
 

  Chapter  2

SAR Image Statistics 
From the physics of acquisition, the signal received by a single resolution cell can be expressed in its general 
complex form as the sum of all the scattering contributions inside the resolution cell: 

𝐴𝑒𝑗𝜑 = � 𝑒𝑗𝜑𝑘
𝑁

𝑘=1
 (2.1) 

 

where 𝐴𝑘 is the received attenuated amplitude and 𝜑𝑘 the received phase. Clearly, if the mean wavelength 𝜆 
used in transmission is smaller than the resolution cell size, scatterers at different parts of the resolution cell 
will have very different phase values. Thus, the final sum can be considered in the complex plane as the sum 
of vectors having similar amplitude but very different direction. Considering the phase 𝜑𝑘 as uniformly dis-
tributed between [−𝜋,𝜋], and presupposing a large number 𝑁 of statistically identical scatterers, the previous 
behavior can be studied as a random walk in the complex plane [3]. In this case the in-phase (𝑍1 =
𝐴 cos𝜑) and quadrature (𝑍2 = 𝐴 sin𝜑) components are independent identically distributed (i.i.d.) Gaussian 
random variables (r.v.) with mean zero and variance 𝜎 2⁄  (i.e. 𝑍1,𝑍2~𝒩(0,𝜎 2⁄ )), where 𝜎 is the mean radar 
cross section (RCS) of the point targets (average backscattering coefficient), which is linked to the received 
amplitudes 𝐴𝑘 (considered as a r.v.) with:  

var[𝑍𝑖] =
𝑁
2

E�𝐴𝑘2� =
𝜎
2

 (2.2) 
 

The reason to pose the variance of 𝑍𝑖 equal to 𝜎 2⁄   is that (as we shall see in the following) in this way the 
mean value of the intensity (i.e. power) image becomes just equal to 𝜎. It should be pointed out that in the 
rest of the document we will indicate the random variables with capitalized letters and their occurrence with 
lower-case ones.  

 

2.1 Single-Look Data 

2.1.1 Amplitude Data  

Clearly, expressing the amplitude 𝐴 = �𝑍12 + 𝑍22 and considering 𝑍1, 𝑍2 Gaussian r.v. with mean zero and 
variance 𝜎 2⁄ , it is straightforward to infer the Rayleigh distribution of 𝐴 with parameter 𝜎, indicated as 
𝐴~𝑅(𝜎) (see Fig. 2.1): 

𝑓𝐴(𝑎) =
2𝑎
 𝜎
𝑒−

𝑎2
𝜎 ;    𝑎 ≥ 0 (2.3) 

 

with mean, variance and squared coefficient of variation: 
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E[𝐴] =
√𝜋𝜎

2
;   var[𝐴] = �1 −

𝜋
4
� 𝜎;   𝐶𝐴2 =

var[𝐴]
E[𝐴]2 = �

4
𝜋
− 1� (2.4) 

 

 

Now, exploiting the theorem for the pdf computation of a r.v. 𝑌 expressed as a monotonic and derivable 
transformation 𝑌 = 𝑔(𝐴) applied at 𝐴: 

𝑓𝑌(𝑦) =
𝑓𝐴(𝑎)
𝑔′(𝑎)�

𝑎=𝑔𝑔−1(𝑦)
 (2.5) 

 

many distributions (function of 𝐴) can be easily derived. 

 

 
Fig. 2.1  - Single-Look amplitude pdf.   

 

2.1.2 Intensity Data  
Applying Eq. (2.5) the intensity 𝐼 = 𝐴2  is derived as an exponential distribution with parameter 𝜎, i.e. 
𝐼~𝐸𝑥𝑝(𝜎) (see Fig. 2.2): 

𝑓𝐼(𝑡) =
1
 𝜎
𝑒−

𝑡
𝜎;    𝑡 ≥ 0 (2.6) 

 

with mean, variance and squared coefficient of variation: 

E[𝐼] = 𝜎;   var[𝐼] = 𝜎2;    𝐶𝐼2 = 1 (2.7) 
 

Therefore, as said before, the mean received power (intensity) is 𝜎 indeed. It is worth noting that both ampli-
tude and intensity data have a variance varying with the RCS 𝜎. 



