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Abstract 

Within the general framework of risk management, the vulnerability of 
flexible bridges under wind action is addressed. Particular attention is paid 
to the risk of aeroelastic instabilities and buffeting oscillations in presence 
of self-excited phenomena. 

A computational framework based on semi-empirical cross-sectional 
models for the wind loading and on the three-dimensional finite-element 
discretization of the structure is developed. This represents a basic tool for 
assessing wind risk and it is used to obtain some results in the 
understanding of bridge behaviour under wind storms and in the 
comparison of different design solutions. 

A time-domain model for unsteady wind loading is derived as a 
development of indicial function load models. Some inaccuracy issues of 
literature models are solved and the consistency with the quasi-steady limit 
is ensured. A numerical procedure for identifying the load model coefficients 
from wind tunnel experimental data in such a way that the reliability of the 
measured quantities is accounted for is proposed, implemented, and 
validated. Analyses including structural nonlinearities and damping devices 
are made possible by the developed time-domain methods. 

The effects on aeroelastic stability and buffeting response of along-span 
wind coherence, mean deformations, and load and structural nonlinearities 
are quantified. 

Finally, mitigation strategies against aeroelastic instability and excessive 
buffeting oscillations are discussed. A risk-based comparison of some 
possible solutions is performed in the special case of a suspension bridge. 
Crossed hangers, secondary cables with opposed curvature, and tuned mass 
control devices are considered. The results, rendered in terms of yearly 
probability of collapse and expected number of days of closure to traffic, 
easily allow a cost-benefit analysis for deciding among different designs. 
Interesting results are obtained from the simulation of bridges controlled by 
tuned mass devices. 
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Sommario 

Nel quadro generale della gestione del rischio, questa tesi si occupa della 
vulnerabilità dei ponti flessibili soggetti all’azione del vento. In particolare 
vengono analizzati i rischi di instabilità aeroelastiche e di eccessive 
oscillazioni di buffeting in presenza di fenomeni auto-eccitati. 

Viene sviluppato un approccio computazionale basato su modelli sezione 
semi-empirici per il carico eolico e sulla discretizzazione tridimensionale 
della struttura in elementi finiti. Tramite tale strumento si ottengono 
risultati utili nella comprensione del comportamento dei ponti sotto l’azione 
del vento e si effettuano confronti fra differenti soluzioni progettuali. 

Un modello di carico non-stazionario nel dominio del tempo viene 
sviluppato partendo da modelli basati sulle funzioni indiciali. Alcuni 
problemi di inaccuratezza dei modelli di letteratura vengono risolti e viene 
inoltre introdotta la compatibilità con il limite quasi-stazionario. Una 
procedura numerica per l’identificazione dei coefficienti del modello a 
partire da dati sperimentali viene proposta, sviluppata e validata. 
L’approccio nel dominio del tempo rende possibile la simulazione di 
nonlinearità strutturali e di dispositivi di smorzamento. 

Vengono valutati gli effetti della coerenza del vento lungo l’impalcato, 
delle deformazioni medie e delle non linearità strutturali e di carico sulla 
stabilità aeroelastica e sulla risposta di buffeting. 

Infine differenti strategie progettuali per la riduzione del rischio vengono 
messe a confronto. In particolare, nel caso di un ponte sospeso, viene 
valutata la possibilità di usare pendini incrociati, cavi secondari con 
curvatura contrapposta e dispositivi a massa accordata. I risultati, in 
termini di probabilità annuale di collasso e numero previsto di giorni di 
chiusura al traffico, consentono un’analisi costi-benefici ed il confronto 
quantitativo fra le differenti soluzioni progettuali. Risultati di particolare 
interesse vengono ottenuti dalle simulazioni con dispositivi a massa 
accordata. 
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Zusammenfassung 

Im Rahmen des Risikomanagements befasst sich diese Arbeit mit der 
Vulnerabilität flexibler Brücken unter auftretender Windbelastung. Im 
Besonderen werden die Risiken der aeroelastischen Instabilitäten und der 
„Buffeting“-Schwingungen in Gegenwart selbsterregender Phänomene 
analysiert. 

Es wird ein Berechnungsansatz entwickelt, der auf halb-empirischen 
Querschnittsmodellen für die Windlasten und auf einer 3D-FE-
Diskretisierung der Struktur basiert. Der Berechnungsansatz bietet ein 
grundlegendes Werkzeug zur Bewertung der Windgefahr und wird 
verwendet, um das Verhalten einer Brücke unter starken Windbelastungen 
besser zu verstehen und um Ausführungslösungen zu vergleichen. 

Ein Modell für instationäre Windlasten im Zeitbereich wird aus den 
Grundmodellen der Indizialfunktionen abgeleitet. Einige 
Ungenauigkeitsprobleme der Literaturmodelle werden gelöst und die 
Kompatibilität mit dem quasistationären Grenzwert wird sichergestellt. Es 
wird eine numerische Berechnung zur Bestimmung der 
Lastmodellkoeffizienten aufgrund experimenteller Windkanaldaten 
vorgeschlagen, ausgeführt und validiert. Analysen mit strukturellen 
Nichtlinearitäten und Dämpfungsvorrichtungen werden durch die 
entwickelte Methode ermöglicht. 

Die Auswirkungen der Windkohärenz, der Durchschnittsverformungen 
und der strukturellen Nichtlinearitäten der Belastung und der Struktur auf 
die aeroelastiche Stabilität und auf die „Buffeting“-Antwort werden 
quantifiziert.  

Abschließend werden Vorschläge zur Abminderung des Windrisikos 
diskutiert. Ein risikobasierter Vergleich möglicher Lösungen, wie gekreuzte 
Aufhänger, sekundäre Kabel mit gegensätzlicher Krümmung und 
Schwingungsdämpfer, wird am Beispiel einer Hängebrücke durchgeführt. 
Die Ergebnisse, in Abhängigkeit der jährlichen Wahrscheinlichkeit eines 
Einsturzes und der erwarteten Anzahl von Tagen der Verkehrschließung, 
erlauben, sich fuer ein Design zu entscheiden. Erfolgversprechende 
Ergebnisse werden bei der Simulation der Brücken mit 
Schwingungsdämpfern erhalten. 
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Chapter 1  

Introduction 

In this Chapter the general framework of risk management is briefly 
recalled. Then the special case of wind risk and its management in 
suspended-span bridges is considered. In particular, the major wind-related 
issues, their effects on bridge performances, and the possible strategies to 
manage them are introduced. Finally the organization of the Thesis and its 
original contributions are illustrated. 

1.1 Risk-management framework 

The risk-management framework includes the processes of identifying and 
measuring risk and developing strategies to manage it (Figure 1.1). 

Risk identification consists in recognizing potential sources of harm 
(natural phenomena, human activities, etc.) and the negative effects they 
can possibly produce. The analysis may start from either sources or targets. 
One can start considering an issue (e.g. fatigue in bridge decks) and then 
look for the possible causes (e.g. traffic, vortex shedding, buffeting); or, vice 
versa, one can start considering a phenomenon (e.g. buffeting excitation) 
and then identify the issues it may produce (e.g. reduction of serviceability, 
fatigue, collapse). The result of the risk identification phase is a graph of 
problems and potential sources. 

Once a risk has been identified, it must be somehow measured, i.e. the 
probability of a problem to occur and the consequent losses must be 
estimated. Risk assessment includes the collection of data, the development 
of suitable mathematical models, the definition of possible scenarios, and 
finally the quantification of risk.  

Measuring risk is often difficult. On one hand, rare events are very 
complicated to estimate, since the tails of the distributions are not 
accurately obtained from statistics. On the other hand, some consequences 
are arduous to quantify and compare (e.g. it is very difficult to homogenize 
human and economical losses). 
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Figure 1.1 Risk management framework 

In civil engineering, risk management applies to risk induced by natural 
disasters (earthquakes, wind storms, fire, etc.). Risk concepts are in general 
applied also to financial and legal issues. 

As a first step an objective definition of risk is required. 
Risk is a very general concept that denotes a potential negative impact 

on an asset. The term ‘risk’ can be quite equivocal since it may take several 
meanings. In everyday usage, risk is the presence of a danger, its 
counterpart being absence of danger, i.e. safety (Augusti et al., 2001). This 
yes-or-no definition seldom applies to real life, and never to engineering. 
The possibility of unwanted events and the consequent losses can never be 
excluded altogether; therefore, the ‘Boolean’ definition of risk must be 
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substituted with a probabilistic one. Numerous definitions of risk are 
available in the literature, depending on the specific field or situational 
context of application. Generally speaking, risk is related to the probability 
of a dangerous event and to the expected losses that may be caused by the 
same event. The most widely accepted formula for risk quantification is 
(e.g. Peil, 2006) 

 ,Risk Probability Consequences= ∗  (1.1) 

where, in the general case, the symbol ∗  denotes the convolution operator. 
The probability of the unwanted consequences to occur is usually 

decomposed as (e.g. Augusti, 2006) 

 .Probability Hazard Exposure Vulnerability= ∗ ∗  (1.2) 

The complement of the probability of the harmful event is often referred to 
as reliability, i.e. we have that 1Reliability Probability= − . 

The hazard is the probability of occurrence of a potentially harmful 
event (e.g. earthquake, flood, wind storm, fire, terrorist attack). If a 
hazardous event is characterized by an intensity (peak ground acceleration, 
mean wind velocity, water level, etc.), then the hazard is a map that relates 
a given level of intensity to its probability of occurrence in a given time 
span. 

The exposure is the probability that the hazardous event meet 
something vulnerable (urban areas, facilities, lifelines, historical heritage, 
etc.). As to natural phenomena such as earthquakes, wind storms, floods, 
fires, avalanches, the exposure is what distinguishes a natural event, which 
does not impact the human sphere, from a natural catastrophe, which does 
impact the human sphere and exceeds man’s capacity of overcoming the 
consequences of the event. When the risk of a particular structure or area is 
considered, the concept of exposure is often included in the hazard, since 
the probability of the event will be referred to the specific location. 

The vulnerability is the conditional probability of obtaining a certain 
level of damage, given an intensity of the hazardous event. This requires 
the definition of a quantitative measure of the degree of damage. 

Finally, the consequences represent the costs of the damage. These can 
be human, economical, ecological, cultural, or social losses. Losses are 
usually divided in tangible, i.e. consequences that are monetarily 
quantifiable, and intangible, i.e. consequences that are considered beyond 
estimation, such as human losses or damages to the cultural heritage. 
Tangible losses are measured in monetary units, whereas several indexes 
have been proposed for intangible losses (e.g. casualties can be just 
numbered or measured in years of life lost, social losses are measured 
through the life quality index). A further classification of the consequences 
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distinguishes direct, i.e. originating immediately from the event (including 
the costs of reparation or rebuilding, the loss of profit, etc.), and indirect, 
i.e. long-term effects1 such as the reduction of the durability of facilities, the 
increased maintenance costs, the modification of economic or social 
equilibriums, etc. If indirect losses are included in the calculation of risk, as 
they should, they might be suitably discounted with estimated inflation and 
interest rates. 

It is worth noting that in the literature different definitions of risk, 
hazard, exposure, vulnerability, and consequences are present. Sometimes 
two or more of the concepts described above are incorporated in a single 
definition. In any case, the final result is a quantity that measures the 
expected losses in a given time-span, and it is therefore expressed in 
losses/time (e.g. Euros per year, or casualties per year). 

