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INTRODUCTION

The story of the sole journey of a single photon has been long told before and
so has the one of his nearly identical twin. Nonetheless, it has been the
uniqueness of their relationship in the vast choice in nature, that has triggered
the scientific community to invest its time and resources in it. The 1935 paper
by Einstein, Podolski and Rosen “Can Quantum-Mechanical Description of
Physical Reality be considered complete?” [2], was only the beginning to a
new exciting field of research, in which people are occupied with the
extraordinary properties encountered in the microscopic world and with
ways to exploit them for classically impossible tasks. In fact, research on
fundamental tests of quantum mechanics, besides being one of the most
fascinating current paths to the advancement in human knowledge, could

soon lead to major advancements also from the technological point of view.

In particular, the discipline of quantum optics studies the quantum nature of
light. Light has been often chosen as a study object for many reasons. In the
experimental field, there have been great advancements that provided the
tools for this research, lasers generating light of superb quality, devices
processing light with great precision, and extremely sensitive detectors for
measuring the quantum properties of light. The simplest quantum state of
light is a single photon, the basis of most fundamental tests of quantum
mechanics and of possible applications of light to future quantum

technologies.

Most of the experiments performed so far in the field of quantum optics have
relied on the generation, manipulation, and detection of single photons and

other nonclassical light states in single, well-defined modes. Generation of



quantum light in a superposition of two spatial or spectrotemporal modes has
been used to encode quantum information (e.g., time-bin schemes [3,4]) or for
metrological applications [5,6]. However, simple single- or two-mode systems
limit capacity in the communication, manipulation, and storage of quantum
information and, equally importantly, are not able to seize the complexity of

realistic states in the laboratory.

The possibility of using multimode quantum states of light, i.e., a single beam
holding several independent quantum channels, may offer many advantages.
As much as wavelength multiplexing has revolutionized the area of optical
telecommunications, multimode states have the potential to boost the
complexity of quantum networks and enhance the execution of quantum
information protocols [7,8]. In the spatial domain, the orbital angular
momentum of single photons has been explored [9,10], and multimode states
have been used in quantum imaging applications [11-13]. In the spectral and
temporal domain, they have been proposed for cluster-state quantum
computing [14] and for enhanced time metrology [15,16]. The encoding of
quantum information in the spectrotemporal degrees of freedom of a single
photon has also been proposed for novel quantum cryptographic schemes,

such as differential phase shift quantum key distribution [17].

Moreover, the modes where the quantum states are prepared often do not
perfectly coincide with those used for their processing and detection, and this
may degrade the quality of applications based on such states. For example,
future quantum networks require that light not only conveys information
through optical links but also interacts with atomic species, allowing one to
perform quantum processing and implement memory units [18,19]. These
tasks demand a very specific and precise preparation of the photonic wave

packet, i.e., of its spatiotemporal mode, such that it optimally couples to the



different possible interfaces. This goal has already motivated a series of
theoretical proposals [20,21] and experiments with ultrafast [22] and quasi-cw

[23,24] single photons and with shaped two-photon wave packets [25].

We have developed an adaptive method to realize the mode-selective
detection of quantum light states [1]. Besides demonstrating the capability to
detect and characterize states in unknown and arbitrarily shaped modes, we
also show that our scheme can be an important tool for novel quantum
information protocols based on the encoding of qubits and qudits onto the

spatiotemporal degrees of freedom of light.

The main idea relies on optimally mapping the mode structure of a general
quantum light state onto that of an intense coherent field (the so-called local
oscillator, LO). In a typical experiment for the complete tomographic
reconstruction of some quantum light state, homodyne detection only works
with sufficient efficiency if the mode of the reference classical coherent field is
perfectly matched to that of the state under examination [26,27]. If little or no
prior information on such a mode is at hand, or if the mode itself has been
somehow distorted during the propagation from the source to the detector,

one may completely miss the target in the detection stage.

Here, we use the measured homodyne data to extract the fitness parameter
for a genetic algorithm. The shape of the LO mode is first adaptively adjusted
to best match the one of the quantum light state. Successively, the complex
mode of the quantum state is fully characterized by measurements on the

optimized local oscillator.

We put this approach to a first stringent experimental test by analyzing the

spectrotemporal (ST) mode of ultrashort single photons (in a well-defined



spatial mode) with a combination of techniques from the fields of ultrafast
coherent control and quantum optics. Choosing to use ultrashort quantum
states offers the advantage of an extended bandwidth that allows encoding
more information in ST modes, higher rate of information transfer, more
precise timing, etc. However, it is important to note that our method is much
more general and certainly not confined to ST modes (the full spatiotemporal
mode characterization can be simply achieved by also introducing a spatial

modulation of the LO [28]) or to the detection of single photons.

Different from recent schemes using two-photon interference with a reference
coherent field [29], our method can be effectively applied to any quantum
state, including bright multiphoton ones, provided a suitable optimization
parameter is at hand (e.g., the noise variance in an experiment for the
generation of squeezed states). Furthermore, our method is not limited to
retrieving the ““shape” of quantum light: it directly provides the tools for
manipulating and analyzing it. Our scheme is also superior to those involving
array detection [30-32], which to our knowledge have never been used to
probe any nonclassical state in the ST domain because of high losses and

experimental complexity.

We thus have in our hands an ultraprecise measuring tool to not only control
but deeply probe the complex mode structure of arbitrary quantum states, a
prerequisite for the processing, detection and manipulation of photonic states
and, moreover, for their application to the development of novel quantum

information technologies.

Before I go into the details of the technique and the stages of setting up the
experiment, I will provide a theoretical overview of each individual part of

the setup. Starting with the generation of nonclassical light states, the 1¢



chapter of the thesis is dedicated to the theory of Quantum Optics that is of
interest for this experiment. The generation of ultrashort quantum light states
by means of Spontaneous Parametric Down Conversion (SPDC) is a common
way to obtain nonclassical states of light starting from a coherent laser source.
A pump photon is converted into two lower energy photons correlated in
frequency and wavevector and emitted in two channels named signal and
idler. Following that, Homodyne Detection in combination to Optical
homodyne tomography is used as the characterisation scheme for the
nonclassical quantum light states. Repeated measurements on identically
prepared states allows the reconstruction of the state density operator that
can be represented in phase-space by quasi-probability distributions, which
allow one to calculate the expectation value of any physical quantity in
analogy to classical distributions. This is where the Wigner distribution comes
to play a significant role, having a particular characteristic different from
classical distributions that it can assume negative values, a hallmark of
nonclassical behaviour. Balanced homodyne tomography, by measuring the
tield statistics in phase-space, allows one to reconstruct the density operator

and its Wigner representations.

The 27 chapter is dedicated to the mathematical representations from
Ultrafast Optics, starting with the description of a femtosecond laser pulse,
with particular emphasis to the spectral phase and its importance in the
femtosecond regime, to pulse compression methods and the mathematical
description of pulse modulation using a Spatial Light Modulator. Following
that, I will speak of the experimental methods used in the 3™ chapter, only to
prepare the ground for a better understanding of the last chapter where the
experiment is described. It is about the use of new devices linked to pulse
shaping and its diagnostic tools, like the Spatial Light Modulator (SLM) and

the Frequency Resolved Optical Gating (FROG), including alignment and



calibration methods we tried in the laboratory. Finally, after reading the first 3
chapters, the reader can be in a better position to follow the development of
the experiment described thoroughly in chapter 4, and appreciate the success
of the measurements, proving the validity of this innovative method and its
superiority to previous techniques applied in the field. Only then can one try
to envision the possibilities and the future prospects it may offer, for which I

will deliberate in the epilogue of this thesis.
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CHAPTER 1

QUANTUM OPTICS

For my thesis, I have been occupied with nonclassical states of light and their
generation by means of non-Gaussian operators. I will be providing a brief
description of the phenomenon of Spontaneous Parametric Down
Conversion, used for the generation of single-photon Fock states, as well as a

brief guide to their characterisation by means of Homodyne Detection.

1.1 Nonclassical states of light: Single Photons

Nonclassical light, in contrary to classical light, and for the sake of clarity, is
to refer to the light that can only be described by the quantised
electromagnetic field and quantum mechanics [33-35]. In this case it is treated
like a stream of photons, rather than electromagnetic waves, holding
nonclassical properties such as quantum noise, which in its own turn
relegates to the famous Heisenberg uncertainty principle.

The most representative state of all would be the “Fock state”, or otherwise
called “Number state”, the quantum state containing a definite number of
energy quanta. According to their definition, these states have a well-defined
number of photons while their phase remains totally undefined. They
constitute the essence of the quantum nature of light and are indispensable in
research on the fundamental principles of quantum mechanics, and in

applications such as the implementation of a qubit or quantum cryptography.

Let’s consider a single mode field as follows:

E(?,t) =i ZZ(:)V {&e_i(zf_wt) - &Tei(zf_w[)} (3.1)
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Where V is the quantization volume, ¢ and 4t are the annihilation and
creation operators respectively, for which the bosonic commutation relation
[a.a"]=1 (3.2)

applies [36-38], @ is the frequency, k is the wave vector and &;is the

dielectric constant.

The x and y variables are the quadratures of the electric field and are defined

as
. a+a'
X= 3.3
7 (3.3)
and
A l 4 - 0"
y= —( ) (3.4)

Given the photon-number operator 7= a'a, Fock states, indicated by ‘n), are

the eigenstates of the photon-number operator, and as such they have a
perfectly fixed photon number #:

nln)=n|n) (3.5)

If ‘n) is an eigenstate of 7, then &‘n) must be an eigenstate as well, with the

eigenvalue n-1.
In fact,

na|n)=a'a’|n)=(aa'a-a)\n)=(n—1)aln) (3.6)
It can be proven in a similar way that a' is also an eigenstate of 7, with an

eigenvalue of n+1.

Therefore we derive the fundamental relations:
a|ny=n|n—-1) (3.7)
a‘'ln)=vn+1|n+1) (3.8)
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Because of these relations, we understand why a is called the annihilation
operator and d' is called the creation operator. Their function on the photon
number is to lower it or raise it in integer steps, respectively.

The Hamiltonian for a single-mode field, just like for the harmonic oscillator,

is:

~ U |
H =ha)(aTa+5) (3.9)
1
with eigenvalues E, = ha)(n + 5) , where 7 is an integer (1=0,1,2,..).

The energy of the vacuum state ‘0), is the so-called zero-point energy
. 1
(0l 1l0)=1o.

In the Schrodinger representation the vacuum state wavefunction is:

Y, (x)= ‘{/% exp(—x7) (3.10)

If we apply the creation operator to the vacuum state we obtain the excited

states of the number operator:

_@y
m)="10) @3.11)

If H (x)is the n-th order of the Hermite polynomials, then, the

corresponding wavefunctions of the excited states are:
H,(x2) \F
x)=—f—>4=exp(—x’ 3.12
l//n( ) m T P( ) ( )
Furthermore, the Fock states are orthonormal because they are eigenstates of
the Hermitian operator 7 and form a complete Hilbert-space basis, the Fock
basis:

(n|n")=6 (3.13)

nn'

Yln)nl=1 (3.14)
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The density matrix for a Fock state In> has the simplest form p, =1. Since
the trace of a density matrix is normalized, all the other diagonal elements
must be zero. The off-diagonal elements are zero as well.

This field state is very simple to formulate but difficult to fully understand
and to generate experimentally. However, its value isn’'t only proven as a
fundamental theoretical tool but also of its cornerstone role in applications of

quantum mechanics.

1.2 Quantum state generation: Spontaneous Parametric Down-
Conversion

“The quantum mechanical description of parametric fluorescence is the
splitting of a single photon into two photons”, reproducing the words of
D.C.Burnham, who together with D.L.Weinberg, were the first to describe
Spontaneous Parametric Down Conversion (SPDC) in their PRL paper of 1970
[39].

In the language of quantum mechanics, we would say that during the process
of SPDC [40-42] a pump photon is annihilated into a non-linear crystal
resulting in two lower-frequency photons produced simultaneously and
within the coherence time of the pump. We would say that the two photons
are entangled, their energy and momentum and polarisation being quantum-
mechanically correlated, but these physical properties remain individually
undefined until a measurement is performed on one of them. We shall below
see the mathematical representation of this phenomenon and further
characteristics of the particular case of Type-I non-collinear degenerate case
that is of our interest.

SPDC is a probabilistic event, as occasionally photons from the “pump” beam

of frequency ®,, decay into pairs of new photons, namely signal and idler (

18



o,,w;) simultaneously (#,=¢,). In order for this recipe to bind together, the

laws of conservation of energy and momentum need to be satisfied:

k=k+k (3.15)

and 0,=0,+0, (3.16)
and therefore we expect the combined energy and momentum of our pair of

photons to be equal to the one of the original photon (the state of the crystal is

considered unchanged in the process).

signal (.

pump

—‘ BBO crystal

Wp ‘

Figure 1.1 Schematic view of Spontaneous Parametric Down-conversion type I, where the
nonlinear medium is a BBO crystal. A pump photon is converted into two lower energy
photons correlated in frequency and wavevector and emitted in two channels named signal

and idler.

For this three-wave mixing process to occur, one needs a non-linear medium,
characterized by second order nonlinear susceptibility ¥*, pumped by a
strong laser beam. More generally, a noncentrosymmetric crystal (having a
non-vanishing y*) whose induced polarization depends quadratically on the

incident pump field.
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The electric field E,incident on a nonlinear crystal creates a polarisation P
having nonlinear dependence on E,. The lowest nonlinearity order can be
written as P = y”E E,, where E, and E, are the fields for the signal and idler
channels respectively.

Assuming the signal and idler modes initially in the vacuum state (i.e.

ly(0))=]0) |0),), the first-order perturbation theory gives the final two-

photon state as

[w(1))=10),

l- t
0), -~ JarH, (1]0),]0), (3.17)
0
where H,(t') is the Hamiltonian of the process of SPDC
— 2 G (7 G (7 +) (7 35
H,(1)= 2 [ ED (F.0)ED (7 ) EY (F.0)d'F +he. (3.18)
Since we are interested in the fields far from the crystal, and the interaction
Hamiltonian is zero before the pump pulse enters the crystal and after the

interaction, the time integration can be extended to run from -co to o; this

leads to:
f:dt'exp[—it'(a)s + o, —a)p)} = S(a)s + o, —cop) (3.19)

Therefore, the SPDC state vector reads as:

lw(1))=10),|0), + [ 'k do d'kdo, (K, .0, k.01, |, ) (3.20)
where
@
o(k,.0,.k.0,)= %J‘eﬁﬁ (0, +o, ,kp)K(l?p —k,—k)d’k, (3.21)
and
K(k)=] exp[-kF J'F (3.22)

The function (P(l;x ,a)s,l;,.,a)l.) describes the spatial and spectral properties of the

two-photon state, which is sometimes called biphoton. The spatial and

spectral behaviour of the biphoton state hence depends both on the spatial

20



and spectral distribution of the pump. The volume integration is performed
as a transverse integral times an integral over the length of the crystal L.
Assuming a crystal of infinite length and a pump beam infinitely wide in
order to extend the transverse integral over an infinite domain, the above

equation leads to the perfect spatial phase-matching condition:
K(k,—k —k)=8(k,—k —k) (3.23)

In a more realistic case, where the pump beam is distributed in the transverse
plane as a Gaussian of width I', and is sufficiently wide in order to propagate
along the crystal without any diffraction, I', > v AL /7 , we obtain:

¢(Es ’ws ’lzi ’a)i) =

X ® (+) 0 .

el (k.o, +o,)esLexp| —i(k,—k —k)L/2] (3.24)

sin((k, —k, — k)L /2)
(k, —k,—k,)L/2

xT, exp[—(;q +x, ) (T,) /2}

where the positive frequency part of the pump is factorised in the

longitudinal and the transverse components &' (lgp ,a)p) =e (kZ 0, )Sps (k) and

,.(p)=¢, exp[—p2 /ZFPJ.

This equation shows that the down-conversion can be also obtained for
“imperfect phase matching”, and therefore SPDC is described by a spatial and
spectral distribution. We have the maximum intensity of the output beams
when the phase-matching conditions are exactly fulfilled. The two phase
matching conditions can be combined to give the following constrains for the

refractive index of the medium:

(3.25)

1

n(o,)(,+0,)=n(o,)o,+n(o,)o,
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Because n is typically an increasing function of @ over the optical range of
frequencies, the condition cannot be satisfied. However in a birefringent
nonlinear medium it possible to achieve the above condition by making use of
the different refraction index seen by waves propagating with different
polarizations. In Type-I SPDC the signal and idler photons have the same
polarisation but perpendicular to that of the pump, whereas in Type-II, they
have perpendicular polarisations. SPDC process also distinguishes in
degenerate if the two photons share the same free-space wavelength (

A, =A,=2A,), and in non-degenerate if they don’t.

ﬁ/ 2)
X

Figure 1.2 Spontaneous parametric down-conversion type I. A pump beam is injected on a

nonlinear Y @) crystal and the down-converted light is emitted spontaneously in a form of a

cone, with an angle of emission depending on the wavelength. The result is emission in
concentric rings with the longer wavelengths in the centre and the shorter ones on the

outsider circles.

