
 

  Chapter  7

Despeckling Filters 
In Chapter  4 we have proved that wavelet filters for edge detection are sensitive to noise, and even using 
multiscale information does not produce a lot of improvement on the challenging CSK images that have one 
number of looks. Before claiming the need of a pre-processing step, which would be useful to remove the 
noise afflicting SAR images, we should test statistical filter in Chapter  3 on these data.    

Two Cosmo-SkyMed (CSK) images, which depict the same airport, are shown in Fig. 7.3. Both the images 
in Fig. 7.3(a) and Fig. 7.3(c) have been acquired in spotlight2 mode with polarization HH and a theoretical 
equivalent number of look equal to 1. The image in Fig. 7.3(a) has an incidence angle near/far of 55.9°/56.3° 
whereas the image in Fig. 7.3(c) has an incidence angle near/far of 56.4°/56.8°. 

As we can see from Fig. 7.2(a)-(b), the image in Fig. 7.3(a) shows a pdf nearer to a Gamma than a LogNor-
mal indicating the possibility to use RoA edge detector. Moreover, the image shows a correlation length of 
about 2 pixels in both directions, see Fig. 7.2(c), and therefore it needs to be subsampled of the same quantity 
before applying the edge detector. Actually, the downsampling is needed only to compute an exact threshold. 
The, even T-test and W-test  were applied to these images. Since results were always worse than RoA ones, 
they are not reported in this document. 

The results of RoA edge detector on the previous two images are shown in Fig. 7.3. As can be seen from the-
se results, even allowing a lot of false alarms to be detected, some edges are missed .  

The unsatisfactory results of statistical edge detectors on these CSK images are mainly due to two rea-
sons. First, the low signal to noise ratio (estimated number of look11 ~ 0.8). Secondly, the low contrast be-
tween the boundary that divides the runway from the surrounding terrain. The first problem, i.e. the low sig-
nal to noise ratio, makes worse the RCS estimates made by statistical filters, that is, the estimates have a high 
variance. As consequence, the probability of false alarm (PFA) raises and the probability of detection (PD) 
decreases. The second question is purely theoretical, because to detect a lower contrast edge with a fixed PD 
we have to obliviously increase PFA. Nevertheless, the contrast between two materials with different rough-
ness can be enhanced increasing the incidence angle in the image acquisition (see Appendix L for a detailed 
analysis). Nevertheless, even though the second problem is due to the sensor characteristics and, fixed a 
mode of acquisition, it is not solvable, the high speckle noise presents in these images can be profitably re-
duced exploiting the so called despeckling filters.  

 

11 The number of looks parameter has been estimated (by MoM assuming a multiplicative model) on an extended visu-
ally homogeneous region. 
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(a) (b) 

  Fig. 7.1 - CSK images.  (a) Image “CSK1”. (b) Image “CSK2”.  

 

  
(a) (b) 

 
(c) 

  Fig. 7.2 - (a) PDF of the image “CSK1” on a homogeneous region (terrain around runway). (b) Logarithmic 
scaled PDF of the image “CSK1” on a homogeneous region (terrain around runway). (c) Pixel correlation esti-

mated on a homogeneous region (terrain around runway) of “CSK1” image 
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(a) (b) 

  Fig. 7.3 - Result of RoA filter on two different CSK images.  (a) Result of RoA filter (window 11x11) on 
“CSK1”. (b) Result of RoA filter (window 11x11) on “CSK2”.  

From the previous examples, we have seen that CSK images suffer from a high power speckle noise that 
even statistical edge detector do not manage to tackle successfully.  For this reason, also considering that 
even multiscale linear filters are sensitive to noise, the need of introducing a despeckling filter before apply-
ing an edge detection step becomes clear. 

Despeckling filters are also called RCS reconstruction filters [3]. In fact, their aim is of recovering the un-
derlying RCS from the noisy data introducing the minimum amount of distortions. Criterions that drive the 
judgement on the filter quality are [3]: 

• speckle reduction in homogeneous regions; 

• feature preservations; 

• no artefact introduction; 

• radiometric data preservation. 

Moreover, the choice of a filter is always driven by the final objective, i.e. it depends on applications. In 
our case, the filter has to reduce the noise without blur the object boundaries. As will be clear from the 
following discussions, satisfying this type of demand is strongly related to the quality of edge detection 
reachable from the initial noisy image. In the rest of the section a several classes of despeckling filter are de-
scribed introducing, when possible, only the main concepts which underlying their theory.  

 

7.1 “Classic” local Filters 
With the adjective “classic” we want to point out the high degree of acceptance of this type of filter by the 
scientific community. This class of filters counts the Lee, Kuan, Frost, and Gamma MAP despeckling filters. 
All these filters exploit the pixel values inside a small window centered at a given pixel in order to make in-
ference and to reconstruct its “true” value. In particular, they presuppose the image as an ergodic random 
process where statistical means can be substituted by spatial means. In the following some quantities are in-
troduced to give exact reconstruction formulas.  
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7.1.1 Noise Model 
In all the cases, if not expressively indicated, the noise model considered (on a homogeneous region) is a 
multiplicative one (see 2.2.1.1), the image 𝐼 holds intensity values, the noise is indicated with 𝑛 and it is in-
dependent from the Radar Cross Section (RCS) 𝜎 12: 

𝐼 = 𝜎𝑛 (7.1) 

where I indicates the observed intensity (square of the amplitude, i.e. received power), and it is further pre-
supposed: 

E[𝑛] = 1; 𝜎𝑛2 = 1 𝐿⁄  (7.2) 

with E[𝑛] and 𝜎𝑛2 respectively the noise mean and variance and 𝐿 indicates the number of looks (or equiva-
lent number of looks - ENL). 

7.1.2 Lee and Kuan 
Under the constraint to use a linear estimator (Kuan [58]) or using a first order Taylor expansion of image 𝐼 
(Lee [59]), the reconstructed minimum mean square error value 𝐼 can be written as: 

𝐼 = 𝐼 ̅+ 𝑘(𝐼 − 𝐼)̅ (7.3) 

where 𝐼 indicates the original noisy value, 𝐼 ̅ is the mean of the values inside the window and 𝑘 is a factor 
which depend on the SNR estimated through the pixels inside the window. In particular: 

𝑘𝐿 =
𝐶𝐼2 − 𝐶𝑛2

𝐶𝐼2 + 𝐶𝑛4
;   𝑘𝑘 =

𝐶𝐼2 − 𝐶𝑛2

𝐶𝐼2(1 + 𝐶𝑛2) (7.4) 

where 𝑘𝐿 and 𝑘𝑘 are the factors of Lee and Kuan filter respectively, 𝐶𝐼2and 𝐶𝑛2 are the coefficients of varia-
tion of the pixels inside the window and that of the noise, respectively computed as: 

𝐶𝐼2 =
𝜎𝐼2

𝜇𝐼2
;   𝐶𝑛2 =

𝜎𝑛2

𝜇𝑛2
 (7.5) 

with 𝜎𝐼2, 𝜎𝑛2 the two respective variances and 𝜇𝐼, 𝜇𝑛 the respective means. Usually 𝐶𝑛2 is not computed from 
the image pixels but it is taken from the noise model previously reported. It should be point out that the Lee 
formula in Eq. (7.4) is the corrected one. In fact, in literature, due to a mistake in the Lee original article a 
wrong version of the formula is sometimes reported (as in [3]), although some authors have underlined this 
mistake [60]. 

7.1.3 Frost  
The frost filter ℎ(𝑥) is the best unbiased linear filter which minimizes the mean square error between the 
original image and the reconstructed one [61], [62]: 

min ��𝜎(𝑥) − 𝐼(𝑥)�2� = min ��𝜎(𝑥) − �ℎ(𝑥) ∗ 𝐼(𝑥)��2� (7.6) 

It presupposes a multiplicative white noise and an underlying RCS inside a window as a wide sense station-
ary (WSS) stochastic process with an exponentially decay covariance (this type of decay has been extensive-
ly used in literature to model a large class of textured region [3], [62]). Given this assumption, a closed form 
of h can be computed as: 

ℎ(𝑥) =
𝛼
2
𝑒−𝛼𝑥 (7.7) 

Now, exploiting the previous hypotheses, indicating with 𝐶𝜎𝜎(∆𝑥), and  𝐶𝑛𝑛(∆𝑥) the covariance of the re-
flectivity and of the noise respectively: 

12 Not to be confused with the variance of a general r.v. 𝑎 that in the rest of the document will be indicated with the cor-
responding subscript, i.e 𝜎𝑎. 
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𝐶𝜎𝜎(∆𝑥) = 𝜎𝜎2𝑒−𝜆|∆𝑥|;   𝐶𝑛𝑛(∆𝑥) = 𝜎𝑛2𝛿(∆𝑥) (7.8) 

with 𝜆 the correlation length of the reflectivity, we can express the filter parameter 𝛼 as: 

𝛼2 =
2 𝜆 𝜎𝑛2⁄

1 + (𝜇𝜎 𝜎𝜎⁄ )2 + 𝜆2 (7.9) 

Naturally, in the multiplicative noise model the previous quantities can be easily computed: 

𝜇𝜎 = 𝜇𝐼;   𝜎𝜎2 =
𝐿𝜎𝐼2 − 𝜇𝐼2

𝐿 + 1
 (7.10) 

Anyway, since the correlation length 𝜆 is computationally expensive to estimate, in literature a sub-optimal 
formulation is used, where 𝜆 is omitted, 𝜎𝑛2 is not used and a parameter 𝛽 is added, so that 𝛼 simply becomes 
[64]: 

𝛼2 = 𝛽𝐶𝐼2 (7.11) 

However, the results reported in this document are obtained with the optimal formula where 𝜆 is let as free 
parameter. 

