
 

  Chapter  6

Roads/Runway Extraction from Edges  
In Chapter  3 and Chapter  4 several methods to extract an accurate edge map from challenging SAR images 
(equivalent number of looks equal to one) are presented, together with a method to refine and reconstruct 
missed edges (see Chapter  5). The problem faced in this section is about the linear landmarks extraction 
(e.g. roads/runways) from a SAR image, given its accurate edge map. 

6.1 Line Extraction 
The problem presented in this section concerns the pixel grouping in order to recognize linear parts of the de-
tected edges. A common mathematical tool to solve this type of problem is the Hough Transform [52]. The 
peculiarity of the Hough Transform is that it is able to transform a complex problem, such as finding pixels 
belonging to a straight line, in an easier task, such as finding local maxima in Hough Transform space. Actu-
ally, the Hough Transform is a tool to detect the slope and offset parameters of the lines presented in an im-
age. This is why we need another procedure to transform the parameters detected into vectors which lie over 
the image pixels, i.e. we need a grouping procedure. In this section both of the previously mentioned proce-
dures are described, but before starting it is necessary to make some preliminary remarks for the sake of clar-
ity. 

6.1.1 Hough and Radon Transform: Definition 
Given an image 𝑔(𝑥,𝑦), the Hough transformed version 𝐺(𝑝, 𝑐𝑐) is defined as follows, with 𝑝 and 𝑐𝑐 respec-
tively the slope and the offset of a generic line: 

𝐺(𝑝, 𝑐𝑐) = � 𝑔(𝑥, 𝑝𝑥 + 𝑐𝑐)𝑑𝑥
∞

−∞
 (6.1) 

From Eq. (6.1) it is clear how the Hough Transform value at a point (𝑝∗, 𝑐𝑐∗) is simply the value of the image 
integral along the line 𝑦 = 𝑝∗𝑥 + 𝑐𝑐∗. A way to practically implement this mathematical operator is to discre-
tize the involved variables by quantizing them. In this manner the Eq. (6.1) becomes: 

𝐺(𝑝𝑘 , 𝑐𝑐ℎ) = � 𝑔(𝑥𝑚, 𝑝𝑘𝑥𝑚 + 𝑐𝑐ℎ)∆𝑥
𝑀−1

𝑚=0

 (6.2) 

where a linear quantization is considered: 

�

𝑥𝑚 = 𝑥0 + 𝑚∆𝑥 ,𝑚 = 0,⋯ ,𝑀 − 1
𝑦𝑛 = 𝑦0 + 𝑛∆𝑦 ,𝑛 = 0,⋯ ,𝑁 − 1
𝑝𝑘 = 𝑝0 + 𝑘∆𝑝 , 𝑘 = 0,⋯ ,𝐾 − 1
𝑐𝑐ℎ = 𝑐𝑐0 + ℎ∆𝑐𝑐 ,𝑛 = 0,⋯ ,𝐻 − 1

 (6.3) 
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with 𝑥0, 𝑦0, 𝑝0 and 𝑐𝑐0 the initial variable values. Usually, because the Hough Transform version in Cartesian 
coordinates suffers from the potentially infinite value of the variable 𝑝, the version in Polar coordinates 
shown in Eq. (6.5) is used in literature: 

𝐺([𝜌𝑟], 𝜃𝑡) = � �𝑔(𝑥𝑚,𝑦𝑛)∆𝑥∆𝑦
𝑁−1

𝑛=0

𝑀−1

𝑚=0

 (6.4) 

where the following well-known equality is utilized: 

𝜌𝑟 = 𝑥𝑚 cos𝜃𝑡 + 𝑦𝑛 sin𝜃𝑡 (6.5) 

with 𝜃 ∈ [0,𝜋) and the square parenthesis [∙] indicates the interpolation operator (e.g. nearest neighbour). 

In the literature, the terminology related on Hough Transform [52] and Radon Transform [54] can be some-
times misleading. Actually, the difference mainly reside in the domain where the variables interpolation is 
performed. However, since Radon Transform has got a continue definition and considering the historical 
point of view, it can be said that the Hough Transform is a particular implementation of the Radon Trans-
form. To explain this concept better, let us introduce the discrete Radon transform: 

𝐺(𝜌𝑟 ,𝜃𝑡) = � �𝑔([𝑥𝑚], [𝑦𝑛])∆𝑦∆𝑥
𝑁−1

𝑛=0

𝑀−1

𝑚=0

 

= �𝑔��𝜌𝑟 cos 𝜃𝑡 − 𝑠𝑗 sin𝜃𝑡�, �𝜌𝑟 sin𝜃𝑡 + 𝑠𝑗 cos 𝜃𝑡��∆𝑠
𝐽−1

𝑗=0

 

(6.6) 

where the following equalities are utilized: 

�
𝑥𝑚 = 𝜌𝑟 cos 𝜃𝑡 − 𝑠𝑗 sin𝜃𝑡
𝑦𝑚 = 𝜌𝑟 sin𝜃𝑡 + 𝑠𝑗 cos𝜃𝑡

 (6.7) 

with s the axis taken along the line of coordinates (𝜌,𝜃), see Fig. 6.1, and: 

�

𝑥𝑚 = 𝑥0 + 𝑚∆𝑥 ,𝑚 = 0,⋯ ,𝑀 − 1
𝑦𝑛 = 𝑦0 + 𝑛∆𝑦 ,𝑛 = 0,⋯ ,𝑁 − 1
𝜃𝑡 = 𝜃0 + 𝑡∆𝜃 , 𝑡 = 0,⋯ ,𝑇 − 1
𝜌𝑟 = 𝜌0 + 𝑟𝑟∆𝜌 , 𝑟𝑟 = 0,⋯ ,𝑅 − 1

 (6.8) 

It is totally clear from the comparison between Eq. (6.4) and (6.6) that the main different resides in the do-
main where the interpolation is performed. In the Hough Transform the variable 𝜌 is interpolated and this 
means that the interpolation is performed on transformed domain 𝛤𝑥𝛩. Instead, in the Radon Transform the 
interpolation is performed in the image domain 𝑋𝑥𝑌 because the variables x and y are discretized. 

 

Fig. 6.1 - Reference system used by the Radon Transform 
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The advantage in rounding on image domain (Radon Transform) is that the integration line can pass through 
every point inside the pixel (here thought as a square with values in the interval [𝑥𝑚 − Δ𝑥 2⁄ , 𝑥𝑚 +
Δ𝑥 2⁄ ]𝑥[𝑦𝑛 − Δ𝑦 2⁄ ,𝑦𝑛 + Δ𝑦 2⁄ ]). On the contrary, rounding variables on transformed domain (Hough 
Transform) forces the line to pass through the centre (𝑥𝑚,𝑦𝑛) of the pixels. However, in order to reduce the 
quantization error only one variable is usually rounded so that Radon Transform can be written as: 

𝐺(𝜌𝑟 ,𝜃𝑡) = � �𝑔(𝑥𝑚 , [𝑦𝑛])∆𝑦∆𝑥
𝑁−1

𝑛=0

𝑀−1

𝑚=0

 (6.9) 

forcing the integration line to pass through the points in 𝑥𝑚 𝑥 [𝑦𝑛 − Δ𝑦 2⁄ ,𝑦𝑛 + Δ𝑦 2⁄ ]. However, rounding 
variables on  transformed domain (Hough Transform) is expressly suggested with binary images because it 
allows to avoid summing zero valued pixels and so to save a lot of computation load.  