40 Chapter  2 - SAR Image Statistics   
 

 
Fig. 2.2  - Single-Look intensity pdf.   

2.1.3 Log-Intensity Data 
For these reasons it is interesting to compute the pdf of the intensity data logarithm 𝐼𝑙𝑜𝑔𝑔 = ln 𝐼. In fact, ap-
plying Eq. (2.5) we have a Fisher-Tippet distribution: 

𝑓𝐼𝑙𝑜𝑔(𝑡) =
𝑒𝑡

 𝜎
𝑒−

𝑒𝑡
𝜎 ;    𝑡 ≥ 0 (2.8) 

 

with mean, variance and squared coefficient of variation [4]: 

E�𝐼𝑙𝑜𝑔𝑔� = ln(𝜎) − 𝛾𝐸;   var�𝐼𝑙𝑜𝑔𝑔� =
𝜋2

6
;   𝐶𝐼𝑙𝑜𝑔

2 =
𝜋2 6⁄

(ln(𝜎) − 𝛾𝐸)2 (2.9) 
 

where 𝛾𝐸 ≈ 0.57722 is the Euler’s constant. It should be pointed out that applying the logarithm to the in-
tensity, the data variance becomes independent from the RCS 𝜎. Moreover, we have to pay attention in esti-
mating 𝜎 from the mean value of 𝐼𝑙𝑜𝑔𝑔 since there exist a constant bias in E�𝐼𝑙𝑜𝑔𝑔� equal to 𝛾𝐸. 

 

2.2 Multi-Look Data  
As said in Section 1.3, SAR images could be processed to obtain a reduced data variance at the cost of a 
lower resolution than the nominal one. This multilooking process, which can be performed in the Doppler 
frequency domain, may be also obtained in spatial domain by simply averaging neighbor pixels (in intensity 
format). The reason to operate in such a way is that, presupposing 𝐿 i.i.d. random variables 𝐼𝑖 with variance 
var[𝐼𝑖], the following multilooking operation: 

𝐼 =
1
𝐿
�𝐼𝑖

𝐿

𝑖=1

 (2.10) 

 

reduces the variance of the resulting image as: 

var[𝐼] =
var[𝐼𝑖]
𝐿

 (2.11) 
 

that is, it is reduced of a factor 𝐿. Clearly, if each pixel of the resulting image is computed by Eq. (2.10), the 
final data distribution is different from the ones descripted in Section 2.1. 
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2.2.1 Intensity Data 
After applying Eq. (2.9) to data distributed as Eq. (2.6), the resulting observed intensity is Gamma distribut-
ed with scale parameter 𝜎 𝐿⁄  and shape parameter  𝐿, i.e. 𝐼~𝛤(𝐿,𝜎 𝐿⁄ ) (see Fig. 2.3): 

𝑓𝐼(𝑡) =
𝑡𝐿−1

 Γ(𝐿)(𝜎 𝐿⁄ )𝐿 𝑒
− 𝑡
𝜎 𝐿⁄ ;    𝑡 ≥ 0 (2.12) 

 

where Γ indicates the Gamma function. In this case the mean, variance and squared coefficient of variation 
are: 

E[𝐼] = 𝜎;   var[𝐼] =
𝜎2

𝐿
;    𝐶𝐼2 =

1
𝐿

 (2.13) 
 

Clearly, when 𝐿 = 1, Eq. (2.12) becomes equal to Eq. (2.6), that is the Gamma distribution with 𝐿 = 1 is 
equal to the exponential one.   

 
Fig. 2.3  - Multi-Look intensity pdf.   