7.1.4 Gamma MAP 
Differently from the previous filters, the Gamma MAP does not linearly operate to estimate the original val-
ue from the noisy data [3]. It presupposes the observed value of the intensity image as an occurrence of a 
random variable 𝐼 with a conditional probability density function pdf 𝑃(𝐼|𝜎) modelled as a Gamma distribu-
tion. The Gamma pdf of the intensity, indicated as 𝐼~Γ(𝐿,𝜎 𝐿⁄ ), depends on the two parameters 𝐿 and 𝜎 
which are related to image first order statistics as: 

𝜇𝐼 = 𝜎;   𝜎𝐼2 =
𝜎2

𝐿
 (7.12) 

Moreover, it models the pdf 𝑃(𝜎) of the reflectivity 𝜎, as another Gamma distribution 𝜎~Γ(𝑣, 𝜇𝜎 𝐿⁄ ) where: 

𝜇𝜎 = E[𝜎];  𝜎𝜎2 =
𝜇𝜎2

𝑣
  (7.13) 

Under these hypotheses (see Section 2.3), the pdf of the image intensity is a K-distribution 𝐼~K(𝐿, 𝑣, 𝜇𝜎) 
with [5]: 

𝜇𝐼 = 𝜇𝜎;   𝜎𝐼2 = 𝜇𝜎2 �
1
𝐿

+
1
𝑣

+
1
𝐿𝑣
� (7.14) 

Naturally, in order to extract the Maximum a Posteriori (MAP) probability of the reflectivity R we can ex-
ploit the well-known Bayes formula: 

𝑃(𝐼|𝜎) =
 𝑃(𝐼|𝜎) 𝑃(𝜎)

 𝑃(𝐼)
∝  𝑃(𝐼|𝜎) 𝑃(𝜎) (7.15) 

and the MAP estimate 𝜎�MAP  is obtained as solution of : ( ) ( )[ ] 0loglog =+ RpRIp
dR
d , i.e.: 

𝜕
𝜕𝜎

[ ln𝑃(𝐼|𝜎) + ln𝑃(𝜎)] = 0  

→  𝜎�MAP
𝑣
𝜇𝜎

+ 𝜎�MAP(𝐿 + 1 − 𝑣) − 𝐿𝐼 = 0 
(7.16) 

where the parameter 𝑣 is substituted which its estimate: 

𝑣� =
1 + 𝐶𝑛2

𝐶𝐼2 − 𝐶𝑛2
 (7.17) 
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7.1.5 “Classic” Refined Versions  
Even though all the “Classic” filters described in Section 7.1 manage to reduce the speckle on homogeneous 
areas, they completely fail in RCS reconstruction every time an edge is inside the local window. The final 
result is an image whose sharp transitions have been completely smoothed out. In order to remove the noise 
without blurring the edges, the case of a sharp transition inside the local window has to be treated in a differ-
ent way. The version of the classic filters where this fine consideration is applied are usually called “refined” 
or “enhanced” version. To implement this type of refinement Lee [65] suggest of using a simple gradient op-
erator inside the local window. Anyway, as he admits, this type of operator suffers of the well-known prob-
lem of not being CFAR. In order to overcome this issue, [66] suggests using  statistical edge detectors be-
cause, in addition to being CFAR, they enable us to easily compute a threshold fixing the desired PFA. In 
fact, under the hypothesis of independent samples, we can use RoA edge detector when the pdf of the image 
is supposed to be Gamma, the T-test if the image pdf is Gaussian, or eventually, the W-test if the previous 
hypotheses do not hold Section 3.2. Clearly, when there is some correlation between pixels we can still use 
these edge detectors even though the threshold parameter cannot be tied to the final PFA anymore.  

 

7.2 Patch Based Filter 
This class of filters exploits the redundancy that often exists in natural images. They are based on the princi-
ple that the reconstructed value has to be the weighted mean of all the image pixels which have a similar 
neighbourhood [67]. Given the image domain Ω, a neighbourhood Ω𝒙 of a pixel 𝒙, is defined as a set of pix-
els {𝒚} ∈  Ω𝒙 around 𝒙, e.g. contained in a window (also called “patch”). In a continuous case the formula-
tion becomes [68]: 

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝐼(𝒙) =

1
𝐶(𝒙)� 𝐼(𝒚)𝑒−

𝐾(𝜎,‖𝐼(𝒙)−𝐼(𝒚)‖)
ℎ 𝑑𝒚

Ω

𝐾(𝜎, ‖𝐼(𝒙) − 𝐼(𝒚)‖) = � 𝐺𝜎(𝒕)|𝐼(𝒙 + 𝒕) − 𝐼(𝒚 + 𝒕)|2𝑑𝒕
Ω

𝐶(𝒙) = � 𝑒−
𝐾(𝒛)
ℎ 𝑑𝒛

Ω

 (7.18) 

where 𝐾(𝜎, ‖𝐼(𝒙) − 𝐼(𝒚)‖) is a measure of similarity among different patches and it depends on a norm be-
tween grey levels and the standard deviation 𝜎 of the Gaussian kernel 𝐺𝜎(𝒕). 𝐶(𝒙) is a normalization con-
stant and 𝑒𝑥𝑝 �−𝐾(𝜎,‖𝐼(𝒙)−𝐼(𝒚)‖)

ℎ
� express the weights used to compute the reconstructed value. 

Hence, the working principle is slightly different from that previously enounced, i.e. the reconstructed value 
has to be the exponentially negative weighted mean of all the image pixels that have a similar Gaussian 
smoothed neighbourhood and with weights direct proportional to the similarity measure 𝐾(𝜎, ‖𝐼(𝒙) −
𝐼(𝒚)‖).  

Since these filters use, in principle, all image pixels to define a singular weight they are also known as Non 
Local Means (NL-Means) [68]. Anyway, for implementation purpose, the pixels used in computations do not 
belong to all image domain Ω but at some restricted portion Ω1. Therefore, Eq. (7.18) becomes: 

⎩
⎪
⎨

⎪
⎧𝐼(𝒙) =

1
𝐶(𝒙)� 𝐼(𝒚)𝑒−

𝐾(𝜎,‖𝐼(𝒙)−𝐼(𝒚)‖)
ℎ 𝑑𝒚

Ω1

𝐾(𝜎, ‖𝐼(𝒙) − 𝐼(𝒚)‖) = � 𝐺𝜎(𝒕)|𝐼(𝒙 + 𝒕) − 𝐼(𝒚 + 𝒕)|2𝑑𝒕
Ω2

 (7.19) 

where Ω1 is the so called “search window”, centred on 𝒙 and usually with size 21x21 pixels, whereas Ω2 is 
the so called “similarity window”, sliding on different 𝒙 ∈ Ω1 and with dimension 7x7 pixels. 
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7.2.1 Iterative Probabilistic Patch Based 
In order to overcome some open questions on patch based filters, which mainly regard a theory to choose a 
similarity measure and a weight function appropriately, the authors in [69] propose to use the most common 
framework to assign weights: probability. The discrete version of the filter, considering the image as a vector 
which depends on the spatial location index 𝑖, can be written as: 

𝐼(𝑖) =
∑ 𝑤(𝑖, 𝑗)𝐼(𝑖)𝑡∈Ω1
∑ 𝑤(𝑖, 𝑗)𝑡∈Ω1

 (7.20) 

where 𝑤(𝑖, 𝑗) is a weight function which depends on general discrete space location 𝑖 and 𝑗 inside the search 
window Ω1. In the case of NL-Means: 

𝑤(𝑖, 𝑗) = 𝑒−
∑ 𝑔𝑔𝑡�𝐼𝑖,𝑡−𝐼𝑗,𝑡�

2
𝑡∈Ω2

ℎ  (7.21) 

where {𝑔𝑡}𝑡∈Ω2  are the coefficients of a Gaussian smoothing and Ω2 is the similarity window. In [69] 𝑤(𝑖, 𝑗) 
has been defined as: 

𝑤(𝑖, 𝑗) = �𝑃 �𝜎Ω2,𝑖 = 𝜎Ω2,𝑗�𝐼��
1
ℎ (7.22) 

where Ω2,𝑠 is the similarity window centered at pixel 𝑠. Hence, the weights are proportional to the probabil-
ity that the “true” reflectivity 𝜎 is equal inside the two similarity windows, conditioned to the observed val-
ues 𝐼 inside the windows themselves. Presupposing independence between pixels in the two windows with 
same dislocation 𝑡: 

𝑃 �𝜎Ω2,𝑖 = 𝜎Ω2,𝑗�𝐼� = �𝑃�𝜎𝑖,𝑡 = 𝜎𝑗,𝑡�𝐼𝑖,𝑡 , 𝐼𝑗,𝑡�
𝑡∈Ω2

 (7.23) 

and, using the Bayes formula: 

𝑃�𝜎𝑖,𝑡 = 𝜎𝑗,𝑡�𝐼𝑖,𝑡 , 𝐼𝑗,𝑡��������������
𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑖

=
𝑃�𝐼𝑖,𝑡 , 𝐼𝑗,𝑡�𝜎𝑖,𝑡 = 𝜎𝑗,𝑡��������������

𝑀𝐿

𝑃�𝜎𝑖,𝑡 = 𝜎𝑗,𝑡����������
𝑃𝑟𝑖𝑜𝑟𝑖

𝑃�𝐼𝑖,𝑡 , 𝐼𝑗,𝑡��������
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

 (7.24) 

they put the a posteriori probability not proportional to the ML probability but at the normalization: 

𝑃�𝜎𝑖,𝑡 = 𝜎𝑗,𝑡�𝐼𝑖,𝑡 , 𝐼𝑗,𝑡��������������
𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟𝑖

∝ 𝑃�𝐼𝑖,𝑡 , 𝐼𝑗,𝑡��������
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

= � 𝑃�𝐼𝑖,𝑡 , 𝐼𝑗,𝑡�𝜎𝑖,𝑡 = 𝜎𝑗,𝑡�𝑃�𝜎𝑖,𝑡 = 𝜎𝑗,𝑡�𝑑𝜎
𝑆

 (7.25) 

with S the definition domain of the RCS. Practically, contrarily to what maintained in the article, they ex-
press the weights in Eq. (7.22) on ML: 

𝑤(𝑖, 𝑗) = �𝑃 �𝐼�𝜎Ω2,𝑖 = 𝜎Ω2,𝑗��
1
ℎ (7.26) 

and now, using the Bayes formula, ML is proportional to the normalization: 

𝑃�𝐼𝑖,𝑡 , 𝐼𝑗,𝑡�𝜎𝑖,𝑡 = 𝜎𝑗,𝑡��������������
𝑀𝐿

∝ 𝑃�𝐼𝑖,𝑡 , 𝐼𝑖,𝑡��������
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

= � 𝑃�𝐼𝑖,𝑡 , 𝐼𝑗,𝑡�𝜎𝑖,𝑡 = 𝜎𝑗,𝑡�𝑃�𝜎𝑖,𝑡 = 𝜎𝑗,𝑡�𝑑𝜎
𝑆

 (7.27) 