For the sake of completeness, the generalized versions of the Hough and of the Radon Transform are intro-
duced hereafter. 

6.1.1.1 Generalized Radon Transform 

Let us denote a generic curve as 𝜙(𝑥,𝑦;𝒗) = 0, with 𝒗 = �𝑣1,⋯ , 𝑣𝜁� the parameter vector which describe 
the curve totally (e.g. for the line case 𝜙(𝑥, 𝑦;𝒗) = 𝑦 − 𝑝𝑥 + 𝑐𝑐 with 𝒗 = (𝑝, 𝑐𝑐)). Therefore, the Generalized 
Radon Transform (GRT) can be written as: 

𝐺(𝒗) = � 𝑔�𝑥,𝜙(𝑥;𝒗)�𝑑𝑥
∞

−∞
 (6.10) 

Then, involved variables can be discretized by quantizing them  

𝒗 = 𝑓(𝑱) (6.11) 

where 𝑓 is the quantization function and 𝑱 = �𝑗1,⋯ , 𝑗𝜁� is the index vector (e.g. the linear quantization func-
tion is  𝑣𝑖 = 𝑣𝑖0 + 𝑗𝑖∆𝑣𝑖 with 𝑣𝑖 ∈ 𝒗, 𝑗𝑖 = 0,⋯ , 𝐽1 − 1 and 𝑣𝑖0 the initial value of 𝑣𝑖). The quantized version 
of the GRT can be written as: 

𝐺(𝑱) = � 𝑔(𝑥𝑚, [𝜙(𝑥𝑚; 𝑱)])∆𝑥
𝑀−1

𝑚=0

 (6.12) 

 

 

6.1.1.2 Generalized Hough Transform 

Despite the Radon Transform, the Hough Transform presupposes the function 𝜙 invertible. 

In fact, only in that case, it is possible to retrieve a parameter 𝑣𝑟 ∈ 𝒗 through the variables 𝑥, 𝑦, and the re-
maining parameters 𝒗′ ∈ 𝒗 𝑣𝑟⁄ : 

𝑣𝑟 = 𝜙𝑣𝑟
−1(𝑥,𝑦;𝒗′) (6.13) 

Indicating with 𝑗𝑟 the index of the parameter 𝑣𝑟 and with 𝑱′ the index vector of the remaining parameters, the 
quantized version of the Generalized Hough Transform (GHT) can be written as: 

𝐺([𝑗𝑟], 𝑱′) = � � 𝑔(𝑥𝑚, 𝑦𝑛)∆𝑥∆𝑦
𝑀−1

𝑚=0

𝑁−1

𝑛=0

 (6.14) 

with: 

𝑗𝑟 = �𝑓𝑣𝑟
−1(𝑣𝑟)� = �𝑓𝑣𝑟

−1 �𝜙𝑣𝑟
−1(𝑥,𝑦;𝒗′)�� (6.15) 
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6.2 Hough and Radon Transform: Implementation Problems 
In order to not lose any information about image lines, some constraints about the variables involved in both 
transforms have to be respected. It is worth nothing that the choice of the approximation domain changes the 
variable constraints heavily. Usually, there are two manners to face this issue in literature. One manner in-
volves the signal processing theory, in which variable constraints are set so that it is possible to recover the 
original image from the transformed one. The second way is more practical and its main goal is to compute 
the transformed image avoiding any type of computation error. Surprisingly, even though the second way is 
much more intuitive than the first one, the constraints are nearly the same. For this reason in this document 
the practical treating is followed and only the final signal processing results are reported for a clear compari-
son. 

6.2.1 Generalized Radon Transform 
As shown in Eq. (6.12), in order to avoid skipping some image points in the GRT computation, for each var-
iation ∆𝑣𝑖 of parameters 𝑣𝑖 ∈ 𝒗, and for each variation ∆𝑥 of 𝑥, keeping constant the other variables each 
time, the function 𝜙(𝑥𝑚; 𝑱) has to vary less than 1 point. This consideration is translated in the following 
constraints:  

�
max|𝜙(𝑥𝑚; 𝑣𝑖 + ∆𝑣𝑖) − 𝜙(𝑥𝑚;  𝑣𝑖)| ≤ ∆𝑦 ,∀𝑣𝑖
max|𝜙(𝑥𝑚+1;𝒗) − 𝜙(𝑥𝑚;  𝒗)| ≤ ∆𝑦  (6.16) 

Moreover, if the function 𝜙 is differentiable, in order to retrieve the variable constraints more easily, it is 
convenient to exploit the linear approximation as follows: 

⎩
⎪
⎨

⎪
⎧max ��

𝜕𝜙(𝑥;𝑣𝑖)
𝜕𝑣𝑖

� ∆𝑣𝑖� ≤ ∆𝑦 ,∀𝑣𝑖

max ��
𝜕𝜙(𝑥;𝑣𝑖)

𝜕𝑥
� ∆𝑥� ≤ ∆𝑦

 (6.17) 

For the sake of clearness, sometimes the function 𝜙 is indicated as function of the vector parameter 
(e.g. 𝜙(𝑥𝑚+1;𝒗)) and other times with the index parameter (e.g. 𝜙(𝑥𝑚; 𝑱)), but in both cases the meaning is 
the same. 

Before showing the precedent constraint results in the line case, another effort needs doing to solve the prob-
lem concerning the infinite value within the domain of parameter p (line slope). This problem arises when 
only one variable is rounded and to solve that in an easy way the following equality can be exploited:  

𝐺(𝜌,𝜃) =
1

|sin𝜃|� 𝑔 �𝑥,−𝑥cot𝜃 +
𝜌

sin𝜃
�𝑑𝑥

+∞

−∞
 (6.18) 

and also 

𝐺(𝜌,𝜃) =
1

|cos𝜃|� 𝑔 �−𝑦tg𝜃 +
𝜌

cos𝜃
,𝑦� 𝑑𝑦

+∞

−∞
 (6.19) 

Hence, in order to avoid infinite values and divisions by zero, the Eq. (6.18) can be used in 𝜃 ∈ (𝜋4,   3𝜋4 ] and 
Eq. (6.19) in 𝜃 ∈ �𝜋4,   𝜋� ∪ [0, 𝜋

4
). Therefore, comparing the previous equations (Eq. (6.18) and (6.19)) with 

the following definitions of the Radon Transform in Cartesian coordinates:  

𝐺(𝑝, 𝑐𝑐) = � 𝑔(𝑥,𝑝𝑥 + 𝑐𝑐)𝑑𝑥
+∞

−∞
 (6.20) 

and 

𝐺(𝑟𝑟, 𝜂) = � 𝑔(𝑟𝑟𝑦 + 𝜂,𝑦)𝑑𝑦
+∞

−∞
 (6.21) 

it becomes clear how the Radon Transform can be divided in two parts: 
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1) 21sinθ >  

𝐺(𝜌,𝜃) =
1

|sin𝜃|𝐺
(𝑝, 𝑐𝑐)|𝑝=−cotθ

𝜏=𝜌 sinθ⁄
 (6.22) 

2) 21sinθ ≤  

𝐺(𝜌,𝜃) =
1

|cos𝜃|𝐺
(𝑟𝑟, 𝜂)| 𝑝=−tgθ

𝜏=𝜌 cosθ⁄
 (6.23) 

