Camillo De Lellis, Matteo Focardi

Density lower bound estimates for local minimizers of the $2 d$ Mumford-Shah energy

Received: 2 April 2012

Abstract

We prove, using direct variational arguments, an explicit energy-treshold criterion for regular points of 2-dimensional Mumford-Shah energy minimizers. From this we infer an explicit constant for the density lower bound of De Giorgi, Carriero and Leaci.

1. Introduction

The Mumford-Shah model stands as a prototypical example of variational problem in image segmentation (see [14]). It consists in minimizing (adding either boundary or confinement conditions or fidelity terms) the energy

$$
E(v, K):=\int_{\Omega \backslash K}|\nabla v|^{2} d x+\mathcal{H}^{1}(K),
$$

where $\Omega \subset \mathbb{R}^{2}$ is a fixed open set, K is a rectifiable closed subset of Ω, and $v \in C^{1}(\Omega \backslash K)$. This energy has been then borrowed and conveniently modified in Fracture Mechanics, mainly to model quasi-static irreversible crack-growth for brittle materials (see [2, Sect. 4.6.6]).

One of the first existence theories for minimizers of E hinges upon a weak formulation in the space $S B V$ of Special functions of Bounded Variation, the subspace of $B V$ functions with singular part of the distributional derivative concentrated on a 1 -rectifiable set. In this approach the set K is substituted by the (Borel) set S_{v} of approximate discontinuities of the function v (throughout the paper we will use standard notations and results concerning $B V$ and $S B V$, following the book [2]). This is the reason for the terminology free-discontinuity problem introduced by De Giorgi. The Mumford-Shah energy of a function v in $S B V(\Omega)$ on an open subset $A \subseteq \Omega$ then reads as

$$
\begin{equation*}
\operatorname{MS}(v, A)=\int_{A}|\nabla v|^{2} d x+\mathcal{H}^{1}\left(S_{v} \cap A\right) \tag{1.1}
\end{equation*}
$$

[^0]In case $A=\Omega$ we drop the dependence on the set of integration. In what follows u will always denote a local minimizer, that is any $u \in S B V(\Omega)$ with $\operatorname{MS}(u)<+\infty$ and such that

$$
\operatorname{MS}(u) \leq \operatorname{MS}(w) \quad \text { whenever }\{w \neq u\} \subset \subset \Omega
$$

The class of all local minimizers shall be denoted by $\mathcal{M}(\Omega)$.
As established in [10] in all dimensions (and proved alternatively in [6] in dimension two), if $u \in S B V$ is a minimizer of the energy MS, then the pair ($u, \overline{S_{u}}$) is a minimizer of E. The main point is the identity $\mathcal{H}^{1}\left(\overline{S_{u}} \backslash S_{u}\right)=0$, which holds for every $u \in \mathcal{M}(\Omega)$. The groundbreaking paper [10] proves this identity via the following density lower bound

$$
\begin{equation*}
\frac{\operatorname{MS}\left(u, B_{r}(z)\right)}{2 r} \geq \theta \quad \text { for all } \quad z \in \overline{S_{u}}, \quad \text { and all } r \in(0, \operatorname{dist}(z, \partial \Omega)) \tag{1.2}
\end{equation*}
$$

with θ a dimensional constant independent of u. Building upon the same ideas, in [5] it is proved that for some dimensional constant θ_{0} independent of u it holds

$$
\begin{equation*}
\frac{\mathcal{H}^{1}\left(S_{u} \cap B_{r}(z)\right)}{2 r} \geq \theta_{0} \quad \text { for all } \quad z \in \overline{S_{u}}, \quad \text { and all } r \in(0, \operatorname{dist}(z, \partial \Omega)) \tag{1.3}
\end{equation*}
$$

The argument for (1.2) used by De Giorgi et al. [10], and similarly in [5] for (1.3), is indirect: it relies on Ambrosio's $S B V$ compactness theorem, an $S B V$ PoincaréWirtinger type inequality and the asymptotic analysis of blow-ups of minimizers with vanishing Dirichlet energy. In this paper we give a simpler proof in 2 dimensions, which does not require any Poincaré-Wirtinger inequality, nor any compactness argument. Our argument differs from those used in [6] and [7] to derive (1.3) in the two dimensional case as well.

We first introduce some useful notation, which we borrow from [9]. Given $u \in \mathcal{M}(\Omega), z \in \Omega$ and $r \in(0, \operatorname{dist}(z, \partial \Omega))$ let

$$
\begin{gathered}
e_{z}(r):=\int_{B_{r}(z)}|\nabla u|^{2} d x, \quad \ell_{z}(r):=\mathcal{H}^{1}\left(S_{u} \cap B_{r}(z)\right) \\
m_{z}(r):=\operatorname{MS}\left(u, B_{r}(z)\right), \quad \text { and } \quad h_{z}(r):=e_{z}(r)+\frac{1}{2} \ell_{z}(r) .
\end{gathered}
$$

Clearly $m_{z}(r)=e_{z}(r)+\ell_{z}(r) \leq 2 h_{z}(r)$, with equality if and only if $e_{z}(r)=0$.
Theorem 1.1 Let $u \in \mathcal{M}(\Omega)$. Then

$$
\begin{equation*}
\frac{m_{z}(r)}{r} \geq 1 \text { for all } z \in \overline{S_{u}} \text { and all } r \in(0, \operatorname{dist}(z, \partial \Omega)) \tag{1.4}
\end{equation*}
$$

More precisely, the set $\Omega_{u}:=\{z \in \Omega$: (1.4) fails $\}$ is open and $\Omega_{u}=\Omega \backslash \overline{J_{u}}=$ $\Omega \backslash \overline{S_{u}}$.

The quantity $m_{z}(\cdot)$ in Theorem 1.1 allows us to take advantage of a suitable monotonicity formula, discovered independently by David and Léger in [9] and Maddalena and Solimini in [13]. A simple iteration of Theorem 1.1 gives a density lower bound as in (1.3) with an explicit constant θ_{0}.

Corollary 1.2 If $u \in \mathcal{M}(\Omega)$, then $\mathcal{H}^{1}\left(\overline{S_{u}} \backslash J_{u}\right)=0$ and

$$
\begin{equation*}
\frac{\ell_{z}(r)}{2 r} \geq \frac{\pi}{2^{24}} \quad \text { for all } z \in \overline{S_{u}} \quad \text { and all } r \in(0, \operatorname{dist}(z, \partial \Omega)) \tag{1.5}
\end{equation*}
$$

A natural question is the sharpness of the estimates (1.4) and (1.5). The analysis performed by Bonnet [3] suggests that $\frac{\pi}{2^{24}}$ in (1.5) should be replaced by $\frac{1}{2}$ and 1 in (1.4) by 2 . Note that the square root function $u(r, \theta)=\sqrt{\frac{2}{\pi} r} \cdot \sin (\theta / 2)$ satisfies $\ell_{0}(r)=e_{0}(r)=r$ for all $r>0$. Thus both the constants conjectured above would be sharp by [8, Sect. 62]. Unfortunately, we cannot prove any of them.

Instead, in Corollary 1.3 below we prove an infinitesimal version of (1.4) for quasi-minimizers of the Mumford-Shah energy, that is any function v in $\operatorname{SBV}(\Omega)$ with $\operatorname{MS}(v)<+\infty$ and satisfying for some $\omega \geq 0$ and $\alpha>0$ and for all balls $B_{\rho}(z) \subset \Omega$

$$
\begin{equation*}
\operatorname{MS}\left(v, B_{\rho}(z)\right) \leq \operatorname{MS}\left(w, B_{\rho}(z)\right)+\omega \rho^{1+\alpha} \quad \text { whenever }\{w \neq v\} \subset \subset B_{\rho}(z) \tag{1.6}
\end{equation*}
$$

We denote the class of quasi-minimizers satisfying (1.6) by $\mathcal{M}_{\omega}(\Omega)$.

Corollary 1.3 Let $v \in \mathcal{M}_{\omega}(\Omega)$, then

$$
\begin{equation*}
\overline{S_{u}}=\overline{J_{u}}=\left\{z \in \Omega: \liminf _{r \downarrow 0^{+}} \frac{m_{z}(r)}{r} \geq \frac{2}{3}\right\} . \tag{1.7}
\end{equation*}
$$

Let us finally mention that Bucur \& Luckhaus, independently from us, have used a similar idea to the main one of Theorem 1.1 (see [4]). Moreover, in their paper they improve remarkably on this key idea obtaining some results in the spirit of Theorem 1.1 and Corollary 1.3 without our dimensional limitation.

Plan of the paper. In Sect. 2 we prove Theorem 1.1. The main ingredient, i.e. the David-Léger-Maddalena-Solimini monotonicity formula is proved in Appendix A. In section 3 we prove the Corollaries 1.2 and 1.3. The latter needs three additional tools: a Poincaré-Wirtinger type inequality, a technical lemma on sequences of MS minimizers and a decay lemma, proved in Appendices B, C and D, respectively. The technical lemma and the decay lemma are well-known facts. The Poincaré-Wirtinger inequality instead refines some results obtained in [12]: it is to our knowledge new and might be of independent interest.

2. Main result

As already mentioned, the main ingredient of Theorem 1.1 is the following monotonicity formula discovered independently in [9] and in [13] (cp. with [9, Proposition 3.5]).