Risk assessment allows its comparison of different risks and produces 
information that is used for decision making, i.e. choosing the most suitable 
way to manage a given risk. If several problems have been assessed, the 
quantitative estimates of risk make prioritization ideally possible, allowing 
the risks with greater probable losses to be handled before those with lower 
risks. Risk assessment also provides a criterion to guide the decision maker 
in allocating resources, which are available in finite amount. If a purely 
economic evaluation is performed, the costs of risk management itself 
should be included in the resource allocation process, since the resources 
spent in performing risk management could be spent in more profitable 
activities. 

According to (Dorfman, 1997), all techniques of risk management fall 
into one or more of the following four categories: 

• Avoidance; 
• Transfer; 
• Mitigation; 
• Retention. 

Risk avoidance is the most radical strategy and includes not performing 
the activity at risk (e.g. not building a structure). Of course, this strategy 
also implies forgoing the potential benefits and gains that accepting the risk 
may have allowed. 

Risk transfer means causing another party to accept the risk, being 
insurance the most typical example. 

                                         
1 Sometimes the term ‘indirect’ is used with a ‘spatial’ meaning instead of a ‘temporal’ one. 
For example, if the risks induced by the closure of a long-span bridge are considered, the 
direct losses with respect to the company that manages the bridge are the tolls not received, 
the indirect losses are caused to other companies and to society in general, such as the work 
hours lost by people who are prevented to reach their work places. 
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Risk mitigation consists in reducing the risk. It involves methods that 
reduce the probability or the severity of the loss. If it is possible to mitigate 
risk by reducing the hazard for some man-induced risks (e.g. it is possible 
to reduce the probability of a terrorist attack by improving social or 
political conditions), the same is not possible for natural events. 
Nevertheless, it is often possible to reduce the exposure, e.g. not building 
houses in a flood prone area. The reduction of the vulnerability by technical 
solutions and enforced codes is the mitigation strategy where the 
contribution of engineers plays the most important role; it is worth to stress 
that the reduction of vulnerability is achieved not only by increasing the 
resistance of a structure but also by improving the understanding of a 
phenomenon so that a more efficient design can be performed (Peil, 2006). 
Finally, it is possible to mitigate risk by reducing its consequences: early 
warning systems are a typical example of this.  

Risk retention means accepting some of, or all, the consequences of a 
risk. It must be clear that each risk which is not avoided or transferred is, 
at least partially, retained by default. In civil engineering, in particular, it is 
not possible to reduce a risk to zero; therefore, risk retention is unavoidable. 
The amount of risk that is not mitigated is called residual risk and must be 
compared with the acceptable risk, i.e. the one that the decision maker is 
willing to retain. In most cases, the acceptable risk is affected by 
unobjective factors, such as the perception of the risk by individuals and 
society that acts as a ‘cultural filter’ (Alexander, 2004). How a risk is 
perceived is in turn affected by communication (e.g. Starr et al., 1976) and 
by the nature of the risk (e.g. voluntary risks, such as those associated to 
car transportation, are accepted more willingly than involuntary risk such 
as terrorist attacks). 

Operational risk management is often treated as a concept distinct from 
decision making (e.g. Plate, 2000); nevertheless, it is clear that this process 
easily fits into the category of risk retention. Maintenance and improvement 
of a system are part of operational risk management, as well as the 
concepts of preparedness and disaster response. Maintenance of an existing 
protection system is a necessary process in order for it to function as 
planned, and improvement is a special case of maintenance aimed to update 
a system to new issues that were not present or known before. Preparedness 
to catastrophic events is a necessary response to the fact that a residual risk 
is unavoidable. Planning disaster relief, early warning systems, and 
emergency plans are part of the preparedness concept. Finally, disaster 
response includes emergency help, rescue, humanitarian assistance to 
victims, lifeline restoring, and reconstruction. 
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1.2 Aeolian risk 

Wind storms are one of the natural events with the most catastrophic 
impact on human life. According to the data collected by the Munich 
Reinsurance Group (Berz and Rauch, 1997) wind storms caused in the last 
30 years 45% of the total fatalities due to natural hazards (second cause 
after earthquakes causing 47%) and 28% of the total economic losses (third 
cause after earthquakes with 35% and floods with 30%). If only insured 
losses are considered, then the percentage of losses due to wind increases up 
to 70%. It is therefore clear that wind risk cannot be neglected in 
comparison with other environmental risks. Moreover, the data show a 
dramatic increase of wind risk in the last decades. This trend seems 
destinated to continue in future. Causes of the increasing wind risk can be 
found in all risk components in Eqs (1.1) and (1.2): hazard, exposure, 
vulnerability, and consequences. 

It is now almost universally accepted that climate changes are in act, 
and that their natural evolution has been dramatically accelerated in the 
last decades by human activities. The increasing combustion of fossil fuels 
releases a large amount of carbon dioxide in the atmosphere which is the 
main responsible for the infamous greenhouse effect. The consequent global 
warming is causing faster ocean evaporation and a redistribution of 
precipitations and temperature gradients. There is therefore more energy 
available for atmospheric processes in the tropical and extra-tropical 
regions, which explains the increase in frequency and strength of wind 
storms, i.e. in wind hazard, that is being registered since the 1930s (e.g. 
Kasperski, 1998). 

The exposure to wind hazard is also increasing due to the growth of 
Earth’s population and the migration of people and goods into wind-
hazardous areas. 

Structures are becoming more vulnerable to wind action due to the 
trend toward lightweight design, encouraged by new materials and 
computational techniques. For structures with challenging design, wind 
action becomes a dominant effect. Although great advances in the 
comprehension of wind-structure interaction have been made in the last 
decades, this process is still in action. Moreover, very innovative designs 
may suffer from effects of which designers are not aware. These are the 
reasons of the general increase in the vulnerability to wind action. 

Finally, the number of people and goods exposed to risk increases, i.e. 
also the consequences of wind damage increase. 

The main parameter for determining wind hazard and the consequent 
damage is maximum wind velocity expected in a given time span. Typically 
the 10-min-average velocity with a return period of 50 years is considered 
by codes and standards that are enforced in ‘well-behaved’ wind climates 
(i.e. where cyclones and tornadoes can be excluded). 
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However, in case of wind hazard, also non extreme events must be 
considered in evaluating the total risk. Moderate, and therefore relatively 
frequent, wind velocities may produce serviceability issues with a possibly 
great economic impact. Let us think to the economical and social losses 
produced by the closure to traffic for several hours, several times a year, of 
a crucial bridge linking two parts of a town or country. Furthermore small 
storms, even if not causing significant structural damage, may affect non-
structural components and give rise to costly maintenance.  

Moderate winds can be the source of the so-called dissatisfaction risk. 
They can be of great discomfort both outdoors (pedestrian discomfort, 
canyoning between buildings may cause some social-economic negative 
effects on the use of commercial areas) and indoors (e.g. window shatters 
slamming), may produce noise, and affect the dispersion of gas and 
pollutants in the air (often this is a positive effect, but can sometimes 
produce unwanted pollutant concentrations, or bring pollutants from 
industrial areas to urban ones). In the long run these can produce concrete 
negative effects (e.g. reduction of productivity of employees, and consequent 
value of buildings) 

For these reasons wind design should account also for the whole wind 
climate and not only for extreme winds and for structural resistance. 

1.3 Wind-risk management in suspended-span bridges 

The flexibility of suspended-span bridges (i.e. cable stayed and suspension 
bridges) makes their design particularly sensitive to wind action, to such an 
extent that wind is the principal issue for the designers of such structures. 
Already in the XIX century, wind action was recognized as the cause of 
some collapses and severe damaging of bridges. An example is the Brighton 
Chain Pier (Figure 1.2a), a suspension bridge that was severely damaged by 
wind storms in 1833 and 1836 and then finally destroyed on Dec. 4, 1896. 
However, fluid-structure interaction phenomena, previously prerogative of 
aeronautic field, have been brought to the attention of structural designers 
only after the infamous collapse of the original Tacoma Narrows Bridge on 
Nov. 10, 1940 (Figure 1.2b). 

Nowadays, wind effects are more and more a concern for bridge 
designers due to the increasing flexibility of these structures, which is 
encouraged by the use of new materials and by the advances in the 
computational techniques. On the one hand, crucial links overcome 
increasingly long spans. On the other hand, smaller bridges and footbridges 
are becoming more and more transparent and architectonically appealing; 
however, these aesthetic needs penalize sometimes the structural stiffness 
and dynamic behaviour. 

In the last decade suspension bridges with challenging span lengths have 
been realized; examples are the Storebælt Bridge in Denmark (1998), with a 
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main span of 1624 m, and the Akashi-Kaikyo Bridge in Japan (1998), with 
a main span of 1991 m. Also cable-stayed bridges are increasing in length 
and approaching 1-km spans; examples are the Pont de Normandie in 
France (1995, 856 m) and the Tatara Bridge in Japan (1999, 890 m). There 
also exist proposal designs for extreme bridges as the suspension one 
crossing the Messina Strait (Italy), for which a 3300-m main span carrying 
both highway and railway has been conceived, and even a Gibraltar Strait 
crossing has been imagined with an overall length which exceeds 5 km. 

    
                             (a)                                                     (b) 

Figure 1.2 Brighton Chain Pier (a); collapse of the original Tacoma Narrows Bridge 
(b) 

For bridges with very long spans, seismic risk is relatively small because 
of the very low eigenfrequencies. Also the risk induced by geotectonic 
motions or geological settlement is a secondary one, due to the high 
flexibility of the long suspended spans, for which large settlements result in 
relatively small adjustments of the geometry, comparable to those due to 
thermal dilatation. During the erection of Akashi-Kaikyo Bridge a 
7.2-magnitude earthquake with the epicentre only a few kilometres away 
from the bridge location produced over 6000 fatalities in Kyoto, but caused 
almost no damage to the bridge (Nasu and Tatsumi, 1995; Yamagata et al., 
1996), whose main span was reportedly lengthened by a full meter due to 
horizontal displacement along the activated tectonic fault. Also for 
suspended-span footbridges, the seismic risk is a secondary one due to their 
small mass. 

Below, the framework presented in Section 1.1 is specialized to the case 
of wind risk and suspended-span bridges. The main aerodynamic 
phenomena and their possible effects on these structures will be identified; 
some common aspects on the assessment of the consequent risk will be 
examined, and general concepts of bridge management will be discussed. 

Under the action of the wind a bridge must withstand the static forces 
induced by the mean wind (mainly the drag force acting in the lateral 
direction). In addition, it is susceptible to aeroelastic effects. These include 
static instability (torsional divergence, lateral buckling, etc.), vortex 
induced oscillations, dynamic instabilities (e.g. galloping, torsional flutter, 



1.3 Wind-risk management in suspended-span bridges 9 
 

 

Luca Salvatori Assessment and Mitigation of Wind Risk of Suspended-Span Bridges 

coupled flutter), and buffeting in presence of self-excited forces. These 
aeroelastic phenomena are more thoroughly described in Section 2.2. 
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Figure 1.3 Summary of aerodynamic phenomena and their effects on bridges 

The aerodynamic effects on bridges can be summarized as follows (see 
also Figure 1.3): 

• Mean steady loading; 
• Oscillations of the deck due to vortex shedding; 
• Buffeting loading due to oncoming wind gusts; 
• Aeroelastic phenomena affecting buffeting response and resulting 

in possible instabilities; 
• Vibration of cables due to wind-rain interaction phenomena; 
• Direct effect of wind on the safety and comfort of the traffic. 

The mean wind is responsible for static forces acting on the main 
structural elements. The most important component of this loading is the 
drag force acting on bridge deck, towers, and main cables. Mean loading 
may produce large stresses in all the structural elements and is one of the 
most important parameters for the design of very long-span bridges. For 
this reason it is particularly important to achieve low drag forces in bridge 
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decks: a requirement that encouraged the development of streamlined box 
girders. 