In this thesis we are mainly concerned with Type-I, degenerate and slightly
noncollinear down-conversion, and that is our single photon source. In this
case the signal and idler photons emerge at equal yet opposite angles with
respect to the beam direction. Since there is no preferred azimuthal angle for
emission, the emerging radiation forms a ring of diametrically-opposed signal

and idler photons.
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1.3 Conditional generation of Fock states

As a single photon source to obtain photon-number states, we use conditional
preparation from an SPDC source, which it is largely employed as a heralded
single-photon source [43,44]. The ideal single photon source would be
emitting upon the onset of a classical trigger, in a well-defined spatiotemporal
mode but since that is yet not possible, the best and most efficient way is the
technique of preparing single photons by conditional measurements on the

biphoton state born in the process of parametric down-conversion.

HT
‘ 1 Mode-locked laser [:

I Digital scope
Signa

BBO

Trigger

>

F

SMF
Figure 1.3 Conditional generation of the single-photon state by detection in the filtered

trigger channel: when the single-photon counter (APD) “clicks” the signal field is projected

into the Fock state.

The detection of a single-photon in a filtered idler channel projects the signal
in a single-photon state. The idler photon, also named trigger photon, is

selected by spatial and spectral filters. Because the emission of the two

23



photons is simultaneous, the single-photon Fock state in the signal channel is
non-locally conditioned by the single-photon detection event in the idler one.

The signal state preparation can be described by the following projection:

p.=m{p|w)wl} (3.26)

where #r, is the trace taken over the trigger states, |y) is the SPDC bi-photon

state and p, is the state ensemble selected by the trigger filters:
p, | dkdo T (k.o )1k.0,) (k.| (3.27)
where T(l;,,a)t) is the filter spatiotemporal transmission function. An explicit

calculation shows that the degree of spatial and spectral filtering of the trigger
mode before detection determines the purity P of the generated quantum
state in the signal mode. Only limiting ourselves to the case of the
spectrotemporal contribution to the purity, one easily finds that it can be

expressed as

I
2 2
,/1+0f/6p

if one assumes a Gaussian spectral distributions of widths o, and o, for the

P= (3.28)

tilter and the pump field, respectively. We see from the above function that
the purity of the generated state depends on the ratio between the pump and
tilter widths and it approaches unity only when the filter bandwidth is much
smaller than the pump one. This is the reason why in order to obtain a pure
single photon state whose properties are defined by the pump, we introduce

narrowband filtering in the idler channel [45-48].
Generation of a two-photon Fock state is also possible and follows similar

formalism as above, but it is much less probable and therefore much less

efficient with use of SPDC process.
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1.4 Quasi probability distribution and Wigner function

The cornerstone of quantum mechanics, the Heisenberg uncertainty principle,
forbids simultaneous measurement of the variables x position and y
momentum. This means that in quantum mechanics the construction of a
probability distribution becomes problematic, which is the usual way of
description of a system in classical mechanics. One simply needs to introduce
a joint distribution for the position x and momentum y in a phase-space
picture and when this joint probability distribution P(x,y,t) is known, it is
possible to calculate an expectation value for all the physical quantities of the
system of interest. By joint probability, we refer to the probability of finding a
certain value x and a certain value y in a simultaneous measurement,
meaning at the same time t. Returning to the Heisenberg uncertainty principle
we realize why this would be impossible for a quantum system.

The solution was provided by Wigner, who introduced the idea of a quasi-
probability distribution in phase space, in 1932 [49]. A quasi probability
distribution still allows one to calculate expectation values but, differently
from a proper probability distribution, can also have negative regions. The
latter turns out to be a very important quality as it is assumed as a proof of

the nonclassicality of a state (a sufficient but not necessary criterion).

The Wigner function is defined by Wigner’s formula as follows:

| )
W(X’y)=ﬂf—wey§<x‘§‘p

¢
X+ 5>d§ (3.29)

A notable property of the Wigner function is the overlap formula, as it allows

calculation of the expectation values of observables:

Tr(pp,) =21 [ [~ W, (x.yW, (x.y)dxdy (3.30)
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where W, and W, are the Wigner functions for the density operators p, and
Ps -
So according to the above, the expectation value for an observable Ais:

<A>:tr{f)fl}: JW(x,y)WA (x,y)dxdy (3.31)

Furthermore, if we integrate the Wigner function over one variable, we obtain
the measurable probability distribution for the conjugated one —these are the

so-called Marginal distributions:

p(x)={x|plx)= [ W (xyMdy, p(»y)=(s[ply)= [ W(ry)x (332)

In the case of a rotation by an angle € in the space (x,y) the probability
distribution of a rotated variable can be calculated using the Wigner

representation as follows:
p(x.,0) < ‘U )pU* (6 )|x> = Jij (xcosO—ysinB,xsinf + ycosO)dy (3.33)

The Wigner function for a Fock state |n) is

W(x,y):%Ln(sz +2yz)e_)‘2_y2 (3.34)

where L. is the Laguerre polynomial of order n.
The Wigner representation for the vacuum state and the Fock states with n=1

and n=2 are respectively:

W, (x,y)= 2 e(fz(xz”z)) (3.35)
W, (x,y)= %e(z(hyz)) (4x2 +4y° - 1) (3.36)
W, (x,y)= 721_ () (1+ 8x* +8y* =8y’ +8x” (2y2 —1)) (3.37)

As we see from the image below, the nonclassical character of the Fock state,

is made more than clear by the negativity of the Wigner function. Compared
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to other representation of quantum states the Wigner has the advantage that it
can be reconstructed from the experimental data and therefore constitutes a
direct link between theory and experiment, providing an experimental tool

for proving the nonclassicality of light states.

Figure 1.4 Reconstructed Wigner function for a single-photon Fock state [44].

1.5 Quantum state characterisation: Homodyne Detection and
Quantum Tomography

Homodyne detection is a powerful method for measuring phase sensitive
properties of travelling optical fields, which are suitable for quantum-state
reconstruction. The scheme is basically the following: two fields are
combined, through a lossless beam splitter, and forced to interfere with each
other. A weak signal field with a highly stable reference field, which has the
same mid-frequency as the signal field. The reference field, called local
oscillator (LO), is usually prepared in a coherent state of large photon

number. The superimposed fields impinge on two photodetectors,
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the difference in the number of the emitted (and electronically processed)

photoelectrons being the homodyne detection output.

The observed signal, which varies with the relative phase between the two
tields, reflect the quantum statistics of the signal field and can be used -

under certain circumstances — to reconstruct its quantum state.

More specifically and in our particular case, we detect the interference
products at the outputs of a 50:50 beam splitter where the signal interferes
with a strong coherent field. The local oscillator is derived from the same
source as the other beam we wish to detect. As we see at the figure below, at
the two outputs of our interferometer, we have placed two proportional
photodetectors, whose induced photocurrents are subtracted to give a signal

proportional to the quadrature of the electric field we wish to detect.

o)
detector 22\
a,
signal
N
~ A V
CIS O(I
detector
local
oscillator
Qo

Figure 1.5 Diagram of a balanced Homodyne Detector.
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The beam splitter is considered a passive device that neither creates nor

destroys photons. We take r and t to be the (complex) reflectance and
transmittance respectively, and for input states a, the annihilation operator of
the signal and &, , the complex amplitude of the Local Oscillator, the beam
splitter causes the following transformations:
a,=ta,+na,, (3.38)
a,=rna, +t,4a,, (3.39)
where g, anda, are the mode operators of the fields emerging from the beam

splitter.

If we consider the beam splitter to be lossless, then the coefficients r and t
have to satisty: ‘rl’z‘z +‘tl’2‘2 =1and 7, +nt, =0.
We may now also consider a 50:50 Beam Splitter so that the conditions

t=t,= %\5 and r,=-r, = %\5 are imposed.

Now at the outputs of a 50:50 beam splitter we obtain:

~ 1
a,= ﬁ(a“ —a,,) (3.40)

—(a,+a,,) (3.41)

Q
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We can calculate the photon number operators for the output channels 1 and

2, respectively:

N 1
A_AIA_ A A A A A A A A
n=aa = E(aTs a,+at,a,,—at,a,—at, as) (3.42)
N A A 1., ~ A A A A
n2=0¢20¢2:E(aTsas+aTL0aL0+aTXaL0+aTLOaJ) (3.43)

The photon number difference operator between the two channels is:

f, =, —h =Gt G, +at,,a (3.44)
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If the local oscillator |e,,, ) :Ha ¢’), is a strong coherent field, |o|" > 1, such

that it can be assumed to be classical and |¢]” > Tr(pa'a), then

the expectation value of the photon number difference we write

V) (3.45)

<1//(x|ﬁ21 |1//(x> =|ef <1//|Ez*e”“’ +ae”

where |l//> is the state of the signal that is under investigation.

We define now the phase quadrature as follows:
X, = Xxcosf—ysinO (3.46)

because the quadratures of the electric field (defined with equations 1.3 and

1.4) are 2:%(&++&) and&:%(&*—&) so that:
A Loni i~ i
X, zﬁ(a’e 9+aee):ﬁ (3.47)

and the expectation value for the photon number difference becomes:

<1//a|ﬁ21\1//a> =/2|0f <1//|$ccos9 - 51sin9|1//> =2|of <1//|5c9\1//> (3.48)

We see how the difference number operator, which is what we measure with
homodyne detection, becomes linearly related to the field quadrature at a
particular phase. Experimentally, we are able to adjust 8, the phase difference
between the two fields, with the help of a mirror mounted on a piezoelectric
translation stage. Repeating many times this measurement on identically
prepared states, we collect an ensemble of data that is later used to construct
an histrogram distribution of the quadrature operator P( 1, #), which is one of

the marginal distributions of the state Wigner function.
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At this point one can use a similar approach to that used in medicine to
reconstruct the Wigner function of the state. In medical imaging a cross-
section of the human body is scanned by a thin X-ray beam, whose attenuated
intensity is recorded by a detector for different observation angles. The data
of these intensity distributions are then processed by a computer to build a
picture of the object in the form of a spatial distribution of the absorption
coefficient.

Thanks to Vogel and Risken [50,51], the method was also applied in quantum
optics to solve the problem of the limitation imposed by the Heisenberg
uncertainty principle, that prevents the simultaneous and precise observation
or measurement of the complementary features of a quantum state. Similarly
the Wigner function can be recovered from its one-dimensional projections
for different angles 0 in phase-space, i.e. from the quadrature probability
distributions, which can be precisely measured using balanced homodyne
detection. To measure the quadrature distributions, we may fix the phase
angle O and perform a series of homodyne measurements at this particular
phase to build up a quadrature histogram. Then the LO phase should be
changed in order to repeat the procedure at a new phase, and so on. In
quantum optics preparing a number of identically prepared light modes is
not a problem, and repeated homodyne measurements on them can be
implemented in order to gain sufficient statistical information about the
quadrature values at a certain number or reference phases. This collection of
data can be used then to tomographically reconstruct the Wigner function, a

method called optical homodyne tomography.

31



32



CHAPTER 2

ULTRAFAST OPTICS

In our days lasers exist in a variety of complex setups but more and more
interest has been attracted in the last decades by the development of new
sources emitting very short pulses, with the latest records now reaching
pulse durations of only a few optical cycles [55-57].

Along with this, and in analogy with electronic function generators comes
the possibility to produce ultrafast optical waveforms. Powerful optical
waveform synthesis methods have been developed, that allow generation
of complicated ultrafast optical waveforms according to user specification.
Coupled with the now widespread availability of femtosecond laser
systems, pulse shaping systems are already having a strong impact as an
experimental tool providing unprecedented control over ultrafast
processes. We have used such a system in our lab, that has given us the
possibility to characterise and exploit the broadband spectrum of our

nonclassical light states.
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2.1 Femtosecond Mode-locked Laser System

The most common form of ultrashort laser source, and the one we are using
for the experiments of this thesis, is a mode-locked laser. In the following I

will give a brief description of its working principle and characteristics.

In a general continuous wave multi-mode laser, the different longitudinal
modes of the laser cavity oscillate independently of each other and have
random relative phases. Since the total electromagnetic field at any point
inside the cavity is given by the sum of the fields of the oscillating modes, the
output of such a laser will be noise-like, fluctuating in intensity due to
interference between the modes. However it is possible to manipulate the
phases of the modes to obtain a more useful output, with a technique known

as mode-locking.

A multi-mode laser is said mode-locked if its modes have a well-defined and
tixed phase relationship. If the phases are locked in such way that there is a
constructive interference between the modes at an instant and a destructive
interference at other times, the output will appear as a pulse. It is instructive
to consider a simple example of mode-locking in which all oscillating modes
have equal amplitude. The electromagnetic field due to 2n+1 equally spaced
modes is given by:

E(t)= Y E el e (3.49)

g=—n

where [ is the amplitude of the g-th mode, @, is the frequency of the central
mode, Amis the (angular) frequency spacing between the modes and ¢, is the

phase of the g-th mode.
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Figure 2.1 Mode locked output for the equal-amplitude approach. a) spectrum

b & c) the output in time domain (variation of intensity with time) for different numbers (N)

of involved modes.

In the case of equal amplitudes (E,) and locked phases (¢, —¢, | = const) the

above representation becomes:

E(t)=E,e™ Y, (3.50)
q=—n
This can be written as
E(t)=A(t)e™ (3.51)

where A(t) =E, i e
q=-n

This is an amplitude-modulated wave oscillating at the central mode
frequency ®,. The corresponding intensity profile is the following;:

_sin’[(2n+1)Awt /2]
~ sin®(Awr/2)

1(t)e<[A(r)]

(3.52)
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The above function is periodic, with strong peaks (pulses) spaced by very
weak subsidiary peaks. Careful analysis of the above function leads to
acknowledgement of the importance of its properties: the pulse duration
decreases and its amplitude increases as the number of modes increases; the
period of this function is 7=27m/Aw . The pulse duration Ar can be

approximately given as Atr=2m/ (2n+1)Aw=1/ Av, where Av is the full

width of the laser emission spectrum. Short pulses can be obtained from
lasers with a large gain bandwidth. This is one of the main reasons for the
choice of Ti:sapphire as the active medium of a pulsed laser in the visible and
near-IR part of the spectrum. Ti:sapphire is basically a crystal of sapphire
(AL20s), doped with titanium ions, that has emission bandwidth covering the
range approximately from 650 nm to 1150 nm with the maximum near 800
nm. Moreover, Ti:sapphire can be easily pumped in the blue-green range
where some powerful laser sources are available (argon-ion lasers (514,5 nm)
and frequency-doubled Nd:YAG, Nd:YLF and Nd:YVO lasers), and it has
great photo- and thermo-resistance. Obviously, not only the active medium
provides ability of a laser to generate ultra short pulses, it also depends on the
possibility to compensate the dispersion due to all intracavity optical

elements.

For our experiments, we used a CW Millennia (Newport) laser emitting 8
Watts at 532 nm to pump a mode-locked Ti:sapphire (Tsunami, Newport)
laser providing ultrashort pulses of duration about 80 fs at 800 nm (FWHM 10

nm), with 82 MHz repetition rate and output power 1,5 Watt.
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2.2 Mathematical description of femtosecond laser pulses

As a starting point, the real-valued scalar temporal electric field

E(t)=2A(t)cos(®(1))= A(t)e™ +co.= E* (1) + E" (1) (3.53)
is chosen to represent a laser pulse, which contains the real-valued temporal
amplitude A(r) (the envelope of the electric field) and the temporal phase
function ®(r). For an unambiguous description, it is sufficient to restrict the
temporal electric field to the complex-valued function

E*(1)=A(r) ™" (3.54)

The phase function ®(¢) in the expression for the electric field is responsible
for the oscillation of the electric field. It is dominated by a term linear in time
bringing forth the fast oscillations with the carrier frequency , of the light,
but also comprises nonlinear contributions that are described by the function
Q1) =(t)- ot (3.55)

The electric field can also be characterised by the carrier frequency w, and a
complex envelope A(r), so that it is written as

E*(1)= A(2) ™) x e = A(t)e™ (3.56)
The above equation is called slowly-varying envelope approximation (SVEA)
and is applicable for all but the shortest light pulses that are currently
generated.

In the temporal domain we define the pulse intensity as the average of E*()

over one optical cycle, and can be further simplified as follows:

H—T/z
1(0)=c e [ E>(t')dr'=2¢,8,0A (1) (3.57)

where 7 is the index of refraction of the medium in which the intensity is

measured.
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The energy fluence F, i.e. the amount of energy per unit area contained in the

electric field is given by
F=[1(r)t (3.58)

while the total pulse energy W is given by further integration over the spatial

coordinates in the complete formula for the electric field.

The first derivative of the phase ®(¢) with respect to time yields the actual

frequency with which an electric field oscillates at a given moment in time.
This instantaneous frequency is

o, (1)= dczt(t )_ o, +d‘g—£t) (3.59)

may vary significantly with time, and from the above equation the physical
meaning of the reduced phase function ¢(¢) obtained under the SVEA

becomes obvious: it describes the deviation of the actual oscillation frequency

from the carrier frequency @, .

The analysis of this term will be important for us in this thesis. In the case of a
constant phase, the pulse experiences no frequency variation in time, whereas
a linear variation of ¢ with time represents a simple frequency shift.
However, a quadratic variation of ¢ with time, starts to make it more
interesting as it represents a linear ramp of frequency versus time, and we say
we have “positively chirped”, or “negatively chirped” for increasing or a
decreasing ramp respectively. Then, the chirp is said to be linear for a simple
quadratic phase distortion and nonlinear when higher order terms get

involved in our function.
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It is useful to expand the temporal phase into a Taylor series

o(1)=Y ! (3.60)
=0 J!
with coefficients a ; defined as
j
a = 220) (3.61)

The zeroth-order coefficient g, determines the position of the peaks of the
actual oscillation with respect to the pulse envelope, and is called the absolute
phase (or carrier-envelope phase). In conventional femtosecond laser systems,
the absolute phase does not remain constant but fluctuates from pulse to
pulse, an effect that can be overcome by an interferometric setup used to
stabilise @,. It has been demonstrated that the absolute phase may play an
important role in experiment with few-cycle pulses but for the typical pulses

of this thesis it is not important.