Lemma 2.1 Let $u \in \mathcal{M}(\Omega)$, then for every $z \in \Omega$ and for \mathcal{L}^{1} a.e. $r \in$ $(0, \operatorname{dist}(z, \partial \Omega))$

$$
\begin{equation*}
\int_{\partial B_{r}(z)}\left(\left(\frac{\partial u}{\partial v}\right)^{2}-\left(\frac{\partial u}{\partial \tau}\right)^{2}\right) d \mathcal{H}^{1}+\frac{\ell_{z}(r)}{r}=\frac{1}{r} \int_{J_{u} \cap \partial B_{r}(z)}\left|\left\langle v_{u}^{\perp}(x), x\right\rangle\right| d \mathcal{H}^{0}(x) \tag{2.1}
\end{equation*}
$$

$\frac{\partial u}{\partial \nu}$ and $\frac{\partial u}{\partial \tau}$ being the projections of ∇u in the normal and tangential directions to $\partial B_{r}(z)$, respectively.

We will also need the following elementary well-known facts.
Lemma 2.2 Every $u \in \mathcal{M}(\Omega)$ is locally bounded and

$$
\begin{equation*}
\operatorname{MS}\left(u, B_{r}(z)\right) \leq 2 \pi r \quad \text { for all } B_{r}(z) \subset \Omega \tag{2.2}
\end{equation*}
$$

We are now ready to prove the main result of the paper.
Proof of Theorem 1.1 Introduce the set J_{u}^{\star} of points $x \in J_{u}$ for which

$$
\begin{equation*}
\lim _{r \downarrow 0} \frac{\mathcal{H}^{1}\left(J_{u} \cap B_{r}(x)\right)}{2 r}=1 \tag{2.3}
\end{equation*}
$$

Since J_{u} is rectifiable, $\mathcal{H}^{1}\left(J_{u} \backslash J_{u}^{\star}\right)=0$. Next let $z \in \Omega$ be such that

$$
\begin{equation*}
m_{z}(R)<R \quad \text { for some } \quad R \in(0, \operatorname{dist}(z, \partial \Omega)) \tag{2.4}
\end{equation*}
$$

We claim that $z \notin J_{u}^{\star}$. W.l.o.g. we take $z=0$ and drop the subscript z in e, ℓ, m and h.

In addition we can assume $e(R)>0$. Otherwise, by the Co-Area formula and the trace theory of BV functions, we would find a radius $r<R$ such that $\left.u\right|_{{ }_{\partial B_{r}}}$ is a constant. In turn, u would necessarily be constant in B_{r} because the energy decreases under truncations, thus implying $z \notin J_{u}^{\star}$. We can also assume $\ell(R)>0$, since otherwise u would be harmonic in B_{R} and thus we would conclude $z \notin J_{u}^{\star}$.

We start next to compare the energy of u with that of an harmonic competitor on a suitable disk. The inequality $\ell(R) \leq m(R)<R$ is crucial to select good radii. Step 1: For any fixed $r \in(0, R-\ell(R))$, there exists a set I_{r} of positive length in (r, R) such that

$$
\begin{equation*}
\frac{h(\rho)}{\rho} \leq \frac{1}{2} \cdot \frac{e(R)-e(r)}{R-r-(\ell(R)-\ell(r))} \quad \text { for all } \rho \in I_{r} \tag{2.5}
\end{equation*}
$$

Define $J_{r}:=\left\{t \in(r, R): \mathcal{H}^{0}\left(S_{u} \cap \partial B_{t}\right)=0\right\}$. We claim the existence of $J_{r}^{\prime} \subseteq J_{r}$ with $\mathcal{L}^{1}\left(J_{r}^{\prime}\right)>0$ and such that

$$
\begin{equation*}
\int_{\partial B_{\rho}}|\nabla u|^{2} d \mathcal{H}^{1} \leq \frac{e(R)-e(r)}{R-r-(\ell(R)-\ell(r))} \quad \text { for all } \rho \in J_{r}^{\prime} \tag{2.6}
\end{equation*}
$$

Indeed, we use the Co-Area formula for rectifiable sets (see [2, Theorem 2.93]) to find

$$
\begin{aligned}
\mathcal{L}^{1}\left((r, R) \backslash J_{r}\right) & \leq \int_{(r, R) \backslash J_{r}} \mathcal{H}^{0}\left(S_{u} \cap \partial B_{t}\right) d t=\int_{S_{u} \cap\left(B_{R} \backslash \overline{B_{r}}\right)}\left|\left\langle v_{u}^{\perp}(x), \frac{x}{|x|}\right\rangle\right| d \mathcal{H}^{1}(x) \\
& \leq \ell(R)-\ell(r) .
\end{aligned}
$$

In turn, this inequality implies $\mathcal{L}^{1}\left(J_{r}\right) \geq R-r-(\ell(R)-\ell(r))>0$, thanks to the choice of r. Then, define J_{r}^{\prime} to be the subset of radii $\rho \in J_{r}$ for which

$$
\int_{\partial B_{\rho}}|\nabla u|^{2} d \mathcal{H}^{1} \leq f_{J_{r}}\left(\int_{\partial B_{t}}|\nabla u|^{2} d \mathcal{H}^{1}\right) d t .
$$

Formula (2.6) follows by the Co-Area formula and the estimate $\mathcal{L}^{1}\left(J_{r}\right) \geq R-r-$ $(\ell(R)-\ell(r))$.

We define I_{r} as the subset of radii $\rho \in J_{r}^{\prime}$ satisfying both (2.1) and (2.6). Therefore

$$
\begin{equation*}
\int_{\partial B_{\rho}}\left(\frac{\partial u}{\partial \tau}\right)^{2} d \mathcal{H}^{1}=\frac{1}{2} \int_{\partial B_{\rho}}|\nabla u|^{2} d \mathcal{H}^{1}+\frac{\ell(\rho)}{2 \rho} \quad \forall \rho \in I_{r} . \tag{2.7}
\end{equation*}
$$

Clearly, I_{r} has full measure in J_{r}^{\prime}, so that $\mathcal{L}^{1}\left(I_{r}\right)>0$.
For any $\rho \in I_{r}$, we let w be the harmonic function in B_{ρ} with trace u on ∂B_{ρ}. Then, as $\frac{\partial w}{\partial \tau}=\frac{\partial u}{\partial \tau} \mathcal{H}^{1}$ a.e. on ∂B_{ρ}, the local minimality of u entails

$$
m(\rho) \leq \int_{B_{\rho}}|\nabla w|^{2} d x \leq \rho \int_{\partial B_{\rho}}\left(\frac{\partial u}{\partial \tau}\right)^{2} d \mathcal{H}^{1} \stackrel{(2.7)}{=} \frac{\rho}{2} \int_{\partial B_{\rho}}|\nabla u|^{2} d \mathcal{H}^{1}+\frac{\ell(\rho)}{2}
$$

The inequality (2.5) follows from the latter inequality and from (2.6):

$$
h(\rho)=e(\rho)+\frac{\ell(\rho)}{2} \leq \frac{\rho}{2} \int_{\partial B_{\rho}}|\nabla u|^{2} d \mathcal{H}^{1} \leq \frac{\rho}{2} \cdot \frac{e(R)-e(r)}{R-r-(\ell(R)-\ell(r))} .
$$

Step 2: We now show that $0 \notin J_{u}^{\star}$.
Let $\varepsilon \in(0,1)$ be fixed such that $m(R) \leq(1-\varepsilon) R$, and fix any radius $r \in$ ($0, R-\ell(R)-\frac{1}{1-\varepsilon} e(R)$). Step 1 and the choice of r then imply

$$
\frac{h(\rho)}{\rho} \leq \frac{1}{2} \frac{e(R)-e(r)}{R-r-(\ell(R)-\ell(r))} \leq \frac{e(R)}{2(R-\ell(R)-r)}<\frac{1-\varepsilon}{2}
$$

in turn giving $m(\rho) \leq 2 h(\rho)<(1-\varepsilon) \rho$. Let $\rho_{\infty}:=\inf \{t>0: m(t) \leq(1-\varepsilon) t\}$, then $\rho_{\infty} \in[0, \rho]$. Note that if ρ_{∞} were strictly positive then actually ρ_{∞} would be a minimum. In such a case, we could apply the argument above and find $\widetilde{\rho} \in$ $\left(r_{\infty}, \rho_{\infty}\right)$, with $r_{\infty} \in\left(0, \rho_{\infty}-\ell\left(\rho_{\infty}\right)-\frac{1}{1-\varepsilon} e\left(\rho_{\infty}\right)\right)$, such that $m(\widetilde{\rho})<(1-\varepsilon) \widetilde{\rho}$ contradicting the minimality of ρ_{∞}. Hence, there is a sequence $\rho_{k} \downarrow 0^{+}$with $m\left(\rho_{k}\right) \leq(1-\varepsilon) \rho_{k}$. Then, clearly condition (2.3) is violated, so that $0 \notin J_{u}^{\star}$.
Conclusion: We first prove that Ω_{u} is open. Let $z \in \Omega_{u}$ and let $R>0$ and $\varepsilon>0$ be such that $m_{z}(R) \leq(1-\varepsilon) R$ and $B_{\varepsilon R}(z) \subset \Omega$. Let now $x \in B_{\varepsilon R}(z)$, then

$$
m_{x}(R-|x-z|) \leq m_{z}(R) \leq(1-\varepsilon) R<R-|x-z|
$$

therefore $x \in \Omega_{u}$.
As $J_{u}^{\star} \cap \Omega_{u}=\emptyset$ by Step 2 , we have $\mathcal{H}^{1}\left(J_{u}^{\star} \cap \Omega_{u}\right)=\mathcal{H}^{1}\left(J_{u} \cap \Omega_{u}\right)=\mathcal{H}^{1}\left(S_{u} \cap\right.$ $\left.\Omega_{u}\right)=0$. Hence, u is in $W^{1,2}$ of the open set Ω_{u}, and by minimality it is actually harmonic there. Thus, $S_{u} \cap \Omega_{u}=\emptyset$ and $\overline{S_{u}} \subseteq \Omega \backslash \Omega_{u}$. Moreover, let $z \notin \overline{J_{u}^{\star}}$ and $r>0$ be such that $B_{r}(z) \subseteq \Omega \backslash \overline{J_{u}^{\star}}$. Since $\mathcal{H}^{1}\left(S_{u} \backslash \overline{J_{u}^{\star}}\right)=0, u \in W^{1,2}\left(B_{r}(z)\right)$ and thus u is an harmonic function in $B_{r}(z)$ by minimality. Therefore $z \in \Omega_{u}$, and in conclusion $\Omega \backslash \Omega_{u}=\overline{J_{u}^{\star}}=\overline{J_{u}}=\overline{S_{u}}$.