Vortices are shed periodically from the sides of bluff obstacles and 
produce alternating aerodynamic forces (see Section 2.2.1) and consequent 
oscillations. These do not usually cause very large level of stresses, but if 
the wind speed for their onset is sufficiently low, they may occur frequently 
and result in a fatigue damage (e.g. Pastò, 2005). In addition, vertical and 
torsional oscillations of the deck can cause problems to bridge users, by 
alarming and unpleasing pedestrians and causing problems to vehicle traffic. 
A paradigmatic case is the one of the Storebælt Bridge (Larsen et al., 
2000): during the final phases of girder erection and road surfacing works 
the suspended spans of the bridge displayed unacceptable vortex-induced 
oscillations (Figure 1.4), which have been mitigated by devising a guide 
vane (Figure 1.5). The improvement of the aerodynamic shape is indeed an 
effective countermeasure against vortex-induced vibrations. A further 
possibility is the increase of the structural damping; this solution is often 
mandatory for the towers, where tuned mass control devices are often 
installed. Also hangers and stays are sensitive to vortex induced vibrations 
since their lengths, and consequently their frequencies, vary within a given 
structure so that a wide range of natural frequencies are likely to be excited 
by vortex-shedding. Typical countermeasures to this effect are the use of 
cables constituted by wire strands which posses an internal damping, the 
installation of local viscous dampers, the introduction of secondary cables 
linking the principal ones together or the introduction of helical strakes 
breaking the coherence of the shed vortices. 

Wind gustiness results in a random loading on the structure, which is 
referred to as buffeting (see Section 2.2.5). Although also towers and cables 
are subjected to this excitation mechanism, the bridge deck is the most 
exposed and is subjected to lateral, vertical, and torsional oscillations. 
Buffeting oscillations may rise strength, serviceability, and, more rarely, 
fatigue issues. Loading mechanism, simulations, assessment, and mitigation 
of buffeting effects will be discussed throughout all the next Chapters. 
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                             (a)                                                         (b)       

Figure 1.4 Crest (a) and trough (b) of a large amplitude vertical oscillation in the 
Storebælt Bridge (Larsen et al., 2000) 

 

Figure 1.5 Arrangement of the guide vanes along the bottom/lower side panel joint 
of the Storebælt Bridge girder cross section (Larsen et al., 2000) 

 
Aeroelastic instabilities develop when the mean wind velocity reaches a 

critical value. They are produced by steady forces, which may lead to the 
loss of stiffness of the structure-flow system (divergence in torsion or 
bending, see Section 2.2.2), or by self-excited aeroelastic effects, which may 
lead to modes where the structural damping is cancelled by the aeroelastic 
one (Hopf bifurcations such as galloping, see Section 2.2.3, and torsional 
and coupled flutter, see Section 2.2.4). Since the collapse of the original 
Tacoma Narrows Bridge, the evaluation of the aeroelastic stability of the 
deck has become an essential part of the design process. Aeroelastic 
stability will be also addressed throughout the rest of this Thesis. 

Wind-rain interaction (see Section 2.2.6) is a complex multi-
meteorological effect due to the interaction between rain rivulets along the 
cables, the cables motion, and the wind flow. It may produce large 
oscillations also for relatively low, and therefore frequent, wind velocities, 
with consequent fatigue risk. 

Besides acting on the bridge, wind also has direct effects on traffic. The 
difficulty of driving in windy conditions is a source of discomfort and may 
cause accidents due to the impaired directional control or to the 
overturning of high-sided, light vehicles. Long span bridges constitute 
crucial links; therefore, their closure due to excessive discomfort for the 
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users or to blockage by an accident must be avoided as far as possible. A 
protection that would enable the bridge to be usable in all but the most 
extreme condition would require continuous edge barriers of sufficient 
height to produce adequately sheltered conditions on the roadway deck. 
However there are considerable difficulties in providing such barriers, since 
the drag would be significantly increased and the aeroelastic stability 
unacceptably reduced. Protecting the driving lanes is particularly important 
next to the towers, since their sheltering effect may produce rapid changes 
in the wind load on vehicles. 

So far, wind risk and technical solution for its mitigation have been 
discussed, by keeping in mind the design phase of a structure or the 
evaluation a possible improvement. For example, the feasibility of installing 
a vibration control system for reducing the probability of closure to traffic 
shall consider the costs of design and installation against the potential 
economical losses due to the closure to traffic. A further aspect of 
(operational) risk management is bridge maintenance. 

Preventive maintenance (e.g. Vassie, 2000) has the objectives of 
ensuring that a bridge achieves its design life, that its risk of failure keeps 
below acceptable values, and that it remains open to traffic continuously 
throughout its life. Bridge maintenance encompasses inspection, monitoring, 
and various types of testing of the structure during its whole life. This 
information is needed for deciding the most appropriate type and timing of 
maintenance works (e.g. Neves and Frangopol, 2005). The idea is that 
expenditures which are deferred to later date ‘saves’ money, since that 
money could be invested during the period of deferral and therefore have an 
increased value when the expenditure is eventually made. On the other 
hand, during the deferral period the cost of maintenance tends to increase 
due to the progressive deterioration of the structure and to inflation. The 
planning of maintenance consists in finding the optimum timing for the 
maintenance that minimizes the total costs. 

The prioritization of maintenance requirements is usually done by 
means of a cost-benefit analysis, where the whole-life costing is optimized by 
using economic and probabilistic models. All the costs of engineering, traffic 
management, and traffic delays should be included. A typical framework for 
this analysis is the so-called performance based design (e.g. Hamburger et 
al., 1995), originally developed by the Pacific Earthquake Engineering 
Research (PEER) Centre for seismic design and later tentatively applied to 
wind engineering (Paulotto et al., 2004). The concept of whole-life costing is 
apparently obvious but changed the approach to the design of large 
structures since the last decade. The process consists in estimating the costs 
of general management, planned and extraordinary maintenance, and 
(possibly) dismantlement, and in adding them (suitably discounted) to the 
costs of the design and construction. 



1.4 Contribution of the present work 13 
 

 

Luca Salvatori Assessment and Mitigation of Wind Risk of Suspended-Span Bridges 

1.4 Contribution of the present work 

As it has been shown in the previous Sections, risk management of bridges 
includes a large variety of physical, technical, operational and economical 
aspects. Within the general risk-management framework, the task of 
structural engineers is focused on the evaluation of vulnerability and on its 
reduction. 

In this research work a framework for the analysis of flexible bridges 
under wind action is developed, validated, and applied to some specific 
calculations. 

Among the wind-related risk sources presented in the previous Section, 
the aeroelastic instabilities (either static or dynamic) and the buffeting 
vibrations in presence of aeroelastic effects are considered. 

As it has been already discussed, aeroelastic instabilities may lead to the 
total or partial collapse of a bridge. The consequent losses are not only 
those due to the intrinsic value of the structure but also those related to 
the strategic role usually played by bridges, especially those with long 
spans, that are also those more sensitive to wind action. In fact, bridges 
may have a crucial value for evacuating an area hit by a catastrophic event 
and for allowing humanitarian assistance. It is therefore decisive that they 
remain serviceable in those critical circumstances.  

Hence, the (at least partial) serviceability of such structures should be 
preserved even in extreme conditions. Among the problems that may be 
induced by buffeting vibrations, I will focus on the risk of temporary 
interruption of serviceability. Further possible problems induced by 
buffeting oscillations are strength failure and fatigue failure. Although these 
aspects can be easily studied with the computational framework developed 
in this research work, they will not be examined, since they depend strongly 
on constructive details, so that very specific considerations should be done 
for each bridge. 

1.4.1 Outline of the work 

In this Chapter a general framework for risk management has been 
presented, and the specific importance of aeolian risk has been highlighted. 
Then, wind-risk management on suspended-span bridges is discussed. 

In Chapter 2, some preliminary aspects of wind engineering are 
reviewed. The mathematical modelling of the turbulent velocity field of 
natural wind is recalled, and it will be used later on for the buffeting 
analyses. Also, the principal aeroelastic phenomena that can be a concern 
for suspended-span bridges are examined. 

In Chapter 3, wind load models for bridge decks are dealt with. In 
particular, steady, quasi-steady, and unsteady models for self-excited and 
buffeting forces are presented, both in the frequency and the time domain. 
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All load models are placed in a common framework, where a specific 
notation is introduced which simplifies the understanding of some physical 
aspects and allows an easier mutual comparison. Besides the critical review 
of literature models, a new formulation for self-excited loads in the time 
domain is proposed as a development of existing load models based on 
indicial functions. In particular, the extended model includes the 
consistency with the quasi-steady limit and corrects some aspects that used 
to lead to an inaccurate identification of the same indicial functions. A 
specific numerical procedure for the identification of indicial functions from 
measured aeroelastic derivatives is developed, in such a way that the 
reliability of the experimental data is taken into account. Some examples of 
identification are provided and discussed. The developed time-domain 
unsteady formulations will be particularly important for the following parts 
of this work, since it will allow simulating nonlinear structures and localized 
damping devices for mitigating bridge oscillations. 

In Chapter 4, a numerical framework for the numerical analysis of 
bridges under wind action is developed. It is based on a finite element 
discretization of the structure and on the semi-empirical load models 
presented in Chapter 3. A specific computer program and original 
numerical procedures are developed for evaluating aeroelastic stability and 
buffeting response in presence of self-excited forces, both in the frequency 
and time domain. The program includes the generation of the wind velocity 
field, nonlinear structural finite elements formulated according to the co-
rotational approach, several types of analysis, and macros for the 
parametric generation of the structural models and for Monte Carlo 
simulations. 

In Chapter 5, numerous computational results are presented. First of 
all, the proposed load model based on indicial functions is validated by 
means of a full-bridge analysis, in which time-domain simulation results are 
compared with multi-modal frequency-domain ones. Then, the reliability of 
the indicial function approach is discussed. Furthermore, by means of a 
simplified structural model, it is shown how secondary critical modes can be 
simulated and visualized. Finally, several comparisons helpful in the 
prediction of structural vulnerability are presented; in particular, the effects 
on flutter and buffeting response of the along-span wind coherence, of the 
mean steady deformations, and of the load and structural nonlinearities are 
evaluated.  

In Chapter 6, some design strategies for the mitigation of vulnerability 
are presented and compared by means of a risk-based analysis. In fact, a 
methodology for choosing a design solution rather than another one is easily 
offered if a comparison of probable-losses, i.e. of risk, can be performed. In 
particular, the collapse risk due to aeroelastic instabilities and the risk of 
closure to traffic due to excessive oscillations are considered. Among the 
structural solutions for suspension bridges: counter-opposed curvature 
cables, crossed hangers, and tuned mass control devices are evaluated. 
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Finally, some general conclusions are drawn in Chapter 7. 

1.4.2 Original achievements 

The original scientific results and contributions of this dissertation are 
roughly summarized below: 

• Further development and validation of time-domain load models 
for unsteady wind loading: 

o Development of a common framework for cross-sectional 
wind load models and introduction of a simplified 
notation clarifying physical aspects; 

o Introduction of the consistency of the indicial function 
load model for self-excited forces with the quasi-steady 
limit behaviour; 

o Development of a numerical procedure for the 
identification of indicial functions from measured 
aeroelastic derivatives by taking into account the 
reliability of experimental data and preserving the load 
accuracy also at the low reduced velocities; 

o Evaluation of the reliability of the indicial function 
approach. 