The first-order coefficient is identical to the carrier frequency a, = ,, high-

order terms lead to a variation in the carrier frequency ®,. When a; =0 for all

j=2, the pulse is unchirped, and ®, (¢) is constant. In contrast, if @, (¢) is

do, (1)
dt

increasing with time (i.e. >0), one speaks of upchirped laser pulses,

while the pulse is downchirped if d%}t) <0).

For complex pulse shapes, the momentary frequency may vary from
upchirped to downchirped character several times. In the special case a, #0

and a; =0 for all j>3, the momentary frequency changes linearly with time,

and thus the pulse is linearly chirped.
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The electric field can also be characterised in the spectral domain, which is

connected to the temporal domain via the Fourier transform (denoted by F')
1 7 ,
E(w)=——=— | E(t)e "dt=F{E(t 3.62
(@)= | Bl ar=r{E(0)} 662)
The inverse Fourier transform (denoted by F™)
1 7 _

E(t)=——= | E(w)”"do=F"'{E(0 3.63

(0= J £k (E()} 663)

reproduces the temporal electric field E(z) .

Since E(t) is a real-valued function, the electric field in the spectral domain

has contributions both at positive and negative frequencies, which obey the
relation
E(0)=E*(-o) (3.64)

where the star indicates complex conjugation.

Therefore, the field still is unambiguously characterised if the description is

restricted to the part at positive frequencies:

E(0)—L>w>0
B (w)=] Fl@)—e (3.65)
0—L5w<0

This expression can be divided into a real-valued spectral amplitude (or

envelope) function A(®) (spectrum) and an exponential term containing the
spectral phase ®(w):

E'(0)=A(w)e ™ (3.66)

Similarly to the Fourier transform relation for the complete fields E(¢) and
E(®), the electric field E* (),

E*(0)=F{E*(r)} (3.67)
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is connected to its Fourier counterpart E*(z) by
E'(1)=F'{E"(0)} (3.68)
and the spectral intensity in analogy to Eq.(2.9) is defined as

I(0)=2c,enA(0) (3.69)

Since the energy fluence, is a property of the laser pulse that is obtainable by

either describing the field in time or frequency space, the condition

j ()dt—j (0)do (3.70)

known as Parseval’s Theorem is fulfilled.

Just like in the time domain, it is useful to expand the phase into a Taylor
series. The spectral amplitude is usually centred around the carrier frequency

®,, so the expansion is most conveniently performed according to

3 —’ 3.71
goj (3.71)

With the spectral phase coefficients

b= d'd(w)

= (3.72)

=0,

The zeroth order coefficient is identical to the absolute phase, i.e b, = a,. The
coefficient of first order is equivalent to a translation of the laser pulse in the
time domain, as can be explained by the Fourier transform of an arbitrary

field E(w) with an additional linear spectral phase term b,. The associated

temporal field then becomes

FE(w)xe™} = j E(0)e”"™dw = E(-b,) (3.73)
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It is now useful to introduce parameters to describe how long our pulse and
broad its spectrum is, as well as a constant called the time bandwidth product

(TBP) that defines a relationship between the two.

The spectral width Aw and the pulse duration Ar are defined as the full
width at half maximum of the associated intensity profiles

Ao =FWHM {I(0)} (3.74)

At=FWHM{I(t)} (3.75)

It is clear from the Fourier transform that the electric fields in time and

frequency space are directly related and therefore they cannot vary

independently of each other.

The so-called time-bandwidth product sets a lower limit to their relationship
as follows [58]:

AwAt =2 27c, (3.76)
where c,is a constant on the order of one, which depends on the actual pulse
shape and on the definition of the quantities Aw and Ar. If they are defined

as above then ¢, =4In(2)/(27)=0.441 in case of Gaussian-shaped spectrum,

while it is different for other /() profiles.

The quantities Aw and Ar as defined above are only a good measure for
pulses that are not very complex. For structured pulses, different concepts
have been developed in order to consider the complete intensity distribution
in an estimate of the pulse properties but an exact description of complex

pulses is only given by the complete electric field functions.

A pulse is called bandwidth-limited or transform-limited if the equality sign

in the equation of the time-bandwidth product holds. This is the case for any
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given spectrum if all b, =0 for j>2 in the Taylor expansion. Analogously,

for a given temporal intensity profile the narrowest spectrum, with which a

pulse can be obtained, is found by setting all a; =0 for j=>2.

2.2.1 Spatial propagation and material dispersion

Now that the description of the electromagnetic field of our ultrashort pulses
has been completed, we have to consider its propagation in space and in

dispersive or non-dispersive media and see how its properties would change.

We start with the wave equation, assuming a plane wave as follows

7 19 9 =
(ﬁ 7w ]E(”Z):“WPW) o7

where P(#,F) is the polarisation and it is treated like in classical

electrodynamics, so that it can be assumed to be a linear response to the

electric field E(z,z). The two quantities are connected through the dielectric
susceptibility tensor y, leading to the simple relation
P(w,z)=¢,x(0)E(w,z) (3.78)

in the spectral domain.

Combination of the above equation (2.30) and the Fourier transform of the

previous eq. (2.29) results in the further reduced wave equation

(a_;+f—f[1+ x(w)]]E(w,z)zO (3.79)

Solutions for this equation are the traveling waves

E(0.2)=E' (0,0)e ™" +cc.=E' (0,2)+ E (0,7) (3.80)
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The expression E*(®,0) is equivalent to E*(w) defined previously by
Eq.(2.18) and the quantity

(0]

k=—h(w) (3.81)

c
is the wavevector, pointing into the z-direction and containing the complex

index of refraction

i(w)=n(w)-ik(0)=1+x(o) (3.82)

While the imaginary part k() (extinction coefficient) is responsible for
processes like absorption or gain in a medium, the real part n(®) describes

dispersion and refraction. For idealised propagation without losses, k()

becomes zero, and the index of refraction reduces to the real part n(®).

In analogy to the temporal domain, where the rapid oscillations in time with
the carrier frequency w, are separated from the phase function according to
Eq.(2.11), the rapid oscillations in space can be factored out as follows:

E'(0.2)=E' (0,0)e ™" = E* (0,0) e x 7 (3.83)
With &, =n(w,)w,/c and 8k defined by a Taylor expansion

=1 d'k
~ jldo’ .

Sk = (0-0,) (3.84)

=,

If the SVEA is valid, it is therefore sufficient to describe the electric field by a

complex envelope function
A(0.2)= E* (0,0)e = A(@0,0)e ™™ = A(0,0)e 9 (3.85)

that contains the reduced phase term ¢(®,z).
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The SVEA in space requires that the pulse envelope does not change
significantly while travelling a distance that is on the order of one wavelength

A, =21 | k,. Therefore the condition

d ~ o
d—A(a),z) =k,|A(w,z) (3.86)
<

has to be fulfilled. By inverse Fourier transform of Eq.(2.35) the temporal

electric field
E*(t,2)=F"'{E"(w.2)} (3.87)
is obtained, which now describes the temporal evolution and the spatial

propagation of a laser pulse.

If Eq.(2.39) is rewritten in the form

E*(t,z)=F" {A(a),O)e_i"’(“”Z)e’iakz} x ¢!l H) (3.88)

The term resulting from the inverse Fourier transform yields the complex
envelope function A(t,z) which varies slowly in time and space, and which

contains the information about the shape and chirp of the laser pulse.

The combined description of the temporal and spatial properties of the
electric field allows study of how laser pulses change while propagating
through optical elements.

As an example a dispersive material of length L and with an index of
refraction n(w) is considered. Using the SVEA, the additional spectral phase
acquired along propagation is

(on(a))L

®(w,L)=D(0,0)+kL=0(w,0)+ >

(3.89)

The additional contribution due to propagation has to be included in the

Taylor expansion of the spectral phase, so that the coefficients b; of Eq. (2.24)

become
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,_do.L) _d00) +£(-a’””(“’)+ a’”“‘”j (3.90)

. 4 0] :
/ do’ o’ ow’

0=0,

If the pulse would propagate in vacuum, i.e. n(@)=1 for all frequencies, only
the zero-order and the first-order coefficients would change by k,L and by
L/ c respectively. This accounts for a constant phase k,L and a temporal shift
At = L/c of the pulse’s maximum due to propagation from the position z=0 to
z=L.

For a dispersive medium, however, the situation is different, and the first

order term takes the form

b, _d2(00)  Lf (o) _d%(0.0) —E 3o
do |, ¢ do ) dw \w:wo (@)
a| )
where the group velocity v, (w,)= (d— ] (3.92)
o w=0,

is the actual velocity of the pulse envelope in the dispersive material, and the
group delay
L

o) (3.93)

Tg (a)O) =

is the time it takes the pulse to propagate through the medium.

As already discussed the temporal shape of a laser pulse changes if the

spectral phase coefficients b, for j>2 are altered. After passing the dispersive

medium, the second-order coefficient has an additional contribution
£(zan(a))+w82n(a))] :drg((o)
dw

3.94
c 0w ow* (3:94)

0=, 0=,

which is called group-delay dispersion (GDD) and is linear with respect to the

traversed distance in the medium. Therefore, by dividing Eq.(2.46) by L the
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linear dependence is cancelled and a characteristic property of the dispersive

material is obtained, the so-called group velocity dispersion (GVD) parameter

(o)
__\u(@) (3.95)

do

1 o2e). 7 rie)

c oW Jdw

0=0,

=0,

As we will see in the following, the coefficient b, will be occupying us and in
the case that b, #0, this leads to a linear chirp of the laser pulse. The GVD
parameter can therefore be understood as amount of linear chirp introduced
per unit distance in the medium. Similarly to b,, higher-order coefficients of
the spectral phase are also affected by propagation through a dispersive
medium, and subsequently lead to a change in the temporal profile of the
laser pulse. Thus, they always have to be considered in the design of
femtosecond laser sources and whenever optical components like lenses,
tilters or attenuators are employed. Depending on pulse length and central
wavelength, the effect may be more or less pronounced, and in general it is
more drastic for shorter pulse durations and shorter wavelengths. For
instance, propagation through 1 cm of Fused Silica will stretch (and thereby
chirp) an initially transform-limited 80 fs pulse to 81 fs if centred at A, =800
nm, but to 87 fs or even 105 fs if the central wavelength is 4, = 400 nm or =266
nm, respectively.

However, no matter how complicated the spectral phase imposed onto a
pulse by a dispersive material is, it is well determined by the index of
refraction and the length of the medium, and therefore the phase relations
between different frequency components are always unambiguously defined
and can be derived with the equations discussed above. Therefore, a

dispersive material and the length the light has to propagate through it can be
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chosen in such a way, that the intended amount of chirp be imposed on the

laser pulse.

2.3 Shaping of ultrafast waveforms: linear filtering

The linear filtering process can be described in either the time or the
frequency domain, as depicted in the picture below[59].

{a) TIME DOMAIN N

Eq(t) h(1) E, 4(t)=E,(D®h(t)

m

Impulse response
(b) FREQUENCY DOIUIAII/S

VAN ‘ A
E,(©) Hiw) Eyuf ©)=H(o) E,{«)

Frequency response

Figure 2.2 Pulse shaping by linear filtering: (a) time domain and (b) frequency domain

In the time domain the filter is characterised by its impulse response function

h(t). The output of the filter E,,(¢) in response to an input pulse E, (¢)is

m

given by the convolution of E,, (¢) and h(¢):
E,(t)=E,*h(t)= [dt'E, (t')h(t—1") (3.96)

where * denotes convolution. If the input is a delta function, the output is

simply h(t). Therefore, for a sufficiently short input pulse, the problem of

generating a specific output pulse shape is equivalent to the task of

fabricating a linear filter with the desired impulse response.

In the frequency domain, the filter is characterised by its frequency response

H(®). The output of the linear filter E,, () is the product of the input signal

E,(®) and the frequency response H (), i.e.

124

E,(o)=E,

out m

(w)H (o) (3.97)
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Here E, (t), E,,(t) and h(t) and E, (w), E,,,(®) and H(w) respectively, are

m

Fourier transform pairs, i.e.
H ()= [dih(r)e™ (3.98)
and

h(t)= ﬁ JdoH (@)™ (3.99)

For a delta function input pulse, the input spectrum E_ (a)) is equal to unity,

and the output spectrum is equal to the frequency response of the filter.
Therefore, due to the Fourier transform relations, generation of a desired
output waveform can be accomplished by implementing a filter with the

desired frequency response.

2.4 Mathematical representation of pulse modulation by a pulse shaper
operating in the spectral domain

We shall be examining in the following the mathematical representation of
the effect on the ultrashort pulse when travelling through a pulse shaping
setup operating in the spectral domain [60-62].

As we already saw the output pulse E,, () is the product of the input pulse

E,(®) and the transfer modulation function H(w), that describes the phase

and/or amplitude modulation applied by the pulse shaping apparatus to the
input pulse:

E, (0)=H(0)E,(») (3.100)
where o is the angular frequency.
So, based on the above, one could easily obtain the modulation function to

convert the input pulse to the desired output pulse, by simply dividing the
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latter by the actual input pulse, provided that sufficient spectral bandwidth is
available.

The general form of the applied modulation function is the following;:
i [ .
Happl (a)) = ‘Ades (a))| expliﬂ((bdes (a)) + 1) + Zszgn[Ades (w):l:| (3101)

where A, (@) is the desired spectral amplitude, ¢, (®) is the desired spectral

phase and the function sign(x) is defined as
sign(x)=1, for x>0 (3.102)
=0, for x=0
=-1, for x<0
The above function is useful for calculating the desired modulation to be

performed with any pulse shaping device and setup.

However, in this thesis we are particularly interested in the modulation
performed using a Liquid Crystal Spatial Light Modulator. Without going
into much detail (it will be explained better later), it works by independently
modulating the amplitude and phase of the different spectral components of
the pulse. This can be achieved by using a voltage to modulate the index of
refraction of a liquid crystal material as seen by light polarized along a
particular direction. An input light field polarized along this direction can be

accurately phase shifted by an amount ¢ .

The single-layer LC SLM depicted in figure 2.3 is typically used for phase-
only pulse shaping. The double-layer LC SLM in the same figure is capable of
phase and amplitude modulation. It consists of a polariser and two
orthogonal LC layers whose axes are tilted at +45° and -45°relative to the

input laser polarisation.
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Figure 2.3 Common geometries for liquid crystals: Single-layer LC SLM for phase-only
modulation (top) and Dual layer LC SLM with polarizer (P) for independent phase and

amplitude modulation (bottom).

There is a very practical way to analyse the above configurations using Jones
matrix formalism. The horizontally-polarised input light field is given by the
vector E,, and the modulator, polariser and rotation matrices are given by

H(¢), P. and R(0), respectively:

Em=( (1) ) (3.103)
H(¢)=[ CXPO("“’) (1) J (3.104)
f;:( (1) 8 J (3.105)
o o | o109

51



Because the matrix H(¢) is written in its own coordinate system relative to its
c-axis, a rotation matrix R(0) is used to transform between x-y and the LC

coordinate systems. Assuming that the shift of the absolute phase is
unimportant, the solution of the phase-only configuration (with only one

liquid crystal array) is the following:

E,, = H())E, =[ e"p()(i"’) J (3.107)

The solution of the phase and amplitude configuration takes a few more

steps:
E,, = RR[%)H(@)R(—%)H(@)EM (3.108)

Considering the matrix definitions, after calculation one arrives to the

following result:

E,, =exp(i[8, +¢2]/2)[ cos([¢, =0 ])/2 ]E (3.109)

The amplitude modulation applied to the output field is therefore determined
by the difference between ¢, and ¢, , while the phase modulation is

determined by their sum.
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CHAPTER 3

OVERVIEW OF EXPERIMENTAL METHODS

3.1 Pulse compression methods

In the femtosecond regime pulses easily get chirped going through the
dispersive optics on the optical table. Group delay dispersion (GDD) is an
ultrafast phenomenon that can be ubiquitous, and often irritating, in
ultrafast laser labs. When ultrashort pulses propagate through dispersive
media, their frequency components emerge at different times due to GDD,
causing the resulting pulse to be chirped and stretched and reducing the
pulse’s peak power. This effect can be compensated using a pulse compressor,
which can introduce negative GDD.

Pulse compression, basically means to compress a pulse to a shorter duration.
In our experiment in particular a 10 cm long Single Mode Fibre was causing a
non-negligent dispersion to the pulse that we needed to compensate. We used
a double prism configuration although there are a number of options each
one appropriate for different cases of diverse priorities.

Multitudinous methods, devices and materials have been developed in order
to compress laser pulses to their shortest possible lengths and to check
whether or not the pulses are properly compressed. Indeed, ample is the pool
of options to choose from, if you are in need for your ultrafast newly built
laser lab. These can be distinguished by their efficiency, the maximum path
length difference between frequency components that can be induced and if
they are capable of negative or positive dispersion. Any of these can be the
criteria upon which one can select the right combination of optics for their

particular setup [63,64].

