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Abstract. The wheel — rail contact analysis plays a fundamentle in the multibody
modeling of railway vehicles. A good contact madakt provide an accurate description of
the global and local contact phenomena (contactder position and shape of the contact
patch, stress and strain) and a general handlinthefmultiple contact. The model has also to
assure high numerical efficiency and a good conbddyi with commercial multibody
software (Simpack Rail, Adams Rail).

In this work the authors intend to present an irate elastic wheel — rail contact model
that satisfies the previous specifics. The modakicers the wheel and the rail as elastic
deformable bodies and requires the numerical sofutf the Navier's elasticity equation.
The contact between wheel and rail has been destriiy means of suitable analytical
contact conditions. Subsequently the contact mbdslbeen inserted within the multibody
model of a benchmark railway vehicle (the Manctréatagon) in order to obtain a complete
model of the wagon. The whole model has been irepkeh in the Matlab/Simulink
environment. Finally numerical simulations of threhicle dynamics have been carried out on
many different railway tracks with the aim of ewalog the performances of the model.

The multibody model of the same vehicle (this tageipped with a standard contact
model) has been then implemented also in SimpaitkTRa@ comparison between the results
obtained by the Matlab model and those obtainedhay Simpack model has allowed an
accurate and reliable validation of the new contancidel.

In conclusion the main purpose of the authors iadhieve a better integration between
the differential modeling and the multibody modgliThis kind of integration is almost
absent in literature (especially in the railwaylfig due to the computational cost and to the
memory consumption. However it is very importardalbige only the differential modeling
allows an accurate analysis of the contact probl@mterms of contact forces, position and
shape of the contact patch, stress and strain)emté multibody modeling is currently the
standard in the study of the railway dynamics.
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1 INTRODUCTION

The multibody simulation of the railway vehicle dynics needs a reliable contact model
that satisfies the following specifics: accuratesatption of the global and local contact
phenomena (contact forces, position and shapeeatdhtact patch, stress and strain), general
and robust handling of the multiple contact, higimerical efficiency and compatibility with
commercial multibody software (Simpack Rail, AdaRsl).

The wheel — rail contact problem has been discubgeskveral authors and many models
can be found in the literature. Currently the nmaintibody approaches to the problem are the
so - called rigid contact formulation and the senglastic contact description. The rigid
approach considers the wheel and the rail as bigaes. The contact is imposed by means of
constraint equations and the contact points arectet during the dynamic simulation by
solving the nonlinear algebraic differential eqoasi associated to the constrained multibody
system. Indentation between the bodies is not peEthand the normal contact forces are
calculated through the Lagrange multipliers. Finale Hertz’'s and the Kalker’'s theories
allow to evaluate respectively the shape of thdamrpatch and the tangential forces. [1] [2]
[3] [4] [5] [6] Also the semi — elastic approachnsiders the wheel and the rail as rigid bodies.
However in this case there are not constraints thedindentation between the bodies is
permitted. The contact points are detected by me&m@pproximated procedures (based on
look — up tables and simplifying hypotheses onpitablem geometry) or by means of semi —
analytical methods (based on the reduction of ttedlpm dimension). The normal contact
forces are calculated as a function of the indartaivhile, as in the rigid approach, the
Hertz's and the Kalker's theories allow to evaludte shape of the contact patch and the
tangential forces. [4] [5] [6] [7] [8] [9] Both thadescribed multibody approaches are
computationally very efficient but their generalignd accuracy turn out to be often
insufficient because the physical hypotheses bethiade theories are too restrictive and, in
many circumstances, unverified.

In order to obtain a complete description of th@taot phenomena, differential contact
models are needed. In other words wheel and raie e be considered elastic bodies
governed by the Navier's equations and the coiftastto be described by suitable analytical
contact conditions. The contact between elastidgdsodas been widely studied in literature
both in the general case and in the rolling casanyMprocedures based on variational
inequalities, FEM techniques and convex optimizatiave been developed. This kind of
approach assures high generality and accuracytibbuteeds very large computational costs
and memory consumption. [4] [10] [11] [12] [13] [LAL5] Due to the high computational
load, referring to the current state of the arte tntegration between multibody and
differential modeling is almost absent in liter&wespecially in the railway field. However
this integration is very important because only diféerential modeling allows an accurate
analysis of the contact problem (in terms of cantarces, position and shape of the contact
patch, stress and strain) while the multibody mindels the standard in the study of the
railway dynamics.

In this work the authors intend to present an watiwe differential contact model with the
aim of achieving a better integration between rbotly and differential modeling. The new
contact model is fully 3D and satisfies all the @fies described above. The developed
procedure requires the discretization of the edlastintact problem (Navier's equations and
analytical contact condition) and subsequentlysileition of the nonlinear discrete problem.
Both the steps have been implemented in Matlab/Bikenvironment. At this point the
contact model has been inserted within a 2D muliyomodel of a railway vehicle to obtain a
complete model of the wagon. The railway vehiclesgn as benchmark is the Manchester
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Wagon the physical and geometrical characteristicsvhich are easily available in the
literature. [16] The choice of a 2D multibody mod®lows to study the lateral vehicle
dynamics and at the same time to reduce the cotmmahload. In the near future fully 3D
multibody models will be considered in order to édav complete description of the vehicle
dynamics. The multibody model has been implememe8imMechanics, a Matlab toolbox
specifically designed for multibody dynamics. THe éwltibody model of the same vehicle
(this time equipped with a standard contact modskld on the semi — elastic approach) has
been then implemented also in Simpack Rail, a comiademultibody software for railway
vehicles widely tested and validated. Finally nupsrsimulations of the vehicle dynamics
have been carried out on many different railwaycksawith the aim of evaluating the
performances of the whole model. The comparisonvden the results obtained by the
Matlab model and those obtained by the Simpack Raitiel has allowed an accurate and
reliable validation of the new contact model.