• Development of a computational framework for the analysis of 
suspended-span bridges under wind action, based on finite 
element discretization, and including original procedures for the 
aeroelastic stability analysis and the buffeting simulation. 

• Results on the assessment of bridge vulnerability, including the 
investigation of the following effects on stability and buffeting 
response: 

o Effects of load nonlinearities; 
o Effects of structural nonlinearities; 
o Effects of along-span correlation of wind; 
o Effects of mean steady deformations. 

• Risk-based comparison of the following design strategies for the 
mitigation of aeroelastic instability and buffeting risks on 
suspension bridges: 

o Secondary cables with opposed curvature; 
o Crossed hangers; 
o Tuned mass control systems. 
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Chapter 2  

Preliminary Notions on Wind 

Engineering 

In this Chapter the fundamentals of wind engineering that will be useful in 
the following of this Thesis are briefly reviewed. In the first Section, the 
properties of the flow in the atmospheric boundary layer are recalled, with 
particular consideration for the mathematical description of the velocity 
field and on its numerical simulation. The second Section deals with the 
aeroelastic phenomena according to a classification that is consolidated in 
the literature. Special attention is paid to those phenomena that may occur 
in suspended-span bridges, either to the whole structure or to its individual 
parts (e.g. cables, towers).  

2.1 Wind modelling 

Wind is the moving of air masses basically caused by the uneven heating of 
Earth’s surface. From the meteorological point of view the phenomenon is, 
of course, very complex and is affected by a large variety of factors (for an 
overview on them, see e.g. Simiu and Scanlan, 1996, and references therein). 
From the engineering point of view, on the other hand, only the principal 
features of the phenomenon need to be modelled. 

At sufficiently great heights, the motion of air relative to the Earth’s 
surface is independent on the friction with the ground and is determined 
only by the pressure gradient and by the inertial effects due to Earth’s 
rotation (‘centrifugal’ and Coriolis forces). At these heights, the wind 
velocity may be assumed as horizontally homogeneous and stationary, and 
it is referred to as gradient velocity. 

Earth’s surface exerts upon the moving air a horizontal drag force, 
which retards the flow and produces a turbulent mixing throughout a 
region of the atmosphere called atmospheric boundary layer, whose depth 
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ranges from a few hundred meters to some kilometres, depending on the 
gradient velocity and on the roughness of the terrain. 

In wind engineering, we are interested in the effects of wind on civil 
structures; therefore, a mathematical description of the flow within the 
boundary layer is required. Since wind velocity varies both in space and 
time in a complex, random way, it is described in statistical terms. 

Long-period field observations (van der Hoven, 1957) showed that the 
power spectral density function of the modulus of wind velocity exhibits 
two main peaks (see Figure 2.1): a mesometeorological one centred around 
a period of about four days, associated with the passage of a typical 
weather system past a fixed point; and a micrometeorological one centred 
around a period of about one minute, associated with local gusts. The two 
peaks are separated by the so-called spectral gap, i.e. a range of frequencies 
with very small power content. The spectral gap allows the decomposition 
of the instantaneous velocity as the sum of a mean velocity and of a 
turbulence velocity. 

 

Figure 2.1 Van der Hoven spectrum (van der Hoven, 1957) 

The mean velocity varies very slowly with respect to the typical periods 
of a structure; for this reason, it may be considered as constant in time 
during a structural analysis, and we are only interested in the probability of 
exceeding a certain value. On the other hand, the frequencies contained in 
the turbulence components are likely to interact dynamically with the 
structures; therefore, a detailed description in time and space is required. 

Of course, the velocity also varies in direction. In a given location, for 
topographic and orographic reasons (vicinity of the sea, presence of 
mountain ranges, etc.), the probability of occurrence of a given mean wind 
velocity is not the same in all directions. Detailed information can be 
obtained only through on-site measurements and is usually presented 
through directional probability diagrams (the so-called wind speed 
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rosettes). For bridges the direction of main concern is usually the one 
orthogonal to the bridge span. 

A right-handed Cartesian coordinate system { }, ,X Y Z  is introduced, 
with the X-axis in the direction of the mean wind velocity, positive along 
wind; and the Z-axis vertical, positive upwards. The velocity at the time t  
is decomposed as (Figure 2.2) 

 

( ) ( )

( ) ( )

( ) ( )

, , , in the -direction,

, , , in the -direction,

, , , in the -direction,

U Z u X Y Z t X

v X Y Z t Y

w X Y

U Z

U tZ Z Z

+

+

+

 (2.1) 

where U  is the mean velocity, which depends only on the height Z  above 
the ground; u ,v , and w  are the (zero mean) fluctuating components of the 
wind velocity field and are treated as stationary stochastic processes. 

u

v

w

U

Z

X

Y

 

Figure 2.2 Wind velocity components 

2.1.1 Mean velocity 

Within the boundary layer, the mean wind velocity increases with elevation 
and is assumed as horizontally homogeneous. In the case of field 
measurements, the mean velocity is calculated by convention over a time 
interval of 10 minutes. 

By dividing the boundary layer into two regions and by using a 
dimensional analysis, a simple expression for the mean wind velocity in the 
lower region of the boundary layer (surface layer) can be obtained: 

 ( ) *

0

ln ,
u Z

U Z
Zκ

=  (2.2) 



2.1 Wind modelling 20 
 

 

Luca Salvatori Assessment and Mitigation of Wind Risk of Suspended-Span Bridges 

in which *u  is the friction velocity, defined by * 0u τ ρ= , being 0τ  the 
shear stress at the ground surface; 0.4κ �  is von Kármán’s constant; and 

0Z  is the roughness length of the terrain. Figure 2.3 shows a sample mean 
wind velocity profile. 
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Figure 2.3 Example of mean wind velocity profile 

Eq (2.2) is valid up to a certain height above ground level that can be 
approximated by the relation ( )* 2 sinL L Earth latZ b u ω φ= , in which 

0.015 0.030Lb = ÷  is an experimental constant, Earthω  the circular 
frequency of Earth’s rotation, and latφ  the latitude angle. 

The friction velocity can be obtained from field measurements or is 
provided by codes as a function of the location, i.e. of region, height above 
sea level, distance from the sea, orography, topography, and roughness 
category of terrain. In codes and standards (e.g. Eurocode 1, 1997; 
Istruzioni CNR, 2006) a reference (or base) velocity is usually provided, 
which is a characteristic of the location site and is defined as the maximum 
mean wind velocity in an interval of 10 minutes, at 10mZ = , on a flat and 
homogeneous terrain with roughness length 0 0.05mZ = , with a return 
period of 50 years. 

The roughness length 0Z  can be interpreted as the average size of 
vortexes produced by the friction between air and Earth’s surface at ground 
level. According to Eq (2.2), 0Z  is the height above the ground at which 
the mean wind velocity is zero. The roughness length can be estimated from 
on site measurements. Codes and standards report tables which associate 
roughness length values to terrain categories. The values of 0Z  range from 
few microns (~10-5 m for plane ice) up to some meters (~10 m for urban 
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areas). Over water, as it is the case of most suspended-span bridges crossing 
straits and estuaries, the roughness length depends on the wind velocity 
since the wind interacts with the water surface by inducing waves, which in 
turn represent an increased roughness. In case of strong winds 
( 25m/sU > ), as are those that are considered in next Chapters for the 
limit states of bridges, the roughness length can be assumed as constant 
and estimated as 0 0.0035mZ �  (Simiu and Scanlan, 1996). 

Field measurements and codes usually provide a characteristic value of 
the mean wind velocity in a given location that represents the velocity with 
return period 50 yearsRT = , i.e. the one with a yearly probability of 
exceedance 1R Rp T=  of 10.02 year− . In order to relate mean wind 
velocities and return periods, a Type I extreme value distribution (Gumbel 
distribution) can be assumed; in Eurocode 1, 1997, the relation 

 
( )( )

( )( )
1

50 1

1 ln ln 1 1

1 ln ln 0.98

R

R

n

RT
K TU

U K

⎛ ⎞⎟− − −⎜ ⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟− −⎜ ⎟⎟⎜⎝ ⎠

 (2.3) 

is suggested, with the coefficients 0.50Rn =  and 1 0.2K =  and RT  
expressed in years; whereas in the Italian CNR Guidelines (Istruzioni CNR, 
2006) 
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1
0.65 1 0.14 ln ln 1RT

R

U

U T

⎛ ⎞⎛ ⎞⎛ ⎞ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜= − − −⎜ ⎟⎟⎟⎜ ⎜ ⎜ ⎟⎟⎟⎜ ⎟⎜ ⎜ ⎟⎜ ⎝ ⎠⎝ ⎠⎝ ⎠
 (2.4) 

is used (Figure 2.4). 
Finally, it is worth noticing that field observations suggest that climate 

changes are leading to a progressive increase in the frequency of extreme 
events (e.g. Kasperski, 1998), in such a way that wind storm occurrence can 
no longer be considered as a stationary process. In this case the design 
velocity for civil buildings should depend not only on the expected life of a 
structure but also on the year of construction. 
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Figure 2.4 Relation between mean wind velocity and return period 

2.1.2 Fluctuating velocity 

The turbulence components u , v , and w  are usually modelled as 
stationary Gaussian processes. 

Since the flow is assumed as horizontally homogeneous, the statistical 
characteristics depend, in general, only on the height above the ground Z . 
The standard deviations uσ , vσ , and wσ  are close to zero at the top of the 
boundary layer, where the flow is not disturbed by the interaction with 
terrain roughness, and they increase toward the ground. Experimental 
observations show that at the typical heights of civil structures, standard 
deviations can be assumed as independent on the height and they can be 
approximated as 

 * , 0.75 , 0.50 .u v u w u

u
σ σ σ σ σ

κ
= = =  (2.5) 

The turbulence intensities are defined as the ratios of the standards 
deviations with the mean velocity: 

 , , .u u v v w wI U I U I Uσ σ σ= = =  (2.6) 
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From Eqs (2.2), (2.5) and (2.6), it follows that 

 ( ) ( )01 ln , 0.75 , 0.50 .u v u w uI Z Z Z I I I I= = =  (2.7) 

The integral length scales of turbulence are measures of the average sizes 
of vortices in every direction. For instance, the integral length scale X

uL  
describe the average turbulence component u  measured in the direction X , 
and it is formally defined as 

 ( ) ( )
0

, d ,X
u u X XL Z Z r rρ

∞

= ∫  (2.8) 

where 

 ( ) ( ) ( )2
0

1 1
, lim , , , , , ,

T

u X XT
u

Z r u X Y Z t u X r Y Z t
T

ρ
σ →∞

= ⋅ +∫  (2.9) 

is the cross-correlation function between the turbulence component u  in 
two points separated by a distance Xr  in the X-direction. In the same way, 
a total of 9 length scales are defined, namely 

 

for the longitudinal component,

for the lateral component,

for the vertical component,

X Y Z
u u u

X Y Z
v v v

X Y Z
w w w

L L L

L L L

L L L

 (2.10) 

which are generally modelled by using purely empirical expressions. 
The frequency distribution of the turbulent velocity component is 

described by power spectral density functions. Many empirical expressions 
are available1. Two classical expressions for the along wind turbulence 
spectrum deserve a mention: the one proposed by von Kármán, 1948, 

                                         
1 Theoretical indications are only available in the inertial subrange, i.e. the range of 
frequencies where the motion can be considered as independent of the viscosity. The energy 
in the flow is transferred from larger eddies to smaller ones through an inertial mechanism 
(Kolmogorov’s chain). Dissipation of energy occurs in smaller eddies where the shear 
deformations (and therefore the viscous stresses) are larger. According to Kolmogorov’s 
hypotheses the motion of smaller eddies is determined only by the rate of energy transferred 
from larger eddies (which is equal to energy dissipated, in the hypothesis of stationarity); 
moreover, it is assumed that the energy is dissipated only by the very smallest eddies, in 
such a way as the motion of larger ones is independent of the viscosity. This defines the 
inertial subrange. There, by means of dimensional analysis, it is possible to obtain a 
theoretical expression for the power spectral density of the turbulence. 
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in which X
L uf fL U= ; and the one proposed by Davenport, 1967, 
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in which Lf fL U=  with 1200mL = . 
More modern expressions of the spectra of the three turbulence 

components are 
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where *f fZ U=  is a non-dimensional frequency, also known as Monin 
coordinate. Eqs (2.13) and (2.14) are proposed by Kaimal, 1972, and Eq 
(2.15) by Lumley and Panofsky, 1964 (see also Simiu and Scanlan, 1996). 