2.2.1.1 Multiplicative Speckle Model 

From Eq. (2.12) we can see that, highlighting the dependence on the parameter 𝜎, we can think at  𝐼 as a r.v. 
conditioned to  𝜎, with pdf 𝑓𝐼(𝑡|𝜎). The interesting property of the pdf in Eq. (2.12) is that it can be thought 
as composed by a noise r.v. 𝑛𝐼 with pdf  𝑓𝑛𝐼(𝑡) = 𝑓𝐼(𝑡|𝜎 = 1) multiplied with a constant value 𝜎, i.e.: 

I = 𝜎𝑛𝐼 (2.14) 
 

with 

𝑓𝑛𝐼(𝑡) = 𝑓𝐼(𝑡|𝜎 = 1) =
𝑡𝐿−1

 Γ(𝐿)(1 𝐿⁄ )𝐿 𝑒
− 𝑡
1 𝐿⁄ ;    𝑡 ≥ 0 (2.15) 

 

In fact, from Eq. (2.5), considering 𝜎 constant we have: 

𝑓𝐼(𝑡) =
𝑓𝑛𝐼(𝑛)
𝜎

�
𝑛=𝑡 𝜎⁄

=
𝑓𝐼(𝑛|𝜎 = 1)

𝜎
�
𝑛=𝑡 𝜎⁄

=
𝑡𝐿−1

 Γ(𝐿)(𝜎 𝐿⁄ )𝐿 𝑒
− 𝑡
𝜎 𝐿⁄ ;    𝑡 ≥ 0 (2.16) 

 

Given this property, the variable 𝑛𝐼 is presupposed due to the speckle noise, which is therefore considered as 
a multiplicative noise type. 
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2.2.2 Amplitude Data (Square-Root Intensity) 
Since usually the multi-look data are provided in amplitude format computed as the square-root of multi-look 
intensity data: 

𝐴 = √𝐼 = �
1
𝐿
�𝐼𝑖

𝐿

𝑖=1

 (2.17) 

 

it could be useful to retrieve such distribution exploiting Eq. (2.5), which is a Nakagami pdf, indicated as 
𝐴~Nakagami(𝐿,𝜎 𝐿⁄ ) (see Fig. 2.4): 

𝑓𝐴(𝑎) =
2𝑎2𝐿−1

 Γ(𝐿)(𝜎 𝐿⁄ )𝐿 𝑒
− 𝑎2
𝜎 𝐿⁄ ;    𝑎 ≥ 0 (2.18) 

 

with mean, variance and squared coefficient of variation: 

E[𝐴] =
Γ(𝐿 + 0.5)

Γ(𝐿) �
𝜎
𝐿

;   

var[𝐴] = 𝜎 − E[𝐴]2 = 𝜎 �1 −
Γ(𝐿 + 0.5)2

Γ(𝐿)2𝐿
� ;  

 𝐶𝐴2 =
var[𝐴]
E[𝐴]2 =

Γ(𝐿)2𝐿
Γ(𝐿 + 0.5)2 − 1 

(2.19) 

 

  

 
Fig. 2.4  - Multi-Look amplitude pdf.   

2.2.2.1 Multiplicative Speckle Model 

Clearly, even for this distribution the multiplicative speckle model hypothesis holds:  

A = √I = �𝜎𝑛𝐼 = √𝜎𝑛𝐴 (2.20) 
 

with  

𝑓𝑛𝐴(𝑎) = 𝑓𝐴(𝑎|𝜎 = 1) =
2𝑎2𝐿−1

 Γ(𝐿)(1 𝐿⁄ )𝐿 𝑒
− 𝑎2
1 𝐿⁄ ;    𝑎 ≥ 0 (2.21) 

 

Consequently, 𝑓𝐴(𝑎) can be also computed by 𝑓𝑛𝐴(𝑎) by Eq. (2.5) as: 
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𝑓𝐴(𝑎) =
𝑓𝑛𝐴(𝑛)

√𝜎
�
𝑛=𝑎 √𝜎⁄

=
𝑓𝐴(𝑛|𝜎 = 1)

√𝜎
�
𝑛=𝑎 √𝜎⁄

=
2𝑎2𝐿−1

 Γ(𝐿)(𝜎 𝐿⁄ )𝐿 𝑒
− 𝑎2
𝜎 𝐿⁄ ;    𝑎 ≥ 0 (2.22) 

