
 

  Chapter  4

Edge Detection on SAR Images: Multiscale Methods 
The main disadvantage of statistical filters is that they strongly depend on the goodness of fit between the da-
ta and the statistical model considered by the filter. Then, even though in Section 3.3 we were able to devel-
op the pdf of linearly filtered data (Gamma distributed), the knowledge of such pdf is generally very difficult 
to have. Furthermore, whereas the pdf in Eq. (3.83) depend on the parameter 𝐿 alone, more complicated 
models could involve several parameters, which can be difficult or time-consuming to estimate. In this sense, 
the simplicity and mathematical treatability of the model is often preferred to formal correctness. Finally, 
non-linear combination of results, which are obtained by different parameter settings, are sometimes consid-
ered to improve the final performance [22]. In this last case, the final threshold is hard to be analytically 
computed throughout a theoretical model. Consequently, for all the previous reasons, classical linear filters 
relying on gradient operation are sometimes preferred since they neglect a statistical model of filtered data. 
Clearly, after applying these filters, the threshold is usually selected either heuristically or by means of data 
histogram [23]-[25].  

Nevertheless, due to the multiplicative nature of the speckle, linear filtering applied to SAR data yields not 
CFAR result [8]. However, to retrieve such desired behavior, a simple logarithmic transformation can be ap-
plied to the input data (see Section 2.2.3) before filtering. Finally, since we want to report the general case of 
linear filtering, the problem of edge detection at different “scales” will be discussed and addressed. As a con-
sequence, wavelet-based algorithms, which are strongly suggested in literature to improve final performance 
[26]-[31], will be treated in deep.  

4.1 Wavelet and Edge Detection 
Before introducing the mathematical formalism behind multiscale edge detectors, it was well known that 
edge information was linked to the scale concept. For example, in an image that contains a wall, edges can 
be constituted from the wall boundary. Yet, at finer scale, edges can be found in the brick contour and, de-
creasing scale again, edges can be due at the brick roughness. Nevertheless, at the beginning of multiscale 
edge detection, the theory was mainly focused on the combinations of the results at different scales. Parallel 
at the concept of multiscale edge detection, the mathematical formalism about decomposition of a signal in 
orthogonal bases with varying time support (wavelets) was getting developed [26], [32]. The first connection 
about the two fields was given by Mallat in [28], in which it proved how a  wavelet can be expressed as the 
derivative of a smoothing function. Then, since the wavelet transform of a function can be expressed by a 
convolution, the wavelet transform of a signal is nothing but its derivative after a smoothing filtering. Before 
reporting this fundamental theorem, the concept of vanishing moments have to be introduced.  

A function 𝜓(𝑡) has 𝑛 vanishing moments if: 

� 𝑡𝑘𝜓(𝑡)𝑑𝑡
∞

−∞
= 0,        𝑘 = 0,⋯ ,𝑛 − 1 (4.1) 

Hence, if 𝜓(𝑡) has 𝑛 vanishing moments it is orthogonal to any polynomial of degree 𝑛 − 1. Following Mal-
lat’s convention, indicating the wavelet transform at scale 𝑠 and time-shift 𝑐𝑐 as: 
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〈𝑓(𝑡),𝜓𝜏,𝑠(𝑡)〉 = � 𝑓(𝑡)𝜓𝜏,𝑠
∗ (𝑡)𝑑𝑡

∞

−∞
= 𝑊𝑓(𝑐𝑐, 𝑠) (4.2) 

 with: 

𝜓𝜏,𝑠(𝑡) =
1
√𝑠

𝜓 �
𝑡 − 𝑠𝑐𝑐
𝑠

� (4.3) 

Mallat proved in [26] the following theorem, which is at the base of multiscale edge detector: 

Theorem:  

A wavelet 𝜓(𝑡) has n vanishing moments if and only if there exist a function 𝜃(𝑡) such that: 

𝜓(𝑡) = (−1)𝑛
𝑑𝑛𝜃(𝑡)
𝑑𝑡𝑛

 (4.4) 

Consequently: 

〈𝑓(𝑡),𝜓𝜏,𝑠〉 = 𝑊𝑓(𝑐𝑐, 𝑠) = 𝑠𝑛
𝑑𝑛

𝑑𝑡𝑛
[𝑓 ∗ �̅�𝑠] (4.5) 

where: 

�̅�𝑠(𝑡) =
1
√𝑠

𝜃 �−
𝑡
𝑠
� (4.6) 

Moreover, if 𝜓(𝑡) has exactly n vanishing moments (i.e. no more than n) then: 

� 𝜃(𝑡)𝑑𝑡
∞

−∞
≠ 0 (4.7) 

Among all, the important fact is that a wavelet 𝜓(𝑡) with 𝑛 vanishing moments can be expressed as the nth 
order derivative of a function 𝜃(𝑡) and, consequently, the wavelet transform at scale 𝑠 can be computed as 
the derivative of the function 𝑓(𝑡) filtered by �̅�𝑠(𝑡). As becomes clear from the previous formulas, 
when 𝐧 = 𝟏, computing the wavelet transform is equal to applying an edge detector to the original sig-
nal. Moreover, Mallat proved in [26] that singularity points of a function (i.e. also the edge points) are locat-
ed at locally maxima points of |𝑊𝑓(𝑐𝑐, 𝑠)|, and the singularity type can be inferred by the decay of 
|𝑊𝑓(𝑐𝑐, 𝑠)| in (𝑐𝑐, 𝑠) plane, when 𝑠 is small. Moreover, if 𝜃(𝑡) is Gaussian (i.e. Canny edge detector), it 
proved that locally maxima of |𝑊𝑓(𝑐𝑐, 𝑠)| belongs to connected curves in the plane (𝑐𝑐, 𝑠), which are never 
interrupted when the scale decrease. Anyway, this last theorem holds only for continuous scale parameter 𝑠 
and we lose this property when dyadic wavelet transform is used (i.e. 𝑠 = 2𝑗 with 𝑗 ∈ ℤ). Anyway, Mallat 
proved that only from the values of the dyadic wavelet transform�𝑊𝑓�𝑐𝑐, 2𝑗�� at the locally maxima points 
��𝑐𝑐, 2𝑗𝑝��𝑝𝜖𝑁 and knowing the mean value of 𝑓(𝑡), it is possible to reconstruct the original signal 𝑓(𝑡) nearly 
perfectly. Actually, it can be proved that a family of function (and not only one) share the previous infor-
mation (i.e. �𝑊𝑓�𝑐𝑐, 2𝑗��at ��𝑐𝑐, 2𝑗𝑝��𝑝𝜖𝑁and the mean value of 𝑓(𝑡)) and therefore the reconstruction is not 
perfect. Nevertheless, the functions of this family differ slightly from each other, so that the reconstructed 
copy is very near from the original one. Although the existence of a family that share the same properties for 
2-D functions is still an open problem, a near copy of the original signal can be recovered exploiting inverse 
wavelet transform.  Even in this case, this finding has a deep impact on edge detection. In fact, this means 
that not only are edges (at dyadic scales) the most useful information contained in an image, but they 
are (practically) the whole one. 

4.1.1 Multiscale Edge Detector: 1-D 
For the sake of clearness, we report the previous results when wavelets have only one vanishing moment, 
that is, the multiscale edge detector is derived. 

Given a smoothing filter 𝜃(𝑡), at scale 𝑠 = 1 we have:  
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𝜓(𝑡) = −
𝑑𝜃(𝑡)
𝑑𝑡

 (4.8) 

To limit the computation we set 𝑠 = �2𝑗�𝑗𝜖ℤ (dyadic decomposition). Writing: 

𝜓𝜏,2𝑗 =
1
√2𝑗

𝜓 �
𝑡 − 2𝑗𝑐𝑐

2𝑗
� (4.9) 

the wavelet transform of 𝑓(𝑡) (where 𝑓(𝑡) ∈  𝐿2(ℝ)) is given by: 

𝑊𝑓�𝑐𝑐, 2𝑗� = 〈𝑓(𝑡),𝜓𝜏,2𝑗(𝑡)〉 = 𝑓 ∗ 𝜓�𝜏,2𝑗   (4.10) 

where 𝜓�(𝑡) = 𝜓(−𝑡). Now, extending the Eq. (4.8) at the general scale 𝑠 = 2𝑗 gives: 

𝜓𝜏,2𝑗(𝑡) = −2𝑗
𝑑𝜃𝜏,2𝑗(𝑡)

𝑑𝑡
 (4.11) 

and putting this last result into Eq. (4.10) gives: 

𝑊𝑓�𝑐𝑐, 2𝑗� = 𝑓 ∗ 𝜓�𝜏,2𝑗 = 2𝑗
𝑑
𝑑𝑡
�𝑓 ∗ �̅�𝜏,2𝑗� (4.12) 

Hence, the wavelet transform modulus is: 

𝑀𝑓�𝑐𝑐, 2𝑗� = �𝑊𝑓�𝑐𝑐, 2𝑗�� = 2𝑗
𝑑
𝑑𝑡
�𝑓 ∗ �̅�𝜏,2𝑗� (4.13) 

which is proportional to the derivative of the smoothed image. Clearly, if we set unitary L1-norm at the place 
of the previous L2-norm, at scale change the multiplicative constant 1 √2𝑗⁄  becomes 1 2𝑗⁄ , i.e.: 

𝜓2𝑗 =
1
2𝑗
𝜓 �

𝑡
2𝑗
� (4.14) 

In this way, in Eq. (4.12) the coefficients 𝑊𝑓�𝑐𝑐, 2𝑗� do not depend on the scale. 

4.1.1.1 Example: Multiscale Gaussian Edge Detector  

Presupposing the Gaussian smoothing kernel: 

𝜃(𝑡) =
1

√2𝜋𝜎2
𝑒−

𝑡2
2𝜎2  (4.15) 

the wavelet 𝜓(𝑡) is given by: 

𝜓(𝑡) = −
𝑑𝜃(𝑡)
𝑑𝑡

=
𝑡
𝜎2

𝜃(𝑡) =
1

√2𝜋𝜎6
𝑒−

𝑡2
2𝜎2  (4.16) 

In Fig. 4.1 the previous functions are reported.   

 

Fig. 4.1 - Gaussian smoothing and its derivative 
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In Fig. 4.2(a) we can see the frequency response of the wavelet filter at several scales. As can be seen from 
this figure, wavelets are nothing but pass band filters whose frequency band goes down logarithmically 
increasing the scale. It should be noticed that the scale decomposition is not a dyadic (orthogonal) decom-
position. In fact, it is decomposed as 𝑠 = �2𝑗 𝑣⁄ �(𝑗,𝑣)𝜖ℤ, with 0 ≤ 𝑗 ≤ 6  and 𝑣 = 16, i.e. 7 scales (also called 
octaves) with 16 voices. Clearly, this last decomposition approximates well a continuous scale parameter. 
For the sake of comparison, in Fig. 4.2 (b) the frequency response for dyadic scales is reported. This figure 
makes clear how each dyadic scale manages to filter only a certain frequency band, differently from the 
“continuous” case where redundancy is introduced by nearly totally overlapping frequencies between subse-
quent scales. 