Finally, exploiting the independence between pixels in the two windows with same dislocation t, and leaving 
out the a priori probability 𝑃�𝜎𝑖,𝑡 = 𝜎𝑗,𝑡� inside the integral: 

� 𝑃�𝐼𝑖,𝑡 , 𝐼𝑗,𝑡�𝜎𝑖,𝑡 = 𝜎𝑗,𝑡�𝑃�𝜎𝑖,𝑡 = 𝜎𝑗,𝑡�𝑑𝜎
𝑆

∝ � 𝑃�𝐼𝑖,𝑡�𝜎𝑖,𝑡 = 𝜎𝑗,𝑡�𝑃�𝐼𝑗,𝑡�𝜎𝑖,𝑡 = 𝜎𝑗,𝑡�𝑑𝜎
𝑆

 (7.28) 



174 Chapter  7 - Despeckling Filters   
 

Hence, the final relations are: 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑤(𝑖, 𝑗) = �𝑃 �𝐼�𝜎Ω2,𝑖 = 𝜎Ω2,𝑗��

1
ℎ = �� 𝑃�𝐼𝑖,𝑡 , 𝐼𝑗,𝑡�𝜎𝑖,𝑡 = 𝜎𝑗,𝑡�

𝑡∈Ω2

�

1
ℎ

𝑃�𝐼𝑖,𝑡 , 𝐼𝑗,𝑡�𝜎𝑖,𝑡 = 𝜎𝑗,𝑡� ∝ � 𝑃�𝐼𝑖,𝑡�𝜎𝑖,𝑡 = 𝜎𝑗,𝑡�𝑃�𝐼𝑗,𝑡�𝜎𝑖,𝑡 = 𝜎𝑗,𝑡�𝑑𝜎
𝑆

 (7.29) 

This weight function is used when only one iteration is computed. For the iterative version a little more com-
plication is added. Practically, they use at step k the previous parameter estimation 𝜎�𝑘−1 in the following 
way: 

𝑤(𝑖, 𝑗) = �𝑃 �𝐼�𝜎Ω2,𝑖 = 𝜎Ω2,𝑗� 𝑃 �𝜎Ω2,𝑖 = 𝜎Ω2,𝑗�𝜎�
𝑘−1��

1
ℎ (7.30) 

where the new term 𝑃 �𝜎Ω2,𝑖 = 𝜎Ω2,𝑗�𝜎�
𝑘−1�, which measures the probability to have equal RCS in the two 

similarity windows conditioned to the previous pixel estimate, is expressed as a Kullback-Leibler divergence 
over an exponential decay function13 [69]: 

𝑃 �𝜎Ω2,𝑖 = 𝜎Ω2,𝑗�𝜎�
𝑘−1� ∝ 𝑒

−1𝑇 ∫ �𝑃�𝑡�𝜎�𝑖,𝑡
𝑘−1�−𝑃�𝑡�𝜎�𝑗,𝑡

𝑘−1��ln
𝑃�𝑡�𝜎�𝑖,𝑡

𝑘−1�

𝑃�𝑡�𝜎�𝑗,𝑡
𝑘−1�

𝑑𝑑𝑡𝑆
 

(7.31) 

where 𝑇 is a free positive parameter. 

7.2.1.1 Multiplicative Noise Model 

For a multiplicative Gamma noise of the intensity, the amplitude 𝐴 = √𝐼 is a Nakagami distribution indicat-
ed as 𝐴~Nakagami(𝐿,𝜎 𝐿⁄ ): 

𝑓𝐴(𝑎) =
2𝑎2𝐿−1

 Γ(𝐿)(𝜎 𝐿⁄ )𝐿 𝑒
− 𝑎2
𝜎 𝐿⁄ ;    𝑎 ≥ 0 (7.32) 

and from this distribution we can compute the following weights: 

⎩
⎪
⎨

⎪
⎧𝑃�𝐴𝑖,𝑡 ,𝐴𝑗,𝑡�𝜎𝑖,𝑡 = 𝜎𝑗,𝑡� ∝ �

𝐴𝑖,𝑡𝐴𝑗,𝑡

𝐴𝑖,𝑡2 + 𝐴𝑗,𝑡
2 �

2𝐿−1

𝑃 �𝜎Ω2,𝑖 = 𝜎Ω2,𝑗�𝜎�
𝑘−1� ∝ 𝑒

−𝐿𝑇
�𝜎�𝑖,𝑡
𝑘−1−𝜎�𝑗,𝑡

𝑘−1�
2

𝜎�𝑖,𝑡
𝑘−1𝜎�𝑗,𝑡

𝑘−1

 (7.33) 

The interesting thing in this formulation, excluding the probability used to iteratively refining the estimation, 
is that the weight 𝑤(𝑖, 𝑗)can be written as: 

𝑤(𝑖, 𝑗) ∝ 𝑒
− 1
2𝐿−1ln�

𝐴𝑖,𝑡
2 +𝐴𝑗,𝑡

2

𝐴𝑖,𝑡𝐴𝑗,𝑡
�

= 𝑒
− 1
2𝐿−1ln�

𝐴𝑖,𝑡
𝐴𝑗,𝑡

+
𝐴𝑗,𝑡
𝐴𝑖,𝑡

�
 

(7.34) 

where can be seen how 𝑤(𝑖, 𝑗) depends on a sort of ratio measure (in amplitude) between singular pixels, in a 
similar way the RoA edge detector operates. 

 

 

 

 

13 This method is a common measure of distance between two pdfs. 
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7.3 Wavelet Based Filter  
In common with other more diffused signal transforms used in image compression, wavelet based filters ex-
ploit powerful properties of wavelet transform in order to denoise images. In fact, it is well-known that a sig-
nal can be decomposed in a convenient base in order to have only few coefficients of it different from zero. 
This compression property can also be exploited in denoising ignoring coefficients lesser than a threshold in 
reconstruction phase (hard thresholding). However, this abrupt method yields ringing artefacts (Gibbs ef-
fects) in reconstructed image and more sophisticated thresholding are applied to the wavelet coefficients to 
limit these effects (soft thresholding, also called shrinking).  

7.3.1 MMSE Denoising on Undecimated Wavelet Transform 
As in image domain, one of the most powerful linear filtering to reduce noise is the minimum mean square 
error (MMSE) filter. For this reason in [70], linear MMSE filtering in wavelet domain is devised on images 
corrupted by speckle noise.  

Considering the one-dimensional (1-D) case (2-D case is straightforward considering separable filters on 
rows and columns), it is well known that even multiplicative noise can be expressed as an additive, signal-
dependent noise as: 

𝐼(𝑥) = 𝜎(𝑥)𝑛(𝑥) 
= 𝜎(𝑥) + 𝜎(𝑥)[𝑛(𝑥) − 1] 
= 𝜎(𝑥) + 𝜎(𝑥)𝑛′(𝑥) 
= 𝜎(𝑥) + 𝑣(𝑥) 

(7.35) 

where, as previously said, being E[𝑛] = 1; 𝜎𝑛2 = 1 𝐿⁄ , considering 𝜎 and 𝑣 independent, we have14: 

E[𝑣] = 0; 𝜎𝑣2 = E[𝜎2]𝜎𝑛2 + 𝜎𝜎2𝜎𝑛2 (7.36) 

Presupposing to arrange each sequence in a column vector, and imposing the use of a linear estimator, Kuan 
[58] expresses the Linear Minimum Square Error estimate of the noiseless reflectivity as: 

𝝈�𝐿𝑀𝑀𝑆𝐸 = E[𝝈] + 𝐶𝜎𝐼𝐶𝐼−1(𝑰 − E[𝑰]) (7.37) 

where 𝐶𝜎𝐼 and 𝐶𝐼−1 are the cross-covariance matrix and covariance matrix respectively. From Eq. (7.37) can 
be seen as it is only required the knowledge of the second order statistics of 𝝈 and 𝒗. Then, exploiting that 
E[𝒗] = 0 (together with the independence between 𝝈 and 𝒗): 

𝐶𝜎𝐼 = 𝐶𝜎;  𝐶𝐼 = 𝐶𝜎 + 𝐶𝑣  (7.38) 

and considering 𝝈 uncorrelated we have RC  and vC  diagonal, giving the same formula exploited by Kuan in 
Eq.(7.3)and (7.4) : 

𝜎�𝐿𝑀𝑀𝑆𝐸(𝑥) = E[𝜎(𝑥)] +
𝜎𝜎2(𝑥)

𝜎𝜎2(𝑥) + 𝜎𝑣2(𝑥)
(𝐼(𝑥) − E[𝐼(𝑥)]) (7.39) 

hence, only the first-order statistics are involved. 

In order to exploit a multiresolution analysis (see Section 4.2 for a detailed discussion), the wavelets theory 
can be used. Briefly, multiresolution analysis at one level 𝑗 can be thought as an approximation of a function 
𝑓(𝑡) to the scale corresponding to that level. Presupposing the common dyadic decomposition, i.e. the scale 
corresponding to level 𝑗 is the 𝑗th power of 2 (2𝑗), the projection of a function onto a subspace 𝑉𝑗 ⊂ 𝐿2(ℝ) 
(space of square integrable functions) can be performed “convolving” (actually is an internal product) 𝑓(𝑡) 
with a scaling function 𝜙(𝑡). The set of dilatations and translations of the scaling function �𝜙𝑗,𝑛(𝑡) =
2−𝑗 2⁄ 𝜙�2−𝑗𝑡 − 𝑛��𝑛∈ℤ constitutes a base of the subspace 𝑉𝑗. Since 𝑉𝑗 ⊂ 𝑉𝑗−1, to obtain  a projection on 𝑉𝑗 
from a projection on 𝑉𝑗−1 we have to add an additional information which lies in a subspace  𝑊𝑗 orthogonal 
to 𝑉𝑗. This latter subspace is called Wavelet Subspace and even in this case translations and dilatations of a 

14 It should be noted that in this section, ensemble means and spatial means are indicated differently. For ensemble 
means we use the expectation operator whereas spatial means are indicated with an upper bar.  
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wavelet function 𝜓(𝑡), �𝜓𝑗,𝑛(𝑡) = 2−𝑗 2⁄ 𝜓�2−𝑗𝑡 − 𝑛��
𝑛∈ℤ