 

2.2.3 Log-Intensity Data 
From the multiplicative noise model can be immediately understood the advantage of using log-transformed 
data, i.e. to transform a multiplicative noise model to an additive one: 

I𝑙𝑜𝑔𝑔 = lnI = ln𝜎 + ln𝑛𝐼 = ln𝜎 + 𝑛𝐼𝑙𝑜𝑔 (2.23) 
 

where, applying Eq. (2.5) to Eq. (2.12) we have: 

𝑓𝐼𝑙𝑜𝑔(𝑡) =
𝑒𝑡(𝐿−1)

 Γ(𝐿)(𝜎 𝐿⁄ )𝐿 𝑒
− 𝑒𝑡
𝜎 𝐿⁄ ;    𝑡 ≥ 0 (2.24) 

 

and 

𝑓𝑛𝐼𝑙𝑜𝑔(𝑡) = 𝑓𝐼𝑙𝑜𝑔(t|𝜎 = 1) =
𝑒𝑡(𝐿−1)

 Γ(𝐿)(1 𝐿⁄ )𝐿 𝑒
− 𝑒𝑡
1 𝐿⁄ ;    𝑡 ≥ 0 (2.25) 

 

which has mean and variance [4]: 

E �𝑛𝐼𝑙𝑜𝑔� = 𝜓(𝐿) − ln𝐿;   var �𝑛𝐼𝑙𝑜𝑔� = 𝜓(1, 𝐿) (2.26) 
 

where  

𝜓(𝑥) =
𝑑ln𝛤(𝑥)
𝑑𝑥

 (2.27) 
 

is the Diagamma function and 𝜓(1, 𝐿) is known as the first-order Polygamma function of 𝐿. A general nth 
Polygamma function is defined as the nth derivative of the Diagamma function, i.e.: 

𝜓(𝑛, 𝑥) =
𝑑𝑛

𝑑𝑥𝑛
𝜓(𝑥) (2.28) 

 

Nevertheless, when 𝐿 is integer we have: 

E �𝑛𝐼𝑙𝑜𝑔� = �
1
𝑚

𝐿−1

𝑚=1

+ 𝜓(1) − ln𝐿;   var �𝑛𝐼𝑙𝑜𝑔� = 𝜓(1,1) − �
1
𝑚2

𝐿−1

𝑚=1

 (2.29) 

 

with 𝜓(1) = 𝛾𝐸 ≈ 0.577215 the Euler’s constant and  𝜓(1,1) = 𝜋2 6⁄ . From these last equalities is clear 
that with 𝐿 = 1 Eq. (2.26) becomes equal to Eq. (2.9). 

 

2.3 Variable RCS Data 

2.3.1 Intensity Data 
Until now, we have considered 𝜎 as an intrinsic parameter of the data, which can be seen as a peculiar char-
acteristic of data belonging at a same area. However, only very homogeneous areas follow the previous dis-
tributions so that a further complication has to be inserted in the model. One of the most useful distribution, 
which can be considered as a generalization of the previous Gamma Multi-Look distribution in intensity, is 
the K-distribution [3], [5]. In particular, this distribution comes out from several different hypotheses on data 
distribution. Physically, if the mean wavelength 𝜆 used in transmission is smaller than the resolution cell size 
and the number of scatterers does not tend to infinite (as in the Gamma case), but it is modeled as negative 
binomial r.v., the final distribution is a K-pdf indeed [5]. Moreover, K-distribution is often introduced mod-
eling the natural RCS variation as a Gamma pdf, i.e.  𝜎~𝛤(𝑣, 〈𝜎〉 𝑣⁄ ):     
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𝑓𝜎(𝑡) =
𝑡𝑣−1

 Γ(𝑣)(〈𝜎〉 𝑣⁄ )𝑣 𝑒
− 𝑡
〈𝜎〉 𝑣⁄ ;    𝑡 ≥ 0 (2.30) 