Alternative expressions are proposed in codes and standards; for 
instance the Italian CNR Guidelines (Istruzioni CNR, 2006) suggest 
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where the standard deviations of the turbulence components are assumed as 
in Eq (2.5), the non-dimensional frequencies are defined as u uf fL U= , 

v vf fL U= , and w wf fL U= , and the integral length scales of turbulence 
are assumed as 

 ( ) , 0.25 , 0.10 ,u v u w uL L Z Z L L L L
ν

= = =  (2.19) 
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with 300mL = , 200mZ = , and ( )00.67 0.05 ln Zν = +  with 0Z  in meters. 
Eurocode 1, 1997, only provides an expression for the along wind turbulence 
spectrum, identical to Eq (2.16). For further experimental spectra see e.g. 
Jain et al., 1996a; Jain et al., 1996b; Katsuchi et al., 1999. 

The nondimensional form of the longitudinal turbulence spectra in Eqs 
(2.11), (2.12), (2.13), and (2.16) are compared in Figure 2.5; lateral 
turbulence spectra in Eqs (2.14) and (2.17) are compared in Figure 2.6; and 
vertical turbulence spectra in Eqs (2.15) and (2.18), in Figure 2.7. In all 
cases 0 0.0035mZ = , 60mZ = , and ( ) 30m/sU Z =  have been considered. 
It is observed that the longitudinal turbulence spectra that have been 
considered are quite similar, except for Davenport’s whose energy content is 
shifted at higher frequencies with respect to the other spectra. 

10
-2

10
-1

10
0

10
1

10
2

10
-3

10
-2

10
-1

10
0

fL
u
X/U

fS
u/

σ u2

 

 

von Káráman

Davenport

Kaimal

EC1/CNR

 

Figure 2.5 Spectra of the longitudinal component of turbulence 
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Figure 2.6 Spectra of the lateral component of turbulence 
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Figure 2.7 Spectra of the vertical component of turbulence 

The longitudinal and the vertical components of turbulence have a 
negative cross-correlation. In fact the mean velocity increases with the 
height; therefore, a positive vertical gust transports an air particle in a 
position with an increased average longitudinal velocity; this results in a 
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negative longitudinal velocity fluctuation. In Minh et al., 2000 a possible 
co-spectrum of vertical and longitudinal turbulence is proposed: 
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The lateral component of turbulence can be considered as uncorrelated 
with the longitudinal and vertical ones (Solari and Piccardo, 2001). 

Let us now consider the turbulence in two spatial points 
{ }, ,i i i iM X Y Z=  and { }, ,j j j jM X Y Z=  (Figure 2.8). The cross-spectra of 

the components of the velocity fluctuations (e.g. Vickery, 1970) are given 
by 
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where the coherence functions (e.g. Panofsky and Singer, 1965) are  
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  (2.22) 

In Eqs (2.22) ( ) 2ij i jU U U= +  is the average mean wind velocity of the 
two points, and rRC  ( , ,r u v w= ; , ,R X Y Z= ) are coefficients determined 
experimentally and controlling the decay of the correlation of the 
turbulence components with the distance between the two points. Possible 
values of the coherence decay coefficients are collected below from various 
references in Simiu and Scanlan, 1996. According to Vickery, 1970, one can 
assume 10uZC =  and 10uYC = . The coefficient uXC  has been found to 
depend on the terrain, 3uXC =  can be assumed over sea and 6uXC = , over 
land (Panofsky and al., 1974). In Kristensen and Jensen, 1979, 8wYC = , 

0.66vY uYC C= , and 0.66vZ uZC C=  are suggested. It can be further 
assumed that also the coefficient for along-wind decay of the lateral 
turbulence coherence is in the ratio 0.66 with the relevant one for the 
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longitudinal turbulence, i.e. 0.66vX uXC C= . Also, wX uX wY uYC C C C=  and 
wZ uZ wY uYC C C C=  can be assumed. In CNR Guidelines (Istruzioni CNR, 

2006), values for the coherence decay coefficients are provided. They are 
reported in Table 2.1, where they are compared to those in the references in 
Simiu and Scanlan, 1996. 
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Figure 2.8 Wind velocity in two points 

The cross-spectrum of the longitudinal component u  in the point iM  
and the vertical component w  in the point jM  can be expressed as 

 
2 2Coh Coh

,
2i j

u w
u w uwS S

+
=  (2.23) 

where the co-spectrum uwS  and the coherence functions Cohu  and Cohw  
are evaluated by considering the average velocity ijU  and the average 
height of  iM  and jM . 
 

Table 2.1 Coefficients of exponential decay of turbulence coherence according to 
Italian CNR Guidelines and various references in Simiu and Scanlan, 1996 

 CuX CuY CuZ CvX CvY CvZ CwX CwY CwZ 
CNR Guidelines 3 10 10 3 6.5 6.5 0.5 6.5 3 
Various Refs(*) 3 16 10 (2) 10.66 6.66 (1.5) 8 (5) 

(*) values in parentheses are further assumptions 
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2.1.3 Numerical generation of multi-correlated random processes 

Here, some methods for the generation of a discrete set of multi-correlated 
random processes (e.g. Borri, 1988; Borri and Pastò, 2006; Facchini, 1996; 
Iannuzzi and Spinelli, 1986) are described in brief. 

The Weighted Amplitude Wave Superposition (WAWS) method 
(Shinozuka and Jan, 1972) is probably the simplest method for the 
generation of multi-correlated processes. It consists in subdividing the 
frequency domain into M  intervals, centred at the frequency hf  and with 
amplitude hfΔ  ( 1, ,h M= … ). The time histories of the processes are 
obtained as a superposition of harmonics: 

 ( ) ( ) ( ) ( )( )
1

cos 2 ,
M

h h h
h

t tπ
=

= +∑x H f� φ  (2.24) 

in which [ ]1, ,
T

Nx x=x …  is a vector collecting the N  processes (the 
components ix  are the turbulence components u , v  or w  in distinct 
spatial points), ( )

1, ,
TN

h h h hh f f f fδ δ⎡ ⎤= + +⎣ ⎦f� …  is a set of N  frequencies 
obtained by the perturbation of hf  through random shifts δ 2n

h hf fΔ� , 

( )hφ  is a set of N  random phases uniformly distributed from 0 to 2π , and 

( )hH  are lower triangular N N×  matrixes. It can be demonstrated that 

( )hH  is proportional to the Cholesky factor of the power spectral density 
matrix evaluated at the frequency hf ; more precisely one has that 

 ( ) ( ) ( )2 .T
h hh h f f= Δ xH H S  (2.25) 

WAWS method is simple to implement but it requires a very fine 
discretization of the frequencies in order to accurately match the target 
spectra. 

The common spectrum method (e.g. Borri and Marradi, 1986) is based 
on the superposition of a signal generated for a spectrum that is common to 
all processes which include cross-correlations and of uncorrelated processes 
whose spectra are the differences between the common spectrum and the 
spectra of the target processes:  

 ( ) ( ) ( )t t t= +x C yξ  (2.26) 

where ξ  is a vector collecting independent random processes with a 
common spectrum commS , C  is a matrix that is obtained from the equation  

( ) 2
comm0 Tσ=yR CC , and y  is a vector collecting independent processes 

whose spectra are the differences between the target auto-spectra and the 
common spectrum ( ) ( ) ( )commi iy xS f S f S f= − , 1, ,i N= … . Of course a 
method for the generation of the single process is required (e.g. WAWS 
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method). The method is numerically very efficient but approximated since 
the target correlation is obtained only at zero time lag. 

Auto-regressive filters (e.g. Saul et al., 1976) can be used for generating 
discrete time histories of the turbulent velocity field too. In this case the 
processes are generated as 

 ( ) ( ) ( ) ( )
1

,
P

h
h

t t h t t
=

= − Δ +∑x x nΨ  (2.27) 

where P  is the order of the filter, ( )hΨ  are the matrixes of the coefficients 
of the filter, and n  is a vector of noise. The coefficients can be determined 
from the matrix of the correlation functions of the process xR , by solving 
the linear system 

 ( ) ( ) ( )( )
1

1
, 1, , ;

P
h

h

k t h k t k P
T =

Δ = − Δ =∑x xR R …Ψ  (2.28) 

where T  is the duration of the sample. After evaluating matrixes of the 
filter coefficients, the correlation function of the noise can be obtained from 
the relation 

 ( ) ( ) ( ) ( )
1

1
0 0 .

P
h

h

h t
T =

= Δ +∑x x nR R RΨ  (2.29) 

Then, the vector of the noises is obtained as 

 ( ) ( )t t=n Lε  (2.30) 

where ε  is a vector of uncorrelated white noises with zero mean and unit 
variance, and L  is the Cholesky factor of ( )0nR . 

2.2 Wind loading and fluid-structure interaction 

A body immersed in a flow is subjected to surface pressures induced by that 
flow. These pressures are, in general, time-dependent since they are affected 
by the fluctuations of the fluid velocity due to both the turbulence in the 
incident flow and the one initiated by the body itself.  

If the body deforms or moves significantly under the fluid pressures, the 
changes of configuration of the body will affect the flow by modifying its 
boundary conditions. This will influence the aerodynamic loads which in 
turn will affect the deformations. In these cases where aerodynamic forces 
and structural motion interact, one speaks of aeroelastic phenomena. 
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These phenomena have been thoroughly studied in the aeronautic field 
since the beginning of the XX century. In civil engineering, although wind 
action was recognized as the cause of some collapses and severe damaging 
of bridges already in the XIX century, aeroelastic effects have been brought 
to designers’ attention only after the collapse of the original Tacoma 
Narrows Bridge in 1940. Nowadays, aeroelastic effects are more and more a 
concern for designers of bridges due to the increasing flexibility of these 
structures. 

Let us first analyze the non aeroelastic loading mechanisms, i.e. those 
affecting a non-deformable, fixed structure. It is classical to identify a 
steady or mean load2, which is the time-average of the fluid pressures. The 
time-dependent load due to the oncoming turbulence, is classically referred 
to as buffeting load, whereas the time-dependent load due to the turbulence 
initiated by the body – even in case of laminar incident flow – is referred to 
as vortex-shedding load. 

If the body is left free to deform or move, it starts interacting with the 
flow and aeroelastic effects may occur. The possible situations are extremely 
various and complicated. Here, however, the analysis is restricted to those 
phenomena that may affect suspended-span bridges or parts of them 
(cables, towers, etc.). These aeroelastic phenomena may be categorized as: 

 
• Synchronization mechanisms of the vortex shedding with the 

structural vibrations (lock-in); 
• Static instabilities (torsional divergence, lateral-buckling); 
• Dynamic instabilities (galloping, torsional flutter, coupled 

flutter, along-wind instability near critical Reynolds number); 
• Modal coupling affecting buffeting response (coupled buffeting); 
• Multi-meteorological effects (rain-wind interaction on cables). 

