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Existence and stability of equilibria in OLG
models under adaptive expectations∗

Michele Longo†and Vincenzo Valori‡

May 8th, 2001

Abstract

In this paper we deal with an Overlapping Generations Model with
production under three diverse assumptions about agents rationality;
rational, adaptive and myopic expectations. We determine a unique-
ness condition for stationary steady states in the model with perfect
foresight which rests on the second derivatives of the production and
utility functions. Such condition results to be more restrictive than
the one developed for the model with myopic expectations which, due
to the correspondence among steady states of the three models, could
be considered as an alternative. Further, we completely develop the
analysis of the model under adaptive expectations. We derive stabil-
ity conditions and determine the bifurcation diagram in all the three
cases. From the comparison it results that stability conditions for the
case with rational expectations are less restrictive than for both adap-
tive and myopic ones. We notice that, differently from what happens
in the OLG model of pure exchange, the adaptive expectations do not
improve local stability performances of the model with respect to my-
opic expectations; this is due to the fact that in our two-dimensional
model a Neimark-Hopf bifurcation could arise, cutting off part of the
parameter space which results to be stable in the myopic case.

∗We would like to thank Emilio Barucci and Domenico Colucci for useful discussion
and comments about these issues. All the ususal disclaimers apply. Financial support
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all’Economia of Università di Pisa and by the Università degli Studi di Firenze under the
”Young researcher project” program.

†Dipartimento di Statistica e Matematica Applicata all’Economia - Università degli
Studi di Pisa.

‡Dipartimento di Matematica per le Decisioni - Università degli Studi di Firenze.
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1 Introduction

The Overlapping Generations Model, first introduced by Allais [1] in 1947,
became after the 1958 article by Paul Samuelson [9] ”...the most important
and influential paradigm in neoclassical general equilibrium theory outside of
the Arrow-Debreu economy” (quoting Geanakoplos [7]). As suggested by the
name, in this model we suppose that at any time different generations of in-
dividuals are living; each generation being characterised by a representative
agent. Every generation may trade with other ones which are in different pe-
riods of their life. Samuelson’s innovation was in postulating a demographic
structure in which generations overlap indefinitely into the future. The cap-
ital stock is generated by individuals who save during their working lives
to finance their consumption when retired. This structure makes it possible
to study the aggregate implications of life-cycle saving by individuals, the
determinants of the aggregate capital stock, the effects of government policy
about national debt, social security, taxation as well as the effect of bequests
on the accumulation of capital. A vast literature about the Phillips curve,
the business cycle and the foundations of monetary theory is also based on
the model.
Over the year the OLG model has been developed into a general equilib-

rium model with many agents, multiple kinds of commodities and produc-
tion, completely founded on the neoclassical methodological assumptions of
agent optimization, market clearing and rational expectations as the Arrow-
Debreu model. In this more comprehensive version of Samuelson’s original
idea, known as the Overlapping Generations Model of General Equilibrium,
equilibria show profound differences with respect to that of the Arrow-Debreu
model: the OLG provides an example of an economy in which the compet-
itive equilibrium may be not efficient or Pareto optimal (Samuelson itself
pointed out this fact in his 1958 paper [9]), money may have positive value,
there are robust economies with a continuum of equilibria (indeterminacy of
equilibrium in the one-commodity case was first studied by Gale [5]) and fi-
nally the core of an OLG economy may be empty. None of this could happen
in any Arrow-Debreu economy
In this paper we consider an Overlapping Generations Model with pro-

duction, first studied by Diamond in his famous 1965 paper [4], in the version
given by Galor and Ryder in 1989 [6]. In Section 2 the set-up of the model
is fully described. In Section 3 we specify three diverse expectations func-
tions. In Subsection 3.1 we consider fully rational agents and discuss all the
results about existence, uniqueness and stability of non-trivial steady states
obtained by Galor and Ryder [6]. In Subsection 3.2 we present the work
of Michel and de la Croix [8] who studied the stability properties of sta-
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tionary steady states under the hypothesis of myopic expectations. Both in
Subsection 3.1 and in Subsection 3.2 some minor improvements and results
are discussed and in Subsection 3.3 is proposed an alternative uniqueness
condition for the model with perfect foresight. In Subsection 3.4 we develop
and analyze the model under the assumption of adaptive expectations. We
study the relationships among steady states of this and of the two alterna-
tive models. We also develop a complete local stability analysis. In Section
3.5 a comparative discussion of stability conditions of the three models is
performed. Finally in the Appendix we have left two, less interesting, proofs.

2 The model

We refer to the classical Diamond’s OLG model with production [4] as devel-
oped and studied by Galor and Ryder in [6]. We consider an infinite horizon
and perfectly competitive economy where a single good is produced by means
of capital and labor. We suppose that the economy exists in discrete time
and that individuals live for two periods. For a given rate of population
growth n ≥ −1, the endowment of labor at time t is exogenously set by

Lt = (1 + n)
t L0 (1)

Moreover, at each time t the endowment of capital is increased by the quan-
tity of resources not consumed in the previous period and (i.e. Yt−1−Ct−1),
for a given rate of capital depreciation 0 ≤ δ ≤ 1, is

Kt = Yt−1 + (1− δ)Kt−1 − Ct−1 (2)

where Ct−1 is the aggregate consumption and Yt−1 is the aggregate produc-
tion, both at time t− 1. Output will satisfy

Yt = F (Kt, Lt) (3)

where the unchanging technology is supposed to perform constant returns to
scale, so that we can write

yt = f (kt) (4)

where kt = Kt

Lt
and yt = Yt

Lt
correspond to the pro-capite amount of capital

and output, respectively and f : R+ → R+ is the intensive form production
function. As in [6], we suppose that such a neoclassical production function
is twice continuously differentiable, positive, increasing and strictly concave

f (k) > 0, f 0 (k) > 0, f 00 (k) < 0, for k > 0 (5)
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The competitive assumption in both the capital and the labor market
implies that in equilibrium the interest rate, rt, and the wage, wt, are respec-
tively equal to the marginal product of capital and labor. Formally,

rt = f 0 (kt) (6)

wt = f (kt)− ktf 0 (kt) , w(kt). (7)

