
 

  Chapter  3

Edge Detection on SAR Images: Statistical Methods 
Many authors, who were influenced from the statistical theory underlying the target detection in early sur-
veillance radars, tried to adapt the same theory to generalize information extraction in SAR data. From this 
point of view, detection means firstly presupposing a model of the pixels belonging to the background (clut-
ter). Secondly, it means to verify, for each pixel in the image, if it has an acceptable probability of belonging 
to the background (i.e. if its value is over a certain selected threshold). Clearly, in that case, the speckle is not 
seen as a noise but its statistical model is exploited to have a desired probability of false alarms 𝑃𝐹𝐴 at the 
end of the processing chain. Nevertheless, due to the multiplicative nature of speckle, both amplitude and in-
tensity data (see Eq. (2.19) and (2.13)) has a variance which depends to the underlying RCS of the acquired 
area. Therefore, in order to have the same performance in different RCS areas, we would have to change the 
threshold accordingly. CFAR operators are developed to avoid such adaptive thresholding. 

3.1 Constant False Alarms (CFAR) Operator 
Further in deep, CFAR operators are nothing but statistical hypotheses tests applied at each pixel of the im-
age useful to distinguish from two hypothesis, e.g. the pixels belongs (or not) to a target. Quickly, indicating 
with 𝐻0 the hypothesis of not having a target at a pixel 𝑡, and with 𝐻1 the hypothesis of having a target at the 
same pixel, the Likelihood Ratio (LR) to verify is:  

𝑝(𝐻1|𝑡)
𝑝(𝐻0|𝑡)

=  
𝑝(𝑡|𝐻1)𝑝(𝐻1)
𝑝(𝑡|𝐻0)𝑝(𝐻0) <

𝐻0

𝐻1
>   1 (3.1) 

 

so that, since a priori probabilities are nearly never known, Eq.(3.1) it is replaced by: 

𝑝(𝑡|𝐻1)
𝑝(𝑡|𝐻0) <

𝐻0

𝐻1
>    1 (3.2) 

 

Moreover, even the pdf parameters are often unknown, so that the Maximum Likelihood Ratio (MLR) in Eq. 
(3.2) becomes a Generalized Likelihood Ratio (GLR), where the unknown pdf parameters are replaced by 
their estimates. In general, CFAR operators work in a limited spatial area around the pixel under test, i.e. a 
𝐷𝑥𝐷 window is used to define the pixels useful for the computation. In Fig. 3.1 three different kinds of win-
dows used from CFAR operators are shown. In particular, the window used in Fig. 3.1(a) is applied to find 
anomaly pixels in a homogeneous background, the window in Fig. 3.1(b) is applied for strong target detec-
tion and we resort to the window in Fig. 3.1(c) to find vertical edges separating two different regions. 
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(a) (b) (c) 

Fig. 3.1 - Three different kinds of windows. In black the pixel under test, in gray the pixels used for the estima-
tion and in white the neglected pixels. (a) Window used in anomaly detections. In gray are shown the pixels used 
to estimate the background. (b) Windows used in target detections. The white part is used to exclude pixels be-
longing to the SAR impulse response. (c) Window used in edge detection. In different gray levels are indicated 

the two regions across the possible vertical edge (in white). 

For what concerns edge detection, since the edges can be oriented in different directions, windows with spe-
cific orientation are used (see Fig. 3.2). Usually, applying these oriented windows, a pixel is considered be-
longing to an edge if it is detected by at least one of the four windows. 

 
Fig. 3.2 - Four orientations of the edge detector windows. From left to right they are: oblique at 135°, oblique at 

45°, vertical (90°) and horizontal (0°).  

3.1.1 Generalized Likelihood Ratio     
The GLR method to find the presence of an edge between two regions (see Fig. 3.1(c)) was first proposed in 
[7], where multi-looks intensity data distributed as in Eq. (2.12) are presupposed. In particular, let us consid-
er a 𝐷𝑥𝐷 sliding window divided by two homogeneous regions indicated by the pixel sets {𝑡𝑖}𝑖=1𝑁 , {𝑡𝑖}𝑖=𝑁+12𝑁 , 
of 𝑁 pixels each and with mean RCS 𝜎1 and 𝜎2 respectively. Given the hypotheses: 

• 𝐻0:𝜎1 ≠ 𝜎2; 
• 𝐻1:𝜎1 = 𝜎2; 

the MLR is given by: 

𝛬 =
𝑝�{𝑡𝑖}𝑖=1𝑁 , {𝑡𝑖}𝑖=𝑁+12𝑁 �𝐻1�
𝑝�{𝑡𝑖}𝑖=1𝑁 , {𝑡𝑖}𝑖=𝑁+12𝑁 �𝐻0�

=
𝑝�{𝑡𝑖}𝑖=1𝑁 , {𝑡𝑖}𝑖=𝑁+12𝑁 �𝐻1�

𝑝�{𝑡𝑖}𝑖=12𝑁 �𝐻0�
 (3.3) 

 

so that, applying the natural logarithm: 

ln𝛬 = 𝑁(𝐿 − 1) ln� 𝐼1 + 𝑁(𝐿 − 1) ln� 𝐼2 − 2𝑁(𝐿 − 1) ln� 𝐼0 − 𝑁𝐿 ln𝜎1 − 𝑁𝐿 ln𝜎2 

+2𝑁𝐿 ln𝜎0 −
𝑁𝐼1̅
�𝜎1𝐿 �

−
𝑁𝐼2̅
�𝜎2𝐿 �

+
𝑁𝐼0̅
�𝜎0𝐿 �

 
(3.4) 

 

with ln� 𝐼 = 1 𝑁⁄ ∑ ln 𝑡𝑖𝑁
𝑖=1 , 𝐼 ̅ = 1 𝑁⁄ ∑ 𝑡𝑖𝑁

𝑖=1  and 𝜎0 the mean RCS presupposing all the pixels belonging to 
the same homogeneous region. Presupposing 𝐿 = 1 Eq. (3.4) becomes: 

ln𝛬 = −𝑁 ln𝜎1 − 𝑁 ln𝜎2 + 2𝑁 ln𝜎0 −
𝑁𝐼1̅
𝜎1

−
𝑁𝐼2̅
𝜎2

+
𝑁𝐼0̅
𝜎0

 (3.5) 
 

so that, replacing 𝜎1, 𝜎2 by their Maximum Likelihood (ML) estimates given by the sample means 𝐼1̅, 𝐼2̅ we 
have:   

ln𝛬 = −𝑁 ln 𝐼1̅ − 𝑁 ln 𝐼2̅ + 2𝑁 ln 𝐼0̅ (3.6) 
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with 𝐼0̅ = (𝐼1̅ + 𝐼2̅) 2⁄ . Now, in order to fix a certain 𝑃𝐹𝐴 we need to know how ln𝛬 is distributed. For this 
purpose we can express Eq. (3.6) as function of the variable = 𝐼1̅ 𝐼2̅⁄  : 

ln𝛬 = −𝑁 ln 𝑟𝑟 + 2𝑁 ln(𝑧 + 1) − 2𝑁 ln 2 (3.7) 
 

and then we can exploit the formula in Eq. (2.5) to find the ln𝛬 distribution. Nevertheless, after carrying out 
Monte Carlo experiments, the author in [7] found that the r.v. 𝑟𝑟 = 𝐼1̅ 𝐼2̅⁄  alone manages to obtain the same 
performances (i.e. same 𝑃𝐷 fixing a certain 𝑃𝐹𝐴) of the GLR in Eq. (3.7). This is only one of the reasons 
making the r.v.  𝑟𝑟 = 𝐼1̅ 𝐼2̅⁄  so important for the edge detection in SAR images. We shall see in Section 3.1.2 
that this operator takes the name Ratio of Averages (RoA) and, due to its good performance in presence of 
speckle noise, it is one of the most used CFAR edge detector on SAR images. 

3.1.2  Ratio of Averages (RoA) 
The RoA operator proposed in [8], which computes the ratio between the sample means (i.e. averages) com-
puted in the two opposite part of the sliding window, manages to obtain as good performance as the GLR 
method in Eq. (3.7), but with a lower computational load. Moreover, in [9] was proved its better performance 
with respect to the Wilcoxon-Mann-Whitney (WMW), which is one of the best non-parametric CFAR edge 
detector [9]. In general, given a 𝐷𝑥𝐷 sliding window that divides two homogeneous regions (see Fig. 3.1(c)) 
of 𝑁 pixels each and with mean RCS 𝜎1 and 𝜎2 respectively, the RoA edge detector is computed as: 

𝑟𝑟 =
𝐼1̅
𝐼2̅

 (3.8) 
 

where 𝑟𝑟 is greater than 1 when  𝐼1̅ > 𝐼2̅ and lower than 1 conversely. Presupposing i.i.d. pixels  distributed as 
Eq. (2.12), the pdf of 𝑟𝑟 has the following closed form [8]:  

𝑓𝑟(𝑟𝑟) =
𝛤(2𝑁𝐿)
𝛤(𝑁𝐿)2 �

𝜎1
𝜎2
�
𝑁𝐿 𝑟𝑟𝑁𝐿−1

�𝑟𝑟 + 𝜎1
𝜎2
�
2𝑁𝐿 (3.9) 

 

which can be related to a Fisher-Snedecor distribution, also indicated as F-distribution or Variance Ratio 
distribution. In particular, the function 𝛤 indicates the Gamma function, so that the same pdf can be written 
as: 

𝑓𝑟(𝑟𝑟) =
(𝜎1 𝜎2⁄ )𝑁𝐿

𝐵(𝑁𝐿,𝑁𝐿)
𝑟𝑟𝑁𝐿−1

�𝑟𝑟 + 𝜎1
𝜎2
�
2𝑁𝐿 (3.10) 

 

with 𝐵 the beta function: 

𝐵(𝑎, 𝑏) =
𝛤(𝑎)𝛤(𝑏)
𝛤(𝑎 + 𝑏)  (3.11) 

 

However, having 𝑟𝑟 limited in [0,1] is helpful so that only one threshold has to be set to have a desired 𝑃𝐹𝐴 in 
output. For this reason the RoA is usually expressed as: 

𝑟𝑟 = min �
𝐼1̅
𝐼2̅

,
𝐼2̅
𝐼1̅
� (3.12) 

 

whose pdf becomes [8]: 

𝑓𝑟(𝑟𝑟) =
𝛤(2𝑁𝐿)
𝛤(𝑁𝐿)2 �

(𝜎1 𝜎2⁄ )𝑁𝐿

�𝑟𝑟 + 𝜎1
𝜎2
�
2𝑁𝐿 +

(𝜎2 𝜎1⁄ )𝑁𝐿

�𝑟𝑟 + 𝜎2
𝜎1
�
2𝑁𝐿� 𝑟𝑟

𝑁𝐿−1 (3.13) 
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Now, considering the usual hypotheses: 

• 𝐻0:𝜎1 ≠ 𝜎2; 
• 𝐻1:𝜎1 = 𝜎2; 

and fixed a general threshold 𝑇, the evaluation test is the following: 

𝑟𝑟 <
𝐻1

𝐻0
>    𝑇 (3.14) 

 

see Fig. 3.3 for the pdf of 𝑟𝑟 under the two hypotheses. 