53



Stretchers and compressors are characterized by their dispersion.
With negative dispersion, light with higher frequencies (shorter wavelengths)
takes less time to travel through the device than light with lower frequencies
(longer wavelengths). With positive dispersion, it is the other way around.

With regard to the vast options there are for pulse compression, the most
popular ones are based on angular dispersion and consist of pairs of gratings
or prisms. Martinez, et.al. [65-67] showed that angular dispersion, regardless
of its sign, yields negative GDD. Therefore, simply propagating the pulse
through a prism or diffracting it off a grating yields negative GDD,
whose magnitude depends on the propagation distance. But the output pulse
has inconvenient angular and spatial dispersion. Adding a second identical
prism, anti-parallel to the first one, eliminates the angular dispersion from the
output beam. Eliminating the spatial dispersion requires propagation through
an additional identical pair of prisms. As a result, the four-prism pulse
compressor can compensate material dispersion and also reconstruct
the beam. It also compensates for the pulse-front tilt that it introduces in the

process.

Figure 3.1 Two and four prism pulse compressor, used to produce negative dispersion. In the
first case a mirror reflects the light back in order to form a more compact and easier to tune

configuration.
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Unfortunately, the pulse compressor is as unwieldy as it is essential. While
the GDD can be conveniently fine-tuned by translating one of the prisms into
or out of the beam, to vary the GDD over a wider range of values, the
separations between the first and second prisms and the third and fourth
prisms must be varied (and maintained precisely equal), which
involves several alignment parameters and an inconvenient set up. Also,
pulse compressors have stringent alignment conditions, and, when not
perfectly aligned, they yield an output pulse with residual amounts of spatio-
temporal distortions including angular dispersion, pulse-front tilt, spatial
chirp, and one-dimensional beam magnification or demagnification (yielding
an elliptical output beam) [71,72]. Because pulse compressors must generate
massive amounts of these distortions in order to operate, even residual
amounts of them can be a serious problem. It is also very inconvenient to
tune in wavelength: if the input wavelength changes, all the prisms must be
carefully rotated by the same amount, or else all of the above distortions
occur. Finally, the device is bulky. To obtain the desired amount of negative

GDD, the prism or grating separations can be quite large.

The prism pulse compressor is an indispensable tool in essentially all ultrafast
labs. It has been used in many ultrashort pulse applications, for over two
decades and it has been simplified to two prisms through the use of a mirror
after the second prism, which made it much more practical for use.

The two-prism design is more compact and slightly easier to tune (only two
prisms must be rotated by precisely the same amounts) —the main reason for
which it was initially chosen for our setup. We will be seeing this again later
in Chapter 4, together along with its main drawbacks, because let’s call a
spade a spade, it inherits most of the unwieldiness and propensity for spatio-

temporal distortions of the four-prism design.
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Figure 3.2 Two prism compressor, for negative or positive dispersion. This can be tuned by

varying L, or L .. (the additional length the beam crosses inside the prism).
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Figure 3.3 Schematic layout of a grating-based compressor of grating spacing d, with negative

dispersion. As in the prism pulse compressor, the larger Lsep is the larger the negative GDD.
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It is also fair to make a comparison with the most common pulse compressor
based on gratings, which can easily create a much larger negative dispersion
than a prism compressor. However, a grating compressor has losses of at least
30% due to higher-order diffraction and absorption losses in the metallic
coating of the gratings. A prism compressor with an appropriate anti-
reflection coating can have less than 2% loss, which makes it a feasible option
inside a laser cavity. This difference in effective losses between the two,
resulted important for the choice of prisms rather than gratings in the initial
scheme of the experimental setup for dispersion compensation of a 10 cm

long Single Mode Fibre, as we will see again in Chapter 4.

The “zero-dispersion pulse compressor”

The discourse is about an apparatus that makes possible the synthesis of
femtosecond optical waveforms with precisely controlled shapes. The
apparatus consists of a pair of diffraction gratings and lenses as shown in the

image below.

grating grating

Figure 3.4 Zero-dispersion pulse compressor composed by a pair of gratings and a pair of
lenses placed in a 4-f line configuration. The focal plane between the two lenses is the Fourier

transform plane.
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The first grating and lens spatially disperse the individual optical frequency
components contained within an incident pulse. The second lens and grating
are placed in that order and with a distance 2f and 3f from the first lens
respectively. All the frequencies are recombined spatially in a single
collimated beam by the 2 lens and grating. The focal plane between the two
lenses is called the Fourier transform plane, and it is where the optical
spectral components obtain the maximal spatial separation between them.
This way, when a modulation mask is placed at the focal plane it is possible to
apply a different modulation to each component. If the setup is aligned
perfectly in the 4f configuration, the output pulse should be identical to the
input pulse if no modulation device is placed in the Fourier transform plane.
In other words the grating and lens system would be free of dispersion in
such configuration, hence the name “zero-dispersion pulse compressor”. The
tirst lens performs a spatial Fourier transform between the plane of the first
grating and the masking plane and the second lens perform a second Fourier
transform from the masking plane to the plane of the second grating. The
total effect of these two consecutive Fourier transforms is that the input pulse
is unchanged in travelling through the system if no pulse shaping mask is
present. Note that, if the output grating is moved closer or further from the
second lens, the optical setup can provide a positive or negative group

velocity dispersion of the output pulse, respectively.

In our experiments we first used a twin prism compressor setup as it was able
to provide a substantial negative dispersion while maintaining the power
level of the beam intact. We later replaced the twin prism compressor with a
full shaping system composed of a zero-dispersion compressor and
modulation mask. This gave us the possibility to achieve a programmable
control of both the spectral amplitude and phase of our pulses. With use of a

computer we could thus precisely generate arbitrarily complex pulse shapes.
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For the zero-dispersion pulse compressor we used two holographic gratings
and two cylindrical lenses, and it was used in combination to a liquid crystal
Spatial Light Modulator device (SLM) placed in the Fourier plane. This was a
significant upgrade to the capacity of the setup, as we will see in Chapter 4. It
is necessary first to present the device and the calibration procedure we

followed.

3.2 Programmable pulse shaping with use of Spatial Light Modulators

Our pulse shaping setup consists of a liquid crystal SLM device placed in the
Fourier plane of a zero-dispersion pulse compressor setup, in order to
provide modulation on each individual frequency component of a broadband
pulse [63]. It can (depending on the particular model) perform both
amplitude and phase modulation separately on each spectral component
contained in an ultrashort pulse, easily and accessibly through a simple
computer program.

However, for one to appreciate this brilliant new device I need to mention
that this was not the first available masking technology in the market, but
early femtosecond shaping experiments had to settle for fixed spatial masks
produced using microlithography [64]. Even though the pulse shaping quality
that prefabricated masks provided was admittedly good, their limitations of
not easily giving continuous phase variations and that a new mask had to be
fabricated for each experiment, along with the inability to reprogram pulse
shapes in real time, and the difficulty of achieving gray-level phase control,
demanded that the scientific community made a leap in a direction for a

better technology.
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Below, I will be describing the procedure of preparing a pulse shaping setup
for an experiment, starting from the choice of optics for the zero-dispersion
compressor, explanation of the function of an SLM and how to calibrate it. In
the last chapter of the thesis, you can find a description of the alignment
procedure of the pulse shaping setup and how we managed to integrate it in

the experiment.

3.2.1 How to choose the correct optics for your “zero-dispersion compressor”

In order to provide proper pulse shaping of either phase or amplitude, it is
necessary first to disperse the various frequency components spatially. This
way each pixel of the liquid crystal mask is responsible for the shaping of the
particular component impinging on it. In order to do that, building the “zero-
dispersion pulse compressor or stretcher” is a first essential step of the
procedure.

Depending on the particular requisites for each different experiment, that is in
practical terms how much spatial dispersion would be necessary, what is the
bandwidth available, or how much space there would be for use on the
optical table to setup the apparatus, one needs to make correct choice of the
optics. The dispersions translates into the type and groove density for the
gratings and the type and focal length for the lenses, in terms of the physical
parameters of the optics, that once they are chosen and combined the amount
of spatial dispersion of the broadband pulse is fixed.

Diffraction gratings, rather than prisms, are generally used in dispersing laser
pulses of modest bandwidths since prisms are typically unable to provide
sufficient spectral dispersion without introducing unwanted aberrations to
the beam. As already noted in chapter 2, prisms are a wiser choice in cases
where the overall efficiency is more important. Holographic gratings, rather

than ruled ones, are preferred since they lack the defects, such as ghosts, that
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ruled gratings are unable to avoid. With a holographic grating, the best
efficiency can be achieved when the incident light is polarized perpendicular
to the grating grooves. In order to have the light dispersed horizontally
within the plane of the laser table, which is the usual case, the grating grooves
need to be vertically oriented to disperse a horizontally polarized input laser
pulse. The grating is chosen to have a high enough groove density such that
when used near the Littrow angle, mostly one diffraction order (in addition to
the zero order beam) is produced. This is useful since it means the output
light is divided amongst the fewest possible output beams. A slightly higher
or lower groove density would also work, and may be desirable depending
on other design considerations (such as the size of the LC SLM).

Given the angular dispersion provided by the diffraction grating, the lens
focal length should be determined based on the desired dispersion of the laser
spectral components. When the laser pulses are very short, it may be best to
use reflective optics in order to avoid material dispersion due to propagation
through glass. In such cases, spherical mirrors (designed for near-normal
incidence) are most often used, but the design considerations are similar.
Assuming a Gaussian input laser spectrum, the full-width at half maximum
(FWHM) of the laser spectrum should be fit to about one third of the width of
the LC SLM in order to reach a compromise between avoiding clipping of the
laser spectrum at the low and high frequency edges of the LC SLM and
achieving the lowest Av per pixel (i.e. a large time window). Since an 80 fs
laser pulse centred at 800 nm has a spectral bandwidth of about 35 THz
(approximately 12 nm), the lens should be chosen such that approximately
105 THz span the LC SLM. We used a 7.5 cm lens with the input beam at 55.5°
relative to the surface normal such that 91.5 THz spanned the LC SLM (128
pixels, with 100 um/pixel) and holographic gratings of d=1/1800 mm'.

Once the grating and lens have been chosen, the dispersion is fixed, although

the spectral resolution is not. This is because the spectral resolution is also a
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function of the input beam diameter. Use of a large input beam increases the
spectral resolution relative to a small input beam, since the spectral resolution

is determined by the spot size of a given spectral component.

By spectral resolution we imply the amount of A impinging on a single pixel.

So this also depends on the spot size of each individual component:

cosB, fA,

Ax = 21n(2)c030 TTAx
d in

(3.3)

where Ax, is the width of the input beam, 6, the angle of incidence and 6,
the angle of diffraction (see image below).

Generally, it is best to use an input beam size, which yields a spot size
(FWHM) at the focal plane of approximately one LC SLM pixel width. In our

case the input beam FWHM was 5 mm.
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Figure 3.5 Half a 4f line of a zero-dispersion pulse compressor: The Fourier plane is situated
in the back focal plane of the lens, f is the focal length, g(X ) is the spatial extension of a
given frequency component, 8, is the angle of incidence, d is the grating period, 8, is the

angle of diffraction [59].

A =d(sin6, +sin6,) (3.4)
x=ftan[6,(1)-6,(2,)] (3.5)
Af

X, =aw, , where a= (3.6)

2redcosO,
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From Equation (3.5), if one sets x=L/2, where L is the length of the SLM
window (in our case L=12.8 mm), it is then possible to calculate the angle of
dispersion that would make the most of the SLM capacity, for a specific focal
length and then from that recover how much would be the necessary groove
density in order to choose the grating. The calculation can be reversed for a
given groove density of a grating looking for the right lens f to have the

desired dispersion.

3.2.3 Spatial Light Modulator

The Spatial Light Modulator, is a computer controlled device, able to provide
spatially varying modulation on a beam of light. We have already reviewed
the function of an SLM device and its mathematical representation in chapter
2.4 Here I will be focusing on the experimental point of view of the device,
that is a description of its manufacture, in order to better understand how it

works, with a description of calibration of the device to follow.

Each pixel of a liquid crystal spatial light modulator (LC-SLM) [57], is a
programmable waveplate controlled by voltage. A LC-SLM consists of a thin
layer of nematic liquid crystal placed between two glass substrates. One
substrate is covered with transparent ITO (indium tin oxide) electrodes,
which allow the application of independent voltages to each pixel. The
nematic liquid crystals are small rods that are oriented parallel to the
substrate when no voltage is applied. Their anchorage direction is fixed by
brushing off the electrodes. When a voltage is applied, the nematic molecules
tend to align along the field. This modifies the birefringence of the medium,
leading to a modification of the optical path for light polarized along the

anchorage direction.
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Figure 3.6 Femtosecond pulse shaper. A zero-dispersion compressor in 4f configuration
contains a liquid-crystal (LC) spatial light modulator in its Fourier plane. By adjusting the
voltages of the individual LC pixels, the liquid-crystal molecules reorient themselves partially
along the direction of the electric field. This leads to a change in refractive index and therefore
to a phase modulation which can be independently controlled for the different wavelength
components. The half-wave plates (A/2) are used to rotate the linear input polarization from x

to y and back to x [68].

To achieve amplitude and phase shaping, two spatial light modulators are
needed with the anchorage direction at +45° and -45° with respect to the
horizontal axis. By placing horizontal polarizers at both the input and output
of the 4f - line, the complex transfer function of one particular pixel k can be

written as:

o220 01 (o)) -

where @, is the frequency impinging on pixel k&, ¢ and ¢, correspond

respectively to the phase introduced by the first and second LC-SLM.
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Our device is a commercially available liquid crystal from Cri, Model: SLM -
128-D-VM [69], and it provides independent control of each element in a
linear array of 128 pixels, in the visible range of wavelengths (VM). The arrays
are 5 mm high, and the pitch is 100 um, resulting in total array apertures of

12.8 mm.
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Figure 3.7 Schematic diagram of a 128-element (pixels) liquid crystal phase modulator array.

Pixel pitch is 100 um, interpixel gap is 3 um, pixel height is 5 mm and thickness is 9 um.

It is a dual-array modulator - consists of two precisely aligned modulators,
providing a unique and convenient method for simultaneous modulation of
both phase and amplitude at each pixel. The dual mask configuration can
operate either as a phase and amplitude of specifically polarized incident
light or as simply a phase modulator of arbitrarily polarized incident light.
The optics the device is equipped with, are optimized to work in the
following wavelength range: 488 nm to 900 nm. It is currently in the
transmissive mode, with two polarizers at the input and output window of
the crystal allowing only horizontally polarized light to pass. (It gives also the
possibility to function in the reflective mode as well by replacing the output
polarizer with a mirror and therefore providing double modulation). It

communicates via a USB interface, and can be controlled with a set of ASCII
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commands, software drivers for C++, MATLAB and LabVIEW or Windows

graphical user interface.

The SLM maintains a table of drive levels in its memory, which specify the
drive at each pixel in the liquid crystal array. The drive level is a number from
0 to 4095, resulting in a drive signal of

V=V,

oo X D, 14095 (3.8)
where V, is the voltage at pixel element i, and D, is the digital drive level

corresponding to that element and V,, is the reference voltage, 10.000 V.

ef

3.2.3 Calibrating the pulse shaping setup

1¢t calibration: Phase vs. Voltage

The first step is the careful alignment of the 4f-line of our dispersive optics,
with an optimized control of the input/output condition of our pulse duration
(see chapter 4.2 for details). Thereupon, one can proceed to the second
important step of the preparation of the setup before inserting it in the
experiment, which would be the calibration of the SLM.

The phase response of each SLM, is not precisely known, so one needs to

calibrate the introduced phase ¢(w,U) as a function of both voltage U and

frequency ® [59,63,64]. In principle each pixel should be calibrated
independently and at the specific frequency that impinges on it. In practice
however, the process is much simpler. First, the LC-SLM is usually
homogenous enough to use a unique voltage calibration for all the pixels.

Second, from the voltage calibration at one specific frequency w,,, we can

cal ’

derive the voltage calibration for any frequency by a simple multiplication to

a constant taken from the diagram in the user manual, implicating the
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modulation produced at different wavelengths by the liquid crystal (that is
the change in index of refraction).
For a frequency o, the pixel acts as a waveplate whose phase ¢ is given by

_oAn(o,U)L
C

¢(w,U) (3.9)

where An(®,U) is the index difference between the slow and the fast axes

(birefringence), U is the applied voltage and L is the thickness of the liquid
crystal layer.

The usual way to calibrate the phase is to place the mask between two
horizontal polarisers (in our case they are included inside the device),
illuminate with the monochromatic HeNe laser at A =633 nm, focus the beam
at a single pixel and measure the transmitted intensity /_, as a function of the
voltage U applied to all the pixels of the mask.

Another method we tried was with the pulsed femtosecond laser with
A =800 nm and AA =12 nm with use of a spectrometer. We apply the voltage
to all the pixels increasing step by step. Later, we compare the relative
intensity between the zero level and the level in question for all the
frequencies at the same time (for normalisation). The downside of this
method is the large fluctuation of the intensity levels of the spectrum due to
limited resolution of the spectrometer. This significantly decreased with the
use of a round paper rotating with high frequency in front of the multimode
fibre of our spectrometer, however not enough as the fluctuation was still
much higher than the actual change in the intensity caused by the difference

in voltage.