In the first period of their life, agents work and allocate the resulting
income, wt, between consumption, c1t , and savings, st, that is

wt = c
1
t + st (8)

Such savings earn the return r in the following period and are spent in the
older age when agents are retired. The olds consume both their capital
income and their existing wealth, hence we assume non-altruistic agents (no
bequest is considered). The consumption in the second period is

c2t+1 = (1 + rt+1 − δ) st, (9)

which together with (8) gives the budget constraint

c1t +
1

1 + rt+1 − δ
c2t+1 = wt. (10)

Individual preferences are characterized by their intertemporal utility
function u

¡
c1t , c

2
t+1

¢
defined over their, non-negative, consumption in the two

periods of their life. We assume that
A1) u : R2+ → R+ is continuous on R2+ and twice continuous differentiable

on R2++.1
Moreover, we require that such utility function satisfies:
A2) the no satiation property, which means that it is increasing in both

variables,

u1
¡
c1, c2

¢
> 0 and u2

¡
c1, c2

¢
> 0, ∀c1, c2 > 0, (11)

where the subscripts indicate, respectively, the partial derivative with respect
to the first and second argument;
A3) a decreasing marginal rate of substitution, or alternatively, the re-

quirement of strictly quasi concavity on the interior of the consumption set.

1We define R2+ , [0,+∞)× [0,+∞) and R2++ , (0,+∞)× (0,+∞).
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Moreover, the Hessian of u, Hu (c1, c2), is non-singular for each c1, c2 > 02,
that is

detHu
¡
c1, c2

¢ 6= 0, ∀c1, c2 > 0, (12)

where

Hu
¡
c1, c2

¢
,
µ
u11 (c

1, c2) u12 (c
1, c2)

u21 (c
1, c2) u22 (c

1, c2)

¶
. (13)

A4) the condition

u1u12 > u2u11, ∀c1, c2 > 0, (14)

which guarantees that consumption in period two is a normal good (see
Lemma 1);
A5) and finally, avoided starvation in both periods, which is guaranteed

by

lim
c1↓0

u1
¡
c1, c2

¢
= ∞, ∀c2 > 0, (15)

lim
c2↓0

u2
¡
c1, c2

¢
= ∞, ∀c1 > 0.

Given all these assumptions agents solve their consumption-saving choice
problem and obtain

st = s
¡
wt, r

e
t+1

¢
=argmax

st∈[0,wt]
u
£
wt − st,

¡
1 + ret+1 − δ

¢
st
¤

(16)

where ret+1 is the t+1 expected rate of return, that is not known at the time
in which the decision has to be taken.

Lemma 1 Let assumptions A1)-A5) hold, then for each w > 0 and r > 0

sw (w, r) ,
∂

∂w
s (w, r) > 0.3 (17)

Proof. See Appendix.
Under this set of assumption the economic dynamic is characterized by

the following set of equations

M ,


kt+1 =

s(wt,ret+1)
1+n

wt = f (kt)− ktf 0 (kt) , w(kt)
rt+1 = f

0 (kt+1)

(18)

2This is exclusively a technical assumption which will be used later on in order to apply
the implicit function theorem. We recall that even strict concavity would not be sufficient
to imply detHu

¡
c1, c2

¢ 6= 0; for example, the strictly concave function F (x, y) = −x4−y4
is such that detHF (0, 0) = 0.

3We have omitted all the indexes for notation convenience.
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which gives

kt+1 =
s
£
f (kt)− ktf 0 (kt) , f 0

¡
ket+1

¢¤
1 + n

. (19)

In the next section we study this model under three different expectation
formation mechanisms.

3 Different expectations formation mechanisms

Now we need to close the model through an adequate assumption about
the expectations formation mechanism. In what follows we study the model
under three alternative specifications.

3.1 Rational expectations

In [6], Galor and Ryder study the model of Section 2 assuming that the agents
are fully rational. In this case they are able to predict the future evolution
of the economic variables so that their expectations are independent of past
observations and will perform perfect foresight, that is

ret+1 = rt+1 (20)

As established in [6], such self-fulfilling expectations will not be, in general,
uniquely determined unless some further conditions are satisfied.
The systemM together with the perfect foresight assumption (20), gives

kt+1 =
s [f (kt)− ktf 0 (kt) , f 0 (kt+1)]

1 + n
. (21)

A6) We assume that Inada conditions are satisfied at the origin

lim
k↓0
f (k) = 0 = f(0) and lim

k↓0
f 0 (k) =∞. (22)

It is possible to show that (see [6] for details)

Proposition 1 (Galor and Ryder (1989)) Given kt > 0, and provided
that savings are a non-decreasing function of the interest rate, that is

∂s
¡
wt, r

e
t+1

¢
∂ret+1

≥ 0, (23)

then there exists a unique self-fulfilling expectations ket+1 = kt+1 > 0.
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Lemma 2 Let assumptions A1), A2), A3), and A5) hold, then, for each
w > 0 and r > 0, condition (23) is satisfied if and only if

u1u2 ≥ (u2u12 − u1u22) st (1 + rt+1 − δ) 4. (24)

Proof. See Appendix.
Therefore, under condition (23), there exists a single valued function φ :

R+ → R+ such that kt+1 = φ (kt) and φ(kt) ↓ 0 as kt ↓ 0. To see these latter
properties it suffices to note that

0 ≤ φ(kt) = kt+1 =
s
¡
wt, r

e
t+1

¢
1 + n

≤ w(kt)
1 + n

=
f (kt)− ktf 0 (kt)

1 + n
≤ f (kt)
1 + n

(25)

and use the assumption A6).
Now, in order to show further results, let us state some preliminary defi-

nitions.