Nevertheless, as can be seen from these figures, the first scale does not cover the highest frequency compo-
nents of the signal. This fact is due to the design choice of starting from the scale in which all filter coeffi-
cients are ℎ = {−1,0,1} at the place of ℎ = {−1,1} that is indicated by wavelet theory. Clearly, with this 
choice some information about high frequency components is lost (e.g. a chessboard edge with a frequency 
of exactly 0.5 would not be revealed by filters), but in this manner filter is less influenced by noise. Anyway, 
filtering with the latter finest scale can be added without any effort to the filter. 

In Fig. 4.3(a)-(b) the result of the Multiscale Gaussian edge detector on a signal with several singularities is 
reported, respectively for continue and dyadic wavelet transform. From the non-maxima suppression result 
of both cases (reported at the bottom), we can notice the well-known bias on edge position at large scales 
of Canny (Gaussian) edge detector.  

  

(a) (b) 
Fig. 4.2 - Frequency response of the wavelet function (Gaussian derivative) at each scale. (a) Continue scale de-

composition. (b) Dyadic scale decomposition 
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(a) 

 

(b) 

Fig. 4.3 - Multiscale edge detector result (bottom) when non-maxima suppression is applied at 𝑾𝒇(𝝉,𝟐𝒋) (in the 
middle) for a signal with several singularities (top). (a) Continue wavelet transform. (b) Dyadic wavelet trans-

form. 
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4.1.2 Multiscale Edge Detector: 2-D 
Extending the previous general results for 2-D signals, we can easily derive the 2-D Multiscale edge detec-
tor. Given a smoothing filter 𝜃(𝒙) = 𝜃(𝑥1, 𝑥2), at scale 𝑠 = 1 we have: 

⎩
⎪
⎨

⎪
⎧𝜓1(𝒙) = −

𝜕𝜃(𝒙)
𝜕𝑥1

𝜓2(𝒙) = −
𝜕𝜃(𝒙)
𝜕𝑥2

 (4.17) 

To limit the computation we set 𝑠 = �2𝑗�𝑗𝜖ℤ (dyadic decomposition). Writing : 

𝜓𝝉,2𝑗
𝑘 (𝒙) =

1
2𝑗
𝜓𝝉,2𝑗
𝑘 �

𝒙 − 2𝑗𝝉
2𝑗

� ;   𝑘 = 1,2 (4.18) 

the wavelet transform of 𝑓(𝒙) (where 𝑓(𝒙)  ∈ 𝐿2(ℝ2)) is given by 2 components: 

𝑊𝑘𝑓�𝝉, 2𝑗� = 〈𝑓(𝒙),𝜓𝝉,2𝑗
𝑘 (𝒙)〉 = 𝑓 ∗ 𝜓�𝝉,2𝑗

𝑘 ;     𝑘 = 1,2;  (4.19) 

where 𝜓�(𝒙) = 𝜓(−𝒙)  and the convolution is over the two dimensions (𝑥1, 𝑥2). Now, extending the Eq. 
(4.17) at the general scale 𝑠 = 2𝑗 gives: 

⎩
⎪
⎨

⎪
⎧𝜓𝝉,2𝑗

1 (𝒙) = −2𝑗
𝜕𝜃𝝉,2𝑗(𝒙)
𝜕𝑥1

𝜓𝝉,2𝑗
2 (𝒙) = −2𝑗

𝜕𝜃𝝉,2𝑗(𝒙)
𝜕𝑥2

 (4.20) 

and putting this last result into Eq. (4.19) gives: 

𝑊𝑘𝑓�𝝉, 2𝑗� = 2𝑗 𝜕
𝜕𝑥𝑘

�𝑓 ∗ �̅�𝝉,2𝑗� ;     𝑘 = 1,2;  (4.21) 

From Eq. (4.21) we can write: 

�
𝑊1𝑓�𝝉, 2𝑗�
𝑊2𝑓�𝝉, 2𝑗�

� = 2𝑗

⎝

⎜
⎛

𝜕
𝜕𝑥1

�𝑓 ∗ �̅�𝝉,2𝑗�

𝜕
𝜕𝑥2

�𝑓 ∗ �̅�𝝉,2𝑗�
⎠

⎟
⎞

= 2𝑗  ∇ �𝑓 ∗ �̅�𝝉,2𝑗� (4.22) 

The modulus of the wavelet components is: 

𝑀𝑓�𝝉, 2𝑗� = �|𝑊1𝑓(𝝉, 2𝑗)|2 + |𝑊2𝑓(𝝉, 2𝑗)|2 = 2𝑗  �∇ �𝑓 ∗ �̅�𝝉,2𝑗�� (4.23) 

which is proportional to the gradient modulus of the smoothed image. Moreover, the angle: 

𝐴𝑓�𝝉, 2𝑗� = tan−1 �
𝑊2𝑓�𝝉, 2𝑗�
𝑊1𝑓(𝝉, 2𝑗)� (4.24) 

indicates the direction of non-maxima suppression algorithm. It should be noticed that in 2-D, differently 
from 1-D, normalizing the L2-norm is the correct choice to have 𝑀𝑓�𝝉, 2𝑗� scale-independent. 

4.1.2.1 Example: Multiscale Gaussian Edge Detector  

Presupposing separable Gaussian smoothing function:  

𝜃(𝒙) = 𝜃(𝑥1)𝜃(𝑥2) =
1

√2𝜋𝜎2
𝑒−

(𝑥1+𝑥2)2
2𝜎2  (4.25) 

we have: 
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⎩
⎪
⎨

⎪
⎧𝜓1(𝒙) = −

𝜕𝜃(𝒙)
𝜕𝑥1

= 𝜓(𝑥1)𝜃(𝑥2) =
𝑥1

2𝜋𝜎4
𝑒−

(𝑥1+𝑥2)2
2𝜎2

𝜓2(𝒙) = −
𝜕𝜃(𝒙)
𝜕𝑥2

= 𝜃(𝑥1)𝜓(𝑥2) =
𝑥2

2𝜋𝜎4
𝑒−

(𝑥1+𝑥2)2
2𝜎2

 

 

(4.26) 

The frequency responses of the wavelet 𝜓1(𝒙), which catches the HL (High in along 𝑓𝑥1 and Low along 𝑓𝑥2) 
frequency part of the spectrum, and of the wavelet 𝜓2(𝒙), which catches the LH part, are reported in . 

 

Fig. 4.4 - Frequency response of 2-D wavelet functions (Gaussian derivative): 𝝍𝟏(𝒙) (on the left), 𝝍𝟐(𝒙) (on the 
right). It should be noticed that the 2-D variables are here indicated as x and y. 

Nevertheless, as can be understood from the decomposition theory, also the HH frequency part is needed to 
provide a perfect reconstruction. This means that, if the following wavelet is not considered: 

𝜓3(𝒙) =
𝜕2𝜃(𝒙)
𝜕𝑥1𝜕𝑥2

= 𝜓(𝑥1)𝜓(𝑥2) (4.27) 

some information is lost in the decomposition process. In particular, the HH components represents a quickly 
variation of the image 𝑓(𝒙) along columns and rows jointly, i.e. the presence of a corner or a diagonal edge. 
Anyhow, presupposing the image 𝑓(𝒙) differentiable, the HH frequency components can be retrieved by a 
linear composition of previous two wavelets: 

𝜓𝛼(𝒙) = 𝜓1(𝒙) cos𝛼 + 𝜓2(𝒙) sin𝛼 (4.28) 

In fact, given the gradient ∇𝑓(𝒙) of the image 𝑓(𝒙), the directional derivative along the direction 𝒗� =
(cos𝛼 , sin𝛼) is given by: 

∇𝑓(𝒙) ∙ 𝒗� =
𝜕𝑓(𝒙)
𝜕𝑥1

cos𝛼 +
𝜕𝑓(𝒙)
𝜕𝑥1

sin𝛼 (4.29) 

Anyway, it is fundamental to know that Eq. (4.28) (and consequently Eq. (4.29)) is valid only if the original 
image 𝑓(𝒙) is differentiable. Clearly, this requirement is a very strong request of regularity and it is surely 
not respected on SAR images for initial decomposition scales. In Fig. 4.5 the frequency response of the 
wavelet 𝜓1(𝒙), 𝜓2(𝒙), 𝜓3(𝒙) and𝜓𝛼(𝒙) (with 𝛼 = 45°),  are plotted for the initial two dyadic scales. As 
can be seen comparing the frequency responses of  𝜓3(𝒙) and 𝜓𝛼(𝒙) (with 𝛼 = 45°), only a small HH part 
cannot be totally reconstructed by this approximation. In particular, to the aim of edge detection, if only  
𝜓1(𝒙), 𝜓2(𝒙) are used, we lost some information about diagonal edges at the initial (i.e. small) decomposi-
tion scales. Nevertheless, as will be shown subsequently in the document, the initial scales of SAR images 
are very noisy, so that this information loss could be considered nearly negligible.   
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(a) (b) 
Fig. 4.5- Frequency response of 2-D wavelet functions (Gaussian derivative) for several dyadic scales.  

(a) 𝒔 = 𝟐𝟎 . (b) 𝒔 = 𝟐𝟏 .  

In Fig. 4.6(c),(d) gradient module 𝑀𝑓�𝝉, 2𝑗� and its non-maxima suppression for 𝑠 = {20, 21} are reported. 
The original image is in Fig. 4.6 (a) and the angle 𝐴𝑓�𝝉, 2𝑗� for the scale 𝑠 = 1 is in Fig. 4.6 (b). 
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(a) (b) 

  

(c) 

  

(d) 

Fig. 4.6 - Multiscale Edge detection Result. (a) Original image. (b) Angle 𝑨𝒇(𝝉,𝟐𝒋) for the smallest scale 𝒔 = 𝟏. 
(c) Gradient module 𝑴𝒇(𝝉,𝟐𝒋)  (on the left) and its non-maxima suppression (on the right) for 𝒔 = 𝟏. (d) Gradi-

ent module 𝑴𝒇(𝝉,𝟐𝒋)  (on the left) and its non-maxima suppression (on the right) for 𝒔 = 𝟐.  
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4.2 Multiresolution Analysis 
In literature, wavelet concepts are usually presented with the scope of multiresolution analysis of signals. 
From the mathematical point of view, a formal definition of multiresolution approximation can be obtained 
in an axiomatic way [26]. A sequence �𝑉𝑗�𝑗∈ℤof closed subspaces of 𝐿2(ℝ) (space of square integrable func-
tions) is a multiresolution approximation if the following 6 properties hold:  

1. ∀(𝑛, 𝑗) ∈ ℤ2, 𝑓(𝑡) ∈ 𝑉𝑗  ⇔ 𝑓�𝑡 − 2𝑗𝑛� ∈ 𝑉𝑗 , i.e. 𝑉𝑗 is invariant by any translation proportional to 
the scale 2𝑗.    