 
Below, some of these aeroelastic phenomena will be briefly presented, 

according to a consolidated classification (e.g. Simiu and Scanlan, 1996). 
In Chapter 3 and Chapter 4, load models and a computational 

framework for aerodynamic and aeroelastic bridge analysis will be 
presented. Only the wind effects on the bridge deck will be considered. The 
model covers the effects of the mean actions, static and dynamic stability 
analysis, and coupled buffeting response prediction. 

                                         
2 Actually, a steady state for the fluid-structure system is only possible if (i) the incident 
flow is laminar, (ii) the body is rigid and fixed, and (iii) the Reynolds numbers are very 
small. In case of civil structures the hypothesis (i) and (iii) are never satisfied; therefore, it is 
more appropriate to speak of mean loading, i.e. the time-average of the wind pressure on the 
body surface. 
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2.2.1 Vortex shedding and lock-in 

Experimental observations show that, within a certain range of Reynolds 
numbers, a fixed line-like structure sheds alternating vortices whose 
principal frequency Sf  satisfies the relation 

 ,Sf D
St

U
=  (2.31) 

in which D  is the across-wind dimension of the body, and ,St  is the 
Strouhal number, a nondimensional coefficient which depends on the 
geometry of the body and on Reynolds number. The relevant surface 
pressures result in along- and across-flow forces whose principal harmonics 
have a frequency 2 Sf  and Sf  respectively; and, in general, in a pitching 
moment with main frequency Sf . 

Let us recall the definition of the Reynolds number Re  representing the 
ratio between inertial and viscous forces, 

 ,
UD

Re
ρ

μ
=  (2.32) 

where μ  is the dynamic viscosity of the fluid ( 5 -1 -11.78 10  kg m sμ −= ×  for 
air at 15°C). 

 

Figure 2.9 Schematic representation of lock-in phenomenon Simiu and Scanlan, 
1996 

Now, let us consider the body as elastically supported. The response is 
usually small, unless the Strouhal frequency approaches the natural 
frequency of the structure 0f ; in this case the oscillation amplitude starts 
increasing and the structure motion strongly interacts with the flow, so that 
the phenomenon becomes aeroelastic. It is experimental evidence that at 
this point, the structural frequency controls the vortex shedding frequency 
even if the flow velocity, and consequently the nominal Strouhal frequency, 



2.2 Wind loading and fluid-structure interaction 33 
 

 

Luca Salvatori Assessment and Mitigation of Wind Risk of Suspended-Span Bridges 

is varied within a certain range (Figure 2.9). This effect is known as lock-in 
or synchronization. 

It has also been observed that during synchronization the across-wind 
force increases with oscillation amplitude until a limit cycle is reached. 
Moreover, the along-structure correlation of the force increases with 
oscillation amplitude too. 

The most successful semi-qualitative models for the mathematical 
modelling of the lock-in response are based on coupled oscillators 
representing the structure and its wake (e.g. Diana et al., 2006). In 
practice, however, single-degree-of-freedom models are usually considered 
for the structural analyses; a classical one is proposed in Simiu and Scanlan, 
1996, where the across-wind force is expressed as 

 ( ) ( ) ( ) ( ) ( )
2

1 22sin 1 ,S LS

y y y
L q C K t Y K K Y K

D U D
ω φ ε

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥= + + − +⎟⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦

�
 

  (2.33) 

where LSC , 1Y , 2Y , and ε  are experimental parameters, functions of the 
Strouhal reduced frequency S SK f D U= . In Eq (2.33), three terms are 
distinguished: (i) a harmonic forcing term, (ii) a non-linear aerodynamic 
damping term, and (iii) an aerodynamic stiffness term. The harmonic term 
models the alternating lift due to vortex-shedding in the velocity ranges 
where lock-in does not occur. Close to lock-in, the forcing term becomes 
negligible ( 0LSC � ) and the synchronized oscillations are controlled by the 
other terms. The idea is to use a Van der Pol oscillator, where the 
nonlinear damping term models the self-limiting oscillations and the 
stiffness term keeps the frequencies synchronized in the lock-in region. An 
extensive, interesting discussion on load models for vortex-shedding and 
lock-in is available in Pastò, 2005, which is also a valuable source for 
further references. 

A fundamental parameter for the design is the amplitude of limit cycle 
oscillations. This is usually expressed as a function of the Scruton number 
Sc , a nondimensional parameter defined as 

 
2
,

m
Sc

D
ξ
ρ

=  (2.34) 

where ξ  is the damping ratio to critical of the structural mode considered, 
and m  its mass. 

Actually, it has been experimentally observed (e.g. Pastò, 2005) that the 
resonant response is significantly different, in the case that the lock-in 
region is reached by increasing or decreasing the mean wind velocities 
(Figure 2.10). 
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Figure 2.10 Across-wind oscillation amplitude of a circular cylinder for increasing 
(black triangles) and decreasing (red crosses) mean wind velocity (Pastò, 2005) 

Vortex induced vibrations can be a risk source for suspended-span 
bridges due to the flexibility of these structures and the presence of line-like 
elements that are likely to shed organized vortices; in particular the bridge 
deck, the towers, and the cables may exhibit vulnerability to vortex 
induced vibrations, which may produce fatigue or serviceability issues. 
Moreover, the vortex induced vibrations may produce the initial 
disturbance that triggers self-excited instability phenomena such as flutter, 
as it was probably the case of the failure of Tacoma Narrows Bridge in 1940 
(Billah and Scanlan, 1991). 

Closed box girders are particularly vulnerable since they are able to 
shed large vortices. For typical structures, synchronization phenomena may 
occur at relatively low mean wind velocity (Ricciardelli et al., 2002), so that 
they may affect the bridge serviceability. A paradigmatic example is 
provided by the Storebælt Bridge in Denmark, where guide vanes (Figure 
1.5) had to be added to the deck in order to mitigate the oscillations 
(Figure 1.4). On the other hand, latticed girders ‘shred’ the oncoming flow 
to such an extent that large, synchronized vortices, capable of exciting the 
bridge, are not likely to be shed. 

The introduction of fairings or other aerodynamic appendages may be in 
fact effective for mitigating the vortex induced vibrations in deck girders. 
On the other hand, the presence of guardrail and barriers must be 
considered already in the design and in the wind tunnel tests, since these 
non-structural details may have a strong influence on the vortex shedding 
phenomenon. 

Further useful countermeasures are the increase of structural damping, 
and the introduction of devices that break the along-structure coherence of 
the detached vortexes. Note that the turbulence in the oncoming flow is 
sometimes sufficient to break this coherence. 
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Vortex shedding is often a concern for bridge towers too. A possible 
solution is to increase tower stiffness in such a way as to increase the 
critical velocity for synchronization 0

S
crU f D St= , where 0f  is the main 

frequency of the tower. A second strategy consists in providing devices (e.g. 
spoilers, helical strakes) that spoil the coherence of the shred vortices. 
Furthermore, it is possible to install damping devices (e.g. tuned mass 
control systems shaped as vertical pendulums weighted at the lower end). 

Fatigue risk is a main concern for cables. In order to reduce vortex-
induced oscillations of stays or hangers, cable-to-cable ties reducing the 
free-vibration length are often installed. Friction or hydraulic dampers, and 
tuned mass control systems are also frequently adopted solutions (e.g. Modi 
et al., 1995). 

2.2.2 Torsional divergence 

Torsional divergence is an instability phenomenon produced by the loss of 
torsional stiffness due to the increase of the mean aerodynamic moment. 
The phenomenon is typical of aircraft wings and is not usually a main 
concern for suspended-span bridges, unless the bridge deck is torsionally 
weak. 

Since the phenomenon has a static nature (from the structural point of 
view), it can be approached by using the steady load model. A simplified 
analytical description can be obtained by considering only the torsional 
degree of freedom of the bridge deck and by linearizing the static 
equilibrium equation under steady aerodynamic forces. The critical 
condition is obtained when the total (structural and aerodynamic) stiffness 
of the system vanishes, i.e. for 

 2

2
ydivergence

cr
M

k
U

B C
θ

ρ
=

′
 (2.35) 

where 
y

kθ  is the torsional stiffness of the bridge deck per unit length 
evaluated for the mean steady rotation yθ , and MC ′  is the derivative of the 
moment aerodynamic coefficient evaluated at yθ . 

In principle, static instabilities may occur also for the vertical and 
lateral displacement of the bridge (vertical and lateral buckling). Although 
they never realize for actual structures, they may be approached in the 
same way torsional divergence is. 

Eq (2.35), where 0yθ =  is often assumed, can be used to obtain a first 
estimate of the critical velocity for torsional divergence, which suggests 
whether the risk for this instability can be excluded without further 
analyses. 
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The stability analysis procedure proposed in Chapter 4 provides a more 
sophisticated tool which cover static and dynamic instabilities. In 
particular, the along-span variation of the angle of attack due to the steady 
loading and the correct changes in the geometrical stiffness of the structure 
are accounted for. Moreover, lateral and vertical buckling and further 
possible static instabilities can also be detected. 

2.2.3 Galloping 

Slender structures with special cross-section shapes may exhibit large 
oscillations in the across-wind direction. This phenomenon is called 
galloping and it is typical of rectangular or D-shaped cross-sections or the 
effective sections of power line cables that received an ice coat under 
freezing rain conditions. 

Analytically, this aeroelastic phenomenon represents a single-degree-of-
freedom dynamic instability (Hopf bifurcation), in which a negative 
aerodynamic damping cancels the structural damping. Experience has 
shown that the quasi-steady approach (see Chapter 3) is sufficient for 
describing the phenomenon. 

A first estimate of the critical wind velocity for galloping instability can 
be obtained by considering the across-wind degree of freedom of the 
structure and a linearized quasi-steady loading (den Hartog, 1932; Glauert, 
1919). The equation of motion reads: 

 ( ) ( )2 21
2 ,

2z z z z L D

z
m z z z U B C C

U
ξ ω ω ρ ′+ + = − +

��� �  (2.36) 

where zm  is the mass per unit length, zω  is the circular frequency of the 
across-wind structural mode, zξ  the relevant damping ratio, LC ′  and DC  
are the derivative of the lift aerodynamic coefficient and the drag coefficient 
evaluated at the mean configuration. The instability is reached when the 
total damping of the system (including structural and aerodynamic 
damping) ( )2 1 2tot L Dc U C Cξω ρ ′= + +  becomes negative. Since the 
structural damping is positive, galloping instability may occur only if 

L DC C′ < −  (Glauert–Den-Hartog criterion). Since drag coefficient is 
positive3, the lift coefficient must have a strong negative slope for the 
galloping instability can occur. Also note that symmetric cross-sections 
have 0LC ′ = ; therefore, galloping only occur in non-symmetric sections. 

The critical condition for galloping is reached for a mean wind velocity 

                                         
3 A negative drag coefficient would allow a paradoxal average motion in opposite direction 
with respect to the mean flow one. 
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From Eq (2.37), it is clear that a possible strategy for mitigating 
galloping risk is to increase the structural damping, since the critical 
velocity is proportional to it. 

A more accurate prediction of galloping critical velocity can be obtained 
by using unsteady coefficients (see Chapter 3), of which the term 
( )L DC C′ +  represent the asymptotic value for oscillation frequency that 
goes to zero (quasi-steady limit). 