2 GENERAL ARCHITECTURE OF THE MODEL

As said in the introduction the whole model corssist two different part: the 2D
multibody model of the railway vehicle and the yuBD differential wheel — rail contact
model. The 2D model has been obtained from a fDymultibody model of the benchmark
vehicle (the Manchester Wagon) in order to simullagelateral dynamics of the wagon and to
reduce the computational load (Fig. (1)). The 20del@onsists of three bodies: a car — body,
a bogie and a wheelset. The car - body and theebogve 3 DOFs (lateral and vertical
displacement and roll) while the wheelset has 4 ®Q#teral and vertical displacement, roll
and pitch, i.e. the rotation around its symmetrislaXn other words the wheelset has been
considered as a 3D body.

Figure 1: 3D and 2D multibody models of the Mantbe®/agon (Matlab/Simulink).

During the simulation the 2D multibody model intetsawith the fully 3D differential
contact model. The general architecture of the igdsehematically shown in Fig. (2).

Figure 2: General architecture of the model.
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At each integration step the multibody model eviasidhe kinematic variables relative to
the wheelset and consequently to each wheel paail Starting from these quantities, the
contact model, based on Navier's equations andideitcontact conditions, calculates the
global and local contact variables (force, contadth, stress and displacement). Finally the
knowledge of the contact variables allows the rbolfly model to carry on the simulation of
the vehicle dynamics.

3 REFERENCE SYSTEMS

The railway track can be considered as a 3D cygeexpressed in a fixed reference
systemO, x y; z (s is the curvilinear abscissa gj. Usually in the cartographic description
of the track only the curvature(s) of y(s), the track slopex(s) and the can(s) are known;
however the knowledge of these parameters is entaugibuild the curves). [9] [17]

In this work the lateral vehicle dynamics will bescribed in a local reference system
O:.%:¥=Z: having thex, axis tangent to the track in the po@f=y(s and thez, axis normal

to the plane of the rails. In the considered casetitne histories of the curvilinear abscissa
s(ty and of the originQ,=p(g9) are supposed to be known (for instance they can be

calculated by simulating independently the longitatlvehicle dynamics).
The local system follows the motion of the wholed®loalong the track so that the centers
of mass of the bodies lie always on the plgng. According to chapter 2, the car — body and

the bogie can only translate aloggand z, and rotate aroung, while the wheelset can also

rotate around its symmetry axis.
Subsequently a third reference systepx, v, z, is defined. The origirQ, coincides with

the center of mass of the wheelset andyhexis with its symmetry axis. This system is
fixed to the wheelset except for the rotation abtire y,, axis. Finally two reference systems
Q% Y%z andQ,x, ¥, 7 are introduced, fixed respectively to the bogid tmthe car - body. As

usual the origins coincide with the centers of mage placement of the reference systems is
illustrated in Fig. (3).

Figure 3: Reference systems relative to the mudifbmodel.

In order to correctly describe the differential taart model, two further reference systems
have to be defined for each wheel — rail pair. ther sake of simplicity only the left pair has
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been reported in Fig. (4). The first syst@yx,, y, z, IS parallel to the systerg,, x,, v, z, and
its origin Q,, lies on the symmetry axis of the wheel. The systefixed to the wheel except
for the rotation around thg, axis. Moreover the origi@, belongs to the nominal rolling

plane, i. e. the plane normal to the rotation a&xistaining the nominal rolling radius. The
second systen, % y z is parallel to the syster®, x,y,z,. Its originQ, belongs to the axis

y, While the distance betweel, andQ has to assure the correct gauge between the rails.

Both the reference systems described above areiwggrtant because the global and local
contact variables will be evaluated by the contaatlel just in these systems.

2y,
OIw <

WHEELSET

Figure 4: Reference systems relative to the difféaecontact model.

Finally, as regards the external forces actinghenbiodies, some considerations are needed.
As said before, the lateral vehicle dynamics iglisith in the local reference systedox.y.z.

but this system is not inertial. Therefore the molly model will have to consider the effect
of the fictitious forces (centrifugal force and @@dbis force). These quantities can be
calculated starting from the knowledge of the kiatos of the bodies as a function of the
curvatureK(s), the track slope(s and the cang(s). [17]

4 THE 2D MULTIBODY MODEL

The 2D multibody model has been obtained from #& fBD multibody model of the
Manchester Wagon, the physical and geometricalachenistics of which are easily available
in the literature. [16] The original 3D model castsiof:

- 1 car — body, 2 bogies and 4 wheelsets
- rear and front primary suspensions
- rear and front secondary suspensions (includitigpar, traction rod and bumpstop).

Both the primary and the secondary suspensionsuspally modeled by means of
nonlinear force elements like three- dimensionaingis and dampers. The 2D model can be
thought of as a section of the 3D model and corapr{Eig. (5)):

- one car — body, one bogie and one wheelset
- one primary suspension
- one secondary suspension (including roll barl@ndpstop).
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CAR Body Mass Inertia
BODY
Car — body 0.25 0.25
Bogie 0.5 0.5
Wheelset 1 1

e NOARY, Table 1: Scaling factors (masd inertia).