2. ∀𝑗 ∈ ℤ, 𝑓(𝑡) ∈ 𝑉𝑗  ⇔ 𝑓(𝑡 2⁄ ) ∈ 𝑉𝑗+1 , i.e. a dilatation of 𝑓(𝑡) makes change the approximation 
scale. 

3. ∀𝑗 ∈ ℤ, 𝑉𝑗+1 ⊂ 𝑉𝑗 , i.e. an approximation of 𝑓(𝑡) at scale 2𝑗 contains all information to reconstruct 
the signal at coarser scale 2𝑗+1.    

4. lim𝑗→∞ 𝑉𝑗 = {0} , i.e. if the scale goes to infinite (the resolution goes to 0) we lost all information.  

5. lim𝑗→ −∞ 𝑉𝑗 = 𝐿2(ℝ) , i.e. if the scale goes to 0 (the resolution goes to infinite) the approximation 
converges to the original signal.  

6. There exist 𝜗𝜗(𝑡) such that {𝜗𝜗(𝑡 − 𝑛)}𝑛∈ℤis a Riesz Basis of 𝑉0  , i.e. any signal 𝑓(𝑡) ∈ 𝑉0 can be rep-
resented as 𝑓(𝑡) =  ∑ 〈𝑓(𝑡),𝜗𝜗(𝑡 − 𝑛)〉𝜗𝜗(𝑡 − 𝑛)∞

𝑛=−∞ = ∑ 𝑎[𝑛]𝜗𝜗(𝑡 − 𝑛)∞
𝑛=−∞ . For the sake of clear-

ness, it should be noticed that a Riesz Basis is a general basis of linearly independent signals that 
avoids the growth to infinite of the energy coefficients (∑ |𝑎[𝑛]|2∞

𝑛=−∞ < +∞).   

The property 1 is visualized in Fig. 4.7(a) for piecewise constant functions belonging to the space 𝑉0. As can 
be seen from this figure, the depicted signal translations belong to the same space of the original signal 𝑓(𝑡). 
The property 2 is reported in Fig. 4.7 (b) where can be noticed a scale increment by stretching of lower scale 
functions . InFig. 4.7 (c) we can see how a function of the upper scale can be recovered by composition of 
lower scale signals (property 3). Finally, in Fig. 4.7 (d) we can see how a general continuous function 𝑔(𝑡) 
can be decomposed by piecewise constant signals 𝑓 ∈ 𝑉0. 

Another example can be provided taking the function 𝜗𝜗(𝑡) = 𝑠𝑖𝑛𝑐𝑐(𝑡) = sin(𝜋𝑡) 𝜋𝑡⁄ , which is a function 
whose translation {𝜗𝜗(𝑡 − 𝑛)}𝑛∈ℤ provides a particular class of Riesz Basis, i.e. an orthonormal basis of 𝑉0, 
with 𝑉0 the space of functions 𝑓(𝑡) whose normalized frequency support 𝐵 is in 𝐵 ∈ [−1 2⁄   1 2⁄ ]. Clearly, the 
generic family �𝜗𝜗𝑗,𝑛(𝑡) = 2−𝑗 2⁄ 𝜗𝜗�2−𝑗𝑡 − 𝑛��

𝑛∈ℤ
provides an orthonormal basis for the generic space 𝑉𝑗 of 

functions whose normalized frequency support 𝐵 is included in 𝐵 ∈ [−1 2𝑗+1⁄   1 2𝑗+1⁄ ]. It should be noticed 
that a function belonging to a space 𝑉𝑗 has a multiplication factor of 2−𝑗 2⁄  in order to preserve unitary L2-
norm of each scale. 
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(a) (b) 

  
(c) (d) 

Fig. 4.7 - Multiresolution analysis. (a) Property 1. (b) Property 2. (c) Property 3. A function of the upper scale 
(top) can be recovered by composition of lower scale signals (bottom). (d) Decomposition of the signal 𝒈(𝒕) (top) 

by piecewise constant signals 𝒇 ∈ 𝑽𝟎 (bottom) 

Usually, when the Riesz Basis is formed by orthonormal functions, the translated and dilated function is 
called scaling function 𝜙(𝑡). Since from property 3 of the multiresolution approximation we know that 
𝑉𝑗+1 ⊂ 𝑉𝑗, a signal which belongs to 𝑉𝑗+1 can expressed by the basis of the space 𝑉𝑗. Hence, the function 
2−𝑗 2⁄  𝜙(𝑡 2⁄ ) belonging to 𝑉1 can be expressed by {𝜙(𝑡 − 𝑛)}𝑛∈ℤ, i.e. the bases of the space 𝑉0:  

1
√2

𝜙 �
𝑡
2
� = � 〈

1
√2

𝜙 �
𝑡
2
� ,𝜙(𝑡 − 𝑛)〉 𝜙(𝑡 − 𝑛)

∞

𝑛=−∞

= � ℎ0[𝑛]𝜙(𝑡 − 𝑛)
∞

𝑛=−∞

 (4.30) 

where the inner product is used to compute the projection along basis components. Moreover, defining 𝑊𝑗 as 
an orthogonal complement of 𝑊𝑗 in 𝑊𝑗−1 (in formula 𝑉𝑗−1 = 𝑉𝑗⨁𝑊𝑗)

2, we can prove that an orthonormal ba-
sis of 𝑊𝑗 is formed by translations and dilatations of a wavelet function 𝜓(𝑡),  �𝜓𝑗,𝑛(𝑡) = 2−𝑗 2⁄ 𝜓�2−𝑗𝑡 −
𝑛��𝑛∈ℤ. 

Roughly speaking, through the use of a wavelet function we can recover a lower scale function by an upper 
scale function (which contains less information than the upper scale counterpart), see Fig. 4.8. 

2 Any vector in 𝑊𝑗 ⊂ 𝑉𝑗−1 is orthogonal to any vector in 𝑉𝑗. 
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Fig. 4.8 - Wavelet function as orthogonal complement of scaling function, i.e. 𝑽𝒋−𝟏 = 𝑽𝒋⨁𝑾𝒋. 

As previously, from subspaces property 𝑊𝑗 ⊂ 𝑉𝑗−1 (a wavelet function 𝜓𝑗,𝑛(𝑡) ∈ 𝑊𝑗 can be recovered by 
composition of lower scale scaling functions 𝜙𝑗−1,𝑛(𝑡) ∈ 𝑉𝑗−1) we have: 

1
√2

𝜓 �
𝑡
2
� = � 〈

1
√2

𝜓 �
𝑡
2
� ,𝜙(𝑡 − 𝑛)〉 𝜙(𝑡 − 𝑛)

∞

𝑛=−∞

= � ℎ1[𝑛]𝜙(𝑡 − 𝑛)
∞

𝑛=−∞

 (4.31) 

In order to study the frequency behaviour of the discrete filters ℎ0[𝑛] and ℎ1[𝑛], we can apply the FT respec-
tively to Eq. (4.30) and (4.31). Anyway, since both discrete and continuous time signals are involved, we 
should pay attention about the correct FT to use. In particular, we should express the discrete signal as its 
continuous version multiplied by a Dirac comb 𝑐𝑐(𝑡) = ∑ 𝛿(𝑡 − 𝑛)∞

𝑛=−∞  before transforming it by the con-
tinuous FT. For example, the FT of the right term of Eq. (4.30) becomes: 

𝔉 � � ℎ0(𝑡)𝑐𝑐(𝑡)𝜙(𝑡 − 𝑛)
∞

𝑛=−∞

� = 𝔉[ℎ0(𝑡)𝑐𝑐(𝑡) ∗ 𝜙(𝑡)] 

= 𝔉[ℎ0(𝑡)𝑐𝑐(𝑡)] 𝔉[𝜙(𝑡)] = �𝐻0(𝑓) ∗ � 𝛿(𝑡 − 𝑘)
∞

𝑘=−∞

�Φ(𝑓) 

= � 𝐻0(𝑓 − 𝑘)Φ(𝑓)
∞

𝑘=−∞

 

(4.32) 

where the convolution of 𝐻0(𝑓) with the Dirac comb FT 𝐶(𝑓) = ∑ 𝛿(𝑓 − 𝑘)∞
𝑘=−∞  indicates its  periodicity 

of period equal to 𝑓 = 1 in normalized frequency. Note that the whole transform is not periodic since the pe-
riodicity of  ∑ 𝐻0(𝑓 − 𝑘)∞

𝑘=−∞  is deleted by the multiplication with the transform Φ(𝑓)2F

3.  Hence, applying 
the continuous time FT at Eq. (4.30) we have: 

�2Φ(2𝑓) = 𝐻0(𝑓)Φ(𝑓) (4.33) 

  and, exploiting multiresolution properties: 

3 Note that, being ℎ0(𝑡)𝑐𝑐(𝑡)equal to ℎ0(𝑡)𝑐𝑐(𝑡) = 〈 1
√2
𝜙 �𝑡

2
� ,𝜙(𝑡 − 𝑛)〉 𝑐𝑐(𝑡) = � 1

√2
𝜙 �𝑡

2
� ∗ 𝜙∗(−𝑡)� 𝑐𝑐(𝑡), its FT is: 

𝔉[ℎ0(𝑡)𝑐𝑐(𝑡)] = 𝐻0(𝑓) ∗ 𝐶(𝑓) = �√2Φ(2𝑓)Φ∗(𝑓)� ∗ ∑ 𝛿(𝑓 − 𝑘)∞
𝑘=−∞  therefore ∑ 𝐻0(𝑓 − 𝑘)∞

𝑘=−∞  is the sums of 

�√2Φ(2𝑓)Φ∗(𝑓)� translated in frequency. 
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�|𝐻0(𝑓)|2 + �𝐻0 �𝑓 +
1
2
��

2

= 2

𝐻0(𝑓) = √2
 (4.34) 

where the first term is the Eq. (4.34) inserted in the orthonormal relation of the scaling functions given in 
Fourier space : 

〈𝜙(𝑡 − 𝑛),𝜙(𝑡 − 𝑝)〉 = 𝛿[𝑝 − 𝑛]      
𝐹𝑇
��   � |Φ(𝑓 − 𝑘)|2

∞

𝑘=−∞

= 1 (4.35) 

whereas the second term is derived from Eq. (4.33) inserting the equality Φ(0) = 1, (equivalent to 
∫ 𝜙(𝑡)𝑑𝑡∞
−∞ = 1). Clearly, applying the same previous operations to Eq. (4.31) we have:  

�2Ψ(2𝑓) = 𝐻1(𝑓)Ψ(𝑓) (4.36) 

and: 

�
|𝐻1(𝑓)|2 + �𝐻1 �𝑓 +

1
2
��

2

= 2

𝐻1(𝑓)𝐻0
∗(𝑓) + 𝐻1 �𝑓 +

1
2
�𝐻0

∗ �𝑓 +
1
2
� = 0

 (4.37) 

where the first term is the orthonormal relation of wavelet functions given in Fourier space and the second 
term indicates that {𝜙(𝑡 − 𝑛)}𝑛∈ℤ and {𝜓(𝑡 − 𝑛)}𝑛∈ℤ are orthogonal, i.e. it is the FT of the relation 
〈𝜓(𝑡),𝜙(𝑡 − 𝑛)〉 = 0,∀𝑛 ∈ ℤ.  

