
 

  Chapter  8

Conclusions 
This thesis presents a novel approach for linear feature extraction from high-resolution SAR images. The 
main methods for automatic linear landmark recognition base their whole procedure on edge detection. For 
this reason, edge detectors constitute the first step of the proposed processing chain.  

Depending on the applications, the possibility of computing an analytical threshold, which might be applied 
on the filtered image to yield a desired PFA in output, could be desirable. For this reason, we evaluated the 
main statistical filters to accomplish such scope: the RoA [8], the T-test [12] and the W-test [13]. Neverthe-
less, they are sensitive of the hypothesis underlying their theory. However, respecting the hypothesis of sta-
tistical independence among pixels without raise the complexity of the model can be done by a simple image 
downsampling. Instead, the hypothesis of pixels belonging to the same distribution limits the maximum size 
of the filtering window. Among all, the RoA edge detector yielded the best results followed in ranking by the 
T-test and the W-test. Nevertheless, since the RoA and the T-test edge detector need a certain distribution of 
the data (respectively Gamma and Normal), the W-test can be applied in the cases such hypotheses do not 
hold. To improve the final performance and reduce the multiple border problems, a weighted version of the 
RoA can be exploited. However, to keep the possibility of computing an analytical threshold even in such 
case, a novel statistical model was developed. Even though the presented model approximates the real pdf,  
which does not have closed form, it fits well the data and its mathematical treatability enables us to exploit 
the model in different way. For example, throughout the proposed model we found an interesting property of 
the RoA applied to linear borders: increasing the filtering window length makes raise their detection rate, 
even on very thin edges. Moreover, analytical computation of the performance varying the number of win-
dows was possible by the proposed model, which also enables a performance improving to be reached on the 
subsequent linking stage. 

Nevertheless, when more complicated models of the backscattering behavior are considered, the proposed 
statistical filter could not fit such data. In this case, the appropriate filters could involve several parameters 
whose estimation could be both difficult and time-consuming. In this sense, the simplicity and mathematical 
treatability of the model is often preferred to formal correctness. For this reason, and to reach a performance 
improving by a non-linear combination of pixels, the general multiscale linear filtering is investigated. In 
particular, exploiting different linear filters (Canny [25], Shen-Castan [33], Deriche [35], Paillou [36], and 
Quadratic Box Spline [27]), we evaluated several methods of scale combinations and automatic thresholding. 
Our results show how all these filters are good when the noise power is low, and how their performance gets 
worse on real one-look CSK data.   

However, the edge map retrieved by edge detectors can be refined and improved by a subsequent linking 
stage. For this purpose, we propose to use a modified version of the SEL algorithm [41] that models the link-
ing issue as a shortest path problem (SPP). Actually, the original model was completely modified to solve the 
loops problem and to allow SEL to be used on the multiplicative noise case. Further in deep, both a paramet-
ric (“LR”) and a non-parametric (“Phy”) metric has been proposed to make the method generally applicable. 
In our experiments LR metrics obtain the best performance and a further improving on the results can be 
reached by exploiting the model developed as general extension of the RoA edge detector. 
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The novel algorithm devised to extract linear features (e.g. roads and runways) relies on a modified version 
of the Hough Transform. In fact, each time a line is vectorized, its contribution is deleted in the transformed 
domain to dim the corresponding noise. Moreover, most of information that arises from the edge detection 
step is exploited to drive a correct vectorization. Then, a new approach to find theoretical sound bounds in 
the Hough Transform discretization has been followed. Surprisingly, the formulas derived with such methods 
are very near to the signal theory ones and they are tighter than those suggested following the rounding error 
theory alone [55]. Then, iterating the vectorizing procedure until all pixels are vectorized (even as single 
point), the object boundaries becomes a composition of linear segments. Next, thanks to a “grow and merge” 
procedure, even a smooth curve in the road could be recognized as part of “grown line”. Finally, the road is 
recognized as composition of regions that are limited by symmetric “grown lines” and characterized by a low 
radar cross section (RCS) and high homogeneous material (low coefficient of variation). The results reported 
in this thesis confirm the feasibility of this approach for road extraction. 