It is worth noting as this way is the same as dividing the piano in two parts: in the first one are accounted 
lines of equation 𝑦 = 𝑝𝑥 + 𝑐𝑐 with −1 < 𝑝 ≤ 1, and in the second one are considered lines of equation 
𝑥 = 𝑟𝑟𝑦 + 𝜂 with −1 ≤ 𝑟𝑟 < 1, where: 

⎩
⎨

⎧ 𝑟𝑟 =
1
𝑝

𝜂 = −
𝑐𝑐
𝑝

 (6.24) 

Quantizing variables involved in Eq. (6.22) and (6.23) we have the following implementable Radon Trans-
form version: 

1) 𝐬𝐢𝐧𝜽 > 𝟏 √𝟐⁄  

𝐺(𝜌𝑟 ,𝜃𝑡) =
∆𝑥

|sin𝜃𝑡|
�𝑔(𝑥𝑚, 𝑝𝑘𝑥𝑚 + 𝑐𝑐ℎ)|𝑝𝑘=−cotθ𝑡

𝜏ℎ=𝜌𝑟 sinθ𝑡⁄

𝑀−1

𝑚=0

 

=
∆𝑥

|sin𝜃𝑡|
� 𝑔(𝑥𝑚,−cotθ𝑡𝑥𝑚 + 𝜌𝑟 sinθ𝑡⁄ )
𝑀−1

𝑚=0

 

(6.25) 

2) 𝐬𝐢𝐧𝜽 ≤ 𝟏 √𝟐⁄  

 

𝐺(𝜌𝑟 ,𝜃𝑡) =
∆𝑦

|cos𝜃𝑡|
�𝑔(𝑟𝑟𝑘𝑦𝑛 + 𝜂ℎ , 𝑦𝑛)|𝑟𝑘=−tgθ𝑡

𝜂ℎ=𝜌𝑟 cosθ𝑡⁄

𝑁−1

𝑛=0

 

=
∆𝑦

|cos𝜃𝑡|
�𝑔(−tgθ𝑡𝑦𝑛 + 𝜌𝑟 cosθ𝑡⁄ , 𝑦𝑛)
𝑁−1

𝑛=0

 

(6.26) 

Now, it is possible to derive the constraints applying Eq. (6.17) to each variable involved in Eq. (6.22) and 
(6.23). For the sake of clarity all the mathematical passages are given: 

• Variation of 𝝆 and 𝐬𝐢𝐧𝜽 > 𝟏 √𝟐⁄  

max ��
𝜕
𝜕𝜌

�−𝑥cot𝜃 +
𝜌

sin𝜃
�� ∆𝜌� ≤ ∆𝑦 

→ max �
∆𝜌

|sin𝜃|� ≤ ∆𝑦 

→ √2∆𝜌 ≤ ∆𝑦 

(6.27) 
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• Variation of 𝜽 and 𝐬𝐢𝐧𝜽 > 𝟏 √𝟐⁄  

max ��
𝜕
𝜕𝜃

�−𝑥cot𝜃 +
𝜌

sin𝜃
�� ∆𝜃� ≤ ∆𝑦 

→ max ��
𝑥 − 𝜌cos𝜃

sin2𝜃
� ∆𝜃� ≤ ∆𝑦 

→ max ��
𝑥 − 𝜌cos𝜃

sin2𝜃
� ∆𝜃� ≤ max ��

𝑥
sin2𝜃

�� ∆𝜃 + max ��
𝜌cos𝜃
sin2𝜃

�� ∆𝜃 ≤ ∆𝑦 

→ �2𝑥𝑀−1 + √2𝜌𝑅−1�∆𝜃 ≤ ∆𝑦 

(6.28) 

 

• Variation of x and 𝐬𝐢𝐧𝜽 > 𝟏 √𝟐⁄  

max ��
𝜕
𝜕𝑥

�−𝑥cot𝜃 +
𝜌

sin𝜃
�� ∆𝑥� ≤ ∆𝑦  

→ max{|−cot𝜃|∆𝑥} ≤ ∆𝑦 
→ ∆𝑥 ≤ ∆𝑦 

(6.29) 

Considering that the case sin𝜃 ≤ 1 √2⁄ , is obtainable from the case sin𝜃 > 1 √2⁄  replacing x with y we have 
the final constraints: 

⎩
⎪
⎨

⎪
⎧∆𝜌 ≤ min �

∆𝑦
√2

,
∆𝑥
√2
�

∆𝜃 ≤ min �
∆𝑦

�2𝑥𝑀−1 + √2𝜌𝑅−1�
,

∆𝑥
�2𝑦𝑁−1 + √2𝜌𝑅−1�

�

∆𝑥 = ∆𝑦

 (6.30) 

However, if the constraints for Cartesian coordinates are solved first and they are replaced with the corre-
sponding Polar variables next, less tight constraints on θ∆  are found: 

⎩
⎪
⎨

⎪
⎧∆𝜌 ≤ min �

∆𝑦
√2

,
∆𝑥
√2
�

∆𝜃 ≤ min �
∆𝑦

√2𝜌𝑅−1
,

∆𝑥
√2𝜌𝑅−1

,
𝜋∆𝑦

4𝑥𝑀−1
,
𝜋∆𝑥

4𝑦𝑁−1
�

∆𝑥 = ∆𝑦

 (6.31) 

Usually to save memory and computation time the reference system origin is taken in the centre of the image 
so that 𝜌𝑅−1 = �𝑥𝑀−12 + 𝑦𝑁−12  reducing the previous equalities into: 

⎩
⎪
⎨

⎪
⎧∆𝜌 ≤ min �

∆𝑦
√2

,
∆𝑥
√2
�

∆𝜃 ≤ min �
∆𝑦

√2�𝑥𝑀−12 + 𝑦𝑁−12
,

∆𝑥

√2�𝑥𝑀−12 + 𝑦𝑁−12
�

∆𝑥 = ∆𝑦

 (6.32) 

 

6.2.2 Generalized Hough Transform 
For the GHT the computations are similar to the GRT ones. Rewriting Eq. (6.14) as: 

𝐺([𝑣𝑟],𝒗′) = � � 𝑔(𝑥𝑚 ,𝑦𝑛)∆𝑥∆𝑦
𝑀−1

𝑚=0

𝑁−1

𝑛=0

 (6.33) 

and applying the same previous reasoning, the following constraints are found: 
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⎩
⎪⎪
⎨

⎪⎪
⎧max ��

𝜕𝑣𝑟
𝜕𝑣𝑖

� ∆𝑣𝑖� ≤ ∆𝑣𝑟 ,∀𝑣𝑖

max ��
𝜕𝑣𝑟
𝜕𝑥

� ∆𝑥� ≤ ∆𝑣𝑟

max ��
𝜕𝑣𝑟
𝜕𝑦

� ∆𝑦� ≤ ∆𝑣𝑟

 (6.34) 

For what concerns the line case we have: 

𝑣𝑟 = 𝜌 = 𝑥 cos 𝜃 + 𝑦 sin𝜃 (6.35) 

hence, replacing Eq. (6.35) in Eq. (6.34) the following results are obtained: 

• Variation of 𝜽 

max ��
𝜕
𝜕𝜃

[𝑥 cos𝜃 + 𝑦 sin𝜃]� ∆𝜃� ≤ ∆𝜌 
→ max{|−𝑥 sin𝜃 + 𝑦 cos 𝜃|∆𝜃} ≤ ∆𝜌 

→ ∆𝜃�𝑥𝑀−12 + 𝑦𝑁−12 ≤ ∆𝜌 

(6.36) 