 
Fig. 3.3 - RoA pdf under the two hypotheses 𝑯𝟎 and 𝑯𝟏 (𝝈𝟏 = 𝟑𝝈𝟐).  

 

Clearly, the 𝑃𝐹𝐴 performance of the RoA operator can be computed as: 

𝑃𝐹𝐴 = 𝑃{𝑟𝑟 < 𝑇|𝐻0} = � 𝑓𝑟
𝑇

0
(𝑟𝑟|𝐻0)𝑑𝑟𝑟 = �

2𝛤(2𝑁𝐿)
𝛤(𝑁𝐿)2

𝑟𝑟𝑁𝐿−1

(𝑟𝑟 + 1)2𝑁𝐿
𝑇

0
𝑑𝑟𝑟 (3.15) 

 

 whereas the 𝑃𝐷 is: 

𝑃𝐷 = 𝑃{𝑟𝑟 < 𝑇|𝐻1} = � 𝑓𝑟
𝑇

0
(𝑟𝑟|𝐻1)𝑑𝑟𝑟 = �

𝛤(2𝑁𝐿)
𝛤(𝑁𝐿)2 �

(𝜎1 𝜎2⁄ )𝑁𝐿

�𝑟𝑟 + 𝜎1
𝜎2
�
2𝑁𝐿 +

(𝜎2 𝜎1⁄ )𝑁𝐿

�𝑟𝑟 + 𝜎2
𝜎1
�
2𝑁𝐿� 𝑟𝑟

𝑁𝐿−1
𝑇

0
𝑑𝑟𝑟 (3.16) 

 

3.1.2.1 Threshold Computation 

First of all, it should be noted that the number of looks 𝐿 in Eq. (3.13) is nearly always considered known in 
literature [3], [7]-[9] and equal to the number of incoherent image sums performed in the multi-looks pro-
cess. However, in applying the multi-looks process described in Section 1.3, correlated looks are actually av-
eraged so that the total effect is always smaller than averaging the same number of independent looks. For 
this reason, 𝐿 parameter is often called equivalent number of looks (ENL), i.e. the final image is considered 
as it were averaged by an equivalent number of independent looks. Estimation of ENL parameter (i.e. the 
variable 𝐿 in Eq. (3.13)) can be done by local or global methods. Usually, global methods estimate 𝐿 parame-
ter form a homogeneous region of the image (computing the inverse of the squared coefficient of variation in 
Eq. (2.13)), or by using all image pixels so to have an unsupervised method [11]. Instead, in local methods, 𝐿 
is estimated for each pixel of the image resorting to the pixels inside the local window. Moreover, the esti-
mation can be done exploiting the moments of the data pdf, i.e. using the Method of Moments (MoM), or 
throughout the ML method. Nevertheless, differently from the MoM, the ML estimate of 𝐿 does not exist in 
closed form and iterative methods have to be applied. It is worth noting that this last fact has a great impact 
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on the computational load of local methods, since the iteration (ML estimation) has to be repeated for each 
image pixel. For the sake of simplicity, in the rest of the document with the parameter 𝐿 we consider the 
equivalent number of look, either estimated or known a priori. In general, the computation of the threshold 𝑇 
needs the inversion of the following equation:  

𝑃𝐹𝐴 = �
2𝛤(2𝑁𝐿)
𝛤(𝑁𝐿)2

𝑟𝑟𝑁𝐿−1

(𝑟𝑟 + 1)2𝑁𝐿
𝑇

0
𝑑𝑟𝑟 (3.17) 

 

which last about 5 𝑚𝑠/𝑝𝑥 utilizing a classical bisection method implemented on MATLAB language and 
operating on a 32 𝑏𝑖𝑡 Intel Core 2Duo CPU at 2.52 𝐺𝐻𝑧, with 1.99 𝐺𝐵 of RAM. This means that, taking in-
to account only the inversion operation, the processing of an 1000𝑥1000 image lasts about 83 minutes if lo-
cal estimation methods are concerned (i.e. different 𝐿 for each pixel). Moreover, for big values of 𝑁𝐿 
(𝑁𝐿 > 500), due to the finite computer precision, computation problems arise in the Beta function term. 
Nevertheless, this problem is not considered in the literature and none of the  previous articles [3], [7]-[9] 
treat this computational issue. To solve this problem we related the RoA cumulative density function (cdf) to 
the Incomplete Beta function (see Appendix A) for which many optimized inversion methods exist. Ex-
ploiting such relation, the 1000𝑥1000 image is now filtered in only 10 minutes for local methods. In the rest 
of the document we use as global method the estimate performed on a homogeneous region selected by the 
user. Instead, the local method actually refers to the estimations of parameter 𝐿 by using, separately, the pix-
els of each region of the local window (i.e. we may have two different values of 𝐿, one for each region). 
However, in order to use such method we have to know the pdf of the ratio between two Gamma r.v. with 
different shape parameter 𝐿. Since that, from the knowledge of the author, this computation is not reported in 
literature, we made the computation by ourselves (see Section 3.3). 

3.1.3 Student T-test (Welch Correction) 
The Student T-test relies on the hypothesis of pixel distributed as a Normal (𝜇,𝜎2) , with  𝜇 indicates the 
distribution mean and 𝜎2 its variance, which does not have to be confused with the RCS parameter of the 
Gamma distribution in Eq. (2.12). Indicating with 𝑁(𝜇1,𝜎12) the pdf of the first region inside the sliding 
window and with 𝑁(𝜇2,𝜎22) the second one, the classical Student T-test needs the following hypothesis to 
hold: 

𝜎12 = 𝜎22 (3.18) 
 

This hypothesis, which is not satisfied for intensity data, holds for logarithmically transformed data. Never-
theless, we decided to use the Welch T-test at the place of the classical one, so that Eq. (3.18) may not hold 
without compromise the significance of the test. It should be noted that in the rest of the document we al-
ways refer to the T-test indicating its Welch generalization. The T-test r.v. is the following:   

𝑡 =
|𝐼1̅ − 𝐼2̅|

�𝑆1
2 + 𝑆22
𝑁

 (3.19) 

 

with 𝑁 the pixel number of each window region (see Fig. 3.1(c)) and 𝑆12, 𝑆22, 𝐼1̅, 𝐼2̅ respectively the unbiased 
sample variances (𝑆2 = ∑ (𝑡𝑖 − 𝐼)̅2𝑖 (𝑁 − 1)⁄ ) and sample means of the regions.  We can prove [12], that 
when all pixels inside the window belong to the same distribution (𝐻0 hypothesis), the 𝑡  r.v. has a Student 
pdf with 𝑣� degrees of freedom: 

𝑓𝑡(𝑡|𝐻0) = 2
�1 + 𝑡2

𝑣� �
−�𝑣�+12 �

√𝑣�𝐵 �1
2 , 𝑣�2�

 
(3.20) 

 

with 𝐵 the usual Beta function: 
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𝐵 �
1
2

,
𝑣�
2
� =

𝛤 �1
2� 𝛤 �

𝑣�
2�

𝛤 �1
2 + 𝑣�

2�
=

𝜋𝛤 �𝑣�2�

𝛤 �1
2 + 𝑣�

2�
 (3.21) 

 

whereas the degrees of freedom are computed as: 

𝑣� =
(𝑆12 + 𝑆22)2

(𝑆12)2 + (𝑆22)2
(𝑁 − 1) (3.22) 

 

An example of the T-test under the two hypotheses is reported in Fig. 3.4.  

  

Fig. 3.4 - T-test pdf under the two hypotheses 𝑯𝟎 (on the left), and 𝑯𝟏 with 𝝁𝟏 = 𝟑𝝁𝟐 (on the right). This last pdf 
is computed throughout Monte Carlo simulations since it is not known in closed form.  