- Suspensions  Springs Dampers
ll Secondary 0.5 0.5
Primary 1 1

Table 2: Scaling factors (springs and dampers).

BRI ARY
SUSPENSIONS

Figure 5: 2D multibody model of the Manchestergdfa

As regards the bodies, only some DOFs are allowatd2D model:
- the car — body and the bogie have 3 DOFs; theyt@nslate along the axgs and z,

(lateral and vertical displacements) and rotatergdhex, axis (roll)

- the wheelset, considered as a 3D body, has 4 Dia¥ssdes the previous DOFs it can also
rotate around its symmetry axyg, (pitch).

Moreover, in order to assure the dynamic equivaebetween the 2D model and the
original 3D model, the inertial characteristicstloé bodies and the physical characteristics of
the force elements have to be correctly scaled df)i16] The values of the scaling factors
are schematically reported in Tab. (1) and Tab. (2)

The choice of a 2D multibody model has been madk thie aim of studying the lateral
vehicle dynamics and, at the same time, of redutiagcomputational load. In the near future
fully 3D multibody models of the Manchester Wagoill Wwe considered in order to have a
complete description of the vehicle dynamics.

5 THE 3D DIFFERENTIAL CONTACT MODEL

As regards the generic contact variaBlethe following convention will be adopted:
- z, and Z! will denote a variable relative to the wheel redpely expressed in the
reference systems,, x, i, z, andO, x. y 7
- Z and z" will denote a variable relative to the rail respedy expressed in the reference
systemsO, %, y z andO,, X, Y %, -

In the future, according to this convention, theioias changes of reference system won't
be continually remarked but will be taken for geaht

5.1 Inputs and Outputs

With reference to Fig. (2), the contact model canthought of as a black box having the
following inputs and outputs:
- INPUTS: the kinematic variables relative to tlimsidered wheel — rail pair (in this case the
left one), i.e. the positiom, , the velocityQ, , the orientatiorR|, and the angular velocity
w, of the reference syste@, x, Y, z, With respect to the syste@, x y z (see Fig. (4)).
- OUTPUTS: the global and local contact variabkeative to the wheel and to the ralil, like
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the contact forceg,. andF ., the stresses,, and g, , the displacements, andu, and the
contact patcheg, . and A .

5.2 The kinematics of the problem

The wheel and the rail have been considered aditwar elastic bodie, andQ, (as

shown in Fig. (6)). Both the domains are supposelet sufficiently large compared to the
dimensions of the contact patch. [12] [13]

2,
Olw < ylw
X ___.——-—'—'—“"_'___'__'_—_'_—.
A Auc
e
QSQ\\‘\;\\}Q AR .\“i\ ‘\\\'
QR
/Q\\ N 3 WHEEL
AR
X\\‘:’\ o
Amc % \§
3 Ac
RAIL 3

Figure 6: The problem geometry.

The boundarie®Q,, andoQ, are split into two disjoint regions, respectivély,, I . and
., Me. Within the regiong , andr , the displacements are fixed (and equal to zero)
while I . andr . (dashed in the figure) are the regions where ¢ii¢act may occur.

In case of contact the geometric intersection betwthe surfaces, . andr . (and thus
between the non — deformed configurations) allowsléfine two regionsA.c 0T, and
Ac OT . (with Awc = Ac) that can be considered as a rough estimate ofdhtact areas.

The situation is schematically sketched in Fig.a&l Fig. (7).
The real contact areas,. 0 A and A, O Ac (with A . = A.) are unknown and have to

be calculated by the model. For this purpose aambrhap® has to be introduced. The
contact mapp: Awc — Ac (by convention the wheel is the master body) lesdhe position
of the pointd(x,) 0 Ac that will come in contact with the generic poijt Awc. In this case
the map® is defined as the normal projectign(x’) of the pointx’ 0 A.c on the surface

Ac . Starting from the contact map, the distance fonctbetween the deformed
configurationsd : A« -~ R can be evaluated:

d(X,) = (U, = u J 8, ~(2(%) - ) (1)

wheren,, is the outgoing normal versor to the surfacgs. The functiond is positive if
there is penetration between the deformed configur&and negative otherwise.
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Formally the contact ared . is defined as the region @.c where the functiond is

positive while the contact are®. = ®(A,.) is the normal projection of,. on Ac. In other

words, from a kinematic point of view, the penatmatbetween the deformed bodies is
allowed and will play a fundamental role in the tzmt model (see paragraph 5.3). [12][13]

w Ac & = 0(Ac

X W Ac =0(A)
d>0
r r
Dw ANC

Figure 7: Contact map and distance function.

In this way the estimated contact aréas and Ac depend only on the relative wheel —

rail kinematics O, O, , R, andw,) while the real contact areag. and A. depend also
on the displacements, andu, . Finally it is useful to remark that no hypothebess been

made on the shape of the contact patch; in paatictiie contact patch can be formed of one
or more disjoint parts.

As regards the wheel and rail profiles, the stathd@RE S 1002 and UIC 60 have been
used. [17]

5.3 The contact model

According to the linear theory of elasticity [1213], both the wheel and the rail are
governed by the Navier's equations:

divo,(u,)=00nQ, o,U,)N,= P, on Ac

divo,(u)=00nQ, o, u,)n,=0om, . \Ac
u,=0onrl o, )N =p onh
u, =0onl g o, U)n=00m,. \A

(2)

wheren, andn, are the outgoing normal vectors to the surfaggsandr . while p and

p, are the unknown contact pressures. The pl‘eS':lJ.vjvrder are defined om.c and Ac

but, according to paragraph 5.2, will have to beozen A.c\ A, and Ac\ A.. Both the
bodies have the material characteristics of thel §¢oung’s modulusE, = E, =2.1*10" Pa
and Poisson’s coefficiem, =v, =0.3).