Remark 2.3 The same arguments of Theorem 1.1 complemented by Theorem 3.1 show that

$$
\begin{equation*}
\Omega \backslash \overline{J_{u}}=\left\{z \in \Omega: m_{z}(R) \leq R \text { for some } R \in(0, d(z, \partial \Omega))\right\} \tag{2.8}
\end{equation*}
$$

Indeed, assuming $z=0$ and dropping the subscript z, if $e(R)=0$ or $\ell(R)=0$, then $0 \in \Omega \backslash \overline{J_{u}}$. In the former case, the assertion follows since u is constant on B_{ρ} for some $\rho \in(0, R)$ by Theorem 3.1; in the latter case, u is harmonic on B_{R} by minimality. Hence, both $e(R)$ and $\ell(R)$ are in $(0, R)$. By Step 1 in Theorem 1.1 we have $h(\rho) \leq \rho / 2$ for some $\rho \in(0, R)$. If $e(\rho)=0$ then $0 \in \Omega \backslash \overline{J_{u}}$, otherwise, $m(\rho)<2 h(\rho) \leq \rho$. In the last instance, we are back to Theorem 1.1, so that $0 \in \Omega \backslash \overline{J_{u}}$. In any case, the set on the rhs of (2.8) is contained in $\Omega \backslash \overline{J_{u}}$. The opposite inclusion is trivial.

3. Proof of Corollaries 1.2 and 1.3

Proof of Corollary 1.2 Assume by contradiction that (1.5) fails for some $z \in \overline{S_{u}}$ and some $R_{1} \in(0, \operatorname{dist}(z, \partial \Omega))$. W.l.o.g. we take $z=0 \in S_{u}$ and drop the subscript z in e, ℓ, m and h.

Note that $R_{1} / 4-\ell\left(R_{1}\right)>R_{1} / 8$ since $\ell\left(R_{1}\right)<2 \pi R_{1} / 2^{24}<R_{1} / 8$. Then, choosing $r_{1} \in\left(R_{1} / 8, R_{1} / 4-\ell\left(R_{1}\right)\right)$ we have $2\left(R_{1}-\ell\left(R_{1}\right)-r_{1}\right)>3 R_{1} / 2$, and by applying Step 1 in Theorem 1.1 we infer, by (2.2),

$$
\frac{h\left(\rho_{1}\right)}{\rho_{1}} \leq \frac{1}{2\left(R_{1}-\ell\left(R_{1}\right)-r_{1}\right)} e\left(R_{1}\right)<\frac{2}{3} \frac{e\left(R_{1}\right)}{R_{1}} \leq \frac{4}{3} \pi
$$

for some $\rho_{1} \in\left(r_{1}, R_{1}\right)$. Note that

$$
\frac{\ell\left(\rho_{1}\right)}{2 \rho_{1}} \leq \frac{R_{1}}{\rho_{1}} \frac{\ell\left(R_{1}\right)}{2 R_{1}}<8 \frac{\ell\left(R_{1}\right)}{2 R_{1}}<\frac{\pi}{2^{21}}<\frac{1}{16}
$$

Hence, we may use again Step 1 of Theorem 1.1 with the new radii $R_{2}=\rho_{1}$, and r_{2} satisfying $r_{2} \in\left(R_{2} / 8, R_{2} / 4-\ell\left(R_{2}\right)\right)$ accordingly. Then, for some $\rho_{2} \in\left(r_{2}, R_{2}\right)$ we get

$$
\frac{h\left(\rho_{2}\right)}{\rho_{2}} \leq \frac{1}{2\left(R_{2}-\ell\left(R_{2}\right)-r_{2}\right)} e\left(R_{2}\right)<\frac{2}{3} \frac{e\left(R_{2}\right)}{R_{2}} \Longrightarrow \frac{h\left(\rho_{2}\right)}{\rho_{2}} \leq\left(\frac{2}{3}\right)^{2} 2 \pi
$$

In general, for $2 \leq k \leq 7$ given R_{k-1}, r_{k-1} and ρ_{k-1} set $R_{k}:=\rho_{k-1}$, choose r_{k} such that $r_{k} \in\left(R_{k} / 8, R_{k} / 4-\ell\left(R_{k}\right)\right)$, and use Step 1 of Theorem 1.1 to find $\rho_{k} \in\left(r_{k}, R_{k}\right)$ satisfying

$$
\frac{h\left(\rho_{k}\right)}{\rho_{k}} \leq\left(\frac{2}{3}\right)^{j} 2 \pi
$$

Note that for any $2 \leq k \leq 6$

$$
\frac{\ell\left(\rho_{k}\right)}{2 \rho_{k}}<8 \frac{\ell\left(\rho_{k-1}\right)}{2 \rho_{k-1}}<\frac{\pi}{2^{3(8-k)}}<\frac{1}{16},
$$

and thus the construction is well defined. In addition,

$$
\frac{h\left(\rho_{7}\right)}{\rho_{7}} \leq\left(\frac{2}{3}\right)^{7} 2 \pi<\frac{1}{2} \Longrightarrow m\left(\rho_{7}\right) \leq 2 h\left(\rho_{7}\right)<\rho_{7}
$$

From Theorem 1.1 we deduce that $0 \notin S_{u}$, which gives clearly a contradiction.
Eventually, standard density estimates imply $\mathcal{H}^{1}\left(\overline{S_{u}} \backslash S_{u}\right)=0$ (cp. with [2, Theorem 2.56]), and being $\overline{S_{u}}=\overline{J_{u}}$ (see Theorem 1.1) we get $\mathcal{H}^{1}\left(\overline{S_{u}} \backslash J_{u}\right)=0 . \square$

In the proof of Corollary 1.3 we will need a Poincaré-Wirtinger type inequality (see Appendix B), and a closure theorem for minimizers of the Mumford-Shah energy.

Theorem 3.1 Let $u \in \mathcal{M}\left(B_{R}\right)$ with $\mathcal{H}^{1}\left(S_{u}\right)<2 R$, and let $\lambda \in(0,1)$. Then, $u \in L^{\infty}\left(B_{\rho}\right)$ for some $\rho \in\left(\lambda\left(R-\mathcal{H}^{1}\left(S_{u}\right) / 2\right), R\right)$, and for any median $\operatorname{med}(u)$ of u on B_{R} we have

$$
\|u-\operatorname{med}(u)\|_{L^{\infty}\left(B_{\rho}\right)} \leq \frac{2}{2 R-\mathcal{H}^{1}\left(S_{u}\right)}\|\nabla u\|_{L^{1}\left(B_{R}, \mathbb{R}^{2}\right)}
$$

Proposition 3.2 Let $\left(u_{k}\right)_{k \in \mathbb{N}} \subset \mathcal{M}(\Omega)$ be a sequence converging to some $u \in$ $S B V(\Omega)$ strongly in L^{2}. Then $u \in \mathcal{M}(\Omega)$ and for all open sets $A \subseteq \Omega$ we have

$$
\begin{equation*}
\lim _{k} \int_{A}\left|\nabla u_{k}\right|^{2} d x=\int_{A}|\nabla u|^{2} d x, \quad \lim _{k} \mathcal{H}^{1}\left(J_{u_{k}} \cap A\right)=\mathcal{H}^{1}\left(J_{u} \cap A\right) . \tag{3.1}
\end{equation*}
$$

Furthermore, $\left(\overline{J_{u_{k}}}\right)_{k \in \mathbb{N}}$ converges locally in the Hausdorff distance to $\overline{J_{u}}$.
We will also take advantage of the following decay lemma inspired by [10, Lemma 4.9] (cp. also with [2, Lemma 7.14, Theorem 7.21]) and proved in Appendix D.

