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Abstract. We prove, using direct variational arguments, an explicit energy-treshold crite-
rion for regular points of 2-dimensional Mumford-Shah energy minimizers. From this we
infer an explicit constant for the density lower bound of De Giorgi, Carriero and Leaci.

1. Introduction

The Mumford–Shah model stands as a prototypical example of variational problem
in image segmentation (see [14]). It consists in minimizing (adding either boundary
or confinement conditions or fidelity terms) the energy

E(v, K ) :=
∫

�\K

|∇v|2 dx + H1(K ),

where � ⊂ R
2 is a fixed open set, K is a rectifiable closed subset of �, and

v ∈ C1(� \ K ). This energy has been then borrowed and conveniently modified
in Fracture Mechanics, mainly to model quasi-static irreversible crack-growth for
brittle materials (see [2, Sect. 4.6.6]).

One of the first existence theories for minimizers of E hinges upon a weak for-
mulation in the space SBV of Special functions of Bounded Variation, the subspace
of BV functions with singular part of the distributional derivative concentrated on
a 1-rectifiable set. In this approach the set K is substituted by the (Borel) set Sv

of approximate discontinuities of the function v (throughout the paper we will use
standard notations and results concerning BV and SBV , following the book [2]).
This is the reason for the terminology free-discontinuity problem introduced by De
Giorgi. The Mumford–Shah energy of a function v in SBV (�) on an open subset
A ⊆ � then reads as

MS(v, A) =
∫

A

|∇v|2dx + H1(Sv ∩ A). (1.1)
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In case A = � we drop the dependence on the set of integration. In what follows u
will always denote a local minimizer, that is any u ∈ SBV (�) with MS(u) < +∞
and such that

MS(u) ≤ MS(w) whenever{w 	= u} ⊂⊂ �.

The class of all local minimizers shall be denoted by M(�).
As established in [10] in all dimensions (and proved alternatively in [6] in

dimension two), if u ∈ SBV is a minimizer of the energy MS, then the pair (u, Su)

is a minimizer of E . The main point is the identity H1(Su \ Su) = 0, which holds
for every u ∈ M(�). The groundbreaking paper [10] proves this identity via the
following density lower bound

MS(u, Br (z))

2r
≥ θ for all z ∈ Su, and all r ∈ (0, dist(z, ∂�)) (1.2)

with θ a dimensional constant independent of u. Building upon the same ideas, in
[5] it is proved that for some dimensional constant θ0 independent of u it holds

H1(Su ∩ Br (z))

2r
≥ θ0 for all z ∈ Su, and all r ∈ (0, dist(z, ∂�)). (1.3)

The argument for (1.2) used by De Giorgi et al. [10], and similarly in [5] for (1.3),
is indirect: it relies on Ambrosio’s SBV compactness theorem, an SBV Poincaré–
Wirtinger type inequality and the asymptotic analysis of blow-ups of minimizers
with vanishing Dirichlet energy. In this paper we give a simpler proof in 2 dimen-
sions, which does not require any Poincaré–Wirtinger inequality, nor any compact-
ness argument. Our argument differs from those used in [6] and [7] to derive (1.3)
in the two dimensional case as well.

We first introduce some useful notation, which we borrow from [9]. Given
u ∈ M(�), z ∈ � and r ∈ (0, dist(z, ∂�)) let

ez(r) :=
∫

Br (z)

|∇u|2dx, �z(r) := H1(Su ∩ Br (z))

mz(r) := MS(u, Br (z)), and hz(r) := ez(r) + 1

2
�z(r).

Clearly mz(r) = ez(r) + �z(r) ≤ 2hz(r), with equality if and only if ez(r) = 0.

Theorem 1.1 Let u ∈ M(�). Then

mz(r)

r
≥ 1 for all z ∈ Su and all r ∈ (0, dist(z, ∂�)). (1.4)

More precisely, the set �u := {z ∈ � : (1.4) fails} is open and �u = � \ Ju =
� \ Su.
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The quantity mz(·) in Theorem 1.1 allows us to take advantage of a suitable
monotonicity formula, discovered independently by David and Léger in [9] and
Maddalena and Solimini in [13]. A simple iteration of Theorem 1.1 gives a density
lower bound as in (1.3) with an explicit constant θ0.

Corollary 1.2 If u ∈ M(�), then H1(Su \ Ju) = 0 and

�z(r)

2r
≥ π

224 for all z ∈ Su and all r ∈ (0, dist(z, ∂�)). (1.5)

A natural question is the sharpness of the estimates (1.4) and (1.5). The analysis
performed by Bonnet [3] suggests that π

224 in (1.5) should be replaced by 1
2 and 1

in (1.4) by 2. Note that the square root function u(r, θ) =
√

2
π

r · sin(θ/2) satisfies
�0(r) = e0(r) = r for all r > 0. Thus both the constants conjectured above would
be sharp by [8, Sect. 62]. Unfortunately, we cannot prove any of them.

Instead, in Corollary 1.3 below we prove an infinitesimal version of (1.4) for
quasi-minimizers of the Mumford–Shah energy, that is any function v in SBV(�)

with MS(v) < +∞ and satisfying for some ω ≥ 0 and α > 0 and for all balls
Bρ(z) ⊂ �

MS(v, Bρ(z)) ≤ MS(w, Bρ(z)) + ω ρ1+α whenever {w 	= v} ⊂⊂ Bρ(z).

(1.6)

We denote the class of quasi-minimizers satisfying (1.6) by Mω(�).

Corollary 1.3 Let v ∈ Mω(�), then

Su = Ju =
{

z ∈ � : lim inf
r↓0+

mz(r)

r
≥ 2

3

}
. (1.7)

Let us finally mention that Bucur & Luckhaus, independently from us, have
used a similar idea to the main one of Theorem 1.1 (see [4]). Moreover, in their
paper they improve remarkably on this key idea obtaining some results in the spirit
of Theorem 1.1 and Corollary 1.3 without our dimensional limitation.