Finally, to improve edge detection performance and approach a higher level of processing, a novel despeck-
ling algorithm is presented. In particular, we have presented a novel anisotropic diffusion filter that manages 
to combine normally contrasting requirements: reducing noise on homogeneous regions, preserving weak 
edges, and keeping corners and targets intact (maintaining them as seen in the original image). Moreover, 
since such filter is a PDE-based filter, no noise model is presupposed so that, in principle, it can be applied to 
any noise type. We want to emphasize that this last property has a strong impact on its possible application. 
In fact, no mathematical modeling effort is required (e.g. statistical modeling of both noise and radar reflec-
tivity) to change sensor or data type (e.g. intensity or amplitude). In addition, since the filtered image is a so-
lution of a PDE, many theorems and properties hold for such a solution. Ultimately, visual impressions and 
performance indexes confirm that our techniques outperforms state-of-the-art filters for SAR image despeck-
ling. 
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Appendix A 

RoA Threshold Computation 
In general, the computation of the threshold 𝑇 needs the inversion of the following equation: 
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with L̂  the estimated number of looks. The Fisher-Snedecor pdf )(, rf vuF is the following: 
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so that, changing variables: 
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we have: 
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Now, setting LNba ˆ== in Eq. (A. 4) we have: 
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that is: 

 



Appendix A 203 
 

{ } { }TFPHTrPP vuFA <=<= ,0 2  (A. 6) 
 

Now, relating the Fisher-Snedecor cdf with the Incomplete Beta function ( )abI y ,  [10]:  

{ } ( )baITFP yvu ,, =<  (A. 7) 
 

where: 
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we have all the variable we need for the inversion. In fact, fixed the desired FAP , the threshold T can be 
computed throughout the following passages: 

• given N and L̂  we compute LNba ˆ== ; 

• given the FAP  we compute { }
2,
FA

vu
PTFP =<  (see Eq. (A. 6)); 

• given a, b and { }TFP vu <, , we compute  y from (A. 7) exploiting the fast inversion method of the In-
complete Beta function; 

• given y we retrieve the threshold T by manipulating Eq. (A. 8), i.e. exploiting the following equation: 
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Appendix B 

T-test Threshold Computation 
The computation of the threshold 𝑇 needs the inversion of the following equation: 
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we can prove [12], the following relation with the Fisher-Snedecor cdf holds: 
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Then, exploiting the following relation [10]: 
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Therefore, we have all the variable we need for the inversion. In fact, fixed the desired FAP , the threshold T 
can be computed throughout the following passages: 

• given v̂ , FAP  and resorting to Eq. (B. 3), we compute x exploiting the fast inversion method of the 
Incomplete Beta function; 

• given x we retrieve the threshold T by manipulating Eq. (B. 4), i.e. exploiting the following equation: 

x
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Appendix C 

WMW-test Threshold Computation 
The computation of the threshold 𝑇 needs the inversion of the following equation: 
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it can be proved [10] that, given a r.v. )1,0(~ NG , the following relation holds: 
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Given the symmetry OF Normal pdf we have: 
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where )(TΘ  is the Normal cdf. Relating the Normal cdf to the Complemetary Error function )(⋅erfc : 
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with: 

2Tx =  (C. 5) 
 

we can exploit the fast inversion algorithm for this last function. Therefore, we have all the variable we need 
for the inversion. In fact, fixed the desired FAP , the threshold T can be computed throughout the following 
passages:  

• given the FAP  we compute x exploiting the fast inversion method of the Complemetary Error func-
tion; 

• given x we retrieve the threshold T by manipulating Eq. (C. 5), i.e. exploiting the following equation: 

2xT =  (C. 6) 
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Appendix D 

Sums of Generic Gamma r.v.s: A Very Accurate Approximation 
Given the following r.v.: 
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remembering that mean and variance of a generic Gamma r.v. are: 
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and considering the approximation of the sums of generic Gamma r.v.s distributed as a Gamma with mean 
and variance of the real pdf, we have: 
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so that the parameters of the resulting Gamma r.v. ( )111 ,  ~  βαΓY  are: 
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Appendix E 

Ratio of Generic Gamma r.v.s 
The distribution 𝑓𝑟(𝑟𝑟) of the ratio between two independent r.v.s  21 YYr =  is given by [8]: 
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when the r.v.s 1Y  and 2Y  follow a Gamma pdf:  
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so that, changing variables: 
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we have: 
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Remembering the definition of the Gamma function: 
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replacing it in Eq. (E. 4) and simplifying some terms we have: 
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Now, considering that the  r.v. ( )1221min ,min YYYYr =  is equivalent to the following r.v.: 
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which is linked to the r.v. 21 YYr = throughout the graphic in Fig. E.1. 
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Fig. E.1 - Mathematical link between r and rmin. 