Lemma 3.3 For all $\omega \geq 0, \beta \in(0,1]$ and $\tau \in(0,1)$ there exist $\varepsilon=\varepsilon(\beta, \tau) \in$ $(0,1)$ and $R=R(\beta, \tau)>0$ such that if $v \in \mathcal{M}_{\omega}(\Omega)$ satisfies

$$
\operatorname{MS}\left(v, B_{\rho}(z)\right) \leq \varepsilon \rho,
$$

for some $z \in \Omega$ and $\rho \in\left(0,\left(R / \omega^{1 / \alpha}\right) \wedge \operatorname{dist}(z, \partial \Omega)\right)$, then for all $k \geq 1$

$$
\operatorname{MS}\left(v, B_{\tau^{k} \rho}(z)\right) \leq \tau^{k+1-\beta} \varepsilon \rho
$$

Proof of Corollary 1.3 Denote by Ω_{v} the complement of the set on the rhs of (1.7). We first show that $\Omega_{v}=\Omega \backslash \overline{J_{v}^{\star}}$, where as usual J_{v}^{\star} is the subset of points $z \in J_{v}$ for which

$$
\lim _{r \downarrow 0} \frac{\mathcal{H}^{1}\left(J_{u} \cap B_{r}(z)\right)}{2 r}=1
$$

Let $z \in \Omega \backslash \overline{J_{v}^{\star}}$, then $v \in W^{1,2}\left(B_{R}(z)\right)$ for some $R>0$. Observe $\left.v\right|_{\partial B_{\rho}(z)} \in$ $W^{1,2}\left(\partial B_{R}(z)\right)$ for \mathcal{L}^{1} a.e. $\rho \in(0, R)$. Testing the quasi-minimality condition (1.6) with the harmonic extension φ of $\left.v\right|_{\partial B_{\rho}(z)}$ to $B_{\rho}(z)$, Lemma 2.1 and the Co-Area formula yield

$$
e_{z}(\rho) \leq \frac{\rho}{2} e_{z}^{\prime}(\rho)+\omega \rho^{1+\alpha} .
$$

Integrating this last inequality we get, for $\alpha \neq 1$,

$$
\begin{equation*}
e_{z}(\rho) \leq\left(\frac{\rho}{R}\right)^{2} e_{z}(R)+\frac{2 \omega}{\alpha-1} \rho^{2}\left(R^{\alpha-1}-\rho^{\alpha-1}\right) \tag{3.2}
\end{equation*}
$$

from which we conclude $z \in \Omega_{v}$ since $m_{z}(\rho)=e_{z}(\rho)=o(\rho)$ as $\rho \downarrow 0^{+}$. Hence, $\Omega \backslash \overline{J_{v}^{\star}} \subseteq \Omega_{v}$. We can proceed analogously if $\alpha=1$.

To prove the opposite inclusion, let $z \in \Omega_{v}$ and $r_{k} \downarrow 0^{+}$be a sequence along which for some $\gamma \in(0,2 / 3)$

$$
\begin{equation*}
\liminf _{r \downarrow 0^{+}} \frac{m_{z}(r)}{r}=\lim _{k \uparrow \infty} \frac{m_{z}\left(r_{k}\right)}{r_{k}}<\gamma \tag{3.3}
\end{equation*}
$$

Let m_{k} be a median of u on $B_{r_{k}}(z)$, and consider the functions $v_{k}: B_{1} \rightarrow \mathbb{R}$ defined as $v_{k}(y):=r_{k}^{-1 / 2}\left(v\left(z+r_{k} y\right)-m_{k}\right)$. Note that $v_{k} \in \mathcal{M}_{\omega r_{k}^{\alpha}}\left(B_{1}\right)$. Let $\lambda \in(0,1)$ be a parameter whose choice will be specified later. Since $\mathcal{H}^{1}\left(J_{v_{k}}\right)<\gamma$ we apply Theorem B. 6 to find functions $w_{k}: B_{1} \rightarrow \mathbb{R}$ which are suitable truncations of v_{k} and such that, for all k,

$$
\left\|w_{k}\right\|_{L^{\infty}\left(B_{\lambda(1-\gamma / 2)}\right)} \leq 2\left\|\nabla v_{k}\right\|_{L^{1}\left(B_{1}, \mathbb{R}^{2}\right)} \leq 2 \pi^{1 / 2}\left\|\nabla v_{k}\right\|_{L^{2}\left(B_{1}, \mathbb{R}^{2}\right)} \stackrel{(2.2)}{\leq} 4 \pi
$$

In particular, up to a subsequence, $\left(w_{k}\right)_{k \in \mathbb{N}}$ converges in $L^{2}\left(B_{\lambda(1-\gamma / 2)}\right)$ to a function w in $S B V\left(B_{\lambda(1-\gamma / 2)}\right)$ with MS $\left(w, B_{\lambda(1-\gamma / 2)}\right)<+\infty$ by Ambrosio's SBV compactness theorem (see [2, Theorems 4.7, 4.8]).

We claim that for all open subsets A of B_{1} it holds

$$
\begin{equation*}
0 \leq \operatorname{MS}\left(v_{k}, A\right)-\operatorname{MS}\left(w_{k}, A\right) \leq \omega r_{k}^{\alpha} \tag{3.4}
\end{equation*}
$$

Indeed, by the very definition of w_{k} we have $\left\{w_{k} \neq v_{k}\right\} \subset \subset B_{1}$ (cp. with formula (B.3) in Theorem B.6). Then, as $v_{k} \in \mathcal{M}_{\omega r_{k}^{\alpha}}\left(B_{1}\right)$, we get

$$
\operatorname{MS}\left(v_{k}, B_{1}\right)-\operatorname{MS}\left(w_{k}, B_{1}\right) \leq \omega r_{k}^{\alpha} .
$$

We conclude (3.4) by the latter estimate and since $\operatorname{MS}\left(w_{k}, B\right) \leq \operatorname{MS}\left(v_{k}, B\right)$ for all Borel subsets B of B_{1} (recall that w_{k} is obtained from v_{k} by truncation).

Remark C. 1 and (3.4) yield that $w \in \mathcal{M}\left(B_{\lambda(1-\gamma / 2)}\right)$, with

$$
\begin{equation*}
\operatorname{MS}\left(w, B_{\rho}\right)=\lim _{k \uparrow \infty} \operatorname{MS}\left(w_{k}, B_{\rho}\right) \quad \text { for all } \rho \in(0, \lambda(1-\gamma / 2)] . \tag{3.5}
\end{equation*}
$$

By collecting (3.3)-(3.5), we deduce for every $\rho \in(0, \lambda(1-\gamma / 2)]$

$$
\begin{equation*}
\operatorname{MS}\left(w, B_{\rho}\right)=\lim _{k \uparrow \infty} \frac{m_{z}\left(\rho r_{k}\right)}{r_{k}} \leq \lim _{k \uparrow \infty} \frac{m_{z}\left(r_{k}\right)}{r_{k}}<\gamma \leq \lambda\left(1-\frac{\gamma}{2}\right), \tag{3.6}
\end{equation*}
$$

the last inequality holding true provided $\lambda \in(0,1)$ is suitably chosen (recall that $\gamma \in(0,2 / 3))$.

In particular, if $\rho=\lambda(1-\gamma / 2)$ from (3.6) we infer that $0 \notin \overline{S_{w}}$ in view of Remark 2.3. Hence, being w harmonic in $B_{\lambda(1-\gamma / 2)}$ for every fixed $\rho \in(0, \lambda(1-$ $\gamma / 2)$] we get

$$
\begin{equation*}
\frac{m_{z}\left(\rho r_{k}\right)}{\rho r_{k}} \leq 2 \rho \quad \text { for all } k \geq k_{\rho} \tag{3.7}
\end{equation*}
$$

so that $z \in \Omega \backslash J_{v}^{\star}$. Moreover, if $\varrho>0$ is such that $4 \varrho \leq \varepsilon \wedge(\lambda(1-\gamma / 2)) \wedge(2 / 3)$ then $B_{\varrho} r_{k_{\varrho}} / 2(z) \subseteq \Omega_{v}$. For, if $x \in B_{\varrho} r_{k_{\varrho}} / 2(z)$, by Lemma 3.3 applied with $\tau=1 / 2$, any $\beta \in(0,1)$ and $\rho=\varrho r_{k_{\rho}}$, the choice of ϱ yields that

$$
\frac{m_{x}\left(\varrho r_{k_{e}} / 2\right)}{\varrho r_{k_{e}} / 2} \leq 2 \frac{m_{z}\left(\varrho r_{k_{e}}\right)}{\varrho r_{k_{e}}} \stackrel{(3.7)}{\leq} 4 \varrho \leq \varepsilon,
$$

and thus we deduce $x \in \Omega_{v}$ by iterating Lemma 3.3 along the sequence $\left(2^{-i} \varrho r_{k_{\varrho}}\right)_{i \in \mathbb{N}}$. Hence, Ω_{v} is an open set and $\Omega_{v} \cap J_{v}^{\star}=\emptyset$, in turn this implies $\Omega \backslash \overline{J_{v}^{\star}}=\Omega_{v}$.

Finally, being Ω_{v} open and v a quasi-minimizer of the Dirichlet energy on Ω_{v} then $v \in C^{1,1 / 2}\left(\Omega_{v}\right)$ by (3.2) and Campanato's estimates. In conclusion, $S_{v} \cap \Omega_{v}=$ \emptyset, and then $\overline{S_{v}}=\overline{J_{v}}=\Omega \backslash \Omega_{v}$.