Following the same logic as before, we also tried to do the same calibration
with the pulsed femtosecond laser but only using the power meter instead of
the spectrometer, that is connected to a GPIB interface that sends the data to

the computer. The calibration was done in an automated way with use of a
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program registering the change of voltage with the transmitted power and
saving all the data directly to be elaborated. The procedure is repeated for
both masks of the SLM, after what the data are plotted first to obtain an
intensity (transmission) vs. levels (voltage) curve, which is then normalised.
Following that, the phase values are retrieved from the normalised intensity
as the sinusoidal form of the curve reveals the corresponding phase change
for each level (voltage). Their relationship is represented by the function of

the general form below:
T(co):sinz[@}:%[l—COS(qi(a),U))J (3.10)

Therefore, the phase versus levels curve is obtained by inverting the above

function, and plotting the phase ¢(w,U)as a function of the normalised

Intensity I (o).

The exact function that describes the phase ¢ -levels(voltage U ) curve is
unknown and in order to have a fit more precise, closer to the experimental
data, we selected the part of the curve that is of our interest (for phase change

from 0 to 27) and plotted with a linear function.

Furthermore, from the voltage calibration at the specific frequency ®,,, one
can derive the voltage calibration for any frequency:
o Aw,0
d(0.U)=¢(0,,.U) 0.0 (311)

o., Mn(o,,,0)

cal cal ®
This is all the information one needs to be able to programme the SLM,

together with the second calibration (pixel number to wavelength).
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Figure 3.8 Experimentally retrieved curve for normalised Intensity vs. Levels, for SLM

calibration
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Figure 3.9 Experimentally retrieved curve for Phase vs. Levels, for SLM calibration
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2nd calibration: Wavelength vs. Pixel number

The second calibration, i.e. mapping the different wavelengths vs. pixel
numbers is a much simpler one. Practically we measure the spectrum of the
output beam using a well-calibrated spectrometer. To pair the frequency ,
with the pixel k, we programme a zero transmission at the pixel k or a t-jump
between the pixels k and k+1. This leads to a hole in the spectrum that is easy
to spot. Otherwise, we alternatively program zero or maximum transmission
for adjacent pixels. In both cases, each different pixel number is thus assigned
a specific wavelength and by plotting one against the other, we find a
remarkably linear behaviour. Of course, this calibration is required each time

the alignment of the 4f-line is modified.
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Figure 3.10 Spectrum at the exit of the pulse shaper with pi (off) phase in 1, 2 and 3 pixels, for

the SLM calibration pixel number vs. wavelength.
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Figure 3.11 Spectrum at the exit of the pulse shaper with alternating 0(on) and pi (off) phase

pixels, for the SLM calibration pixel number vs. wavelength
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Figure 3.12 Wavelength vs. Pixel number experimentally retrieved linear curve from

calibration of the Spatial Light Modulator
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3.3 Pulse Diagnostics

After the advancement of lasers emitting ultrashort pulses, immediately the
need was created for another detection technique. Science has currently
arrived at the record of 80 attoseconds [70], the shortest laser pulse duration
ever created. Needless to emphasize the importance of precise knowledge of
the pulse properties for experiments and for further progress in the ultrashort
tield, and for the aim of decreasing even further the durations of creation,

control and measurement of laser pulses.

That is the story of how the FROG has been introduced, as an innovative
technique, designed for the complete characterisation of ultrashort pulses. Of
course, here I am not referring to the measly green four-legged we all know
by that name, and even though the trace may resemble as such, what FROG

really stands for, is Frequency Resolved Optical Gating [73].

Having introduced the representation of our pulse both in frequency and time
domain in chapter 2.1, that are equivalent, we are in a position to say what we
mean by “complete” characterisation of the pulse: our desire is to measure

E(t)[or E(w)] completely, that is to know both the intensity and phase

profile of the pulse in either frequency or time domain.

How hard is it or has it been to measure both intensity and phase in either
temporal or frequency domain? The answer is that it has been impossible
with conventional techniques. More specifically, with autocorrelation devices
we obtain the intensity I(¢) but no information about the phase is possible.

Below, I will be discussing further this technique and make a comparison to

the FROG.
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3.3.1 Previous techniques - The Autocorrelator

Before the appearance of the time-frequency methods, what was really the
workhorse in ultrafast optics was the Autocorrelation and Spectrometer, the
only available technology before the 80’s. The spectrometer operates in the

frequency domain and measures the spectrum I(®) but it is unable to obtain

information on the spectral phase. On the contrary in the time domain, the
problem was that these pulses are much shorter than the resolution of the
available measuring devices and so it made it impossible to measure intensity

1(r) or temporal phase ¢(7).

The solution to this problem came when someone had the clever idea, to use
no other but the pulse itself, since no event shorter than the pulses in question
was available. Autocorrelators first split the pulse into two replicas, after
what one of the two paths is variably delayed with respect to the other, and
spatially overlapping the two pulses in some instantaneously responding
nonlinear-optical medium, such as a second-harmonic-generation (SHG)

crystal.

The intensity of the SHG light produced from the crystal is proportional to the
product of the intensities of the two input pulses and therefore depends on
the relative delay between the two pulses. Second-harmonic light is only
generated when the two pulse replicas overlap in time; from this it is possible

to obtain a measure of the pulse length.

The SHG signal light of twice the frequency of the input light with a field
envelope given by:
Eg;(1,7)<E(1)E(t—7) (3.12)

where 7 is the delay.
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This field has an intensity that's proportional to the product of the intensities
of the two input pulses:
Ly (8,7) o< 1(2)1(1—7) (3.13)

Detectors are too slow to resolve this beam in time, so they'll measure:
A(e)' = [1(0)1(r=7)ar (3.14)

This is the intensity autocorrelation. The superscript (2) implies that it's a

second-order autocorrelation; third-order autocorrelations are possible, too.
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Figure 3.13 Experimental layout for an intensity autocorrelator using second-harmonic
generation. A pulse is split into two, one is variably delayed with respect to the other, and the
two pulses are overlapped in an SHG crystal. The SHG pulse energy is measured vs. delay,
yielding the autocorrelation trace. Other nonlinear-optical effects, such as two-photon
fluorescence and two-photon absorption can also yield the autocorrelation, using similar

beam geometries.

Unfortunately, this measurement yields a smeared out version of I(z), and it

often hides structure. In addition, in order to obtain as little information as the
pulse length, a guess must be made as to the pulse shape, yielding a
multiplicative factor that relates the autocorrelation full width at half-

maximum to that of the pulse I(¢). This factor varies significantly for

different common shapes and this has resulted in an unfortunate temptation
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to choose an “optimistic” pulse shape, such as sech’(t), which yields a large

multiplicative factor and hence a shorter pulse length for a given measured

autocorrelation width.

In the case of a measurement of more complicated pulses the autocorrelation's
tendency to wash out structure in the intensity is most evident. In fact, for
complex pulses, it can be shown that, as the intensity increases in complexity,
the autocorrelation actually becomes simpler and approaches a simple shape
of a narrow spike on a pedestal, independent of the intensity structure.

The resulting conclusion is that autocorrelation trace is able to only yield
rough measures of intensity autocorrelation, without saying anything really

of the actual intensity structure or anything at all of the spectrum.

On the other hand, there is the "Interferometric Autocorrelation," which
involves placing an SHG crystal at the output of a Michelson interferometer,
yielding some information about the pulse phase. This certainly constitutes an
improvement with respect to conventional AC techniques but there is no way
to extract the full pulse intensity and phase from it, and, worse, very different
pulses (even pulses with very different pulse lengths) can have very similar

interferometric autocorrelations.

Thus, a pulse intensity shape and phase must typically be assumed when
using any type of autocorrelation. And the resulting pulse length will depend
sensitively on the shape chosen. Worse, in view of these issues, it generally
isn't possible to sense from an autocorrelation when other pulse distortions
(such as spatio-temporal distortions like spatial chirp or pulse-front tilt) or

systematic errors are present. Additionally the presence of systematic error -
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due to misalignment for example- may be present and judgement of the
universality of the measurement is difficult.
As a result, autocorrelation is no longer an acceptable measure of most

ultrashort pulses.

3.3.2 The F.R.0.G.

It can be shown that the problem of retrieving the pulse intensity from the
intensity autocorrelation is equivalent to a mathematical problem called the
one-dimensional phase-retrieval problem, which is the attempt to retrieve the
Fourier-transform phase for a function when only the Fourier-transform
magnitude is available. This problem is unsolvable because typically many
solutions ("ambiguities") exist, and it isn't possible to determine which is the
correct one. The solution had to come from mathematics: one dimensional
phase retrieval fails because polynomials of one variable can always be
factored. But two-dimensional phase retrieval succeeds because polynomials
of two variables cannot. This is exactly the logic behind the operation of the
FROG: the mathematics that it uses yields a well-behaved and well-posed
two-dimensional phase-retrieval problem, whereas traditional autocorrelation
involves a highly ill-posed one-dimensional phase-retrieval problem. This
measurement problem was solved in 1991 using a technique called frequency
resolved optical gating, which generates a spectrogram of the pulse by
measuring the autocorrelator-generated second-harmonic spectrum as a

function of the pulse delay [73].
From a practical point of view, FROG does not require a shorter event than

the pulse because short-time behaviour is resolved in the frequency domain

through FROG's spectral measurements.
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Frequency-Resolved Optical Gating (FROG) involves operating in a hybrid
domain: the time-frequency domain. Measurements in the time-frequency
domain involve both temporal and frequency resolution simultaneously. A
well-known example of such a measurement is the musical score, which is a
plot of a sound wave's short-time spectrum vs. time. Specifically, this involves
breaking the sound wave up into short pieces and plotting each piece's
spectrum (vertically) as a function of time (horizontally). So the musical score
is a function of time as well as frequency, it graphically shows the waveform's
instantaneous frequency vs. time, and, even better, it has additional

information on the top indicating the approximate intensity vs. time.

A mathematically rigorous version of the musical score is the spectrogram:

2

z (0.7)= J:E(T)g(t—f)exp(—ia)t)dt (3.15)

where g(r—7) is a variable-delay gate function. How do we measure a

spectrogram of light? We use FROG!

It's easy to make FROG measurements of even the shortest pulses, and it
robustly yields the complete intensity and phase vs. time. FROG can measure
even complex pulses and it has been used to measure a wide range of pulses

from the mid-IR to the extreme UV.
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Figure 3.14 Experimental layout for a Frequency Resolved Optical Gating device, using
second-harmonic generation. A pulse is split into two, one is variably delayed with respect to
the other, and the two pulses are overlapped in an SHG crystal. Differently from the
Autocorrelator, the SHG pulse energy is measured vs. delay and frequency, using a
spectrometer as a detector. It yields the complete intensity and phase vs time, for even

complex pulses and for even very short durations.

There are several types of FROG with different beam geometries and traces
such as the polarization-gate FROG, the self-diffraction FROG, the transient
grating FROG, the second harmonic generation frog, and the third harmonic

generation FROG.

In our experiment we use a second-harmonic generation FROG that has the
main advantage of its high sensitivity: it involves a second-order nonlinearity,
while the other FROG variations use third-order optical nonlinearities, which
are much weaker. As a result, for a given amount of input pulse energy, SHG
FROG will yield more signal pulse energy.

The main disadvantages of SHG FROG are that unlike the previously

mentioned third-order versions of FROG, it has an unintuitive trace that is
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symmetrical with respect to delay, and as a result, it has an ambiguity in the

direction of time. The pulse E(¢), and its time-reversed replica, E(-t), both

yield the same SHG FROG trace. Thus, when an SHG FROG trace is
measured and the phase retrieval run on it, it’s possible that the actual pulse
is the time-reversed version of the retrieved pulse.

Perhaps the best feature of FROG is its over-determination of the pulse: itis a
2D array of points even though the pulse is only 1D. As a result, agreement
between the measured and retrieved traces tells us that the measurement was
made well and the pulses (if the measurement averaged over many of them)

were stable.

3.3.3 FROG alignment and calibration

In our Lab we have a second-harmonic-generation based FROG device

(FROG-Scan, MesaPhotonics [74]).
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Figure 3.15 Beam diagram of FROG Scan. The input beam enters on the left though the
external iris and passes to the beam splitter and the servo stage. The beam that does not hit
the servo, hits another beam splitter that allows some of the beam to pass through a second

alignment iris.
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The first thing to do is making sure that the beam is aligned and that its
polarisation is horizontal. The beam has to be perfectly centred in the two
irises when they are closed. On the computer program VideoFROGScan, we

subtract the background and check if there is a signal.

In order to see a FROG signal, both beams (the two output beams of the beam
splitter) must hit the same point on the SHG crystal at the same time. The
diffraction effect can be indicative of the spatial overlap and the temporal
overlap optimisation can be done with the translation stage. In case there is
no signal to begin with, one should increase the integration time, this way
increasing the signal to noise ratio, and adjust very finely the beam crossing
on the SHG crystal. It is easy to saturate the signal, so reducing the input

power may be necessary.

Once this procedure is repeated sufficiently, one can start to scan the delay
between the two pulses. The range of time delays and wavelengths can be
adjusted and optimized for the measured FROG trace. By increasing the grid
size, larger time bandwidth products can be accommodated. Changing the
time spacing or using the scan range control, adjusts the time window. When
the time window increases, the spectral window decreases. If the pulse is so
chirped that the time window must be increased in order to capture the entire
temporal part, the spectral portion of the FROG trace may be clipped,
therefore the grid size will need to be increased. The general aim is to obtain a

clear trace without warning messages.

The selection of the background subtraction settings can be critical. If too
much background is present, retrievals will appear noisy. However, if too
much background is removed, the pulses will not be measured correctly and

unphysical time-bandwidth products can occur.
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Also important in this respect is the integration time of the acquisition: using
too short integration times can produce erroneous results due to the high
levels of noise. To check this, I performed FROG measurements of beams with

different chirp, for various integration times.

Below we see a graph of the second order coefficient b2 as a function of the
integration time of the FROG, for a slightly chirped pulse. We observe that it

converges to a steady value only for integration times longer than about 40000

ms.
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Figure 3.16 Experimentally retrieved curve for plotted quadratic coefficient with Integration

time of FROG, for an unmodulated LO.

In the graph below (figure 3.17) we observe again the plotted dispersion

coefficient b2 as a function of the integration time of the FROG but now our
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pulse is highly chirped thanks to our computer-controlled SLM device. Also
in this case we observe that convergence to a reliable value is only obtained

for sufficient integration times.
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Figure 3.17 Experimentally retrieved curve for plotted quadratic coefficient with Integration

time of FROG;, for a dispersed LO.
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CHAPTER 4

THE EXPERIMENT

Introduction
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Figure 4.1 Schematic view of the experimental concept. A quantum light state of an unknown
mode is characterised by means of Homodyne detection, that in order to be efficient needs to
have the two states, the unknown and the LO perfectly matched. For this reason the
Homodyne detection efficiency can be used as a fitness parameter, that tells us how well the
two modes are matched. For optimisation this is repeated in a loop scheme, where a
computer applies random profiles to the LO and the ones with the best efficiency reveal the

profile of the unknown mode of the state under analysis.

The idea behind our experiments is based on the fact that the homodyne
detection technique, in order to be efficient, requires the state under
investigation to be perfectly mode-matched to the reference homodyne field,
a strong coherent field, called the Local Oscillator (LO). Since the mode of the
state under investigation may be completely unknown, we decided to use the
experimentally measurable efficiency with which a given quantum state is
detected as a fitness parameter to optimize the shape of the LO such that it

optimally matches that of the investigated state. Once this optimization has
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been successfully completed, the mode of the fragile quantum state is
mapped onto that of the intense LO field, which can then be efficiently

characterized by standard techniques.

In what follows we will deal with the measurement of the spectrotemporal
mode of ultrashort single photon states generated by means of Spontaneous
Parametric Down Conversion (SPDC), by using a Genetic Algorithm (GA) for
the optimization of the LO mode. As already mentioned, for the Homodyne
Detection to work, the two modes -that of the single photon and that of the
strong coherent field- need to be perfectly matched in all degrees of freedom:
polarization, spatial and spectrotemporal profiles. With spatial mode-
matching carefully performed in advance and polarization matched using
half-wave plates and polarisers, we keep all the other degrees of freedom
fixed and just explore the spectrotemporal mode of our photons. To do this,
we incorporate a Spatial Light Modulator (SLM) device in the LO path, able to
perform amplitude and phase modulation for each individual wavelength
component contained in our broadband LO pulses, when placed at the
Fourier transform plane of a zero-dispersion pulse compressor. The GA
applies initially random spectrotemporal profiles to the LO. For every profile
applied, we obtain a value of the detection efficiency, which is then taken as
the criterion for how well the two modes (that of the single photon and that of
the LO) are matched. The algorithm proceeds through various loops of
optimization of the LO spectrotemporal mode profile until the algorithm’s
fithess parameter (the homodyne detection efficiency) has converged to a
steady maximum value. The LO profile corresponding to this maximized
efficiency best describes the profile of our unknown state and is therefore sent
to the diagnostic part of the experiment -in this case, the FROG device. As we
saw in chapter 3, this device allows a full description of our pulses, including

information on their spectral phase.
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With this adaptive technique in our hands, we are able to unfold the
unknown shape of any quantum state, without any prior information at hand,

as long as there is a fitness parameter at our disposal.