Plan of the paper. In Sect. 2 we prove Theorem 1.1. The main ingredient, i.e. the
David–Léger–Maddalena–Solimini monotonicity formula is proved in Appendix A.
In section 3 we prove the Corollaries 1.2 and 1.3. The latter needs three additional
tools: a Poincaré–Wirtinger type inequality, a technical lemma on sequences of MS
minimizers and a decay lemma, proved in Appendices B, C and D, respectively. The
technical lemma and the decay lemma are well-known facts. The Poincaré–Wirtin-
ger inequality instead refines some results obtained in [12]: it is to our knowledge
new and might be of independent interest.
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2. Main result

As already mentioned, the main ingredient of Theorem 1.1 is the following mono-
tonicity formula discovered independently in [9] and in [13] (cp. with [9, Proposi-
tion 3.5]).

Lemma 2.1 Let u ∈ M(�), then for every z ∈ � and for L1 a.e. r ∈
(0, dist(z, ∂�))

∫

∂ Br (z)

((
∂u

∂ν

)2

−
(

∂u

∂τ

)2
)

dH1 + �z(r)

r
= 1

r

∫

Ju∩∂ Br (z)

|〈ν⊥
u (x), x〉|dH0(x),

(2.1)

∂u
∂ν

and ∂u
∂τ

being the projections of ∇u in the normal and tangential directions to
∂ Br (z), respectively.

We will also need the following elementary well-known facts.

Lemma 2.2 Every u ∈ M(�) is locally bounded and

MS(u, Br (z)) ≤ 2πr for all Br (z) ⊂ �. (2.2)

We are now ready to prove the main result of the paper.
Proof of Theorem 1.1 Introduce the set J �

u of points x ∈ Ju for which

lim
r↓0

H1(Ju ∩ Br (x))

2r
= 1 . (2.3)

Since Ju is rectifiable, H1(Ju \ J �
u ) = 0. Next let z ∈ � be such that

mz(R) < R for some R ∈ (0, dist(z, ∂�)) (2.4)

We claim that z 	∈ J �
u . W.l.o.g. we take z = 0 and drop the subscript z in e, �, m

and h.
In addition we can assume e(R) > 0. Otherwise, by the Co-Area formula and

the trace theory of BV functions, we would find a radius r < R such that u|∂ Br

is a constant. In turn, u would necessarily be constant in Br because the energy
decreases under truncations, thus implying z 	∈ J �

u . We can also assume �(R) > 0,
since otherwise u would be harmonic in BR and thus we would conclude z 	∈ J �

u .
We start next to compare the energy of u with that of an harmonic competitor

on a suitable disk. The inequality �(R) ≤ m(R) < R is crucial to select good radii.
Step 1: For any fixed r ∈ (0, R − �(R)), there exists a set Ir of positive length in
(r, R) such that

h(ρ)

ρ
≤ 1

2
· e(R) − e(r)

R − r − (�(R) − �(r))
for all ρ ∈ Ir . (2.5)
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Define Jr := {t ∈ (r, R) : H0(Su ∩ ∂ Bt ) = 0}. We claim the existence of J ′
r ⊆ Jr

with L1(J ′
r ) > 0 and such that

∫

∂ Bρ

|∇u|2dH1 ≤ e(R) − e(r)

R − r − (�(R) − �(r))
for all ρ ∈ J ′

r . (2.6)

Indeed, we use the Co-Area formula for rectifiable sets (see [2, Theorem 2.93]) to
find

L1((r, R) \ Jr ) ≤
∫

(r,R)\Jr

H0(Su ∩ ∂ Bt )dt =
∫

Su∩(BR\Br )

∣∣∣∣
〈
ν⊥

u (x),
x

|x |
〉∣∣∣∣ dH1(x)

≤ �(R) − �(r).

In turn, this inequality implies L1(Jr ) ≥ R − r − (�(R) − �(r)) > 0, thanks to the
choice of r . Then, define J ′

r to be the subset of radii ρ ∈ Jr for which

∫

∂ Bρ

|∇u|2dH1 ≤ −
∫

Jr

⎛
⎜⎝

∫

∂ Bt

|∇u|2dH1

⎞
⎟⎠ dt.

Formula (2.6) follows by the Co-Area formula and the estimate L1(Jr ) ≥ R − r −
(�(R) − �(r)).

We define Ir as the subset of radii ρ ∈ J ′
r satisfying both (2.1) and (2.6).

Therefore
∫

∂ Bρ

(
∂u

∂τ

)2

dH1 = 1

2

∫

∂ Bρ

|∇u|2dH1 + �(ρ)

2ρ
∀ρ ∈ Ir . (2.7)

Clearly, Ir has full measure in J ′
r , so that L1(Ir ) > 0.

For any ρ ∈ Ir , we let w be the harmonic function in Bρ with trace u on ∂ Bρ .
Then, as ∂w

∂τ
= ∂u

∂τ
H1 a.e. on ∂ Bρ , the local minimality of u entails

m(ρ) ≤
∫

Bρ

|∇w|2dx ≤ ρ

∫

∂ Bρ

(
∂u

∂τ

)2

dH1 (2.7)= ρ

2

∫

∂ Bρ

|∇u|2dH1 + �(ρ)

2
.

The inequality (2.5) follows from the latter inequality and from (2.6):

h(ρ) = e(ρ) + �(ρ)

2
≤ ρ

2

∫

∂ Bρ

|∇u|2dH1 ≤ ρ

2
· e(R) − e(r)

R − r − (�(R) − �(r))
.

Step 2: We now show that 0 	∈ J �
u .

