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Abstract. The wheel – rail contact analysis plays a fundamental role in the multibody 
modeling of railway vehicles. A good contact model must provide an accurate description of 
the global and local contact phenomena (contact forces, position and shape of the contact 
patch, stress and strain) and a general handling of the multiple contact. The model has also to 
assure high numerical efficiency and a good compatibility with commercial multibody 
software (Simpack Rail, Adams Rail). 

In this work the authors intend to present an innovative elastic wheel – rail contact model 
that satisfies the previous specifics. The model considers the wheel and the rail as elastic 
deformable bodies and requires the numerical solution of the Navier’s elasticity equation. 
The contact between wheel and rail has been described by means of suitable analytical 
contact conditions. Subsequently the contact model has been inserted within the multibody 
model of a benchmark railway vehicle (the Manchester Wagon) in order to obtain a complete 
model of the wagon. The whole model has been implemented in the Matlab/Simulink 
environment. Finally numerical simulations of the vehicle dynamics have been carried out on 
many different railway tracks with the aim of evaluating the performances of the model.  

The multibody model of the same vehicle (this time equipped with a standard contact 
model) has been then implemented also in Simpack Rail. The comparison between the results 
obtained by the Matlab model and those obtained by the Simpack model has allowed an 
accurate and reliable validation of the new contact model. 

In conclusion the main purpose of the authors is to achieve a better integration between 
the differential modeling and the multibody modeling. This kind of integration is almost 
absent in literature (especially in the railway field) due to the computational cost and to the 
memory consumption. However it is very important because only the differential modeling 
allows an accurate analysis of the contact problem (in terms of contact forces, position and 
shape of the contact patch, stress and strain) while the multibody modeling is currently the 
standard in the study of the railway dynamics. 
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1 INTRODUCTION 

The multibody simulation of the railway vehicle dynamics needs a reliable contact model 
that satisfies the following specifics: accurate description of the global and local contact 
phenomena (contact forces, position and shape of the contact patch, stress and strain), general 
and robust handling of the multiple contact, high numerical efficiency and compatibility with 
commercial multibody software (Simpack Rail, Adams Rail). 

The wheel – rail contact problem has been discussed by several authors and many models 
can be found in the literature. Currently the main multibody approaches to the problem are the 
so - called rigid contact formulation and the semi - elastic contact description. The rigid 
approach considers the wheel and the rail as rigid bodies. The contact is imposed by means of 
constraint equations and the contact points are detected during the dynamic simulation by 
solving the nonlinear algebraic differential equations associated to the constrained multibody 
system. Indentation between the bodies is not permitted and the normal contact forces are 
calculated through the Lagrange multipliers. Finally the Hertz’s and the Kalker’s theories 
allow to evaluate respectively the shape of the contact patch and the tangential forces. [1] [2] 
[3] [4] [5] [6] Also the semi – elastic approach considers the wheel and the rail as rigid bodies. 
However in this case there are not constraints and the indentation between the bodies is 
permitted. The contact points are detected by means of approximated procedures (based on 
look – up tables and simplifying hypotheses on the problem geometry) or by means of semi – 
analytical methods (based on the reduction of the problem dimension). The normal contact 
forces are calculated as a function of the indentation while, as in the rigid approach, the 
Hertz’s and the Kalker’s theories allow to evaluate the shape of the contact patch and the 
tangential forces. [4] [5] [6] [7] [8] [9] Both the described multibody approaches are 
computationally very efficient but their generality and accuracy turn out to be often 
insufficient because the physical hypotheses behind these theories are too restrictive and, in 
many circumstances, unverified. 

In order to obtain a complete description of the contact phenomena, differential contact 
models are needed. In other words wheel and rail have to be considered elastic bodies 
governed by the Navier’s equations and the contact has to be described by suitable analytical 
contact conditions. The contact between elastic bodies has been widely studied in literature 
both in the general case and in the rolling case. Many procedures based on variational 
inequalities, FEM techniques and convex optimization have been developed. This kind of 
approach assures high generality and accuracy but still needs very large computational costs 
and memory consumption. [4] [10] [11] [12] [13] [14] [15] Due to the high computational 
load, referring to the current state of the art, the integration between multibody and 
differential modeling is almost absent in literature especially in the railway field. However 
this integration is very important because only the differential modeling allows an accurate 
analysis of the contact problem (in terms of contact forces, position and shape of the contact 
patch, stress and strain) while the multibody modeling is the standard in the study of the 
railway dynamics. 

 In this work the authors intend to present an innovative differential contact model with the 
aim of achieving a better integration between multibody and differential modeling. The new 
contact model is fully 3D and satisfies all the specifics described above. The developed 
procedure requires the discretization of the elastic contact problem (Navier’s equations and 
analytical contact condition) and subsequently the solution of the nonlinear discrete problem. 
Both the steps have been implemented in Matlab/Simulink environment. At this point the 
contact model has been inserted within a 2D multibody model of a railway vehicle to obtain a 
complete model of the wagon. The railway vehicle chosen as benchmark is the Manchester 
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Wagon the physical and geometrical characteristics of which are easily available in the 
literature. [16] The choice of a 2D multibody model allows to study the lateral vehicle 
dynamics and at the same time to reduce the computational load. In the near future fully 3D 
multibody models will be considered in order to have a complete description of the vehicle 
dynamics. The multibody model has been implemented in SimMechanics, a Matlab toolbox 
specifically designed for multibody dynamics. The 2D multibody model of the same vehicle 
(this time equipped with a standard contact model based on the semi – elastic approach) has 
been then implemented also in Simpack Rail, a commercial multibody software for railway 
vehicles widely tested and validated. Finally numerical simulations of the vehicle dynamics 
have been carried out on many different railway tracks with the aim of evaluating the 
performances of the whole model. The comparison between the results obtained by the 
Matlab model and those obtained by the Simpack Rail model has allowed an accurate and 
reliable validation of the new contact model. 