Finally, combining relations (4.34) and (4.37) we obtain: 

𝐻1(𝑓) = 𝐻0∗ �𝑓 +
1
2
� 𝑒−𝑗2𝜋𝑓 (4.38) 

which gives, in time domain: 

ℎ1[𝑛] = (−1)1−𝑛ℎ0[1 − 𝑛] (4.39) 

 

4.2.1 Piecewise Constant Bases Computation 
Let us see the piecewise constant bases as example. Given the function 𝜗𝜗(𝑡) = 1[0 1], its translations 
{𝜗𝜗(𝑡 − 𝑛)}𝑛∈ℤ is surely a Riesz basis of the space 𝑉0 of the functions piecewise constant in the interval 
𝑡 ∈ [𝑛,𝑛 + 1], i.e. the generic family �2𝑗 2⁄ 𝜗𝜗�2−𝑗𝑡 − 𝑛��𝑛∈ℤ  provides a basis for the generic space 𝑉𝑗 of the 
functions piecewise constant in the interval 𝑡 ∈ �𝑛2𝑗 , (𝑛 + 1)2𝑗�. Moreover, {𝜗𝜗(𝑡 − 𝑛)}𝑛∈ℤ are also an or-
thonormal family so that 𝜗𝜗(𝑡)represents the scaling function 𝜙(𝑡) of the space 𝑉0 (𝜙(𝑡) =  𝜗𝜗(𝑡)). There-
fore, we can compute ℎ0[𝑛] exploiting its definition:  

exploiting its definition:  

ℎ0[𝑛] = 〈
1
√2

𝜙 �
𝑡
2
� ,𝜙(𝑡 − 𝑛)〉 = �

1
√2

,𝑛 = 0,1

0 , otherwise
 (4.40) 

then, by knowing ℎ0[𝑛] we can compute ℎ1[𝑛] from Eq. (4.39):  

ℎ1[𝑛] = (−1)1−𝑛ℎ0[1 − 𝑛] =

⎩
⎪
⎨

⎪
⎧−

1
√2

,𝑛 = 0

1
√2

,𝑛 = 1

0 , otherwise

 (4.41) 

and 𝜓(𝑡)can be computed from Eq. (4.31): 
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𝜓 �
𝑡
2
� = √2 � ℎ1[𝑛]𝜙(𝑡 − 𝑛)

∞

𝑛=−∞

= −𝜙(𝑡) + 𝜙(𝑡 − 1) = �
−1 , 0 ≤ 𝑡 < 1
1 , 1 ≤ 𝑡 < 2
0 , otherwise

 (4.42) 

that gives: 

𝜓(𝑡) =

⎩
⎪
⎨

⎪
⎧−1 , 0 ≤ 𝑡 <

1
2

1 ,
1
2
≤ 𝑡 < 1

0 , otherwise

 (4.43) 

Hereafter we report the previous piecewise constant basis (also called Haar basis) written in a compact 
way: 

𝜙(𝑡) = 1[0 1] ℎ0[𝑛] = �
1
√2

,𝑛 = 0,1

0 , otherwise

𝜓(𝑡) =

⎩
⎪
⎨

⎪
⎧−1 , 0 ≤ 𝑡 <

1
2

1 ,
1
2
≤ 𝑡 < 1

0 , otherwise

ℎ1[𝑛] =

⎩
⎪
⎨

⎪
⎧−

1
√2

,𝑛 = 0

1
√2

,𝑛 = 1

0 , otherwise

 (4.44) 

 

In Fig. 4.9 we can see the responses, both time and normalized frequency, of the filters ℎ0[𝑛] and ℎ1[𝑛], 
whereas the time-frequency responses of the functions 𝜙(𝑡) and 𝜓(𝑡)are depicted in Fig. 4.10.  

 

  

(a) (b) 
Fig. 4.9 - (a) 𝒉𝟎[𝒏] responses (time and normalized frequency). (b) 𝒉𝟏[𝒏] responses (time and normalized fre-

quency) 
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(a) (b) 

Fig. 4.10 - (a) 𝝓(𝒕) and 𝝍(𝒕)time responses. (b) 𝚽(𝒇)and 𝚿(𝒇) frequency responses 

 

4.3 Edge Detection Filters 
As seen in Section 4.1, any function expressed as a derivative of another function can be used as edge detec-
tor. In [25], Canny found a function that was the result of an optimization, i.e. an optimum function under 
some selected constraints. Nevertheless, following the Canny optimization method, which is only given for 
continuous signals, a lot of evolutions and improving have been presented in literature [33][34][35].  

Briefly, let 𝑥(𝑡) be a 1-D noisy step-edge: 

𝑥(𝑡) = 𝐴𝑢(𝑡) + 𝑛(𝑡) (4.45) 

with 𝐴 constant, 𝑢(𝑡) the unitary step function, and 𝑛(𝑡) a zero-mean white noise independent from the sig-
nal 𝑢(𝑡). Edge detection is performed applying a filter ℎ(𝑡) to the signal 𝑥(𝑡) and looking for the maximum 
point of the output 𝑦(𝑡):  

𝑦(𝑡) = � 𝑥(𝑐𝑐)ℎ(𝑡 − 𝑐𝑐)𝑑𝑐𝑐
∞

−∞
 (4.46) 

Clearly, for the presence of noise, at true edge point 𝑡 = 0 the output 𝑦(𝑡) may not have any maximum or a 
lot of spurious maxima may exist near true edge location. 

4.3.1 Canny Filter 
In [25], Canny defined the following three quality criteria to be maximized by the filter ℎ(𝑡). 

1. Insensibility to noise (classical SNR): 

Σ = � ℎ(𝑡)𝑑𝑡
0

−∞
�� ℎ2(𝑡)𝑑𝑡

∞

−∞
�  (4.47) 

2. Good edge localization (inverse of the standard deviation between true edge point and maximum 
point of 𝑦(𝑡)): 

Λ = |ℎ′(0)| �� ℎ′2(𝑡)𝑑𝑡
∞

−∞
�  (4.48) 
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3. Unique response to one edge (it can be retrieved from the  probability to have spurious maxima pre-
supposing a Gaussian noise): 

k = |ℎ′(0)| Σ�� ℎ′′2(𝑡)𝑑𝑡
∞

−∞
�  (4.49) 

Imposing ℎ(𝑡) with a finite support [−𝑤,𝑤], Canny computed the function  ℎ(𝑡) that maximizes ΣΛ under 
the constraint of having spurious maxima far than possible from the true edge point. This was done compu-
ting the standard deviation σ𝑑𝑑 of the distance between maximum points of 𝑦(𝑡), which can be easily calcu-
lated presupposing Gaussian noise: 

σ𝑑𝑑 = 2𝜋 �� ℎ′2(𝑡)𝑑𝑡
∞

−∞
� ℎ′′2(𝑡)𝑑𝑡
∞

−∞
� �

1
2

 (4.50) 

Then, he imposed the constraint σ𝑑𝑑 = |𝑘𝑤| in optimization method. It should be noticed that k should be 
bigger than possible and the maximum value of k is k = 2, i.e. only one maximum, in mean, is inside the 
𝑦(𝑡) support (which is [−2𝑤, 2𝑤]). Hence, performing the constrained optimization the following solution 
arises: 

ℎ(𝑡) = 𝑎1𝑒𝛼𝑡𝑠𝑖𝑛(𝜔𝑡) + 𝑎2𝑒𝛼𝑡cos(𝜔𝑡) + 𝑎3𝑒−𝛼𝑡𝑠𝑖𝑛(𝜔𝑡) + 𝑎4𝑒−𝛼𝑡cos(𝜔𝑡) (4.51) 

Then, applying the boundary conditions4: 

ℎ(0) = 0; ℎ(𝑤) = 0; ℎ′(0) = 𝑠;  ℎ′(𝑤) = 0;  (4.52) 

parameters {𝑎𝑖}𝑖=14  are retrieved as function of 𝛼, 𝜔and 𝑠.  

Anyway, imposing both ΣΛ maximum and k bigger than possible gives rise to a too complex analytical op-
timization and numerical methods should be applied to provide the final solution. Applying this last methods, 
Canny showed that the maximum value of k (k = 0.58) is reached for a filter that gives ΣΛ = 1.12 and 
whose shape resembles the first order derivatives of a Gaussian: 

ℎ(𝑡) = −
𝑡
𝜎2

𝑒−
𝑡2
2𝜎2  (4.53) 

which gives: 

Σ = 1.03√𝜎;   Λ =
0.89
√𝜎

;   ΣΛ = 0.92;   𝑘 = 0.51 (4.54) 

4.3.2 Deriche Filter 
However, as Deriche pointed out in [35], with the approximation in Eq. (4.53) the filter performances 
(ΣΛ = 0.92) are worse by about 20% respect to the optimal operator (ΣΛ = 1.12). Anyway, using the criteria 
proposed by Canny, he performed the same passages but imposing an infinite support of ℎ(𝑡) (i.e. → ∞ ). In 
fact, it is well known that an infinite support enables to better remove the noise and avoid Gibbs effect of the 
filter FT 𝐻(𝑓) (the counterpart is a greater sensibility to near edges). Furthermore, many simplifications in 
the optimization method arise imposing 𝑤 → ∞  and the Eq. (4.51) in [0,∞] simply becomes: 

ℎ(𝑡) = −𝑐𝑐𝑒−𝛼𝑡𝑠𝑖𝑛(𝜔0𝑡) (4.55) 

with  𝛼, 𝑐𝑐, and 𝜔 positive reals. Given the antisymmetry of ℎ(𝑡), in (−∞,∞) gives: 