Let ε ∈ (0, 1) be fixed such that m(R) ≤ (1 − ε)R, and fix any radius r ∈
(0, R − �(R) − 1

1−ε
e(R)). Step 1 and the choice of r then imply

h(ρ)

ρ
≤ 1

2

e(R) − e(r)

R − r − (�(R) − �(r))
≤ e(R)

2(R − �(R) − r)
<

1 − ε

2
,
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in turn giving m(ρ) ≤ 2h(ρ) < (1−ε)ρ. Let ρ∞ := inf{t > 0 : m(t) ≤ (1−ε)t},
then ρ∞ ∈ [0, ρ]. Note that if ρ∞ were strictly positive then actually ρ∞ would
be a minimum. In such a case, we could apply the argument above and find ρ̃ ∈
(r∞, ρ∞), with r∞ ∈ (0, ρ∞ − �(ρ∞) − 1

1−ε
e(ρ∞)), such that m(ρ̃) < (1 − ε)ρ̃

contradicting the minimality of ρ∞. Hence, there is a sequence ρk ↓ 0+ with
m(ρk) ≤ (1 − ε)ρk . Then, clearly condition (2.3) is violated, so that 0 	∈ J �

u .

Conclusion: We first prove that �u is open. Let z ∈ �u and let R > 0 and ε > 0
be such that mz(R) ≤ (1 − ε)R and BεR(z) ⊂ �. Let now x ∈ BεR(z), then

mx (R − |x − z|) ≤ mz(R) ≤ (1 − ε)R < R − |x − z|,
therefore x ∈ �u .

As J �
u ∩�u = ∅ by Step 2, we have H1(J �

u ∩�u) = H1(Ju ∩�u) = H1(Su ∩
�u) = 0. Hence, u is in W 1,2 of the open set �u , and by minimality it is actually
harmonic there. Thus, Su ∩ �u = ∅ and Su ⊆ � \ �u . Moreover, let z /∈ J �

u and
r > 0 be such that Br (z) ⊆ � \ J �

u . Since H1(Su \ J �
u ) = 0, u ∈ W 1,2(Br (z)) and

thus u is an harmonic function in Br (z) by minimality. Therefore z ∈ �u , and in
conclusion � \ �u = J �

u = Ju = Su . ��
Remark 2.3 The same arguments of Theorem 1.1 complemented by Theorem 3.1
show that

� \ Ju = {z ∈ � : mz(R) ≤ R for some R ∈ (0, d(z, ∂�))}. (2.8)

Indeed, assuming z = 0 and dropping the subscript z, if e(R) = 0 or �(R) = 0,
then 0 ∈ � \ Ju. In the former case, the assertion follows since u is constant on
Bρ for some ρ ∈ (0, R) by Theorem 3.1; in the latter case, u is harmonic on BR

by minimality. Hence, both e(R) and �(R) are in (0, R). By Step 1 in Theorem 1.1
we have h(ρ) ≤ ρ/2 for some ρ ∈ (0, R). If e(ρ) = 0 then 0 ∈ � \ Ju, otherwise,
m(ρ) < 2h(ρ) ≤ ρ. In the last instance, we are back to Theorem 1.1, so that
0 ∈ � \ Ju. In any case, the set on the rhs of (2.8) is contained in � \ Ju. The
opposite inclusion is trivial.

3. Proof of Corollaries 1.2 and 1.3

Proof of Corollary 1.2 Assume by contradiction that (1.5) fails for some z ∈ Su and
some R1 ∈ (0, dist(z, ∂�)). W.l.o.g. we take z = 0 ∈ Su and drop the subscript z
in e, �, m and h.

Note that R1/4 − �(R1) > R1/8 since �(R1) < 2π R1/224 < R1/8. Then,
choosing r1 ∈ (R1/8, R1/4 − �(R1)) we have 2(R1 − �(R1) − r1) > 3R1/2, and
by applying Step 1 in Theorem 1.1 we infer, by (2.2),

h(ρ1)

ρ1
≤ 1

2(R1 − �(R1) − r1)
e(R1) <

2

3

e(R1)

R1
≤ 4

3
π

for some ρ1 ∈ (r1, R1). Note that

�(ρ1)

2ρ1
≤ R1

ρ1

�(R1)

2R1
< 8

�(R1)

2R1
<

π

221 <
1

16
.
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Hence, we may use again Step 1 of Theorem 1.1 with the new radii R2 = ρ1, and r2
satisfying r2 ∈ (R2/8, R2/4 − �(R2)) accordingly. Then, for some ρ2 ∈ (r2, R2)

we get

h(ρ2)

ρ2
≤ 1

2(R2 − �(R2) − r2)
e(R2) <

2

3

e(R2)

R2
�⇒ h(ρ2)

ρ2
≤

(
2

3

)2

2π.

In general, for 2 ≤ k ≤ 7 given Rk−1, rk−1 and ρk−1 set Rk := ρk−1, choose
rk such that rk ∈ (Rk/8, Rk/4 − �(Rk)), and use Step 1 of Theorem 1.1 to find
ρk ∈ (rk, Rk) satisfying

h(ρk)

ρk
≤

(
2

3

) j

2π.

Note that for any 2 ≤ k ≤ 6

�(ρk)

2ρk
< 8

�(ρk−1)

2ρk−1
<

π

23(8−k)
<

1

16
,

and thus the construction is well defined. In addition,

h(ρ7)

ρ7
≤

(
2

3

)7

2π <
1

2
�⇒ m(ρ7) ≤ 2h(ρ7) < ρ7.