Appendix A: The David-Léger-Maddalena-Solimini monotonicity formula

Proof of Lemma 2.1 We start by recalling the first variation formula for local minimizers of the Mumford-Shah energy (see [2, Sect. 7.4]): for every vector field $\eta \in \operatorname{Lip} \cap C_{c}\left(\Omega, \mathbb{R}^{2}\right)$

$$
\begin{equation*}
\int_{\Omega}\left(|\nabla u|^{2} \operatorname{div} \eta-2\langle\nabla u, \nabla u \nabla \eta\rangle\right) d x+\int_{J_{u}} \operatorname{div}^{J_{u}} \eta d \mathcal{H}^{1}=0 . \tag{A.1}
\end{equation*}
$$

With fixed a point $z \in \Omega, r>0$ with $B_{r}(z) \subseteq \Omega$, we consider special radial vector fields $\eta_{r, s} \in \operatorname{Lip} \cap C_{c}\left(B_{r}(z), \mathbb{R}^{2}\right), s \in(0, r)$, in formula above. For the sake of simplicity we assume $z=0$, and drop the subscript z in what follows. Let

$$
\eta_{r, s}(x):=x \chi_{[0, s]}(|x|)+\frac{|x|-r}{s-r} x \chi_{(s, r]}(|x|),
$$

then routine calculations leads to

$$
\left.\nabla \eta_{r, s}(x):=\operatorname{Id} \chi_{[0, s]}| | x \mid\right)+\left(\frac{|x|-r}{s-r} \operatorname{Id}+\frac{1}{s-r} \frac{x}{|x|} \otimes x\right) \chi_{(s, r]}(|x|)
$$

\mathcal{L}^{2} a.e. in Ω. In turn, from the latter formula we infer for \mathcal{L}^{2} a.e. in Ω

$$
\operatorname{div} \eta_{r, s}(x)=2 \chi_{[0, s]}(|x|)+\left(2 \frac{|x|-r}{s-r}+\frac{|x|}{s-r}\right) \chi_{(s, r]}(|x|),
$$

and, if $v_{u}(x)$ is a unit vector normal field in $x \in J_{u}$, for \mathcal{H}^{1} a.e. $x \in J_{u}$

$$
\operatorname{div}^{J_{u}} \eta_{r, s}(x)=\chi_{[0, s]}(|x|)+\left(\frac{|x|-r}{s-r}+\frac{1}{|x|(s-r)}\left|\left\langle x, v_{u}^{\perp}\right\rangle\right|^{2}\right) \chi_{(s, r]}(|x|) .
$$

Consider the set $I:=\left\{\rho \in(0, \operatorname{dist}(0, \partial \Omega)): \mathcal{H}^{1}\left(J_{u} \cap \partial B_{\rho}\right)=0\right\}$, then $(0$, dist $(0, \partial \Omega)) \backslash I$ is at most countable being $\mathcal{H}^{1}\left(J_{u}\right)<+\infty$. If ρ and $s \in I$, by inserting $\eta_{r, s}$ in (A.1) we find

$$
\begin{aligned}
& \frac{1}{s-r} \int_{B_{r} \backslash B_{s}}|x||\nabla u|^{2} d x-\frac{2}{s-r} \int_{B_{r} \backslash B_{s}}|x|\left\langle\nabla u,\left(\operatorname{Id}-\frac{x}{|x|} \otimes \frac{x}{|x|}\right) \nabla u\right\rangle d x \\
& =\ell(s)+\int_{J_{u} \cap\left(B_{r} \backslash B_{s}\right)} \frac{|x|-r}{s-r} d \mathcal{H}^{1}+\frac{1}{s-r} \int_{J_{u} \cap\left(B_{r} \backslash B_{s}\right)}|x|\left|\left\langle\frac{x}{|x|}, v_{u}^{\perp}\right\rangle\right|^{2} d \mathcal{H}^{1} .
\end{aligned}
$$

Next we employ Co-Area formula and rewrite equality above as

$$
\begin{aligned}
& \frac{1}{s-r} \int_{s}^{r} \rho d \rho \int_{\partial B_{\rho}}|\nabla u|^{2} d \mathcal{H}^{1}-\frac{2}{s-r} \int_{s}^{r} \rho d \rho \int_{\partial B_{\rho}}\left|\frac{\partial u}{\partial \tau}\right|^{2} d \mathcal{H}^{1} \\
& =\ell(s)+\int_{J_{u} \cap\left(B_{r} \backslash B_{s}\right)} \frac{|x|-r}{s-r} d \mathcal{H}^{1}+\frac{1}{s-r} \int_{s}^{r} d \rho \int_{J_{u} \cap \partial B_{\rho}}\left|\left\langle x, v_{u}^{\perp}\right\rangle\right| d \mathcal{H}^{0}
\end{aligned}
$$

where $v:=x /|x|$ denotes the radial versor and $\tau:=v^{\perp}$ the tangential one. Lebesgue differentiation theorem then provides a subset I^{\prime} of full measure in I such that if $r \in I^{\prime}$ and we let $s \uparrow r^{-}$it follows

$$
-r \int_{\partial B_{r}}|\nabla u|^{2} d \mathcal{H}^{1}+2 r \int_{\partial B_{r}}\left|\frac{\partial u}{\partial \tau}\right|^{2} d \mathcal{H}^{1}=\ell(r)-\int_{J_{u} \cap \partial B_{r}}\left|\left\langle x, v_{u}^{\perp}\right\rangle\right| d \mathcal{H}^{0} .
$$

Formula (2.1) then follows straightforwardly.

B. A Poincaré-Wirtinger type inequality

The arguments of this appendix refine a truncation procedure introduced by [12] (cp. with [12, Lemma 4.2, Theorem 4.1]). In what follows given any \mathcal{L}^{2}-measurable function $v: B_{R} \rightarrow \mathbb{R}$, for every $s \in \mathbb{R}$, we denote by $E_{v, s}$ the s sub-level of v in B_{R}, i.e.,

$$
\begin{equation*}
E_{v, s}:=\left\{x \in B_{R}: v(x) \leq s\right\}, \tag{B.1}
\end{equation*}
$$

and by $\operatorname{med}(v)$ a median of v in B_{R}, for instance we can take

$$
\begin{equation*}
\operatorname{med}(v):=\sup \left\{s \in \mathbb{R}: \mathcal{L}^{2}\left(E_{v, s}\right) \leq \mathcal{L}^{2}\left(B_{R}\right) / 2\right\} \tag{B.2}
\end{equation*}
$$

Let us begin with the truncation procedure for functions in $S B V$ with zero gradient.

Lemma B. 1 For every $v \in \operatorname{SB} V\left(B_{R}\right)$ with $\nabla v=0 \mathcal{L}^{2}$ a.e. B_{R} and $\mathcal{H}^{1}\left(S_{v}\right)<2 R$, the set $I=\left\{r \in(0, R): \mathcal{H}^{0}\left(\partial B_{t} \cap S_{v}\right)=0\right\}$ satisfies $\mathcal{L}^{1}(I) \geq R-\mathcal{H}^{1}\left(S_{v}\right) / 2$.

In addition, for \mathcal{L}^{1} a.e. $r \in I$ the trace of v on ∂B_{R} is constant.
Proof. Set $J:=\left\{r \in(0, R): \mathcal{H}^{0}\left(\partial B_{t} \cap S_{v}\right) \geq 2\right\}$, and estimate $\mathcal{L}^{1}(J)$ by means of the Co-Area formula for rectifiable sets as follows

$$
2 \mathcal{L}^{1}(J) \leq \int_{J} \mathcal{H}^{0}\left(\partial B_{t} \cap S_{v}\right) d t \leq \mathcal{H}^{1}\left(S_{v}\right)
$$

from which we infer $\mathcal{L}^{1}((0, R) \backslash J) \geq R-\mathcal{H}^{1}\left(S_{v}\right) / 2$.
To conclude we prove the inequality $\mathcal{L}^{1}((0, R) \backslash J) \leq \mathcal{L}^{1}(I)$. To this aim note that for \mathcal{L}^{1} a.e. $r \in(0, R) \backslash J$ the slice v_{r} obtained by restricting v to ∂B_{r} belongs to $S B V\left(\partial B_{r}\right)$, it has zero approximate derivative and $\partial B_{r} \cap S_{v}=S_{v_{r}}$ (see [2, Section 3.11]). Finally, since \# $\left.\partial B_{r} \cap S_{v}\right) \leq 1$ as $r \in(0, R) \backslash J$, by taking into account that $v_{r}^{\prime}=0 \mathcal{H}^{1}$ a.e. on ∂B_{r}, we infer that actually $\partial B_{r} \cap S_{v}=\emptyset$. In conclusion, $\mathcal{L}^{1}((0, R) \backslash(I \cup J))=0$.

Remark B. 2 The estimate $\mathcal{L}^{1}(I) \geq R-\mathcal{H}^{1}\left(S_{v}\right) / 2$ proved in Lemma B. 1 above, clearly implies that $\mathcal{L}^{1}\left(I \cap\left(\lambda\left(R-\mathcal{H}^{1}\left(S_{v}\right) / 2\right), R\right)\right)>0$ for all $\lambda \in(0,1)$.

In what follows we identify any set of finite perimeter E with its \mathcal{L}^{2}-measure theoretic interior defined by $E^{(1)}:=\left\{x \in \mathbb{R}^{2}: \lim _{t \rightarrow 0+}\left(\pi t^{2}\right)^{-1} \mathcal{L}^{2}\left(B_{t}(x) \cap E\right)=1\right\}$. Recall that $\partial^{*} E$ denotes the essential boundary of E, satisfying $\operatorname{Per}(E)=\mathcal{H}^{1}\left(\partial^{*} E\right)$ (see [2, Definition 3.60, Theorem 3.61]).