ℎ(𝑡) = −𝑐𝑐𝑒−𝛼|𝑡|𝑠𝑖𝑛(𝜔0𝑡) (4.56) 

and the performance indexes are: 

4 Being ℎ(𝑡) antisymmetric (ℎ(−𝑡) = ℎ(𝑡)) the optimization is performed in [0,𝑤] and extended successively in 
[−𝑤,𝑤], i.e. boundary conditions are in [0,𝑤]. Moreover, parameter s sets the slope of ℎ(𝑡) in 𝑡 = 0. 
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Σ = �
2α

α2 + 𝜔02
�

1
2

;   Λ = √2α;   ΣΛ =
2α

�α2 + 𝜔02
;   𝑘 = �

α2 + 𝜔0
2

5α2 + 𝜔02
�

1
2

 (4.57) 

Setting 𝑚 = α 𝜔0⁄ , three cases can be deduced from these last formulas: 

• 𝑚 ≫ 1: 

Σ = �
2
α
�
1
2

;   Λ = √2α;   ΣΛ ≈ 2;  𝑘 ≈ 0.44  (4.58) 

• 𝑚 = 1: 

Σ = �
1
α
�
1
2

;   Λ = √2α;   ΣΛ ≈ √2;  𝑘 ≈ 0.58  (4.59) 

 

• 𝑚 ≪ 1: 

Σ ≈ 𝑚 �
2
α
�
1
2

;   Λ = √2α;   ΣΛ ≈ 2𝑚;  𝑘 ≈ 1  (4.60) 

The case 𝑚 = 1 shows that the final form used by Canny for his optimal operator (ΣΛ = 1.12 and 𝑘 = 0.58) 
is worse than Deriche operator by more than 25%. Anyway, the best trade-off among performance indexes is 
reached for the first case, since the product ΣΛ is maximum (more than the double of the Canny Gaussian de-
rivative) without lowering too much the spurious maxima index k. The filter time response is shown in Fig. 
4.11 for the three different cases previously discussed. 

 

Fig. 4.11 - Deriche filter for three different parameter values (𝒎 ≫ 𝟏, 𝒎 = 𝟏, 𝒎 ≪ 𝟏) 

 

 

4.3.3 Paillou Filter 
A dual form of Deriche operator was proposed by Paillou in [36]. It simply substituted the sine function in 
Eq. (4.56) with its hyperbolic version, i.e.: 

ℎ(𝑡) = −𝑐𝑐𝑒−𝛼|𝑡|𝑠𝑖𝑛h(𝜔0𝑡) (4.61) 

which respects boundary conditions if 𝜔0 ≤ 𝛼, i.e. 𝑚 ≥ 1. In this way performance indexes become: 
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Σ = �
2α

α2 − 𝜔02
�

1
2

;   Λ = √2α;   ΣΛ =
2α

�α2 − 𝜔02
;   𝑘 = �

α2 − 𝜔0
2

5α2 − 𝜔02
�

1
2

 (4.62) 

consequently, ΣΛ can go to infinite decreasing 𝑘 to zero. Clearly, even in this last case a trade-off have to be 
chosen. Paillou proposed to set 𝑘 = 1 3⁄    (i.e. 𝑚 = 10 7⁄ ) in order to have: 

Σ = 1.98;   Λ = √2;   ΣΛ = 2.9;   𝑘 = 1 3⁄  (4.63) 

 

 

Fig. 4.12 - Paillou filter for three different parameter values (𝒎 ≫ 𝟏, 𝒎 ≈ √𝟐 , 𝒎 ≪ 𝟏) 

As can be seen from Fig. 4.12, when 𝑚 = 1 the Paillou filter is a continuous version of the Box filter and in 
this last case ΣΛ → ∞. Cleraly, it was already well-known that to maximize the SNR at the output of a step 
edge, the Box filter (i.e. the matched filter to the step edge) had to be used. 

4.3.4 Shen-Castan Filter 
Nevertheless, all the previous filter suffer from the trade-off problem between noise removal (high Σ) and 
edge localization (high Λ). An intuitive way to understand this fact can be easily described. The previous fil-
ters find an edge at the location where the signal first derivative is maximum. i.e.  where the second order de-
rivative crosses zero. In Canny notation, given the Gaussian function 𝐺(𝑡), the Canny filter is its derivative 
ℎ(𝑡) = 𝐺′(𝑡). This means that filtering a function 𝑥(𝑡) is equivalent to smoothing it with a Gaussian kernel 
and then applying an ideal derivative operator: 

𝑥 ∗ ℎ = 𝑥 ∗
𝑑
𝑑𝑡
𝐺 =

𝑑
𝑑𝑡

[𝑥 ∗ 𝐺] (4.64) 

In order to see where the second order derivative crosses zero, we have to derive the function twice. There-
fore, coming back to the original problem of finding the edge taken a nosy step 𝑥(𝑡) = 𝐴𝑢(𝑡) + 𝑛(𝑡) as in-
put: 

𝑑2

𝑑𝑡2
[𝑥 ∗ 𝐺] =

𝑑2

𝑑𝑡2
[𝑢 ∗ 𝐺] +

𝑑2

𝑑𝑡2
[𝑛 ∗ 𝐺] = 𝑢′ ∗ ℎ(𝑡) + 𝑛 ∗ ℎ′(𝑡) = ℎ(𝑡) + 𝑛 ∗ ℎ′(𝑡) (4.65) 

where the equivalence 𝑢′(𝑡) = 𝛿(𝑡) has been exploited (in addition to the well-known property of the convo-
lution, i.e. 𝑑𝑑

𝑑𝑑𝑡
[𝑥 ∗ 𝐺] = [𝑥′ ∗ 𝐺] = [𝑥 ∗ 𝐺′]). This means that an edge is located in a point t where Eq. (4.65)  

is equal to zero, i.e. ℎ(𝑡) = −𝑛 ∗ ℎ′(𝑡). Clearly, the term 𝑛 ∗ ℎ′(𝑡) is a random variable and, if its value in 
𝑡 = 0 (true edge location) is different from zero, a dislocation appears as illustrated in Fig. 4.13. In this fig-
ure can be clearly seen that the dislocation raises, in mean, increasing the Gaussian standard deviation 𝜎. 
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Naturally, when 𝜎 raises, ℎ(𝑡) has a flatter time-response, i.e. better noise removal. Moreover, always in Fig. 
4.13 can be seen how the spurious maximum is kept further away from the detected edge when 𝜎 is greater. 

  

(a) (b) 
Fig. 4.13 - Location bias of Canny filter. Red dashed line indicates the mean of the r.v. 𝒏 ∗ 𝒉′(𝒕) (a) Gaussian 

standard deviation 𝝈 = 𝟏. (b) Gaussian standard deviation 𝝈 = 𝟏. 

The intuition of Shen and Castan was to solve this problem using discontinuous functions. In particular, they 
used the derivative of a negative exponential, imposing the function zero at time 𝑡 = 0, see Fig. 4.14(a)-(b): 

�ℎ(𝑡) =
𝑑
𝑑𝑡
𝑒−𝛼|𝑡|

ℎ(0) = 0
 (4.66) 

This last figure makes clear how, for Shen-Castan filter, the bias is completely avoided, so that only spurious 
maxima have to be solved. They derived this filter looking for a function with infinite support that optimizes 
the following functional:  

(𝐸𝑥′|𝑡=0)2

𝐸𝑛𝐸𝑛′
 (4.67) 

where 𝐸𝑥′ is the energy of the input signal after filtering, whereas 𝐸𝑛, 𝐸𝑛′ are the energies of the noise, re-
spectively before and after ideal derivation, as illustrated in Fig. 4.15 In particular, for the negative exponen-
tial, maximizing the functional in Eq. (4.67) is equal to maximize the following functional: 

𝐸𝑥|𝑡=0
𝐸𝑛

𝐸𝑥′|𝑡=0
𝐸𝑛′

 (4.68) 

i.e. the product of the squared SNR at the exit of each system block. 

  

(a) (b) 
Fig. 4.14 - Location bias of Shen-Castan filter. Red dashed line indicates the mean of the r.v. 𝒏 ∗ 𝒉′(𝒕) (a) Nega-

tive exponential with 𝜶 = 𝟐. (b) Negative exponential with 𝜶 = 𝟏. 
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Fig. 4.15 - System outlook for Shen-Castan functional 

Moreover, in [18] Shen and Castan proposed a very smart way to delete the most spurious maxima. In fact, 
for an edge whose first derivative is positive at edge point, the second order derivative should change sign 
from positive to negative (+/-). Instead, reversely, for an edge whose first derivative is negative at edge point, 
the second order derivative should change sign from negative to positive (-/+). Hence, only checking this 
simple behaviour, many false spurious edges can be easily deleted. 

4.3.5 Theoretical Performance Summary 
In Tab. 4.1 the theoretical performance of the previous filters are schematically reported. 

 Quality Indexes (noise AWGN) 

Filter Impulse Response Case study Σ Λ ΣΛ k 

Canny ℎ(𝑡) = − 𝑡
𝜎2
𝑒−

𝑡2

2𝜎2  General 1.03√𝜎 
0.89
√𝜎

 0.92 0.51 

Deriche ℎ(𝑡) = −𝑐𝑐𝑒−𝛼|𝑡|𝑠𝑖𝑛(𝜔0𝑡) 
 (𝑐𝑐 > 0,𝛼 > 0,𝜔0 > 0) 

General �
2α

α2 + 𝜔02
�

1
2

 √2α 
2α

�α2 + 𝜔02
 �

α2 + 𝜔0
2

5α2 + 𝜔02
�

1
2

 

𝛼 𝜔0⁄ ≫ 1  �
2
α
�
1
2
 √2α ≈ 2 ≈ 0.44 

Paillou ℎ(𝑡) = −𝑐𝑐𝑒−𝛼|𝑡|𝑠𝑖𝑛h(𝜔0𝑡) 
(𝑐𝑐 > 0,𝛼 > 0,𝜔0 > 0) 

General �
2α

α2 − 𝜔02
�

1
2

 √2α 
2α

�α2 − 𝜔02
 �

α2 − 𝜔0
2

5α2 − 𝜔02
�

1
2

 

𝛼 𝜔0⁄ = 10 7⁄  1.98 √2 2.9 1 3⁄  

Shen-
Castan 

ℎ(𝑡) = �−𝑐𝑐𝑒
−𝛼|𝑡| 𝑡 ≠ 0

0 𝑡 = 0
  

(𝑐𝑐 > 0,𝛼 > 0,) 
General �

1
α
�
1
2
 ∞ - 1 

Tab. 4.1 - Edge detection filter summary. 