From Theorem 1.1 we deduce that 0 /∈ Su , which gives clearly a contradiction.
Eventually, standard density estimates imply H1

(
Su \ Su

) = 0 (cp. with [2,
Theorem 2.56]), and being Su = Ju (see Theorem 1.1) we get H1

(
Su \ Ju

) = 0.��
In the proof of Corollary 1.3 we will need a Poincaré–Wirtinger type inequality

(see Appendix B), and a closure theorem for minimizers of the Mumford–Shah
energy.

Theorem 3.1 Let u ∈ M(BR) with H1(Su) < 2R, and let λ ∈ (0, 1). Then,
u ∈ L∞(Bρ) for some ρ ∈ (λ(R − H1(Su)/2), R), and for any median med(u) of
u on BR we have

‖u − med(u)‖L∞(Bρ) ≤ 2

2R − H1(Su)
‖∇u‖L1(BR ,R2).

Proposition 3.2 Let (uk)k∈N ⊂ M(�) be a sequence converging to some u ∈
SBV (�) strongly in L2. Then u ∈ M(�) and for all open sets A ⊆ � we have

lim
k

∫

A

|∇uk |2dx =
∫

A

|∇u|2dx, lim
k

H1(Juk ∩ A) = H1(Ju ∩ A). (3.1)

Furthermore, (Juk )k∈N converges locally in the Hausdorff distance to Ju.

We will also take advantage of the following decay lemma inspired by [10,
Lemma 4.9] (cp. also with [2, Lemma 7.14, Theorem 7.21]) and proved in
Appendix D.
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Lemma 3.3 For all ω ≥ 0, β ∈ (0, 1] and τ ∈ (0, 1) there exist ε = ε(β, τ ) ∈
(0, 1) and R = R(β, τ ) > 0 such that if v ∈ Mω(�) satisfies

MS(v, Bρ(z)) ≤ ερ,

for some z ∈ � and ρ ∈ (0, (R/ω1/α) ∧ dist(z, ∂�)), then for all k ≥ 1

MS(v, Bτ kρ(z)) ≤ τ k+1−β ερ.

Proof of Corollary 1.3 Denote by �v the complement of the set on the rhs of (1.7).
We first show that �v = � \ J �

v , where as usual J �
v is the subset of points z ∈ Jv

for which

lim
r↓0

H1(Ju ∩ Br (z))

2r
= 1.

Let z ∈ � \ J �
v , then v ∈ W 1,2(BR(z)) for some R > 0. Observe v|∂ Bρ(z) ∈

W 1,2(∂ BR(z)) for L1 a.e. ρ ∈ (0, R). Testing the quasi-minimality condition (1.6)
with the harmonic extension ϕ of v|∂ Bρ(z) to Bρ(z), Lemma 2.1 and the Co-Area
formula yield

ez(ρ) ≤ ρ

2
e′

z(ρ) + ω ρ1+α.

Integrating this last inequality we get, for α 	= 1,

ez(ρ) ≤
( ρ

R

)2
ez(R) + 2ω

α − 1
ρ2

(
Rα−1 − ρα−1

)
, (3.2)

from which we conclude z ∈ �v since mz(ρ) = ez(ρ) = o(ρ) as ρ ↓ 0+. Hence,
� \ J �

v ⊆ �v . We can proceed analogously if α = 1.
To prove the opposite inclusion, let z ∈ �v and rk ↓ 0+ be a sequence along

which for some γ ∈ (0, 2/3)

lim inf
r↓0+

mz(r)

r
= lim

k↑∞
mz(rk)

rk
< γ. (3.3)

Let mk be a median of u on Brk (z), and consider the functions vk : B1 → R defined

as vk(y) := r−1/2
k (v(z + rk y) − mk). Note that vk ∈ Mωrα

k
(B1). Let λ ∈ (0, 1)

be a parameter whose choice will be specified later. Since H1(Jvk ) < γ we apply
Theorem B.6 to find functions wk : B1 → R which are suitable truncations of vk

and such that, for all k,

‖wk‖L∞(Bλ(1−γ /2)) ≤ 2‖∇vk‖L1(B1,R2) ≤ 2π1/2‖∇vk‖L2(B1,R2)

(2.2)≤ 4π.

In particular, up to a subsequence, (wk)k∈N converges in L2(Bλ(1−γ /2)) to a func-
tion w in SBV (Bλ(1−γ /2)) with MS(w, Bλ(1−γ /2)) < +∞ by Ambrosio’s SBV
compactness theorem (see [2, Theorems 4.7, 4.8]).

We claim that for all open subsets A of B1 it holds

0 ≤ MS(vk, A) − MS(wk, A) ≤ ω rα
k . (3.4)
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Indeed, by the very definition of wk we have {wk 	= vk} ⊂⊂ B1 (cp. with formula
(B.3) in Theorem B.6). Then, as vk ∈ Mω rα

k
(B1), we get

MS(vk, B1) − MS(wk, B1) ≤ ω rα
k .

We conclude (3.4) by the latter estimate and since MS(wk, B) ≤ MS(vk, B) for all
Borel subsets B of B1 (recall that wk is obtained from vk by truncation).

Remark C.1 and (3.4) yield that w ∈ M(Bλ(1−γ /2)), with

MS(w, Bρ) = lim
k↑∞ MS(wk, Bρ) for all ρ ∈ (0, λ(1 − γ /2)]. (3.5)

By collecting (3.3)–(3.5), we deduce for every ρ ∈ (0, λ(1 − γ /2)]

MS(w, Bρ) = lim
k↑∞

mz(ρ rk)

rk
≤ lim

k↑∞
mz(rk)

rk
< γ ≤ λ

(
1 − γ

2

)
, (3.6)

the last inequality holding true provided λ ∈ (0, 1) is suitably chosen (recall that
γ ∈ (0, 2/3)).

