable by our trekkers and by our ethics committee. Fifth,
although we made adjustments for hemoglobin and PIO2

dif-
ferences, other factors at high altitude that might also alter
DLCO independent of changes in the function and structure of
the lung were not incorporated. High altitude leads to hypo-
capnia, respiratory alkalemia, and changes in 2–3DPG, which
might affect CO uptake by hemoglobin. These factors, how-
ever, when reproduced in vitro with the magnitude of changes
typically occurring at high altitude, do not introduce any
measurable alteration in the reaction kinetics of CO and he-
moglobin (28, 40, 48). More importantly, we could not mea-
sure carboxyhemoglobin concentrations and thus make appro-
priate corrections of DLCO for any back partial pressure of
capillary CO and the “anemia” effect of carboxyhemoglo-
binemia (18). Animal studies show a rise in carboxyhemoglo-
bin of 1–2% with several weeks of altitude exposure (17)
resulting from upregulation in the lung and other tissues of
heme-oxygenase, whose catalytic breakdown of heme yields
bilirubin and CO. The very limited data available in humans
are less convincing, but even assuming that these changes
might have occurred in our subjects, any altitude-mediated rise
in hemoglobin-CO would have only led us to underestimate the

Table 3. High-altitude adaptation

Milan Namche Bazar
Mount Everest South

Base Camp
Mount Everest South

Base Camp ANOVA

Day 1–2 Day 10–11 Day 24–25
Lake Lousie Score — 0.9 � 0.9† 1.9 � 1.4†* 0.6 � 0.8° �0.01
Hb, g/dl 14.2 � 1.2 14.4 � 1.7 16.0 � 2.0†‡ 17.2 � 1.8†*# �0.01
O2sat, % 97.6 � 0.6 90.5 � 2.8† 77.2 � 6.0†* 85.3 � 3.6†*° �0.01
HR, beats/min 71 � 971 � 9 73 � 13 82 � 19§ 77 � 18 �0.03
RR, breaths/min 10.3 � 1.0 12.0 � 2.2§ 15.4 � 3.2†* 14.2 � 2.6†‡ �0.01
DBP, mmHg 73 � 11 87 � 9† 85 � 9† 85 � 8† �0.01
SBP, mmHg 116 � 12 128 � 18† 126 � 13† 132 � 18† �0.01
PASP, mmHg 22.7 � 3.5 27.3 � 4.3§ 35.5 � 5.7†* 35.8 � 6.1†* �0.01
HCO3 venous, mmol/l — 22.8 � 1.6 20.1 � 1.4* 20.4 � 1.6* �0.01
NE, pg/ml 332 � 196 581 � 177 999 � 351†° 769 � 667§ �0.01

Data are expressed as mean � SD. Hb, hemoglobin; O2sat, hemoglobin oxygen saturation; HR, heart rate; RR, respiratory rate; DBP, diastolic blood pressure;
SBP, systolic blood pressure, HCO3, bicarbonate; NE, norepinephrine. *P � 0.01 vs. Namche Bazar; †P � 0.01 vs. Milan; ‡P � 0.01 vs. Namche Bazar;
§P � 0.05 vs. Milan; °P � 0.01 vs. Mount Everest South Base Camp day 10–11; #P � 0.05 vs. Mount Everest South Base Camp day 10–11. Days are from
the beginning of the ascent.