In the studied case the volume forces (i. e. tlawity) have been neglected because the
multibody model of the wheelset already considkesrteffect. Moreover, since the solution
is supposed to be steady within the integratiop &ee Fig. (2)), also the inertial terms have

been omitted.
Equivalently the problem (2) can be formulated ek form as follows:
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J'a(u)g(v)dv J'p N, dA OoyO Y

Auc

ja(u)g(v)dv Ip Yy dA DVDV

Ac

3)

whereg, ande¢, are the strains whilg, andV, are suitable Sobolev’s spaces.
In order to complete the contact model, the confaessuresp and p have to be

expressed as a function of the displacemeptandu, . For the sake of simplicity the normal
and the tangential contact pressures on the wheel iatroduced: p, =p .n, .

P, =P,~ Axtl,- The normal pressurg, has been calculated by means of the distance
functiond:

pin(X,) =—Kmax(d(X,),0) onAc 4)

whereK >0 is a fictitious stiffness constant. The value oh#&ve to be chosen large enough
to assure the accuracy required by this kind oblgms. The condition of ideal contact (total
absence of penetration between the deformed bodsesgached forK - +eo (usually
K >10715 N/m).[12][13]

To evaluate the tangential press%a; , the slips, between the wheel and rail surfaces

has to be defined. Since the solution is supposdxktsteady within the integration step, the
following expression holds: [4]

SL(%) = M%)+ U %)~ @)~ () =

(5)
= W (%) + J,(X) W %) = w(D(%)) = (D)) _WP(Y)

wherew, andw, are the rigid velocity of the pointg, and ®(x;) while J/ and J, are
the Jacobians af;, andu, . As usual the normal and the tangential slips gfe= g 1,,

= 8,~ $nN)- According to the standard friction models, thegential pressurep’ can
be expressed as follows:

0 if ,+(X,) =0

AAWC
SICHEMRVIENE 5 9>0 ©

P (X)=

(%)

wheres,, is the norm ofs),, and V is the longitudinal velocity of the vehickeurther details
on the friction functionu(s/;,V) can be found in the literature. [19]

Finally the action — reaction principle (the NewwiThird Law) allows to calculate the
pressuresp :

P(R(X)=-F(X) on Ac. ()

It is useful to remark that, according to the disa model, the pressur@a andEr are
zero respectively omuc\ A and Ac\ A..
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The displacements, andu, will be evaluated in the following through the nemcal

solution of Eqg. (3). The knowledge of these unknaantities will allow to calculate all the
other required outputs like the contact aregsand A. and the stressag, andg, . The

contact forces . and F . will be estimated by integration:

Fuc = J EWdA Fc= J _pr dA (8)
Awc

Arc

5.4 The discretization of the model

Both the elastic bodies have been discretized bgnsef tetrahedral elements and linear
shape functions. The meshes have been built acgptdithe standard Delaunay’s algorithms

(see Fig. (8)). [18]

Qw\

w z X ZQQQ) A

wC

o V'

Figure 8: Discretization of the contact model.

The resolution of the meshes on the surfaggsandr . is constant (usually in the range

1mm+ 2mm) because the position and the dimensions of th#acb patch are a priori
unknown. The surface resolution has also to assurgccuracy enough to correctly describe
the contact phenomena. Moreover it is importametoark that the meshes have been created

directly in the reference systentx, x, V., %, and O, x y z ; therefore they don’t change

during the simulation and can be easily built ofine.
In the future the following convention will be adeg:
- the sets of all the elements of wheel and rall e calledT, andT while the vectors

u,..u , 0R? will contain the displacements of the four nodefohging to the elements
hOT, and| OT, . Finally the vectord) , andU, will comprise the displacements relative to
all the nodes of wheel and rail. Since the disptea#s onr , and I, are zero, the
dimension ofU ,, U, are3(N, - N,;) and3(N, - N, ), whereN, and N, are the numbers
of nodes of wheel and rail whild,, and N,, are the numbers of nodes by, andrl ;.

- similarly C, andC, will be the sets of the active contact elementsvbeel and on rall, i. e.

the sets of the elements having respectively a faeeand A that lies onAwc and Ac . The
vectorsu, ,u. . 0 R? will contain the displacements of the four nodedohging to the

2w =y

10
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elementsi0OC, and jOC, while the vectord),. andU,. will comprise the displacements
relative to all the active elements. The dimensérJ ., U,. are3N,. and3N,. where
N, and N, are the number of nodes belonging to the actiemenhts.

The knowledge of the relative kinematiag,(, O, , R, and«j,) and consequently of the
estimated contact areas.c and Ac allows to determine the setg, andC, of the active

contact elements on the wheel and on the rail.
For each active contact element on the wheel,ghtecx’,, of the faceA.c is considered.