Clearly, computed 𝑡 in Eq. (3.19) the evaluation test is the following: 

𝑡 <
𝐻0

𝐻1
>    𝑇 (3.23) 

 

where 𝑇 is the threshold for which: 

𝑃𝐹𝐴 = 𝑃{𝑡 > 𝑇|𝐻0} = � 𝑓𝑡
∞

𝑇
(𝑡|𝐻0)𝑑𝑡 = � 2

�1 + 𝑡2
𝑣� �

−�𝑣�+12 �

√𝑣�𝐵 �1
2 , 𝑣�2�

∞

𝑇
𝑑𝑡 

(3.24) 

 

3.1.3.1 Threshold Computation  

To compute the threshold 𝑇 so to have a desired 𝑃𝐹𝐴 we have to reverse the Eq. (3.24). Fortunately, equally 
to the RoA edge detector, even in this case we can map the integrand function  𝑓𝑡(𝑡|𝐻0) with the Incomplete 
Beta Function (see Appendix B). Therefore, the inversion requires the same passages as in the RoA case, 
though the involved variables are different, so that the computational cost of the inversion operation is the 
same as RoA. Nevertheless, to compute 𝑣� we need to calculate two sample variances whereas in the RoA the 
computational cost depends on the estimation method of  𝐿. 
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3.1.4 Wilcoxon-Mann-Whitney (WMW) test 
Differently from the CFAR operators described so far, the WMW-test1 is independent from the pdf of the da-
ta under test (i.e. it is a non-parametric test).  As said before, it is one of the best non-parametric CFAR 
edge detector [9], and it works in the following way. Firstly, it sorts the data within the sliding window (see 
Fig. 3.1(c)) in ascending order and assigns at each pixel a position index (the lowest value has index 1 the 
greater the index 2𝑁), where 𝑁 is the pixel number of each region. Secondly, for each region it computes the 
sums of the position indexes of the respective pixels. Next, it compare the two just computed values to de-
cide if the data of the two regions belongs or not to the same distribution. Moreover, the data of one region 
can be shifted by a value 𝛿 in order to find out the distribution difference greater than 𝛿. Even though we de-
scribe the WMW test in its general case, in our experiments we have fixed 𝛿 = 0 to detect even the finest 
shift of the distribution.  Mathematically, given the two regions 𝑅1 and 𝑅2, i.e. two sets of pixels 𝑡𝑖: 

𝑅1 = {𝑡𝑖}𝑖=1𝑁 ; 𝑅2 = {𝑡𝑖}𝑖=𝑁+12𝑁   (3.25) 
 

we create another set 𝐴 of pixels 𝐴𝑖 ∈ 𝐴 : 

𝐴𝑖 = �𝑡𝑖 − 𝛿 , 𝑡𝑖 ∈ 𝑅1
𝑡𝑖 , 𝑡𝑖 ∈ 𝑅2

 (3.26) 
 

Now, indicating with 𝑃𝑖 the position index of the pixel 𝑡𝑖 retrieved by sorting the set 𝐴 in ascending order, 
we compute the sums of the indexes 𝑃𝑖 of the pixel in 𝑅1: 

𝑊𝐴 = �𝑃𝑖

𝑁

𝑖=1

 (3.27) 

 

The same reasoning applies for the second region 𝑅2, but creating another set 𝐵 of pixels 𝐵𝑖 ∈ 𝐵: 

𝐵𝑖 = �𝑡𝑖 + 𝛿 , 𝑡𝑖 ∈ 𝑅1
𝑡𝑖 , 𝑡𝑖 ∈ 𝑅2

 (3.28) 
 

and computing the sums of the indexes 𝑃𝑖 of the pixel in 𝑅2 as: 

𝑊𝐵 = � 𝑃𝑖

2𝑁

𝑖=𝑁+1

 (3.29) 

 

Now, we compute the following r.v.: 

𝑊′ = max{𝑊𝐴,𝑊𝐵} (3.30) 
 

Under the hypothesis 𝐻0, which means equal pdfs of the two regions (i.e. no edge inside the window), for 
not too low 𝑁 (𝑁 > 20), it can be proved [13] that the r.v. has a Normal distribution 𝑊′~𝑁(𝜇,𝜎2) with:  

𝜇 = 𝑁 (2𝑁 + 1) 2⁄  
𝜎2 = 𝑁2 (2𝑁 + 1) 12⁄  

(3.31) 
 

so that, normalizing as: 

𝑊 =
𝑊′ − 𝜇
𝜎2

 (3.32) 
 

the r.v. 𝑊 has a Standard Normal pdf 𝑊~𝑁(0,1): 

𝑓𝑤(𝑤|𝐻0) =
1

√2𝜋
𝑒−

𝑤2

2  (3.33) 
 

Even in this case we have considered the absolute value of 𝑊 at the place of 𝑊 itself so to have only one 
threshold to compute. In this case we have to multiply by 2 the pdf in Eq. (3.33). The pdf of |𝑊| under the 
two hypotheses is depicted in Fig. 3.5. 

1 Also called W-test, Wilcoxon-test Mann-Whitney-test or MW-test. 
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Fig. 3.5 - WMW-test pdf under the two hypotheses 𝑯𝟎  and 𝑯𝟏 with 𝝁𝟏 = 𝟑𝝁𝟐. This last pdf is computed 
throughout Monte Carlo simulations since it is not known in closed form.  

Clearly, after computing |𝑊| the evaluation test is: 

|𝑊| <
𝐻0

𝐻1
>    𝑇 (3.34) 

 

where 𝑇 is the threshold for which: 

𝑃𝐹𝐴 = 𝑃{|𝑊| > 𝑇|𝐻0} = � 𝑓|𝑊|

∞

𝑇
(𝑤|𝐻0)𝑑𝑡 = �

2
√2𝜋

𝑒−
𝑤2

2
∞

𝑇
𝑑𝑡 (3.35) 

 

3.1.4.1 Threshold Computation 

To compute 𝑇 in Eq. (3.35) we can use one of the several existing inversion methods from the Normal pdf to 
the corresponding quantile (see Appendix C). In the case of WMW-test the inversion computation is negligi-
ble (~0.67 𝑚𝑠) because it is performed only once since the same 𝑇 is used for all image pixels.  

 

3.2 CFAR operators on Real SAR Images 
To analyze the results of the CFAR operators descripted so far, we used the SAR images belonging to the 
public dataset CLUTTER MSTAR (see Section 1.9 ). This choice is firstly due to the existence of several 
statistical studies on these images and to their diffusion in the scientific community so that some compari-
sons may be possible.  

3.2.1 Effects of Hypothesis Violations 
The CFAR operators rely on two fundamental hypotheses, which have to be strictly respected: 

• Hp. 1: pixels inside the sliding window must be independent; 
• Hp. 2: pixels inside the same region of the window must belong to the same pdf. 

An important question arising now is what happens when these hypotheses are violated. Let us consider the 
image “HB06173” in Fig. 3.7(a). Even though the physical formation of the speckle with Gamma pdf (see 
Chapter  2) is more justified in low resolution images (huge number or scatterers inside the resolution cell), 
previous study [15] showed how well the Gamma density function fits the pdf of homogeneous clutter in 
very high resolution as MSTAR data (resolution ~0.3 𝑚 in both directions).  
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(a) 

  

(b) 
Fig. 3.6 - Histogram and theoretical pdf of intensity and log-intensity data of the image “HB06173”. (a) Histo-

gram of intensity data to which a Gamma pdf is superimposed (with parameter L estimated both Mom and ML 
from data). Both in normal and logarithmic scale on abscissa. (b) Histogram of log-intensity data to which a 
Normal pdf (with mean and variance estimated from data) is superimposed. Both in normal and logarithmic 

scale on abscissa.   

 

  

(a) (b) 
Fig. 3.7 - (a) Image “HB06173”. (b) Image “HB06173” where the homogeneous areas considered to compute the 

statistical measurements are superimposed.  



56 Chapter  3 - Edge Detection on SAR Images: Statistical Methods   
 

  

(a) 

  

(b) 
Fig. 3.8 - Histogram and theoretical pdf of intensity and log-intensity data of the image “HB06173” after apply-
ing a 𝑴𝒙𝑴 mean filtering with 𝑴 = 𝟑. (a) Histogram of intensity data to which a Gamma pdf is superimposed 
(with parameter L estimated both MoM and ML from data). Both in normal and logarithmic scale on abscissa. 
(b) Histogram of log-intensity data to which a Normal pdf (with mean and variance estimated from data) is su-

perimposed. Both in normal and logarithmic scale on abscissa.   

 

In general, it is worth noting that whereas the K-distribution fits well even high texture data (plowed terrains 
and woods), the Gamma distribution is more indicated to fit areas with no texture (grass, plain terrain, water 
basins and general extended targets) [15]. Nevertheless, we can always think to describe areas with high tex-
ture by Gamma distribution after applying a sort of mean filtering on that data (i.e. after reducing the spatial 
RCS variation). To see which CFAR operator can be applied on these images, we report in Fig. 3.6 the histo-
grams of intensity and log-intensity data belonging to the homogeneous area shown in Fig. 3.7. Then, the 
same measurements are reported in Fig. 3.8 but after applying a mean filtering with a window  𝑀𝑥𝑀 with 
𝑀 = 3. 

As can be seen from Fig. 3.6 and Fig. 3.8, the Gamma pdf, which is needed for RoA work hypotheses, fits 
well the intensity data even applying a mean filtering. Instead, the Normal pdf, which is useful for the T-test, 
follows the log-intensity data only after applying a mean filtering. As said before, the WMW-test, which is 
not parametric, does not need any assumption on data distribution so that it can be applied in all previous 
cases. Nevertheless, the CFAR operators cannot be applied to their respective data directly. In fact, applying 
the edge detector to the data directly, the results are equal to the one in Fig. 3.9. This is due to the correlation 
of the data (see Fig. 3.10), which is present even in the original images without mean filtering. This last fact 
can be appreciated also comparing pixel spacing and resolution entries of Tab. 1.1.  
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Fig. 3.9 - Application of RoA operator to “HB06173” mean filtered with M=3. The RoA filter was applied with 
the following parameters:  global MoM estimation of the parameter L, PFA=10-7 and filtering window D=11.  

 

  

(a) (b) 
Fig. 3.10 - Correlation coefficient of the image “HB06173”. (a) Intensity data. (b) Intensity data after applying a 

𝑴𝒙𝑴 mean filtering with 𝑴 = 𝟑.   