2 GENERAL ARCHITECTURE OF THE MODEL 

As said in the introduction the whole model consists of two different part: the 2D 
multibody model of the railway vehicle and the fully 3D differential wheel – rail contact 
model. The 2D model has been obtained from a fully 3D multibody model of the benchmark 
vehicle (the Manchester Wagon) in order to simulate the lateral dynamics of the wagon and to 
reduce the computational load (Fig. (1)). The 2D model consists of three bodies: a car – body, 
a bogie and a wheelset. The car - body and the bogie have 3 DOFs (lateral and vertical 
displacement and roll) while the wheelset has 4 DOFs (lateral and vertical displacement, roll 
and pitch, i.e. the rotation around its symmetry axis). In other words the wheelset has been 
considered as a 3D body. 

 
 
 
 
 
 
 

 

Figure 1: 3D and 2D multibody models of the Manchester Wagon (Matlab/Simulink). 

During the simulation the 2D multibody model interacts with the fully 3D differential 
contact model. The general architecture of the model is schematically shown in Fig. (2). 

 
 
 

 
 
 
 

 
 

 

Figure 2: General architecture of the model. 
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At each integration step the multibody model evaluates the kinematic variables relative to 
the wheelset and consequently to each wheel – rail pair. Starting from these quantities, the 
contact model, based on Navier’s equations and suitable contact conditions, calculates the 
global and local contact variables (force, contact patch, stress and displacement). Finally the 
knowledge of the contact variables allows the multibody model to carry on the simulation of 
the vehicle dynamics. 

3 REFERENCE SYSTEMS 

The railway track can be considered as a 3D curve ( )sγ  expressed in a fixed reference 

system f f f fO x y z  (s is the curvilinear abscissa of γ ). Usually in the cartographic description 

of the track only the curvature ( )K s  of ( )sγ , the track slope ( )p s  and the cant ( )sβ  are known; 

however the knowledge of these parameters is enough to rebuild the curve ( )sγ . [9] [17] 

 In this work the lateral vehicle dynamics will be described in a local reference system 

R R R RO x y z  having the Rx  axis tangent to the track in the point ( )RO sγ=  and the Rz  axis normal 

to the plane of the rails. In the considered case the time histories of the curvilinear abscissa 
( )s t  and of the origin ( ( ))RO s tγ=  are supposed to be known (for instance they can be 

calculated by simulating independently the longitudinal vehicle dynamics). 
The local system follows the motion of the whole model along the track so that the centers 

of mass of the bodies lie always on the plane R Ry z . According to chapter 2, the car – body and 

the bogie can only translate along Ry  and Rz  and rotate around Rx  while the wheelset can also 

rotate around its symmetry axis. 
Subsequently a third reference system W W W WO x y z  is defined. The origin WO  coincides with 

the center of mass of the wheelset and the Wy  axis with its symmetry axis. This system is 

fixed to the wheelset except for the rotation around the Wy  axis. Finally two reference systems 

b b b bO x y z  and B B B BO x y z  are introduced, fixed respectively to the bogie and to the car - body. As 

usual the origins coincide with the centers of mass. The placement of the reference systems is 
illustrated in Fig. (3). 

 
 

 
 
 
 
 
 
 

 
 

 
 
 

Figure 3: Reference systems relative to the multibody model. 

In order to correctly describe the differential contact model, two further reference systems 
have to be defined for each wheel – rail pair. For the sake of simplicity only the left pair has 
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been reported in Fig. (4). The first system lw lw lw lwO x y z  is parallel to the system W W W WO x y z  and 

its origin lwO  lies on the symmetry axis of the wheel. The system is fixed to the wheel except 

for the rotation around the lwy  axis. Moreover the origin lwO  belongs to the nominal rolling 

plane, i. e. the plane normal to the rotation axis containing the nominal rolling radius. The 
second system lr lr lr lrO x y z  is parallel to the system R R R RO x y z . Its origin lrO  belongs to the axis 

Ry  while the distance between RO  and lrO  has to assure the correct gauge between the rails. 

Both the reference systems described above are very important because the global and local 
contact variables will be evaluated by the contact model just in these systems. 

 
 

 
 
 
 
 
  
  
 
 
 
 

 
 
 

Figure 4: Reference systems relative to the differential contact model. 

Finally, as regards the external forces acting on the bodies, some considerations are needed. 
As said before, the lateral vehicle dynamics is studied in the local reference system R R R RO x y z  

but this system is not inertial. Therefore the multibody model will have to consider the effect 
of the fictitious forces (centrifugal force and Coriolis force). These quantities can be 
calculated starting from the knowledge of the kinematics of the bodies as a function of the 
curvature ( )K s , the track slope ( )p s  and the cant ( )sβ . [17] 

4 THE 2D MULTIBODY MODEL 

The 2D multibody model has been obtained from a fully 3D multibody model of the 
Manchester Wagon, the physical and geometrical characteristics of which are easily available 
in the literature. [16] The original 3D model consists of: 
- 1 car – body, 2 bogies and 4 wheelsets 
- rear and front primary suspensions 
- rear and front secondary suspensions (including roll bar, traction rod and bumpstop). 