The normal projectiorx ; =®(x,;) of x,; on Ac will belong to the external facalc of the

j - th active contact element on the rall In particuker index (i) will be a function of the
indexi . In other words the pairs of point,; , x¢, ) With iOC, can be thought of as the
discretization of the contact magp. The situation is schematically sketched in R&j. (

The values of the displacemenis, u, and of their Jacobiang, J, in the pointsx;,, and
x,; are evaluated through the shape functions. [1Z]][[8]

At this point the distance functiof) = d(X,;) and the pressurg’ = p (X,;) on the face
Awc Of the active element of the wheel can be caledldty means of Eq. (1), (4) and (6).
Finally a discrete version of the action — reactminciple (the Newton’s Third Law) is
needed to evaluate the presspre= p (x;) on the faceA. of the active element of the rail:

|Ac|p, =lAc |8, ©)

where|ﬂiwc | andlﬂ,jc | are the areas of the facgsc and A . Both the pressure_s;“ and

b are supposed to be constantar and Ak .

The standard FEM techniques allow to discretizeviieak form of the contact problem
(see Eq. (3)) : [12] [13] [18]

IUL ):£,(%,)dV= ZJN Koo = U, KV, j_g-_wvdk;_@i Mo V= Uo_UJ"_V,
ja(u) £ (v)dV= Zﬂ. Kiw=UKY [ pvd&d b M.yv=_RY PV

(10)
whereK,,, K,, are the stiffness matrices relative to the elembalT,, | 0T, andM,,,
M., depend on the shape functions. The global stiéfmeatricesK,, andK, are symmetric,
positive defined and sparse while the vectegsandF,, that contain the terms due to the

contact pressures, are sparse. Moreover the ghiffaless matrices are evaluated directly in
the reference systen@, x, ¥, 2z, and O, x y z ; therefore they don’'t change during the

simulation and can be easily built off — line. E8). and Eg. (10), combined together, give

U'KV,=F,U,.UJ)V, OV, 0ORMN N

—W TW—W

. (11)
Llr Kr\ir :Er (QWC’—TC) \_/r Dyr D R’;(NI_NrD)

11
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Finally, since the matricek , K, are symmetric and the vectorg, V, are arbitrary, the
following nonlinear system of algebraic equationslbtained:

KU, =F,U,.U,.) KU,=F U,.U ) (12)

where, as said before, the contact displacemgptsu . are a subset of the displacements
U,, VY, . Eq. (12) can be also written as

liw = HWEW(QWC’L_JTC) L_Jr = HWET (QWC’L—JI’C) (13)

where the matricesH, =K' and H, =K™ are symmetric, positive defined and full
(consequently their storage can require an high emgrmonsumption). Likek, and Kr they
don’t change during the simulation and can be ¢aled off — line. SplittingJ ,, U, into
contact displacemerd ., U, and non — contact displacemddt, ., U ¢ Eq (13)
becomes

U wWNC H H H 12 Q U NC H 1 H 12 Q
- = w w =T — r r . 14
Uye )12 2 0eUa) (U )72 w2l ueuo) &9

In this way the second and the fourth component&f(14) are sufficient to calculate

contact displacement, ., U .:

Uy = HV%IZLW(U worde) U, c=H 22f (U word ) - (15)

The matricesH?? and H?* have the same properties |Bg and H, but this time their
dimensions are much smaller. Howeuef> and H?* change during the simulation and
therefore have to be built directly on — line. T\hn:torsf and f are full. The remaining

non — contact displacemerits, ., U ,nc Can be evaluated by means of the first and tind thi

components of Eq. (14).
The knowledge of the displacements, U, , evaluated by solving Eq. (12) or Eq. (15),

allows to calculate all the other required outdike the contact areas,. and A. and the
stressewr, and g, . The contact forceg . andF, . are estimated by numerical integration:

~i ~j
Fuc=2 1Ac|p, FEc=2 lAc|D . (16)
ifc,, e

5.5 The numerical solution of the discrete problem

In this paragraph the numerical methods used fimirgpthe discrete contact problem are
presented. Both the formulations (12) and (15) bellanalyzed in the following.

Eq. (12) is a large and sparse nonlinear systenth@wgontrary Eq. (15) is a full non linear
system with much smaller dimensions than (12). Tymcal dimensions oK & and K,

(depending on the mesh resolution) are in the rangeo+ 5000 while those ofH? and
H? (depending on the number of active elements) laweita 00 +~ 100(.

Techniques based on Newton - Krylov methods arallysvery efficient for solving large
and sparse systems as Eq. (12). [20] Newton - Krgiethods are Newton-type methods for

12
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the problemF(x) =0 whereF is a generic nonlinear function. In particularyky methods
are employed to solve approximately the arisingdinsystems:

F'(%)s =—HX) 17)
whereF'(x) is the Jacobian matrix ¢f(x). The Krylov method computes, at each iteration,
the so-called inexact Newton stgpwhich satisfies the condition:

|F'(%)3+ FO| < | B %) 7.0[0.9) (18)

where the forcing termg _are used to control the level of accuracy. [20] régards the

considered problem, numerical experimentations glotivat, among all the Krylov methods,
the best iterative linear solver is the BiICGStati][This kind of numerical procedures are
known as Newton - BiCGStab methods.

Iterative methods like the BICGStab need often adgpreconditioner. The employed
preconditionerP has been defined as follows:

o (Ke O
Tl o K | (19)

Since Eg. (12) is weakly nonlinear, the precond#ioP is a good approximation of the
Jacobian matrix. In general, BiCGStab does notireqgihe whole matrixP but only a
factorization of it. In the considered case themplete Cholesky factorization [21] has been
used because the matnxis not only symmetric and positive defined butoatparse. In
particular, this factorization performs a reordgrof P and takes advantage of its sparsity in
terms of execution time and memory consumption.