 

4.3.6 Filter Implementation 
In this Section, the problem concerning the discrete implementation of continuous filter function will be dis-
cussed. Technical detail about filter functions and their Z-transformed version (when exists) for discrete im-
plementation purpose is reported in Appendix I, even for the two dimensional case. Moreover, always in Ap-
pendix I, the implementation of wavelet transform, by both Fast Fourier Transform (FFT) and recursive 
filtering method is discussed.   

From the Section 4.1it should be known that, given a smoothing continuous (and real) function 𝜃(𝑡), a wave-
let function can be computed as 𝜓(𝑡) = −𝜃′(𝑡). Then, let’s consider a dyadic multiscale approximation 
where translation happens with time shift 𝑐𝑐 ∈ ℝ, and a change of scale happens through  the usual formula  
𝜓𝜏,2𝑗 = 2−𝑗 2⁄ 𝜓�2−𝑗𝑡 − 𝑐𝑐�. In this case the wavelet transform of 𝑓(𝑡) is given by: 

𝑊𝑓�𝑐𝑐, 2𝑗� = 〈𝑓(𝑡),𝜓𝜏,2𝑗(𝑡)〉 = � 𝑓(𝑡)2−𝑗 2⁄ 𝜓�2−𝑗𝑡 − 𝑐𝑐�𝑑𝑡
∞

−∞
= 𝑓 ∗ 𝜓�𝜏,2𝑗 (4.69) 
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where 𝜓�(𝑡) = 𝜓(−𝑡). Now, since: 

𝜓𝜏,2𝑗(𝑡) = −2𝑗
𝑑𝜃𝜏,2𝑗(𝑡)

𝑑𝑡
 (4.70) 

Eq.  (4.69) can be written as: 

𝑊𝑓�𝑐𝑐, 2𝑗� = 𝑓 ∗ 𝜓�𝜏,2𝑗 = 2𝑗
𝑑
𝑑𝑡
�𝑓 ∗ �̅�𝜏,2𝑗� (4.71) 

that is, wavelet transform is proportional to the derivative of the original function smoothed by �̅�(𝑡), i.e. it is 
proportional to the output of an edge detector.  

Clearly, the function 𝑓(𝑡) is sampled in most practical applications, i.e. we have to use 𝑓[𝑛], with 𝑛 ∈ 𝑁. 
Then, on sampled grid, it is straightforward to consider multiscale approximation where the time shift 𝑐𝑐 and 
the time variable t are not real but integer. In this case Eq. (4.71) becomes:  

𝑊𝑓�𝑝, 2𝑗� = 〈𝑓[𝑛],𝜓𝜏,2𝑗[𝑛]〉 = � 𝑓[𝑛]2−𝑗 2⁄ 𝜓�2−𝑗𝑛 − 𝑝� = 𝑓 ∗
∞

𝑛=−∞

𝜓�𝑝,2𝑗 (4.72) 

It should be noticed that filters given in Section 4.3 (and Appendix I) can be directly inserted in this formula. 
In fact, the high-pass filter ℎ[𝑛] given in Appendix I represents ℎ[𝑛] = 𝜓�0,20[𝑛], i.e the discrete wavelet 
function of the space 𝑉0, whereas  the low-pass ℎ[𝑛] represents ℎ[𝑛] = 𝜙�0,20[𝑛]. Implementing Eq. (4.72), 
the fast implementation relies on the use of recursive filtering (when possible). Naturally, a fast decomposi-
tion that uses ℎ0[𝑛] and ℎ1[𝑛] can also be given computing (numerically when no closed form exists) the fol-
lowing formulas: 

ℎ0[𝑛] = 〈
1
√2

𝜙 �
𝑡
2
� ,𝜙(𝑡 − 𝑛)〉 =

1
√2

𝜙 �
𝑡
2
� ∗ 𝜙(𝑛 − 𝑡) 

ℎ1[𝑛] = 〈
1
√2

𝜓 �
𝑡
2
� ,𝜙(𝑡 − 𝑛)〉 =

1
√2

𝜓 �
𝑡
2
� ∗ 𝜙(𝑛 − 𝑡) 

(4.73) 

where 𝜓(𝑡) = ℎ(𝑡) and 𝜙(𝑡) = −∫ℎ(𝑡)𝑑𝑡, with ℎ(𝑡) the continuous version of the filter ℎ[𝑛] given in Sec-
tion 4.3 (and Appendix I). It is worth noticing that in both implementation versions (Eq. (4.72) and Eq. 
(4.73)) the number of operations depends, respectively, on the length of the filter ℎ[𝑛] = 𝜓�0,20[𝑛] (ℎ[𝑛] =
𝜙�0,20[𝑛]) and ℎ1[𝑛] (ℎ0[𝑛]). Hence, theoretically, what method is the fastest relies on the edge detector filter 
and on the amount of discrete coefficients that are considered as meaningful (e.g. coefficients lesser than 

410− can be considered zero so to shortening the filter length). Nevertheless, the results reported in this doc-
ument, except when expressly mentioned, are obtained by Eq. (4.72). This choice has been done because Eq. 
(4.72) enables a direct implementation to be done.  Nevertheless, whereas Eq. (4.73) is the theoretically 
sound way to implement wavelet decomposition, the version in Eq. (4.72) presupposes that, even at the first 
finest scale, the wavelet function can be discretized with the same sampling period of the original signal, i.e. 
the frequency support of the wavelet function is lesser or equal to that of the original signal. Naturally, this 
latter assumption is never respected, i.e. a little distortion (aliasing) arises in the computation of the wavelet 
coefficients at small scales. Anyway, in order to compare implementation of Eq.  (4.72) with respect to Eq. 
(4.73), the Spline Filter has been added to the comparison. In fact, this filter is the Multiscale edge detector 
proposed by Mallat [28] to approximate Canny Filter and it enables implementation of Eq. (4.73) to be done. 

4.3.7 Spline Filter (Mallat Edge Detector)  
Quadratic Box Spline filter enables Eq. (4.73) to be implemented. In fact, such filter is devised choosing se-
cond order (quadratic) box spline 𝑏2(𝑡) as scaling function: 

 

𝜙(𝑡) = 𝑏2(𝑡) = 𝑟𝑟𝑒𝑐𝑐𝑡(𝑡) ∗ 𝑟𝑟𝑒𝑐𝑐𝑡(𝑡) ∗ 𝑟𝑟𝑒𝑐𝑐𝑡(𝑡) ∗ 𝛿(𝑡 − 1 2⁄ )  (4.74) 

whose FT is: 
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Φ(𝑓) = �sinc(𝑓)�3𝑒−𝑗𝜋𝑓 (4.75) 

From Eq. (4.33) derives: 

𝐻0(𝑓) =
√2Φ(2𝑓)
Φ(𝑓) = �2�cos(𝜋𝑓)�3𝑒−𝑗𝜋𝑓 (4.76) 

whose IFT is: 

ℎ0[𝑛] = {0.1768, 0.5303, 0.5303, 0.1768},𝑛 = −1,0,1,2. (4.77) 

Then, selecting ℎ1[𝑛] = {−1, 1},𝑛 = 0,1 (i.e. finite difference filter), the Decomposition Theorem can be 
applied [26]. This means that, at the output of the j-th scale,  approximation (low-pass) coefficients 𝑓𝑗

(𝑙)[𝑛] =
〈𝑓,𝜙𝑗,𝑛〉  and the detail (high-pass) sequence  𝑓𝑗

(ℎ)[𝑛] = 〈𝑓,𝜓𝑗,𝑛〉 can be obtained by (see Fig. 4.16):  

𝑓𝑗+1
(𝑙) [𝑛] = 𝑓𝑗

(𝑙) ∗ ℎ�0[2𝑛] 
𝑓𝑗+1

(ℎ)[𝑛] = 𝑓𝑗
(𝑙) ∗ ℎ�1[2𝑛] 

(4.78) 

where the original discrete signal 𝑓[𝑛] is considered equal to the approximation coefficients at level 0 (scale 
1), i.e. 𝑓[𝑛] = 〈𝑓,𝜙0,𝑛〉 = 𝑓0

(𝑙)[𝑛]. 

 
Fig. 4.16 - Decomposition Theorem Schema (two level) 

Nevertheless, downsampling after filtering introduces some problems in edge detection issue since for cer-
tain scales the wavelet coefficients belonging to an edge can be dropped by downsampling operation.  
Hence, a undecimated wavelet decomposition theorem can be simply obtained by moving the downsamplers 
to the end of the chain and exploiting the noble identitiy showed in Fig. 4.17, i.e. each filter of the j-th level 
has been substituted with its upsampled version by a factor equal to  2𝑗 (see Fig. 4.18). Spline filter results 
reported in this document have been obtained by implementing the undecimated wavelet decomposition pre-
vious explained. 

 
Fig. 4.17 - Noble Identity 

 

 
Fig. 4.18 - Undecimated Decomposition Schema (two level). 
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4.4 Edge Detection Filter: 1-D Results 
In order to compare the filters discussed in Section 4.3, the results in applying such linear operators to a sim-
ple simulated signal with several singularities are reported in Fig. 4.19. The figure at the top show the origi-
nal signal, whereas the remaining ones show, for each filter, the local maxima points at several scales (the 
scale is on ordinate axes). As can be seen from these figures, Deriche and Paillou obtain results very similar 
to Canny filter, yet a better edge localization is obtained at large scales (see results on the first step edge of 
the original signal). Nevertheless, as expected, only Shen-Castan filter keeps a perfect localization of all edg-
es throughout the scales.  It is worth noticing that the coarsest scale of each filter has been chosen in order to 
have the filter support lesser than the input signal to process. Furthermore, no threshold is applied to the 
modulus maxima found. Finally, dyadic decomposition of the Spline operator (see Fig. 4.20) gives results 
very close to the previous filters. 

Filter behaviours can be appreciated also from respective frequency responses, both continuous and dyadic, 
reported in Fig. 4.21- Fig. 4.24. As can be seen from these figures (and previously discussed in Section 4.1), 
for all filters the first scale does not cover the highest frequency components of the signal. This fact is due to 
the design choice of starting from the scale in which ℎ1[𝑛]filter is ℎ1[𝑛] = {−1, 0, 1},𝑛 = −1,0,1 at the 
place of ℎ1[𝑛] = {−1, 1},𝑛 = 0,1 that is needed to filter the highest frequencies. Clearly, some information 
about high frequency components is lost with our choice (e.g. a chessboard edge with a frequency of exactly 
0.5 would not be revealed by filters), but in this way the initial wavelet coefficients are less influenced by 
noise. Anyway, filtering with the latter finest scale can be added without any effort to all filters. To see the 
different frequency behaviour of Spline filter at the first finest scale see Fig. 4.25, where frequency response 
of such filter is reported5. 