, constitutes a base of 𝑊𝑗. A digital signal 𝑓[𝑛] can 
be thought as the coefficients {𝑓[𝑛]}𝑛∈ℤobtained by the projection of a continuous signal 𝑓(𝑡) onto the lower 
resolution subspace 𝑉0. Moreover, thanks to the linear properties of these subspace, projections of digital 
signal 𝑓[𝑛] onto 𝑉𝑗 and 𝑊𝑗 can be obtained convolving the original sequence with some digital filters ℎ0[𝑛] 
and ℎ1[𝑛], respectively lowpass and highpass (bandpass) filters. Another useful property of wavelet decom-
position is that these projections can be obtained by recursively applying ℎ0[𝑛] and ℎ1[𝑛] to the original se-
quence 𝑓[𝑛], as shown in Fig. 7.4(a) (see also Section 4.3.7). This type of signal representation is known as 
decimated, or critically subsampled, wavelet decomposition. Let 𝑓𝑗

(𝑙)[𝑛] and 𝑓𝑗
(ℎ)[𝑛] respectively denote the 

approximation (lowpass) and detail (highpass) sequences at the output of the 𝑗th stage. An equivalent repre-
sentation is given in Fig. 7.4 (a) obtained from that of Fig. 7.4 (b) shifting the downsamplers toward the out-
put of the system and by using upsampled filters. Should be noticed that the undecimated wavelet (UDW) 
sequences, 𝑓𝑗

(𝑙)[𝑛] and 𝑓𝑗
(ℎ)[𝑛], can be obtained downsampling 𝑓𝑗

(𝑙)[𝑛] and 𝑓𝑗
(ℎ)[𝑛] by a factor 2𝑗.   

 
(a) 

 
(b) 

Fig. 7.4 - Three level decomposition. (a) Original schema. (b) Equivalent schema. 

From Fig. 7.4 it results clear how the UWD coefficients at level 𝑗 can be obtained convolving the original 
sequence 𝑓[𝑛] with equivalent filters: 

𝐻𝑒𝑞,𝑗
(𝑙) (𝑧) = �𝐻0�𝑧2

𝑚�
𝑗−1

𝑚=0

 

𝐻𝑒𝑞,𝑗
(ℎ) (𝑧) = ��𝐻0�𝑧2

𝑚�
𝑗−2

𝑚=0

�𝐻1 �𝑧2
𝑗−1� = 𝐻𝑒𝑞,𝑗

(𝑙) (𝑧)𝐻1 �𝑧2
𝑗−1� 

(7.40) 

Getting back to the SAR image model of Eq. (7.35), considering the notation 𝑓(𝑥) at the place of 𝑓[𝑛] for 
discrete signals, the UWD coefficients of the reflectivity 𝜎 are given by: 

𝜎�𝑗
(𝑙)(𝑥) = 𝜎 ∗ ℎ𝑒𝑞,𝑗

(𝑙) = �ℎ𝑒𝑞,𝑗
(𝑙) (𝑖)

𝑖

𝜎(𝑥 − 𝑖) 

𝜎�𝑗
(ℎ)(𝑥) = 𝜎 ∗ ℎ𝑒𝑞,𝑗

(ℎ) = �ℎ𝑒𝑞,𝑗
(ℎ) (𝑖)

𝑖

𝜎(𝑥 − 𝑖) 
(7.41) 

Analogously, the expression of  𝐼𝑗
(𝑙), 𝐼𝑗

(ℎ), 𝑣�𝑗
(𝑙), and 𝑣�𝑗

(ℎ) represent the projection of 𝐼 and 𝑣 on the UWD do-
main, where: 

𝐼𝑗
(𝑙)(𝑥) = 𝜎�𝑗

(𝑙)(𝑥) + 𝑣�𝑗
(𝑙)(𝑥) 

𝐼𝑗
(ℎ)(𝑥) = 𝜎�𝑗

(ℎ)(𝑥) + 𝑣�𝑗
(ℎ)(𝑥) 

(7.42) 

In this domain, exploiting the properties E[𝑣] = 0 and ∑ ℎ𝑒𝑞,𝑗
(ℎ) (𝑖)𝑖 = 0, we have: 
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⎩
⎪⎪
⎨

⎪⎪
⎧E �𝑣�𝑗

(𝑙)� = 0

E �𝑣�𝑗
(ℎ)� = 0

E �𝐼𝑗
(𝑙)� = E �𝜎�𝑗

(𝑙)� ≠ 0

E �𝐼𝑗
(ℎ)� = E �𝜎�𝑗

(ℎ)� ≈ 0

 (7.43) 

where E �𝜎�𝑗
(ℎ)� would be equally to zero if 𝜎 was a stationary random process. Now, leaving out the expo-

nent (ℎ) of the high-pass coefficients (for clarity), and presupposing the UWD coefficients 𝐼𝑗 as a random 
process corrupted by an additive zero-mean noise 𝑣�𝑗, we can exploit the same theory in Eq. (7.39) which can 
be further simplified (exploiting E �𝜎�𝑗

(ℎ)� = 0) in: 

𝜎��𝐿𝑀𝑀𝑆𝐸,𝑗(𝑥) =
E�𝐼𝑗2(𝑥)� − E�𝑣𝑗2(𝑥)�

E�𝐼𝑗2(𝑥)�
𝐼𝑗(𝑥) (7.44) 

Practically speaking, Eq. (7.44) is the application of the Kuan filter to the undecimated wavelet coefficients. 
Equivalently to the Classic despeckling filters, if we assume that natural images are locally stationary and er-
godic, we may substitute statistical expectations in (7.44) with spatial averages. However, while E�𝐼𝑗2(𝑥)� 
can be directly computed, the term E�𝑣𝑗2(𝑥)� can be derived as: 

E�𝑣𝑗2(𝑥)� =
𝜎𝑛2

1 + 𝜎𝑛2
�ℎ𝑒𝑞,𝑗(𝑖)2
𝑖

E[𝐼2(𝑥 − 𝑖)] (7.45) 

where the assumption of 𝑣 incorrelated has been made. As previously said, even though all the previous 
computations are on 1-D signals, 2-D extensions is straightforward considering separable filters between row 
and column of the image.  

The same authors, in [71] propose an improvement of this algorithm modelling the wavelet coefficients both 
of noiseless reflectivity 𝜎�𝑗 and of the noise 𝑣�𝑗 as a zero-mean Generalized Gaussian (GG) which depends on-
ly on two parameters that are locally estimated. Even though GG is symmetric and the same authors admit 
that experiments on natural images have shown asymmetric histogram of wavelet coefficients, they use GG 
for its relative simplicity and because GG includes Normal distribution as special case. In fact, leaving out 
the first level of decomposition, the validity of the central limit theorem is expected for deeper levels. Any-
way, a lot of complexity is introduced and the gain reported in the article is less of 2dB for 1-look images, 
and it decreases when the number of looks rise. For this reason, only the original LMMSE is used for com-
parison taking in mind that an improvement can be obtained. 

 

7.4 Partial Differential Equation (PDE) Based Filter 
A very powerful class of despeckling filters are those derived as a solution of a physical process represented 
by a partial differential equation (PDE). In this framework, filtering an image with a Gaussian kernel with 
standard deviation 𝜎 is equivalent to see the evolution of the system at the time 𝑡 = 𝜎2 2⁄ , where each grey 
level in the original image represents a temperature measure [47], [72]. Formally, the image intensity 𝐼 (grey 
level, color, etc.) is seen as a physical variable such as temperature. The existence of the concentration gradi-
ent ∇𝐼 creates a flux 𝐽 (a vector) according to the first Fick law (diffusion law), in order to equilibrate the 
concentration differences in the diffusing medium Ω: 

𝐽 = 𝐷∇𝐼 (7.46) 

where 𝐷 is the diffusion tensor (a matrix) which characterizes the diffusion medium and which determines 
the type of diffusion process we apply on image. Since the mass conservation hypothesis has to be respected, 
the temporal variation of 𝐼 (e.g. temperature) inside Ω is equal to the flux of 𝐼 across the boundary of Ω (indi-
cated with 𝑑Ω and 𝒏� is the unit vector normal to 𝑑Ω):  
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�
𝑑𝐼
𝑑𝑡
𝑑𝒙 = � 𝐽 ∙ 𝒏�

𝑑𝑑Ω

𝑑𝑠
Ω

 (7.47) 

Applying the Divergence Theorem: 

� 𝐽 ∙ 𝒏�
𝑑𝑑Ω

𝑑𝑠 = � div(𝐽)𝑑𝒙
Ω

 (7.48) 

and substituting all in Eq. (7.47): 

��
𝑑𝐼
𝑑𝑡
− div(𝐽)�𝑑𝒙

Ω

= 0 

→��
𝑑𝐼
𝑑𝑡
− div(𝐷∇𝐼)�𝑑𝒙

Ω

= 0 

(7.49) 

the second Fick law (diffusion law) is derived: 
𝑑𝐼
𝑑𝑡

= div(𝐷∇𝐼) (7.50) 

so that the final PDE is: 

�
𝑑𝐼
𝑑𝑡

= div(𝐷∇𝐼) , 𝑡 > 0

𝐼 = 𝐼0 , 𝑡 = 0
 (7.51) 

with 𝐼0 the initial image. Then in order to avoid any flux variation throughout the image margins it is usually 
imposed the following constraint: 

𝑑𝐼
𝑑𝒏�

�
𝜕Ω

= 0 (7.52) 

with  𝒏� the usual unit vector normal to the image borders. 

As an example, if 𝐷 was scalar, the flux 𝐽 would be parallel to ∇𝐼, which means that the diffusion would be 
isotropic, and Eq. (7.51) would become: 

𝑑𝐼
𝑑𝑡

= 𝐷 ∇2𝐼 (7.53) 

where  ∇2𝐼 is the laplacian of 𝐼. In this case the PDE to solve would be: 

�
𝑑𝐼
𝑑𝑡

= 𝐷 ∇2𝐼 , 𝑡 > 0

𝐼 = 𝐼0 , 𝑡 = 0
 (7.54) 

which can be solved in a closed form and the solution at time 𝑡 can be obtained as the initial image smoothed 
by a Gaussian  kernel 𝐺𝜎 whose standard deviation is 𝜎 = √2𝑡, i.e.: 

�
𝐼 = 𝐺√2𝑡 ∗ 𝐼0 , 𝑡 > 0
𝐼 = 𝐼0 , 𝑡 = 0 (7.55) 

Clearly, this type of evolution yields an image where all sharp transitions are smoothed out due to the Gauss-
ian filtering.  