Definition 1 A sequence {kt} is said a dynamic equilibrium if

kt+1 =
s [f (kt)− ktf 0 (kt) , f 0 (kt+1)]

1 + n
(26)

with k0 exogenously given.

Definition 2 A stationary capital-labor ratio, k̄ is said a steady state equi-
librium if

k̄ =
s
£
f
¡
k̄
¢− k̄f 0 ¡k̄¢ , f 0 ¡k̄¢¤

1 + n
(27)

Suppose now that there is an upper bound to the attainable capital, k̃,
for our technology

f
³
k̃
´
= (1 + n) k̃ (28)

This fact, together with the other assumptions about production and util-
ity functions, grants us that every trajectory of the system will eventually
remains boxed in a given, bounded, range; in particular we have the three
following cases

if kt ≥ k̃ then 0 < kt+1 < kt (29)

if 0 < kt < k̃ then 0 < kt+1 < k̃

if kt = 0 then kt+1 = 0t
4From an economic point of view, condition (24) is equivalent to require that the

substitution effect created by an increase in the interest rate is not smaller (in absolute
value) than the income effect.
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which implies that a steady state equilibrium exists (at least the trivial one

k̄ = 0) and that all steady state equilibria lie in the interval
h
0, k̃
´
.

All the assumption we have introduced are not sufficient to rule out the
possibility that the only steady state equilibrium in this overlapping gen-
erations economy is the trivial one, characterised by zero production and
consumption. In order to avoid this unsatisfactory occurrence it’s necessary
to strengthen the Inada conditions. We have:

Proposition 2 (Galor and Ryder (1989)) Given the previously described
overlapping generations model, if

lim
k→0

[−kf 00 (k)] > 1 + n (30)

then there is k̂ > 0 such that

lim
t→∞

kt ≥ k̂ for all k0 > 0 (31)

So, under the assumption (30), which is stronger than the Inada condition
limk→0 f 0 (k) = ∞, the trivial steady state cannot occur provided that the
initial amount of capital is strictly positive. Observe that, even with such
strenghtened Inada condition, the existence of a non-trivial steady state is
not guaranteed. As Galor and Ryder pointed out, in order to obtain such a
result, some restrictions on the nature of the interactions between preferences
and technology are needed. The following propositions can be proved (see
[6] for details):

Proposition 3 (Galor and Ryder (1989)) The overlapping-generation econ-
omy previously described experiences non-trivial steady state equilibrium if
k0 > 0 and
a) limk→0

−swkf 00(k)
1+n−srf 00(k) > 1,

b) limk→∞ f 0 (k) = 0,
c) sr (w, r) ≥ 0, for all (w, r) ≥ 0.

Proposition 4 (Galor and Ryder (1989)) Given k0 > 0 and the follow-
ing conditions:
a) limk→0

−swkf 00(k)
1+n−srf 00(k) > 1,

b) limk→∞ f 0 (k) = 0,
c) sr (w, r) ≥ 0, for all (w, r) ≥ 0,
d) φ0 (k) ≥ 0, for all k > 0,
e) φ00 (k) ≤ 0, for all k > 0,

the overlapping generations economy has a unique, non-trivial, and globally
stable steady state equilibrium.
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Remark 1 We observe that under assumption A4) (that is the assumption
that future consumption is a normal good) Assumption d) in Proposition 4
is redundant. Moreover, despite the correctness of Proposition 4, its proof is
not really correct.

So, in a standard overlapping generations model with capital accumula-
tion, there is in general a multiplicity of stationary equilibria.

3.2 Myopic expectations

Recently in [8] Michel and de la Croix have studied the model of Section 2
by assuming myopic foresight, that is

ret+1 = rt = f
0 (kt) . (32)

In this case the inter-temporal equilibrium with initial capital stock k0 > 0
is necessarily unique and its dynamics is characterized by the following first
order difference equation

kt+1 =
s [f (kt)− ktf 0 (kt) , f 0 (kt)]

1 + n
, m(kt). (33)

The derivative of m(k) is

m0(k) =
sw [w(k), f

0 (k)]w0(k) + sr [w(k), f 0 (k)] f 00 (k)
1 + n

(34)

As a matter of fact, in [8] the authors compare their model with the one
studied in [6]. They first prove the following

Proposition 5 (Michel and de la Croix (2000)) The two dynamics with
perfect and myopic foresight have the same positive steady states.

Remark 2 We observe that under the assumptions made in [6] (which are
the ones we will adopt throughout the paper), in particular, the hypothesis
that f(0) = 0 (cf. 22), k = 0 is also a corner steady state5 for both the
dynamics. Indeed, whenever the production function is absolutely continuous
and such that f(0) = 0 then we always have

w(0+) ,lim
k↓0
f (k)− kf 0 (k) = 0. (35)

5For a dynamics described by kt+1 = g(kt), with g = m,φ, we say that k = 0 is a
corner steady state if

g(0+) ,lim
x↓0

g(x) = 0.
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To see this notice that the absolute continuity of f implies

f (k)− f(0) =
Z k

0

f 0(v)dv < +∞, (36)

which, in turn, yields
lim
k↓0
kf 0 (k) = 0. (37)

Therefore, the fact that f (kt) − ktf 0 (kt) = wt → 0 as kt → 0 together with
the relation s

¡
wt, r

e
t+1

¢ ≤ wt, true, by construction, for both the dynamics,
yield

0 ≤ kt+1 =
s
¡
wt, r

e
t+1

¢
1 + n

≤ wt
1 + n

, (38)

hence k = 0 is a corner steady state in both cases.