From Fig. E.1 results intuitive that: 
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where we have indicated with )(xFx the generic cdf. Finally, since the r.v. 121 YYr = is equal to the r.v. 

21 YYr = but with reversed 1Y and 2Y , we have: 
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Appendix F 

Properties of the RoA pdf Varying Window and Edge Orientations 
The properties of the RoA pdf varying window and edge orientations are: 

Property 1 𝑓𝑟𝐴𝑖|𝐴𝑖 = 𝑓𝑟𝐵𝑖|𝐵𝑖 ∀𝑖  
 

Property 2 𝑓𝑟𝐴𝑖|𝐴𝑗 = 𝑓𝑟𝐵𝑖|𝐵𝑗 ∀𝑖, 𝑗 with 𝑗 ≠ 𝑖  
 

Property 3 𝑓𝑟𝐴𝑖|𝐵𝑗 = 𝑓𝑟𝐵𝑗|𝐴𝑖
∀𝑖, 𝑗  

 

Property 4 𝑓𝑟𝐴𝑖|𝐵𝑗 = 𝑓𝑟𝐴𝑘|𝐵𝑗
∀𝑖, 𝑗, 𝑘 with 𝑘 ≠ 𝑖   

 

The first property states that when a filtering window is applied with the same orientation of the edge, the 
r.v. 𝑟𝑟 = min {𝐼1̅ 𝐼2̅⁄ , 𝐼2̅ 𝐼1̅⁄ }  has the same pdf independently for the edge orientation. From Fig. F.1 results 
clear that 𝑟𝑟 has the same pdf in every case shown in figure since the number of pixels with different scale pa-
rameter inside each part of the window is the same (equal to zero).  

 

 
 

     
     
     
      
     

     
     
     
      
     

     
     
     
      
     

     
     
     
      
     

 
Fig. F.1 - Filtering window with the same orientation of the edge. 

 

The second property states that the r.v. 𝑟𝑟 = min {𝐼1̅ 𝐼2̅⁄ , 𝐼2̅ 𝐼1̅⁄ } has the same pdf if the window is orthogo-
nal to the edge.  Even in this case (see Fig. F.2),  since the number of pixels with different scale parameter 
inside each part of the window is the same (equal to 4 and 6). 

 

 
 

     
     
     
      
     

     
     
     
      
     

     
     
     
      
     

     
     
     
      
     

 

Fig. F.2 - Filtering window orthogonal to the edge. 

The third property states that filtering an edge with a window which is neither identical nor orthogonal to 
the edge orientation may generates the same pdf for some particular cases. For example, it highlights that fil-
tering an edge with orientation 135° with a vertical window gives the same pdf of filtering a vertical edge 
with a 135° window (see Fig. F.3). 
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Fig. F.3 - Some examples highlighting the validity of the third property. 

The fourth property states that filtering an edge with a window which is neither identical nor orthogonal to 
the edge orientation may generates the same pdf for some particular cases. For example, it highlights that fil-
tering an edge with orientation 135° with a vertical window gives the same pdf of filtering it with a horizon-
tal window, i.e. a window orthogonal to the former one (see Fig. F.4). 

 

 
 

     
     
     
      
     

     
     
     
      
     

     
     
     
      
     

     
     
     
      
     

 

Fig. F.4 - Some examples highlighting the validity of the fourth property. 
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Appendix G 

RoA pdf with a Window Overlapped to a Generic Width Border 
Given the formulas reported in Eq. (3.52): 
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Let us consider the configuration in Fig. G.1. 

 
Fig. G.1 - Vertical window with side length D overlapped to a border of width W. 