7.4.1 Perona-Malik Anisotropic Diffusion 
Without any modification to the PDE in Eq. (7.54), the natural evolution of the system leads to a completely 
blurred image (the solution is the initial image smoothed by a Gaussian kernel). For this reason, Perona and 
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Malik [72] proposed to change the scalar 𝐷 with a function 𝑔(∇𝐼) reverse proportional to the image gradient. 
In particular, they suggested using one of the following functions: 

𝑔1(∇𝐼) = 𝑒−
|∇𝐼|2
𝑘 ;  𝑔2(∇𝐼) =

1

1 + �|∇𝐼|
𝑘 �

2  (7.56) 

which belong to the interval [0, 1], 𝑔(∇𝐼) → 0, with |∇𝐼| → ∞, and the parameter 𝑘 acts as a threshold. In 
fact, can be easily proved that an edge with |∇𝐼| < 𝑘 is smoothed whereas an edge with |∇𝐼| > 𝑘 becomes 
sharper. We will see that this edge-enhancing property of the Perona-Malik filter is the fundamental key for 
the very impressive results of this filter. Furthermore, since this filter constitutes the starting point of all the 
subsequent PDE based filters, we report the proof of this property here after.  

Suppose to have a 1-D smooth edge (here modeled as a step edge convolved with a Gaussian kernel) which 
varies only along the 𝑥 direction, as showed in Fig. 7.5. In this case, indicating derivatives both explicitly 
and with a subscript, we have:  

div(𝑔(∇𝐼)∇𝐼) =
𝜕
𝜕𝑥

[𝑔(𝐼𝑥)𝐼𝑥] =
𝜕
𝜕𝑥

[𝐽(𝐼𝑥)] (7.57) 

Then the 1-D version of the diffusion equation becomes: 

𝐼𝑡 =
𝜕
𝜕𝑥

[𝐽(𝐼𝑥)] = 𝐽′(𝐼𝑥)𝐼𝑥𝑥 (7.58) 

If we look at the variation in time of the slope of the edge, i.e. 𝜕
𝜕𝑡

[𝐼𝑥], supposing 𝐼 derivable, the order of dif-
ferentiation can be inverted, so that: 

𝜕
𝜕𝑡

[𝐼𝑥] =
𝜕
𝜕𝑥

[𝐼𝑡] =
𝜕
𝜕𝑥

[𝐽′(𝐼𝑥)𝐼𝑥𝑥] = 𝐽′′(𝐼𝑥)𝐼𝑥𝑥2 + 𝐽′(𝐼𝑥)𝐼𝑥𝑥𝑥 (7.59) 

As we can see in Fig. 7.5, since at edge point (in that case at 𝑥 = 64), 𝐼𝑥𝑥 = 0 and 𝐼𝑥𝑥𝑥 ≪ 0, the term 
𝐽′′(𝐼𝑥)𝐼𝑥𝑥2  in Eq. (7.59) can be left out and, if 𝐽′(𝐼𝑥) > 0 the slope decreases (edge smoothing case), other-
wise, if 𝐽′(𝐼𝑥) < 0 the edge is sharpened (edge enhancing case). Now, given one of the functions in Eq. 
(7.56), 𝐽(𝐼𝑥) is shown in Fig. 7.6 (a),(b). It becomes immediately clear that, when |∇𝐼| < 𝑘 we have 𝐽′(𝐼𝑥) <
0 and when |∇𝐼| > 𝑘 we have 𝐽′(𝐼𝑥) > 0.  

Anyway, in the original formulation of the function 𝑔1(∇𝐼) (which gives the best result along edges) there is 
a bias in the threshold parameter 𝑘 that does not represent the actual point where the flux derivative change 
sign, see Fig. 7.6 (b). To solve this problem a unbiased version of this function has been proposed in [73], 
see Fig. 7.6 (c): 

𝑔1(∇𝐼) = 1 − 𝑒
− 𝐶𝑚

�|∇𝐼|
𝑘 �

𝑚

 
(7.60) 

where the exponent power is a general integer number 𝑚 and the parameter 𝐶𝑚 can be determined as zero of 
the following equation: 

𝜕
𝜕𝑥

[𝑥𝑔1(𝑥)]�
𝑘=|∇𝐼|

= 0 (7.61) 
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Fig. 7.5 - Smooth edge and its derivatives. 

From the article of Perona-Malik [72], a lot of evolutions have been proposed in literature [73]-[81], anyway 
only the more relevant at our scopes will be treated. For a careful overview the reader is addressed to [73]. 
Cattè-Lion-Morel [77] assert that the Perona-Malik proposal of smoothing the initial noisy image with a 
Gaussian kernel (in order to make it differentiable), is a trick. Furthermore, they maintain that the original 
equation behaves as a forward-backward equation that is known to be bad-posed (a slight modification of the 
initial image yields a very different equation solution) .Therefore, they proposed the following corrected 
formula: 

𝑑𝐼
𝑑𝑡

= div(𝑔(∇𝐼𝜎)∇𝐼) (7.62) 

where 𝐼𝜎 is the Gaussian smoothed image. In general, they proved that any low pass filtering applied only 
inside the diffusivity function 𝑔 is enough. In [80] the Gaussian smoothing is substituted with a symmetric 
exponential filter in order to overcome the well-known problem of edge position error introduced by Gaussi-
an smoothing (see Section 4.3). Anyway, regularizing only the gradient inside the diffusivity function yields 
results where edges are completely surrounded by noise. To avoid this drawback, as Perona-Malik have sug-
gested, it suffices to filter the initial image with a Gaussian kernel (linear diffusion) before applying the algo-
rithm (non-linear diffusion). It could seem that after the first linear diffusion, the algorithm cannot appropri-
ately recover blurred edges. Yet, thanks to the edge-enhancing property of the Perona-Malik schema, this is 
not true and strong edges are correctly sharpened.    
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(a) 

  

(b) 

  

(c) 
Fig. 7.6  - (a) Flux 𝑱(𝑰𝒙) (shown on the right) when function 𝒈𝟐(𝛁𝑰) (shown on the left) is used.  (b) Flux 𝑱(𝑰𝒙) 

(shown on the right) when function 𝒈𝟏(𝛁𝑰) (shown on the left) is used. (c) Unbiased version of the flux (shown on 
the right) and diffusivity (shown on the left). 
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7.4.2 Biased Anisotropic Diffusion 
Successively, another improvement has been proposed by Nordstrom [79]. He found a very close relation be-
tween the minimization of an energy functional based on the image Total Variation (TV) and Anisotropic 
Diffusion (AD) equation. From this sight, he proposed a “biased” AD (BAD) adding a term in the original 
equation in order to reach a steady state and avoid setting the final time parameter of the solution: 

𝑑𝐼
𝑑𝑡

= div(𝑔(∇𝐼𝜎)∇𝐼) − (𝐼0 − 𝐼) (7.63) 

Moreover, he provided a physical interpretation of this equation as the temperature evolution of a slab leant 
on the initial image (always interpreted as a heat source).    

7.4.3 Speckle Reducing Anisotropic Diffusion 
Even though the PDE framework does not presuppose any model of the noisy image, authors in [75] have 
tried to account the multiplicative noise case, implementing a PDE of the type:  

�
𝑑𝐼
𝑑𝑡

= div(𝑔(𝐶𝐼2)∇𝐼) , 𝑡 > 0

𝐼 = 𝐼0 , 𝑡 = 0
 (7.64) 

where the diffusivity function now depends on the coefficient of variation 𝐶𝐼2 in place of the gradient ∇𝐼. In 
particular, the diffusivity function may depend on the same factor  𝑘𝐿 ( or 𝑘𝑘) of Lee (or Kuan) filter in Eq. 
(7.4). However, in [75] the author suggest using: 

𝑔(𝐶𝐼2) =
1

1 + �𝐶𝐼
2 − 𝐶𝑛2

𝐶𝑛2 + 𝐶𝑛4
�
2 

(7.65) 

with 𝐶𝑛2computed at each iteration on a homogeneous region of the image passed as input. It should be noted 
that the coefficient k is different from both 𝑘𝐿 and 𝑘𝑘, and it has been chosen to have a better edge-
enhancement diffusion [75]. Moreover, some improvements on final performance can be obtained estimating 
differently and in a larger local neighborhood the coefficient of variation [83]. 

7.4.4 Coherence Enhancing Anisotropic Diffusion 
Even though these filters are often referred to as anisotropic diffusion (AD) techniques, the first real aniso-
tropic diffusion approach was proposed in [78], where the Coherence Enhancing Diffusion (CED) was de-
vised. In fact, we recall that the term anisotropic is inappropriate because the only true anisotropic diffusion 
is that of CED filter, whereas the other ones are actually non-linear, isotropic, and inhomogeneous [73]. 
Briefly, if the diffusion tensor 𝐷 is constant over the whole image domain, one speaks of homogeneous dif-
fusion, and a space-dependent filtering is called inhomogeneous. Often the diffusion tensor is a function of 
the differential structure of the evolving image itself. Such a feedback leads to nonlinear diffusion filters. 
Diffusion which does not depend on the evolving image is called linear. Finally, if the flux 𝑱 is parallel to the 
image gradient the diffusion is isotropic, otherwise is anisotropic.  