 

 

 

 

 

 

 

 

 

5 For the sake of comparison among Spline filter FT and the previous frequency responses, at each scale only the fre-
quency components 𝑓 ≤ 1 2𝑗⁄  are reported for the Spline filter. In fact, because the Spline implementation relies on up-
sampling operations, the frequency response, which at scale 1 is in 𝑓 > 1 2⁄ , arises in 1 2𝑗⁄ < 𝑓 ≤ 1 2⁄ at scales 
greater than 1.    
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(a) 

 
(b) 

Fig. 4.19 - Multiscale edge detector result when non-maxima suppression is applied at 𝑾𝒇(𝝉,𝟐𝒋) for a signal with 
several singularities (shown on top). The results are in the following order (from top to bottom): Canny, Deriche, 

Paillou and Shen-Castan. (a) Continue wavelet transform. (b) Dyadic wavelet transform 

 

 
Fig. 4.20 - Spline multiscale edge detector result when non-maxima suppression (shown at the bottom) is applied 

at 𝑾𝒇(𝝉,𝟐𝒋) for a signal with several singularities (shown at the top) 
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(a) (b) 

Fig. 4.21 - Frequency response of the Canny wavelet function at each scale. (a) Continue scale decomposition. (b) 
Dyadic scale decomposition 

 

  
(a) (b) 

Fig. 4.22 - Frequency response of the Deriche wavelet function at each scale. (a) Continue scale decomposition. 
(b) Dyadic scale decomposition 

 

  
(a) (b) 

Fig. 4.23- Frequency response of the Paillou wavelet function at each scale. (a) Continue scale decomposition. (b) 
Dyadic scale decomposition 
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(a) (b) 

Fig. 4.24- Frequency response of the Shen-Castan wavelet function at each scale. (a) Continue scale decomposi-
tion. (b) Dyadic scale decomposition 

 
Fig. 4.25 - Frequency response of Spline filter at each dyadic scale 

To see the differences among previous filters with respect to the well-known box filter6, which compute the 
variation in mean between the left and right neighbourhood of a pixel, in Fig. 4.26 and Fig. 4.27 respectively 
the edge detection results and filter frequency responses of this latter filter are reported. As can be seen from 
these figures, the box filter (Haar basis) is very sensitive to neighbour singularities and, increasing the scale, 
a lot of spurious edge raise. Moreover, as expected, its frequency response gives rise to Gibbs effects due to 
the lack of smoothness in the filter shape.    

6 It is utilized in Ratio of Averages (RoA) filter paradigm described in Section 3.3. The output of the filter is the differ-
ence between the signal means on the left and on the right with respect to the reference pixel. 

 

                                                      



104 Chapter  4 - Edge Detection on SAR Images: Multiscale Methods   
 

 
Fig. 4.26 - Box Filter (Haar) multiscale edge detector result when non-maxima suppression (shown at the bot-

tom) is applied at 𝑾𝒇(𝝉,𝟐𝒋) (shown in the middle) for a signal with several singularities (shown at the top) 

 

 
Fig. 4.27 - Frequency response of the Box filter (Haar) at each scale 

 

Clearly, on noisy edges, results are very different and many spurious edges arise. In Fig. 4.28(a) results in 
applying wavelet filters on the previous signal corrupted by a multiplicative Gamma noise with one num-
ber of looks is reported. In order to show if a threshold is able to delete spurious edges, in Fig. 4.28 (b) at de-
tected edge points the modulus value is depicted. As can be seen from these two images, Canny, Deriche and 
Paillou filter manage to remove the noise highlighting real edges (even though biased in position) raising the 
scale, whereas Shen-Castan and Harr are very sensitive to the noise. 
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(a) 

 
(b) 

Fig. 4.28 - Multiscale edge detector result when non-maxima suppression is applied at 𝑾𝒇(𝝉,𝟐𝒋) for a noisy sig-
nal (multiplicative Gamma noise with one number of look) with several singularities (shown on top). The results 
are in the following order (from top to bottom): Canny, Deriche, Paillou, Shen-Castan, Haar. (a) Non-maxima 

suppression. (b) Wavelet coefficients modulus 𝑴𝒇(𝝉,𝟐𝒋) at modulus maxima points 
 

In order to compare previous results with those obtained by Spline filters, in Fig. 4.29 the non-maxima sup-
pression (shown in the middle) and the value of 𝑀𝑓�𝝉, 2𝑗� in such points (shown at the bottom) is depicted. 
As can be seen, even Spline filter is very sensitive to such strong noise. 
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Fig. 4.29 - Spline multiscale edge detector result when non-maxima suppression (on the middle) is applied at 
𝑴𝒇(𝝉,𝟐𝒋) (at the bottom only on maxima points) for a noisy signal (multiplicative Gamma noise with one num-

ber of look) with several singularities (shown on top) 

  

4.5 Edge Detection Filter: 2-D Results 
Relying on the previous results, Multiscale edge detectors seem useless in facing high variance (number of 
looks equal to one) speckle noise. Anyway, indicating with 𝑁𝑘 the 1-D support (in time) of the filter ℎ[𝑛] at 
scale s, the 2-D filter support at the same scale becomes  (𝑁𝑘)2, so that filter sensitivity to the noise is greatly 
reduced.   

The previous filters are firstly applied to the free-noise image in Fig. 4.30. In particular, each row is a pulse 
train with raising widths: 5, 15, 25, 35, 45, 55. Each rectangular pulse is expanded column-wise along 100 
pixels with a free space of 25 columns from a subsequent pulse. The four pulse trains have a raising height of 
value: 200, 250, 300, 350, from top to bottom. As mentioned previously, those heights correspond to very 
low RCS ratios that can be frequently found on SAR images, e.g. between runways and nearby terrains.  

 
Fig. 4.30 - (Logarithm (base e) of the noise free signal (512x512 px).  

 

In Fig. 4.31 the gradient module  𝑀𝑓�𝝉, 2𝑗� = �|𝑊1𝑓(𝝉, 2𝑗)|2 + |𝑊2𝑓(𝝉, 2𝑗)|2 of the noise free image at 
the first and fourth scale are reported beside their modulus maxima points (without thresholding). In Fig. 
4.31 the frequency responses HL, LH and HH at scale 1 and 4 are depicted. 
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Fig. 4.31 - Normalized modulus 𝑴𝒇(𝝉,𝟐𝒋) and its local maxima values at scale 1 (left) and at scale 3 (right). (a) 
Canny. (b) Deriche. (c) Paillou. (d) Shen-Castan. (e) Haar 
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Fig. 4.32 - Frequency Responces HL, LH and HH at scale 1 (left) and at scale 4 (right). (a) Canny. (b) Deriche. (c) 
Paillou. (d) Shen-Castan. (e) Haar 
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4.5.1 Thresholding a Combination of Wavelet Coefficients 
After filtering, we have measured detection rate (DR) and false alarm rate (FAR) after performing the fol-
lowing histogram thresholding methods: 

• Otsu with two classes (“edges”, “not edges”) [23]; 

• Otsu with three classes (“strong edges”, “weak edges”, “not edges”) [23]; 

• Entropy with two classes (“edges”, “not edges”) [24]. 

For each method, we compared the threshold selection both by using the wavelet coefficient modulus at each 
scale separately (i.e. one threshold for each scale) and by exploiting all scales jointly (i.e. the same threshold 
for all scales). It should be noticed that even the concise performance index “idx” has been measured. This 
index is simply computed as 𝑖𝑑𝑥 = [𝐷𝑅 + (1 − 𝐹𝐴𝑅)] 2⁄ , and it is helpful to compare different methods to-
gether, without the necessity to see DR and FAR jointly. Furthermore, differently from the Pratt’s Figure of 
Merit (FOM) [37], this index enable us to compute the FAR on an interval where the signal is constant, i.e. it 
is not biased by near edges as in FOM computation. In fact, FOM is computed as: 

𝐹𝑂𝑀 =
1

max{𝑁𝐷𝐸 ,𝑁𝐼𝐷} �
1

1 + 𝛽𝑑𝑖2

𝑁𝐷𝐸

𝑖=1

 (4.79) 

with 𝑁𝐷𝐸  the number of detected points, 𝑁𝐼𝐷 the number of ideal edge points, 𝑑𝑖 is the distance between the 
ith detected edge point and the closest true edge point, whereas  𝛽 is a weight parameter. Instead, for idx, 
high values will indicate high DR and low FAR at the same time, whereas idx values around 0.5 indicates the 
worst case, i.e. low DR and low FAR contemporaneously. Analysing the obtained results (not reported for 
conciseness) many consideration can be done. Firstly, for all filters, raising the scale implies to decrement 
DR. Secondly, only the initial small scales give acceptable results. Finally, using the same threshold for 
all scales gives the worst performance.  

After the previous thresholding methods, a way to combine edge maps at each scale has to be found. In order 
to solve this problem, a combination method of wavelet coefficients at each scale can be devised. In litera-
ture, the most promising results are the first two of the following ones: 

• “scale multiplications” method [29][31]; 

• “scale sums” method [30]; 

• “scale minima” method. 

In Scale Multiplication (SM) the coefficients of the initial scales are multiplied in order to enhance coeffi-
cients at edge position meanwhile neglecting noisy coefficients. Similar considerations hold for Scale Mini-
ma (SMin) method, where at each position, only the minima values throughout the considered scales are left. 
Instead, Scale Sums (SS) method simply computes the coefficient means of all scales for each position. In 
formulas, SM, SMin, and SS values can be respectively computed as: 

𝑆𝑀 𝑓(𝑡) = � 𝑊𝑓�𝑐𝑐, 2𝑗�
𝐽𝑚−1

𝑗=0

 

𝑆𝑆 𝑓(𝑡) =
1
𝐽𝑠𝑠

� 𝑊𝑓�𝑐𝑐, 2𝑗�
𝐽𝑠𝑠−1

𝑗=0

 

𝑆𝑀in 𝑓(𝑡) =  min
𝑗=0,⋯,(𝐽min)

�𝑊𝑓�𝑐𝑐, 2𝑗�� 

(4.80) 

where 𝐽𝑚, 𝐽𝑠𝑠, 𝐽min are the scale upper limit of each method.  
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4.5.1.1 Simulated Image 

In this section the results in applying the previous filter to the image in Fig. 4.33 are reported. This last image 
is the simulated image in Fig. 4.30 onto which the multiplicative noise of i.i.d. Gamma pixels with num-
ber of looks equal to one has been applied. 

 

 
Fig. 4.33- Logarithm of the (512x512 px) signal in Fig. 4.30 with a multiplicative noise of i.i.d. Gamma pixels with 

number of looks equal to 1. 