In particular, if ρ = λ(1 − γ /2) from (3.6) we infer that 0 /∈ Sw in view of
Remark 2.3. Hence, being w harmonic in Bλ(1−γ /2) for every fixed ρ ∈ (0, λ(1 −
γ /2)] we get

mz(ρ rk)

ρ rk
≤ 2ρ for all k ≥ kρ, (3.7)

so that z ∈ � \ J �
v . Moreover, if � > 0 is such that 4� ≤ ε ∧ (λ(1 − γ /2)) ∧ (2/3)

then B� rk� /2(z) ⊆ �v . For, if x ∈ B� rk� /2(z), by Lemma 3.3 applied with τ = 1/2,
any β ∈ (0, 1) and ρ = � rk� , the choice of � yields that

mx (� rk�/2)

� rk�/2
≤ 2

mz(� rk� )

� rk�

(3.7)≤ 4� ≤ ε,

and thus we deduce x ∈ �v by iterating Lemma 3.3 along the sequence (2−i � rk� )i∈N.
Hence, �v is an open set and �v ∩ J �

v = ∅, in turn this implies � \ J �
v = �v .

Finally, being �v open and v a quasi-minimizer of the Dirichlet energy on �v

then v ∈ C1,1/2(�v) by (3.2) and Campanato’s estimates. In conclusion, Sv ∩�v =
∅, and then Sv = Jv = � \ �v . ��

Appendix A: The David-Léger-Maddalena-Solimini monotonicity formula

Proof of Lemma 2.1 We start by recalling the first variation formula for local min-
imizers of the Mumford–Shah energy (see [2, Sect. 7.4]): for every vector field
η ∈ Lip ∩ Cc(�, R

2)

∫

�

(
|∇u|2divη − 2〈∇u,∇u∇η〉

)
dx +

∫

Ju

divJu η dH1 = 0. (A.1)
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With fixed a point z ∈ �, r > 0 with Br (z) ⊆ �, we consider special radial vector
fields ηr,s ∈ Lip ∩ Cc(Br (z), R

2), s ∈ (0, r), in formula above. For the sake of
simplicity we assume z = 0, and drop the subscript z in what follows. Let

ηr,s(x) := x χ[0,s](|x |) + |x | − r

s − r
x χ(s,r ](|x |),

then routine calculations leads to

∇ηr,s(x) := Id χ[0,s](|x |) +
( |x | − r

s − r
Id + 1

s − r

x

|x | ⊗ x

)
χ(s,r ](|x |)

L2 a.e. in �. In turn, from the latter formula we infer for L2 a.e. in �

divηr,s(x) = 2 χ[0,s](|x |) +
(

2
|x | − r

s − r
+ |x |

s − r

)
χ(s,r ](|x |),

and, if νu(x) is a unit vector normal field in x ∈ Ju , for H1 a.e. x ∈ Ju

divJu ηr,s(x) = χ[0,s](|x |) +
( |x | − r

s − r
+ 1

|x |(s − r)
|〈x, ν⊥

u 〉|2
)

χ(s,r ](|x |).

Consider the set I := {ρ ∈ (0, dist(0, ∂�)) : H1(Ju ∩ ∂ Bρ) = 0}, then (0, dist
(0, ∂�))\ I is at most countable being H1(Ju) < +∞. If ρ and s ∈ I , by inserting
ηr,s in (A.1) we find

1

s − r

∫

Br \Bs

|x ||∇u|2dx − 2

s − r

∫

Br \Bs

|x |〈∇u,

(
Id − x

|x | ⊗ x

|x |
)

∇u〉dx

= �(s) +
∫

Ju∩(Br \Bs )

|x | − r

s − r
dH1 + 1

s − r

∫

Ju∩(Br \Bs )

|x ||〈 x

|x | , ν
⊥
u 〉|2dH1.

Next we employ Co-Area formula and rewrite equality above as

1

s − r

r∫

s

ρ dρ

∫

∂ Bρ

|∇u|2dH1 − 2

s − r

r∫

s

ρ dρ

∫

∂ Bρ

∣∣∣∣∂u

∂τ

∣∣∣∣
2

dH1

= �(s) +
∫

Ju∩(Br \Bs )

|x | − r

s − r
dH1 + 1

s − r

r∫

s

dρ

∫

Ju∩∂ Bρ

|〈x, ν⊥
u 〉|dH0

where ν := x/|x | denotes the radial versor and τ := ν⊥ the tangential one. Lebes-
gue differentiation theorem then provides a subset I ′ of full measure in I such that
if r ∈ I ′ and we let s ↑ r− it follows

−r
∫

∂ Br

|∇u|2dH1 + 2r
∫

∂ Br

∣∣∣∣∂u

∂τ

∣∣∣∣
2

dH1 = �(r) −
∫

Ju∩∂ Br

|〈x, ν⊥
u 〉|dH0.

Formula (2.1) then follows straightforwardly. ��
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B. A Poincaré-Wirtinger type inequality

The arguments of this appendix refine a truncation procedure introduced by [12]
(cp. with [12, Lemma 4.2, Theorem 4.1]). In what follows given any L2-measurable
function v : BR → R, for every s ∈ R, we denote by Ev,s the s sub-level of v in
BR , i.e.,

Ev,s := {x ∈ BR : v(x) ≤ s}, (B.1)

and by med(v) a median of v in BR , for instance we can take

med(v) := sup{s ∈ R : L2(Ev,s) ≤ L2(BR)/2}. (B.2)

Let us begin with the truncation procedure for functions in SBV with zero gradient.

Lemma B.1 For every v ∈ SBV (BR) with ∇v = 0 L2 a.e. BR and H1(Sv) < 2R,
the set I = {r ∈ (0, R) : H0(∂ Bt ∩ Sv) = 0} satisfies L1(I ) ≥ R − H1(Sv)/2.

In addition, for L1 a.e. r ∈ I the trace of v on ∂ BR is constant.