 

   
(a) (b) (c) 

Fig. 3.11 - Histogram of the various operators with D=11 applied to “HB06173” mean filtered with M=3. (a) RoA 
filter with global MoM and ML estimation of the parameter L. (b) T-test. (c) WMW-test.  
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As can be seen from Fig. 3.9, the obtained False Alarm Rate (FAR) is very far from the 𝑃𝐹𝐴 we set for that 
case (𝑃𝐹𝐴 = 10−7). Practically speaking, the correlation of data makes the r.v. of each test have a different 
pdf with respect to the theoretical one. This fact can be better appreciated in Fig. 3.11, where the theoretical 
pdf of each operator is superimposed to the respective histogram computed from filtered data. Therefore, due 
to the data correlation, the Hp.1 is violated and the consequent effect is that the experimental pdf of CFAR 
operators is far away from the theoretical one. Consequently, set a threshold relying on the theoretical model 
is absolutely pointless since the obtained FAR is hugely greater than expected. Clearly, cancel the correlation 
between near pixels can be done at the expense of resolution in several way [3]. The correct way to lose the 
minimum information (in a digital processing sense), is that of exploiting the frequency spectrum of the Sin-
gle Look Complex (SLC) data. In fact, after computing the FFT of SLC data, a weighting can be applied to 
the frequency samples in order to compensate the system PSF. In this case, the final spectrum can be consid-
ered constant (i.e. uncorrelated in time), and a correct downsampling can be performed to respect the Nyquist 
sampling theorem. Nevertheless, as seen in Chapter  1, constant PSF in frequency enables the maximum spa-
tial resolution to be obtained but at the expense of spreading a lot of point target energy in the PSF side 
lobes. This means that a trade-off  between spatial resolution and radiometric resolution always exists and 
should be considered for the application. Moreover, equally to the ENL concept explained in Section 3.1.2.1, 
since CFAR operator pdfs rely on the sum of 𝑁 independent r.v. (see Section 3.3), the data correlation can 
also be taken into account considering the model coming out from the sum of 𝑁′ independent r.v., with 
𝑁′ < 𝑁. Nevertheless, this fact introduces the additional problem of estimating the correct value of 𝑁′ from 
data. However, for the extraction of extended target boundaries in very high resolution data, a simple data 
downsampling with a factor equal to the estimated correlation length solves the problem without compro-
mise the final detection performance. In fact, differently from target detection on low resolution data, in 
which fine details and small objects are of fundamental interest, in edge detection issue the boundaries de-
tected in subsampled data can be simply reconstructed as in the original data in a subsequent phase. In the 
rest of the document, to indicate the performed processing, we report only the values of  𝑀 (side length of 
the mean filtering window) and the downsampling factor. For example, the processing [𝑀 = 3, (1: 3)]  indi-
cates an image mean filtered with 𝑀 = 3 and downsampled by a factor (1: 3), i.e. taking a sample every 
three in both dimensions. From Fig. 3.10 we can see that the maximum correlation length occurs for the case 
𝑀 = 3 so that, after downsampling by a factor (1: 3), we obtain the cancellation of the data correlation, as 
can be seen in Fig. 3.12. In particular, in Fig. 3.12(b) we can see that a little correlation still remains for 
[𝑀 = 3, (1: 3)] data. 

The results of CFAR operators on downsampled images are shown in Fig. 3.13 (image [𝑀 = 3, (1: 3)]) and 
Fig. 3.14 (image [𝑀 = 1, (1: 3)]). As can be seen from these results, all results are much better than the one 
previously presented in Fig. 3.9. However, the final measured FAR is different in the two images even 
though the CFAR operator parameters (𝑃𝐹𝐴and 𝐷) are equal. This fact can be attributed to the correlation 
that still exist in [𝑀 = 3, (1: 3)] data. In fact, if we compare the histograms of the operators in the two cases, 
which are reported in Fig. 3.15 and Fig. 3.16, we can see that only with the processing [𝑀 = 1, (1: 3)]  the 
theoretical model fits well the experimental one. 

  
(a) (b) 

Fig. 3.12 - Correlation coefficient of the image “HB06173”. (a) Intensity data [M=1,(1:3)]. (b) Intensity data 
[M=3,(1:3)].   



Chapter  3 - Edge Detection on SAR Images: Statistical Methods 59 
 

   
(a) (b) (c) 

Fig. 3.13 - CFAR operator results on “HB06173”  [M=3,(1:3)] with PFA=10-7 and D=11. (a) RoA with local MoM 
estimation of the parameter L (b) T-test. (c) WMW. 

   
(a) (b) (c) 

Fig. 3.14 - CFAR operator results on “HB06173”  [M=1,(1:3)] with PFA=10-7 and D=11. (a) RoA with local MoM 
estimation of the parameter L (b) T-test. (c) WMW. 

   
(a) (b) (c) 

Fig. 3.15 - Histogram of the various operators with D=11 applied to “HB06173” [M=1,(1:3)]. (a) RoA filter with 
global MoM and ML estimation of the parameter L. (b) T-test. (c) WMW-test.  
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(a) (b) (c) 

Fig. 3.16 - Histogram of the various operators with D=11 applied to “HB06173” [M=3,(1:3)]. (a) RoA filter with 
global MoM and ML estimation of the parameter L. (b) T-test. (c) WMW-test.  

To see what happens varying the side length 𝐷 of the sliding window used by CFAR edge detectors, we ana-
lyze two indexes helpful to measure the distance between a theoretical pdf and an experimental one. In this 
particular case we use the square error (𝑝𝑒) to measure the fit between the bodies of the distribution whereas 
we use the square error in log scale (𝑝𝑒𝑙𝑜𝑔) to measure the fit between the tails. Indicating with 𝑓(𝑡) the theo-
retical pdf and with 𝑓(𝑖)the experimental one (i.e. data histogram), where 𝑖 is the central value of the histo-
gram bin, the indexes are computed as: 

𝑝𝑒 =
∑ �𝑓(𝑖) − 𝑓(𝑖)�

2
𝑖

∑ 𝑓(𝑖)2𝑖
 

𝑝𝑒𝑙𝑜𝑔 =
∑ �ln 𝑓(𝑖) − ln 𝑓(𝑖)�

2
𝑖

∑ ln 𝑓(𝑖)2𝑖
 

 

(3.36) 

 

In Fig. 3.17 we can see 𝑝𝑒 and 𝑝𝑒𝑙𝑜𝑔  values of each edge detector, varying  𝐷 and for the two processing 
[𝑀 = 1, (1: 3)] and [𝑀 = 3, (1: 3)]. It is worth noting that the label “RoA loc” refers to the RoA with 𝐿 es-
timated locally whereas the label “RoA all” refers to the global method. Moreover, some values of 𝑝𝑒 and 
𝑝𝑒𝑙𝑜𝑔  are not reported for the RoA because for those values of 𝐷 and 𝐿, the computation of the Beta function 
in Eq. (3.11) gives values outside the memory bound. Comparing Fig. 3.17 (a) and Fig. 3.17 (b) we can no-
tice the strong impact of correlation on the goodness of fit between theoretical and experimental pdf. In fact, 
as previously noticed in the specific case 𝐷 = 11, the processing [𝑀 = 1, (1: 3)] has a better fits than 
[𝑀 = 3, (1: 3)] for every 𝐷. However, raising 𝐷 the fitness of the theoretical model get worse in both cases, 
and this can be attributed to the violation of the Hp.2, i.e. increasing the size of the sliding window is more 
probable to pick up pixels belonging to different pdfs. Finally, in both the body and tail part, the estimation 
of 𝐿 with the global method gives better fits of data than local one. It should be noted that since in the global 
method the  𝐿 estimation is performed by the great number of pixels in the homogeneous areas of Fig. 3.7, 
the ML and MoM methods yields similar estimated value. Therefore, due to its lower computational burden, 
the MoM method  is preferred (see Fig. 3.18). 
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(a) 

  

(b) 
Fig. 3.17 - Pe (on the left) and Pelog (on the right) - in percentage - varying D on “HB06173” for the various 

CFAR operators. (a) Processing [M=3,(1:3)]. (b) Processing [M=1,(1:3)].  

 

 
Fig. 3.18 - Computational load of the various CFAR operators varying D. 

Summarizing, if the Hp.1 is not respected we make an error in threshold computation because the theoretical 
model is distant from the real one. This error give rises at a greater FAR with respect to the desired one. In-
stead, the Hp.2 is more likely violated raising 𝐷 because the probability to have pixels belonging to a differ-
ent region increases. Finally, the best estimation method of parameter 𝐿 for the RoA edge detector is the 
MoM global, where 𝐿 is computed one time from pixels of a homogeneous region of the image. It should be 
noticed that the values found for 𝐿 by this method is very near to 1 in most images. Since 𝐿 = 1 is the nomi-
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nal ENL of MSTAR images, the performance loss setting 𝐿 by this known value can be considered nearly 
negligible. Therefore, in this way, the RoA operator can be used in a fully automatic way. Finally, even 
though performance comparisons among the various operators can be led, this type of comparison suffers 
from many practical problems. First of all, since the involved 𝑃𝐹𝐴 are in the order of about [10−9, 10−7], the 
respective FAR measured on real images will be affected by a great error because the homogeneous region 
selected could have small inhomogeneous areas that influence the final computation. However, more im-
portant than ground truth for FAR computation is the limited number of pixels of the homogeneous regions. 
In fact, occurrence frequency measured by FAR is different from the corresponding probability generating it 
(e.g. 𝑃𝐹𝐴). As a rule of thumb, in order to have a measure affected by a limited relative error, the FAR should 
be measured on a number of pixels equal to 100 times the inverse of the probability of occurrence[16]  (i.e. 
on a pixel number of 100 𝑃𝐹𝐴⁄ ). Actually, in our experiments we found that, in order to have a relative error 
lesser than 10% we should measure the FAR on a number of pixel equal to 250 𝑃𝐹𝐴⁄ . Nevertheless, even in 
the optimistic case of 100 𝑃𝐹𝐴⁄  occurrences, with a 𝑃𝐹𝐴 = 10−7 we should have an homogeneous area of 
109 pixels. For example, joining the homogeneous areas shown in Fig. 3.7 (b), which are very extended re-
spect to the most of MSTAR images, we rich a pixel number of about 105, so that only  𝑃𝐹𝐴 ≥ 10−3 can be 
safely represented by the FAR index. As confirmed by the analysis in Fig. 3.17, comparing the FAR index 
for the various operators in both [𝑀 = 1, (1: 3)] and [𝑀 = 3, (1: 3)] processing, we found that in the mean 
filtered case the obtained FAR is more distant from the  set 𝑃𝐹𝐴 (𝑃𝐹𝐴 = 10−3) and it increases rising the side 
of the processing window 𝐷. 