 

where 𝜎1 and 𝜎2 are the RCS of the background and border respectively, we have: 
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Therefore, the resultant parameters are: 
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where 𝛼2 and 𝛽2 can be rewritten as: 
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with: 

𝑅 = 𝜎2 𝜎1⁄ 𝐶𝛼 = (𝐶1)2 𝐶2⁄ ; 𝐶1 = 𝑊𝐷𝑅 + (𝑁 −𝑊𝐷);
𝐿𝐸𝑞 = 𝐿𝐶𝛼; 𝐶𝛽 = 𝐶2 (𝐶1)3⁄ ; 𝐶2 = 𝑊𝐷𝑅2 + (𝑁 −𝑊𝐷); 

(G. 5) 
 

so that, by Eq. (3.48) the final pdf becomes: 
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𝑓𝑟(𝑟𝑟) =
1
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⎢
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�
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⎦
⎥
⎥
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⎤
 (G. 6) 
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RoA pdf with Negative Exponential Weights 

Indicating with I the sample mean of pixels iX  weighted with the coefficients ic : 

∑=
i

ii XcI  (H. 1) 
 

Presupposing iX as i.i.d. Gamma r.v.s with mean RCS iσ and number of looks L : 









L

LΓX i
i

σ
,~  (H. 2) 

 

The r.v.s iii XcY =  due to the multiplication of a Gamma r.v. iX by the positive constant ic is distributed as:   









L
cLΓY ii

i
σ,~  (H. 3) 

 

Considering the approximation of the sums of generic Gamma r.v.s distributed as a Gamma with mean and 
variance of the real pdf, we have: 
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with: 
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so that: 
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 (H. 6) 

 

Now, presupposing the window overlapped to two homogeneous areas with RCS 1σ , 2σ , the RoA operator 
 21 IIr = has the following pdf ( )rfr :   
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 (H. 7) 
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which is the one of the classical RoA where change the shape parameter α . In the classical RoA we have 
NL=α whereas in the weighted RoA LNeq=α  with: 
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 (H. 8) 

 

Now, presupposing a DxD filtering window with the smaller sub-window side length equal to M (in Section 
3.3.1 we have referred to it with the letter W), the following relations hold: 
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−
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 (H. 9) 

 

At this point, considering negative exponential weights going far from the central pixels but constant along 
the direction parallel to the orientation we have: 
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 (H. 10) 

 

so that the equivalent number of pixels become: 
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that is, studying the EqN asymptotic limits:  

• DNEq →  for ∞→α ; 

• NNEq →  for 0→α . 

The behavior of EqN varying D is shown in Fig. H.1 for the exponential coefficient 2.0=α . 

 
Fig. H.1 - EqN varying D with the weighted RoA with exponential coefficient 2.0=α superimposed to the classic 

RoA.  
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Filter Implementation 
Several methods exists to implement discrete convolution (i.e. LTI filtering). Given a discrete signals [ ]nx  
and a filter [ ]nh , respectively of length X and H, their convolution [ ]ny  is:   

[ ] [ ] [ ] [ ]pnhpxnhxny
p

−∑=∗=
∞

−∞=
 (I.1) 

with [ ]ny  of length 1−+ HX . A direct computation of Eq. (I.1), when XH ≤ , would require 
( ) ( )HHXHH −++1 multiplications and addictions. An efficient method to compute direct convolution is 
to exploit Fast Fourier Transform properties and the circular convolution theorem.  

In fact, considering [ ]nx  and [ ]nh  as periodic signal of equally length period N (i.e. padding with zero the 
smaller signal), the circular convolution theorem gives: 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]kHkXkYpnhpxnhxny
N

p
= →−∑=⊗=

−

=
  NDFT1

0
 (I.2) 

where NDFT indicates the N-points discrete FT (DFT): 

[ ] [ ] n
N
kjN

n
enykY

π21

0

−−

=
∑=  (I.3) 

Now, it is also well-known that given the aperiodic N-length version of signals [ ]nx  and [ ]nh , their linear 
convolution, which has length 2N-1, can be computed by circular convolution with the previous signals zero- 
padded to have 2N-1 samples. Hence, exploiting FFT algorithms, linear convolution can be computed by 2N-
1 points FFT of the signals, i.e. [ ]kX  and [ ]kH , successively multiplying the two transforms 
[ ] [ ] [ ]kHkXkY = , and bringing [ ]kY  in time with the 2N-1 points inverse FFT (IFFT): 

 [ ] [ ] n
N
kjN

n
ekY

N
ny 12

212

012
1 −

−−

=
∑

−
=

π
 (I.4) 

Usually, the FFT of a signal of size M requires MCM 2log operations, with C that depends on the FFT algo-
rithm (e.g. the split-radix FFT has 4=C ). Moreover, when the signal is real, exploiting hermitian symmetry 
( [ ] [ ]kXkX *=− ), C is halved by 2. Hence, in order to implement linear convolution of length 2N-1 by FFT, 

at least ( ) ( )12log12
2

3 2 −− NNC  operations are required (i.e. two 2N-1 points FFT and one 2N-1 points 

IFFT). Usually, when both [ ]nx  and [ ]nh  have small support, direct computation is faster, whereas the FFT 
method has less computational burden when signal supports raise.  