Remark 3 Michel and de la Croix show, by a counter-example, that, in a
slightly more general model than the one in [6], when k = 0 is a corner
steady state of the dynamics with myopic foresight it is not necessarily a
corner steady state of the dynamics with perfect foresight. The example they
provide make use of a CES production function with 0 < ρ < 16. Clearly this
production function is such that f(0) > 0.

Michel and de la Croix compare the local stability of both dynamics and
prove the following

Proposition 6 (Michel and de la Croix (2000)) Let k̄ > 0 a steady state
and assume (23). If m0(k̄) ≥ 0 (monotonic dynamics with myopic foresight),
k̄ is stable, unstable or non-hyperbolic for the dynamics with perfect fore-
sight if and only if it is respectively stable, unstable or non-hyperbolic for
the dynamics with myopic foresight.

Remark 4 Notice that whenm0(k̄) < 0 the equivalence stated in the previous
proposition in not generally true but we can only say that if −1 < m0(k̄) < 0
then

¯̄
φ0(k̄)

¯̄
< 1. In [8] the authors do not list all the assumptions on f and

6The constant elasticity of substitution or CES production function has the form

Y = F (K,L) = (aKρ + bLρ)
1
ρ ,

with a, b positive constants and ρ 6= 0 (see [11], p. 19). Michel and de la Croix simply
require ρ > 0, but with ρ ≥ 1 the example given in [8] does not work. It does work if
0 < ρ < 1.
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u except for what they call Assumption H7 and it seems they say that the
dynamics with perfect foresight are strictly monotonic under this assumption,
that is φ0(k̄) > 0 for each steady state k̄ > 0. We observe that this is not
generally true unless further conditions are assumed; in particular, we need
conditions which ensure sw (w, r) ≥ 0 for each (w, r) ∈ R2+, for instance
assumption A4).

Finally, in [8] the authors prove the following uniqueness result:

Proposition 7 (Michel and de la Croix (2000)) No more than one pos-
itive steady state k̄ of the dynamics with perfect foresight exists if

sw [w(k), f
0 (k)]w0(k) + sr [w(k), f 0 (k)] f 00 (k) <

s [w(k), f 0 (k)]
k

, ∀k > 0.
(39)

Such a steady state exists if and only if

lim
k↓0

s [w(k), f 0 (k)]
k

> 1 + n. (40)

Remark 5 Comparing Proposition 7 with Proposition 4 we point out that
Michel and de la Croix require conditions only on the second derivatives of
the functions u and f but, contrary to Galor and Ryder, they can prove
only uniqueness. As a matter of fact, if Michel and de la Croix wanted
global stability together with uniqueness they should set conditions on the third
derivatives just as Galor and Ryder do (we are talking about the assumpion
φ00 (k) ≤ 0).

3.3 Steady state uniqueness under perfect foresight: A
note

In this subsection we provide, without referring to the myopic analysis, a
sufficient uniqueness condition in the perfect foresight case which rests only
on the second derivatives of the functions u and f . In Subsection 3.1 we saw
that, under suitable assumptions (see Proposition 1), equation (21) implicitly

7In [8] Assumption H is stated as follows: For all (k,w) ∈ R2+,

g (k,w) = 0 =⇒ gk (k,w) > 0,

where
g (k,w) , (1 + n) k − s(w, f 0(k)).
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defines a function φ : R+ → R+ such that kt+1 = φ (kt). That is, φ is such
that, for each kt > 0,

φ (kt) =
s [w(kt), f

0 (φ (kt))]
1 + n

. (41)

It is possible to prove the following

Proposition 8 Let condition (23) and assumptions A1), A2), A3) and A5)
hold, then the dynamics under perfect foresight admits at most one positive
steady state if

sw (w (x) , f
0 (y))w0 (x)

1 + n− sr (w (x) , f 0 (y)) f 00 (y) <
y

x
, ∀x, y > 0 s.t. y ≤ w(x). (42)

Proof. k̄ > 0 is a steady state with perfect foresight if φ
¡
k̄
¢
= k̄, that is if

s
£
w(k̄), f 0

¡
φ
¡
k̄
¢¢¤

1 + n
= k̄ (43)

or, equivalently, if k̄ is such that

s
£
w(k̄), f 0

¡
φ
¡
k̄
¢¢¤

k̄
= 1 + n. (44)

Clearly, a sufficient condition for uniqueness of k̄ is h0 (k) < 0, ∀k > 0, where
the function h is thus defined

h (k) , s [w(k), f 0 (φ (k))]
k

=
(1 + n)φ (k)

k
. (45)

An easy calculation yields

h0 (k) =
µ
1 + n

k

¶µ
φ0 (k)− φ (k)

k

¶
. (46)

Since,

φ0 (k) =
sw [w(k), f

0 (φ (k))]w0 (k)
1 + n− sr [w(k), f 0 (φ (k))] f 00 (φ (k)) , (47)

it follows that h0 (k) < 0, ∀k > 0, if and only if
sw [w(k), f

0 (φ (k))]w0 (k)
1 + n− sr [w(k), f 0 (φ (k))] f 00 (φ (k)) <

φ (k)

k
; (48)

hence the conclusion.
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Remark 6 Uniqueness condition given in Proposition 7 is weaker than the
one given in Proposition 8. This is due to the fact that if we do not refer to
the myopic analysis then we need to consider all the possible implicit function
φ defined by (21), although we know that 0 < φ(k) < w (k) , ∀k > 0, whereas
in the myopic case φ is explicitly given by m (cf. (33)).