Both the primary and the secondary suspensions are usually modeled by means of 
nonlinear force elements like three- dimensional springs and dampers. The 2D model can be 
thought of as a section of the 3D model and comprises (Fig. (5)): 
- one car – body, one bogie and one wheelset 
- one primary suspension 
- one  secondary suspension (including roll bar and bumpstop). 
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                     Table 1: Scaling factors (mass and inertia).        
 

 
 
 

 
                            Table 2: Scaling factors (springs and dampers).  

 

  Figure 5: 2D multibody model of the Manchester Wagon. 

As regards the bodies, only some DOFs are allowed by the 2D model: 
- the car – body and the bogie have 3 DOFs; they can translate along the axes Ry  and Rz  

(lateral and vertical displacements) and rotate around the Rx  axis (roll) 

- the wheelset, considered as a 3D body, has 4 DOFs; besides the previous DOFs it can also 
rotate around its symmetry axis Wy  (pitch). 

Moreover, in order to assure the dynamic equivalence between the 2D model and the 
original 3D model, the inertial characteristics of the bodies and the physical characteristics of 
the force elements have to be correctly scaled down. [5] [16] The values of the scaling factors 
are schematically reported in Tab. (1) and Tab. (2).              

The choice of a 2D multibody model has been made with the aim of studying the lateral 
vehicle dynamics and, at the same time, of reducing the computational load. In the near future 
fully 3D multibody models of the Manchester Wagon will be considered in order to have a 
complete description of the vehicle dynamics. 

5 THE 3D DIFFERENTIAL CONTACT MODEL 

As regards the generic contact variable Z , the following convention will be adopted: 
- wZ  and r

wZ  will denote a variable relative to the wheel respectively expressed in the 

reference systems lw lw lw lwO x y z  and lr lr lr lrO x y z  

- rZ and w
rZ  will denote a variable relative to the rail respectively expressed in the reference 

systems lr lr lr lrO x y z  and lw lw lw lwO x y z . 

In the future, according to this convention, the various changes of reference system won’t 
be continually remarked but will be taken for granted. 

5.1 Inputs and Outputs 

With reference to Fig. (2), the contact model can be thought of as a black box having the 
following inputs and outputs: 
- INPUTS: the kinematic variables relative to the considered wheel – rail pair (in this case the 

left one), i.e. the position rwO , the velocity  r
wO

•

, the orientation r
wR  and the angular velocity 

r
wω  of the reference system lw lw lw lwO x y z  with respect to the system lr lr lr lrO x y z  (see Fig. (4)).    

- OUTPUTS: the global and local contact variables relative to the wheel and to the rail, like 

Body Mass Inertia 
Car – body 0.25 0.25 

Bogie 0.5 0.5 
Wheelset 1 1 

Suspensions Springs Dampers 
Secondary 0.5 0.5 
Primary 1 1 
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the contact forces wCF  and rCF , the stresses wσ  and rσ , the displacements wu  and ru  and the 

contact patches wCA  and rCA . 

5.2 The kinematics of the problem 

The wheel and the rail have been considered as two linear elastic bodies wΩ  and rΩ  (as 

shown in Fig. (6)). Both the domains are supposed to be sufficiently large compared to the 
dimensions of the contact patch. [12] [13] 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 6: The problem geometry. 

The boundaries w∂Ω  and r∂Ω  are split into two disjoint regions, respectively wDΓ , wCΓ  and 

rDΓ , rCΓ . Within the regions wDΓ  and rDΓ  the displacements are fixed (and equal to zero) 

while wCΓ  and rCΓ  (dashed in the figure) are the regions where the contact may occur. 

In case of contact the geometric intersection between the surfaces wCΓ  and rCΓ  (and thus 

between the non – deformed configurations) allows to define two regions �wC wCA ⊂ Γ  and 
�

rC rCA ⊂ Γ  (with � �
wC rCA A≃ ) that can be considered as a rough estimate of the contact areas. 

The situation is schematically sketched in Fig. (6) and Fig. (7). 
The real contact areas �

wCwCA A⊂  and �
rCrCA A⊂  (with wC rCA A≃ ) are unknown and have to 

be calculated by the model. For this purpose a contact map Φ  has to be introduced. The 

contact map � �: wC rCA AΦ →  (by convention the wheel is the master body) locates the position 

of the point �( )r
rCwx AΦ ∈  that will come in contact with the generic point �r

wCwx A∈ . In this case 

the map Φ  is defined as the normal projection ( )r
wxΦ  of the point �r

wCwx A∈  on the surface 
�

rCA . Starting from the contact map, the distance function between the deformed 
configurations �: wCd A R→  can be evaluated: 

( ) ( )( ) ( )r r r r r r
w w r w w w wd x u u n x x n= − − Φ −i i  (1) 

where r
wn  is the outgoing normal versor to the surfaces wCΓ . The function d  is positive if 

there is penetration between the deformed configurations and negative otherwise. 
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Formally the contact area wCA  is defined as the region of �wCA  where the function d  is 

positive while the contact area ( )rC wCA A= Φ  is the normal projection of wCA  on � rCA . In other 

words, from a kinematic point of view, the penetration between the deformed bodies is 
allowed and will play a fundamental role in the contact model (see paragraph 5.3). [12][13] 
 
 
 

 
 
 
 
 

 

Figure 7: Contact map and distance function. 

In this way the estimated contact areas �
wCA  and � rCA  depend only on the relative wheel – 

rail kinematics ( r
wO ,  r

wO
•

, r
wR  and r

wω ) while the real contact areas wCA  and rCA  depend also 

on the displacements wu  and ru . Finally it is useful to remark that no hypothesis has been 

made on the shape of the contact patch; in particular, the contact patch can be formed of one 
or more disjoint parts. 