In order to compare the performance of the various CFAR operator in term of probability of detection  𝑃𝐷 (or 
detection rate DR indeed), fixed the same 𝑃𝐹𝐴 (or FAR), we have generated the semi-simulated image in Fig. 
3.20. In particular, to keep the image characteristics (correlation and texture) as in the original image, we 
have multiplied both [𝑀 = 1, (1: 3)] and [𝑀 = 3, (1: 3)] images for a known mask with variable RCS edges. 

 

  
(a) (b) 

Fig. 3.19 FAR index of the various CFAR operator with PFA=10-3 on the image “HB06173”. (a) Intensity data 
[M=1,(1:3)]. (b) Intensity data [M=3,(1:3)].   
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Fig. 3.20 - Semi-simulated image on which DR index varying the RCS ratio is measured. 

 

  
(a) (b) 

Fig. 3.21 Sample of the ROC curve. (a) Highlighted in red the FAR with 𝑫 = 𝟏𝟗. (b) DR of the corresponding 
operators.  

In Fig. 3.21 (b) we report the DR index for the various operator with 𝐷 = 19. This point of the receiving op-
erator characteristic (ROC) has been chosen because for this value of 𝐷 we have near values of FAR but very 
different values of DR. In particular, we can see that the RoA with L globally estimated has the minimum 
FAR but an higher DR than T-test and WMW-test. Then, even for the other estimation method the RoA edge 
detector shown similar FAR but higher DR.  Moreover, this type of behavior is kept for all ROC points. This 
means that on this image, the statistical power of the RoA operator is higher than T-test and WMW-test. 
Even neglecting this kind of theoretical analysis we can see, by visual inspection, that for the processed 
MSTAR images, the RoA with L estimated globally yields the best performance. 
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3.3 RoA Analysis: a New Theoretical Approach 
The distribution of the RoA was firstly computed in [8]. Quickly, let us presuppose the pixels 𝑡𝑖 as i.i.d 
Gamma r.v.s with different shape parameter 𝛼𝑖 and equal scale parameter 𝛽, i.e. 𝑡𝑖~𝛤(𝛼𝑖 ,𝛽). It can be 
proved that the sum of such 𝑁 Gamma r.v. (same shape parameter 𝛽 and different scale parameter 𝛼𝑖), it is a 
Gamma r.v. itself, with shape parameter 𝛼 = ∑ 𝛼𝑖𝑁

𝑖=1  equal to the sum of the single shape parameters and 
with the same scale parameter 𝛽. Therefore, in formulas: 

𝑡 = � 𝑡𝑖
𝑁

𝑖=1
; 

𝑡𝑖  ~ 𝛤(𝛼𝑖 ,𝛽); 

𝑡 ~ 𝛤 �� 𝛼𝑖
𝑁

𝑖=1
,𝛽� 

(3.37) 

 

or, with a little abuse of notation helpful to develop next analyses: 

� 𝛤(𝛼𝑖 ,𝛽)
𝑁

𝑖=1
 =   𝛤 �� 𝛼𝑖

𝑁

𝑖=1
,𝛽� (3.38) 

 

 In the next section we will see how this simple consideration helps our analyses. 

3.3.1 Distribution Varying Window and Edge Orientations 
The main idea behind this study is of retrieving the RoA pdf when, fixed a window orientation (e.g. the last 
configuration of Fig. 3.2, that is an horizontal filtering window), the edge direction varies (e.g. horizontal, 
vertical, oblique at 45° and oblique at 135°).  Even though this analysis may seem pointless, we will see that 
from the reached findings we will retrieve many useful considerations other than a performance improving 
on an edge linking algorithm (see Section 5.5).  

 

 
Fig. 3.22 - Horizontal filtering window overlapped to an ideal vertical edge separating two homogeneous regions. 

Let us presuppose a horizontal filtering window across a pixel belonging to a vertical edge (see Fig. 3.22). 
Then, considering the vertical edge across two ideal homogeneous regions 𝑅1 and 𝑅2, whose pixels 𝑡𝑖′  and 
𝑡𝑖′′ respectively are Gamma i.i.d. r.v.s distributed as:  

𝑡𝑖′  ~ 𝛤 �𝐿,
𝜎1
𝐿
� ; 

𝑡𝑖′′  ~ 𝛤 �𝐿,
𝜎2
𝐿
� 

(3.39) 
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where 𝜎1, 𝜎2 are the respective RCS and 𝐿 the image ENL. At this point, computing the ratio between the 
sample means of each part of the window,  we have: 

𝑟𝑟 =
𝐼1̅
𝐼2̅

=
1
𝑁∑ 𝑡𝑖

(1)𝑁
𝑖=1

1
𝑁∑ 𝑡𝑖

(2)𝑁
𝑖=1

 (3.40) 

 

where we have considered each part of the window composed by the 𝑁 pixels 𝑡𝑖
(1) and 𝑡𝑖

(2) respectively. 
Now, dividing the r.v. with same scale parameter 𝜎1 𝐿⁄  and 𝜎2 𝐿⁄  ,we have: 

𝑟𝑟 =
𝐼1̅
𝐼2̅

=
1
𝑁∑ 𝑡𝑖′

𝑁1
𝑖=1 + 1

𝑁∑ 𝑡𝑖′′
𝑁2
𝑖=1

1
𝑁∑ 𝑡𝑖′

𝑁1
𝑖=1 + 1

𝑁∑ 𝑡𝑖′′
𝑁2
𝑖=1

=
𝑋Σ′ + 𝑋Σ′′

𝑋Σ′ + 𝑋Σ′′
=
𝑌1
𝑌2

 (3.41) 

 

where the 𝑋Σ′  and 𝑋Σ′′ are distributed as: 

𝑋Σ′   ~ 𝛤 �𝑁1𝐿,
𝜎1
𝑁𝐿

� ; 

𝑋Σ′′  ~ 𝛤 �𝑁2𝐿,
𝜎2
𝑁𝐿

� 
(3.42) 

 

with 𝑁1 and 𝑁2 the number of pixel with the same scale parameter inside the same part of the window, i.e.: 

𝑁1 + 𝑁2 = 𝑁 (3.43) 
 

Therefore, in order to know the pdf of 𝑟𝑟 in Eq. (3.41), we have to know the pdf of the numerator and denom-
inator. Taking into account the numerator only, we have to know the following pdf:  

𝑌1 = 𝑋Σ′ + 𝑋Σ′′  ~ 𝛤 �𝑁1𝐿,
𝜎1
𝑁𝐿

� + 𝛤 �𝑁2𝐿,
𝜎2
𝑁𝐿

� (3.44) 
 

Nevertheless, when the Gamma r.v.s have different shape parameters 𝜎𝑖 𝐿⁄ , their sum has a pdf containing an 
infinite sum of terms [17],  i.e. it is not easy to manipulate. To solve this problem we can use the following 
approximation: the sums of generic Gamma r.v.s has pdf Gamma with mean and variance of the real pdf. In 
[17] was proved that this approximation, even though can seems simple, it is very accurate for a wide range 
of parameter values and its accuracy improves with the number of r.v.s summed. As an example the compu-
tation of the percentile 95% made by the approximate pdf leads to an absolute error of only 0.1% on the de-
sired percentile. Following this approximation (see Appendix D), the numerator pdf becomes:       

𝑌1  ~ 𝛤 �
𝐿(𝑁1𝜎1 + 𝑁2𝜎2)2

𝑁1𝜎12 + 𝑁2𝜎22
,

𝑁1𝜎12 + 𝑁2𝜎22

𝑁𝐿(𝑁1𝜎1 + 𝑁2𝜎2)� = 𝛤(𝛼1,𝛽1) (3.45) 
 

At this point, to compute the pdf of 𝑟𝑟 in Eq. (3.41) we need to know the distribution of the ratio between ge-
neric Gamma r.v.: 

𝑟𝑟 =
𝑌1
𝑌2

~
𝛤(𝛼1,𝛽1)
𝛤(𝛼2,𝛽2) (3.46) 

 

which can be computed solving the following integral (see Appendix E): 

𝑓𝑟(𝑟𝑟) = � 𝑓𝑌1(𝑟𝑟𝑦2)𝑓𝑌2(𝑦2)𝑑𝑦2
+∞

0
= ⋯ 

=
𝛤(𝛼1 + 𝛼2)
𝛤(𝛼1)𝛤(𝛼2) �

𝛽1
𝛽2
�
𝛼2 𝑟𝑟𝛼1−1

�𝑟𝑟 + 𝛽1
𝛽2
�

(𝛼1+𝛼2) 
(3.47) 

 

and considering the RoA 𝑟𝑟 = min {𝑌1 𝑌2⁄ ,𝑌2 𝑌1⁄ } we have (see Appendix E): 
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𝑓𝑟(𝑟𝑟) =
𝛤(𝛼1 + 𝛼2)
𝛤(𝛼1)𝛤(𝛼2)

⎣
⎢
⎢
⎡
�
𝛽1
𝛽2
�
𝛼2 𝑟𝑟𝛼1−1

�𝑟𝑟 + 𝛽1
𝛽2
�

(𝛼1+𝛼2) + �
𝛽2
𝛽1
�
𝛼1 𝑟𝑟𝛼2−1

�𝑟𝑟 + 𝛽2
𝛽1
�

(𝛼1+𝛼2)

⎦
⎥
⎥
⎤
 (3.48) 

 

Having done the computation using generic parameters 𝛼 and 𝛽 we have freed the result from the case re-
ported as example (horizontal filtering window across a pixel belonging to a vertical edge). Introducing some 
notation, indicating with 𝑟𝑟𝐻|𝑉 the r.v. of the RoA computed by an horizontal window on a vertical edge, with 
𝑟𝑟𝐻|𝐻 the r.v. computed by an horizontal window on a horizontal edge,  𝑟𝑟𝐻|45 indicates horizontal window on 
45° edge and 𝑟𝑟𝐻|135 indicates horizontal window on 135° edge. Now, let us consider 𝑁1

(𝑖) and 𝑁2
(𝑖) the gener-

ic number of pixels having different scale parameter inside the part 𝑖 of the filtering window (𝑖 = 1,2). Then, 
indicating with 𝐷 the side length of the filtering window and with 𝑊 = (𝐷 − 1) 2⁄  the smaller side of each 
sub-window (see Fig. 3.23), we can compute 𝑁1

(𝑖) and 𝑁2
(𝑖) for each particular configuration. 