4.1 General description of the experimental setup and first version with
prism compressor

In the figure below we see a representation of the initial experimental setup.
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Figure 4.2 Initial experimental setup. Femtosecond-duration pulses at 800 nm and at a
repetition rate of 82 MHz from a mode- locked Ti:sapphire laser are split by a high-
transmission (HT-BS) beam splitter to serve as (i) the pump for spontaneous parametric
down-conversion in a 300 um-thick, type-I BBO crystal after frequency doubling in a BBO
crystal;, (ii) the local oscillator field for balanced homodyne detection (B.H.D.) after mixing
with the investigated states in 50% beam splitter. The LO spatial mode-matching is done
using a single-mode fibre (SMF) and a pair of prisms is used to pre-compensate the
dispersion caused by the SMF. F in the trigger, is a combination of spectral and spatial filters
constituted by a narrow filter of 1.5nm spectral width, by a Lens f=600 mm and single-
spatial-mode optical fibre directly connected to a single-photon counting module (APD). The
relative phase between the interfering signal and LO at the homodyne, is varied by a
piezoelectric transducer (not shown). There are additional optics and computer- controlled

optical delay lines to adjust the synchronization of the different pulses (not shown).
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In its first version, the experiment did not include a programmable pulse
shaper based on a SLM for changing the LO spectrotemporal profile, but only
made use of a relatively simple, but highly impractical, prism-based pulse

compressor.

Starting from the top right, we have a mode-locked Ti:Sa laser as the main
source of the apparatus, emitting 80 fs pulses at 800 nm with a repetition rate
of 82 MHz. The pulse train is frequency doubled to 400 nm by second
harmonic generation in a B-barium borate (BBO) crystal. The UV beam
(pump) is then focused to a waist of 60 um in another thin (300 pm) crystal
BBO crystal, where degenerate type I Spontaneous Parametric Down
Conversion (SPDC) occurs. Two twin photons are produced in this second
crystal, the first one -the signal- is led to a Homodyne detector, while the
second one —the idler- is used for heralding the presence of the first and is led
to an avalanche silicon photodiode (Perkin Elmer AQR-14) after being
spatially and spectrally filtered. The spectral filtering of the idler consists of
an interference filter (1.5 nm), while the spatial filtering is implemented using
a single-mode optical fibre and a lens of focal length 600mm. The usual pump
power before the crystal is about 100 mW which results in 3000 counts/s of

trigger count rate after the spectral and spatial filtering.

The signal photon is mixed at a 50:50 beam splitter with the local oscillator
(LO), which is an attenuated part of the initial laser beam obtained with a
high transmission beamsplitter at the exit of the laser. If necessary, the relative
phase between the LO and the investigated state can be changed by applying
a voltage to a piezo-electric crystal holding one of the steering mirrors. A
single-mode fibre is also placed in the path of the LO in order to obtain a
clean and perfectly well-defined spatial mode, which can be easily matched to

the spatial mode of the generated single photon by means of a combination of

86



lenses. Since the spatial beam quality of the LO has to be preserved for the
homodyne detection, the mode-cleaning fibre serves only at the ending part

of the path of the LO beam, after all the other optics.

In order to pre-compensate the positive dispersion of the LO pulses
introduced by the fibre, we use a double prism compressor setup placed just

before it.

Figure 4.3 Schematic view of the two-prism compressor that was used in the initial
experimental setup. Dispersing prisms from Newport, dimensions 25 mm and prism-distance

52 cm, material is SF10, a highly dispersive glass.

For alignment purposes and fine adjustment of the pulse synchronisation
between the signal and LO pulses, we use stimulated emission rather than
spontaneous. To do this, we inject a relatively intense seed pulse into the
trigger channel and significant stimulated emission results in the signal.
Using a translation stage we are able to synchronise with an accuracy of 0.1
um the arrival of the stimulated signal pulse and the LO at the beam splitter
and then we maximize the visibility of the resulting classical interference
fringes between these two coherent pulses. Because of the very narrow
spectral and spatial filtering on the idler path, the heralded single photons are
generated in a highly pure state in a signal mode closely mimicked by the

stimulated signal field [45]. Following that, we can conclude that the visibility
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of the fringes between the stimulated signal and the LO tells us how close the
matching is between the single photon and the LO mode beforehand, and so
it serves as a criterion whether we can proceed to the homodyne
measurements (a high visibility of the interference sets the ground for a good

homodyne detection efficiency).
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Figure 4.4 Experimental apparatus and conceptual alignment scheme. A part of the laser
emission is used as the seed field used for alignment purposes injected in the trigger channel.
The amplified signal beam, due to stimulated emission of PDC at the BBO, is then used for
the alignment of the interference at the BHD, where the measure of the visibility of the fringes

is the criterion of the matching between the interfering signal and LO.

At the homodyne [52-54], the two BS outputs are sent to two photodiodes
(Hamamatsu S3883, with active area 1.7 mm?2) connected to the positive and
negative inputs of a wide-bandwidth (about 100 MHz) amplifier, which
provides the difference (homodyne) signal between the two photocurrents on
a pulse-to-pulse basis. The high bandwidth allows a temporal resolution such
that it makes possible to distinguish the signal coming from consecutive

pulses (separated by 12 ns). This permits to associate a single event to a
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restricted temporal bin. The detector shows a linear response up to LO
powers of about 9 mW, and with a signal-to-noise ratio of about 12 dB when
the device is operated at the optimum LO power of 8 mW; the subtraction

efficiency is about 60dB at 82 MHz.

The signal is sent to a digital scope (Tektronix TDS-7104), with an analogue
bandwidth of 1 GHz, a sampling rate of 10° samples/s and a vertical
resolution of 8 bits. In order to reduce the dark count rate, the signal coming
from the SPCM is triggered in coincidence with the laser pulse train. This
reduces the effective count rate, but also the ratio between the “false” and

“true” events, which can be made lower than 1%.

Whenever a single-photon event occurs in the trigger channel, the scope
stores a frame corresponding to two consecutive LO pulses, the first one is
coincident with the trigger event, the second one contains information about
the vacuum state and can be used as a reference signal. Since the single-
photon state is invariant under rotation in the phase space (the marginal
distributions and sections of Wigner function are the same for all values of the
phase), the phase between LO and signal field is not controlled during the

acquisitions.

About 5000 frames can be stored in a sequence at a maximum rate of 160000
frames per second. With an average rate of trigger counts of about 3000 s,
this means that each sequence is acquired in a few seconds. Each sequence of
frames is then transferred to a personal computer where the areas of the
pulses are measured and their statistic distributions, corresponding to the
marginal distribution of the Wigner function, are analysed in quasi-real time.

From the acquired data it is possible to apply one of the reconstruction

algorithms to obtain the density matrix and the Wigner function of the
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detected state. In general, the state measured by homodyne detection in the
LO mode - y,,- is not pure, but rather a mixture of a single photon and

vacuum, whose density matrix can be expressed as :

Puas =M1y, (A[+(1=1)[0),, (O]

And its Wigner function corresponds in this case to the convolution of the
Wigner function of the single photon with that of the vacuum state.

For the purpose of the present analysis, it is not necessary to reconstruct the
full Wigner function of the state, but it is sufficient to compare the measured
quadrature distribution to the expected theoretical one for a single photon

observed with a global detection efficiency of 7 :

p(x,n) = \/%[1—77(1—%2 )}e‘b‘2

The n parameter can be easily extracted with a fit to experimental data and

thus provides the fitness parameter for any procedure aimed to optimize the

detection of our single photons.

Figure 4.5 Marginal quadrature of the smoothed Wigner function for different values of the

overall detection efficiency.
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The first task to tackle for my PhD was the optimization of the SPDC process
for the conditional generation of single-photon Fock states characterized by a
negative Wigner function. In order to increase the efficiency of this process I
have applied a new scheme in which the pump beam is tightly focused down
to a size of 60 um in order to exploit the large spatial bandwidth of the crystal
(we use a very short crystal) and two lenses of f=100mm are used before and
after the BBO crystal. The first lens is used to focus the UV pump beam at the
crystal position. The second lens collimates the single photons produced by
SPDC. In this way more idler light is coupled into the single-mode fibre, so
that the trigger and therefore the acquisition rate of the homodyne detector

are increased.

BBO crystal
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Figure 4.6 SPDC scheme, with focusing lens for the pump, and collimating lens for the single
photon after the crystal. Here we see the alignment scheme, with the seed beam in the trigger

channel, and the amplified light emitted due to stimulated PDC in the signal.

The collimation lens is also necessary for the alignment scheme, as the beam
resulting from the stimulated emission becomes rapidly divergent after the
crystal and makes it impossible even to track it down.

For the alignment procedure, we always start with measurement and
alignment of laser spectrum that should have a peak centred at A=802.7 nm

and AA=10 nm, as well as the UV output from the SHG. Then the UV serves as
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the pump for the PDC, so we start with its alighment in order to maximize the
SPDC counts in the trigger channel. Using a SMF and an APD, we find this
way the right direction for this channel, which then serves as a reference for

the entire alignment procedure.

When the system is completely misaligned, meaning there isn’t an even rough
indication on where the two conjugate (signal and idler) channels are, we
perform a basic alignment step, using a 3-hole mask system. This has 3 small
hole, with the left and the right at equal distances (1.5 cm) from the middle
one. Placing the mask at a distance of 57 cm before and after the crystal, we
are in this way choosing the direction for which the idler and the signal
beams form an angle of about 3°. We use the mask for an initial rough
alignment of the beams and of the detectors, and then we perform a finer
search around that area by scanning for the maximum SPDC counts. After the
seed beam along the idler/trigger direction has been finely adjusted, we make
use of a photodiode to find its best temporal overlap with the pump pulse by
looking for the appearance of an amplified pulse along the signal direction.
Once it is found, we keep the seed translation stage at that position and we

proceed to the alignment of the LO.

For the alignment of the homodyne detection system we need the best
overlap between the LO mode and that of the state that we aim to detect.
Therefore, we use the amplified signal to simulate the heralded single photon
assuming the two share the same spatiotemporal mode [45]. Our aim is thus
that of maximizing the visibility of the interference between the amplified and
the LO beam:s.

During the first year, the maximization of the overlap between the two beams
was done with the help of a cooled CCD camera (from DTA Scientific

Instruments, model Chroma C3 260) but, after we succeeded improving the

92



SPDC emission, the amplified beam was strong and collimated enough to use
a SMF fibre instead. The fibre approach is even more precise and less time-
consuming, with respect to using the camera that required the settings to be
frequently adjusted. Much more importantly, it gives an additional
information about the spectrotemporal matching of the two beams; in fact, by
acting as a spatial filter, it gives a value of fringe visibility that correlates
directly to the spectrotemporal degrees of freedom only, without
contributions from the spatial component of the modes. At a point when we
are feeling positive about the spectral overlap, we scan the temporal delay
between the two pulses with the LO translation stage. For the femtosecond
regime this delay can be very sensitive to changes (such as temperature,
wavelength, laser GVD alignment, mirror movements etc.), hence one has to
be thorough and for a long day’s work and measurements check it on a

regular basis.

Next step and the most indicative for the matching of the two beams, and
therefore the criterion whether we are ready for the homodyne
measurements, is to check the interference visibility without the SMF. We
remove the SMF and transfer the photodiode directly at the exit of the
homodyne BS to measure the maximum and minimum value of the intensity

of the interference fringes after subtracting the background.

I, -1,
Visibility (%) = F +Imax zf;m x100

background

We estimate that for a good over 85% visibility, a homodyne measurement is

worth to proceed.
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After setting the power of the LO at about 1 mW, we check the balancing of
the BS to be as close as it gets to 50% and the two mirrors aligned to maximize
the positive and minimize the negative signals of the two homodyne
photodiodes. We then set the power level of the LO at 8mW, block the seed
beam, switch on the APD to start the trigger acquisition. In order to acquire
the right signal from the homodyne detector, we also carefully adjust the
electronic delay between the homodyne signal and the trigger events. This is
only necessary the first time, or once something in the electronics has been
changed. To do that, we first roughly estimate the delay of each part
separately (according to length of cables etc) for both homodyne and trigger

channel and then scan for a range from -20ns to 20 ns around that value.

First measurements of the single photons generated in our setup, once they
were successfully located within the scan for the electronic delay,

demonstrated a 15% detection efficiency for a start.

In order to improve this, we went through a careful round of checks of the
experimental parameters. For example, we checked that the long trigger fibre
did not cause any negative effect on the homodyne efficiency. However, we
found that there were other variables that did make a significant difference.
One was the correct balancing of the light into the two homodyne
photodiodes, obtained by moving the two focusing lenses in front of the
detectors. Adjusting that brought an improvement of the detection efficiency

from 15% to 39%.

Another important parameter to control was the degree of spatial filtering of
the trigger channel, which could be adjusted by using lenses of the

appropriate focal length: starting with a lens of =200 mm before the trigger
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fibre we got an efficiency of 34%, with a lens of f~=300mm the efficiency

increased to 42% and to a further 45.7% for a lens of ~500mm.

We also tested alternative photodiodes for ones with a better quantum
efficiency, that is better than 92%, but this was inconclusive as there was no

other photodiode with a clear superior efficiency.

At this point the setup was ready and working for the big changes that would
turn it into something more than a static detection scheme, as the dispersion
compensation capacity with the double-prism configuration was fairly
restricted. The latter had to go and make space to the pulse modulation setup,
that consisted of the zero-dispersion compressor and the SLM. This change
would greatly upgrade the setup, as the double-prism was only able to
partially compensate the fibre dispersion and not at all practical in use. For
any minor change one had to estimate and measure numerous times for the
alignment of the prisms, and then this would always turn out to be
tremendously time-consuming without even being sure any direction change
was for the better. Only having to relocate the interference fringes and realign
a big part of the setup from scratch, every time we touched the prisms was

enough evidence of the inefficiency of the setup in its current state.
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4.2 Shaping the LO with a pulse shaper and a Genetic Algorithm

The new configuration offered undeniable advantages in that concern. We

would be able to control electronically the phase and amplitude of each

individual frequency component of our LO pulses. Before inserting the pulse

modulation setup into the path of the LO beam, we had first to calibrate it

(see chapter 3.2.3) and align it as I will describe below.

Aligning the pulse shaping setup
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Figure 4.7 Zero-dispersion compressor and modulator. Grating 1 and 2 are the holographic

gratings d=1/1800 mm-!. Cylindrical Lenses 1 and 2 of f= 75 mm. SLM is the liquid crystal

spatial light modulator placed in the Fourier-transform plane.

For the alignment of the 1¢ grating we followed the procedure described

below:
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1) We set the angle of incidence as close as possible to the diffracted beam
(in order to avoid aberrations one should stay close to the Littrow
angle ~46°). That is as much as the mechanical mounting allows as well
as the focal length of the lenses in question (f=75 mm) which limits the

space and we read the angle of the goniometer 106°.



2) We rotate the grating in order to set the incidence beam normal to the
surface of the grating and read the indication of the goniometer of the
1¢t grating. That would be the value of the normal (i.e. 50,5°). Then we
rotate back to 106°. We knew then that the real value of the incidence
angle 6, =106°—50.5°=55.5°.

3) We calculated the diffraction angle 6, = 38° (Equation 3.4 gives the

grating equation, for first order of diffraction m=1 and the equation

becomes A =d(sin6, +sin6,)).
4) We set this as the diffraction angle for the 2™ grating 6, =6, =38°.

5) We repeated step 2 for the 2" grating. Normal is at 87°, therefore we
needed to rotate by 38° therefore the angle that we read on the mount

should be 87°-38°=49°.

The two cylindrical lenses are placed on a translation stage to make
adjustment of the distance lens-grating which highly affects the dispersion. To
align the cylindrical lenses we used a narrow-band filter AA =1.4nm, which
we aligned in order to let pass the central wavelength A =801.5nm of our
spectrum. This was necessary because the beam after being angularly
dispersed by the first grating, gave the spot size the shape of a highly
unbalanced ellipse (one axis much bigger than the other) rather than a circle.
With the narrow-band filter and with two irises we only saw a spot (the beam
is not spread in the form of a line because of the filter) and this way we align
the lenses looking at the back reflections, the best criterion for the finest lens

alignment.
The half-wave plate serves for altering the laser’s vertical initial polarisation

because efficiency of the gratings is maximum for horizontal polarisation and

also the transmissivity of the mask is maximum for horizontal light. This is
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something to do with the construction of the SLM, as the two polarisers at the
input-output windows of the device impose a horizontally polarised light.
The polarisation is switched again before the beam splitter for the homodyne

detection, in order to match the vertical polarisation of the single photon.

Two main things have to be checked for a proper alignment of a zero-
dispersion pulse compressor: the first is to have the same spectrum and pulse
duration at the input and output of the setup, which as mentioned above is
very sensitive to the right distance between the two lenses and the gratings.
The other thing is the shape of the spot at some distance away at the output of
the setup. An “ugly” spot shape would be an indication of the incorrect
distance of the second grating, meaning that the dispersed frequencies are not

properly recombined.

To check the alignment we tried moving the second grating towards and
further away from the lens observing the shape and the duration of the pulse,
as well as moving both lenses together (in order to keep their distance fixed —
with the help of the micrometre stages), and in both cases the pulse was
becoming broader. Then, moving only the second lens, first towards the
second grating the pulse was becoming shorter, whereas moving the second

lens away from the second grating the pulse was becoming broader.

We also found that setting the correct angle of the 2" grating is a very critical
step. For its alignment, we set it first to the theoretically calculated angle (see
above), and later we rotate it slightly while looking at the FWHM duration of

the autocorrelator signal for fine adjustments.