• Variation of x 

max ��
𝜕
𝜕𝑥

[𝑥 cos𝜃 + 𝑦 sin𝜃]� ∆𝑥� ≤ ∆𝜌 
→ max{|cos 𝜃|∆𝑥} ≤ ∆𝜌 
→ ∆𝑥 ≤ ∆𝜌 

(6.37) 

• Variation of y 

max ��
𝜕
𝜕𝑦

[𝑥 cos𝜃 + 𝑦 sin𝜃]� ∆𝑦� ≤ ∆𝜌 

→ max{|sin𝜃|∆𝑦} ≤ ∆𝜌 
→ ∆𝑦 ≤ ∆𝜌 

(6.38) 

and, to summarize: 

⎩
⎪
⎨

⎪
⎧∆𝜃 ≤

∆𝜌
�𝑥𝑀−12 + 𝑦𝑁−12

∆𝑥 ≤ ∆𝜌
∆𝑦 ≤ ∆𝜌

 (6.39) 

 

It is very important to note that results in Eq. (6.39) are tighter than those suggested in [55] where “peak ex-
tension” and “peak spreading” issues are studied (see Fig. 6.2 for an example). These two issues cannot be 
avoided together but, as still suggested in [55], “peaks extension” are easier to remove whereas “peaks 
spreading” should be treated with a sliding window filter. It is worth noting that only “peaks extension” in θ 
direction are allowed if constraints in Eq. (6.39) are respected. Finally, as it is going to be shown subsequent-
ly, this type of vote spreading is accounted and easily removed by the final line extraction algorithm. 
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(a) (b) 

Fig. 6.2 - Problems due to the quantization of the transformed space. (a) “peak spreading” in ρ direction. (b) 
“peak extension” in θ direction 

 

6.2.3 Constraint comparison with Signal Theory 
As previously said, the signal theory puts some limits on signal sampling in order to not lose any information 
about the original signal. From this point of view, thanks to the linearity property of the Radon Transform, 
every Radon transformed image 𝑅𝑔𝑔(𝜌,𝜃) can be viewed as the convolution between the original images 
 𝑔(𝜌, 𝜃) and the Radon transform of the impulse 𝑅𝛿(𝜌,𝜃). It is worth noting that the continue definition of 
the Radon Transform is equivalent to the Hough Transform one, and for this reason these two transforms can 
be thought as equivalent in this section. Indicating with   𝐹𝑅𝑔�𝜔𝜌,𝜔𝜃� the Fourier Transform of the Radon 
transformed image 𝑅𝑔𝑔(𝜌,𝜃), we have: 

𝐹𝑅𝑔�𝜔𝜌,𝜔𝜃� =  𝐹𝑔𝑔�𝜔𝜌,𝜔𝜃� 𝐹𝑅𝛿�𝜔𝜌,𝜔𝜃� (6.40) 

with 𝐹𝑔𝑔�𝜔𝜌,𝜔𝜃� and 𝐹𝑅𝛿�𝜔𝜌,𝜔𝜃� respectively the Fourier Transform of the original image and of the Radon 
Transformed impulse. Carrying on some computations it can be proved that the support of𝐹𝑅𝛿�𝜔𝜌,𝜔𝜃� is a 
“finite-length bowtie” [56] under the condition of finite space-band product of 𝑔(𝜌,𝜃). Indicating respective-
ly with 𝜌Max and 𝜔Max the maximum extension radius of 𝑔(𝜌,𝜃) and the maximum angular frequency of 
𝐹𝑔𝑔�𝜔𝜌,𝜔𝜃�, the Nyquist limits are [56]: 

�
𝑓𝜌𝑐 ≥ 2

𝜔Max

2𝜋

𝑓𝜃𝑐 ≥ 2
⌈1 + 𝜔Max𝜌Max⌉

2𝜋

 (6.41) 

where 𝑓𝜌 = 1 ∆𝜌⁄  and 𝑓𝜃 = 1 ∆𝜃⁄  are the sampling frequency of the variable 𝜌 and 𝜃 (in case of rectangular 
grid sampling). Hence, doing some computations: 

�
∆𝜌 ≤

𝜋
𝜔Max

∆𝜃 ≤
𝜋

⌈1 + 𝜔Max𝜌Max⌉

 (6.42) 

Now, knowing the maximum variation frequency allowed in a digital image (𝑓Max = 𝑚𝑎𝑥 � 1
2∆𝑥

, 1
2∆𝑦

�) and 

presupposing to take the reference system origin in the image centre   (𝜌Max = �𝑥Max2 + 𝑦Max2 ) we have: 



Chapter  6 - Roads/Runway Extraction from Edges 147 
 

⎩
⎨

⎧
∆𝜌 ≤ min{∆𝑥,∆𝑦}

∆𝜃 ≤
𝜋

�1 + 𝜋
max{∆𝑥,∆𝑦}�𝑥Max

2 + 𝑦Max2 �
 (6.43) 

We can clearly see how close these results are to the ones of Eq. (6.32).   

 

6.3 Road/Runway Extraction Algorithm 
As said before, in the line extraction issue the final goal is to transform the binary image, which comes from 
the edge detector output (or the double thresholding output), in an image which has vectors at the place of 
binary pixel segments. As can be caught from the Section 6.1 and 6.2, the Radon (Hough) Transform is a 
tool useful to estimate the parameters of the lines in which an image can be decomposed. Once the parame-
ters have been estimated, the problem moves to what pixels of the image belong to the line with certain pa-
rameters. After recognizing these pixels, we have to group them in a structure (e.g. vector) in order to ma-
nipulate them easily. This issue is faced by the grouping algorithm and in this section the proposed grouping 
procedure is going to be described in details. 

The Fig. 6.3 summarizes the main blocks which the line extraction algorithm consists of. In that figure the 
non-maxima suppression and the double thresholding procedures are included in the Edge Detection block. 
As we can see from the same figure, some information from the edge detection block is passed to the input of 
the iterative grouping algorithm. Specifically, in addition to the binary image, the gradient sign map and the 
edge direction map are supplied. These maps have the same size of the binary image, and for each pixel the 
gradient sign map provides the information related on the gradient sign (positive or negative) whereas the 
edge direction map let us know which edge direction (among the 4 or 8 considered for the edge detection) is 
the most probable. The gradient sign map and the edge direction map hold nothing but the information of the 
gradient direction, so that, in principle, it could be substituted by the phase of it. The choice of using the gra-
dient sign and the edge direction is due to the choice of using the RoA as edge detector. In fact, such statisti-
cal filter (Section 3.1.2) does not allow a straightforward gradient computation to be implemented. In partic-
ular, the RoA computes the ratio between sample means 𝐼̅1 and 𝐼̅2 on the two sides of an edge by using a 
windows oriented as 𝜃, and then it calculates 𝑟𝑟𝜃 as: 

𝑟𝑟𝜃 = min �
𝐼1̅
𝐼2̅

,
𝐼2̅
𝐼1̅
� (6.44) 

 

It is clear that, by comparing the 𝑟𝑟𝜃 obtained by the 4 or 8 direction considered (as happens in the edge direc-
tion map), we can only know the edge direction with an ambiguity of 𝜋. For this reason, in the gradient sign 
map the knowledge about the two possibilities 𝐼1̅ > 𝐼2̅ and  𝐼2̅ > 𝐼1̅ are considered as a binary decision, 
which is 1 on pixels where 𝐼1̅ > 𝐼2̅ and 0 otherwise. The other information provided to the Hough Transform 
is the step angle ∆𝜃9F