Remark 7 We further observe that a sufficient condition for having h strictly
decreasing, ∀k > 0, is, not surprisingly (cf. Proposition 4), the strict con-
cavity of φ (together with its differentiability). Indeed, if φ is differentiable
strictly concave8 then, for each k, k0 ≥ 0, we have

φ(k0)− φ(k) ≤ φ0(k) (k0 − k) . (49)

For k0 = 0, we obtain
φ0(k)k − φ(k) ≤ 0, (50)

for each k > 0 (recall that from (25) we have φ(0) = 0), that is h0 (k) ≤ 0,
∀k > 0. Now, observe that h cannot be constant in any interval I ⊂ (0,+∞).
In fact, if this were the case then h0 (k) = 0, ∀k ∈ I, and φ would be a straight
line in that interval, which is a contraddiction since φ is strictly concave.
Hence, φ is strictly decreasing.

We now turn to the adaptive expectation model.

3.4 Adaptive expectations

Let’s consider the well known first order autoregressive adaptive expectations
learning mechanism. In this case forecasts are formed through a weighted
mean, with geometrically decreasing weights, of past observed data. Indeed,
in an economy with infinite past, given the time series of old interest rates
r = (rt, rt−1,...) and set 0 < α < 1, we can write

ret+1 =
∞X
j=0

α (1− α)j rt−j = ret + α (rt − ret ) (51)

Introducing this expectation function in the overlapping generations model
we obtain

kt+1 =
s
¡
wt, r

e
t+1

¢
1 + n

(52a)

wt = f (kt)− ktf 0 (kt) , w (kt) (52b)

rt = f
0 (kt) (52c)

ret+1 = r
e
t + α (rt − ret ) (52d)

8We, actually apply the definition of concavity to the function φ extended by continuity
at the origin by setting φ (0) = 0.
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where f (kt) is the production function defined in (4). Substituting (52b) in
(52a) and (52c) in (52d) the system reduces to

AM ,
(
kt+1 =

s[w(kt),ret+1]
1+n

ret+1 = r
e
t + α [f 0 (kt)− ret ]

(53)

The following proposition holds.

Proposition 9 A point k̄ > 0 is a stationary steady state for the model
under perfect foresight if and only if

¡
k̄, f 0

¡
k̄
¢¢
is a stationary steady

state for the model under adaptive expectations.

Proof. In fact, given

k̄ =
s
£
f
¡
k̄
¢− k̄f 0 ¡k̄¢ , f 0 ¡k̄¢¤

1 + n
(54)

and set r̄ = f 0
¡
k̄
¢
, we have(

k̄ =
s[f(k̄)−k̄f 0(k̄),r̄]

1+n

r̄ = r̄ + α
£
f 0
¡
k̄
¢− r̄¤ (55)

Likewise, the opposite follows immediatly.

Remark 8 It is useful to notice that, in order to be a stationary steady
state for the dynamic with adaptive expectations, a point

¡
k̄, r̄
¢
should satisfy

r̄ = f 0
¡
k̄
¢
; so there is a one to one correspondence between steady states of

the two maps.

Remark 9 Notice that the condition (54) is the same for the model with
myopic expectations so that such one to one correspondence among non trivial
steady states holds also between the myopic and the adaptive model.

As a consequence of Proposition 9 and Remark 9, existence and unique-
ness of steady states for the model with adaptive expectations is guaranteed
under the same assumptions of propositions 3 and 7. Now, suppose that such
a (non trivial) steady state exists. We want to compare the local stability
properties of the model, subject to the three diverse hypothesis about the
expectations formation mechanism.
The Jacobian matrix of AM , evaluated in the steady state, is given by

JAM ,
µ

sww0+srαf 00
1+n

sr(1−α)
1+n

αf 00 (1− α)

¶
(56)

14



and defining ξ and µ as (
ξ , sww0

1+n

µ , srf 00
1+n

(57)

we obtain ½
trace (JAM) = ξ + αµ+ 1− α
det (JAM) = (1− α) ξ

(58)

Remark 10 Notice that the assumptions made so far imply ξ > 0 and µ ≤ 0.
Hence, in the sequel the analysis will deal only with these parameter values.

Given the usual stability conditions for 2× 2 discrete dynamical system detA < 1
1− trA+ detA > 0
1 + trA+ detA > 0

(59)

it results 
ξ < 1

(1−α)
µ < 1− ξ

µ > − (2−α)(1+ξ)
α

(60)

where, transforming the inequalities into equations, the three conditions rep-
resent the Neimark-Hopf, Saddle-node and Period-doubling bifurcation loci,
respectively. Furthermore, the condition

(trace (JAM))
2 − 4 det (JAM) < 0 (61)

m
(ξ + αµ+ 1− α)2 − 4 (1− α) ξ < 0

determines the region of parameters for which the system has complex eigen-
values. The situation is summarized in the following Proposition

Proposition 10 Suppose that
¡
k̄, r̄
¢
is a stationary steady state for the OLG

economy under adaptive expectations described in (53) then:
a. For all α ∈ (0, 1), the point ¡k̄, r̄¢ is locally stable for the system AM

iff the pair (ξ, µ) satisfies conditions (60).
b. For all α ∈ (0, 1), the point ¡k̄, r̄¢ loose stability in one of the following

ways:
i. through a Period-doubling bifurcation which occurs when µ =

− (2−α)(1+ξ)
α

;
ii. through a Saddle-node bifurcation occurring for µ = 1− ξ;
iii. through a Neimark-Hopf bifurcation by crossing the line ξ =

1
(1−α) .
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A pictorial representation of the bifurcation diagram for the system AM
is given in figure 1. The lines colored in magenta, blue and green repre-
sent the Period-doubling, Saddle-node and Neimark-Hopf bifurcation loci,
respectively; the parabola (in red) marks the limits of the region with com-
plex eigenvalues. Gray is the region of stability, both with real (light) and
with complex (dark) eigenvalues.
It is of some interest to investigate how the stability region evolves with

the changing in the learning parameter α. The Period-doubling bifurcation
locus, given by µ = − (2−α)(1+ξ)

α
, converges to the line ξ = −1 when α → 0

while converges to the line µ = ξ−1 when α→ 1 (see figure 2). At the same
time, the Neimark-Hopf bifurcation locus, given by ξ = 1