Practically speaking, the author in [78] suggest of using the so called “structure tensor” at the place of the 
gradient to estimate the image variation directions. In fact, while smoothing the gradient components directly 
in order to reduce the noise gives rise to possible cancellation effects (i.e. near gradients with opposite direc-
tion are smoothed out), smoothing the structure tensor components does not produce this drawback. Struc-
ture tensor is also called “second order matrix” or “interest operator” [82] and is defined as: 

𝑆(∇𝐼𝜎) = ∇𝐼𝜎  ∇𝐼𝜎𝑇 (7.66) 

Once 𝑆(∇𝐼𝜎) is smoothed element-wise by 𝐺𝜌 to reduce the noise, the resultant matrix  𝑆𝜌 (symmetric and 
positive semi-definite) can be decomposed to find the image principal components: 
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𝑆𝜌 = 𝐺𝜌 ∗ 𝑆(∇𝐼𝜎) = 𝑉𝜦𝑉𝑇 = [𝒗𝟏 𝒗𝟐] �𝜆1 0
0 𝜆2

� �
𝒗𝟏𝑻

𝒗𝟐𝑻
� (7.67) 

where 𝒗𝟏, 𝒗𝟐 indicate respectively the eigenvectors parallel and orthogonal to the image gradient, with 
𝜆1,  𝜆2 the corresponding eigenvalues. Considering 𝜆2 ≤ 𝜆1, the eigenvector 𝒗𝟏 corresponds to the gradient 
direction and its eigenvalue 𝜆1 is high on edges. Moreover, the eigenvector 𝒗𝟐 is orthogonal to the gradient 
direction and its eigenvalue 𝜆2 is high only on object corners and singularities. In [78] to prefer smoothing 
along the direction 𝒗𝟐 and consequently link interrupted lines, the diffusion matrix 𝐷 is derived from 𝑆𝜌 as: 

𝐷 = [𝒗𝟏 𝒗𝟐] �
𝑔𝜆1(𝜆1, 𝜆2) 0

0 𝑔𝜆2(𝜆1, 𝜆2)� �
𝒗𝟏𝑻

𝒗𝟐𝑻
� (7.68) 

with: 

�
𝑔𝜆1(𝜆1, 𝜆2) = 𝛼

𝑔𝜆2(𝜆1, 𝜆2) = 𝛼 + (1 − 𝛼)𝑒
−𝐶𝑚

(𝑘 (𝜆1−𝜆2)2⁄ )𝑚
 (7.69) 

where 𝛼 permits a small diffusivity (usually 𝛼 = 0.05) even when no preferential direction exists, 𝑘 acts as a 
threshold to the quantity (𝜆1 − 𝜆2)2 and 𝑐𝑐, 𝐶𝑚 and 𝑚 have the same role as in corrected Perona-Malik for-
mula. 

7.4.5 Improved Edge Enhancing Diffusion (IEED) 
Since the aim of [78] was not to devise a denoise filter, applying CED on a speckle-corrupted image yields 
results with distorted details and a lot of noise left on homogeneous regions. In order to explain this behav-
iour let’s recall how CED works. First, the structure tensor matrix for each point is computed. This matrix 
contains the same information that can be extracted from the gradient, although it groups this information in 
its eigenvectors and eigenvalues. The eigenvectors, here indicated as 𝒗𝟏, 𝒗𝟐, which are respectively parallel 
and orthogonal to the gradient ∇𝐼, have eigenvalues 𝜆1, 𝜆2 whose value indicates the image variation along 
the respective direction. For this reason Weickert puts the diffusion matrix 𝐷 of the classical PDE  𝐼𝑡 =
div(𝐷∇𝐼) equal to the structure tensor matrix but modifying each eigenvalue with a function 𝑔𝜆1(𝜆1, 𝜆2) and 
𝑔𝜆2(𝜆1, 𝜆2), in order to adjust the smoothing direction. To see the behavior of CED diffusion matrix 𝐷, in 
Fig. 7.7(c) it is shown in blue the eigenvector 𝒗𝟏 (parallel to the gradient) with a length proportional to its 
diffusivity coefficient 𝑔𝜆1(𝜆1, 𝜆2) and in red the eigenvector 𝒗𝟐 (orthogonal to the gradient) with a length 
proportional to its diffusivity coefficient 𝑔𝜆2(𝜆1, 𝜆2). The reported values correspond to the first iteration, 
when CED is applied at the noisy image in Fig. 7.7 (b).  
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(a) (b) 

 

 

(c) (d) 

  
(e) (f) 

Fig. 7.7  - (a) Cartoon Model of the Simulated image “SIM”.  (b) Image corrupted by an ideal Gamma noise with 
independent samples and number of look 𝑳 = 𝟓. (c) CED diffusivity matrix representation. In blue the eigenvec-
tor 𝒗𝟏 (parallel to the gradient) with a length proportional to its diffusivity coefficient 𝒈𝝀𝟏(𝝀𝟏,𝝀𝟐) and in red the 
eigenvector 𝒗𝟐 (orthogonal to the gradient) with a length proportional to its diffusivity coefficient 𝒈𝝀𝟐(𝝀𝟏,𝝀𝟐), at 
first iteration, when CED is applied on a magnification of the noisy image “SIM”. (d) Eigenvalue 𝝀𝟏 on noiseless 

image “SIM”. (e) Eigenvalue 𝝀𝟐 on noiseless image “SIM”. (f) Result of CED filter 𝝈 = 𝟏;  𝝆 = 𝟏;𝒎 = 𝟐;  𝜶 =
𝟎.𝟎𝟓;𝑸 = 𝟎.𝟗. 
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As can be seen from Fig. 7.7 (c), only smoothing along edges is performed whereas on homogeneous region 
both modified eigenvalues 𝜇1, 𝜇2 become small (equal to parameter 𝛼, usually set to a small value near 
0.05), where: 

𝜇1 = 𝑔𝜆1(𝜆1, 𝜆2)  
𝜇2 = 𝑔𝜆2(𝜆1, 𝜆2)  (7.70) 

To understand the role of each eigenvalue, in Fig. 7.7 (d)-(e) the original eigenvalues 𝜆1, 𝜆2 are shown when 
the structure tensor matrix is computed on the noiseless image. As can be seen 𝜆1 is high on edges whereas 
𝜆2 is high only near corners. In Fig. 7.7 (f) the final smoothing result of CED is reported. It should be point-
ed out that the parameter 𝑄 reported in the caption is used to compute the threshold 𝑘. In particular, 𝑄  is the 
quantile of the experimental cumulative density function (ecdf) of the respective variables to which the 
threshold 𝑘 has to be applied (see Appendix M for further details). That is, in CED 𝑄 is the ecdf quantile of 
the variable (𝜆1 − 𝜆2)2 computed on a homogeneous region passed as input. 

From Fig. 7.7 (f) all previous discussion becomes clear and, moreover, we can see that CED has another 
lack, it does not preserve corners. In order to overcome CED drawbacks, a modification on diffusivity func-
tion can be done:  

�
𝑔𝜆1(𝜆1, 𝜆2) = 1 − 𝑒

−𝐶𝑚1
(𝑘1 𝜆1⁄ )𝑚1

𝑔𝜆2(𝜆1, 𝜆2) = 1 − 𝑒
−𝐶𝑚2

(𝑘2 𝜆2⁄ )𝑚2

 (7.71) 

The novelty of this filter not only is it in the use of an unbiased diffusivity formula  in CED formulation but, 
above all, it is in the way eigenvalues information is used to have isotropic diffusion on homogeneous re-
gion, anisotropic diffusion along edges and corner preservation jointly.  

The choice in Eq. (7.71) can be better appreciated exploiting a convenient decomposition of the flux 𝑱, and 
an alternative decomposition of the diffusion matrix 𝐷. In fact, 𝐷 can be expressed as: 

𝐷 = [𝒗𝟏 𝒗𝟐] �
𝑔𝜆1(𝜆1, 𝜆2) 0

0 𝑔𝜆2(𝜆1, 𝜆2)� �
𝒗𝟏𝑻

𝒗𝟐𝑻
� = 𝑔𝜆1(𝜆1, 𝜆2)𝒗𝟏𝒗𝟏𝑻 + 𝑔𝜆2(𝜆1, 𝜆2)𝒗𝟐𝒗𝟐𝑻 (7.72) 

Then, indicating with ∇𝐼 ∙ 𝒗 the scalar product between the gradient and another vector (that is also equal to a 
directional derivative of 𝐼 along 𝒗, indicated as 𝐼𝑣), and recalling that 𝒗𝟏 and 𝒗𝟐 have unitary module (i.e. 
they holds only directional information), the flux 𝑱 can be written: 

𝑱 = 𝐷∇𝐼 
= �𝑔𝜆1(𝜆1, 𝜆2)𝒗𝟏𝒗𝟏𝑻 + 𝑔𝜆2(𝜆1, 𝜆2)𝒗𝟐𝒗𝟐𝑻�∇𝐼 
= 𝑔𝜆1(𝜆1, 𝜆2)𝒗𝟏[∇𝐼 ∙ 𝒗𝟏] + 𝑔𝜆2(𝜆1, 𝜆2)𝒗𝟐[∇𝐼 ∙ 𝒗𝟐] 
= 𝑔𝜆1(𝜆1, 𝜆2)𝐼𝑣1𝒗𝟏 + 𝑔𝜆2(𝜆1, 𝜆2)𝐼𝑣2𝒗𝟐 

(7.73) 

Hence, the following proposition holds: 

Prop (7.4.1): the flux 𝑱 can be decomposed in two orthogonal components, one directed along 𝒗𝟏 and one 
along 𝒗𝟐. Each component has a length proportional to the directional derivative along the respective direc-
tion and is multiplied by the corresponding diffusivity function. 

Therefore, using the diffusivities in Eq. (7.71), three different filter behaviors are highlighted by the novel 
IEED filter: 

1) On homogeneous areas both 𝜆1  and 𝜆2  are low. Therefore, 𝜇1 and 𝜇2 are near 1, i.e. an isotropic diffusion 
case (speckle removal). 

2) On edges 𝜆1  is high and 𝜆2  is low. Consequently, 𝜇1 is near 0 and 𝜇2 is near 1, i.e. an anisotropic diffu-
sion case with smoothing along 𝒗𝟐 (edge preservation). 

3) On corners both 𝜆1  and 𝜆2  are high. As a consequence, 𝜇1 and 𝜇2 are near 0, i.e. a no diffusion case (cor-
ner preservation). 

It should be noted that the last behavior avoids shape distortion of objects and hard targets smoothing. In 
fact, not only corners and singularities, but also small objects with high RCS are characterized by a high val-
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ue of both 𝜆1  and 𝜆2 , thus causing diffusion stop.  In Fig. 7.8 we can see the result of IEED compared to 
IEED and PM (with unbiased diffusivity). Noise removal on edges is evident and also shape preservation is 
achieved. It should be pointed out that in IEED case 𝑄1 and 𝑄2 are the ecdf quantiles of the variables 𝜆1and 
𝜆2, respectively computed on a homogeneous region passed as input, whereas for PM filter 𝑄 rules |∇𝐼|. Fi-
nally, it is worth noting that the results in Fig. 7.8 are obtained by using the numerical schema optimized for 
rotational invariance descripted in detail in Appendix M, which enable to yield the best performance. 