10 between two consecutive directions (e.g. with 4 directions ∆𝜃 = 𝜋 4⁄ , and with 8 di-
rections ∆𝜃 = 𝜋 8⁄ ). This information together with the edge direction map is very useful in order to speed 
up the computation time and to heavily improve the estimation performance. In fact, given a point (𝑥𝑚,𝑦𝑚) 
in the image with an edge direction map value 𝜃Edge

(𝑥𝑚,𝑦𝑚), the computation in Eq. (6.5) can be done only with 

𝜃𝑡 ∈ �𝜃Edge
(𝑥𝑚,𝑦𝑚) − ∆𝜃, 𝜃Edge

(𝑥𝑚,𝑦𝑚) + ∆𝜃� to avoid generating noise in the remaining transformed domain interval  

 

 

10 This ∆𝜃 is not the quantization step also provided as input to Hough Transform, but is related to the orientation of the 
filtering window. 
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Fig. 6.3 - Main blocks of processing chain 

and to permit to speed up the whole computation time. Then, the Hough Transform of the binary image pro-
vides in output the Matrix(𝜌,𝜃) used by the grouping procedure. 

6.3.1 Grouping Step 
The grouping algorithm can be summarized in Tab. 6.1. It is worth noting that at the end of the previous pro-
cedure the binary image is completely vectorized. As said in Section 6.2, the “peak extension” is completely 
removed by the step 1.1 of the pseudo code in Tab. 6.1. In fact, the 8-connected neighbourhood of the point 
(𝜌𝑖 ,𝜃𝑖) is extracted in this step, next every values of Matrix(𝜌,𝜃) in this neighbourhood are evaluated, and 
finally all values equal to Matrix(𝜌𝑖 ,𝜃𝑖) are deleted. This procedure allows solving completely the problem 
of “peak extension” defined in [55]. 
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1 For each maximum point ( )ii θρ ,  such that ( ) 0, >iiMatrix θρ  

1.1 Delete ( )θρ ,Matrix  values in the point ( )ii θρ ,  and in a controlled neighbourhood of it; 

1.2 Get pixels ( ){ }nm yx , in the image domain which lie on the line ( )ii θρ , ; 

1.3 Add to the set ( ){ }nm yx ,  pixels close to line ( )ii θρ ,  less than line_thickness; 

1.4 For each gradient sign { }−+∈ ,s  

1.4.1 Round iθ to the nearest edge direction map value i
Edgeθ  ; 

1.4.2 Delete from the set ( ){ }nm yx ,  pixels with edge direction map values  ( ){ } i
Edge

nymx
Edge θθ ≠, ; 

1.4.3 Delete from the set ( ){ }nm yx ,  pixels with gradient sign map values  ( ){ } ss nymx ≠, ; 

1.4.4 Sort pixels along the line ( )ii θρ , , compute the distance between consecutive pixels and divide the line 
in different segments every time a distance major than fill_gap is encountered; 

1.4.5 For each found segment L 

1.4.5.1 Compute the ratio LR  between the pixel number of the segment and the Euclidean segment 
length ( )LLength ; 

1.4.5.2 If ≥LR gap_percentage and ( )≥LLength  min_length 

a Store L in the line vector; 

b Delete the response of the pixels ( ){ }nm yx ,  in ( )θρ ,Matrix ; 

1.4.6 end For 

1.5 end For 

2 end For 

Tab. 6.1 - Grouping algorithm pseudo-code. 

 

6.3.2 Grow & Merge Step 
The vectorized image could have some segments belonging to the same linear contour separated. For this 
reason, in order to merge segments together a join procedure is needed. Actually, before applying the join 
procedure, the properties (i.e. 𝜌, 𝜃 and length values) of the vectors are corrected. In fact, for each group of 
pixels belonging to the same vector the coefficients 𝜌 and 𝜃 of the last square line are computed.  

The join algorithm is summarized in Tab. 6.2. In the previous pseudo code the function 𝐴𝑛𝑔𝑙𝑒�𝐿𝑖 , 𝐿𝑗� com-
putes the maximum angle between segment 𝐿𝑖 and the segment which links 𝐿𝑖 midpoint to one of the two 𝐿𝑗 
endpoints (see Fig. 6.4), the function 𝑑1�𝐿𝑖 , 𝐿𝑗� is the minimum distance among endpoints of segment 𝐿𝑖 and 
𝐿𝑗, and the function 𝑑2�𝐿𝑖 , 𝐿𝑗� is the mean distance point-line between 𝐿𝑗 endpoints and the line passing 
through the segment 𝐿𝑖 computed as: 

𝑑2�𝐿𝑖 , 𝐿𝑗� =
|𝑎𝑥𝑘 + 𝑏𝑦𝑘 + 𝑐𝑐|

√𝑎2 + 𝑏2
 (6.45) 

 

  

 

 



150 Chapter  6 - Roads/Runway Extraction from Edges   
 

1 For each segment iL starting from the longest 

1.1 For each of the two semipianos i
ksem , { }2,1=k which divides the segment iL in equal parts 

1.1.1 Find segments { }),( ki
jL  which lay totally on semipiano i

ksem ; 

1.1.2 For each segment { }),( ki
jj LL ∈  

1.1.2.1 if ( )ji LLAngle , >  AngleT  skip this j; 

1.1.2.2 if ji θθθ −=∆ > θT skip this j; 

1.1.2.3 if ( )ji LLd ,1 > 
1dT skip this j; 

1.1.2.4 if ( ) ( ) ( )[ ]jijj LLdLlengthLlength ,1+ > ratioT skip this j; 

1.1.2.5 if ( )ji LLd ,2 > 
2dT skip this j; 

1.1.2.6 if not ( )ji LLisOk ,1  skip this j; 

1.1.2.7 Append jL  in the candidate list { })(i
jL ; 

1.1.3 end For 

1.1.4 For each segment { })(i
jj LL ∈  compute a “matching” factor using ( ) ( ){ }jiji LLdLLd ,,,, 21θ∆  and se-

lect { })(i
j

best
j LL ∈  with the lowest factor; 

1.1.5 Apply recursively this algorithm on best
jL  looking for candidates on the same semipiano i

ksem ; 

1.1.6 Merge all found segments in iL ; 

1.2 end For 

1.3 Compute the least square line among segments merged in iL ; 

2 end For 

Tab. 6.2 - Grow & Merge algorithm pseudo-code. 

with: 

�
𝑎 = cos𝜃𝑖
𝑏 = sin𝜃𝑖
𝑐𝑐 = −𝜌𝑖

 (6.46) 

and (𝑥𝑘 ,𝑦𝑘) one endpoints of segment 𝐿𝑗. The function i𝑠𝑂𝑘1�𝐿𝑖 , 𝐿𝑗� computes the projections of the 𝐿𝑗 
endpoints on the line passing through 𝐿𝑖 and returns “true” only if zero or one of the two endpoint projec-
tions belongs to the segment 𝐿𝑖 (see Fig. 6.5). Practically speaking, the previous check avoids joining to 𝐿𝑖 
segments 𝐿𝑘 which are just at one side of 𝐿𝑖and do not form a possible continuation of this latter segment. 