Table 4. Comparison of DLCO at low and high altitude with adjustments for hemoglobin and inspired PO2 differences

Milan (102m)
Mount Everest South Base

Camp (5,400 m) delta
Lower Confidence

limit
Upper Confidence

limit

DLCO measured, ml �mmHg�1 �min�1 23.8 � 5.3 35.1 � 8.3* 11.3 � 6.5‡ 8.9 13.6
DLCO adjusted for Hb (ml �mmHg�1 �min�1)

to a standard Hb concentration of 14.6 g/dl 23.8 � 4.9 32.7 � 6.9* 8.3 � 5.8‡ 6.2 10.5
DLCO adjusted for Hb and PIO2

(ml �mmHg�1 �min�1) to a standard Hb
concentration of 14.6 g/dl and inspired PO2 23.6 � 4.4 25.1 � 5.3† 1.5 � 3.6§ 0.2 2.7

Data are expressed as mean � SD. *P � 0.01 vs. Milan. †P � 0.03 vs. Milan. ‡power 99%; §power 36%. DLCO Measurements were obtained at Mount
Everest South Base Camp after a 9-day trek plus 2 wk of sojourn.
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increases in DLCO we observed. Finally, it is possible that a
direct effect of physical activity on improvement of DLCO

exists. We have excluded athletes, professional climbers, or
subjects recently exposed to high altitude from the present
research and asked all subjects, while at Mount Everest South
Base Camp, not to perform any further ascent or relevant
trekking. However, a role of physical activity on DLCO changes
we observed cannot be excluded.

In conclusion, a prolonged (3 wk) high-altitude exposure
leads to an increase in lung gas exchange capacity, as one
mechanism of adaptation. Although it is not possible to pre-
cisely calculate the role of each of the variables involved in the
measurement of DLCO that contributes to its increase at alti-
tude, it is clear from our data that all do have a role. Indeed,
hemoglobin concentration and VA increases as did DM. We can
thus speculate that the increase in DM observed in native
high-altitude populations occurs relatively early in the accli-
matization process of lowlanders and contributes to more
efficient gas exchange and oxygenation in the hypoxic envi-
ronment.

GRANTS

The HIGHCARE project was financed by Boehringer-Ingelheim (Germany)
and Banca Intesa San Paolo (Italy) unrestricted grants.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the authors.

REFERENCES

1. American Thoracic Society. Single-breath carbon monoxide diffusing
capacity (transfer factor) Recommendations for a standard technique–1995
update. Am J Respir Crit Care Med 152: 2185–2198, 1995.

2. Agostoni P, Caldara G, Bussotti M, Revera M, Valentini M, Gregorini
F, Faini A, Lombardi C, Bilo G, Giuliano A, Veglia F, Savia G,
Modesti PA, Mancia G, Parati G. Continuous positive airway pressure
increases haemoglobin O2 saturation after acute but not prolonged altitude
exposure. Eur Heart J 31: 457–463, 2010.

3. Agostoni P, Contini M, Cattadori G, Apostolo A, Sciomer S, Bussotti
M, Palermo P, Fiorentini C. Lung function with carvedilol and biso-
prolol in chronic heart failure: is beta selectivity relevant? Eur J Heart Fail
9: 827–833, 2007.

4. Allen MJ, Coleman RA. Beta 2-adrenoceptors mediate a reduction in
endothelial permeability in vitro. Eur J Pharmacol 274: 7–15, 1995.

5. Azzam ZS, Adir Y, Crespo A, Comellas A, Lecuona E, Dada LA,
Krivoy N, Rutschman DH, Sznajder JI, Ridge KM. Norepinephrine
increases alveolar fluid reabsorption and Na,K-ATPase activity. Am J
Respir Crit Care Med 170: 730–736, 2004.

6. Bartsch P, Saltin B. General introduction to altitude adaptation and
mountain sickness. Scand J Med Sci Sports 18, Suppl 1: 1–10, 2008.

7. Bebout DE, Story D, Roca J, Hogan MC, Poole DC, Gonzalez-
Camarena R, Ueno O, Haab P, Wagner PD. Effects of altitude accli-
matization on pulmonary gas exchange during exercise. J Appl Physiol 67:
2286–2295, 1989.

8. Cerny FC, Dempsey JA, Reddan WG. Pulmonary gas exchange in
nonnative residents of high altitude. J Clin Invest 52: 2993–2999, 1973.