 

 

 
     
     
     
      
     

     
     
     
      
     

     
     
     
      
     

     
     
     
      
     

 

 
Fig. 3.23 - Horizontal filtering window overlapped to differently oriented edges. The RoA r.v.s are, from left to 

right: 𝒓𝑯|𝑽, 𝒓𝑯|𝑯, 𝒓𝑯|𝟒𝟓 and 𝒓𝑯|𝟏𝟑𝟓. 

Therefore, as can be seen from Fig. 3.23, for the r.v. 𝑟𝑟𝐻|𝑉 we have: 

⎩
⎪
⎨

⎪
⎧𝑁1

(1) = (𝑊 + 1)𝑊
𝑁2

(1) = 𝑁 −𝑁1
(1)

𝑁1
(2) = 𝑁1

(1)

𝑁2
(2) = 𝑁2

(1)

 

 

(3.49) 

 

for the 𝑟𝑟𝐻|𝐻 we have: 

⎩
⎪
⎨

⎪
⎧𝑁1

(1) = 𝐷𝑊
𝑁2

(1) = 0
𝑁1

(2) = 𝑁1
(1)

𝑁2
(2) = 𝑁2

(1)

 (3.50) 

 

and for 𝑟𝑟𝐻|45 and 𝑟𝑟𝐻|135: 

⎩
⎪⎪
⎨

⎪⎪
⎧𝑁1

(1) = � 𝑖
𝑊

𝑖=1

𝑁2
(1) = 𝑁 − 𝑁1

(1)

𝑁1
(2) = � 𝑖

𝐷

𝑖=𝑊+2
= 3𝑁1

(1)

𝑁2
(2) = 𝑁 − 𝑁1

(2) = 𝑁2
(1) − 2𝑁1

(1)

 (3.51) 

 

As said before, every aforementioned r.v.s can be expressed with the pdf in Eq. (3.48). Since from Eq. (3.45) 
the generic 𝛼 and 𝛽 are: 

 

W 

D 
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𝛼1 =
𝐿 �𝑁1

(1)𝜎1 + 𝑁2
(1)𝜎2�

2

𝑁1
(1)𝜎12 + 𝑁2

(1)𝜎22
𝛽1 =

𝑁1
(1)𝜎12 + 𝑁2

(1)𝜎22

𝑁𝐿 �𝑁1
(1)𝜎1 + 𝑁2

(1)𝜎2�

𝛼2 =
𝐿 �𝑁1

(2)𝜎1 + 𝑁2
(2)𝜎2�

2

𝑁1
(2)𝜎12 + 𝑁2

(2)𝜎22
𝛽2 =

𝑁1
(2)𝜎12 + 𝑁2

(2)𝜎22

𝑁𝐿 �𝑁1
(2)𝜎1 + 𝑁2

(2)𝜎2�

 (3.52) 

 

the specific pdfs can be obtained by replacing 𝑁1
(𝑖) and 𝑁2

(𝑖) with their corresponding values in Eq. (3.49), 
(3.50) and (3.51). For example, in Fig. 3.24 and Fig. 3.25 we can see the previous pdfs with two different 
values of the RCS ratio 𝑅 = 𝜎1 𝜎2⁄  and same values of  𝑁 and 𝐿. 

 
Fig. 3.24 -The RoA pdfs in the case of horizontal filtering window overlapped to differently oriented edges 

(𝑵 = 𝟏𝟎,𝑳 = 𝟒,𝝈𝟏 = 𝟓𝝈𝟐). 

 

 
Fig. 3.25 -The RoA pdfs in the case of horizontal filtering window overlapped to differently oriented edges 

(𝑵 = 𝟏𝟎,𝑳 = 𝟒,𝝈𝟏 = 𝟐𝝈𝟐). 
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Clearly, one could think that we missed to compute 𝑁1
(𝑖) and 𝑁2

(𝑖) of remaining combination between win-
dow and edge orientations. Nevertheless, we can prove that exploiting some properties of these pdfs we can 
retrieve all the remaining configurations from the only one reported in Eq. (3.49), (3.50) and (3.51). More 
specifically, sorting the windows orientation by grouping in the same category windows with orthogonal ori-
entation (see Fig. 3.26), we surely have: 

𝐴𝑖 ⊥ 𝐴𝑗;  𝐵𝑖 ⊥ 𝐵𝑗 ∀𝑖, 𝑗 with 𝑗 ≠ 𝑖
𝐴𝑖  ∠ 𝐵𝑗 ∀𝑖, 𝑗       (3.53) 

 

we can prove (see Appendix F) that the following properties hold: 

Property 1 𝑓𝑟𝐴𝑖|𝐴𝑖 = 𝑓𝑟𝐵𝑖|𝐵𝑖 ∀𝑖 (3.54) 
 

Property 2 𝑓𝑟𝐴𝑖|𝐴𝑗 = 𝑓𝑟𝐵𝑖|𝐵𝑗 ∀𝑖, 𝑗 with 𝑗 ≠ 𝑖 (3.55) 
 

Property 3 𝑓𝑟𝐴𝑖|𝐵𝑗 = 𝑓𝑟𝐵𝑗|𝐴𝑖
∀𝑖, 𝑗 (3.56) 

 

Property 4 𝑓𝑟𝐴𝑖|𝐵𝑗 = 𝑓𝑟𝐴𝑘|𝐵𝑗
∀𝑖, 𝑗, 𝑘 with 𝑘 ≠ 𝑖  (3.57) 

 

These properties make possible to compute the pdf of each combination between window and edge orienta-
tions throughout the knowledge of the distribution of:  𝑟𝑟𝐻|𝑉, 𝑟𝑟𝐻|𝐻, 𝑟𝑟𝐻|45 and 𝑟𝑟𝐻|135 . In fact, if we want to 
know the RoA pdf when a filtering window with orientation 45° is over a vertical edge (𝑟𝑟45|𝑉), exploiting Eq. 
(3.56) we have 𝑓𝑟45|𝑉 = 𝑓𝑟𝑉|45  and with Eq, (3.57) we have 𝑓𝑟𝑉|45 = 𝑓𝑟𝐻|45. Therefore, as stated before, all 
configurations window/edge can be computed only knowing Eq. (3.49), (3.50), (3.51) and exploiting the 
aforementioned properties. 

 
Fig. 3.26 - Grouping in the same category orthogonal orientation of the filtering window. 

 

3.3.2 Window Side Length   
In literature [9], [13], following the mathematical relation between the window side length 𝐷 and the theoret-
ical 𝑃𝐷 ,it is often showed how high 𝐷 values are useful to detect even weak edges, though this implies a loss 
of small details. Nevertheless, this last consideration was a little misunderstood since  it is true only when 
target detection (and not edge detection) is considered. In fact, since we are interested to linear features (e.g. 
roads) we have to study the performance of windows with  different 𝐷 on a border with a general width 𝑊 
(which has not to be confused with the side length of each window part used in Section 3.3.1). Presupposing 
an ideal situation, as the one depicted in Fig. 3.27, where a road of width 𝑊 and RCS 𝜎1 is surrounded by a 
uniform background of RCS 𝜎2. 
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Fig. 3.27 - Vertical windows of different size D on a vertical edge of width W. 

 
Fig. 3.28 - Simulation of an edge with width W and known RCS ratio. 

  
(a) (b) 

Fig. 3.29 - 𝑷𝑫 varying 𝑾 on a simulated image with i.i.d. Gamma pixels. (a) 𝑫 = 𝟓. (b) 𝑫 = 𝟐𝟑. 
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One can expect that the smaller window, which has a part completely overlapped to the road and the other 
completely filled by background, will have the highest 𝑃𝐷 fixed the same 𝑃𝐹𝐴. Actually, it happens that the 
window with highest 𝐷 detect better even the edge of small width. Both simulating the image in Fig. 3.27 
and using the method shown in Fig. 3.28, we noticed a rise of 𝑃𝐷 increasing 𝐷, for any border width 𝑊. 
Moreover, this fact is very marked for the RoA whereas it is not noticed for the T-test and WMW-test. 

As an example, we can see in Fig. 3.29 that for a road of with 𝑊 = 3 the  𝑃𝐷 values of the various RoA in 
Fig. 3.29 (b) is bigger than the ones in Fig. 3.29 (a). Nevertheless, in the previous simulation the RCS ratio 
between road and background was equal to 3 and we would be confident of this behavior for any RCS ratio. 
Once again, our statistical model developed in Section 3.3.1 helps us so that we can retrieve the RoA pdf 
when the window is overlapped to a border with width 𝑊. It can be proved that the RoA r.v. 𝑟𝑟 =
min{𝐼1̅ 𝐼2̅⁄ , 𝐼2̅ 𝐼1̅⁄ } becomes (see Appendix G):  

𝑓𝑟(𝑟𝑟) =
1

𝐵�𝑁𝐿𝐸𝑞 ,𝑁𝐿�
⎣
⎢
⎢
⎢
⎡�𝐶𝛽�

𝑁𝐿𝐸𝑞𝑟𝑟𝑁𝐿𝐸𝑞−1

�𝑟𝑟 + 𝐶𝛽�
𝑁𝐿𝐸𝑞+𝑁𝐿 +

�1 𝐶𝛽⁄ �𝑁𝐿𝐸𝑞𝑟𝑟𝑁𝐿−1

�𝑟𝑟 + 1
𝐶𝛽
�
𝑁𝐿𝐸𝑞+𝑁𝐿

⎦
⎥
⎥
⎥
⎤
 (3.58) 

 

with: 

𝑅 = 𝜎2 𝜎1⁄ ; 𝐶𝛼 = (𝐶1)2 𝐶2⁄ ; 𝐶1 = 𝑊𝐷𝑅 + (𝑁 −𝑊𝐷);
𝐿𝐸𝑞 = 𝐿𝐶𝛼; 𝐶𝛽 = 𝐶2 (𝐶1)3⁄ ; 𝐶2 = 𝑊𝐷𝑅2 + (𝑁 −𝑊𝐷); 

(3.59) 
 

We report in Fig. 3.30the graphs of the 𝑃𝐷 varying the RCS ratio for various values of 𝐷 and 𝐿, with 𝑊 = 1. 
As can be seen, theoretical results confirm the best detection for windows with higher values of 𝐷. 