The stability analysis procedure presented in Chapter 4 is able to 
capture galloping instability as well as torsional flutter and coupled flutter, 
which are further possible dynamic instability phenomena which, contrary 
to galloping, can only be studied by including unsteadiness in the load 
models. 

Nonlinear quasi-steady load models are available for the description of 
post-critical galloping conditions, in which limit cycle oscillations appear 
(Dyrbye and Hansen, 1996; Simiu and Scanlan, 1996). Alternatively, time-
domain simulations using the quasi-steady load model are able to model the 
phenomenon (Salvatori and Spinelli, 2006b). 

Take notice that single-degree-of-freedom dynamic instabilities may 
occur also for torsion or along-wind bending. 

Torsional dynamic instability may occur in some bridge sections and is 
usually referred to as torsional flutter. As a quasi-steady treatment is not 
possible for the torsional degree of freedom (see discussion in Section 3.2.4), 
unsteady coefficients must be measured for studying the phenomenon. 

A possible along wind dynamic instability could be modelled through 
the quasi-steady approach, as the quasi-steady aerodynamic damping is well 
defined and is equal to 2 DC . Since its value is always positive, it may seem 
that single-degree-of-freedom instability cannot occur. Nevertheless along-
wind instabilities have been hypothesized (Macdonald, 2002) – but not 
observed – in the vicinity of drag crisis Schewe, 1983. In this case the 
dependence of drag coefficient on Reynolds number (evaluated considering 
the flow velocity relative to the body) must be included in an analytical 
model. 

It is just worth to mention that the name ‘galloping’ is also used to 
indicate a different aeroelastic phenomenon that is also characterized by 
large oscillations and that also typically occurs in power line cables. In this 
case two (or more) cylinders are considered, one of which is located 
upstream of the other(s). Typical examples are power line cables grouped in 
bundles or group of chimneys. Under certain conditions the downstream 
cylinder may exhibit large oscillations induced by the wake generated by 
the upstream cylinder; hence, this phenomenon is named wake galloping. It 
is characterized by large oscillations that reach a limit cycle and describe an 
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elliptical orbit with the longer ellipse axis in the along-wind direction. The 
phenomenon can be modelled by considering a two-degree-of-freedom 
system and adopting a quasi-steady approach. The lift and drag coefficients 
must be experimentally determined as a function of the relative position of 
the two cylinders (Simpson, 1971). Post-critical limit-cycle oscillation can 
also be described by using a quasi-steady nonlinear model (e.g. Kern and 
Matiz, 1998).  

2.2.4 Flutter 

The theory of flutter was originally applied to airfoils but after the collapse 
of Tacoma Narrows Bridge in 1940, flutter has become a main concern also 
in the design of flexible bridges. In some special cases, besides the deck, 
further bridge elements may need to be checked for flutter stability; an 
example are the slender, 340-m-high piers of the Millau Viaduct in France 
that have also been verified against this instability phenomenon. 

Coupled flutter (or binary flutter, or classical flutter) is a two-degree-of-
freedom instability phenomenon in which the vertical and the torsional 
degrees of freedom of a structure couple together in diverging oscillations 
driven by the flow. Typical cross-sections prone to this instability are those 
of airfoils and streamlined bridge decks. 

The coupled flutter mechanism is mainly driven by the phase shift 
between the vertical and the torsional oscillations (e.g. Bisplinghoff et al., 
1955; Fung, 1968; Scanlan and Sabzevari, 1969) that, at a critical mean 
wind velocity, occur with the same frequency (critical frequency), coupled 
together into a zero-damping mode. At super-critical velocities, the total 
damping of the system becomes negative and diverging oscillations are 
initiated (e.g. Righi, 2003). These are eventually limited by structural (e.g. 
Salvatori and Spinelli, 2006b) or aerodynamic (e.g. Chen and Kareem, 
2001) nonlinearities. 

The critical velocity for flutter instability is a crucial design parameter 
for bridges and depends on the cross-section shape of the deck (more 
precisely on the unsteady aeroelastic characteristics, see below), and on the 
dynamic properties of the structure; in particular, on the masses and 
damping of the vertical and torsional modes, and, prominently, on their 
frequency ratio. 

Torsional flutter is a single-degree-of-freedom instability, which typically 
occurs in relatively bluff cross-sections undergoing strongly separated flow. 
In these cases, the diverging torsional oscillations are driven by the relevant 
aerodynamic damping (e.g. Matsumoto et al., 1997). 

Nakamura (Nakamura, 1978; Nakamura, 1996) observed that, between 
the coupled and the torsional flutter, intermediate excitation mechanism 
are also possible. 
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More in general, more than two modes can participate to the flutter 
mechanism of a true bridge (see Chapter 4). 

Matsumoto and co-workers (e.g. Matsumoto, 2005; Matsumoto et al., 
1993; Matsumoto et al., 1999) extensively studied the mechanism of flutter, 
either mono-, bi-, or multi-modal, and highlighted ‘flutter branches’, i.e. the 
structural modes, modified by aeroelastic effects, that eventually reach 
negative damping and initiate the instability. 

In any case, the study of flutter requires an unsteady approach, since 
the so-called fluid memory, i.e. the unsteady structure of the wake, plays a 
crucial role in this phenomenon. 

The unsteady load models for self-excited forces that are used for 
predicting flutter instability are discussed and further developed in 
Chapter 3, whereas a numerical procedure for the aeroelastic stability 
analysis of a true bridge is developed in Chapter 4. 

It is just worth to point out that the term ‘flutter’ is used also to 
indicate further aeroelastic phenomena studied in the aeronautic and 
aerospace field. For example, stall flutter is a single-degree-of-freedom 
torsional oscillation of airfoils due to nonlinear characteristics of the 
aerodynamic forces in the vicinity of the stall, and panel flutter is the 
oscillation of panels in special condition of super-sonic flow. 

2.2.5 Buffeting and coupled buffeting 

Buffeting is the loading of a structure due to the turbulence in the 
oncoming flow. For most structures, buffeting does not need to be treated 
as an aeroelastic phenomenon since the effects of the wind gusts are 
prominent with respect to those of the structure motion. 

However, flexible line-like elements as slender towers or the decks of 
suspended-span bridges, once excited by buffeting, undergo significant 
oscillations which interact with the flow and may appreciably affect the 
response (e.g. Chen et al., 2004). In these cases the modal coupling due to 
self-excited forces must be considered for an adequate evaluation of the 
phenomenon, which is then indicated as coupled buffeting. 

Load models for bridge deck buffeting are described in Chapter 3. The 
simpler approach is based on the hypothesis of quasi-steadiness, i.e. it is 
assumed that the gusts are larger than the width of the bridge deck. The 
quasi-steady approach results in an overestimation of the contribution of 
the smaller gusts to the structural response. In order to account for 
unsteady effects, admittance functions are introduced in the load model. 
Aeroelastic effects are usually superposed to those of buffeting by simply 
adding buffeting and self-excited forces. The hypothesis of superposition of 
these effects is questionable but unavoidable for practical calculations. 
Nonlinear effects in buffeting may also be relevant (e.g. Peil and Behrens, 
2007). 
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Frequency- and time-domain numerical procedures for the buffeting 
analysis of bridges are developed in Chapter 4. 

Buffeting oscillations of the deck may affect the serviceability by 
preventing regular traffic on the bridge. Ultimate limit state can be reached 
too, by the exceedance of the maximum stresses in structural members or 
by producing fatigue issues.  

Besides decks, further bridge elements such as towers (e.g. Ricciardelli, 
1996) and cables (e.g. Peil et al., 1996) may undergo buffeting oscillations. 

2.2.6 Rain-wind-cable interaction 

Under the combined action of rain and wind, inclined cables and stays may 
exhibit large amplitude vibrations. The rain water flows along the cables by 
forming one or two rivulets, whose positions are determined by the action 
of gravity and wind. The presence of rivulets may strongly affect the 
pressure distribution around the circular surface of the cables, since the 
rivulets fix the separation points for the flow. The phenomenon is then 
characteristically aeroelastic, since the rivulets motion in turn is affect by 
both the flow and the cable motion. 

Wind-rain interaction is a very complex phenomenon and, despites the 
numerous studies (e.g. Flamand, 1995; Hikami and Shiraishi, 1988; 
Matsumoto, Saitoh et al., 1995; Verwiebe and Ruscheweyh, 1998), it is not 
yet fully understood. 

The most successful models consider a cable section with its across-wind 
(and sometimes also along-wind) motion and schematize each rivulet as a 
rigid body moving around the cable surface, so that the rivulet 
configuration is described by a single degree of freedom (e.g.  Geurts et al., 
1998; Wilde and Witkowski, 2003). Of course, special constitutive equations 
must be provided for describing the motion of the rivulet. In (Peil and 
Nahrath, 2003),  four degrees of freedom are used, namely the along- and 
across-wind translations of the cable section and the positions of two 
rivulets around it; the same model has then been extended to the time-
domain simulation of spatial cables (Peil and Dreyer, 2007). 

Rain-wind vibrations may produce fatigue issues. The use of ribs, either 
parallel or helicoidal, in the outer surface of the stay prevents the rivulets 
from forming long, continuous lengths, and thus reduces the correlation of 
the wind-induced forces, suppressing the vibrations. 
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Chapter 3  

Wind Load Models 

In this Chapter steady, quasi-steady, and unsteady wind-load models for 
self-excited and buffeting forces are presented, both in the frequency and the 
time domain. All load models are placed in a common framework, where a 
specific notation is introduced which simplifies the understanding of some 
physical aspects and allows an easier mutual comparison of the models. 
Besides the critical review of literature models, a new formulation for self-
excited loads in the time domain is proposed as a development of existing 
load models based on indicial functions. In particular, the extended model 
includes the consistency with the quasi-steady limit and corrects some 
aspects that used to lead to an inaccurate identification of the indicial 
functions. A specific numerical procedure for the identification of indicial 
functions from measured aeroelastic derivatives is developed, in such a way 
that the reliability of the experimental data is taken into account. Some 
examples of identification are provided and discussed. 

3.1 Semi-empirical cross-sectional load models 

Due to the complexity of the wind-structure interaction, the problem of the 
aeroelastic and aerodynamic response of bluff bodies is practically 
approached by adopting semi-empirical load models based on experimental 
coefficients obtained in the wind tunnel. 

For line-like structures like bridge decks, the semi-empirical models are 
based on assumptions guided by the theoretical solution for the thin airfoil 
and on experimental evidences obtained from wind tunnel tests on scaled 
down cross-sectional models. 

Three basic kinds of experiments are performed: (i) static1 tests in 
laminar oncoming flow to obtain aerodynamic coefficients and Strouhal 

                                         
1 The term static is often used, in the literature as well in the practice, to refer to the cases 
where the structure is fixed and the flow reaches a steady state (or average considerations 
are possible). The term, acceptable from the structural point of view, is indeed inappropriate 
if the fluid-structure system is considered. 
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numbers, (ii) dynamic tests in laminar oncoming flow to obtain unsteady 
information such as the aeroelastic derivatives, and (iii) tests in turbulent 
oncoming flow to estimate aerodynamic admittances. 

In this Chapter the attention focuses on the decks of suspended span 
bridges (cable stayed and suspension bridges, e.g. Ryall et al., 2000). 
However, cross-sectional load models are used for many line-like structures 
such as slender piers (e.g. Milleau Viaduct, France Figure 3.1a), or light 
cable roofs (e.g. Figure 3.1b). 