Proof. Set J := {r ∈ (0, R) : H0(∂ Bt ∩ Sv) ≥ 2}, and estimate L1(J ) by means
of the Co-Area formula for rectifiable sets as follows

2L1(J ) ≤
∫

J

H0(∂ Bt ∩ Sv) dt ≤ H1(Sv),

from which we infer L1((0, R) \ J ) ≥ R − H1(Sv)/2.
To conclude we prove the inequality L1((0, R) \ J ) ≤ L1(I ). To this aim note

that for L1 a.e. r ∈ (0, R)\ J the slice vr obtained by restricting v to ∂ Br belongs to
SBV (∂ Br ), it has zero approximate derivative and ∂ Br ∩ Sv = Svr (see [2, Section
3.11]). Finally, since #(∂ Br ∩ Sv) ≤ 1 as r ∈ (0, R) \ J , by taking into account
that v′

r = 0 H1 a.e. on ∂ Br , we infer that actually ∂ Br ∩ Sv = ∅. In conclusion,
L1((0, R) \ (I ∪ J )) = 0. ��

Remark B.2 The estimate L1(I ) ≥ R − H1(Sv)/2 proved in Lemma B.1 above,
clearly implies that L1(I ∩ (λ(R − H1(Sv)/2), R)) > 0 for all λ ∈ (0, 1).

In what follows we identify any set of finite perimeter E with its L2-measure the-
oretic interior defined by E (1) := {x ∈ R

2 : limt→0+(π t2)−1L2(Bt (x)∩ E) = 1}.
Recall that ∂∗E denotes the essential boundary of E , satisfying Per(E) = H1(∂∗E)

(see [2, Definition 3.60, Theorem 3.61]).
In particular, from Lemma B.1 we immediately deduce the following corollary.

Corollary B.3 For every set of finite perimeter E ⊆ BR with Per(E) < 2R a
set of positive L1 measure in (0, R) exists such that either H1(E ∩ ∂ Bt ) = 0 or
H1(E ∩ ∂ Bt ) = H1(∂ Bt ), for all t in this set.
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Under an additional smallness condition on the L2 measure of E , the previous
result can be further improved (cp. to [12, Lemma 4.2]). To this aim we recall
that a set of finite perimeter E ⊂ R

2 is said to be decomposable if there exists
a partition of E in two L2-measurable sets A, B with strictly positive measure
such that Per(E) = Per(A) + Per(B). Accordingly, a set of finite perimeter is
indecomposable otherwise. Notice that the properties of being decomposable or
indecomposable depend only on the L2-equivalence class of E .

Lemma B.4 If E ⊆ BR is such that L2(E) ≤ L2(BR)/2 and Per(E) < 2R, the
set I := {t ∈ (0, R) : H1(∂ Bt ∩ E) = 0} satisfies L1(I) ≥ R − Per(E)/2.

Proof. According to [1, Theorem 1] there exists a unique and at most countable
family of pairwise disjoint (maximal) indecomposable sets Ei , i ∈ I ⊆ N, with
L2(Ei ) > 0 such that

H1

(
E \

⋃
i∈I

Ei

)
= 0 and Per(E) =

∑
i∈I

Per(Ei ).

An elementary projection argument shows that 2di := 2diam(Ei ) ≤ Per(Ei ), so
that

2
∑
i∈I

di ≤
∑
i∈I

Per(Ei ) = Per(E) < 2R.

Let now Ii := {t ∈ (0, R) : H1(∂ Bt ∩ Ei ) = 0}, and note that I = ∩i∈I Ii . In
addition, since for all ε > 0 the sets Ei are contained in BRi +di +ε \ B Ri −ε for some
Ri > 0, we get that

L1((0, R) \ I) ≤
∑
i∈I

L1((0, R) \ Ii ) ≤
∑
i∈I

di ,

from which, finally, we infer

L1(I) ≥ R −
∑
i∈I

di ≥ R − Per(E)

2
.

��
Remark B.5 The estimate L1(I) ≥ R − Per(E)/2 > 0 proved in Lemma B.4
above, clearly implies that L1(I ∩ (λ(R − Per(E)/2), R)) > 0 for all λ ∈ (0, 1).

From Lemmata B.1 and B.4 we infer that SBV functions with suitably quanti-
fied short jump set enjoy a Poincaré–Wirtinger type inequality.

Theorem B.6 (A Poincaré–Wirtinger type inequality) Ifv ∈ SBV (BR)withH1(Sv) <

2R, then there are truncation levels s′ ≤ s′′ and for all λ ∈ (0, 1) radii ρ′ ≤ ρ′′
belonging to (λ(R − H1(Sv)/2), R) in a way that the function

w :=
⎧⎨
⎩

v ∨ s′ ∧ s′′ Bρ′
v ∧ s′′ Bρ′′ \ Bρ′
v BR \ Bρ′′ ,

(B.3)
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satisfies H1(Sw \ Sv) = 0 and for any median med(v) of v on BR

‖w − med(v)‖L∞(Bρ′ ) ≤ 2

2R − H1(Sv)
‖∇v‖L1(BR ,R2).

Proof. First note that if ‖∇v‖L1(BR ,R2) = 0 we may apply Lemma B.1 and select
ρ ∈ (R/2 − H1(Jv)/4, R) (thanks to Remark B.2) such that the trace of v on ∂ Bρ

is constant. In this case we take s′ = s′′ equal to such a value and ρ = ρ′ = ρ′′ to
conclude.