 

  
(a) 

  
(b) 

Fig. 3.30 - 𝑷𝑫 varying the RCS ratio with 𝑾 = 𝟏 and𝑷𝑭𝑨 = 𝟏𝟎−𝟕 (on the left) and the respective RoA pdfs when 
the RCS ratio is equal to 10. (a) 𝑳 = 𝟏. (b) 𝑳 = 𝟒. 
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3.3.3 Number of Windows and Their Orientations   
Until now, to detect an edge we have used four windows with different orientations (see Fig. 3.2), and a pixel 
was considered belonging to an edge if it was detected by one of the four windows at least (i.e. a logical OR 
among edge maps was performed). Naturally, using such method the final 𝑃𝐹𝐴 is different from the case of 
single window reported in Eq. (3.16). Presupposing that the false alarm events are independent among the 
windows (i.e. a false alarm due to a window does not imply a false alarm in another one) then: 

𝑃�𝐹𝐴 = 1 − 𝑃𝐹𝐴; 
𝑃�𝐹𝐴4 = �𝑃�𝐹𝐴1�

4; 
𝑃𝐹𝐴4 = 1 − 𝑃�𝐹𝐴4 = 1 − �𝑃�𝐹𝐴1�

4 = 1 − �1 − 𝑃𝐹𝐴1�
4; 

(3.60) 

 

where the subscript to the 𝑃𝐹𝐴 indicates the case of single or four windows. It should be repeated that  𝑃𝐹𝐴1  is 
the one reported in Eq. (3.16). Clearly, the hypothesis of independent false alarm events is never respected 
since the windows are partially overlapped and if a window detects a false alarm it is very probable to have 
the same false alarm in another window. In [8] has been experimentally verified that applying the four ori-
ented windows in Fig. 3.26 we have: 

𝑃𝐹𝐴4 = 1 − �1 − 𝑃𝐹𝐴1�
3; 

 
(3.61) 

 

It should be noticed that comparing Eq. (3.61) to Eq. (3.60), the case of independent false alarm events 
among the windows is worse than the correlated case and, fixed  𝑃𝐹𝐴1  the final 𝑃𝐹𝐴4  becomes greater than the 
one obtained in the other case. Another question concerns the number of orientation to use to have the best 
performances. In literature [8], [9], and [13], the four windows in Fig. 3.26 are often used, even though 
sometimes eight orientations are applied without any justification. In order to address this problem, we have 
studied the theoretical improving applying a greater number of orientations. Considering applying a vertical 
window on an edge with a displacement 𝛼 form the ideal vertical orientation, see Fig. 3.31. The idea is to 
compute the RoA r.v. when the general displacement 𝛼 is concerned and then comparing the final perfor-
mance when four and eight orientation are applied. 

.  

 
Fig. 3.31 - Vertical window on an edge with displacement 𝜶 from the ideal orientation. 

 

Once again, exploiting the model developed in Section 3.3.1, presupposing the ideal window in Fig. 3.31 
composed by i.i.d. r.v.s Gamma distributed with number of looks 𝐿 and RCS 𝜎1 and 𝜎2 on the different re-
gions, the sample mean in one sub- window would be:  

𝐼1̅ ~ 𝛤 �
𝐿 �𝑁1

(1)𝜎1 + 𝑁2
(1)𝜎2�

2

𝑁1
(1)𝜎12 + 𝑁2

(1)𝜎22
,

𝑁1
(1)𝜎12 + 𝑁2

(1)𝜎22

𝑁𝐿 �𝑁1
(1)𝜎1 + 𝑁2

(1)𝜎2�
� = 𝛤(𝛼1,𝛽1) 

 

(3.62) 
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with; 

𝑁1
(1) =

𝐴𝛼
𝐴𝑇

𝑁; 𝑁2
(1) =

𝐴𝑇 − 𝐴𝛼
𝐴𝑇

𝑁; 

 
(3.63) 

 

where we indicated with 𝐴𝛼, 𝐴𝑇, the area of the triangle due to the displacement 𝛼 and the total area of the 
sub-windows respectively. In particular, considering 0 ≤ 𝛼 ≤ 𝜋 4⁄ , on a 𝐷𝑥𝐷 window we have:  

  

𝐴𝑇 =
𝐷2

2
; 𝐴𝛼 =

𝐷2

8
tan𝛼 ; 

 
(3.64) 

 

which gives: 
𝐴𝛼
𝐴𝑇

= 4 cot𝛼 (3.65) 
 

so that replacing these relations in Eq. (3.62) gives: 

𝐼1̅ ~ 𝛤 �
𝑁𝐿[𝜎14 cot𝛼 + 𝜎2(1 − 4 cot𝛼)]2

4 cot𝛼 𝜎12 + (1 − 4 cot𝛼)𝜎22
,

4 cot𝛼 𝜎12 + (1 − 4 cot𝛼)𝜎22

𝑁𝐿�𝜎14 cot𝛼 + 𝜎2(1 − 4 cot𝛼)�
� = 𝛤(𝛼1,𝛽1) 

 

(3.66) 

 

From Eq. (3.66) we can see that though this model the mean value of 𝐼1̅ is: 

E[𝐼1̅] = 𝜎14 cot𝛼 + 𝜎2(1 − 4 cot𝛼) = 𝜎1
𝐴𝛼
𝐴𝑇

+
𝐴𝑇 − 𝐴𝛼
𝐴𝑇

𝜎2 (3.67) 
 

that is a weighted mean between the RCS, with weights proportional to the respective areas inside the sub-
window. At this point, since 𝐼2̅ has the same pdf of 𝐼1̅ but with swapped RCS, the ratio betweens sample 
means becomes: 

𝑟𝑟 =
𝐼1̅
𝐼2̅

~
𝛤(𝛼1,𝛽1)
𝛤(𝛼2,𝛽2) (3.68) 

 

distributed as: 

𝑓𝑟(𝑟𝑟) =
𝛤(𝛼1 + 𝛼2)
𝛤(𝛼1)𝛤(𝛼2) �

𝛽1
𝛽2
�
𝛼2 𝑟𝑟𝛼1−1

�𝑟𝑟 + 𝛽1
𝛽2
�

(𝛼1+𝛼2) (3.69) 

 

and considering the RoA 𝑟𝑟 = min {𝐼1̅ 𝐼2̅⁄ , 𝐼2̅ 𝐼1̅⁄ } we have: 

𝑓𝑟(𝑟𝑟) =
𝛤(𝛼1 + 𝛼2)
𝛤(𝛼1)𝛤(𝛼2)

⎣
⎢
⎢
⎡
�
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𝛽2
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𝛼2 𝑟𝑟𝛼1−1

�𝑟𝑟 + 𝛽1
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𝛽2
𝛽1
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⎦
⎥
⎥
⎤
 (3.70) 
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The case of oblique filtering window on a displaced edge (see Fig. 3.32) is equal to the one computed so far 
but with a different value of 𝐴𝛼.  

 
Fig. 3.32 - Oblique  window on an edge with displacement 𝜶 from the ideal orientation. 

In fact, it can be immediately retrieved that: 

𝐴𝛼 =
𝐷2

8
�1 − tan �

𝜋
4
− 𝛼�� 

 
(3.71) 

 

Now, fixing a ratio between 𝜎1 and 𝜎2 we can compute the final probability of detection due to four windows 
(indicated as 𝑃𝐷4), which will be function of the displacement 𝛼, i.e. 𝑃𝐷4(𝛼). A this point, indicating with 
𝑃𝐷1

(𝑉)(𝛼) the probability of detection of a vertical windows on an edge displaced by an angle 𝛼, and with 
𝑃𝐷1

(45)(𝛼) the detection probability of an oblique window at 45° on an edge displaced by that orientation of 𝛼, 
it is straightforward to prove that: 

𝑃𝐷1
(𝑉)(𝛼) = 𝑃𝐷1

(𝐻)(𝛼); 
𝑃𝐷1

(45)(𝛼) = 𝑃𝐷1
(135)(𝛼) 

(3.72) 
 

where we want to point out that the displacement is always referred to the applied windows. In fact, if an an-
gle is displaced by an angle 𝛼 from an orientation (e.g. vertical), then it differs by  𝜋 2⁄ − 𝛼 from the orthog-
onal orientation (e.g. horizontal) and  by  𝜋 4⁄ ± 𝛼 from the remaining orientations (e.g. oblique at 45° and 
135°). Now, considering a border with displacement 𝛼 from the vertical orientation we have: 

𝑃{no detection|edge exist} = 𝑃�𝐷4 = 1 − 𝑃𝐷4; 

𝑃�𝐷4 = 𝑃�𝐷1
(𝑉)(𝛼)𝑃�𝐷1

(𝐻) �
𝜋
2
− 𝛼�𝑃�𝐷1

(45) �
𝜋
4
− 𝛼�𝑃�𝐷1

(135) �
𝜋
2

+ 𝛼� 
(3.73) 

 

where: 

𝑃�𝐷1
(𝑊)(𝛼) = 𝑃�𝑟𝑟(𝑊) > 𝑇�𝐻1� = � 𝑓𝑟(𝑊)

1

𝑇
(𝑟𝑟|𝐻1)𝑑𝑟𝑟;   𝑊 = 𝐻,𝑉, 45°, 135°; (3.74) 

 

and 𝑓𝑟(𝑊)(𝑟𝑟|𝐻1) the pdf in Eq. (3.48) with the respective parameters for the different four cases (𝑊 =
𝐻,𝑉, 45°, 135°), remembering that: 

𝑓𝑟(𝑉)(𝑟𝑟|𝐻1) = 𝑓𝑟(𝐻)(𝑟𝑟|𝐻1); 
𝑓𝑟(45)(𝑟𝑟|𝐻1) = 𝑓𝑟(135)(𝑟𝑟|𝐻1) 

(3.75) 
 

At this point we can compare 𝑃𝐷4to the case of perfect orientation, and even to the case of eight filtering 
windows, where we added the orientations at  ±𝜋 8⁄  from the vertical and horizontal one. Clearly, in the 
case of independent false alarm events, applying eight windows we have: 

𝑃𝐹𝐴8 = 1 − �1 − 𝑃𝐹𝐴1�
8; 

 
(3.76) 
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(a) (b) 

Fig. 3.33 - PD  varying the  RCS ratio for the case of 4 and 8 windows, with PFA=10-7, D=11. (a) α=0. (b) α=π/8. 