As regards the wheel and rail profiles, the standard ORE S 1002 and UIC 60 have been 
used. [17] 

5.3 The contact model 

According to the linear theory of elasticity [12] [13], both the wheel and the rail are 
governed by the Navier’s equations: 

�

�

�

�

 ( ) 0 on ( )  on A

 ( ) 0 on ( ) 0 on \ A

0 on ( )  on A

0 on ( ) 0 on \ A
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where wn  and rn  are the outgoing normal vectors to the surfaces wCΓ  and rCΓ  while 
w

p  and 

r
p  are the unknown contact pressures. The pressures 

w
p  and 

r
p  are defined on �wCA  and � rCA  

but, according to paragraph 5.2, will have to be zero on � \wC wCA A  and � \rC rCA A . Both the 

bodies have the material characteristics of the steel (Young’s modulus 112.1*10w rE E Pa= =  

and Poisson’s coefficient 0.3w rν ν= = ). 

In the studied case the volume forces (i. e. the gravity) have been neglected because the 
multibody model of the wheelset already considers their effect. Moreover, since the solution 
is supposed to be steady within the integration step (see Fig. (2)), also the inertial terms have 
been omitted. 

Equivalently the problem (2) can be formulated in weak form as follows: 
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�

�

( ) : ( )  

( ) : ( )  

wCw

rCr

w w w ww w ww
A

r r r rr r rr
A

u v dV p v dA v V

u v dV p v dA v V

σ ε

σ ε
Ω

Ω

= ∀ ∈

= ∀ ∈

∫ ∫

∫ ∫

i

i

. (3) 

where wε  and rε  are the strains while wV  and rV  are suitable Sobolev’s spaces. 

In order to complete the contact model, the contact pressures 
w

p  and 
r

p  have to be 

expressed as a function of the displacements wu  and ru . For the sake of simplicity the normal 

and the tangential contact pressures on the wheel are introduced: r rr
wwN w

p p n= i , 
r r rr

wwNwT w
p p p n= − . The normal pressure rwNp  has been calculated by means of the distance 

function d : 

�( ) max( ( ),0) on r rr
wCw wwNp x K d x A= −  (4) 

where 0K >  is a fictitious stiffness constant. The value of K have to be chosen large enough 
to assure the accuracy required by this kind of problems. The condition of ideal contact (total 
absence of penetration between the deformed bodies) is reached for K → +∞  (usually 

310 ^15 N/mK ≥ ).[12][13] 
To evaluate the tangential pressure r

wT
p , the slip r

ws  between the wheel and rail surfaces 

has to be defined. Since the solution is supposed to be steady within the integration step, the 
following expression holds: [4] 

( ) ( ) ( ) ( ( )) ( ( ))

( ) ( ) ( ) ( ( )) ( ( )) ( ( ))

r r r r r r r r
w w w w w w r w r w

r r r r r r r rr
w w w w w r w w r ww r

s x w x u x w x u x

w x J x w x w x J x w x

• •
= + − Φ − Φ =

= + − Φ − Φ Φ
 (5) 

where r
ww  and rw  are the rigid velocity of the points rwx  and ( )r

wxΦ  while r
wJ  and rJ  are 

the Jacobians of rwu  and ru . As usual the normal and the tangential slips are: r rr
w wwNs s n= i , 

r r rr
wT w wwNs s s n= − . According to the standard friction models, the tangential pressures r

wT
p  can 

be expressed as follows: 

�

0 if ( ) 0

( ) on ( )
( ( ), ) ( ) if ( ) 0

( )

rr
wwT

r r r r
wCw r r rr r rwT wT w

w w wwT wN wTrr
wwT

s x

p x As x
s x V p x s x

s x
µ

 =
= 

− >


 (6) 

where r
wTs  is the norm of r

wTs  and V is the longitudinal velocity of the vehicle. Further details 

on the friction function ( , )r
wTs Vµ  can be found in the literature. [19] 

Finally the action – reaction principle (the Newton’s Third Law) allows to calculate the 
pressures 

r
p : 

�( ( )) ( ) on r r r
wCw wr w

p x p x AΦ = − . (7) 

It is useful to remark that, according to the described model, the pressures r

w
p  and 

r
p  are 

zero respectively on � \wC wCA A  and � \rC rCA A . 
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The displacements wu  and ru  will be evaluated in the following through the numerical 

solution of Eq. (3). The knowledge of these unknown quantities will allow to calculate all the 
other required outputs like the contact areas wCA  and rCA  and the stresses wσ  and rσ . The 

contact forces wCF  and rCF  will be estimated by integration: 

� �wC rC

wC rCw r
A A

F p dA F p dA= =∫ ∫ . (8) 

5.4 The discretization of the model 

Both the elastic bodies have been discretized by means of tetrahedral elements and linear 
shape functions. The meshes have been built according to the standard Delaunay’s algorithms 
(see Fig. (8)). [18] 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 8: Discretization of the contact model. 

The resolution of the meshes on the surfaces wCΓ  and rCΓ  is constant (usually in the range 

1mm  2mm÷ ) because the position and the dimensions of the contact patch are a priori 
unknown. The surface resolution has also to assure an accuracy enough to correctly describe 
the contact phenomena. Moreover it is important to remark that the meshes have been created 
directly in the reference systems lw lw lw lwO x y z  and lr lr lr lrO x y z ; therefore they don’t change 

during the simulation and can be easily built off – line. 
In the future the following convention will be adopted: 

- the sets of all the elements of wheel and rail will be called wT  and rT  while the vectors 
12

  ,w h r lu u R∈  will contain the displacements of the four nodes belonging to the elements 

wh T∈  and rl T∈ . Finally the vectors wU  and rU  will comprise the displacements relative to 

all the nodes of wheel and rail. Since the displacements on wDΓ  and rDΓ  are zero, the 

dimension of wU , rU  are 3( )w wDN N−  and 3( )r rDN N− , where wN  and rN  are the numbers 

of nodes of wheel and rail while wDN  and rDN  are the numbers of nodes on wDΓ  and rDΓ . 