Anyway, when the filter [ ]nh  has infinite support (IIR filter), direct computation can only be approximated 
truncating or multiplying with an appropriate window [ ]nw  the original filter [ ]nh . 

Nevertheless, a very fast way to implement even this case exist when the Z-transform of [ ]nh  can be ex-
pressed in a rational form. In fact, in this last case a recursive implementation of the convolution 
[ ] [ ]nhxny ∗=  is given by: 

[ ] [ ]∑ −∑ =−
==

M

j
j

N

i
i jnybinxa

00
 (I.5) 

whose Z-transform can be expressed as: 
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( ) ( )
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∑
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i
i
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j

j
j

za

zb

zX
zYzH

0

0  (I.6) 

If the denominator is not equal to 1 (i.e. 0≠ia for some 0>i ) the recursive implementation could be applied 
and it requires only MN + multiplications and addictions to obtain the final result. 

In the following, a summary of edge detection filter coefficients, both in discrete-time and in Z-domain will 
be given. Filter functions and their Z-transformed version (when exists) will be summarized for discrete im-
plementation purpose. Moreover, for recursive filtering, the Z-transform 𝐻(𝑍) of the filter ℎ[𝑛] will always 
be given as: 

𝐻(𝑍) = 𝐻+(𝑍) + 𝐻−(𝑍) (I.7) 

that is the sum of the causal component 𝐻+(𝑍) and the anticausal component 𝐻−(𝑍). 

Canny filter 1-D 
Canny filter in discrete-time is: 
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The Z-transform of this function cannot be given in rational form and, consequently, fast recursive filtering 
cannot be implemented. 

Deriche Filter 1-D 
Deriche filter in discrete-time is: 
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and in Z-domain: 
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To have unitary l1-norm: 
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Paillou Filter 1-D 
Paillou filter in discrete-time is: 
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and in Z-domain: 
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Shen-Castan Filter 1-D 
Shen-Castan filter in discrete-time is: 
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Canny Filter 2-D 
Canny filter in discrete-time is: 
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Deriche Filter 2-D 
Deriche filter in discrete-time is: 
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Paillou Filter 2-D 
Paillou filter in discrete-time is: 

 Time-domain Constants 
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Shen-Casten 2-D 
Shen Castan filter in discrete-time is: 
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Appendix J 

SEL Path Metric 

Given a pixel (𝑥,𝑦)𝑛 with an estimate path direction 𝜃�𝑛, the probability of a path crossing (𝑥,𝑦)𝑛 with a di-
rection 𝜃𝑛 is indicated as 𝑃�𝜃𝑛|𝜃�𝑛�. Clearly, considering a first order Markov process: 

𝑃�𝜃𝑛�𝜃�𝑛,⋯ ,𝜃�0� =  𝑃�𝜃𝑛|𝜃�𝑛� (J. 1) 

where 𝜃𝑛 and 𝜃�𝑛 are statistically independent from their respective previous steps: 

𝑃(𝜃𝑛,⋯ ,𝜃0) = � 𝑃(𝜃𝑖)
𝑛

𝑖=0
 

𝑃�𝜃�𝑛,⋯ ,𝜃�0� = � 𝑃�𝜃�𝑖�
𝑛

𝑖=0
 

(J. 2) 

 the  metric 𝑃(𝑝) at step 𝑛 becomes: 

𝑃�𝜃𝑛,⋯ ,𝜃0�𝜃�𝑛,⋯ ,𝜃�0� = 𝑃�𝜃𝑛�𝜃�𝑛,⋯ , 𝜃�0�𝑃�𝜃𝑛−1�𝜃�𝑛−1,⋯ ,𝜃�0�⋯  𝑃�𝜃0|𝜃�0� (J. 3) 

so that, exploiting the previous hypothesis: 
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(J. 4) 

that is: 