(1−α) , converges to
the line ξ = 1 when α → 0 while goes away to infinity when α → 1 (see
figure 3). Opposite to the previous two cases, the Saddle-node bifurcation
locus remains unchanged for all α.
As regards the region with complex eigenvalues, we observe that it is

bounded by the conic of equation (ξ + αµ+ 1− α)2 − 4 (1− α) ξ = 0. At
a first glance we can observe that it is a matter of parabola due to the fact
that the matrix of the quadratic formµ

1 α
α α2

¶
(62)

is singular for all α. Such a parabola converges to the lines ξ = 1 and
µ = −ξ when α → 0 and α → 1 respectively; evolving between this two
limiting situations it first enlarges and subsequently squeezes one against
the other its two branches while continuously rotating its symmetry axis
counterclock-wise (see figure 4). We analize more precisely its shape in the
following paragraph, while studying the linear transformation we are using
in the parameter space.
Now we are ready to understand how the stability region changes with

respect to the values of α. In figure 5 is shown the evolution of the region
and is put in evidence the intersection point between the Neimark-Hopf and
Period-Doubling bifurcation lines. The importance of such points will become
clear with the following Lemma

Lemma 3 Given the system AM , for all α ∈ (0, 1), the segment which joins
the Origin to the intersection point of the lines ξ = 1

(1−α) and µ = − (2−α)(1+ξ)α

belongs to the stability region (except for the extrema in the intersecton point).

Proof. It is an immediate consequence of the inequalitites in (60) and of
the following four facts.

16



Figure 1: The bifurcation diagram for the system AM with α = 0.6

Figure 2: The Period-doubling bifurcation locus drawn for α = 0.2, 0.5 and
0.9
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Figure 3: The Neimark-Hopf bifurcation locus drawn for α = 0.1, 0.5 and
0.7

Figure 4: The border of the region with complex eigenvalues drawn for α =
0.02, 0.5 and 0.95
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1. The intersection point of the line µ = −ξ+1 with the y−axis is bigger
than 0 (Of course it is y = 1!)

2. The intersection point of the line µ = − (2−α)(1+ξ)
α

with the y − axis is
smaller than 0 (Of course it is y = (α−2)

α
!)

3. The slope of the line µ = − (2−α)(1+ξ)
α

is smaller than the slope of the
line µ = −ξ + 1 (Indeed (α−2)

α
< −1 for all α ∈ (0, 1))

4. Finally, 1
(1−α) > 0 for all α ∈ (0, 1).

Facts 1. 2. and 4. together with conditions (60) are sufficient to guarantee
that the Origin belongs to the stability region; Facts 1. 2. 3. and 4. together
with conditions (60) are sufficient to guarantee that the intersection point of
the Neimark-Hopf and Period-Doubling bifurcation lines is on the boundary
of the stability region. So, as the stability region is convex (it is the inter-
section of convex sets), we have the result. (See figure (6) for a pictorial
representation).

Lemma 4 Given the system AM , for all α ∈ (0, 1), the segment which
joins the point (1, 0) to the intersection point of the lines ξ = 1

(1−α) and

µ = − (2−α)(1+ξ)
α

belongs to the stability region (except for the extrema).

Proof. It is an immediate consequence of the inequalitites in (60) and of
the following four facts.

1. The point (1, 0) is the intersection between the Saddle-Node bifurcation
line (µ = −ξ + 1) and the x− axis

2. The intersection point of the line µ = − (2−α)(1+ξ)
α

with the y − axis is
smaller than 0 (Of course it is y = (α−2)

α
!)

3. The slope of the line µ = − (2−α)(1+ξ)
α

is smaller than the slope of the
line µ = −ξ + 1 (Indeed (α−2)

α
< −1 for all α ∈ (0, 1))

4. Finally, 1
(1−α) > 1 for all α ∈ (0, 1).

Indeed such conditions are sufficient to guarantee that both the point
(1, 0) and the intersection point of the Neimark-Hopf and Period-Doubling
bifurcation lines are on the boundary of the stability region. Furthermore,
as the stability region is convex (it is the intersection of convex sets), the
segment belongs to its convex closure. The possibility that the segment be

19



Figure 5: The intersection points between the Neimark-Hopf and Period-
Doubling bifurcation lines for α = 0.35, 0.7 and 0.9.

Figure 6: The stability area for the OLG model with adaptive expectations
and the segment joining the Origin with the intersection point between the
Neimark-Hopf and Period-Doubling bifurcation lines.
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on the boundary is ruled out by facts 2:, 3:, and 4:. So the result follows (See
…gure (6) for a pictorial representation).

The Lemma we have just proved makes it possible to identify the stability
area for the adaptive model when we consider the possiblity of changing the
learning parameter ®. This is done in the following Proposition.

Proposition 11 Given the model AM , for all the couple (»; ¹) 2 R2 such
that

i) either 0 < » · 1 and ¹ < 0,
ii) or » > 1 and (1+»)2

1¡» < ¹ < 1 ¡ »,
there exists an ® 2 (0; 1) such that the system is locally stable.

Proof. It is su¢cient to show that all the points belonging to the curve of
equation ¹ = (1+»)2

1¡» can be obtained as the intersection point of the Neimark-
Hopf and Period-Doubling bifurcation lines by choosing an adequate value
of ®. Indeed we have

(
» = 1

(1¡®)
¹ = ¡ (2¡®)(1+»)

®

)

8
<
:
® = »¡1

»

¹ = ¡(2¡ »¡1» )(1+»)
»¡1
»

)
(
® = »¡1

»

¹ = ¡ (1+»)2

»¡1
(63)

and for » > 0 we have ® 2 (0; 1). The result follows by Lemma 3 and 4.
The curve ¹ = ¡ (1+»)2

»¡1 (an hyperbola) is represented in …gure (7) together
with its asynthotes » = 1 and ¹ = ¡» ¡ 3.