9. Cotes JE, Dabbs JM, Elwood PC, Hall AM, McDonald A, Saunders
MJ. Iron-deficiency anaemia: its effect on transfer factor for the lung
(diffusion capacity) and ventilation and cardiac frequency during sub-
maximal exercise. Clin Sci 42: 325–335, 1972.

10. Crapo RO, Morris AH. Standardized single breath normal values for
carbon monoxide diffusing capacity. Am Rev Respir Dis 123: 185–189,
1981.

11. Cremona G, Asnaghi R, Baderna P, Brunetto A, Brutsaert T, Caval-
laro C, Clark TM, Cogo A, Donis R, Lanfranchi P, Luks A, Novello N,
Panzetta S, Perini L, Putnam M, Spagnolatti L, Wagner H, Wagner
PD. Pulmonary extravascular fluid accumulation in recreational climbers:
a prospective study. Lancet 359: 303–309, 2002.

12. de Bisschop C, Kiger L, Marden MC, Ajata A, Huez S, Faoro V,
Martinot JB, Naeije R, Guenard H. Pulmonary capillary blood volume
and membrane conductance in Andeans and lowlanders at high altitude: a
cross-sectional study. Nitric Oxide 23: 187–193, 2010.

13. Dehnert C, Luks AM, Schendler G, Menold E, Berger MM, Mair-
baurl H, Faoro V, Bailey DM, Castell C, Hahn G, Vock P, Swenson
ER, Bartsch P. No evidence for interstitial lung oedema by extensive
pulmonary function testing at 4559 m. Eur Respir J 35: 812–820, 2010.

14. Factor P, Adir Y, Mutlu GM, Burhop J, Dumasius V. Effects of
beta2-adrenergic receptor overexpression on alveolar epithelial active
transport. J Allergy Clin Immunol 110: S242–S246, 2002.

15. Forster RE. Diffusion of gases across the alveolar membrane. In: Hand-
book of Physiology Section 3: The Respiratory System, Volume IV. Gas
Exchange. Bethesda, MD: Am Physiol Soc, 1987, p. 71–88.

16. Gale GE, Torre-Bueno JR, Moon RE, Saltzman HA, Wagner PD.
Ventilation-perfusion inequality in normal humans during exercise at sea
level and simulated altitude. J Appl Physiol 58: 978–988, 1985.

17. Gong LM, Du JB, Shi L, Shi Y, Tang CS. Effects of endogenous carbon
monoxide on collagen synthesis in pulmonary artery in rats under hypoxia.
Life Sci 74: 1225–1241, 2004.

18. Graham BL, Mink JT, Cotton DJ. Effects of increasing carboxyhemo-
globin on the single breath carbon monoxide diffusing capacity. Am J
Respir Crit Care Med 165: 1504–1510, 2002.

19. Guazzi M, Marenzi G, Alimento M, Contini M, Agostoni P. Improve-
ment of alveolar-capillary membrane diffusing capacity with enalapril in
chronic heart failure and counteracting effect of aspirin. Circulation 95:
1930–1936, 1997.

20. Guazzi M, Palermo P, Pontone G, Susini F, Agostoni P. Synergistic
efficacy of enalapril and losartan on exercise performance and oxygen
consumption at peak exercise in congestive heart failure. Am J Cardiol 84:
1038–1043, 1999.

21. Hansen J, Sander M. Sympathetic neural overactivity in healthy humans
after prolonged exposure to hypobaric hypoxia. J Physiol 546: 921–929,
2003.

22. Hsia CC. Recruitment of lung diffusing capacity: update of concept and
application. Chest 122: 1774–1783, 2002.

23. Hsia CC, Johnson RL Jr, McDonough P, Dane DM, Hurst MD,
Fehmel JL, Wagner HE, and Wagner PD. Residence at 3,800-m altitude
for 5 mo in growing dogs enhances lung diffusing capacity for oxygen that
persists at least 25 years. J Appl Physiol 102: 1448–1455, 2007.