Summarizing, with the diffusivity in Eq. (7.71) we manage to effectively combine the respective advantages 
of the PM and CED filter. In the PM schema, the speckle on homogeneous regions is removed but there is no 
diffusion along edges, so they remain noisy in the final result. Conversely, the CED filter provides little 
speckle removal on homogeneous areas, but edges are correctly reconstructed. 

   
(a) (b) (c) 

Fig. 7.8 - (a) Result of CED filter 𝝈 = 𝟏;  𝝆 = 𝟏;𝒎 = 𝟐;  𝜶 = 𝟎.𝟎𝟓;𝑸 = 𝟎.𝟗. (b) Result of PM filter 𝝈 = 𝟏;  𝒎 =
𝟐;  𝑸 = 𝟎.𝟗. (c) Result of IEED filter 𝝈 = 𝟏;  𝝆 = 𝟏;𝒎 = 𝟐;  𝑸𝟏 = 𝟎.𝟗,𝑸𝟐 = 𝟎.𝟗𝟗𝟗.  

7.4.6 PDE Filter Summary 
In Tab. 7.1, the discussed PDE filter schemas are schematically reported, whit 𝒆𝟏 and 𝒆𝟐 the canonical bases 
of the space ℝ2. Discussion about implementation and its connected problems are reported in Appendix M.  

 

 PDE 𝐼𝑡 = div(𝐷∇𝐼) Diffusivity Function 

PM 𝐼𝑡 = div�[𝒆𝟏 𝒆𝟐] �
𝑔(∇𝐼) 0

0 𝑔(∇𝐼)� �
𝒆𝟏𝑻

𝒆𝟐𝑻
� ∇𝐼� 

𝑔(∇𝐼) = 1 − 𝑒
− 𝐶𝑚

�|∇𝐼|
𝑘 �

𝑚

 

SRAD 𝐼𝑡 = div�[𝒆𝟏 𝒆𝟐] �
𝑔 �𝐶𝐼2� 0

0 𝑔�𝐶𝐼2�
� �
𝒆𝟏𝑻

𝒆𝟐𝑻
� ∇𝐼� 

𝑔(𝐶𝐼2) =
1

1 + �𝐶𝐼
2 − 𝐶𝑛2

𝐶𝑛2 + 𝐶𝑛4
�
2 

CED 𝐼𝑡 = div�[𝒗𝟏 𝒗𝟐] �
𝑔𝜆1

(𝜆1,𝜆2) 0
0 𝑔𝜆2

(𝜆1,𝜆2)
� �
𝒗𝟏𝑻

𝒗𝟐𝑻
� ∇𝐼� �

𝑔𝜆1(𝜆1, 𝜆2) = 𝛼

𝑔𝜆2(𝜆1, 𝜆2) = 𝛼 + (1 − 𝛼)𝑒
−𝐶𝑚

(𝑘 (𝜆1−𝜆2)2⁄ )𝑚
 

IEED 𝐼𝑡 = div�[𝒗𝟏 𝒗𝟐] �
𝑔𝜆1

(𝜆1,𝜆2) 0
0 𝑔𝜆2

(𝜆1,𝜆2)
� �
𝒗𝟏𝑻

𝒗𝟐𝑻
� ∇𝐼� �

𝑔𝜆1(𝜆1, 𝜆2) = 1 − 𝑒
−𝐶𝑚1

(𝑘1 𝜆1⁄ )𝑚1

𝑔𝜆2(𝜆1, 𝜆2) = 1 − 𝑒
−𝐶𝑚2

(𝑘2 𝜆2⁄ )𝑚2

 

Tab. 7.1 -  PDE filter schema summary. 
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7.5 Results 
In this document, both simulated and real SAR images are used in order to evaluate despeckling algorithms. 
Simulated images belong to a unique category: piecewise constant images. Even natural optic images have 
been considered. Anyway, corrupting them with a multiplicative Gamma noise with a number of look equal 
to 1, the performances of all filters are very poor (natural edges have a low contrast ratio). For this reason 
these results are not reported in this document. Instead, for real SAR images the CSK images (L1B prod-
uct) are used. 

For each filter, when no other specification is made, the best parameter set is chosen and their values are re-
ported in Appendix N. 

7.5.1 Evaluation Indexes 
Evaluation of a reconstructed image 𝐼 is performed by the following measures, where the original noiseless 
image (when it is known) is indicated as 𝐼: 

1. Mean Square Error (MSE): 

𝑀𝑆𝐸 = 10 log10(�̂� − 𝐼)2�������������������� (7.74) 

 

2. Signal to Noise Ratio (SNR): 

𝑆𝑁𝑅 = 10 log10 (𝐼 − �̅�)2���������� (�̂� − 𝐼)2��������������������⁄   (7.75) 

3. Coefficient of variation of a homogeneous region: 

𝐶𝐼
2 =

𝜎𝐼
2

𝜇𝐼2
 (7.76) 

4. Ratio between original and reconstructed image with computation of first order statistics of the “ratio 
noise” 𝑛�: 

𝑛� =
𝐼
𝐼

=
𝜎𝑛
𝜎�

 

E[𝑛�] 
𝜎𝑛�
2 

(7.77) 

5. Local contrast around an edge; 

6. Visual inspection; 

7. Computational time. 

Naturally, to have a perfect reconstruction MSE should tend to zero, SNR should be maximum, and 𝐶𝐼
2 

should tend to zero. Moreover, the ratio noise image should look like a white noise and no structures should 
be visible. Finally, its first order statistics have to be near to their corresponding parameters used in noise 
simulation. 

7.5.2 Simulated Image (SIM1) 
This image is shown in Fig. 7.9(a). It is a piecewise constant image corrupted by an ideal Gamma noise with 
independent samples and number of look 𝐿 = 1.  In Fig. 7.10 the result of the best filter of each class is re-
ported, respectively: Classic Mean filter (CM), PM, iterated Probabilistic Patch Based (PPBi), and Undeci-
mated Wavelet Denoising (UWD), Perona-Malik with optimized schema (PM*) and Improved Edge Enhanc-
ing Diffusion with optimized schema (IEED*). It should be pointed out that in Fig. 7.10 we reported both 
PM* and IEED* to show the very impressive improving on the final results when the optimized numerical 
schema is used.  
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(a) (b) (c) 
Fig. 7.9 - (a) Simulated image (SIM1) corrupted by an ideal Gamma noise with independent samples and num-
ber of look 𝑳 = 𝟏. (b) Sampled row (row number 307) superimposed to the noiseless image (SIM1) used to dis-

play results in 1-D format. (b) Intensity of the sampled row. 

 

 SNR dB/ MSE dB 𝑪𝑰�
𝟐 𝐄[𝒏�] / 𝝈𝒏�

𝟐  

Lee 5.22/ 31.31 0.0124 0.97/ 0.82 

Kuan 5.55/ 30.98 0.0114 0.98/ 0.83 

Frost 3.69/ 32.84 0.0209 0.95/ 0.72 

Gamma 4.29/ 32.24 0.0157 1.00/ 0.87 

Mean 6.57/ 29.95 0.0079 1.00/ 0.99 

PM 10.41/ 26.11 9.5108e-004 1.01/ 1.01 

SRAD 9.58/ 26.95 7.1526e-004 1.02/ 1.03 

PM* 9.05/ 27.47 4.7187e-004 1.04/ 1.07 

IEED* 10.62/ 25.90 4.0999e-004 1.04/ 1.07 

PPB1 5.96/ 30.56 0.0072 0.96/ 0.81 

PPB10  7.91/ 28.61 0.0052 0.96/ 0.83 

UWD 0.10/ 36.42 0.0027 1.27/ 1.59 

Tab. 7.2 - Evaluation indexes for SIM1 image. Bold font indicates the best parameter value among all filters. 
Italic, underlined font indicates the best within each class. The asterisk indicates the use of the optimized numer-

ical schema. 

As we can see from Tab. 7.2, the best class of despeckling filters is the Anisotropic Diffusion (AD) one. 
Moreover, the optimized numerical schema enables the best performance to be obtained. Within this class, 
and Improved Edge Enhancing Diffusion (IEED*) filter gives the best results since it manages to have the 
best SNR (and of consequence MSE) with a very low residual coefficient of variation inside homogeneous 
regions. Moreover, the “ratio noise” has first order statistics very near to the simulated multiplicative noise. 
It should be noticed that this latter result indicates a nearly perfect RCS reconstruction (mean and variance 
preservation). 
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(a) (b) (c) 

   
(d) (e) (f) 

Fig. 7.10 - Despeckle results of the best filters of each class. (a) Classic Mean filter (CM). (b) Perona-Malik (PM). 
(c) Iterated Probabilistic Patch Based (PPB10). (d) Undecimated Wavelet Denoising (UWD). (e) Perona-Malik 

with optimized schema (PM*). (f) Improved Edge Enhancing Diffusion with optimized schema (IEED*). 

 

In Fig. 7.10 the result of the best filter of each class is reported, respectively: Classic Mean filter (CM), PM, 
iterated Probabilistic Patch Based (PPBi), and Undecimated Wavelet Denoising (UWD).  

From Fig. 7.10 we can see that IEED* manages to reconstruct the “cartoon model” nearly ideally, PM* ob-
tains a similar result except along edges that are a little waved, whereas the others filters fail in the recon-
struction. Classic filters that use the estimated coefficient of variation yields the worse result because it suf-
fices an outlier value to stop the smoothing on a homogeneous region. It is worth noting that this behaviour 
is very useful on low resolution SAR images because high value pixels which could be targets are preserved. 
Patch based filters behaves better than Classical one, even though they introduce some artefacts along 
strong edges and at some isolated pixel. Then, as descends from theory, UWD reconstruction presents a lot 
of ringing artefacts. 

In Fig. 7.11 we can see the “ratio noise” for these filters. While CM presents some correlation, PM, PPBi and 
UWD filters show a nearly ideal white noise (except along edges). Nevertheless, the best results is always 
the one of IEED* where nearly no structures seem present. 