A comparison of the final 𝑃𝐷  in the case of four and eight windows (𝑃𝐷4  and 𝑃𝐷8), fixing the same  𝑃𝐹𝐴 in 
output (𝑃𝐹𝐴4 = 𝑃𝐹𝐴8), with  angular error (displacement) 𝛼 = 0 (i.e. correct alignment) and  𝛼 = 𝜋 8⁄  is re-
ported in Fig. 3.33. 

The results show a better probability of detection for the case of eight oriented windows (for small RCS val-
ues the four windows obtain a better 𝑃𝐷, but being very small it is outside our interest). Next, for both cases, 
the 𝑃𝐷 behavior varying the angular displacement  0 ≤ 𝛼 ≤ 𝜋 8⁄  and fixing a RCS ratio equal to 3.5 (select-
ed to have a 𝑃𝐷of 0.8, which is of our interest) is reported in Fig. 3.34. 

 
Fig. 3.34 - PD  varying angular displacement 𝟎 ≤ 𝜶 ≤ 𝝅 𝟖⁄  for the case of 4 and 8 windows, with PFA=10-7, D=11, 

and RCS ratio equal to 3.5.  

As can be seen from this figure, the 𝑃𝐷 is always higher in the case of eight windows, and being periodic 
varying 𝛼, only the value 0 ≤ 𝛼 ≤ 𝜋 8⁄  are reported. Moreover, as suggested by intuition, the worst case to 
detect is due to an edge with a displacement which is in-between of two near orientations of the respective 
cases (i.e. 𝛼 = 𝜋 8⁄  for four windows and 𝜋 16⁄  for eight windows). Finally, since 𝐴𝛼 depends on the win-
dow side length 𝐷 we have computed in Fig. 3.35 the 𝑃𝐷 varying 𝐷, fixing 𝑃𝐹𝐴 = 10−7, RCS ratio equal to 
3.5 and considering the two cases 𝛼 = 0 (i.e. correct alignment) and  𝛼 = 𝜋 8⁄ . 
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(a) (b) 

Fig. 3.35 - PD  varying D for the case of 4 and 8 windows, with PFA=10-7 and RCS ratio equal to 3.5. (a) α=0. (b) 
α=π/8. 

Once again, the results show a better 𝑃𝐷 for eight windows. Summarizing, using an higher number of win-
dows joining the result by a logical OR operation gives raise to better performance. Naturally, eight windows 
means a double computational burden with respect to use four orientations alone. It should be noticed that 
the results are computed considering the false alarm among the windows as independent, i.e.:  

𝑃𝐹𝐴4 = 1 − �1 − 𝑃𝐹𝐴1�
4; 

𝑃𝐹𝐴8 = 1 − �1 − 𝑃𝐹𝐴1�
8
 

(3.77) 
 

which can be rewritten, for low values of 𝑃𝐹𝐴1  (𝑃𝐹𝐴1 ≤ 10−3), as: 

𝑃𝐹𝐴4 ≈ 4𝑃𝐹𝐴1 ; 
𝑃𝐹𝐴8 ≈ 8𝑃𝐹𝐴1  

(3.78) 
 

Nevertheless, considering dependent events (as in the real case), it was proved experimentally that: 

𝑃𝐹𝐴4 ≈ 3𝑃𝐹𝐴1 ; 
𝑃𝐹𝐴8 ≈ 5𝑃𝐹𝐴1  

(3.79) 
 

Therefore, respect to the four windows case whit the multiplicative constant passing from 4 to 3, in the eight 
windows case it passes from 8 to 5. This means that the 𝑃𝐹𝐴1  has to be set higher to obtain the same  𝑃𝐹𝐴8  
and therefore there will be a further increment on the final 𝑃𝐷 that will be greater for the eight windows case. 

  

3.3.4 Multiple Borders  
Until now, we have seen that increasing the window side length 𝐷 gives rise to a greater 𝑃𝐷 and, for what 
concern linear features (e.g. roads, rivers, runways, etc.), not only are not there any loss, but they are detect-
ed better, for any border width. Nevertheless, the studied case is ideal, with only one border inside the filter-
ing window. Unfortunately, with high 𝐷 we can have more than one edge inside the window and therefore a 
minor final 𝑃𝐷. Moreover, if no post processing is concerned, even the thickness of the edge map could be a 
problem, see Fig. 3.36. 



76 Chapter  3 - Edge Detection on SAR Images: Statistical Methods   
 

   
(a) 

   
(b) 

Fig. 3.36 - RoA edge detector applied to MSTAR images with PFA=10-7 and D=7 (in the middle) and D=23 (on the 
right). (a) Image “HB06173”. (b) Image “HB06210”. 

To solve this problem, one can think to take account of the multiple borders in the theoretical model. This 
consideration was done by the author in [18], who proved that a filter with negative exponential kernel can 
be seen as the best linear minimum square error estimator (LMMSE) for a wide sense stationary (WSS) sto-
chastic process used to model a signal composed by step edges statistically controlled by a Poisson pdf. It is 
worth noting that a Poisson pdf of the signal, which is often used to characterize statistical events happening 
in a certain interval, gives rise to a negative exponential autocorrelation, whose LMMSE estimator was al-
ready proved to be a negative exponential function itself (see the Frost despeckling filter in [19], [20]). Nev-
ertheless, claiming the novelty of their findings, the author of ROEWA (ratio of exponential weighted aver-
ages) edge detector repeated this computation many years after [18], [19], and [20].  

Since the goal of statistical edge detector is to control the 𝑃𝐹𝐴 in output, the operator in [18] will be discussed 
in Chapter  4, where we neglect the need to compute an analytical threshold. Instead, in this chapter, to keep 
the statistical control of filtered data without neglecting the multiple borders problem, we propose two dif-
ferent solutions. The first solution concern the application of a filtering window as that reported in Fig. 3.37 
(a), which is different from the classical square window reported in Fig. 3.37 (b).  
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(a) (b) 

Fig. 3.37 - Different shapes of a vertical filtering window. (a) Negative exponential shape. (b) Classical square 
shape. 

Clearly, applying the window with the exponential negative shape in Fig. 3.37 (a) means approximating the 
weights as ratio between integer numbers (i.e. positive rational number). However, this type of approach en-
ables us to know exactly the final pdf of the RoA operator. The second solution is to apply the approximate 
model developed in Section 3.3.1, i.e. computing the distribution of sums of weighted Gamma r.v.s. In fact, 
after multiplying a Gamma r.v. 𝑡~𝛤(𝐿,𝜎 𝐿⁄ )  with a positive constant 𝑐𝑐, i.e. 𝑡′ = 𝑐𝑐𝑡, the resulting r.v. is 
Gamma distributed as:  

𝑡′~𝛤 �𝐿,
𝑐𝑐𝜎
𝐿
� (3.80) 
 

so that the multiplication modifies the scale parameter. Therefore, using space-varying 𝑐𝑐𝑖 inside the filtering 
window gives rise to Gamma r.v.s with different scale parameter whose sum is not Gamma.  Nevertheless, 
using the approximate model developed in Section 3.3.1, the usual RoA operator would be (see Appendix 
H): 

𝑟𝑟 =
𝐼1̅
𝐼2̅

~
𝛤(𝛼1,𝛽1)
𝛤(𝛼2,𝛽2) (3.81) 

 

where: 

𝛼1 = 𝐿
(𝐶Σ)2

𝐶Σ2
𝛽1 =

𝜎1
𝐿

(𝐶Σ)2

𝐶Σ2

𝛼2 = 𝐿
(𝐶Σ)2

𝐶Σ2
𝛽2 =

𝜎2
𝐿

(𝐶Σ)2

𝐶Σ2

 (3.82) 

 

and: 

𝐶Σ = � 𝑐𝑐𝑖
𝑁

𝑖=1
; 𝐶Σ2 = � 𝑐𝑐𝑖2

𝑁

𝑖=1
; (3.83) 

 

In general, neglecting the research of optimal values of weights, let us investigate the pros and cons of apply-
ing lower weighs to the pixel farther away from the central one. With equal 𝑁, if there is not any border, the 
result is equal. If the window is perfectly overlapped to a border, there is no difference again. Instead, if the 
border has a width smaller than the smaller side length of the sub-window, we have two advantages. The first 
is that, presupposing the background RCS smaller than the border one, the weighted sample mean computed 
in the sub-window overlapped to the border is greater than the one computed on a classical shape window. 
This means that the final 𝑃𝐷 is greater than in the classical case. The second is that moving the window from 
the edge to the whole background area, the edge pixel contributes will weigh less and so the thickness on the 
edge map is kept down. The disadvantage comes out when the window is overlapped to an edge with a dis-
placement. In fact, in that case some background pixels will have high weights whereas some edge ones will 
have small weights, so that the final sample mean will be lower than in the classical case, i.e. it will have a 
lower final 𝑃𝐷. 