𝑃�𝜃𝑛,⋯ ,𝜃0�𝜃�𝑛,⋯ ,𝜃�0� ≈ 𝑃�𝜃𝑛|𝜃�𝑛�𝑃�𝜃𝑛−1|𝜃�𝑛−1�  ⋯𝑃�𝜃0|𝜃�0� (J. 5) 
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Appendix K 

Improved Parametric (LR) Model 

Indicating with ( )kEP θ  (or ( )kEP θ ) the probability to have (or not) an edge with direction kθ at pixel i, and 

supposing the variables k
ir
θ  independent (previously indicated as 

kir θ , ), the improved GLR is: 
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Following the passages in Section 3.3, presupposing the following statements true: 
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we have: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )]

[

3
4

3
4

2
3

23
3

3
3

1

ErPEPErPEP

ErPEPErPEPrP

ii

iiiEH

θ
θ

θ
θ

θ
θ

θθ
θ

θ
θ

θ

++

++=
 (K. 3) 

Practically speaking, the pdf of the pixels of an image filtered with RoA using a filtering window with a di-
rection ( 3θ ) orthogonal to 1θ  conditioned to not to have an edge with direction 1θ  can be computed as com-
position of other conditional probabilities that can be known. In this case, not to have an edge with direction 

1θ  means that there could be an edge with direction 3θ , or 2θ , or 4θ , or eventually there could be no edge at 
all.  

Considering the probabilities to have an edge in a certain direction uniform, i.e. ( ) ( ) 51== EPEP iθ
, ( ( )EP  

the probability of not having any edge at pixel i) and knowing that: 
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we have: 
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Now, since the conditional probabilities do not change, if we change the reference angle, we can indicate 
these probabilities taking as reference the variable under condition. 

For example, if the direction 1θ  is taken as reference, we can write:  

B

A

∠

∠

⊥

=

=

=
=

θθ

θθ

θθ
θθ

4

2

3

//1
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 as consequence Eq. (K. 5) becomes: 
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Following the same previous reasoning for ( )1

1

θ

θ iEH rP , ( )2

1

θ

θ iEH rP and ( )4

1

θ
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and 
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Eventually, the general GLR can be written as:  
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Now, considering the following pdf: 
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all the previous pdfs are equal to )(rf r in Eq. (K. 10) with certain values of α and β . In the general case 
these values are: 
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Then, indicating with w  the dimension of the filtering window (e.g. a window 11x11 has w=11) and with 
 2/)1( −= wm  the truncated round (e.g. for the previous example m=5): 
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Appendix L 

Measure of Backscattering Coefficients at Different Incidence Angles 
When surfaces are not flat (and not unbounded as well), the Snell’s law which rules the reflection and refrac-
tion of an incident electromagnetic (EM) wave on an interface between two media is no longer valid. Usual-
ly, on real surfaces, two backscattering contributes are separated: a coherent contributes which is due to the 
specular reflection of the incidence EM wave and an incoherent contribute due to the surface roughness. The 
surface roughness is generally described statistically by the standard deviation hσ of the surface height. In 
fact, locally, if an ideal monochrome EM wave hits a surface of a certain height h , it will be subjected to a 
phase shift φ∆ proportional to h  and to the incidence angle θ  between the wave and the normal of the sur-
face. Following the Rayleigh criterion, a surface is said to be rough if 2πφ >∆  i.e.: 

θλσ cos8>h  (L. 1) 

where λ  is the wave length of EM wave. From Eq. (L. 1) is clear that the higher the roughness, the more the 
backscattering diagram differs from that of a flat interface. Moreover, it depends on the angle of incidence, 
in particular, the wider the angle of incidence, the more significant the roughness, and the more perturbed the 
radiation diagram.  

Hence, on SAR images a contrast improvement between grass field and runway asphalt can be obtained ex-
ploiting this relation. Usually, the reflection characteristic of a certain material is related to the transmitting 
EM wave in term of backscattering coefficients. The EM field in the plane orthogonal to the EM wave prop-
agation direction can be divided in a sum of two orthogonal components, called polarizations, respectively 
indicated as H (horizontal) and V (vertical). Then, given the linear behaviour of the reflection system, even 
the received EM field can be divided in the same manner, and the relation between the two fields is given by 
the backscattering matrix: 









=

VVVH

HVHH

SS
SS

S  (L. 2) 

which is symmetric for the reciprocity principle. Anyway, transmitting and receiving with the same polariza-
tion, only HHS  or VVS  have to be studied. 