 

Fig. 6.4 - Meaning of  𝑻𝑨𝒏𝒈𝒍𝒆 variable. In this example only segment 𝑳𝒋 pass the 𝑨𝒏𝒈𝒍𝒆�𝑳𝒊,𝑳{𝒋,𝒌}� check. 
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Fig. 6.5 - Meaning of  𝒊𝒔𝑶𝒌𝟏�𝑳𝒊,𝑳{𝒋,𝒌}� function. In this example only segment 𝑳𝒋 pass the  𝒊𝒔𝑶𝒌𝟏�𝑳𝒊,𝑳{𝒋,𝒌}� check. 

Finally, for each segment 𝐿𝑖, the “matching” factor 𝒎, which is a vector of length 𝑛 equal to the number of 
candidate segments �𝐿𝑗

(𝑖)� to be merged with 𝐿𝑖 summarizes a measure of “distance” between its 𝑛 candidates 
in the following manner: 

𝒎 =
∆𝜽 + 𝒅𝟏 + 𝒅𝟐

3
 (6.47) 

with: 

⎩
⎪
⎪
⎨

⎪
⎪
⎧∆𝜽 =

{∆𝜃1,⋯ ,∆𝜃𝑛}
max{∆𝜃1,⋯ ,∆𝜃𝑛}

𝒅𝟏 =
�𝑑1�𝐿𝑖 , 𝐿𝑗�,⋯ ,𝑑1�𝐿𝑖 , 𝐿𝑗��

max�𝑑1�𝐿𝑖 , 𝐿𝑗�,⋯ ,𝑑1�𝐿𝑖 , 𝐿𝑗��

𝒅𝟐 =
�𝑑2�𝐿𝑖 , 𝐿𝑗�,⋯ ,𝑑2�𝐿𝑖 , 𝐿𝑗��

max�𝑑2�𝐿𝑖 , 𝐿𝑗�,⋯ ,𝑑2�𝐿𝑖 , 𝐿𝑗��

 (6.48) 

From the previous pseudo code it is clear that only geometric information is used to join different segments 
together. For this reason the join procedure is only a sub optimal solution because it is known that human 
visual system uses much more information to solve this problem [57]. However, even exploiting this infor-
mation alone, it can be said that this code is pretty effective for the prefixed scope.  

6.3.3 Coupling Step (Road Detection) 
This step is used in order to extract roads as two parallel segments which have a low radar cross section 
(RCS) and a good homogeneity (e.g. low coefficient of variation CV) of the pixels in the middle. Moreover, 
even single segments can have been extracted as possible road if their length is over a certain threshold. The 
algorithm can be summarized in Tab. 6.3. 
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1 For each segment iL starting from the longest 

1.1 For each segment jL , ji ≠  starting from the longest 

1.1.1 if 
( )

( ) ( ){ }ji

ji

LLengthLLength
LLLengthprojection

,max
,

< projT  skip this j; 

1.1.2 if ji θθθ −=∆ > θT skip this j; 

1.1.3 if ( )ji LLd ,2 < low
dT 2 OR ( )ji LLd ,2 > high

dT
2

skip this j; 

1.1.4 if not ( )ji LLisOk ,2  skip this j; 

1.1.5 Append jL  in the candidate list { })(i
jL ; 

1.2 end For 

1.3 For each segment { })(i
jj LL ∈  compute a “matching” factor using ( ) ( ) ( ){ }ijji LLengthLLengthLLd ,,,, 2θ∆ ; 

1.4 Divide the set of  segments { })(i
jj LL ∈  relying on their position p (left and right semipiano) respect to segment 

iL ; 

1.5 For each of the two possible position p (left and right)  

1.5.1 For each of the segment p
jL on position p starting from p

jL  with the lowest “matching” factor  

1.5.1.1 Extract the image regions p
jiR ,  between iL and p

jL ; 

1.5.1.2 Compute the RCS p
ji,σ  and the coefficients of variation (CV) p

jiCV , ; 

1.5.1.3 If ( p
ji,σ < σT AND p

jiCV , < CVT )  

a Memorize p
jL  as the candidate segment for the position p, break this cycle and skip this p; 

1.5.2 end For 

1.6 end For 

1.7 If one segment for each positions p (left and right) was found     

1.7.1 Select ∈jL { }right
j

left
j LL ,  which has the lowest “matching” factor and couple it  with iL ; 

1.8 else if only a segment on position p=left was found 

1.8.1 Couple left
jL  with iL ; 

1.9 else if only a segment on position p=right was found 

1.9.1 Couple right
jL  with iL ; 

1.10 else if ( )iLLength > lengthT  memorize iL in single_line list; 

2 end For 
Tab. 6.3 - Coupling algorithm pseudo-code. 
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Fig. 6.6 - Example of the projection length between segments 𝑳𝒊 and 𝑳𝒋. 

In the previous pseudo code the function 𝑃𝑟𝑟𝑜𝑗𝑒𝑐𝑐𝑡𝑖𝑜𝑛𝐿𝑒𝑛𝑔𝑡ℎ�𝐿𝑖 , 𝐿𝑗� computes the projection length of the 
segment 𝐿𝑗 on the segment 𝐿𝑖 as in Fig. 6.6. The function 𝑖𝑠𝑂𝑘2�𝐿𝑖 , 𝐿𝑗� computes the projections of the 𝐿𝑗 
endpoints on the line passing through 𝐿𝑖 in the same manner as shown in Fig. 6.6, but it does return “true” 
only if one or both the endpoint projections belong to the segment 𝐿𝑖. 

Furthermore, in a very similar manner respect to the join procedure, the “matching” factor vector m between 

the n candidate segments  �𝐿𝑗
(𝑖)� and 𝐿𝑖 is computed as follows: 

𝒎 =
∆𝜽 + ∆𝑳𝒆𝒏𝒈𝒕𝒉 + 𝒅𝟐

3
 (6.49) 

with: 

⎩
⎪⎪
⎨

⎪⎪
⎧∆𝜽 =

{∆𝜃1,⋯ ,∆𝜃𝑛}
max{∆𝜃1,⋯ ,∆𝜃𝑛}

∆𝑳𝒆𝒏𝒈𝒕𝒉 =
{∆𝐿𝑒𝑛𝑔𝑡ℎ(𝐿1),⋯ ,∆𝐿𝑒𝑛𝑔𝑡ℎ(𝐿𝑛)}

max{∆𝐿𝑒𝑛𝑔𝑡ℎ(𝐿1),⋯ ,∆𝐿𝑒𝑛𝑔𝑡ℎ(𝐿𝑛)}

𝒅𝟐 =
�𝑑2�𝐿𝑖 , 𝐿𝑗�,⋯ ,𝑑2�𝐿𝑖 , 𝐿𝑗��

max�𝑑2�𝐿𝑖 , 𝐿𝑗�,⋯ ,𝑑2�𝐿𝑖 , 𝐿𝑗��

 (6.50) 

where the equality ∆𝐿𝑒𝑛𝑔𝑡ℎ�𝐿𝑗� = �𝐿𝑒𝑛𝑔𝑡ℎ(𝐿𝑖) − 𝐿𝑒𝑛𝑔𝑡ℎ�𝐿𝑗�� is used. 