- similarly wC  and rC  will be the sets of the active contact elements on wheel and on rail, i. e. 

the sets of the elements having respectively a face �
i
wCA  and �

j
rCA  that lies on �wCA  and � rCA . The 

vectors 12
  ,w i r ju u R∈  will contain the displacements of the four nodes belonging to the 

r
r
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( )r
r wx x= Φ

r
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�
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�
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i
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�
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( )r
r wx x= Φ
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elements wi C∈  and rj C∈  while the vectors wCU  and rCU  will comprise the displacements 

relative to all the active elements. The dimension of wCU , rCU  are 3 wCN  and 3 rCN  where 

wCN  and rCN  are the number of nodes belonging to the active elements. 

The knowledge of the relative kinematics (r
wO ,  r

wO
•

, r
wR  and r

wω ) and consequently of the 

estimated contact areas �wCA  and � rCA  allows to determine the sets wC  and rC  of the active 

contact elements on the wheel and on the rail. 

For each active contact element on the wheel, the center  
r
w ix  of the face �

i
wCA  is considered. 

The normal projection   ( )r
r j w ix x= Φ  of  

r
w ix  on � rCA  will belong to the external face �

j
rCA  of the 

 - thj  active contact element on the rail. In particular the index ( )j i  will be a function of the 

index i . In other words the pairs of points   ( )(  ,   )r
w i r j ix x  with wi C∈  can be thought of as the 

discretization of the contact map Φ . The situation is schematically sketched in Fig. (8). 

The values of the displacements r
wu , ru  and of their Jacobians rwJ , rJ  in the points  

r
w ix  and 

 r jx  are evaluated through the shape functions. [12] [13] [18] 

At this point the distance function  ( )r
w iid d x=  and the pressure   

( )r r r
w iw i w

p p x=  on the face 

�
i
wCA  of the active element of the wheel can be calculated by means of Eq. (1), (4) and (6). 

Finally a discrete version of the action – reaction principle (the Newton’s Third Law) is 

needed to evaluate the pressure   
( )r jr j r

p p x=  on the face �
j
rCA  of the active element of the rail: 

� �
  

| | | |
j i r
rC wC

r j w i
A p A p=  (9) 

where �| |
i
wCA  and �| |

j
rCA  are the areas of the faces �

i
wCA  and �

j
rCA . Both the pressures 

 

r

w i
p  and 

 r j
p  are supposed to be constant on �

i
wCA  and �

j
rCA . 

The standard FEM techniques allow to discretize the weak form of the contact problem 
(see Eq. (3)) : [12] [13] [18] 

�

�

      

      

( ) : ( )  ( , )

( ) : ( )  ( , )

w wwCw

r rrCr

T T T T
ww w w h w h w w w w i wC rC ww w w h w w iw w i

h T i CA

T T T T
rr r r l r l r r r r j wC rC rr r r l r r jr r j

l T j CA

u v dV u K v U K V p v dA p M v F U U V

u v dV u K v U K V p v dA p M v F U U V

σ ε

σ ε

∈ ∈Ω

∈ ∈Ω

= = = =

= = = =

∑ ∑∫ ∫

∑ ∑∫ ∫

i

i

 (10) 

where  w hK ,  r lK  are the stiffness matrices relative to the elements wh T∈ , rl T∈  and  w iM , 

 r jM  depend on the shape functions. The global stiffness matrices wK  and rK  are symmetric, 

positive defined and sparse while the vectors wF  and rF , that contain the terms due to the 
contact pressures, are sparse. Moreover the global stiffness matrices are evaluated directly in 
the reference systems lw lw lw lwO x y z  and lr lr lr lrO x y z ; therefore they don’t change during the 

simulation and can be easily built off – line. Eq. (3) and Eq. (10), combined together, give 

3( )

3( )

( , )

( , )

w wD

r rD

T N NT
ww w wC rC w ww

T N NT
rr r wC rC r rr

U K V F U U V V R

U K V F U U V V R

−

−

= ∀ ∈

= ∀ ∈
. (11) 
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Finally, since the matrices wK , rK  are symmetric and the vectors wV , rV  are arbitrary, the 

following nonlinear system of algebraic equations is obtained: 

( , ) ( , )w rw wC rC r wC rCw rK U F U U K U F U U= =  (12) 

where, as said before,  the contact displacements wCU , rCU  are a subset of the displacements 

wU , rU . Eq. (12) can be also written as 

( , ) ( , )w rw wC rC r wC rCw wU H F U U U H F U U= =  (13) 

where the matrices 1
w wH K −=  and 1

r rH K −=  are symmetric, positive defined and full 

(consequently their storage can require an high memory consumption). Like wK  and rK  they 

don’t change during the simulation and can be calculated off – line. Splitting wU , rU  into 

contact displacement wCU , rCU  and non – contact displacement wNCU , wNCU , Eq. (13) 

becomes  

11 12 11 12

21 22 21 22

0 0

( , ) ( , )
wNC rNCw w r r

wC rC wC rCwC rCw w r rw r

U UH H H H
f U U f U UU UH H H H

         
= =          

         
. (14) 