Thus, we need to analyze only the case with ‖∇v‖L1(BR ,R2) > 0. To this aim
set α := 2R −H1(Sv) > 0, then the BV Co-Area Formula (see [2, Theorem 3.40])
implies

med(v)∫

med(v)−2‖∇v‖L1(BR ,R2)
/α

H1(∂∗Es\Sv) ds ≤
∫

R

H1(∂∗Es\Sv) ds=‖∇v‖L1(BR ,R2),

where Es is the sub-level of v in BR defined in (B.1) and med(v) is defined in (B.2).
Hence, by the Mean Value Theorem there exists s′ ∈ (med(v)−2‖∇v‖L1(BR ,R2)/α,

med(v)) such that H1(∂∗Es′ \ Sv) ≤ α/2, and so

H1(∂∗Es′) ≤ H1(∂∗Es′ \ Sv) + H1(Sv) < 2R. (B.4)

Analogously, we can find s′′ ∈ (med(v), med(v) + 2‖∇v‖L1(BR ,R2)/α) such that

H1(∂∗Es′′) < 2R. (B.5)

The definition of median (B.2) and the choice s′ < med(v) yield L2(Es′) ≤
L2(BR)/2, and by arguing similarly, the same inequality holds for the set BR\Es′′ as
well. By taking into account inequalities (B.4), (B.5) we may apply Lemma B.4 sep-
arately to the two sets Es′ , BR \Es′′ and find radii λ(R−H1(Sv)/2) < ρ′ ≤ ρ′′ < R
with H1(Es′ ∩∂ Bρ′) = 0 and H1((BR \ Es′′)∩∂ Bρ′′) = 0 (thanks to Remark B.5).

The conclusion then follows at once by the very definition of w in (B.3). ��
In case v is a local minimizer of the Mumford–Shah energy we deduce Theorem 3.1.

Proof of Theorem 3.1 By keeping the notation of Theorem B.6, the function w

defined in (B.3) turns out to be an admissible function to test the minimality of u
on BR . By construction H1(Sw \ Su) = 0 and |∇w| ≤ |∇u| L2 a.e. in BR , from
this we infer that u = w L2 a.e. in Bρ′ being the Mumford–Shah energy decreasing
under truncation.

Remark B.7 If the length of the jump set exceeds 2R a similar Poincaré-Wirtinger
type inequality does not hold. Take, for instance, v = 1 if y > 0 and −1 otherwise
(see [2, Proposition 6.8] for a proof that such a function is in M(BR) if R is
sufficiently small).
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C. Limits of sequences of local minimizers

In this section we prove that limits of converging sequences of local minimizers
are local minimizers as well (cp. with [2, Theorem 7.7] in case the measure of the
jump sets is vanishing, and with [11, Proposition 5.1] if the Dirichlet energies are
infinitesimal).

Proof of Proposition 3.2 Let v be an admissible function to test the minimality
of u, that is v ∈ SBV (�) and {v 	= u} ⊂⊂ �. Moreover, let �′ be an open set
such that {v 	= u} ⊂⊂ �′ ⊂⊂ � and ϕ ∈ C1

c (�) be such that ϕ = 1 on �′ and
|∇ϕ| ≤ 2/dist(�′, ∂�). Define vk := ϕ v + (1 − ϕ)uk . Then vk ∈ SBV (�) and it
is an admissible test function for uk . Thus, for some fixed constant C > 0, routine
calculations lead to

MS(uk) ≤ MS(vk) ≤ MS(v) + C MS(v,� \ �′) + C MS(uk,� \ �′)

+C
∫

�\�′

|u − uk |2dx . (C.1)

To get the last term on the rhs above we have used the equality v = u on � \ �′.
Note that the sequence of Radon measures (MS(uk, ·))k∈N is equi-bounded in

mass in view of the energy upper bound (2.2). Hence, up to the extraction of a sub-
sequence (not relabeled), (MS(uk, ·))k∈N converges to some Radon measure μ on
�. Without loss of generality we may also assume that μ(∂�′) = 0. Furthermore,
we recall that, by Ambrosio’s lower semicontinuity theorem, we have, for every
open set A ⊆ �,

lim inf
k

∫

A

|∇uk |2dx ≥
∫

A

|∇u|2dx, lim inf
k

H1(Juk ∩ A) ≥ H1(Ju ∩ A),

(C.2)

(see [2, Theorems 4.7 and 4.8]). As k ↑ ∞ in (C.1), thanks to condition μ(∂�′) = 0
and (C.2), we find

MS(u) ≤ lim inf
k

MS(uk) ≤ lim sup
k

MS(uk) ≤ MS(v) + C MS(v,� \ �′)

+C μ(� \ �′).

Then, by letting �′ increase to � (enforcing the condition μ(∂�′) = 0) we conclude

MS(u) ≤ lim inf
k

MS(uk) ≤ lim sup
k

MS(uk) ≤ MS(v). (C.3)

Hence, u belongs to M(�). In addition, by choosing v equal to u itself, we can
perform the same construction above for every open set A ⊆ � (with �′ ⊂⊂ A)
and infer (C.3) localized onto A, so that equalities in (3.1) follow at once.

Finally, the density lower bound in Corollary 1.2 and the equalities in (3.1)
imply easily the claimed local Hausdorff convergence. ��
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Remark C.1 The same conclusion of Proposition 3.2 holds provided we are given
a sequence (uk)k∈N converging in L2(�) to u ∈ SBV (�), with uk satisfying, for
some ϑk ↓ 0+,

MS(uk) ≤ MS(w) + ϑk whenever {w 	= uk} ⊂⊂ �.

D. A decay Lemma

We start off by proving a preliminary decay property of the energy.

Lemma D.1 For all β ∈ (0, 2) and τ ∈ (0, 1) there exist ε = ε(β, τ ) and ϑ =
ϑ(β, τ) in (0, 1) such that if v ∈ SBV (�) satisfies, for some z ∈ � and ρ > 0,

MS(v, Bρ(z)) ≤ ερ,

and

(1 − ϑ) MS(v, Bρ(z)) ≤ MS(w, Bρ(z)) whenever {w 	= v} ⊂⊂ Bρ(z),

then

MS(v, Bτρ(z)) ≤ τ 2−β MS(v, Bρ(z)).