Anyway, after applying the previous algorithm, many false roads can be extracted. The main problems on 
MSTAR images arise from the extended radar shadows which have low RCS and high homogeneity (low 
CV) as the roads researched. In order to remove the most false alarms a simple algorithm can be applied. In 
fact, following the consideration that a road is always linked to another road or it extends throughout the 
whole image or, eventually, it has a high length, the algorithm in Tab. 6.4 has been used. In the pseudo code 
in Tab. 6.4, the function 𝑑3(𝐼𝑚𝑎𝑔𝑒,𝐶𝑖) is the maximum distance between the endpoints of the median seg-
ment (segment in the middle of the segment couple 𝐶𝑖) and the two image borders which are crossed by the 
line passing through the median segment, as shown in Fig. 6.7.  Finally, the function 𝑑4�𝐶𝑖 ,𝐶𝑗� computes the 
minimum distance between median segment endpoints of 𝐶𝑗 and the coupled segments 𝐶𝑖. 
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1 For each segment couple  iC  

1.1 if )( iCLength > lengthCT label iC as “road” and skip this i; 

1.2 if ),(3 iCimaged <
3dT label iC as “road” and skip this i; 

2 end For 

3 For each segment couple  iC labelled as “road” 

3.1 For each segment couple  jC  not labelled as “road” 

3.1.1 if ),(4 ji CCd <
4dT label jC as “road”; 

3.1.2 Apply recursively the algorithm which starts from step 3 on jC ; 

3.2 end For 

4 end For 

Tab. 6.4 - False alarm removal pseudo-code. 

 

 

Fig. 6.7 - Example of the function 𝒅𝟑�𝑰𝒎𝒂𝒈𝒆,𝑪𝒊� 

 

6.4 Results 

6.4.1 Hough and Radon Transform Comparison 
Before showing the results of the road/runway extraction algorithm, a comparison between the performance 
of the Hough and Radon Transform has been carried out. Using the same notation of the Section 6.2, and 
comparing Eq. (6.32) and (6.39) when the origin of the reference system is in the centre of the image 
(𝜌𝑅−1 = �𝑥𝑀−12 + 𝑦𝑁−12 ), the inequalities in Tab. 6.5 are obtained. 
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Radon Hough 

⎩
⎪
⎨

⎪
⎧∆𝜌 ≤ min �

∆𝑦
√2

,
∆𝑥
√2
�

∆𝜃 ≤ min �
∆𝑦

√2�𝑥𝑀−12 + 𝑦𝑁−12
,

∆𝑥

√2�𝑥𝑀−12 + 𝑦𝑁−12
�

∆𝑥 = ∆𝑦

 

⎩
⎪
⎨

⎪
⎧∆𝜃 ≤

∆𝜌
�𝑥𝑀−12 + 𝑦𝑁−12

∆𝑥 ≤ ∆𝜌
∆𝑦 ≤ ∆𝜌

 

Tab. 6.5 - Sampling limits of the transformed domain parameters 

Clearly, because a discrete input image is used, we always have  ∆𝑥 = ∆𝑦 = 1. Replacing the previous 
equality in the inequalities shown in Tab. 6.5  we have  ∆𝜌 ≤ 1 √2⁄  for Radon Transform, and  ∆𝜌 ≥ 1for 
Hough Transform. Hence, no common sampling point exists between them. However,  in order to obtain 
some useful considerations, a performance comparison can be done choosing the nearest sampling point be-
tween them, which is:  

  

⎩
⎪
⎨

⎪
⎧∆𝜌1 =

1
√2

∆𝜃∗ =
1

√2�𝑥𝑀−12 + 𝑦𝑁−12

 (6.51) 

for the Radon Transform, and: 

�
∆𝜌2 = 1

∆𝜃∗ =
1

√2�𝑥𝑀−12 + 𝑦𝑁−12
 (6.52) 

for the Hough Transform. 

In order to quantitatively measure the estimation error of each transform, a “Monte Carlo” simulation was 
carried on applying the grouping algorithm on 10 binary images 50x50 where there were 10 lines with ran-
dom length (at least 5 pixels) and random position in each image. We have made  ∆𝜃 vary of the amount  
from ∆𝜃∗ 5⁄  to ∆𝜃∗ and the other parameters are listed in Tab. 6.6. It is worth noting that to speed up the 
waiting time the binary image is simulated directly and therefore the information arising from edge direction 
map and gradient sign map are not used. The results are reported in Fig. 6.8. 
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Parameter Value 

𝑥𝑀−1 = 𝑦𝑁−1 24 

∆𝜃 from 0.24° to 1.19° with step 0.24° 

∆𝜌1 1 √2⁄  

∆𝜌2 1 

line_thickness 1 
fill_gap 3 

gap_percentage 0.6 
min_length 4 

Tab. 6.6 - Hough and Radon Transform comparison parameters 

 

 
 

(a) (b) 

  

(c) (d) 
Fig. 6.8 - Results “Monte Carlo” simulation when ∆𝜽 varies. (a) Mean ρ error. (b) Mean θ error in degree. (c) 

Standard deviation ρ error. (d) Standard deviation θ error in degree 

 

As can be seen from these graphs, the Radon Transform yields a lower estimation error both in θ and ρ pa-
rameter. In those figures the systematic error is the error between the original parameters and the ones esti-
mated from the corresponding image pixels by a least square error estimate.  

Anyway, if we consider the number of correct detections, shown in Fig. 6.9, i.e. the number of times the 
transformation operator manages to include in a vector the correct original pixels, we see that the Hough 
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Transform obtains slightly better results. In fact, because the integration line of the Radon Transform have 
one more degree of freedom than that of the Hough Transform (it can pass in 𝑥𝑚𝑥 [𝑦𝑛 − ∆𝑦 2⁄ ,𝑦𝑛 + ∆𝑦 2⁄ ] 
whereas the Hough integration line has to pass in (𝑥𝑚,𝑦𝑛)) , the Radon Transform has more probability to 
fail in the detection (even though when it detects correctly it makes a lower estimation error). This fact can 
be seen in Fig. 6.10 where the results of Radon and Hough Transform on a simulated image are shown. It can 
be clearly seen how the Radon Transform usually include in the same vector a major or equal number of pix-
els than the Hough Transform. Hence, when there are two very close lines, the Radon Transform operates as 
if had to include all those pixels in the same vector. It is worth noting that applying a least square estimate of 
the parameters after the Grouping block, for each correct detection we obtain the same estimation error as the 
systematic one. For the previous reasons, in addiction to accounting the very huge amount of saved time in 
using the Hough Transform despite of the Radon Transform, the former transform is preferred  to be used in 
the grouping algorithm. 

 

 

Fig. 6.9 - Mean correct detections 
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(a) (b) 

  

(c) (d) 
Fig. 6.10 - Results of the Hough and Radon Transform on a simulated image. (a) Hough Transform segments. (b) 
Hough Transform segments where the pixels included in a segment are linked each other. (c) Radon Transform 

segments. (d) Radon Transform segments where the pixels included in a segment are linked each other. 

 

6.4.2 Simulated Image (SIM1) 
In this section the line extraction algorithm is going to be explained step by step showing the results on the 
simple simulated image shown in Fig. 6.11. In that figure there is a classical cross-shaped crossroads, two 
isolated pieces of road and a square placed just beside a road with intensity lower than the surrounding back-
ground. The image intensity consists of independent samples with Gamma pdf whose shape parameter 
(number of looks) is set to 1. 
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Fig. 6.11 - Simulated image with independent Gamma samples. The mean RCS value is indicated at the top of 

the arrows 

6.4.2.1 Edge Detection Step 

In Fig. 6.12 (a) the output of the Edge Detection block is shown when the RoA filter is used with the parame-
ters in Tab. 6.7. Moreover, in Fig. 6.12 (b)-(c) the edge direction map and the gradient sign map are provid-
ed. It is worth noticing that the background pixels (RCS=300) are set to a null value for each of the previous 
maps to allow an easier understanding. 