In particular, from Lemma B. 1 we immediately deduce the following corollary.
Corollary B. 3 For every set of finite perimeter $E \subseteq B_{R}$ with $\operatorname{Per}(E)<2 R$ a set of positive \mathcal{L}^{1} measure in $(0, R)$ exists such that either $\mathcal{H}^{1}\left(E \cap \partial B_{t}\right)=0$ or $\mathcal{H}^{1}\left(E \cap \partial B_{t}\right)=\mathcal{H}^{1}\left(\partial B_{t}\right)$, for all t in this set.

Under an additional smallness condition on the \mathcal{L}^{2} measure of E, the previous result can be further improved (cp. to [12, Lemma 4.2]). To this aim we recall that a set of finite perimeter $E \subset \mathbb{R}^{2}$ is said to be decomposable if there exists a partition of E in two \mathcal{L}^{2}-measurable sets A, B with strictly positive measure such that $\operatorname{Per}(E)=\operatorname{Per}(A)+\operatorname{Per}(B)$. Accordingly, a set of finite perimeter is indecomposable otherwise. Notice that the properties of being decomposable or indecomposable depend only on the \mathcal{L}^{2}-equivalence class of E.

Lemma B. 4 If $E \subseteq B_{R}$ is such that $\mathcal{L}^{2}(E) \leq \mathcal{L}^{2}\left(B_{R}\right) / 2$ and $\operatorname{Per}(E)<2 R$, the set $\mathcal{I}:=\left\{t \in(0, R): \mathcal{H}^{1}\left(\partial B_{t} \cap E\right)=0\right\}$ satisfies $\mathcal{L}^{1}(\mathcal{I}) \geq R-\operatorname{Per}(E) / 2$.

Proof. According to [1, Theorem 1] there exists a unique and at most countable family of pairwise disjoint (maximal) indecomposable sets $E_{i}, i \in I \subseteq \mathbb{N}$, with $\mathcal{L}^{2}\left(E_{i}\right)>0$ such that

$$
\mathcal{H}^{1}\left(E \backslash \bigcup_{i \in I} E_{i}\right)=0 \quad \text { and } \operatorname{Per}(E)=\sum_{i \in I} \operatorname{Per}\left(E_{i}\right)
$$

An elementary projection argument shows that $2 d_{i}:=2 \operatorname{diam}\left(E_{i}\right) \leq \operatorname{Per}\left(E_{i}\right)$, so that

$$
2 \sum_{i \in I} d_{i} \leq \sum_{i \in I} \operatorname{Per}\left(E_{i}\right)=\operatorname{Per}(E)<2 R
$$

Let now $\mathcal{I}_{i}:=\left\{t \in(0, R): \mathcal{H}^{1}\left(\partial B_{t} \cap E_{i}\right)=0\right\}$, and note that $\mathcal{I}=\cap_{i \in I} \mathcal{I}_{i}$. In addition, since for all $\varepsilon>0$ the sets E_{i} are contained in $B_{R_{i}+d_{i}+\varepsilon} \backslash \bar{B}_{R_{i}-\varepsilon}$ for some $R_{i}>0$, we get that

$$
\mathcal{L}^{1}((0, R) \backslash \mathcal{I}) \leq \sum_{i \in I} \mathcal{L}^{1}\left((0, R) \backslash \mathcal{I}_{i}\right) \leq \sum_{i \in I} d_{i}
$$

from which, finally, we infer

$$
\mathcal{L}^{1}(\mathcal{I}) \geq R-\sum_{i \in I} d_{i} \geq R-\frac{\operatorname{Per}(E)}{2}
$$

Remark B. 5 The estimate $\mathcal{L}^{1}(\mathcal{I}) \geq R-\operatorname{Per}(E) / 2>0$ proved in Lemma B. 4 above, clearly implies that $\mathcal{L}^{1}(\mathcal{I} \cap(\lambda(R-\operatorname{Per}(E) / 2), R))>0$ for all $\lambda \in(0,1)$.

From Lemmata B. 1 and B. 4 we infer that $S B V$ functions with suitably quantified short jump set enjoy a Poincaré-Wirtinger type inequality.
Theorem B. 6 (A Poincaré-Wirtinger type inequality) If $v \in S B V\left(B_{R}\right)$ with $\mathcal{H}^{1}\left(S_{v}\right)<$ $2 R$, then there are truncation levels $s^{\prime} \leq s^{\prime \prime}$ and for all $\lambda \in(0,1)$ radii $\rho^{\prime} \leq \rho^{\prime \prime}$ belonging to $\left(\lambda\left(R-\mathcal{H}^{1}\left(S_{v}\right) / 2\right), R\right)$ in a way that the function

$$
w:= \begin{cases}v \vee s^{\prime} \wedge s^{\prime \prime} & B_{\rho^{\prime}} \tag{B.3}\\ v \wedge s^{\prime \prime} & B_{\rho^{\prime \prime}} \backslash B_{\rho^{\prime}} \\ v & B_{R} \backslash B_{\rho^{\prime \prime}}\end{cases}
$$

satisfies $\mathcal{H}^{1}\left(S_{w} \backslash S_{v}\right)=0$ and for any median $\operatorname{med}(v)$ of v on B_{R}

$$
\|w-\operatorname{med}(v)\|_{L^{\infty}\left(B_{\rho^{\prime}}\right)} \leq \frac{2}{2 R-\mathcal{H}^{1}\left(S_{v}\right)}\|\nabla v\|_{L^{1}\left(B_{R}, \mathbb{R}^{2}\right)}
$$

Proof. First note that if $\|\nabla v\|_{L^{1}\left(B_{R}, \mathbb{R}^{2}\right)}=0$ we may apply Lemma B. 1 and select $\rho \in\left(R / 2-\mathcal{H}^{1}\left(J_{v}\right) / 4, R\right)$ (thanks to Remark B.2) such that the trace of v on ∂B_{ρ} is constant. In this case we take $s^{\prime}=s^{\prime \prime}$ equal to such a value and $\rho=\rho^{\prime}=\rho^{\prime \prime}$ to conclude.

Thus, we need to analyze only the case with $\|\nabla v\|_{L^{1}\left(B_{R}, \mathbb{R}^{2}\right)}>0$. To this aim set $\alpha:=2 R-\mathcal{H}^{1}\left(S_{v}\right)>0$, then the $B V$ Co-Area Formula (see [2, Theorem 3.40]) implies
$\int_{\operatorname{med}(v)-2\|\nabla v\|_{L^{1}\left(B_{R}, \mathbb{R}^{2}\right)} / \alpha}^{\operatorname{med}(v)} \mathcal{H}^{1}\left(\partial^{*} E_{S} \backslash S_{v}\right) d s \leq \int_{\mathbb{R}} \mathcal{H}^{1}\left(\partial^{*} E_{S} \backslash S_{v}\right) d s=\|\nabla v\|_{L^{1}\left(B_{R}, \mathbb{R}^{2}\right)}$,
where E_{s} is the sub-level of v in B_{R} defined in (B.1) and med (v) is defined in (B.2). Hence, by the Mean Value Theorem there exists $s^{\prime} \in\left(\operatorname{med}(v)-2\|\nabla v\|_{L^{1}\left(B_{R}, \mathbb{R}^{2}\right)} / \alpha\right.$, $\operatorname{med}(v))$ such that $\mathcal{H}^{1}\left(\partial^{*} E_{s^{\prime}} \backslash S_{v}\right) \leq \alpha / 2$, and so

$$
\begin{equation*}
\mathcal{H}^{1}\left(\partial^{*} E_{S^{\prime}}\right) \leq \mathcal{H}^{1}\left(\partial^{*} E_{S^{\prime}} \backslash S_{v}\right)+\mathcal{H}^{1}\left(S_{v}\right)<2 R . \tag{B.4}
\end{equation*}
$$

Analogously, we can find $s^{\prime \prime} \in\left(\operatorname{med}(v), \operatorname{med}(v)+2\|\nabla v\|_{L^{1}\left(B_{R}, \mathbb{R}^{2}\right)} / \alpha\right)$ such that

$$
\begin{equation*}
\mathcal{H}^{1}\left(\partial^{*} E_{s^{\prime \prime}}\right)<2 R . \tag{B.5}
\end{equation*}
$$

The definition of median (B.2) and the choice $s^{\prime}<\operatorname{med}(v)$ yield $\mathcal{L}^{2}\left(E_{s^{\prime}}\right) \leq$ $\mathcal{L}^{2}\left(B_{R}\right) / 2$, and by arguing similarly, the same inequality holds for the set $B_{R} \backslash E_{s^{\prime \prime}}$ as well. By taking into account inequalities (B.4), (B.5) we may apply Lemma B. 4 separately to the two sets $E_{S^{\prime}}, B_{R} \backslash E_{S^{\prime \prime}}$ and find radii $\lambda\left(R-\mathcal{H}^{1}\left(S_{v}\right) / 2\right)<\rho^{\prime} \leq \rho^{\prime \prime}<R$ with $\mathcal{H}^{1}\left(E_{s^{\prime}} \cap \partial B_{\rho^{\prime}}\right)=0$ and $\mathcal{H}^{1}\left(\left(B_{R} \backslash E_{s^{\prime \prime}}\right) \cap \partial B_{\rho^{\prime \prime}}\right)=0$ (thanks to Remark B.5).