 

with mean value E[𝜎] = 〈𝜎〉 and variance var[𝜎] = 〈𝜎〉2 𝑣⁄  controlled by the parameter 𝑣. In this case, if 
𝑓𝐼(𝑡|𝜎) is the one reported in Eq. (2.12): 

𝑓𝐼(𝑡|𝜎) =
𝑡𝐿−1

 Γ(𝐿)(𝜎 𝐿⁄ )𝐿 𝑒
− 𝑡
𝜎 𝐿⁄ ;    𝑡 ≥ 0 (2.31) 

 

the final distribution of 𝐼 becomes the following  K-distribution: 

𝑓𝐼(𝑡) = � 𝑓𝐼(𝑡|𝜎)𝑓𝜎(𝜎)𝑑𝜎
∞

0
=

2𝑡(𝐿+𝑣−2)

 Γ(𝐿)Γ(𝑣)(〈𝜎〉 𝐿𝑣⁄ )
𝐿+𝑣
2
𝐾𝑣−𝐿 �2�

𝐿𝑣𝑡
〈𝜎〉

� ;    𝑡 ≥ 0 (2.32) 

 

where 𝐾𝑣−𝐿 denotes the modified Bessel function of order (𝑣 − 𝐿), whose moments are: 

E[𝐼𝑚] =
〈𝜎〉𝑚 Γ(𝐿 + 𝑚)Γ(𝑣 + 𝑚)

𝐿𝑚𝑣𝑚 Γ(𝐿)Γ(𝑣)  (2.33) 
 

from which mean, variance and squared coefficient of variation are: 

E[𝐼] = 〈𝜎〉;    var[𝐼] = 〈𝜎〉2 �
1
𝐿

+
1
𝑣

+
1
𝐿𝑣
� ;   𝐶𝐼2 = �

1
𝐿

+
1
𝑣

+
1
𝐿𝑣
� (2.34) 

 

2.3.1.1 Multiplicative Speckle Model 

Finally, K-distribution can be considered as coming out from the following product model: 

I = 〈𝜎〉𝑐𝑐𝑛𝐼 (2.35) 
 

where 〈𝜎〉 is a constant peculiar of the acquired area, 𝑛𝐼~𝛤(𝐿, 1 𝐿⁄ ) is the Gamma noise and 𝑐𝑐~𝛤(𝑣, 1 𝑣⁄ ) is 
the statistical model of the present texture.  

2.3.1.2 Texture Information 

The RCS variation inside a region of the same type is called texture and it is an important feature often used 
in classification algorithm [6]. The model used in texture modeling is often the same as in Eq. (2.35), but no 
distribution of the speckle is presupposed and only the first two moments of the 𝑛𝐼 are set. In particular, for 
pixels of a same area, the r.v. 𝑛𝐼 and 𝑐𝑐 are considered independent and the following hypotheses on pdf mo-
ments are done: 

I = 〈𝜎〉𝑐𝑐𝑛𝐼; 
〈𝜎〉 = const. 

E[𝑐𝑐] = 1; 
E[𝑛𝐼] = 1; var[𝑛𝐼] = 1 𝐿⁄ ; 

(2.36) 

 

Clearly, exploiting only pdf moments (first order statistics), the goal of the texture analysis is to compute the 
variance of the texture var[𝑐𝑐]. Now, from the following equality: 

var[I] = E[𝐼2] − E[𝐼]2 = 〈𝜎〉2(E[𝑐𝑐2𝑛𝐼2] − E[𝑐𝑐𝑛𝐼]2) (2.37) 
 

and exploiting all the previous hypotheses we have: 

var[𝑐𝑐] =
�var[𝐼]

E[𝐼]2 � − var[𝑛𝐼]

var[𝑛𝐼] + 1
 

(2.38) 

 

so that estimating var[𝐼] and E[𝐼] from the data we can reach our scope. Naturally, since E[𝑐𝑐] = 1 and 
E[𝑛𝐼] = 1, Eq. (2.38)  can be written in terms of coefficients of variations as: 
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C𝜏2 =
C𝐼2 − C𝑛𝐼