There was only one more step before moving forward: to calculate the path

difference that would be imposed on the LO by the introduction of the
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shaper, in order to synchronise the arrival of the LO pulse at the homodyne
BS to the single photon pulse again. This was a rather difficult task but several
rearrangements on the optical table and large scans of the LO delay line
allowed us to recover the interference fringes between the LO pulse and the

alignment amplified one.

The other thing we had to work on, was a mode-matching scheme to couple
again the LO light into the SMF, as the spatial mode coming from the SLM
and entering the fibre was now different. Note that the final LO power level is
very important for efficient implementation of homodyne detection

measurements —it has to be at least 8 mW before the homodyne BS.

In the meantime we changed other things in the setup, like the SHG crystal
(replaced a BBO of length 1=0.3mm to a longer one 1=0.6 mm) because we
noticed damage on it, and the cube homodyne BS (Newport 05BC16NP.7) to a
plane ultrafast one (Newport 10RQO0UB.2), more suitable for a femtosecond
regime experiment. We also calibrated it, carefully measuring the splitting

ratio as a function of the angle of incidence.

By only imposing a quadratic spectral phase with the mask to compensate the
dispersion caused by the fibre, we were able to increase the visibility of
interference fringes (as seen after with a photodiode after a SMF) between the
LO and the amplified reference pulses up to 97-98%. The visibility without
the SMF was a promising 90% and this allowed us to start testing the
homodyne detection of our ultrashort single photons. After some re-
alignments and improvements the homodyne efficiency reached over 55%,
which we found by also manually scanning for the optimum quadratic and

linear (corresponding to a temporal delay) spectral phase in the SLM.
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Since this was the maximum efficiency we could get out of the homodyne
detector, we were ready to test the next phase of the experiment, the use of a

Genetic Algorithm (GA) to optimize the LO spectrotemporal mode.

The evolutionary or genetic algorithm is a population-based optimisation
algorithm [77-79]. It is inspired by biological evolution to evolve a population,
based on tools such as reproduction, mutation, recombination and selection.
Candidate solutions or profiles to the optimisation problem play the role of
individuals in a population, and a fitness function determined by the
environment selects which of the individuals can survive and progress to the

next generation.

This is the idea we used also for our detection scheme, as we have a computer
controlled modulation double-mask system, where we can arbitrarily control
the spectrotemporal degrees of freedom of the LO pulses, and the homodyne

detection efficiency as the fitness parameter.

In general, we first generate an initial population of random voltage profiles
(the individuals). Each individual is sequentially applied to the SLM, thus
shaping the LO pulse according to its particular configuration of voltage
levels (the genes). Each shaped LO pulse is used for the homodyne detection
of the single photon and the observed value of efficiency n is assigned as the
titness parameter of that particular i-th individual. The voltage sequences of
the best individuals are then cloned and also used to create the individuals of

the next generation by means of cross-overs and mutations.
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Figure 4.8 Scheme of the genetic algorithm used to match the LO spectrotemporal shape to
that of the generated single photons. It starts with a set of a random profiles —a population-
that are applied to the LO, out of which the ones with the good fitness are selected. Those are
the then cloned, mutated and made part of cross over profiles, to form the new population.
The ones that result a bad fitness are sent to the dump. This procedure is repeated iteratively
for a number of populations until convergence is reached, which means the fitness parameter

—in our case the homodyne efficiency- has reached a maximum value.

It is actually unnecessary (and realistically impossible) to use the full
parameter space (of the order of 1000*1* ~ 107%® possible pixel-voltage
configurations) allowed by the SLM to optimize the LO. If the
spectrotemporal shape of the investigated quantum states is not expected to
be too complicated, as in this case, a much smaller parameter space can be
safely considered. This can be done either by decimation and (linear or spline)
interpolation of the pixel voltages, or by imposing some simple polynomial
form for the amplitude and phase profiles. In these cases, the number of free

parameters (the genes of each individual) in the adaptive algorithm is
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substantially reduced and, depending on their number and on the number of
individuals in the population, a good convergence can be typically reached
after a few tens of generations. In the case of simple phase- or amplitude-only
spectral modulations, a careful preliminary calibration of the SLM is required
in order to fix the voltage profile of one mask according to that determined by
the algorithm for the other mask. On the other hand, if both the amplitude
and phase are to be optimized, we do not need to impose any restriction on
the values of the SLM voltages, and we let the genes of both masks evolve
freely in the algorithm, starting from a completely random initial

configuration.

The algorithm depends on several parameters determining population
features, cross-over and mutation procedures, genome length, etc.. The
measurement effectiveness can be improved if these parameters are properly
adjusted according to the particular experimental features. From a typical
population of 21 individuals, we usually derive 3 clones (the parents), 6
offspring, and 12 mutations that constitute the elements for each new
generation. Offspring is obtained by crossing the parent chromosomes in
multiple points. Gene by gene mutations are performed on the parent genes
with a 50% probability. The gene value is changed by a quantity picked from
a Gaussian distribution with an initial standard deviation of about 1/6 of the
total voltage range. The distribution width is then continuously adjusted
depending on the ratio between successful and total mutations. The initial
number of genes is typically 5 (for a phase- or amplitude-only modulation) or
10 (for a complete amplitude/phase optimization), but a finer control of the
fithess can be achieved by increasing the gene number during the
optimization. Also in the case of the polynomial method, 5 parameters are
normally used, i.e. the central frequency and up to the fourth power of the

frequency expansion of the spectral phase or amplitude.
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Obviously, since the fitness estimation is based on the extraction of statistical
information from many homodyne measurements, one has to rely on a large
supply of identical single photons for the adaptive procedure to work
properly. If the experimental conditions fluctuate too rapidly, it is actually
impossible for the system to work, and convergence is never reached.
Nevertheless, the adaptive algorithm is intrinsically able to adapt to slow
changes: for example, we have clearly observed that it follows the slow
temporal drifts between the single photons and the LO occurring during long

overnight acquisitions.
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Figure 4.9 Typical evolution of the fitness parameter (the total homodyne efficiency 1) across
several generations towards convergence to the optimal shape. The black curve corresponds
to the different individuals, while the red one is the average efficiency for each generation.
Starting from average initial values smaller than 10% for the fitness of the individuals in the
first generation, we observe a typically rapid increase of the efficiency over the next few
generations followed by a slower adjustment toward the optimum shape. Convergence is
obtained already after about 30-40 generations. Here a slow decay is also observed, probably
due to deteriorating spatial mode-matching and decreasing laser power during the long
(about 14 hours) measurement run. The sudden, isolated, drops in the efficiency curve are

due to the appearance of “bad” random mutations.
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4.3 Experimental Results

4.3.1 Unmodulated single photon

When the single photons generated by our experimental setup are not
modulated in any way, we expect their spectrotemporal mode to be that of an
almost Fourier transform limited pulse. Accordingly, the spectrotemporal
shape of the LO that optimizes homodyne detection efficiency, should be
close to a transform limited pulse, therefore with an almost flat spectral shape

indicating no dispersion.
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Figure 4.10 Experimental setup for measurement of the unmodulated single photon using the
Genetic Algorithm. The LO spatial mode-matching is done using a single-mode fibre (SMF)
with a combination of lenses. A pulse shaper has replaced the prism compressor for pre-
compensation of the dispersion caused by the SMF, as well as for the spectrotemporal mode
matching. The spectrotemporal degrees of freedom are no longer fixed, and they are used as
free parameters for the Genetic Algorithm. The best spectrotemporal profiles the Algorithm
has retrieved are then sent to the Pulse Diagnostics, that is the FROG device. First test of the

setup was done for the unmodulated single photon state.
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Since the LO pulses pass through the 10 cm long single mode fibre for spatial
mode cleaning, the SLM roughly has to introduce an opposite quadratic
dispersion to pre-compensate this effect and send transform limited pulses to
the homodyne detector. As the FROG measurement is done after the SMF and
just before the homodyne detector, we expect this measurement to reveal the
true spectrotemporal shape of the unmodulated single photon, regardless of

the modulation imposed to the SLM.

Of course this is true if the pulses coming from the laser itself and used for the
LO and the SPDC pump are transform limited. This is not always the case and
a careful check of the laser performance has to be performed before any
measurement run. In some cases it happened that unexplainable chirps on the
measured single photon mode were finally traced back to an imperfect

compression of the pulses at the exit of our mode-locked laser.

An example of a typical result from a run of the GA on our unmodulated
single photons is reported below. In this case we run the GA for 60
generations while letting both the spectral phase and amplitude to vary

during the optimization.

We obtain a final detection efficiency of about 58%. The FROG measurement

of the best individual of the last population shows a pulse with an almost flat

spectral phase, indicating the absence of any significant frequency chirp.
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Figure 4.11 Experimental FROG trace (left panel) and reconstructed spectral intensity and
phase profile (right panel) for the optimal LO pulse matching the un-dispersed single

photons, after a full amplitude and phase optimization.

4.3.2 Dispersed single photon

In order to put the method to a more stringent test, we need to make use of
arbitrarily-shaped single-photon pulses. Differently from other recent
schemes [23,24] using “long” single photons produced by narrow-band
atomic samples, where electronic modulators and detectors can keep up with
the slow temporal evolution of the photon wavepacket, here both the
modulation and the detection stages have to use completely different

approaches due to the ultrashort duration of the wavepackets.
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Figure 4.12 Experimental setup for measurement of differently shaped single-photon states

shaping

using the Genetic Algorithm. In one case the single photon is shaped directly by 10 cm glass
block BK7 inserted in the signal path and it is therefore dispersed and temporally stretched,
and in the other the single photon inherits the characteristics of the pump through SPDC, that
is shaped by a Michelson interferometer. We tested the algorithm for two different
configurations of the Michelson interferometer, the spectrally narrow single photon and the

double peaked single photon.

We first decided to insert into the path of the pump a 10-cm-long block of BK7
glass, to temporally stretch the pump pulses and, consequently, the generated
single-photons. However, despite the fact that the visibility of the interference
was ranging around the usual values, the homodyne efficiency dropped
significantly (around 45% was the maximum efficiency the GA returned after
16 generations). The reason was that the prolonged pump pulse in this
condition was much longer than the trigger pulse selected by the 1 nm
bandwidth filter, and the purity of the heralded single photon was therefore
severely degraded.

To be able to perform this measurement we moved the BK7 glass and placed
it directly in the single photon path, so it wouldn't cause the purity to

degrade.
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We initially impose a simple phase-only polynomial modulation to the
spectrum of the LO. Here, it is the (few) coefficients of the polynomial
expansion that constitute the genes on which the evolutionary algorithm
operates. While the linear component of the spectral phase accommodates for
possible temporal delays between the single photon and the LO, the main
correction applied by the mask and visible in Figure 4.13, is in the quadratic
phase term, corresponding to the introduction of a linear frequency chirp in

the LO pulse.
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Figure 4.13 Experimental FROG trace (left panel) and reconstructed spectral intensity and
phase profile (right panel) for the optimal LO pulse matching a frequency-dispersed single-

photon after a phase-only optimization.

In the next run we let both the spectral phase and amplitude of the shaped LO
pulses vary in the adaptive algorithm. In this case a better efficiency is
reached, and we obtain the shape of Figure 4.14, which still presents the same
quadratic spectral phase, but a significantly different spectral intensity that, as

expected, is much more similar to that of the un-modulated single-photon.
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Figure 4.14 Experimental FROG trace (left panel) and reconstructed spectral intensity and
phase profile (right panel) for the optimal LO pulse matching a frequency-dispersed single-

photon after a full amplitude and phase optimization procedure.

The best detection efficiency obtained while measuring the dispersed single
photons with the optimally-shaped LO pulses reaches nopt = 60%, whereas
using a transform-limited LO pulse reduces it to less than 50%. If, instead of a
short glass block, one had propagated the single photons through the
dispersive transmission line constituted by a long optical fibre, the resulting
quantum state would have been essentially lost to a detection system not

taking these spectrotemporal modulations into account.

4.3.3 Shaping the single photon by modulating the pump pulse

More complex modulations on the profile of the single photon are obtained
by shaping the 400 nm pulses pumping the parametric down-conversion
crystal. Indeed, it was demonstrated that the single photon conditionally
generated in this way essentially inherits the spectral properties of the pump
if the filtering of the herald idler mode is sufficiently tight [45-48]. In this case,
we chose to place a Michelson interferometer (MI) in the path of the pump

pulses to the parametric crystal.
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Figure 4.15 Schematic view of a Michelson interferometer. Translation of one mirror of the
interferometer, changes the path of one arm of the interferometer which causes a delay
between the interfering pulses- as the delay increases the number of spectral peaks increases

too.

In order to introduce the Michelson interferometer, I will be briefly explaining
its function with the aid of the figure above. Pulsed light is sent to a beam
splitter, where it is separated into two equal components. Mirrors reflect the
light back to the beam splitter, where it is then recombined. One is a
translating mirror and provides the possibility to alter the path to the BS. The
two copies of the pulses then recombine with a variable delay t. What
happens next depends on the difference of paths taken by the two beams. If
they have both travelled exactly the same length, they will interfere with each
other constructively, but if the distance taken by the two beams is different, a
different kind of interference will take place.

Adjustment of the relative delay between the two pulses causes a sinusoidal
modulation of the spectrum with a period inversely proportional to the delay.
The mirror is mounted on a translation stage for coarse movements and on a
piezoelectric translator to finely adjust the relative phase between the two

interfering pulses.
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In order to roughly calibrate the delay of the MI with a pum precision, we
block one arm of the interferometer at a time and do a scan of seed stage
looking at the amplified pulse, and then subtract the results corresponding to

the two positions of maximum signal.

In our setup the MI was used in two different configurations for the purpose
of the pump shaping, placing either a peak or a valley of the sinusoidal

modulation in correspondence to the maximum of the pump spectral profile.

Spectrally narrow single photon

In the first case, the MI acts as a spectral filter for the pump, which translates
into a stretched temporal profile. These characteristics are then inherited by
the single photon. Below we report a typical result for a measurement of a
spectrally narrow single photon obtained with a MI delay of about 150 fs and

retrieved after running the GA for 126 generations.
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Figure 4.16 Experimental FROG trace (top panel), reconstructed spectral intensity and phase
profile (middle panel) and reconstructed temporal intensity (bottom panel) for the optimal
LO pulse matching a spectrally-narrow single-photon after a full amplitude and phase

optimization procedure.
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In these measurements our single photon is shown to acquire the expected
narrower spectrum with a flat spectral phase, and a prolonged duration of
FWHM in the range between 160-220 fs (depending on the delay imposed on
the interferometer), instead of 100 fs, the ordinary duration of an
unmodulated single photon. In the particular measurement of Figure 4.16, a
FWHM spectral width of 6.4 nm is observed, together with a corresponding
FWHM pulse duration of 180 fs.

Note that the same results are also obtained by manually inserting in the SLM
the parameters corresponding to the expected spectral modulation due to the

MI on the pump path.

Double-peaked single photon

For these measurements the Michelson interferometer is set in a condition
that causes a partial destructive interference in the region of temporal overlap
between the two outgoing pulses. This results in a double-peaked temporal
and spectral profile of the pump field. In more simplistic words we could say
that the MI “digs a hole” on the pump spectrum, which is later inherited by

the single photon through the process of SPDC.

Below we see a typical FROG results for the case of a double-peaked single
photon. In all cases the algorithm is able to retrieve the double peak structure
both in the spectral and the temporal profiles of the single photon. Also notice
the expected pi phase jump between the two spectral peaks, a result of all the

measurements we performed for this condition.
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Figure 4.17 Results of the best individual of a 100 generation run of the GA (the profile with
the best detection efficiency out of 100 x 21 individuals). We observe the expected m phase
jump in the centre of the spectrum. In this case we also find an additional quadratic phase
modulation that is likely connected to an observed slight change of the pump spatial mode.
Correspondingly, the maximum efficiency achieved with the evolutionary algorithm is

limited to about 45-48% in this condition.
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One interesting thing with these measurements was the following: In the
configuration where the MI induced a narrow single-peaked photon we had a
98% spectral visibility with the SMF, 91.5% visibility without, and a
homodyne efficiency of approximately 58%. In the case where the MI induced
the double-peaked configuration, the spectral visibility (with the SMF) was
still as high as 99%, but the overall visibility (without the SMF) dropped to
82% for no explicit reason. For this, the homodyne efficiency we measured in
the double-peaked situation could not overcome the 48%. Due to the fact that
the drop in the visibility takes place when the spatial mode-matching is
playing a role, we were forced to assume that the MI is somehow also
affecting the spatial profile of the pump, even though it is not normally
known to behave in such manner. To try and overcome the problem, we used
a pinhole-based spatial filter for the pump after the Michelson interferometer
but, despite the ensured better stability of the setup, this didn’t seem to
matter much for the visibility of the double-peak configuration. The result
was an improved homodyne efficiency of about 59.5% in the case of the
single-peaked configuration, whereas in the double-peaked case the
homodyne efficiency remained at 48% as the maximum. This was also the

best efficiency the GA returned at the end of a long-run acquisition.

4.3.4 Phase-coherent detection of a spectral single-photon qubit

Following the successful retrieval of the spectrally double-peaked single
photon with the genetic algorithm, we tried a different kind of experiment
using the same configuration of the MI. In this case, one can consider the
single photon to be delocalised both spectrally and temporally, meaning it
does not occupy one peak or the other but rather co-exists in a coherent

superposition of the two peaks. Thus under the circumstances we can define
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two new spectrotemporal modes W1 and W2 based on these peaks, and
thanks to the coherent delocalisation in time and frequency this superposition
state may be used to encode, manipulate and detect, qubit information with a
single photon.