24. Huang YC, O’Brien SR, MacIntyre NR. Intrabreath diffusing capacity
of the lung in healthy individuals at rest and during exercise. Chest 122:
177–185, 2002.

25. Johnson RL Jr, Cassidy SS, Grover RF, Schutte JE, and Epstein RH.
Functional capacities of lungs and thorax in beagles after prolonged
residence at 3,100 m. J Appl Physiol 59: 1773–1782, 1985.

26. Kanner RE, Crapo RO. The relationship between alveolar oxygen
tension and the single-breath carbon monoxide diffusing capacity. Am Rev
Respir Dis 133: 676–678, 1986.

27. Kreuzer F, van Lookeren Campagne P. Resting pulmonary diffusion
capacity for CO and O2 at high altitude. J Appl Physiol 20: 519–524,
1965.

28. Lawson WH Jr. Effect of anemia, species, and temperature on CO
kinetics with red blood cells. J Appl Physiol 31: 447–457, 1971.

29. Lilienthal JL, Riley RL, Proemmel DD, Franke RE. The relationships
between carbon monoxide, oxygen, and hemoglobin in the blood of man
at altitude. Am J Physiol 145: 351–360, 1946.

30. Lundby C, Calbet JA, van Hall G, Saltin B, Sander M. Pulmonary gas
exchange at maximal exercise in Danish lowlanders during 8 wk of
acclimatization to 4,100 m and in high-altitude Aymara natives. Am J
Physiol Regul Integr Comp Physiol 287: R1202–R1208, 2004.

31. Macintyre N, Crapo RO, Viegi G, Johnson DC, van der Grinten CP,
Brusasco V, Burgos F, Casaburi R, Coates A, Enright P, Gustafsson
P, Hankinson J, Jensen R, McKay R, Miller MR, Navajas D, Pedersen
OF, Pellegrino R, Wanger J. Standardisation of the single-breath deter-
mination of carbon monoxide uptake in the lung. Eur Respir J 26:
720–735, 2005.

32. Maggiorini M. High altitude-induced pulmonary oedema. Cardiovasc
Res 72: 41–50, 2006.

33. Maggiorini M, Melot C, Pierre S, Pfeiffer F, Greve I, Sartori C,
Lepori M, Hauser M, Scherrer U, Naeije R. High-altitude pulmonary
edema is initially caused by an increase in capillary pressure. Circulation
103: 2078–2083, 2001.

1570 IMPROVEMENT OF ALVEOLAR GAS EXCHANGE AT ALTITUDE

J Appl Physiol • VOL 110 • JUNE 2011 • www.jap.org

 on N
ovem

ber 23, 2011
jap.physiology.org

D
ow

nloaded from
 

http://jap.physiology.org/


34. Mansell A, Powles A, Sutton J. Changes in pulmonary PV characteristics of
human subjects at an altitude of 5,366 m. J Appl Physiol 49: 79–83, 1980.

35. Mazzeo RS, Bender PR, Brooks GA, Butterfield GE, Groves BM,
Sutton JR, Wolfel EE, Reeves JT. Arterial catecholamine responses
during exercise with acute and chronic high-altitude exposure. Am J
Physiol Endocrinol Metab 261: E419–E424, 1991.

36. Mutlu GM, Sznajder JI. Mechanisms of pulmonary edema clearance.
Am J Physiol Lung Cell Mol Physiol 289: L685–L695, 2005.

37. Perkins GD, McAuley DF, Thickett DR, Gao F. The beta-agonist lung
injury trial (BALTI): a randomized placebo-controlled clinical trial. Am J
Respir Crit Care Med 173: 281–287, 2006.

38. Podolsky A, Eldridge MW, Richardson RS, Knight DR, Johnson EC,
Hopkins SR, Johnson DH, Michimata H, Grassi B, Feiner J, Kurdak
SS, Bickler PE, Severinghaus JW, Wagner PD. Exercise-induced VA/Q
inequality in subjects with prior high-altitude pulmonary edema. J Appl
Physiol 81: 922–932, 1996.