2

C𝑛𝐼
2 + 1

 (2.39) 
 

conveniently expressed as: 

C𝐼2 = C𝜏2C𝑛𝐼
2 + C𝜏2 + C𝑛𝐼

2  (2.40) 
 

which makes clear that, in absence of texture (C𝜏2 = 0), we have C𝐼2 = C𝑛𝐼
2 . Therefore, we could think to es-

timate also C𝑛𝐼
2  directly from the data in areas with no texture (e.g. water basins). Nevertheless, for classifica-

tion aims, the first order statistics are usually not enough and relations between neighbor pixels have to be 
taken into account (second order statistics). One of the most used second order statistics is the autocovari-
ance function that is often preferred to the autocorrelation for stochastic process with no zero mean. In par-
ticular, for an intensity image modeled as: 

𝐼(𝑥, 𝑟𝑟) = 〈𝜎〉 𝑐𝑐(𝑥, 𝑟𝑟) 𝑛𝐼(𝑥, 𝑟𝑟) (2.41) 
 

and considering the hypothesis of wide sense stationary process (WSS), the autocovariance function be-
comes: 

 C𝐼(𝑥1, 𝑟𝑟1, 𝑥2, 𝑟𝑟2)  = E� {𝐼(𝑥1, 𝑟𝑟1) − E[𝐼(𝑥1, 𝑟𝑟1)]} {𝐼(𝑥2, 𝑟𝑟2) − E[𝐼(𝑥2, 𝑟𝑟2)]}� 
=  E[𝐼(𝑥, 𝑟𝑟)𝐼(𝑥 + ∆𝑥, 𝑟𝑟 + ∆𝑟𝑟)] − E[𝐼(𝑥, 𝑟𝑟)]2 
= 𝑅𝐼(∆𝑥,∆𝑟𝑟) − 𝜇𝐼2 
= 𝐶𝐼(∆𝑥,∆𝑟𝑟) 

(2.42) 

 

with 𝜇𝐼 the intensity mean and 𝑅𝐼(∆𝑥,∆𝑟𝑟) the autocorrelation function. Following the model in Eq. (2.41), 
we have:  

 𝑅𝐼(∆𝑥,∆𝑟𝑟) = 𝜇𝐼2𝑅𝜏(∆𝑥,∆𝑟𝑟)𝑅𝑛𝐼(∆𝑥,∆𝑟𝑟) (2.43) 
 

and considering the PSF shape of Eq. (1.53) we have: 

𝐶𝑛𝐼(∆𝑥,∆𝑟𝑟) = 𝑅𝑛𝐼(∆𝑥,∆𝑟𝑟) − 𝜇𝑛𝐼
2 = 𝜇𝑛𝐼

2 sinc2 �
𝜋∆𝑥
𝑟𝑟𝑥

� sinc2 �
𝜋∆𝑟𝑟
𝑟𝑟𝑟
� (2.44) 

 

with 𝑟𝑟𝑥 and 𝑟𝑟𝑦 respectively the azimuth and range resolution of the SAR system. Nevertheless, presupposing 
a homogeneous area with no texture (𝑅𝜏(∆𝑥,∆𝑟𝑟) = 1), we have:  

𝑅𝑛𝐼(∆𝑥,∆𝑟𝑟) =
𝑅𝐼(∆𝑥,∆𝑟𝑟)

𝜇𝐼2
 (2.45) 

 

so that 𝑅𝑛𝐼(∆𝑥,∆𝑟𝑟) can be estimated from the data in that homogeneous area. Now, the theoretical 
𝑅𝑛𝐼(∆𝑥,∆𝑟𝑟) in the case of multi-look data can be computed as:  

𝑅𝑛𝐼(∆𝑥,∆𝑟𝑟; 𝐿) =
𝑅𝐼(∆𝑥,∆𝑟𝑟; 𝐿)

𝜇𝐼2
=

1
𝜇𝐼2

E �
1
𝐿
� 𝐼𝑖(𝑥, 𝑟𝑟)