An interesting feature of Newton - BICGStab meth@dthat they require only the action
of F'(x) on a vector, but not the computation and the storage of thelevBacobian. In this

case, the produat (x)v can be approximated by finite differences [22]:

gy~ EUr 20 FO)

(20)

wheree¢ >0 is a scalar small enough. Consequently these miet@ called “matrix free”.

Moreover, it has to be remarked that, if the gu@rof convergence is only local, the
numerical procedure may fail in finding a soluti@ven though an effective solution exists.
Therefore the Newton-BiCGStab method has been etdloethto a globalization strategy. A
monotone line search method with Armijo rule hasrbemployed, with a maximum o
backtracks for nonlinear iteration. [22] [23]

Finally it has been observed that a small numbenasflinear iterations is needed for
solving the nonlinear system (12) and that the eogence is achieved in almost all cases.
Consequently the choice of a less accurate solofitine Newton equations (17) turned out to
be very efficient and effective in reducing the moof F. A constant forcing term

n.=n<050k has been chosen. The Newton-BiCGStab method sfopise following
stopping criterion is satisfied:

IF(x)| <Tol. 1)

The same strategy based on the Newton - BiCGStathoae (this time without
preconditioner) has been used in order to solvgEx). In this circumstance, due to the small
dimensions of the problem, the arising linear systean be also solved by means of direct
methods. Therefore a second strategy based orkitidsof procedures (the Newton — LU

13
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methods [23]) has been analyzed and experimentdtleorystem (15). The employment of
this alternative approach needs the computatiortfandtorage of the whole Jacobian at each
nonlinear iteration. The comparison between théopmiances of the different strategies will
be reported in following chapter.

As regards the time integration of the whole mddalitibody model and contact model;
see Fig. (2)), explicit ODE solvers with variabteand variable order have been considered.
[24] Moreover, during the simulations, the init@nditions for the nonlinear solvers (i. e. the
Newton — BICGStab and Newton — LU methods) areinaatly updated in order to speed up
the convergence of the solvers and to reduce tinepgtation time. In other words the
solution of the problem at the current time stepsed as initial condition for the solver at the
next time step.

6 NUMERICAL SIMULATIONS

In order to study the behaviour of the whole moddgrge number of simulations has been
carried out on many different railway tracks. Therformances of the model have been
evaluated both in terms of output accuracy (kinénedriables, contact forces and contact
patch) and in terms of numerical efficiency (pemiances of the numerical algorithms and
time consumption).

6.1 Performances of the numerical methods

In this section the performances of the numericak@dures described in the previous
chapter will be analyzed and compared to each ofltethis purpose a typical simulation of
the lateral dynamics of the Manchester Wagon has bensidered. [5] [17] The simulations
have been performed on a curvilinear railway tralo&,data of which are reported in Tab. (3).

rvatur e Differential
Curvature K 1/1200 m Contact Model Eq. (12) Eq. (15)
Slope p 0
RelTol / AbsTol | 10%/10° | 10%/10°
Cant B 60 mm
_ i Sol Newton - | Newton -
Layingangle | @, | 1/40rac Nonlinear Solver| gi-cstap | BicGStab
Velocity \% 45 m/s Tol / MaxitNonlin | 10°/ 20 10®/ 20
Friction coefficient| # 0.3 ] | MaxitLin 0.01/ 2C 0.01/ 2C
Table 3: Data of the railway track. Table 4: Numerical graeters.

The comparison between the numerical methods has barried out on a machine
equipped with an Intel Xeon 2.66GHz, 8GB RAM usMgtlab R2007b (machine precision
£, = 2*107™°).

In order to compare the contact problem formulai¢h?) and (15) and to establish the
best ODE solver, several experimentations have Ipeeformed with the ODE23 and the
ODEA45. [24] The value of the main numerical pararseare reported in Tab. (4) for both the
formulations.RelTol and AbsTol are the relative and absolute tolerances of th& Galvers,
MaxitNonlin, MaxitLin are the maximum number of nonlinear and lineaaitens, Tol is the
stopping tolerance angl is the forcing term. In particular the values lué stopping tolerance
Tol have been chosen to assure a sufficient accunadgrins of displacements and contact
pressures) and, at the same time, to minimizedhgatation time.

14
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Tab. (5) summarizes the results obtained by usiegQdDE 23 and relative respectively to
formulation (12) (large and sparse systems) arfdrtaulation (15) (small and full systems).
Similarly Tab. (6) reports the same results obthibg using the ODE 45. For each wheel —
rail contact pair (Left and Right) the followingtdehave been considered: the numiters of
contact problem solved (equal for both the conpaats), the total numbefNew of nonlinear
iterations, the average numb#BiCGS of linear iterations for each nonlinear iterateomd the
total computation time.

Differential Contact Model: Eq. (12) Differential Contact Model: Eq. (15)
#eps | #New | #BiICGS time #cps | #New | #BICGS time
R 31390 4.3 31236 R 27409 2.9 8396
294 : 1814 .
L 9435 32610 4.6 8h 40min L 318 29495 3.5 | 2h 20min
Table 5: Comparison between the formulation (12) (@) using the ODE23.
Differential Contact Model: Eqg. (12) Differential Contact Model: Eqg. (15)
#cps | #New | #BiCGS time #eps | #New | #BiCGS time
R 49126 5.6 48753 R 44625 3.1 12870
, 4571 .
L 38365 51399 4.7 13h32min L 5710 46170 3.5 | 3h 34min

Table 6: Comparison between the formulation (12) @5Jl using the ODE45.