Proof. We argue by contradiction and suppose that there are sequences vk ∈
SBV (�), εk ↓ 0+, ϑk ↓ 0+, ρk ↓ 0+ and zk ∈ � with Bρk (zk) ⊂ � such
that for some τ and β ∈ (0, 2)

MS(vk, Bρk (zk)) = εkρk, (D.1)

(1 − ϑk) MS(vk, Bρk (zk)) ≤ MS(w, Bρk (zk)) (D.2)

for all w ∈ SBV (�) with {w 	= vk} ⊂⊂ Bρk (zk), but

MS(vk, Bτρk (zk)) > τ 2−β MS(vk, Bρk (zk)). (D.3)

Denote by wk : B1 → R the functions wk(y) = (εkρk)
−1/2(vk(zk + ρk y) − mk)

and by mk a median of vk on Bρk (zk), so that, if we set,

Fk(v, Bρ) :=
∫

Bρ

|∇v|2dy + 1

εk
H1(Sv ∩ Bρ),

then (D.1)–(D.3) can be rewritten respectively as

Fk(wk, B1) = 1, Fk(w, B1) ≥ 1 − ϑk, and Fk(wk, Bτ ) > τ 2−β, (D.4)

for all w ∈ SBV (B1) with {w 	= wk} ⊂⊂ B1.
In particular, from the first condition in (D.4) we infer that H1(Swk ) ≤ εk . Thus,

by applying Theorem B.6 to the wk’s, we find functions w̃k ∈ SBV (B1) satisfying,
for all r ∈ (0, 1),

{w̃k 	= wk} ⊂⊂ Br , ‖w̃k‖L∞(Br ) ≤ 2 for k ≥ kr . (D.5)
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Then, Ambrosio’s SBV compactness theorem and a diagonal argument provide a
subsequence (not relabeled) and a function w̃ ∈ W 1,2 ∩ L∞(B1) such that (w̃k)k∈N

converges to w̃ in L2
loc(B1). Note that by lower semicontinuity and (D.4), we have∫

B1

|∇w̃|2dx ≤ lim inf
k

Fk(w̃k, B1) ≤ 1. (D.6)

Next, we claim that w̃ is harmonic in B1 and that for all r ∈ (0, 1)

lim
k

Fk(wk, Br ) =
∫

Br

|∇w̃|2dx . (D.7)

Given this for granted, we get a contradiction, since from (D.4) and (D.7)

τ 2−β ≤
∫

Bτ

|∇w̃|2dx,

but on the other hand the harmonicity of w̃ on B1 and (D.6) yield that∫

Bτ

|∇w̃|2dx ≤ τ 2.

To prove (D.7), let r < s ∈ (0, 1) and ϕ ∈ C∞
c (Bs) be such that ϕ = 1 on

Br . Define ζk = ϕw̃ + (1 − ϕ)w̃k , since wk = w̃k on Bs for k ≥ ks (see (D.5)),
elementary computations, the first two conditions in (D.4), and the locality of the
energy lead to

Fk(wk, Br ) = Fk(w̃k, Br ) ≤ Fk(ζk, Bs) + ϑk ≤ Fk(w̃, Br ) + C Fk(w̃k, Bs \ Br )

+C Fk(w̃, Bs \ Br ) + C
∫

Bs\Br

|w̃k − w̃|2dx + ϑk .

The sequence of Radon measures (Fk(w̃k, ·))k∈N is equi-bounded in mass in view
of (D.4). Hence, up to a subsequence not relabeled for convenience, (Fk(w̃k, ·))k∈N

converges to some Radon measure μ on B1. Assume that μ(∂ Bs) = 0, by passing
to the limit as k ↑ ∞ and by Ambrosio’s lower semicontinuity result we find∫

Br

|∇w̃|2dx ≤ lim inf
k

Fk(wk, Br ) ≤ lim sup
k

Fk(wk, Br )

≤
∫

Br

|∇w̃|2dx + C μ(Bs \ Br ) + C
∫

Bs\Br

|∇w̃|2dx .

Equality (D.7) then follows by letting s ↓ r+ along values satisfying μ(∂ Bs) = 0.
Eventually, the harmonicity of w̃ is easily deduced from its local minimality

for the Dirichlet energy. This last property is obtained as above by modifying any
test function ζ ∈ W 1,2(B1) such that {ζ 	= w̃} ⊂⊂ B1 into a test-function for w̃k

in order to exploit again the quasi-minimality condition satisfied by wk in (D.4).
��
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We are now ready to prove Lemma 3.3.
Proof of Lemma 3.3 We argue as in [2, Theorem 7.21], and take z = 0 for the sake
of simplicity. We claim that

MS(v, Bτρ) ≤ ε τ 2−βρ (D.8)

if we set R := (ε ϑ τ 2−β)1/α , with ε = ε(β, τ ) and ϑ = ϑ(β, τ) provided by
Lemma D.1.

Indeed, either both the assumptions of Lemma D.1 are satisfied or not. In the
former case the thesis of that lemma gives exactly inequality (D.8); otherwise for
some w ∈ SBV (�) with {w 	= v} ⊂⊂ Bρ(z) ⊂ � we have by the quasi-minimal-
ity of v

MS(v, Bτρ) ≤ MS(v, Bρ) ≤ 1

ϑ

(
MS(v, Bρ) − MS(w, Bρ)

) ≤ ω

ϑ
ρ1+α.

Thus, (D.8) follows since ρ ≤ R/ω1/α .
Eventually, as τ ∈ (0, 1) we can repeat the previous argument, and conclude

by induction. ��
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