The performance measurements obtained after filtering the image in Fig. 4.33 and the combining wavelet co-
efficients is reported in Fig. 4.35 - Fig. 4.40. In these figures, a performance index value, fixed a thresholding 
method, is reported as a pixel with a color proportional to the value (red correspond to 1 and blue to 0), see 
Fig. 4.34 for the position legend.  It is worth nothing that for each filter the best upper limit of the scale has 
been chosen among all possible values from 1 up to 9. Then, the weak threshold of the Canny-like double 
thresholding (also called hysteresis thresholding) method has been chosen as 40% of the strong threshold 
given by histogram thresholding methods [25], with exception of Otsu three classes that provides two 
thresholds directly. In particular, it should be noticed that in 2D case the information about gradient direction 
(“phase”) is exploited to perform a non-maxima suppression along the gradient direction. Then, only the 
maxima that cross the threshold are left in the final edge map. 

 

 
Fig. 4.34- Legend of the performance index results. 
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Fig. 4.35- Canny wavelet combination, SM (on the left), SS (on the centre), SMin (on the right) 
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Fig. 4.36 - Deriche wavelet combination, SM (on the left), SS (on the centre), SMin (on the right) 
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Fig. 4.37 - Paillou wavelet combination, SM (on the left), SS (on the centre), SMin (on the right) 
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Fig. 4.38 - Shen-Castan wavelet combination, SM (on the left), SS (on the centre), SMin (on the right) 
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Fig. 4.39 - Haar wavelet combination, SM (on the left), SS (on the centre), SMin (on the right) 
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Fig. 4.40 - Spline wavelet combination, SM (on the left), SS (on the centre), SMin (on the right) 

 

Analysing the previous results, we see that SMin and SS combination methods enable the best perfor-
mances to be obtained. Then, SM method shows a good capability to remove the noise, even though only 
few scale combinations are allowed to preserve weak edges. Finally, Haar filter yields nearly stable per-
formance for all combination methods, followed in the rank by Spline, Canny, Shen-Castan, Paillou and 
Deriche operator. In order visualize some results, in Fig. 4.41 and Fig. 4.42, the combined wavelet coeffi-
cients (normalized by its maxima value) and the corresponding edge map (using hysteresis thresolding with 
three classes Otsu method) are reported for Haar and Spline edge detectors. 
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Fig. 4.41  - Haar wavelet combination (top) and Otsu 3 classes hysteresis thresholding (bottom), SM (on the left), 
SS (on the centre), SMin (on the right) 
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Fig. 4.42 - Spline wavelet combination (top) and Otsu 3 classes hysteresis thresholding (bottom), SM (on the left), 
SS (on the centre), SMin (on the right) 
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4.5.1.2 CSK Image (CSK1) 

In order to appreciate filtering performance in real SAR images, the runway detail in Fig. 4.43 (b), which be-
longs to the “CSK1” image shown in Fig. 4.43 (a) has been used (see Section 1.9.2). This image, which de-
picts an airport, has been acquired in spotlight2 mode with polarization HH and incidence angle near/far of 
55.9/56.3 (degrees) and has a theoretical equivalent number of look equal to 1. The selected image detail has 
been chosen because it contains linear (diagonal) and curvilinear edges jointly.  

 
 

(a) (b) 
Fig. 4.43 - (a) Logarithm (base e) of the Intensity “CSK1” image. (b) Logarithm (base e) of the runway detail 

(512x512 px) 

 

In Fig. 4.44 - Fig. 4.49 the results in applying previous combination methods (SM, SMin, SS) are reported 
above the combined image. Since final results are very sensitive to the thresholding method, the threshold 
method reported in (4.81) and (4.82) has been added as further comparison (see the last column of all the re-
sults in Fig. 4.44 - Fig. 4.49). This method, which is referenced as “standard thresholding” method, selects 
the pixel (𝑥0,𝑦0) as strong edge pixel only if some conditions holds. Indicating for simplicity the 2-D wave-
let transform modulus at scale 2𝑗 and pixel (𝑥,𝑦) as 𝑀2𝑗𝑓(𝑥,𝑦), the “standard thresholding” method, selects 
the pixel (𝑥0,𝑦0) as strong edge pixel only if: 

𝑀2𝑗𝑓(𝑥0, 𝑦0) > 𝐸�𝑀2𝑗𝑓(𝑥,𝑦)�   𝐴𝑁𝐷  𝑀2𝑗𝑓(𝑥0,𝑦0) > 𝐸�𝑀2𝑗𝑓(𝑥,𝑦)�  �(𝑥,𝑦)∈𝑁10 (4.81) 

The equation can be clarified as follows: a pixel (𝑥0,𝑦0)is an edge pixel if and only if his wavelet module 
value is greater than both the global mean and the local mean of wavelet transform modulus computed in a 
10𝑥10 neighbourhood (indicated as 𝑁10) centred at that pixel. Then, the weak threshold for the hysteresis 
thresholding is computed as: 

𝑀2𝑗𝑓(𝑥0,𝑦0) >
𝐸�𝑀2𝑗𝑓(𝑥,𝑦)�

100
   𝐴𝑁𝐷  𝑀2𝑗𝑓(𝑥0,𝑦0) > 𝐸�𝑀2𝑗𝑓(𝑥,𝑦)�  �(𝑥,𝑦)∈𝑁10

 (4.82) 

Anyway, even with this thresholding method the combined wavelet coefficients do not show any improve-
ment. 
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Fig. 4.44 - Canny wavelet combination results (top) combined image (bottom), SM (on the left), SS (on the cen-
tre), SMin (on the right). 
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Fig. 4.45 - Deriche wavelet combination results (top) combined image (bottom), SM (on the left), SS (on the cen-
tre), SMin (on the right). 
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Fig. 4.46 - Paillou wavelet combination results (top) combined image (bottom), SM (on the left), SS (on the cen-
tre), SMin (on the right). 
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Fig. 4.47- Gauss - Shen-Castan wavelet combination results (top) combined image (bottom), SM (on the left), SS 
(on the centre), SMin (on the right). 
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Fig. 4.48 - Haar wavelet combination results (top) combined image (bottom), SM (on the left), SS (on the centre), 
SMin (on the right). 
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Fig. 4.49 - Spline wavelet combination results (top) combined image (bottom), SM (on the left), SS (on the cen-
tre), SMin (on the right). 

 

 

 



118 Chapter  4 - Edge Detection on SAR Images: Multiscale Methods   
 

Nevertheless, analysing the results obtained by filters at each scale, we can see that only the central scales 
(third, fourth and fifth) contains the desired information about edges. In fact, at smaller scales speckle 
noise is considered as edge and at larger scales only large distorted features are present. For these reasons, 
only the combinations among these scales are considered hereafter. Moreover, no one of the previous thresh-
olding methods manage to select properly a threshold and final results strongly depend on the presence (or 
absence) of edges in the image (e.g. Otsu and Entropy algorithms always presuppose the existence of two or 
more classes). To solve this problem we propose a semi-automatic thresholding method that relies on a 
homogeneous region in the image. In particular, given a binary mask of a homogeneous region, at each 
scale the histogram of the wavelet coefficients relative to the homogeneous region (i.e. noise) can be easily 
computed. In this way, passing a percentile value 𝑄 as input, we can compute the corresponding value that 
enables us to have the desired false alarm rate (FAR) in output.  Furthermore, even if no edges exist in the 
input image, the selected threshold would be correct. In Fig. 4.50 and Fig. 4.51 we report the results of the 
two best filters: Canny and Spline, when the semi-automatic thresholding method is used (with hysteresis 
between the two thresholds computed by the percentile 𝑄1 = 0.999  and  𝑄2 = 0.9) and only two scale 𝐽1, 𝐽2 
are considered in the combination. From these results follows that multiplication between the fourth and 
fifth scale enable us to remove most noise without degrading the important edges. Furthermore, compar-
ing the last column of each figure with the combination methods we can see that only through multiplication 
we can yield better performance than that obtained by a single scale.  Moreover, while Canny shows good 
results, Spline filter gives more noisy results. Anyway, despite the Canny filter, for Spline edge detector a 
fast implementation exist, i.e. Spline can be considered a fast approximation of Canny filter.   

In order to better visualize the best result, in Fig. 4.52 the canny multiplication method is reported beside the 
original CSK image. Nevertheless, form all experiments carried out in this study, it follows that wavelet fil-
ters for edge detection are sensitive to noise, and even using multiscale information does not produce a lot 
of improvement. In particular, whereas on simulated image with one number of looks the results are 
very good, CSK images are very challenging for the edge detection issue and only high scales ( 3≥J ) 
are not completely dominate by noise. Anyway, at these high scales small details are not present any more, 
causing an appreciable loss of information. For these reasons, a pre-processing step is needed before per-
forming edge detection on high speckled SAR images, even when wavelet filters are considered. 
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Fig. 4.50 - Canny wavelet combined image (top), thresholded image (bottom). 
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Fig. 4.51 - Spline wavelet combined image (top), thresholded image (bottom). 

 

  
(a) (b) 

Fig. 4.52 - (a) Original CSK image detail. (b) Canny multiplication method ( 5;4 21 == JJ ).   
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4.6 Computational Load 
To perform a comparison among the various filter implementations, computational times for various image 
sizes are reported in Tab. 4.2. The values reported in such table are the execution time needed to compute the 
first three scale of the wavelet decomposition.  The analysis has been performed on a computer Intel Core 2 
Duo, CPU T9400 @2.53GHz, 1.99GB di RAM. As can be clearly seen from these results, IIR implementa-
tion is convenient for image size lesser or equal than 512x512 pixels, whereas circular convolution 
(CCONV) is more efficient for the other cases. Between the previous implementation versions, Shen-Castan 
filter is the fastest, even though Harr filter overcomes it on 1024x1024 images when CCONV is used. Next, 
as expected, “a trous” algorithm (Section 4.3.7) is the fastest in absolute.    

 

 
 Computational Time (s) 

Implementation Image  
256x256 (px) 

Image  
512x512 (px) 

Image  
1024x1024 (px) 

Canny CCONV 1.01 2.54 14.28 

Deriche 
CCONV 1.00 2.57 13.30 

IIR 0.60 1.73 20.42 

Paillou 
CCONV 0.99 2.46 13.16 

IIR 0.58 1.68 18.90 

Shen-Castan 
CCONV 0.98 2.49 14.27 

IIR 0.52 1.56 14.89 

Haar 
CCONV 1.01 2.57 13.07 

IIR 0.70 2.16 19.81 

Spline (m=2) A TROUS 0.31 0.80 10.35 

Tab. 4.2  - Computational load of edge detection filters (mean time for compute the initial three scales). Bold font 
indicates the best value among all filters. Italic, underlined font indicates the best within the same “class” 

 