3.4.1 A note on the parameter space

In the previous paragraph we have set, with equations (57), a relation be-
tween trace and determinant of the Jacobian matrix of the system and the
parameters (sw; sr; f 00; w0) with respect to which we like to infer some in-
formation about how they a¤ect the system stability. Now we want to better
understand such a relation. First of all, we observe that (58) is a one to
one a¢ne map from the (»; ¹)-plane into the (tr; det)-plane, whose matrix
representation is

µ
det
tr

¶
=

µ
0 1 ¡ ®
® 1

¶µ
»
¹

¶
+

µ
0

1 ¡ ®

¶
: (64)

The inverse map is

µ
»
¹

¶
=

Ã
1

(1¡®) 0
¡ 1
®(1¡®)

1
®

!µ
det
tr

¶
+

µ
0

¡1¡®
®

¶
; (65)
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that is (
ξ = 1

(1−α) det
µ = − 1

α(1−α) det+
1
α
tr− 1−α

α

(66)

Now, remember the stability conditions given with respect to trace and
determinant of JAM defined in equations (59 and 61). In figure (8) is repre-
sented the stability region of parameter in the trace-determinant plane. All
the lines and curves are named with small letters and all intersection points
are named with capital ones. The same situation is represented, with respect
to the variables (ξ, µ), in figure (9)
Let’s recall the interdependence among parameters

ξ , sww
0

1 + n
(67)

µ , srf
00

1 + n

It would be interesting to analyze the link between the pair (ξ, µ) and the
set of technology and preference specifications, that is (sw, sr, f 00, w0). If we
imagine to set the value of two of them than the situation can be summarized
through either a linear or hyperbolic relationship, whereas willing to consider
a wider set of cases the situation turns out to be more complex and it certainly
deserves deeper analysis.

3.5 Rational vs adaptive vs myopic expectations: a
comparative analysis

In this subsection we compare the dynamics under rational, adaptive and
myopic expectations. First we need to determine the stability conditions for
the rational and the myopic cases.
As regards the rational expectations model recall that the dynamics is

determined by the implicit map

kt+1 =
s [f (kt)− ktf 0 (kt) , f 0 (kt+1)]

1 + n
(68)

Under the assumption (23) of Proposition 1, there exists a single valued
function φ : R+ → R+ such that kt+1 = φ (kt) and for the implicit function
theorem in the steady state k̄ we obtain

φ0
¡
k̄
¢
=

sw
£
w(k̄), f 0

¡
k̄
¢¤
w0
¡
k̄
¢

1 + n− sr
£
w(k̄), f 0

¡
k̄
¢¤
f 00
¡
k̄
¢ (69)
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Figure 7: The hyperbola obtained as the intersection points of the Neimark-
Hopf and Period-Doubling bifurcation lines by varying the value of α in (0, 1).

Figure 8: The bifurcation diagram in the trace-determinant plane.
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Substituting (57), we have the following stability conditions

¡1 <
»

1 ¡ ¹ < 1 , ¹ < » + 1 and ¹ < 1 ¡ » (70)

The situation is represented in …gure (10)
Much simpler is the case with myopic expectations. The map is given by

kt+1 =
s [f (kt) ¡ ktf 0 (kt) ; f 0 (kt)]

1 + n
, m(kt) (71)

and in the steady state the derivative is given by

m0(¹k) =
sw

£
w(¹k); f 0

¡¹k
¢¤
w0(¹k) + sr

£
w(¹k); f 0

¡¹k
¢¤
f 00

¡¹k
¢

1 + n
(72)

Again, substituting (57), we have the following stability conditions

¡1 < » + ¹ < 1 , ¹ > ¡» ¡ 1 and ¹ < ¡» + 1 (73)

A pictorial representation is given in …gure (11)
At a …rst glance we notice that two kinds of di¤erences arise among the

three bifurcation diagram: …rst, the stability region is wider in the case with
rational expectations while it is not possible to determine a ranking between
the myopic and adaptive case; second, only the adaptive case can loose sta-
bility through a Neimark-Hopf bifurcation (this is due to the fact that it is
a co-dimension two bifurcation which cannot arise in a one-dimensional sys-
tem), both the adaptive and the myopic case could show a Period-doubling
bifurcation and only the Saddle-node could be veri…ed in all the three cases.
The situation is summarized in the following Proposition

Proposition 12 Let
¡¹k; ¹r

¢
a stationary steady state for the map

(
kt+1 =

s[f(kt)¡ktf 0(kt);ret+1]
1+n

rt+1 = E (kt; kt+1; rt)
(74)

where E (¢) could be speci…ed alternatively as the rational (R), adaptive (A)
and myopic (M) expectations function. Let » and ¹ speci…ed as in (23). Then
we have the following results:

1. If (»; ¹) is such that the model with M is locally stable then, for the
same couple of parameters values the model with R is locally stable.

2. If (»; ¹) is such that the model with A is locally stable then, for the
same couple of parameters values the model with R is locally stable.

3. There exist (»; ¹) such that one of the following three facts are veri…ed
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Figure 9: The bifurcation diagram in the (x, µ) plane.

Figure 10: The stability region for the model with perfect foresight
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a. The model with A is locally stable and the model with M is not.
b. The model with M is locally stable and the model with A is not.
c. Both the model with A and the model with M are locally stable.

4. All the three models can loose stability through a Saddle-Node bifurca-
tion which arise always on the line µ = −ξ + 1.
5. Both the model with A and the model with M can loose stability through

a Period-doubling bifurcation, which arise on the line µ = − (2−α)(1+ξ)
α

in the
model with A and on the line µ = −ξ − 1 in the model with M.
6. Only the model with A can experiment a Neimark-Hopf bifurcation

which arise on the line ξ = 1
(1−α) .