In this way the second and the fourth components of Eq. (14) are sufficient to calculate 
contact displacement wCU , rCU :  

22 22( , ) ( , )wC wC rC rC wC rCw rw r
U H f U U U H f U U= = . (15) 

The matrices 22
wH  and 22

rH  have the same properties as wH  and rH  but this time their 

dimensions are much smaller. However 22
wH  and 22

rH  change during the simulation and 

therefore have to be built directly on – line. The vectors 
w

f  and 
r

f  are full. The remaining  

non – contact displacements wNCU , wNCU  can be evaluated by means of the first and the third 

components of Eq. (14). 
The knowledge of the displacements wU , rU , evaluated by solving Eq. (12) or Eq. (15), 

allows to calculate all the other required outputs like the contact areas wCA  and rCA  and the 

stresses wσ  and rσ . The contact forces wCF  and rCF  are estimated by numerical integration: 

� �
  

| | | |
w r

i j
wC rCwC rCw i r j

i C j C

F A p F A p
∈ ∈

= =∑ ∑ . (16) 

5.5 The numerical solution of the discrete problem 

In this paragraph the numerical methods used for solving the discrete contact problem are 
presented. Both the formulations (12) and (15) will be analyzed in the following. 

Eq. (12) is a large and sparse nonlinear system; on the contrary Eq. (15) is a full non linear 
system with much smaller dimensions than (12). The typical dimensions of wK  and rK  

(depending on the mesh resolution) are in the range 10000  50000÷  while those of 22
wH  and 

22
rH  (depending on the number of active elements) are about 100  1000÷ . 

Techniques based on Newton - Krylov methods are usually very efficient for solving large 
and sparse systems as Eq. (12). [20] Newton - Krylov methods are Newton-type methods for 
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the problem ( ) 0F x =  where F  is a generic nonlinear function. In particular, Krylov methods 
are employed to solve approximately the arising linear systems: 

where '( )F x  is the Jacobian matrix of ( )F x . The Krylov method computes, at each iteration, 
the so-called inexact Newton step ksɶ  which satisfies the condition: 

where the forcing terms 
kη are used to control the level of accuracy. [20] As regards the 

considered problem, numerical experimentations showed that, among all the Krylov methods, 
the best iterative linear solver is the BiCGStab. [21] This kind of numerical procedures are 
known as Newton - BiCGStab methods. 

Iterative methods like the BiCGStab need often a good preconditioner. The employed 
preconditioner P  has been defined as follows: 

Since Eq. (12) is weakly nonlinear, the preconditioner P  is a good approximation of the 
Jacobian matrix. In general, BiCGStab does not require the whole matrix P  but only a 
factorization of it. In the considered case the incomplete Cholesky factorization [21] has been 
used because the matrix P  is not only symmetric and positive defined but also sparse. In 
particular, this factorization performs a reordering of P  and takes advantage of its sparsity in 
terms of execution time and memory consumption. 

An interesting feature of Newton - BiCGStab methods is that they require only the action 
of '( )F x  on a vector v  but not the computation and the storage of the whole Jacobian. In this 
case, the product '( )F x v can be approximated by finite differences [22]: 

where 0ε >  is a scalar small enough. Consequently these methods are called “matrix free”. 
Moreover, it has to be remarked that, if the guarantee of convergence is only local, the 

numerical procedure may fail in finding a solution, even though an effective solution exists. 
Therefore the Newton-BiCGStab method has been embedded into a globalization strategy. A 
monotone line search method with Armijo rule has been employed, with a maximum of 10 
backtracks for nonlinear iteration. [22] [23] 

Finally it has been observed that a small number of nonlinear iterations is needed for 
solving the nonlinear system (12) and that the convergence is achieved in almost all cases. 
Consequently the choice of a less accurate solution of the Newton equations (17) turned out to 
be very efficient and effective in reducing the norm of F . A constant forcing term 

0.5 k kη η= ≤ ∀  has been chosen. The Newton-BiCGStab method stops if the following 

stopping criterion is satisfied: 

The same strategy based on the Newton - BiCGStab methods (this time without 
preconditioner) has been used in order to solve Eq. (15). In this circumstance, due to the small 
dimensions of the problem, the arising linear systems can be also solved by means of direct 
methods. Therefore a second strategy based on this kind of procedures (the Newton – LU 

'( ) ( )k k kF x s F x= −  (17) 

[ )'( ) ( ) ( ) 0,1k k k kk kF x s F x F xη η+ ≤ ∈ɶ  (18) 

0

0
w

r

K
P

K

 
=  
 

. (19) 

( ) ( )
'( )

F x v F x
F x v

ε
ε

+ −
≃  (20) 

( )F x Tol< . (21) 
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methods [23]) has been analyzed and experimented on the system (15). The employment of 
this alternative approach needs the computation and the storage of the whole Jacobian at each 
nonlinear iteration. The comparison between the performances of the different strategies will 
be reported in following chapter. 

As regards the time integration of the whole model (multibody model and contact model; 
see Fig. (2)), explicit ODE solvers with variable step and variable order have been considered. 
[24] Moreover, during the simulations, the initial conditions for the nonlinear solvers (i. e. the 
Newton – BiCGStab and Newton – LU methods) are continually updated in order to speed up 
the convergence of the solvers and to reduce the computation time. In other words the 
solution of the problem at the current time step is used as initial condition for the solver at the 
next time step. 