 

 

 

 

 



190 Chapter  7 - Despeckling Filters   
 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig. 7.11 - Ratio noise of the best filters of each class. (a) Classic Mean filter (CM). (b) Perona-Malik (PM). (c) 
Iterated Probabilistic Patch Based (PPB10). (d) Undecimated Wavelet Denoising (UWD). (e) Perona-Malik with 

optimized schema (PM*). (f) Improved Edge Enhancing Diffusion with optimized schema (IEED*). 

 

 

In Fig. 1.13 the sampled row around the first edge is shown for all the filters, except PM* and IEED*, which 
are reported on  Fig. 7.13. As we can see PDE based filters are the only ones which manage to completely 
remove the noise. It is worth noting that in the legend of the figure the capitalized letter indicates the class 
(i.e. “C” is classic, “P” patch, “W” wavelet, “AD” anisotropic diffusion), and the subscript indicates the first 
letters of the filter name (e.g. “CL” means Classic Lee filter). In order to better visualize the PM* drawback of 
leaving some noise along the edges, the magnification around some other borders along the sampled row are 
reported in Fig. 7.13(b),(c). 
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(a) (b) 

  
(c) (d) 

Fig. 7.12 - Despeckling results of all filters on sampled row (row number 307). (a) Classic filters. (b) PDE based 
filters. (c) Patch Based filters. (d) Undecimated Wavelet Denoising (UWD). 

 

   
(a) (b) (c) 

Fig. 7.13 - Despeckling results on sampled row (row number 307). (a)-(b)-(c) Magnification around an edge. 
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7.5.3 CSK Image (CSK1) 
The image shown in Fig. 7.14 (a) belongs to the “CSK1” image that depicts an airport (see Section 1.9.2). 
This image has been acquired in Spotlight 2 mode with polarization HH and incidence angle near/far of 
55.9°/56.3° and has a theoretical equivalent number of look equal to 1.  

  
(a) (b) 

Fig. 7.14  - (a) Original CSK image (CSK1).  (b) Homogeneous region used to compute evaluation indexes. 

 

 𝑪𝑰�
𝟐 𝐄[𝒏�] / 𝝈𝒏�

𝟐  

Original 1.2198 - 

Lee 0.1496 0.98/0.79 

Kuan 0.1429 0.98/0.80 

Frost 0.2245 0.91/0.50 

Gamma 0.1461 1.01/0.84 

Mean 0.1318 1.01/0.97 

PM 0.0408 1.05/ 1.01 

SRAD 0.0360 0.89/ 0.55 

PM* 0.0220 1.06/ 1.27 

IEED* 0.0211 1.06/ 1.28 

PPB1 0.1042 0.96/ 0.81 

PPB10  0.2304 0.90/ 0.50 

UWD 0.2885 1.06 / 0.54 

Tab. 7.3 - Evaluation indexes for CSK1 image. The bold font indicates the best parameter value whereas italic, 
underlined font indicates the best within each class. The asterisk indicates the use of the optimized numerical 

schema. 
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In Tab. 7.3 we can see that, even on real images, PDE based filters manage to reduce speckle noise on ho-
mogeneous region more heavily (lower 𝐶𝐼

2), preserving presupposed speckle statistics15. 

The magnifications of the results obtained by the best filters of each class are reported in Fig. 7.15. 

For Classic filters, as happens on simulated images, the images present noisy reconstruction due to the vari-
ance of the final estimation computed only through pixels inside the local window. Before applying these fil-
ters, even downsampling the original image by a factor 2 does not produce a quality improvement. In this lat-
ter case homogeneous regions are better reconstructed but targets are completely distorted. 

About Patch based filters, only one iteration of the PPB filter (PPB1) improves the performance of classic 
filters, but it does not remove completely the original speckle. However, at each iteration, PPB manage to 
enhance the previous edges although it introduces very strong, unacceptable, artifacts (small segments com-
posed by low gray values).  

As we can see from the colorbar of UWD filter, the final dynamic is incremented. This means that low val-
ues are lowered and high values are increased. This is not properly the behavior of the filter we look for. 

As in simulated images, PDE based filters show the best result. From an accurate visual inspection, we can 
see that SRAD cleans homogeneous region but it smoothes the edges too much. Instead, PM manages to re-
duce speckle strongly on homogeneous regions and even most weak edges are preserved.  Nevertheless, only 
PM* and IEED* manage to obtain very impressive results.   

Nevertheless, in order to acquire more insights about edge preservation and the possibility to detect them af-
ter filtering, we have applied at all final results the Canny edge detector. In Fig. 7.16 the gradient magnitude 
of the Canny filter is reported. As can be seen from these figures the edge detection is greatly improved by 
PM* and IEED* filters. 

 

 

 

 

 

 

 

 

 

 

 

 

15 On real images the multiplicative speckle noise is only a model. Hence, indexes E[𝑛�] and 𝜎𝑛�2 do not provide the same 
indication as on simulated images. 
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(a) (b) (c) 

   
(d) (e) (f) 

 

 

 

 (g)  
Fig. 7.15 - Despeckle results of the best filters of each class. (a) Classic Mean filter (CM). (b) Perona-Malik (PM). 

(c) Iterated Probabilistic Patch Based (PPB10). (d) Undecimated Wavelet Denoising (UWD). (e) Perona-Malik 
with optimized schema (PM*). (f) Improved Edge Enhancing Diffusion with optimized schema (IEED*). (g) Mag-

nification of the original image. 
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(a) (b) (c) 

   
(d) (e) (f) 

Fig. 7.16 - Canny gradient magnitude on despeckled results of the best filters of each class. (a) Classic Mean filter 
(CM). (b) Perona-Malik (PM). (c) Iterated Probabilistic Patch Based (PPB10). (d) Undecimated Wavelet De-
noising (UWD). (e) Perona-Malik with optimized schema (PM*). (f) Improved Edge Enhancing Diffusion with 

optimized schema (IEED*). 

 

7.5.4 CSK Image (CSK2) 
The image shown in Fig. 7.17 (a) belongs to the “CSK2” image that depicts an airport (see Section 1.9.2). 
This image has been acquired in Spotlight 2 mode with polarization HH and incidence angle near/far of 
51.1°/51.5° and it has a theoretical equivalent number of look equal to 1.  

The equal behavior of the filters on this image can be noted by both visual inspection in Fig. 7.18 and from 
the indexes reported in Tab. 7.4. Consequently, even in this case, PM* and IEED* filters ménage to obtain the 
best results. 
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(a) (b) 

Fig. 7.17  - (a) Original CSK image (CSK2).  (b) Homogeneous region used to compute evaluation indexes. 

 

 𝑪𝑰�
𝟐 𝐄[𝒏�] / 𝝈𝒏�

𝟐  

Original 1.2393 - 

Lee 0.1650 0.98/0.78 

Kuan 0.1599 0.98/0.79 

Frost 0.2464 0.91/0.49 

Gamma 0.1632 1.01/0.83 

Mean 0.1501 1.01/0.952 

PM 0.0452 1.05/ 1.18 

SRAD 0.0500 1.04/ 1.14 

PM* 0.0347 1.06/ 1.26 

IEED* 0.0334 1.06/ 1.26 

PPB1 0.1160 0.88/ 0.53 

PPB10  0.2512 0.89/ 0.47 

UWD 0.2885 1.06 / 0.54 

Tab. 7.4 - Evaluation indexes for CSK2 image. The bold font indicates the best parameter value whereas italic, 
underlined font indicates the best within each class. The asterisk indicates the use of the optimized numerical 

schema. 
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(a) (b) (c) 

   
(d) (e) (f) 

Fig. 7.18 - Despeckle results of the best filters of each class. (a) Classic Mean filter (CM). (b) Perona-Malik (PM). 
(c) Iterated Probabilistic Patch Based (PPB10). (d) Undecimated Wavelet Denoising (UWD). (e) Perona-Malik 

with optimized schema (PM*). (f) Improved Edge Enhancing Diffusion with optimized schema (IEED*). 
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7.5.5 CSK Image (Tucson) 
The image shown in Fig. 7.19  belongs to the “Tucson” image that depicts an airport (see Section 1.9.2). This 
image has been acquired in Spotlight 2 mode with polarization HH and incidence angle near/far of 
23.9°/24.8° and has a theoretical equivalent number of look equal to 1. In order to highlight the very impres-
sive results of IEED* filter, only the result of such operator are reported in Fig. 7.19. 

 

  
(a) 

  
(b) 

Fig. 7.19 - Despeckle results of the Improved Edge Enhancing Diffusion with optimized schema (IEED*). (a) Am-
plitude of “Tucson” image (on the left) and its despeckled version (on the right). 

(b) Respective image magnification around airport buildings. 
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7.5.6 Computational Load 
To deepen our analysis of despeckling algorithms computational aspects are as essential as final perfor-
mance. For what concerns computational load, in Tab. 7.5 execution time of the algorithms is reported. The 
analysis has been performed on a computer Intel Core 2 Duo, CPU T9400 @2.53GHz, 1.99GB di RAM.  

Before analysing the computational time it has to be said that Classical filters and Anisotropic Diffusion 
filter are not optimized and the straightforward implementation has been used. UWD filter utilizes the 
MATLAB functions filter and filter2 whereas PPB filters have their main subroutines even implemented in 
C. 

As can be caught from Tab. 7.5, UWD filter shows the minor computational load. Among Anisotropic Dif-
fusion filters, PM and SRAD have a quite similar behaviour while IEED is the worst of its category. Finally, 
PPB1 has clearly a lower load of its iterative counterpart PPB10. 

Even for what concerns memory resources some discussions can be carried on. In general, for not optimized 
codes, a computational improvement can be always obtained utilizing more memory allocation. As example 
it suffices to think about moving window processing which can be quickly performed saving in memory 
neighbour pixel values for each pixel instead to really move a window on image pixels. Given an image 
whose memory allocation is M bytes and considering straightforward implementation, the available memory 
needed is reported in the last column of Tab. 7.5. 

 

 
Computational Time (µs/px) Memory (bytes) 

Image  
512x512 (px) 

Image 
 1024x1024 (px) 

Image 
 M (bytes) 

Lee 164  173 M 

Kuan 152 161 M 

Frost 174 183 M 

Gamma 152 163 M 

Mean 149 159 M 

PM 986 126 8M 

SRAD 70 67 6M 

PM* 74 70 8M 

IEED* 171 191 14M 

PPB1 157 146 M 

PPB10  330 308 2M 

UWD 38 23 9M 

Tab. 7.5- Computational load of despeckling filters. 

 

 