The conclusion then follows at once by the very definition of w in (B.3).
In case v is a local minimizer of the Mumford-Shah energy we deduce Theorem 3.1.
Proof of Theorem 3.1 By keeping the notation of Theorem B.6, the function w defined in (B.3) turns out to be an admissible function to test the minimality of u on B_{R}. By construction $\mathcal{H}^{1}\left(S_{w} \backslash S_{u}\right)=0$ and $|\nabla w| \leq|\nabla u| \mathcal{L}^{2}$ a.e. in B_{R}, from this we infer that $u=w \mathcal{L}^{2}$ a.e. in $B_{\rho^{\prime}}$ being the Mumford-Shah energy decreasing under truncation.

Remark B. 7 If the length of the jump set exceeds $2 R$ a similar Poincaré-Wirtinger type inequality does not hold. Take, for instance, $v=1$ if $y>0$ and -1 otherwise (see [2, Proposition 6.8] for a proof that such a function is in $\mathcal{M}\left(B_{R}\right)$ if R is sufficiently small).

C. Limits of sequences of local minimizers

In this section we prove that limits of converging sequences of local minimizers are local minimizers as well (cp. with [2, Theorem 7.7] in case the measure of the jump sets is vanishing, and with [11, Proposition 5.1] if the Dirichlet energies are infinitesimal).

Proof of Proposition 3.2 Let v be an admissible function to test the minimality of u, that is $v \in S B V(\Omega)$ and $\{v \neq u\} \subset \subset \Omega$. Moreover, let Ω^{\prime} be an open set such that $\{v \neq u\} \subset \subset \Omega^{\prime} \subset \subset \Omega$ and $\varphi \in C_{c}^{1}(\Omega)$ be such that $\varphi=1$ on Ω^{\prime} and $|\nabla \varphi| \leq 2 / \operatorname{dist}\left(\Omega^{\prime}, \partial \Omega\right)$. Define $v_{k}:=\varphi v+(1-\varphi) u_{k}$. Then $v_{k} \in \operatorname{SBV}(\Omega)$ and it is an admissible test function for u_{k}. Thus, for some fixed constant $C>0$, routine calculations lead to

$$
\begin{align*}
\operatorname{MS}\left(u_{k}\right) \leq & \operatorname{MS}\left(v_{k}\right) \leq \operatorname{MS}(v)+C \operatorname{MS}\left(v, \Omega \backslash \overline{\Omega^{\prime}}\right)+C \operatorname{MS}\left(u_{k}, \Omega \backslash \overline{\Omega^{\prime}}\right) \\
& +C \int_{\Omega \backslash \overline{\Omega^{\prime}}}\left|u-u_{k}\right|^{2} d x \tag{C.1}
\end{align*}
$$

To get the last term on the rhs above we have used the equality $v=u$ on $\Omega \backslash \overline{\Omega^{\prime}}$.
Note that the sequence of Radon measures $\left(\operatorname{MS}\left(u_{k}, \cdot\right)\right)_{k \in \mathbb{N}}$ is equi-bounded in mass in view of the energy upper bound (2.2). Hence, up to the extraction of a subsequence (not relabeled), $\left(\operatorname{MS}\left(u_{k}, \cdot\right)\right)_{k \in \mathbb{N}}$ converges to some Radon measure μ on Ω. Without loss of generality we may also assume that $\mu\left(\partial \Omega^{\prime}\right)=0$. Furthermore, we recall that, by Ambrosio's lower semicontinuity theorem, we have, for every open set $A \subseteq \Omega$,

$$
\begin{equation*}
\underset{k}{\liminf } \int_{A}\left|\nabla u_{k}\right|^{2} d x \geq \int_{A}|\nabla u|^{2} d x, \quad \underset{k}{\liminf } \mathcal{H}^{1}\left(J_{u_{k}} \cap A\right) \geq \mathcal{H}^{1}\left(J_{u} \cap A\right), \tag{C.2}
\end{equation*}
$$

(see [2, Theorems 4.7 and 4.8]). As $k \uparrow \infty$ in (C.1), thanks to condition $\mu\left(\partial \Omega^{\prime}\right)=0$ and (C.2), we find

$$
\begin{aligned}
& \operatorname{MS}(u) \leq \liminf _{k} \operatorname{MS}\left(u_{k}\right) \leq \underset{k}{\lim \sup \operatorname{MS}\left(u_{k}\right) \leq \operatorname{MS}(v)+C \operatorname{MS}\left(v, \Omega \backslash \overline{\Omega^{\prime}}\right)} \\
& \quad+C \mu\left(\Omega \backslash \overline{\Omega^{\prime}}\right)
\end{aligned}
$$

Then, by letting Ω^{\prime} increase to Ω (enforcing the condition $\mu\left(\partial \Omega^{\prime}\right)=0$) we conclude

$$
\begin{equation*}
\operatorname{MS}(u) \leq \underset{k}{\lim \inf } \operatorname{MS}\left(u_{k}\right) \leq \underset{k}{\lim \sup } \operatorname{MS}\left(u_{k}\right) \leq \operatorname{MS}(v) \tag{C.3}
\end{equation*}
$$

Hence, u belongs to $\mathcal{M}(\Omega)$. In addition, by choosing v equal to u itself, we can perform the same construction above for every open set $A \subseteq \Omega$ (with $\Omega^{\prime} \subset \subset A$) and infer (C.3) localized onto A, so that equalities in (3.1) follow at once.

Finally, the density lower bound in Corollary 1.2 and the equalities in (3.1) imply easily the claimed local Hausdorff convergence.

Remark C. 1 The same conclusion of Proposition 3.2 holds provided we are given a sequence $\left(u_{k}\right)_{k \in \mathbb{N}}$ converging in $L^{2}(\Omega)$ to $u \in S B V(\Omega)$, with u_{k} satisfying, for some $\vartheta_{k} \downarrow 0^{+}$,

$$
\operatorname{MS}\left(u_{k}\right) \leq \operatorname{MS}(w)+\vartheta_{k} \quad \text { whenever }\left\{w \neq u_{k}\right\} \subset \subset \Omega
$$

D. A decay Lemma

We start off by proving a preliminary decay property of the energy.
Lemma D. 1 For all $\beta \in(0,2)$ and $\tau \in(0,1)$ there exist $\varepsilon=\varepsilon(\beta, \tau)$ and $\vartheta=$ $\vartheta(\beta, \tau)$ in $(0,1)$ such that if $v \in S B V(\Omega)$ satisfies, for some $z \in \Omega$ and $\rho>0$,

$$
\operatorname{MS}\left(v, B_{\rho}(z)\right) \leq \varepsilon \rho,
$$

and

$$
(1-\vartheta) \operatorname{MS}\left(v, B_{\rho}(z)\right) \leq \operatorname{MS}\left(w, B_{\rho}(z)\right) \quad \text { whenever }\{w \neq v\} \subset \subset B_{\rho}(z)
$$

then

$$
\operatorname{MS}\left(v, B_{\tau \rho}(z)\right) \leq \tau^{2-\beta} \operatorname{MS}\left(v, B_{\rho}(z)\right)
$$

Proof. We argue by contradiction and suppose that there are sequences $v_{k} \in$ $S B V(\Omega), \varepsilon_{k} \downarrow 0^{+}, \vartheta_{k} \downarrow 0^{+}, \rho_{k} \downarrow 0^{+}$and $z_{k} \in \Omega$ with $B_{\rho_{k}}\left(z_{k}\right) \subset \Omega$ such that for some τ and $\beta \in(0,2)$

$$
\begin{gather*}
\operatorname{MS}\left(v_{k}, B_{\rho_{k}}\left(z_{k}\right)\right)=\varepsilon_{k} \rho_{k}, \tag{D.1}\\
\left(1-\vartheta_{k}\right) \operatorname{MS}\left(v_{k}, B_{\rho_{k}}\left(z_{k}\right)\right) \leq \operatorname{MS}\left(w, B_{\rho_{k}}\left(z_{k}\right)\right) \tag{D.2}
\end{gather*}
$$

for all $w \in \operatorname{SB} V(\Omega)$ with $\left\{w \neq v_{k}\right\} \subset \subset B_{\rho_{k}}\left(z_{k}\right)$, but

$$
\begin{equation*}
\operatorname{MS}\left(v_{k}, B_{\tau \rho_{k}}\left(z_{k}\right)\right)>\tau^{2-\beta} \operatorname{MS}\left(v_{k}, B_{\rho_{k}}\left(z_{k}\right)\right) \tag{D.3}
\end{equation*}
$$

Denote by $w_{k}: B_{1} \rightarrow \mathbb{R}$ the functions $w_{k}(y)=\left(\varepsilon_{k} \rho_{k}\right)^{-1 / 2}\left(v_{k}\left(z_{k}+\rho_{k} y\right)-m_{k}\right)$ and by m_{k} a median of v_{k} on $B_{\rho_{k}}\left(z_{k}\right)$, so that, if we set,

$$
F_{k}\left(v, B_{\rho}\right):=\int_{B_{\rho}}|\nabla v|^{2} d y+\frac{1}{\varepsilon_{k}} \mathcal{H}^{1}\left(S_{v} \cap B_{\rho}\right),
$$

then (D.1)-(D.3) can be rewritten respectively as

$$
\begin{equation*}
F_{k}\left(w_{k}, B_{1}\right)=1, \quad F_{k}\left(w, B_{1}\right) \geq 1-\vartheta_{k}, \quad \text { and } \quad F_{k}\left(w_{k}, B_{\tau}\right)>\tau^{2-\beta}, \tag{D.4}
\end{equation*}
$$

for all $w \in \operatorname{SBV}\left(B_{1}\right)$ with $\left\{w \neq w_{k}\right\} \subset \subset B_{1}$.
In particular, from the first condition in (D.4) we infer that $\mathcal{H}^{1}\left(S_{w_{k}}\right) \leq \varepsilon_{k}$. Thus, by applying Theorem B. 6 to the w_{k} 's, we find functions $\widetilde{w}_{k} \in S B V\left(B_{1}\right)$ satisfying, for all $r \in(0,1)$,

$$
\begin{equation*}
\left\{\widetilde{w}_{k} \neq w_{k}\right\} \subset \subset B_{r}, \quad\left\|\widetilde{w}_{k}\right\|_{L^{\infty}\left(B_{r}\right)} \leq 2 \quad \text { for } k \geq k_{r} \tag{D.5}
\end{equation*}
$$