The results show that the formulation (15) is mefcient than formulation (12) even
though the solution of Eg. (15) requires a bigge&mmry consumption. Moreover in both
cases low order solvers like the ODE23 turn oubéobetter than high order solvers like

ODEA45.

As said in the paragraph 5.5, Eq. (15) can be stdeed by means of a Newton — LU
strategy. Tab (7) contains the results obtainedctaynparing the Newton — LU and the
Newton — BiCGStab methods. The used ODE solvdrdsGDE23 while the other numerical
parameters are the same reported in Tab. (4).

Nonlinear solver: Newton - LU Nonlinear solver: Newton - BiCGStab
#cps | #New time #cps | #New | #BICGS time

R 23936 39096 R 27409 2.9 8396

L 30401 24306| 10h 51min| | L 31814 29495 3.5 | 2h 20min

Looking at Tab.
BiCGStab methods (matrix free) are more
efficient than the Newton — LU methods. In 1o
particular the computation and the storage ef
the Jacobian matrix at each nonlinear |terat|on

Table 7: Comparison between the Newton — LU and #etdbh — BiCGStab methods.

(7,

turned out to be too time-consuming.

Finally, in order to justify the choice of the®
term =107 ,
experimentations have been performed by8000
using the following values of the parameter:
n=0.5,10", 10 , 10 , 1¢. As usual the

constant

forcing

the Newton

some

10500

3 9000

8500

10

formulation (15) has been considered while

15

10

10
n

-2

10" 510"

Figure 9: Computation time as a function of the
forcing termysy .
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the employed ODE solver is always the ODE23. Theilte have been reported in terms of
computation time (see Fig.(9)).

6.2 The SIMPACK RAIL 2D multibody model

The same multibody model of the benchmark vehittie Manchester Wagon [16]) has
been implemented also in Simpack Rail, a wideljetéand validated multibody software for
the analysis of the railway vehicle dynamics. Tinge the multibody model is equipped with
a standard contact model based on the semi —celggtroach. [4] [5] [6] As in the previous
case the 2D multibody model (designed for the stafiyhe lateral dynamics) has been
obtained from the fully 3D multibody model of theshicle while the contact model is
completely 3D (see Fig. (10)).

Figure 10: 3D and 2D multibody models of the MarstBeWagon (Simpack Rail).

The comparison between the results obtained byMatab/Simulink model and those
obtained by the Simpack Rail model has allowed @uiate and reliable validation of the
new contact model.

6.3 Simulation of the lateral vehicle dynamics

The comparison between the Matlab/Simulink modelp{emented on Matlab R2007b)
and the Simpack Rail model (implemented on Simpa&0) has been carried out on the
same curvilinear railway track introduced abovee($ab. (3)). [5] [17] The numerical data
relative to the Matlab model have been chosenirsgaftom the results obtained in the
paragraph 6.1 (Tab. (8)). Similarly the numericatadrelative to the Simpack model are
briefly summarized in Tab. (9).

ODE 23
ODE Solver (Bogacki - Shampine
RelTol / AbsTol 10°%/10° ODE Solver ODES
Contact Mode | Differential Contact _ (Dormand_—4 Prince)
Model: Eg. (15) Fixed Step 5*10
Nonlinear Solver| Newton - BiCGStal Contact Model| Semi — Elastic Approach

Tol / MaxitNonlin

10°/ 20

17 | MaxitLin

0.01/ 2C

Table 8: Numerical Data (Matlab model).
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Among all the kinematic and dynamic variables eatdd by the models, the time histories
of the following quantities are reported (for tlade of simplicity all the outputs are expressed

in the reference system,x.y.z):

- the lateral displacemenf, of the centre of mass of the wheelggt (Fig. (11))
- the lateral displacemenf of the centre of mass of the body — &ir(Fig. (12))

- the contact forces on the left whe®)] and on the right whe
are the lateral forces (Fig. (13) and Fig. (15))levi} and

(14) and Fig. (16)).

; in particulary?® and Y}

R
—rw’

are the vertical forces (Fig.
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The simulation results show a good agreement bettreeMatlab model and the Simpack
model both in terms of kinematic variables andeimis of contact forces.
As regards the positions of contact patcAgs, A. on the wheel and on the rail, in order

to give an effective description of the shiftingtbe contact areas during the simulation, a
lateral section along the plangz, of the areasy ., A. has been considered. Moreover the

sections of the contact patches have been plottedylindrical surfaces generated by the
wheel and rail profiles and as long as the distareoesled by the vehicle. By conventiay),.,

A, are the contact areas on the left and on the wdietel (Fig. (17) and Fig. (18)) while
A, A are the contact areas on the left and on the raghtFig. (19) and Fig. (20)).

T a0 i
£ . -
O

= 7E0 -7AD
0 sog 720 740 760
¥ (mm)

780 760 740 720 70 1]

¥ (mrm)

Figure 17: Section of contact arég,. Figure 18: Sectafrcontact ared, .

" “sp  m e 7E0

780 740
¥ (mm)

Figure 19: Section of contact arég,. Figure Bkction of contact are, .

¥ (mm)

The sections of the contact areas evaluated bidtab model are plotted in blue while
the contact points detected by the Simpack modelptotted in black. It is interesting to
remark that, during the curve, a second contactt@ppears on the left wheel and rail (the
track turns to left). Consequently, while the Silpanodel detects two distinct contact points,
the contact areas evaluated by the Matlab modeisioof two disjoint parts. Also in this case
the agreement between the results obtained by tittaMmodel and the Simpack model is
good.