  
 

(a) (b) (c) 
Fig. 6.12 - Results of the Edge Detection block. (a) Edge Detection block output . (b) Edge direction map where 

background pixels are set to zero. (c) Gradient sign map where background pixels are set to one 

 

Parameter Value 

Window Size 11 

PFA1 10-9 

PFA2 10-1 

Step angle 45°(i.e. 4 different windows) 

Tab. 6.7 - Edge Detection block parameters 

 

 

RCS=100 

RCS=30 

RCS=300 
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6.4.2.2 Grouping Step 

In Fig. 6.14 (a) the Hough Transform Matrix(𝜌,𝜃) of the binary image in Fig. 6.14 (a) it is shown. The pa-
rameter used are listed in Tab. 6.8. As can be seen from Fig. 6.14 (a), thanks to the smart use of edge map 
information, a lot of noise can be avoided in the transformed domain part which does not involve the peaks. 
Then, as can be seen in Fig. 6.14 (b)-(c), removing the response of vectorized pixels at each iteration can re-
duce the noise left drastically.   

The result of the Grouping block can be seen in Fig. 6.13 and the used parameters are reported in Tab. 6.9. 

 

Parameter Value 

∆𝑥 = ∆𝑦 1 

∆𝜌 1 

∆𝜃 0.0028 (0.16°) 

Tab. 6.8  - Hough Transform block Parameters. 

 

 

Fig. 6.13 - Results of the Grouping block where an identification number is printed beside each vector. 

 

Parameter Value 

line_thickness 2 

fill_gap 20 
gap_percentage 0.6 

min_length 1 

Tab. 6.9 - Grouping block parameters. 
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(a) 

 

(b) 

 

(c) 

Fig. 6.14  - Hough Transform 𝐌𝐚𝐭𝐫𝐢𝐱(𝝆,𝜽), with θ (in degree) shown along abscissa axes and 𝝆 shown along the 
ordinate one. (a) Initial transform. (b) After 4 iterations. (c) After 12 iterations. 
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6.4.2.3 Grow & Merge Step 

In Fig. 6.15 the output of the Grow & Merge block is shown and input parameters are listed in Tab. 6.10. As 
we can notice comparing Fig. 6.13 and , the yellow segment inside the dashed ellipse of  Fig. 6.15 has been 
obtained merging three different segments of Fig. 6.13. In fact, since the segment in the middle had a differ-
ent gradient sign value than the segments around it (see Fig. 6.12 (c)), the Grouping algorithm had divided 
the same line in three different segments correctly.   

 

 

Fig. 6.15 - Results of the Grow & Merge block. 

 

Parameter Value 

𝑇𝐴𝑛𝑔𝑔𝑙𝑒 5° 

𝑇𝜃 15° 

𝑇𝑑𝑑1 20 (fill_gap) 

𝑇𝑟𝑎𝑡𝑖𝑜 0.6 

𝑇𝑑𝑑2  3 

Tab. 6.10 - Grow & Merge block parameters. 
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6.4.2.4 Coupling Step (Road Detection) 

As has been previously said in Section 6.3.3, the Road Extraction block is divided in two steps. Firstly, it 
tries to recognize a road as two parallel lines whose pixels in the middle have a low RCS (less than  
𝑇𝜎) and a low CV (less than 𝑇𝐶𝑉). Moreover, even single segments are extracted as possible road if their 
length is over the threshold 𝑇𝑙𝑒𝑛𝑔𝑔ℎ𝑡. Secondly, it tries to remove false road detections following the consider-
ation that a road is always linked to another road or it extends throughout the whole image or, eventually, it 
has a length over 𝑇𝐶𝑙𝑒𝑛𝑔ℎ𝑡 . In Fig. 6.16 (a) the result of the first step (parameters are reported in Tab. 6.11) 
can be seen and the only single segment extracted is shown as a dashed line. In Fig. 6.16 (b) we can see how 
the second step has been managed to remove the isolated pieces of roads which are linked with no other 
roads. 

 

  
(a) (b) 

      Fig. 6.16 - Results of the Road Extraction block. The dashed line indicate the segments extracted as “single”. 
(a) First step. (b) Second step where the single segment is added. 

 

Parameter Value 

𝑇𝑝𝑟𝑜𝑗 0.6 

𝑇𝜃 15° 

�𝑇𝑑𝑑2
𝑙𝑜𝑤 ,𝑇𝑑𝑑2

ℎ𝑖𝑔𝑔ℎ� [3, 25] 

𝑇𝜎 150 

𝑇𝐶𝑉 1.5 

𝑇𝑙𝑒𝑛𝑔𝑔ℎ𝑡 100 

𝑇𝐶𝑙𝑒𝑛𝑔ℎ𝑡  150 

𝑇𝑑𝑑3  20 

𝑇𝑑𝑑4  10 

Tab. 6.11 - Road Extraction block parameters. 
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In order to see how the “matching” factor works let’s see what occur when this factor is computed on candi-
date segments of the yellow vector inside the dashed ellipse in Fig. 6.15. At the step 1.2 of the first road ex-
traction algorithm, leaving the thresholds 𝑇𝑝𝑟𝑜𝑗 out and setting 𝑇𝑑𝑑2

ℎ𝑖𝑔𝑔ℎ = 30, the candidate segments found 
are shown in the Fig. 6.17 and their matching factor value is shown in Tab. 6.12. 

 

 

      Fig. 6.17 - Candidate segments of the yellow vector inside the dashed ellipse in Fig. 6.15. 

 

ID p ∆𝜽 ∆𝑳𝒆𝒏𝒈𝒕𝒉 𝒅𝟐 𝒎 

1 “left” 0 0.02 0.42 0.15 

2 “right” 0 0.67 1 0.55 

3 “right” 0 1 0.11 0.37 

Tab. 6.12- Matching factor values of the candidate segments. 

 

As we can see from Tab. 6.12 the algorithm has found one segment on the “left” semipiano and two seg-
ments on the “right” semipiano. Anyway, after applying the cycle which starts from step 1.5 the segment 
with ID=3 is chosen as correct candidate among the segments on the right semipiano and the segment with 
ID=1 is chosen as candidate of the left semipiano. In fact, their respective regions with the yellow vector 
pass the test on RCS and CV as shown in Tab. 6.13. Hence, now there is one candidate for each position and 
since the segment with ID=1 has a lower 𝒎 value it is chosen as the final candidate segment. The final result 
for the Coupling Step is shown in .Fig. 6.18, where the crossroads are identified by the respective four yel-
low circles. 

 

ID RCS CV 

1 101.1 1 

3 105.5 1.4 

Tab. 6.13- Matching factor values of the candidate segments. 
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      Fig. 6.18 - Results of the Information Extraction block where an identification number is printed beside each 
vector and each crossroads. 

 

6.4.3 MSTAR Images 
In this section results of the whole chain on some MSTAR images are given. The parameters used are the 
same as those set for the previous simulated image. The only parameter changed is 
𝑇𝜎 = 30. 

   
(a) (b) (c) 

  Fig. 6.19- Results on MSTAR “HB06173”. (a) Original image. (b) Edge detection output. (c) Final result. 
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(a) (b) (c) 

  Fig. 6.20 - Results on MSTAR “HB06210”. (a) Original image. (b) Edge detection output. (c) Final result. 

 

   
(a) (b) (c) 

  Fig. 6.21- Results on MSTAR “HB06211”. (a) Original image. (b) Edge detection output. (c) Final result. 

 