Then, Ambrosio's SBV compactness theorem and a diagonal argument provide a subsequence (not relabeled) and a function $\widetilde{w} \in W^{1,2} \cap L^{\infty}\left(B_{1}\right)$ such that $\left(\widetilde{w}_{k}\right)_{k \in \mathbb{N}}$ converges to \widetilde{w} in $L_{l o c}^{2}\left(B_{1}\right)$. Note that by lower semicontinuity and (D.4), we have

$$
\begin{equation*}
\int_{B_{1}}|\nabla \widetilde{w}|^{2} d x \leq \liminf _{k} F_{k}\left(\widetilde{w}_{k}, B_{1}\right) \leq 1 \tag{D.6}
\end{equation*}
$$

Next, we claim that \widetilde{w} is harmonic in B_{1} and that for all $r \in(0,1)$

$$
\begin{equation*}
\lim _{k} F_{k}\left(w_{k}, B_{r}\right)=\int_{B_{r}}|\nabla \widetilde{w}|^{2} d x \tag{D.7}
\end{equation*}
$$

Given this for granted, we get a contradiction, since from (D.4) and (D.7)

$$
\tau^{2-\beta} \leq \int_{B_{\tau}}|\nabla \widetilde{w}|^{2} d x
$$

but on the other hand the harmonicity of \widetilde{w} on B_{1} and (D.6) yield that

$$
\int_{B_{\tau}}|\nabla \widetilde{w}|^{2} d x \leq \tau^{2}
$$

To prove (D.7), let $r<s \in(0,1)$ and $\varphi \in C_{c}^{\infty}\left(B_{s}\right)$ be such that $\varphi=1$ on B_{r}. Define $\zeta_{k}=\varphi \widetilde{w}+(1-\varphi) \widetilde{w}_{k}$, since $w_{k}=\widetilde{w}_{k}$ on B_{s} for $k \geq k_{s}$ (see (D.5)), elementary computations, the first two conditions in (D.4), and the locality of the energy lead to

$$
\begin{aligned}
F_{k}\left(w_{k}, B_{r}\right)= & F_{k}\left(\widetilde{w}_{k}, B_{r}\right) \leq F_{k}\left(\zeta_{k}, B_{s}\right)+\vartheta_{k} \leq F_{k}\left(\widetilde{w}, B_{r}\right)+C F_{k}\left(\widetilde{w}_{k}, B_{s} \backslash \overline{B_{r}}\right) \\
& +C F_{k}\left(\widetilde{w}, B_{s} \backslash \overline{B_{r}}\right)+C \int_{B_{s} \backslash \overline{B_{r}}}\left|\widetilde{w}_{k}-\widetilde{w}\right|^{2} d x+\vartheta_{k}
\end{aligned}
$$

The sequence of Radon measures $\left(F_{k}\left(\widetilde{w}_{k}, \cdot\right)\right)_{k \in \mathbb{N}}$ is equi-bounded in mass in view of (D.4). Hence, up to a subsequence not relabeled for convenience, $\left(F_{k}\left(\widetilde{w}_{k}, \cdot\right)\right)_{k \in \mathbb{N}}$ converges to some Radon measure μ on B_{1}. Assume that $\mu\left(\partial B_{s}\right)=0$, by passing to the limit as $k \uparrow \infty$ and by Ambrosio's lower semicontinuity result we find

$$
\begin{aligned}
\int_{B_{r}}|\nabla \widetilde{w}|^{2} d x & \leq \underset{k}{\liminf } F_{k}\left(w_{k}, B_{r}\right) \leq \underset{k}{\lim \sup } F_{k}\left(w_{k}, B_{r}\right) \\
& \leq \int_{B_{r}}|\nabla \widetilde{w}|^{2} d x+C \mu\left(B_{s} \backslash \overline{B_{r}}\right)+C \int_{B_{s} \backslash \overline{B_{r}}}|\nabla \widetilde{w}|^{2} d x .
\end{aligned}
$$

Equality (D.7) then follows by letting $s \downarrow r^{+}$along values satisfying $\mu\left(\partial B_{s}\right)=0$.
Eventually, the harmonicity of \widetilde{w} is easily deduced from its local minimality for the Dirichlet energy. This last property is obtained as above by modifying any test function $\zeta \in W^{1,2}\left(B_{1}\right)$ such that $\{\zeta \neq \widetilde{w}\} \subset \subset B_{1}$ into a test-function for \widetilde{w}_{k} in order to exploit again the quasi-minimality condition satisfied by w_{k} in (D.4).

We are now ready to prove Lemma 3.3.
Proof of Lemma 3.3 We argue as in [2, Theorem 7.21], and take $z=0$ for the sake of simplicity. We claim that

$$
\begin{equation*}
\operatorname{MS}\left(v, B_{\tau \rho}\right) \leq \varepsilon \tau^{2-\beta} \rho \tag{D.8}
\end{equation*}
$$

if we set $R:=\left(\varepsilon \vartheta \tau^{2-\beta}\right)^{1 / \alpha}$, with $\varepsilon=\varepsilon(\beta, \tau)$ and $\vartheta=\vartheta(\beta, \tau)$ provided by Lemma D.1.

Indeed, either both the assumptions of Lemma D. 1 are satisfied or not. In the former case the thesis of that lemma gives exactly inequality (D.8); otherwise for some $w \in \operatorname{SBV}(\Omega)$ with $\{w \neq v\} \subset \subset B_{\rho}(z) \subset \Omega$ we have by the quasi-minimality of v

$$
\operatorname{MS}\left(v, B_{\tau \rho}\right) \leq \operatorname{MS}\left(v, B_{\rho}\right) \leq \frac{1}{\vartheta}\left(\operatorname{MS}\left(v, B_{\rho}\right)-\operatorname{MS}\left(w, B_{\rho}\right)\right) \leq \frac{\omega}{\vartheta} \rho^{1+\alpha}
$$

Thus, (D.8) follows since $\rho \leq R / \omega^{1 / \alpha}$.
Eventually, as $\tau \in(0,1)$ we can repeat the previous argument, and conclude by induction.

References

[1] Ambrosio, L., Caselles, V., Masnou, S., Morel, J.M.: Connected components of sets of finite perimeter and applications to image processing.. J. Eur. Math. Soc. 3, 39-92 (2001)
[2] Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (2000)
[3] Bonnet, A.: On the regularity of edges in image segmentation. Ann. Inst. H. Poincaré, Analyse Non Linéaire 13(4), 485-528 (1996)
[4] Bucur, D., Luckhaus, S.: Monotonicity formula and regularity for general free discontinuity problems (2012, in press)
[5] Carriero, M., Leaci, A.: Existence theorem for a Dirichlet problem with free discontinuity set. Nonlinear Anal. 15(7), 661-677 (1990)
[6] Dal Maso, G., Morel, J.M., Solimini, S.: A variational method in image segmentation: existence and approximation results. Acta Math. 168(1-2), 89-151 (1992)
[7] David, G.: C^{1}-arcs for minimizers of the Mumford-Shah functional. SIAM J. Appl. Math. 56(3), 783-888 (1996)
[8] David, G.: Singular sets of minimizers for the Mumford-Shah functional. Progress in Mathematics, 233. Birkhäuser Verlag, Basel, xiv+581 pp. ISBN: 978-3-7643-7182-1; 3-7643-7182-X (2005)
[9] David, G., Léger, J.C.: Monotonicity and separation for the Mumford-Shah problem. Ann. Inst. H. Poincaré Anal. Non Linéaire 19(5), 631-682 (2002)
[10] De Giorgi, E., Carriero, M., Leaci, A.: Existence theorem for a minimum problem with free discontinuity set. Arch. Ration. Mech. Anal. 108, 195-218 (1989)
[11] De Lellis, C.; Focardi, M.: Higher integrability of the gradient for minimizers of the 2d Mumford-Shah energy. J. Math. Pures Appl. (2012). http://dx.doi.org/10.1016/j. matpur.2013.01.006
[12] Focardi, M., Gelli, M.S., Ponsiglione, M.: Fracture mechanics in perforated domains: a variational model for brittle porous media. Math. Models Methods Appl. Sci. 19, 2065-2100 (2009)
[13] Maddalena, F., Solimini, S.: Blow-up techniques and regularity near the boundary for free discontinuity problems. Adv. Nonlinear Stud. 1(2) (2001)
[14] Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577-685 (1989)

[^0]: C. De Lellis: Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland. e-mail: camillo.delellis@ math.uzh.ch
 M. Focardi (\boxtimes): Dipartimento di Matematica "U. Dini", Università di Firenze, V.le Morgagni 67/A, 50134 Firenze, Italy. e-mail: focardi@math.unifi.it