If the state |1>w. is assigned to the photon occupying the first spectral peak,
and the |1), state to the photon in the second one, such a pump modulation

allows the realization of the state
272(|1),,, 0}y, +[0),, 1)y, )

Reversing the logic sequence of this idea, what if instead of optimizing the LO
profile to match this state, we did the exact opposite? That would mean
preparing the orthogonal LO spectral mode by adding a ¢ro=mt phase shift
between the two spectral peaks by means of the SLM. This would thus

correspond to performing a homodyne measurement that projects the

investigated state onto the orthogonal one 272 (| 1), 10)y, —|0), |1)y ) If the

state were indeed in a coherent superposition of the two spectral modes
instead of just a statistical mixture of the two, then this would cause the
homodyne efficiency to vanish. So, by observing the efficiency drop to zero,

we can prove the coherence of the superposition state.

We set the LO in the orthogonal mode by imposing an increasing phase shift
in steps of 0.17 between the spectral peaks and measuring the corresponding
homodyne efficiency. Below we report the FROG-measured spectral and
temporal mode profiles for the two extreme cases of ¢pro=0 and ¢pro=m. Their
orthogonality is particularly evident in their measured temporal shapes. We
also plot the measured single photon homodyne efficiency n as a function of
the phase ¢ro between the two LO spectral peaks, where a clear sinusoidal

modulation is apparent.
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Finally, also the reconstructed Wigner functions for the two cases of ¢pro=0
and ¢ro=t are shown. When the state is analysed in the correct mode, the
Wigner function of a single photon is clearly obtained, whereas the Gaussian
function of a vacuum state appears when the state is analysed in the

orthogonal mode.
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Figure 4.18 Probing a spectrally and temporally delocalized single photon. FROG-measured

spectral intensity and phase profiles of the LO mode for (a) ¢,, =0, (b) ¢,, =7 . The

corresponding temporal intensity profiles are shown in (c) and (d), respectively. Note the

clear double-peak structure of the LO in the ¢,, =0 case and the nearly orthogonal
temporal shape obtained in the ¢,, =7 condition. (e) Variation of the measured single-
photon homodyne efficiency 71 as a function of the phase ¢,, between the two LO spectral

peaks. Reconstructed Wigner functions of the detected state: a single photon in (f) for

¢,, =0 and vacuum in (g) for @,, = 7.

This result is significant, as one can only think of the possibility of extending
in higher-dimensional spectral qudits. Simply increasing the MI delay
between the two pump pulses, the generated single photon remains
delocalised between only two temporal modes, but spectrally the number of
peaks increases. So in the frequency domain the single photon breaks up into

a series of equidistant spectral peaks with a comb-like structure. These
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distinct spectral modes correspond to the maxima of the sinusoidal
modulation of the pump spectrum and their number is roughly limited by the
ratio of pump to idler-filter bandwidth. The larger the pump bandwidth, the
more independent spectral channels are available.

Implementing this scheme with multiple spectral peaks, as well as the proof
of their mutual coherence is the direction we plan for this experiment and we

are already working on.

4.4 Upgraded experimental setup

The fibre placed in the path of the LO and used for collimation has clear
benefits for cleaning its spatial mode before the homodyne detection. These
benefits were found particularly useful when working on another experiment
in the picosecond regime. However, the much higher peak intensities of the
femtosecond pulses used in this experiment were discovered to produce
nonlinear effects that could distort the LO spectrum. These would increase
with increasing input power level in the fibre, but they would be hard to
compensate, as the fibre itself is the last optical element before the detector

and thus cannot be corrected by the SLM.

We tested for this, measuring the LO pulse characteristics for various

quadratic dispersion profiles set with the SLM in the cases with and without

the fibre. Below we see a table of these measurements:
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Table 1: Without the fibre!

Quadratic b2 — retrieved | FWHM FWHM TBP
coefficient set | from FROG | duration (fs) | bandwidth

in SLM (a.u) | (fs?) (nm)

0 1159 81 9.7 0.36
-500 818 80 9.6 0.36
-1000 -1315 97 9.7 0.44
-1500 -2196 124 9.4 0.55
-2000 -3020 154 9.1 0.65
-2500 -4367 182 9 0.76

Table 2: With the fibre!

Quadratic b2 — retrieved | FWHM FWHM TBP
coefficient set | from FROG | duration (fs) | bandwidth

in SLM (a.u.) | (fs?) (nm)

0 6616 284 12 1.59
-500 6280 255 11.6 1.38
-1000 5189 227 11.2 1.18
-1500 4481 175 10.7 0.87
-2000 3284 142 9.3 0.61
-2500 1099 115 8.4 0.45
-2700 -117 80 11.2 0.42

The data of table 2 tells us that with the SLM at zero the quadratic coefficient
is positive and then the SLM then adds negative dispersion to compensate for

the positive one introduced by the glass fibre.

1 The error range in the measurements is about 5% and comes from the retrieval
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However, looking at both tables 1 and 2, it is made evident that, without the
tibre, the LO pulses are close to transform-limited ones, with the minimum
pulsewidth allowed by their spectral bandwidth, for close-to-zero additional
quadratic dispersion by the SLM. Actually, a small residual positive
dispersion due to lenses, beamsplitters, etc. is present also when the SLM
introduces no additional dispersion. The bandwidth of the pulses is also

found not to vary substantially with their duration.

On the contrary, when the fibre is inserted, the SLM is only able to partially
pre-compensate for its quadratic dispersion, but cannot do anything to adjust
for the spectral broadening, most probably due to optical Kerr effect,
occurring when the pulses reach their minimum duration and maximum

intensity in the fibre.

So, even if the SLM effectively corrects the quadratic dispersion introduced by
the fibre, the LO pulses reaching the homodyne detector may have a
substantially larger bandwidth (and depending on the LO power used)
compared to the one of the heralded single photons. This may therefore
reduce the final detection efficiency and the accuracy of the entire approach.

In principle, if the fibre was placed before the SLM and not after, the genetic
algorithm would be able to track down any irregularities due to nonlinear
effects and compensate for them, but in this case any use of the fibre on the
table would have lost its meaning entirely, as it was there to produce a well-
collimated mode for the spatial mode-matching necessary for the homodyne
detection. If the beam coming out of the fibre passes through all the optics of
the zero-dispersion pulse compressor, it loses its clean mode and well-defined

spatial properties.
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That is why the decision was made to replace this fibre and start designing a
spatial filter to do that. The initial thought was to design a filter that would
reproduce the mode of the fibre, and keep the homodyne mode-matching
lenses intact. After a few attempts in that direction, it was realised that
designing a new spatial filter to mode-match the LO directly to the amplified
spatial profile was a lot more practical and easier to manipulate. Additionally,
this scheme included only two lenses, meaning fewer degrees of freedom to
keep under control at this stage. This is what we did at the end. We set up a
spatial filter composed by a focusing lens f1=80 mm, a pinhole of diameter
D=100 pm and a collimating lens f2=50 mm, placed on micrometer stages.
After a few sets of measurements, the optimum positioning of these optical
elements was found that allowed us to recover a good visibility between the
LO and the amplified alignment pulse. Now that there was no fibre to
account its dispersion for with the SLM, we very rapidly regained a good
homodyne detection efficiency of about 56% that allowed us to run new tests

of the GA again for differently shaped single photons.

4.4.1 Unmodulated single photon

We started from measuring the dispersion of an unmodulated single photon,
by varying the quadratic phase term of the mask in a wide range and
measuring the corresponding homodyne efficiency for the detection of the
photon. From the plot of the data we see below, the best quadratic coefficient
is about +600, in agreement with the settings used to obtain transform-limited

LO pulses in Table 1.
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Figure 4.19 Plotted Homodyne Efficiency 2 with quadratic coefficient for an unmodulated
single-photon. We see that the mask adds positive dispersion to match the slightly chirped

single photon.

We then proceeded with measuring the unmodulated single photon, by
running 14 generations of the GA. FROG traces and reconstructed spectral
and temporal profiles for the best individual of the evolution are reported

below.

2 The error range in homodyne measurements is usually small, about +2%.
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Figure 4.20 Experimental FROG trace, measured and retrieved for an unmodulated single
photon. Results for the best individual of a 14 generation run of the GA (the profile with the

best detection efficiency out of 14 x 21 individuals).
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Figure 4.21 Reconstructed Spectral Intensity and Phase. Results for the best individual of a 14
generation run of the GA (the profile with the best detection efficiency out of 14 x 21

individuals).
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Figure 4.22 Reconstructed Temporal Intensity and Phase. Results for the best individual of a
14 generation run of the GA (the profile with the best detection efficiency out of 14 x 21

individuals).

The result is a pulse with a FWHM duration of about 90 fs and a bandwidth
of 9.7 nm. As expected, the spectral phase is essentially flat, a clear indication
that our unmodulated single photons are in a transform-limited

spectrotemporal mode.

4.4.2 Dispersed single photon

The next step was the detection of the single photon after it travelled through
the 10-cm long glass block in the new setup. As we did before, we first
performed a manual scan of the quadratic coefficient of the spectral phase
imposed by the SLM to the LO in order to find the optimum value for

maximum homodyne detection efficiency.
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Figure 4.23 Plotted Homodyne efficiency with quadratic coefficient of the SLM for a
dispersed single photon. We see that the SLM adds positive dispersion to the LO to match

that of the glass in the path of the single photon

We find the best efficiency for a quadratic coefficient of about +2450, which
should be compared with the settings of Table xx for the amount of
dispersion needed to compensate that of approximately the same length of
glass.

By performing the FROG measurements in these conditions we find that the
optimal LO pulse now possesses a clear quadratic spectral phase with

$b2=6100 fs2.
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Figure 4.24 Plotted spectral phase for a dispersed single photon, retrieved after a phase
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Figure 4.25 Experimental FROG trace measured and retrieved, for a spectrally dispersed

single photon.
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The next step was to test the genetic algorithm with a phase-only modulation
for these long, spectrally dispersed, single photons. Below are reported the
FROG measurements for the best individual of a 128 generation GA run.

It is interesting to see that the best result found with the GA is in a pretty
good agreement with the one found manually. Here again, the LO pulse
possesses a clear quadratic spectral phase with almost the same coefficient,
and the measured pulse duration and bandwidth are 225 fs and 10.3 nm,

respectively.
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Figure 4.26 Plotted spectral phase for a dispersed single photon. Result of the best individual
of a 128 generation run of the GA (the profile with the best detection efficiency out of 128 x 21

individuals). Quadratic coefficient b2=6103 fs?
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Figure 4.27 Reconstructed Spectral Intensity and phase, result of the best individual of a 128

generation run of the GA (the profile with the best detection efficiency out of 128 x 21

individuals).
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Figure 4.28 Experimental FROG trace, measured and retrieved. Result of the best individual

of a 128 generation run of the GA (the profile with the best detection efficiency out of 128 x 21

individuals).
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This is one more proof that, using the genetic algorithm in combination with
homodyne detection, is very effective in wunraveling the unknown
spectrotemporal mode of a quantum state, even without any prior
information at hand. What is also important to note is that the mode
identification can be performed automatically, without any need for a human
intervention, and this scheme is able to self-adapt to slow environmental

changes rather than having to deal with them as an obstacle.
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CHAPTER 5

CONCLUSIONS AND FUTURE DIRECTIONS

The possibility to access the rich mode structure of quantum states of light
opens doors to a plethora of potential applications in science, as this also
means being able to use new ways of encoding and decoding quantum
information. In this thesis I have shown that with our adaptive experimental
method, which combines for the first time advanced coherent-control and
quantum optics techniques to measure quantum states of light in unknown

modes [1], we have made a new important step in this direction.

We performed the first tests of this novel experimental technique by applying
it to single photon states. Using homodyne detection efficiency as a fitness
parameter for a genetic algorithm, we were able to recover the
spectrotemporal profile of our ultrashort single photons. In particular, we
have tested the experimental technique on different spectrotemporal profiles:
on unmodulated single photons as produced by our heralded source based on
spontaneous parametric down-conversion; on dispersed single photons
obtained by passing them through 10 cm of a BK7 glass block; on spectrally
narrow and spectrally double-peaked single photons produced by shaping
the pump pulse. A genetic algorithm has proven able to trace any change
made on the single-photon mode and reliably map it to the mode of an
intense coherent pulse, which could then be fully analysed by standard pulse
characterization techniques. The technique has also shown to adapt to slow

changes of the mode of the quantum state that occur on long time scales.

These results are only the starting point for this method. Even if tested here

on single-photon Fock states and, contrary to previous techniques, our
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scheme is suitable for a much broader class of states, including bright multi-
photon ones. It only requires that a fitness parameter is at hand. An
interesting follow-up will be to probe the quantum properties of squeezed
light emitted from a high-gain SPDC source, like the ones employing
waveguides. For such states, the level of measured quadrature squeezing

could be used as the fitness parameter.

Based on an adaptive optimization algorithm, our method does not rely on
preliminary theoretical knowledge of the mode occupied by the quantum
state to be measured, but rather automatically takes into account all the
characteristics of experimentally generated states without any preliminary
information. To grasp this concept imagine that it can allow one to recover
“unreadable” quantum features or compensate possible deformations
encountered during propagation in arbitrary dispersive or diffractive

channels.

Future possibilities to upgrade the setup could involve including spatial
mode characterization, so that the full spatiotemporal profile of the quantum
state can be measured and exploited. The idea would be to use deformable
mirrors as a replacement of the current spatial mode-matching scheme in the
LO beam and add the spatial degrees of freedom as free parameters in the
genetic algorithm. Deformable mirrors [57] are mirrors whose surface can be
deformed, and whose shape can be controlled using wavefront sensors and a
real-time control system. The point is that it is possible for the genetic
algorithm to introduce random spatial profiles as well as spectrotemporal
ones, and again the homodyne efficiency can be a reliable criterion for the
matching of the two beams and therefore as a fitness parameter. This could be
a significant boost for the scheme, as not only will it allow further

optimisation of the homodyne efficiency, but also it will decrease
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substantially the time needed for daily alignment procedures related to

spatial mode-matching.

Furthermore, our method is not by any means restricted to mode
characterization. It can go well beyond that, by probing and manipulating the
quantum properties of light states, for example realizing mode-selective state
displacements in phase space (the displacement operation has been proved to
be crucial for the preparation of cat and NOON states). It is also interesting to
note that homodyne measurements with a shaped LO might not only be used
in the detection stage, but also in the conditional preparation of multimode

quantum states.

We have indeed created a device that not only retrieves the “shape” of the
light, but directly gives the tools for manipulating and analyzing it. It has
been shown in this thesis how one can retrieve information about the mode
structure of the light state, but also how we can probe coherences among
different modes. Our adaptive detector opens the way for advancing in the
manipulation of multimode states. In this respect, our method would allow
one to find and access the whole family of quantum correlated modes existing
in multimode light. It would also allow detecting coherent combinations of
them, which could be used as a mean of encoding information and further

research the nature of multipartite entanglement experimentally.

As Dirac famously once said: “At the heart of quantum mechanics lies the
superposition principle” [80]. This is the direction we wish to go to, and the
tirst steps have been taken with the measurements of a spectrally double
peaked single photon, and proof of its inner coherence. In the future, we plan
to apply the idea to a single photon with more than two spectral peaks, and

we have already started testing the method with a birefringent a-BBO crystal,
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that works in the same way as the Michelson interferometer for the pump
beam shaping, but offers more possibilities and stability to the setup. We also
hope that this will be the solution to the degradation of the spatial visibility
we observed when we measured the spectrally double-peaked single photon

produced with the Michelson interferometer.

New exciting opportunities can emerge if quantum states of light are
generated and detected in multiple arbitrary modes, as this provides access to
a much larger Hilbert space for encoding, manipulating, and decoding
quantum information. The possibility of encoding information in multiple
independent quantum channels is not a utopia. Multimode quantum states
can provide this possibility, and aside from research in orbital angular
momentum that has to do with the spatial domain, here we investigated the
spectrotemporal degrees of freedom and saw how advantageous they’d be
with respect to other physical properties of light. This is indeed a powerful,
versatile scheme, with a long future path. It allows one to deeply probe the
structure of complex quantum states, besides optimising their detection. The
presented experiments could for example pave the road to the analysis of the
intrinsic multi-Schmidt-mode character of quantum states naturally generated
in parametric down-conversion pumped by short pulses, envisaged to

support multimode quantum information processing [81-83].

It could be argued that the use of a pulse shaping technique based on a SLM
is only possible when dealing with spectrally broadband photons. This is
merely a limitation; in our opinion the broadband regime is the current
frontier and probably the future direction in the field. The ultrashort regime
was a choice and not a restriction, it is actually much more challenging to
work with pulses lasting ~100 fs and, more interesting too. Ultrashort pulses

are the future, since their extended bandwidth allows encoding of more
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information in ST modes, higher rate of information transfer, more precise
timing etc. Alternatively, if one wanted to apply the technique on temporally
long photons, the solution would be simple: replace the SLM with some
slower optoelectronic device (like an electro-optical modulator), a technically
less demanding (and less interesting) task, and the optimization procedure

would still hold.

To conclude, I have presented you the experimental setup as whole and the
progress that has been made during the three years of study for my doctorate,
taking into account all that has been previously introduced as a theory. Lastly
but more importantly, I have presented you with solid argumentation why I

believe in this technique’s pioneering role in the future of quantum optics.
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