In conclusion the accuracy of the Matlab model $uvnt to be comparable with that of the
Simpack model; moreover the quasi — total abserfcaumerical noise highlights the
robustness and the stability of the new differémtiamtact model.
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7 CONCLUSIONS AND FURTHER DEVELOPMENTS

The performances of the Matlab model turned oubdogood both in terms of output
accuracy (kinematic variables, contact forces amtact patch) and in terms of numerical
efficiency (performances of the numerical algorithemd time consumption) and satisfy all
the specifics reported in the introduction (seegtéral).

As regards the further developments, in the neardufully 3D multibody models of the
Manchester Wagon will be considered. This kind afdei allows a complete description of
the vehicle dynamics but obviously involves an @ase of the model DOFs and of the
number of wheel — rail contact pairs.

Moreover many optimizations of the differential tact model are planned for the future.
The improvements will regard especially the FEMhteques used to discretize the contact
problem. In particular new mesh generation algorgland suitable nonlinear shape functions
will be examined. These technigues assure a batmrracy in the description of the local
contact phenomena but increases the dimensiorealiicrete problem and consequently the
computational load and the memory consumption.

Finally the implementation of the contact modeprmgramming environments like C/C++
and FORTRAN will be considered in order to obtaifudher reduction of the computation
time.

ACKNOWLEDGEMENTS

The authors would like to thank S. Bellavia andMBorini of the Section of Numerical
Analysis of the Energy Engineering Department (@rsity of Florence) for the valuable
suggestions provided during the development andittfementation of the numerical
procedures.

REFERENCES

[1] A. A. Shabana, J. R. Sany. An augmented formulattwnmechanical systems with
non-generalized coordinates: application to rigmbly contact problemsNonlinear
Dynamics 24, 183 — 204, 2001.

[2] S. lwinicki. Simulation of wheel — rail contact tms. Fatigue and Fracture of
Engineering Materials and Structurezb, 887 — 900, 2003.

[3] J. Pombo, J. Ambrosio. Dynamic analysis of a rajlweehicle in real operation
conditions using a new wheel — rail contact detectnodel.International Journalof
Vehicle Systems Modelling and Testihgr9 — 105, 2005.

[4] J. J. KalkerThree — dimensional Elastic Bodies in Rolling Cant&luwer Academic
Publishers, Dordrecht, Netherlands, 1990.

[5] R. V. Dukkipati, J. R. AmyotComputer Aided Simulation in Railway Dynamics
Dekker, New York, 1988.

[6] O. Polach. Creep forces in simulations of tractiehicles running on adhesion limit.
Wear, 258 992 — 1000, 2005.

[7] A. A. Shabana, K. E. Zaazaa, J. L. Escalona, $dny. Development of elastic force
model for wheel/rail contact problemurnal of Sound and Vibratip269, 295 — 325,
2004.

19



Silvia Magheri, Monica Malvezzi, Enrico Meli and Amé Rindi

[8]

9]
[10]
[11]
[12]
[13]
[14]

[15]

[16]
[17]
[18]

[19]
[20]

[21]
[22]
[23]

[24]

J. Auciello, M. Malvezzi, E. Meli, A. Rindi. Compapn between two multibody codes
for the simulation of the railway vehicle dynamio&/CCM8 - ECCOMAS 2008,
Venice, Italy, June 30 — July 4, 2008.

S. Falomi, M. Malvezzi, E. Meli, A. Rindi. Deternation of wheel — rail contact points
with semianalytic method$Aultibody System Dynamic20, 4, 327 — 358, 2008.

G. Duvaut, J. L. LionsLes Inequations en Mecanique et en Physidqueod, Paris,
France, 1972.

K. L. JohnsonContact MechanicsCambridge University Press, Cambridge, England,
1985

N. Kikuchi, J. T. OdenContact Problems in ElasticitySIAM Studies in Applied
Mathematics, Philadelphia, Pennsylvania, 1988.

P. Wriggers.Computational Contact Mechanic3ohn Wiley & Sons, Hoboken, New
Jersey, 2002.

O. Zienkiewicz.The Finite Element Method in Engineering ScierMdeGraw — Hill,
New York, 1988.

A. Klarbring. A mathematical programming approach3D contact problems with
frictions. Computer Methods in Applied Mechanics and Engimge®8, 175 — 200,
1986.

S. lwinicki. The Manchester Benchmarks for Rail Vehicle Simtdat®&wets &
Zeitlinger, Lisse, Netherlands, 1999.

C. Esveld Modern Railway TrackDelft University of Technology, Delft, Netherlasd
2001.

G. Dhatt, G. TouzotThe Finite Element Method Displayedohn Wiley & Sons,
Hoboken, New Jersey, 1984.

G. Vicuna.Organizzazione e Tecnica Ferroviariad. CIFI, Roma, Italy, 1986.

R. S. Dembo, S. C. Eisenstat, and T. SteihaugalrtedXewton method$SIAM Journal
of Numerical Analysisl9, 400 — 408, 1982.

C.T. Kelley. Iterative Methods for Linear and Nonlinear EquagonSIAM,
Philadelphia, Pennsylvania, 1995.

Y. Saad. Iterative Methods for Sparse Linear Systen8lAM, Philadelphia,
Pennsylvania, 2003.

J. Nocedal, S.J. WrighlNumerical OptimizationSpringer Series in Operation Research,
Berlin, Germany, 1999.

L. F. Shampine, M. W. Reichelt. The MATLAB ODE SiSIAM Journal on Scientific
Computing18, 1 — 22, 1997.

20