𝐿

𝑖=1

1
𝐿
� 𝐼𝑖(𝑥 + ∆𝑥, 𝑟𝑟 + ∆𝑟𝑟)

𝐿

𝑖=1
� (2.46) 

 

and exploiting the independence hypotheses of the model in Eq. (2.41) we have: 

𝐶𝑛𝐼(∆𝑥,∆𝑟𝑟; 𝐿) = 𝑅𝑛𝐼(∆𝑥,∆𝑟𝑟; 𝐿) − 𝜇𝑛𝐼
2 =

𝜇𝑛𝐼
2

𝐿
sinc2 �

𝜋∆𝑥
𝑟𝑟𝑥

� sinc2 �
𝜋∆𝑟𝑟
𝑟𝑟𝑟
� =

𝐶𝑛𝐼(∆𝑥,∆𝑟𝑟; 𝐿 = 1)
𝐿

 (2.47) 
 

where 𝐶𝑛𝐼(∆𝑥,∆𝑟𝑟; 𝐿 = 1) is the one in Eq. (2.44). As can be seen from Eq. (2.47), multi-looking reduces the 
speckle correlation, i.e. the granular appearance of the SAR image. Now, the goal of this second order tex-
ture analysis is to compute the autocovariance function of texture. Nevertheless, the autocorrelation coeffi-
cient is sometime preferred due to its normalization property: 

𝜌𝐼(∆𝑥,∆𝑟𝑟) =
𝐶𝐼(∆𝑥,∆𝑟𝑟)

var[𝐼]
 (2.48) 

 

In particular, the autocorrelation coefficient in range direction in a homogeneous area with 𝑁𝑟 pixels along 
the range and 𝑁𝑥 pixels along the azimuth can be estimated by computing:  
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𝐶𝐼(∆𝑟𝑟, 𝑥) =
1

𝑁𝑟 − ∆𝑟𝑟
� [𝐼(𝑥, 𝑟𝑟) − 𝜇𝐼][𝐼(𝑥, 𝑟𝑟 + ∆𝑟𝑟) − 𝜇𝐼]

𝑁𝑟−∆𝑟

𝑟=1
 

𝐶𝐼(∆𝑟𝑟) =
1
𝑁𝑥

� 𝐶𝐼(∆𝑟𝑟, 𝑥)
𝑁𝑥

𝑥=1
 

(2.49) 

 

with 𝜇𝐼 estimated from data and where the operations in Eq. (2.49) have to repeated for 𝑑 = 1,⋯ ,𝑑𝑀 with 
𝑑𝑀 ≪ 𝑁𝑟. Clearly applying the same reasoning in azimuth direction and estimating var[𝐼] we can compute 
𝜌𝐼(∆𝑥,∆𝑟𝑟) exploiting Eq. (2.48). Now, using Eq. (2.43) that in the general case becomes:  

𝑅𝐼(∆𝑥,∆𝑟𝑟; 𝐿) = 𝜇𝐼2𝑅𝜏(∆𝑥,∆𝑟𝑟)𝑅𝑛𝐼(∆𝑥,∆𝑟𝑟; 𝐿) (2.50) 
 

we can compute the autocorrelation coefficient of the texture 𝜌𝜏(∆𝑥,∆𝑟𝑟) as: 

𝜌𝜏(∆𝑥,∆𝑟𝑟) =
1

var[𝑐𝑐]
⎣
⎢
⎢
⎡𝜌𝐼(∆𝑥,∆𝑟𝑟) var[𝐼]

𝜇𝐼2
+ 1

𝑅𝑛𝐼(∆𝑥,∆𝑟𝑟; 𝐿) − 1

⎦
⎥
⎥
⎤
 (2.51) 

 

with var[𝑐𝑐] estimated by Eq. (2.38) , var[𝐼], 𝜇𝐼 estimated by data, and 𝑅𝑛𝐼(∆𝑥,∆𝑟𝑟; 𝐿) theoretical (see (2.47)) 
or estimated. 

 