6 NUMERICAL SIMULATIONS 

In order to study the behaviour of the whole model, a large number of simulations has been 
carried out on many different railway tracks. The performances of the model have been 
evaluated both in terms of output accuracy (kinematic variables, contact forces and contact 
patch) and in terms of numerical efficiency (performances of the numerical algorithms and 
time consumption). 

6.1 Performances of the numerical methods 

In this section the performances of the numerical procedures described in the previous 
chapter will be analyzed and compared to each other. To this purpose a typical simulation of 
the lateral dynamics of the Manchester Wagon has been considered. [5] [17] The simulations 
have been performed on a curvilinear railway track, the data of which are reported in Tab. (3). 

 
       Table 3: Data of the railway track.                                        Table 4: Numerical parameters. 

 
The comparison between the numerical methods has been carried out on a machine 

equipped with an Intel Xeon 2.66GHz, 8GB RAM using Matlab R2007b (machine precision 
162*10mε −= ). 

In order to compare the contact problem formulations (12) and (15) and to establish the 
best ODE solver, several experimentations have been performed with the ODE23 and the 
ODE45. [24] The value of the main numerical parameters are reported in Tab. (4) for both the 
formulations. RelTol and AbsTol are the relative and absolute tolerances of the ODE solvers, 
MaxitNonlin , MaxitLin  are the maximum number of nonlinear and linear iterations, Tol  is the 
stopping tolerance and η  is the forcing term. In particular the values of the stopping tolerance 
Tol  have been chosen to assure a sufficient accuracy (in terms of displacements and contact 
pressures) and, at the same time, to minimize the computation time. 

Differential 
Contact Model 

Eq. (12) Eq. (15) 

RelTol / AbsTol 8 610 / 10− −  8 610 / 10− −  

Nonlinear Solver 
Newton - 
BiCGStab 

Newton - 
BiCGStab 

Tol / MaxitNonlin 010 / 20 810 / 20−  
η  / MaxitLin 0.01 / 20 0.01 / 20 

Curvature K  11/1200 m−  

Slope p  0  

Cant β  60 mm 

Laying angle pα  1/ 40 rad 

Velocity V  45 m/s 

Friction coefficient µ  0.3 
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Tab. (5) summarizes the results obtained by using the ODE 23 and relative respectively to 
formulation (12) (large and sparse systems) and to formulation (15) (small and full systems). 
Similarly Tab. (6) reports the same results obtained by using the ODE 45. For each wheel – 
rail contact pair (Left and Right) the following data have been considered: the number #cps of 
contact problem solved (equal for both the contact pairs), the total number #New of nonlinear 
iterations, the average number #BiCGS of linear iterations for each nonlinear iteration and the 
total computation time. 

Table 5: Comparison between the formulation (12) and (15) using the ODE23. 

Table 6: Comparison between the formulation (12) and (15)  using the ODE45. 

The results show that the formulation (15) is more efficient than formulation (12) even 
though the solution of Eq. (15) requires a bigger memory consumption. Moreover in both 
cases low order solvers like the ODE23 turn out to be better than high order solvers like 
ODE45.   

As said in the paragraph 5.5, Eq. (15) can be also solved by means of a Newton – LU 
strategy. Tab (7) contains the results obtained by comparing the Newton – LU and the 
Newton – BiCGStab methods. The used ODE solver is the ODE23 while the other numerical 
parameters are the same reported in Tab. (4). 

 
 
 
 
 

Table 7: Comparison between the Newton – LU and the Newton – BiCGStab methods. 

Looking at Tab. (7), the Newton – 
BiCGStab methods (matrix free) are more 
efficient than the Newton – LU methods. In 
particular the computation and the storage of 
the Jacobian matrix at each nonlinear iteration 
turned out to be too time-consuming. 

Finally, in order to justify the choice of the 
constant forcing term 210η −= , some 
experimentations have been performed by 
using the following values of the parameter: 

1 2 3 40.5,  10 ,  10 ,  10 ,  10η − − − −= . As usual the 
formulation (15) has been considered while 

Differential Contact Model: Eq. (12) 
 #cps #New #BiCGS time 

R 
29435 

31390 4.3 31236 
8h 40min L 32610 4.6 

Differential Contact Model: Eq. (15) 
 #cps #New #BiCGS time 

R 
31814 

27409 2.9 8396 
2h 20min L 29495 3.5 

Differential Contact Model: Eq. (12) 
 #cps #New #BiCGS time 

R 
38365 

49126 5.6 48753 
13h32min L 51399 4.7 

Differential Contact Model: Eq. (15) 
 #cps #New #BiCGS time 

R 
45710 

44625 3.1 12870 
3h 34min L 46170 3.5 

Nonlinear solver: Newton - LU 
 #cps #New  time 

R 
30401 

23936 39096 
10h 51min L 24306 

Nonlinear solver: Newton - BiCGStab 
 #cps #New #BiCGS time 

R 
31814 

27409 2.9 8396 
2h 20min L 29495 3.5 

Figure 9: Computation time as a function of the 
forcing term η . 
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the employed ODE solver is always the ODE23. The results have been reported in terms of 
computation time (see Fig.(9)). 

6.2 The SIMPACK RAIL 2D multibody model 

The same multibody model of the benchmark vehicle (the Manchester Wagon [16]) has 
been implemented also in Simpack Rail, a widely tested and validated multibody software for 
the analysis of the railway vehicle dynamics. This time the multibody model is equipped with 
a standard contact model based on the semi – elastic approach. [4] [5] [6] As in the previous 
case the 2D multibody model (designed for the study of the lateral dynamics) has been 
obtained from the fully 3D multibody model of the vehicle while the contact model is 
completely 3D (see Fig. (10)). 