Proof. It follows immediately from the stability conditions (60), (70) and
(73)
As we have seen in Proposition 11, in the model with adaptive expec-

tation, if we consider the possiblity for the parameter α to be adequately
changed, the stability region can be enlarged to incorporate completely the
stability region of the model with Myopic expectations. We have the follow-
ing result.

Proposition 13 Let
¡
k̄, r̄
¢
a stationary steady state for the map(
kt+1 =

s[f(kt)−ktf 0(kt),ret+1]
1+n

rt+1 = E (kt, kt+1, rt)
(75)

where E (·) could be specified alternatively as the rational (R), adaptive (A)
and myopic (M) expectations function. Suppose that the parameter α of the
adaptive case could be changed in order to obtain better performances. Then:

The model with R is locally stable

⇓
The model with A is locally stable

⇓
The model with M is locally stable

Proof. It follows immediately from the stability conditions (60), (70) and
(73) and from Proposition 11
The situation is represented in figure (12); in dark gray is shown the

stability region for the myopic model, the sum of dark and medium gray
gives the stability region for the adaptive model whereas the union of all
gray areas represents the set of parameters which grants local stability for
the model with perfect foresight.
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Figure 11: The stability region for the model with myopic expectations

Figure 12: The comparison among global stability regions
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4 Conclusions

In this paper we have dealt with an Overlapping Generations Model with
production as proposed by Galor and Ryder in 1989 [6]. We have studied
this model under three diverse assumptions about agents rationality. For the
cases of rational and myopic expectations we have summarized the results
obtained by Galor and Ryder [6] and Michel and de la Croix [8]. We have
determined a uniqueness condition for stationary steady states in the model
with perfect foresight which impose conditions only on the second derivative
of the production function (whereas the one considered in [6] required as-
sumptions on the third derivative too). Such condition results to be more
restrictive than the one developed in [8] for the model with myopic expec-
tations which, due to the correspondence among steady states of the three
models, could be considered as an alternative. Further, we have completely
developed the analysis of the model under adaptive expectations. We have
derived stability conditions and determined the bifurcation diagram in all
the three cases. From the comparison it results that stability conditions for
the case with rational expectations are less restrictive than for both adaptive
and myopic ones. We have shown that, differently from what happens in the
OLGmodel of pure exchange, the adaptive expectations do not improve local
stability performances of the model with respect to myopic expectations (see
Barucci 2000 [3] for an analysis of this case); this is due to the fact that in
our two-dimensional model a Neimark-Hopf bifurcation could arise, cutting
off part of the parameter space which results to be stable in the myopic case.
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5 Appendix

Proof of Lemma 1 Define

g(s;w, r) , u [w − s, (1 + r − δ) s] , (76)

then problem (16) can be restated as follows

s (w, r) =argmax
s∈[0,w]

g(s;w, r). (77)

Since g(s;w, r) is nothing but the restriction of u (c1, c2) to a convex subset
of R2+, namely the segment

γ ,
©¡
c1, c2

¢ ∈ R2 : ¡c1, c2¢ = (w, 0) + s(−1, 1 + r − δ), 0 ≤ s ≤ wª ,
(78)

it follows that g is strictly quasiconcave on γ. The latter property of g implies
that s (w, r) is a single valued function for each (w, r) ∈ R2++. Moreover,
Assumption A5) implies that problem (77) has no corner solutions. As a
result, the first order conditions (F.O.C.) are necessary and sufficient for
optimality of g and the function s defined in (77) is single valued. The
F.O.C. of g are

F (s, w, r) = 0, (79)

where

F (s, w, r) , d

ds
g(s;w, r) (80)

= (1 + r − δ)u2 [w − s, (1 + r − δ) s]− u1 [w − s, (1 + r − δ) s] .

Assumptions A1), A3), A5) and the compactness of the feasible set γ
imply that (79) does have a unique solution for each (w, r) ∈ R2++. The
partial derivatives Fs(s, w, r) and Fw(s, w, r) are

Fs(s, w, r) = u11 − (1 + r − δ)u12 − (1 + r − δ)u21 + (1 + r − δ)2 u22(81)

= h(−1, 1 + r − δ)Hu (w − s, (1 + r − δ) s) , (−1, 1 + r − δ)i ,
Fw(s, w, r) = (1 + r − δ)u21 − u11. (82)

Assumption A3) implies Fs(s, w, r) < 0 (see [2], Theorem 3.26, p. 78) and
the implicit function theorem apply. It follows that equation (79) implic-
itly define a function s = s (w, r) whose derivative with respect to the first
argument, sw (w, r), is

sw (w, r) = −Fw(s, w, r)
Fs(s, w, r)

. (83)
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From (79) we obtain, thanks to assumption A2), (1 + r − δ) = u1
u2
, which,

together with assumption A4), yields

Fw(s, w, r) =
u1
u2
u21 − u11 > 0, (84)

hence the desired conclusion.

Proof of Lemma 2 We proceed as we do in Proof of Lemma 1. Once
again, the implicit function theorem yields (see Proof of Lemma 1 for nota-
tion)

sr (w, r) = −Fr(s, w, r)
Fs(s, w, r)

, (85)

where

Fr(s, w, r) = u2 + (1 + r − δ) u22s− u12s. (86)

From (79) we get

(1 + r − δ) =
u1
u2

and u2 =
u1

(1 + r − δ)
. (87)

If we substitute (87) into (86) we obtain

Fr(s, w, r) =
u1

(1 + r − δ)
+
u1
u2
u22s− u12s. (88)

Finally, sr (w, r) ≥ 0 if and only if Fr(s, w, r) ≥ 0, that is,

sr (w, r) ≥ 0⇐⇒ u1u2 ≥ (u2u12 − u1u22) (1 + r − δ) s, (89)

which completes the proof.

––––––––––––––––––––––––
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