In order to quantitatively measure the dependence between incidence angle and received RCS an analysis of 
backscattering coefficients16 for X band transmission has been carried on.  As can be seen in Fig. L.1 both 

HHS  and VVS  go down when θ  raises. Anyway, in Fig. L.2 where the logarithm of the ratio of HHS  (and 

VVS ) between two type of material is plot for different θ  we can see that polarization HH enables us to de-
crease more the ratio when θ  raises, i.e. to enhance more the RCS contrast. Finally, in Fig. L.3 a cue to what 
previously maintained is reported. As we can see the incidence angle strongly enhance the contrast between 
different materials exploiting the roughness difference. 

16 Stored in a database which is property of IDS - Ingegneria Dei Sistemi Company. 
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(a) (b) 

Fig. L.1 - (a) Logarithm of HHS coefficient varying the incidence angle for different type of material. (b) Loga-
rithm of  VVS coefficient varying the incidence angle for different type of material 

  

Asphalt - Short Grass Asphalt - Tall Grass 

  

Concrete - Short Grass Concrete - Tall Grass 

Fig. L.2 - Difference between the HHS  ( and VVS ) logarithm for two different materials (i.e. the logarithm of the 
ratio) varying the incidence angle. 
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(a) (b) 

Fig. L.3 - (a) Amplitude CSK image with incidence angle near/far 26.5°/27.4°. (b) Amplitude CSK image with in-
cidence angle near/far 55.9°/56.3° 

 

 

 

  



Appendix M 227 
 

Appendix M 

PDE Filters Implementation 
PDE based filters are very sensitive to numeric implementation used [73]. Usually, implementation of deriv-
ative operators is performed by using finite differences as: 
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whereas the iterative approximation of the continuous PDE may essentially be done by two type of approach, 
namely explicit and implicit.  

Explicit approaches are the straightforward discretization of the continuous PDE equation, which in 1-D is: 
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where RJ and LJ  are respectively the flux on the right and on the left at position x. Clearly, Eq. (M. 2) can 
be written in a matrix notation as: 

( ) t
d

t ItAII ∆+=+1  (M. 3) 

where dI  is the identity matrix. 

Instead, implicit approaches need a matrix inversion (i.e. solving a linear system) at each step, because are of 
the type:  
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With the former approaches (explicit schemas), the time step t∆  has to respect a tight constraint (small time 
step) to avoid singularity generations with the benefit of a straightforward implementation. Instead, implicit 
schemas are more computational expensive and more complex to implement although they enable to use a 
greater time step (i.e. less number of iterations to reach the solution at the same time t). In [84] these aspects 
are treated in deep with the prospective of creating numerical schemas that preserve the same properties of 
the original PDE. Among these properties, the most important ones are: invariance to grey level shift, invari-
ance to reverse contrast, invariance to image translation and rotation, average grey level preservation, and 
respect of the maximum-minimum principle. Maybe this last properties is the most fundamental one, i.e. the 
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grey levels of the final result are always inside the grey level interval of the initial image, that is, the initial 
image dynamic is not extended (it can only be reduced).  In [84] is proved that explicit schemas which use 
finite differences (also called central differences) to approximate derivatives preserve the previous properties 
and the obtained numerical solution approximates the real solution with a very small error (relative Euclide-
an distance of 0.14%). Moreover, a simply implicit schema is proposed. It is based to an algorithm, namely 
the Thomas algorithm, which solve linear system which have tridiagonal matrixes and, for dimension bigger 
than 1 (as in the case of images), on the additive operator splitting (AOS) schema. This last operator is ob-
tained separating the diffusion process in each orthogonal direction and summing each partial result at the 
end. This implicit schema has been proved to be absolutely stable for each time step t∆ and this open a great 
question: Is it possible to obtain the final result with only one step of the algorithm? At this question is an-
swered in [84] again, where is pointed out that increasing t∆  too much yields big error in the final solution 
(relative Euclidean distance can reach 5%). Anyway, if we admit errors of about 2% in the relative Euclidean 
distance, the computational burden of AOS is ten times lesser than that of the explicit schema. Hence, in 
conclusion, choosing an implementation schema is equal to choosing a trade-off between accuracy and com-
putational burden. 

In order to have a fairly comparison among different PDE based filters with the greatest accuracy, an explicit 
implementation schema has been used for all filters. 