 
 
 
 
 
 
 
 
 
 

 

Figure 10: 3D and 2D multibody models of the Manchester Wagon (Simpack Rail). 

The comparison between the results obtained by the Matlab/Simulink model and those 
obtained by the Simpack Rail model has allowed an accurate and reliable validation of the 
new contact model. 

6.3 Simulation of the lateral vehicle dynamics 

The comparison between the Matlab/Simulink model (implemented on Matlab R2007b) 
and the Simpack Rail model (implemented on Simpack 8.900) has been carried out on the 
same curvilinear railway track introduced above (see Tab. (3)). [5] [17]  The numerical data 
relative to the Matlab model have been chosen starting from the results obtained in the 
paragraph 6.1 (Tab. (8)). Similarly the numerical data relative to the Simpack model are 
briefly summarized in Tab. (9). 
 

 

 
 
 

       Table 8: Numerical Data (Matlab model).                              Table 9: Numerical Data (Simpack model). 
 

ODE Solver 
ODE 23 

(Bogacki - Shampine) 
RelTol / AbsTol 8 610 / 10− −  

Contact Model 
Differential Contact 

Model: Eq. (15) 
Nonlinear Solver Newton - BiCGStab 
Tol / MaxitNonlin 810 / 20−  

η  / MaxitLin 0.01 / 20 

ODE Solver 
ODE 5 

(Dormand - Prince) 
Fixed Step 45*10−  

Contact Model Semi – Elastic Approach 



Silvia Magheri, Monica Malvezzi, Enrico Meli and Andrea Rindi 

 17

Among all the kinematic and dynamic variables evaluated by the models, the time histories 
of the following quantities are reported (for the sake of simplicity all the outputs are expressed 
in the reference system R R R RO x y z ): 

- the lateral displacement RWy  of the centre of mass of the wheelset R
WO  (Fig. (11)) 

- the lateral displacement RBy  of the centre of mass of the body – car R
BO  (Fig. (12)) 

- the contact forces on the left wheel R
lwF  and on the right wheel RrwF ; in particular R

lwY  and R
rwY  

are the lateral forces (Fig. (13) and Fig. (15)) while R
lwQ  and R

rwQ  are the vertical forces (Fig. 

(14) and Fig. (16)). 
The Matlab variables are plotted in blue while the equivalent Simpack quantities in red. 
 
 
 
 
 
 
 
 
 
 
 

                     Figure 11: Lateral displacement R
Wy                            Figure 12: Lateral displacement R

By  

 
 
 
 
 

 
 
 
 
 
                       Figure 13: Lateral force R

lwY                                        Figure 14: Vertical force R
lwQ  

 
 
 

 
 
 
 
 
 
 

 
                         Figure 15: Lateral force R

rwY                                    Figure 16: Vertical force R
rwQ  
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The simulation results show a good agreement between the Matlab model and the Simpack 
model both in terms of kinematic variables and in terms of contact forces. 

As regards the positions of contact patches wCA , rCA  on the wheel and on the rail, in order 

to give an effective description of the shifting of the contact areas during the simulation, a 
lateral section along the plane R Ry z  of the areas wCA , rCA  has been considered. Moreover the 

sections of the contact patches have been plotted on cylindrical surfaces generated by the 
wheel and rail profiles and as long as the distance traveled by the vehicle. By convention lwCA , 

rwCA  are the contact areas on the left and on the right wheel (Fig. (17) and Fig. (18)) while 

lrCA , rrCA  are the contact areas on the left and on the right rail (Fig. (19) and Fig. (20)). 

 
 

 
 
 
 
 
 
 
 
 

 
   Figure 17: Section of contact area lwCA                                  Figure 18: Section of contact area rwCA  

 
 
 
 
 
 
 
 

 
 

 
 
 Figure 19: Section of contact area lrCA                                          Figure 20: Section of contact area rrCA  

 
The sections of the contact areas evaluated by the Matlab model are plotted in blue while 

the contact points detected by the Simpack model are plotted in black. It is interesting to 
remark that, during the curve, a second contact point appears on the left wheel and rail (the 
track turns to left). Consequently, while the Simpack model detects two distinct contact points, 
the contact areas evaluated by the Matlab model consist of two disjoint parts. Also in this case 
the agreement between the results obtained by the Matlab model and the Simpack model is 
good. 

In conclusion the accuracy of the Matlab model turns out to be comparable with that of the 
Simpack model; moreover the quasi – total absence of numerical noise highlights the 
robustness and the stability of the new differential contact model.  
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7 CONCLUSIONS AND FURTHER DEVELOPMENTS 

The performances of the Matlab model turned out to be good both in terms of output 
accuracy (kinematic variables, contact forces and contact patch) and in terms of numerical 
efficiency (performances of the numerical algorithms and time consumption) and satisfy all 
the specifics reported in the introduction (see chapter 1). 

As regards the further developments, in the near future fully 3D multibody models of the 
Manchester Wagon will be considered. This kind of model allows a complete description of 
the vehicle dynamics but obviously involves an increase of the model DOFs and of the 
number of wheel – rail contact pairs. 

Moreover many optimizations of the differential contact model are planned for the future. 
The improvements will regard especially the FEM techniques used to discretize the contact 
problem. In particular new mesh generation algorithms and suitable nonlinear shape functions 
will be examined. These techniques assure a better accuracy in the description of the local 
contact phenomena but increases the dimension of the discrete problem and consequently the 
computational load and the memory consumption. 

Finally the implementation of the contact model in programming environments like C/C++ 
and FORTRAN will be considered in order to obtain a further reduction of the computation 
time. 
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