39. Ramage JE Jr, Coleman RE, MacIntyre NR. Rest and exercise cardiac
output and diffusing capacity assessed by a single slow exhalation of
methane, acetylene, and carbon monoxide. Chest 92: 44–50, 1987.

40. Rankin J, Mc NR, Forster RE. Influence of increased alveolar carbon
dioxide tension on pulmonary diffusing capacity for CO in man. J Appl
Physiol 15: 543–549, 1960.

41. Ravikumar P, Bellotto DJ, Johnson RL Jr, Hsia CC. Permanent
alveolar remodeling in canine lung induced by high-altitude residence
during maturation. J Appl Physiol 107: 1911–1917, 2009.

42. Remmers JE, Mithoefer JC. The carbon monoxide diffusing capacity in
permanent residents at high altitudes. Respir Physiol 6: 233–244, 1969.

43. Roach RC, Bartsch P, Hackett PH, Oelz O. The Lake Louise score acute
mountain sickness scoring system. In: Hypoxia and Molecular medicine:
proceedings of the 8th International Hypoxia Symposium, Lake Louise
Alberta, Canada. Burlington, VT: Queen City Printers, 1993, p. 272–274.

44. Roughton FJ, Forster RE. Relative importance of diffusion and chemical
reaction rates in determining rate of exchange of gases in the human lung,
with special reference to true diffusing capacity of pulmonary membrane
and volume of blood in the lung capillaries. J Appl Physiol 11: 290–302,
1957.

45. Roughton FJW, Darling RC. The effect of carbon monoxide on the
oxyhemoglobin dissociation curve. Am J Physiol 141: 17–31, 1944.

46. Sartori C, Allemann Y, Duplain H, Lepori M, Egli M, Lipp E, Hutter
D, Turini P, Hugli O, Cook S, Nicod P, Scherrer U. Salmeterol for the
prevention of high-altitude pulmonary edema. N Engl J Med 346: 1631–
1636, 2002.

47. Senn O, Clarenbach CF, Fischler M, Thalmann R, Brunner-La Rocca
H, Egger P, Maggiorini M, Bloch KE. Do changes in lung function
predict high-altitude pulmonary edema at an early stage? Med Sci Sports
Exerc 38: 1565–1570, 2006.

48. Sharma VS, Schmidt MR, Ranney HM. Dissociation of CO from
carboxyhemoglobin. J Biol Chem 251: 4267–4272, 1976.

49. Vincent J, Hellot MF, Vargas E, Gautier H, Pasquis P, Lefrancois R.
Pulmonary gas exchange, diffusing capacity in natives and newcomers at
high altitude. Respir Physiol 34: 219–231, 1978.

50. Wagner PD. A theoretical analysis of factors determining VO2 MAX at
sea level and altitude. Respir Physiol 106: 329–343, 1996.

51. Wagner PD, Araoz M, Boushel R, Calbet JA, Jessen B, Radegran G,
Spielvogel H, Sondegaard H, Wagner H, Saltin B. Pulmonary gas
exchange and acid-base state at 5,260 m in high-altitude Bolivians and
acclimatized lowlanders. J Appl Physiol 92: 1393–1400, 2002.

52. West JB. The physiologic basis of high-altitude diseases. Ann Intern Med
141: 789–800, 2004.

53. Wilson AF, Hearne J, Brenner M, Alfonso R. Measurement of transfer
factor during constant exhalation. Thorax 49: 1121–1126, 1994.

1571IMPROVEMENT OF ALVEOLAR GAS EXCHANGE AT ALTITUDE

J Appl Physiol • VOL 110 • JUNE 2011 • www.jap.org

 on N
ovem

ber 23, 2011
jap.physiology.org

D
ow

nloaded from
 

http://jap.physiology.org/