All PDE filters use the simply finite difference to compute the gradient and at each step only a 4-connected 
neighbourhood of each pixel is involved to update its value. 

Perona-Malik (PM) and SRAD filters use a homogeneous region passed as input to compute some parame-
ters. In PM the parameter mC  and the threshold k are automatically computed. Parameter mC  is determined 
as zero of the equation:   
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using Matlab function fzero.  

Instead, the threshold k is computed as the quantile Q of the experimental cumulative density function (ecdf) 
of the respective variables to which the threshold has to be applied. In order to take advantage from the itera-
tive quality improvement achieved by the filters, the quantile Q is computed each time through values of a 
homogeneous region provided in input.  

Moreover, the iterations are stop when a step does not produce a relative difference bigger than 1.5e-3 on the 
coefficient of variation of the homogeneous region. Also SRAD share this stop condition, whereas CED 
makes 150 iterations with a time step of 25.0=∆t . This different stop condition of CED is needed because 
CED does not manages to smooth homogeneous regions as PM and SRAD.  

An important improvement introduced in PM, CED and IEED filter implementation is the optimized gradient 
operator [84]. As previously said, finite differences were used for derivatives computation. Instead, as sug-
gested in [84] the optimum 3x3 operator to obtain rotation invariance and minimum angular error is: 
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This simple stencil manages to approximate rotation invariance significantly better than related popular sten-
cils like the Sobel filters and moreover its Fourier Transform presents less Gibbs effect respect to the simple 
finite difference [84].  From a point of view different from rotation invariance optimization, it is well-known 
that a bigger derivative window is surely less sensitive to noisy data and gets an improved derivative estima-
tion. Anyway, increasing the window size may get to a loss of fine gradient variations and a bias in the final 
computation. For this reason authors in [84] have chosen 3x3 windows as the right trade-off for anisotropic 
diffusion schemas. Moreover, the explicit numerical schema proposed in [84] combines the advantages of 
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classical (Euler-forward) explicit schemas of yielding a small error in final solution computation, with a 
higher efficiency (up to 4 times) typical of implicit or semi-implicit techniques. Indeed, a time step up to 
∆𝑡 = 1 can be used without compromising the numerical stability. Finally, the numerical computation in [84] 
can be directly implemented by simple convolution operations. 

It should be noted that all these filters takes as input the logarithm of the Gaussian smoothed image
1σI , with 

21 =σ . Anyway, before computing the gradient to use inside the diffusivity function an additional Gaussian 
smoothing with 12 =σ is applied at each step as regularization. This last smoothing also manages to remove 
some spurious blobs that get rise on homogeneous regions when the gradient is badly estimated.  
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Appendix N 

Despeckling Filters Parameters 

Filter Image Window Size PFA/ ENL 
(threshold) Edge Detector 

Lee intensity 11x11 10-4/ 1 RoA 

Kuan = = = = 

Frost 
 ( 2.0=λ ) = = = = 

Gamma = = = = 

Mean = = = = 

Tab. N.1  - Classic filter parameters 

 

Filter Image Pre-
smoothing 

Regularization-
smoothing 

Time-step 

Normal/Rotat.Inv. 
(Implementation)  

Stop cri-
terion Others 

PM log-
intensity 2=σ  1=σ  0.25 / 1 

Coefficient 
of varia-
tion  ;9.0

 ;16
=
=

Q
m

 

SRAD = = 5.0=σ  0.25 / - = - 

CED = = 4 ;1 == ρσ  0.25 / 1 150 steps ;05.0
 ;2

=
=

α
m

 

IEED = = 2 ;1 == ρσ  0.25 / 1 = 
;999.0

;9.0
 ;16

2

1

=
=
=

Q
Q
m

 

Tab. N.2 - PDE filter parameters 

 

Filter Image ENL W. Search/  
W. Similarity Q/ T Iterations 

PPB1 Amplitude 1 21/ 7 0.88/ Inf 1 

PPB10 = = [3 7 11 21]/ [1 3 5 7] 0.92/ 0.2 [1 2 3 4] 

Tab. N.3 - PPBi filter parameters 

 

Filter Image ENL/ K W. Estimation Over-smoothing Factor 

UWD Amplitude 1/ 5 [11 13 15 17 19] 1 

Tab. N.4 - UWD filter parameters 
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