         
                               (a)                                                             (b) 

Figure 3.1 Millau Viaduct, France (a); design for a new tollgate of A1 motorway at 
Reggio Emilia, tested in the CRIACIV wind tunnel in Prato (b) 

A bridge with straight span subjected to a wind flow, the mean velocity 
of which is horizontal and orthogonal to the bridge span is considered. 

Let us introduce a right-handed reference frame { }, ,X Y Z  (X  along-
wind, Y  along-span, Z  upwards). The bridge deck cross-section, lying in 
the { },X Z  plane, is treated as a rigid body. Hence, the motion of the cross-
section is described by three degrees of freedom, namely the horizontal 
displacement x  (positive along-wind), the vertical displacement z  (positive 
upwards), and the rotation yθ  (positive nose-up), see Figure 3.2. 
Translations are referred to an arbitrary point of the cross-section; here the 
centre of mass is used and it is assumed as coincident with the shear centre. 

The wind velocity field is assumed as stationary with the mean 
component U  in the X  direction. In general, also zero-mean fluctuating 
components u  (X  direction) and w  (Z  direction) are present and they are 
responsible for the buffeting excitation. The lateral wind velocity 
fluctuations of component v  (Y  direction) are not considered because they 
have no influence on the cross-sectional behaviour. 

The pressure field around the cross-section (e.g. Ricciardelli, 2003) 
results in a horizontal force xF , a vertical force zF , and a pitching moment 

yM , power-conjugated with the rates of x , z , and yθ , respectively. Take 
note that all the expressions of the forces given in this Chapter refer to a 
unit span length. 
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yθ

aL

aD

aM

 

Figure 3.2 Adopted convention for cross-sectional displacements and wind forces 

Wind actions on each elementary strip of bridge deck are considered as 
functions of the motion of its cross-section and of the local wind velocity. 

The three-dimensional behaviour of the whole bridge will then be taken 
into account by means of spatial correlation functions of the wind field and 
by connecting neighbouring cross-sections with structural (finite) elements 
(see Chapter 4). 

From the linearization of the quasi-steady load model, three 
independent load contributions are highlighted: a constant steady 
contribution, a buffeting contribution depending only on the oncoming wind 
velocity fluctuations, and a self-excited contribution depending on the cross-
sectional motion. In order to account for unsteadiness, the buffeting 
contribution may be corrected by means of admittance functions, whereas 
the self-excited forces can be modelled by means of aeroelastic derivatives. 
Admittance functions and aeroelastic derivatives, as parts of linearized 
models, are measured considering a single mean angle of attack (usually 
zero). Only recently aeroelastic derivatives at different angles of attack have 
been measured, but only a few values of the angle have been considered in 
experiments. Frequency dependent load models can be extended to the time 
domain through the approach based on indicial functions (e.g. Scanlan et 
al., 1974) in order to consider structural nonlinearities (e.g. Salvatori and 
Spinelli, 2006b) but cannot account for load nonlinearities, as a linearized 
theory is assumed already for the experimental measurements. Nonlinear 
extension of unsteady models are possible by using hybrid approaches, for 
instance through the subdivision of the response into frequency bands, 
where high frequencies are treated with unsteady linear models considering 
instantaneous angles provided by the low frequency quasi-steady response). 
An interesting proposal of nonlinear unsteady model is given by Chen and 
Kareem, 2001. 

A more thorough discussion is developed in Salvatori, 2007, where the 
notation and the framework adopted here are extended and presented in 
detail. 
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3.2 Load models based on steady aerodynamic coefficients 

In the next Sections the load models based on steady aerodynamic 
coefficients are presented. The steady coefficients are obtained in the wind 
tunnel through experimental tests in which the average forces on the bridge 
deck are measured under the conditions of laminar oncoming flow and fixed 
cross-section. The steady load model is therefore appropriate for describing 
steady-state problems, i.e. for obtaining static forces on the bridge deck. 
The quasi-steady load model is a tentative extension of the steady approach 
to turbulent flow and bridge dynamics (e.g. Stoyanoff, 2001). 

3.2.1 Steady load model 

A rigidly supported cross-section under constant wind is subjected to a 
mean surface pressure that results in an along-wind drag force sD , an 
across-wind (upward) lift force sL , and a pitching moment sM  (Figure 
3.3). They are expressed per unit span-length as 

 

( )

( )

( )

s
0

s
0

s 2
0

,

,

,

x s D

z s L

y s M

F D q BC

F L q BC

M M q B C

α

α

α

= =

= =

= =

 (3.1) 

where 2
0 2q Uρ=  is the mean kinetic pressure, ρ  the air density, U  the 

mean wind velocity, 2B b=  the bridge deck width, and RC  ( , ,R D L M= ) 
the drag, lift and moment aerodynamic coefficients respectively. These 
coefficients depend on the geometrical shape of the cross-section and are 
obtained experimentally from standard wind tunnel tests as a function of 
the angle α  between the cross-section chord and the mean flow direction 
(angle of attack). In Eq (3.1), xF , zF , and yM  are the components of the 
action with respect to the reference frame { , , }X Y Z , whereas the notation 
‘s’ reminds that we are considering a steady-load regime. 
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α

sL
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Figure 3.3 Steady load model 

3.2.2 Quasi-steady load model 

If the motion of the cross-section is allowed and the fluctuations of wind 
velocity are included, it is possible to extend the steady load model to the 
dynamics by imagining that at each instant the wind action can be 
modelled by using the steady state expressions holding for the configuration 
of the cross-section at that instant. This hypothesis is of course acceptable 
only in the case in which motion of the cross-section is ‘slow enough’ with 
respect to the flow; in this case, the fluid can reach a steady state as the 
cross-section undergoes only ‘small’ displacements. 

Let us consider the point P  of the cross-section chord at distance Bβ  
(positive in the flow direction) from C  (Figure 3.4). At a given time 
instant, the relative velocity components of the undisturbed flow in P  
would be 

 rel relsin , cos ,x y y z y yU U u x B U w z Bβ θ θ β θ θ= + − + = − +� �� �  (3.2) 

where the dot is used to denote the derivative with respect to time t , as 
usual. The meaning and role of the dimensionless parameter β  will be 
discussed in Section 3.2.3.  
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Figure 3.4 Quasi-steady load model 

Wind actions are then evaluated through the steady model, taking into 
account the instantaneous kinetic pressure 

 ( )2 21
2 x zq U Uρ= +  (3.3) 

and the instantaneous angle of attack that, in turn, is given by the sum of 
yθ  and the angle  

 arctan z

x

U
U

ϕ =  (3.4) 

between the X  axis and the relative wind velocity direction. The 
aerodynamic forces are then 

 

( )
( )

( )

qs

qs

2
qs

,

,

,

D y

L y

M y

D qBC

L qBC

M qB C

θ ϕ

θ ϕ

θ ϕ

= +

= +

= +

 (3.5) 

with drag force parallel to the relative wind velocity and lift force 
orthogonal to it. In the { }, ,X Y Z  reference system one obtains 

 

qs,nl
qs qs
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 (3.6) 
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in which the notations ‘qs’ and ‘nl’ underline the quasi-steady nature of the 
forces and their nonlinear dependence on the motion and on the oncoming 
turbulence. 

3.2.3 Linearization of quasi-steady load model 

In order to allow standard frequency domain analyses, the quasi-steady load 
model is often linearized. It is assumed that the fluctuations of the wind 
turbulence and the speed of the cross-section motion are ‘much smaller’ 
than the mean wind and that the motion develops with small oscillations 
around the mean angle corresponding to the steady configuration yθ ; that is 

 , , , , , 1.y y yu U w U x U z U B Uθ θ θ−�� � �  (3.7) 

Eqs (3.6) are then approximated to the first order as 
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qs,nl qs,l s qs,b qs,a

qs,nl qs,l s qs,b qs,a

,

,

,

x x x x x

z z z z z

y y y y y

F F F F F

F F F F F

M M M M M

= + +

= + +

= + +

�

�

�

 (3.8) 

where one can recognize the following three contributions: 
1) A constant term, equal to the steady mean load: 

 

( )
( )
( )

,

,

;

s s
x x y

s s
z z y

s s
y y y

F F

F F

M M

θ

θ

θ

=

=

=

 (3.9) 

2) A term depending on wind velocity fluctuations, which is referred 
to as buffeting contribution, and denoted by ‘b’: 
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 (3.10) 
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3) A term depending on the motion of the cross-section, which is 
referred to as self-excited or aeroelastic contribution, and denoted 
by ‘a’: 
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where y y yα θ θ= − , cos yc θ= , sin ys θ= , ( )R R yC C θ= , 

y
R RC C

α θ
α

=

⎡ ⎤′ = ∂ ∂⎢ ⎥⎣ ⎦ , , ,R D L M= . From now on, the overdash denotes that 
a quantity is evaluated at the mean steady configuration. 

Linearized load models are usually considered for practical calculations, 
because they allow the introduction of frequency-dependent ‘corrections’ 
accounting for the unsteadiness of the fluid-structure interactions, i.e. the 
admittance functions for the buffeting actions (see Section 3.4.3) and the 
aeroelastic derivatives for the self-excited actions (see Section 3.4.1). The 
linearized quasi-steady model represents in fact the asymptotic aerodynamic 
behaviour for the non-dimensional frequency K B Uω=  (the so-called 
reduced frequency) that tends to zero, where ω  is the circular frequency. 

3.2.4 Further considerations on quasi-steady aeroelastic forces 

The choice of the value of the dimensionless parameter β  should follow 
from dynamic experimental tests. It is in general not correct to use the 
same value of the parameter β  for all the components of the wind force. 
Instead, three different values of β , for the horizontal and the vertical force 
and for the moment, should be determined by considering the asymptotic 
behaviour for vanishing oscillation frequency of the aeroelastic derivatives 

*
2P , *

2H , and *
2A , respectively (see Section 3.4). Eqs (3.11) become then 
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where also the dependence on the angle of attack has been included in the 
coefficients Rβ  ( , ,x z yR F F M= ). 

Different authors report different interpretations for obtaining the 
coefficients Rβ . In Diana et al., 1993, where only two degrees of freedom 
are considered, the relative velocity for the quasi-steady approach is 
evaluated at two different points for lift and moment forces, and the 
parameters Rβ  are obtained from dynamic experimental tests. Another 
possibility is to consider the analogy with the theoretical solution for the 
thin airfoil and use 1 2

zFβ =  and 0
yMβ =  (the along wind component is 

identically zero for the thin airfoil; therefore, no analogy with this theory 
can be established). Other authors uses the same value of Rβ  for all three 
force components: Stoyanoff, 2001, evaluates the mean wind velocity with 
respect to the cross-section centroid, i.e. 0

x z yF F Mβ β β= = = ; Borri and 
Costa, 2004, consider the leading edge of the cross-section, i.e. 

1 4
x z yF F Mβ β β= = = − . Also, there are proposals for specific experimental 

procedure for determining Rβ  (e.g. Falco et al., 1978). As a matter of fact, 
a consistent extension to the dynamics of the steady model is simply not 
possible, and the model remains valid only as limit behaviour. 

Let us now introduce a compact notation that will also be adopted for 
the load models presented in the following Sections. Eqs (3.11) are 
rewritten as 

 0
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y

aq
Rr Rr x z y

r x U z U

B
R q B d r e r R F F M
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where the symbol  
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 (3.14) 
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is introduced. From Eq (3.13) on, the equations enclosed in boxes are those 
using the new compact notation or those for which some enhancement are 
made here. 

This notation, by choosing x U� , z U� , and yα  as fundamental 
parameters r  for describing the motion, underlines that a constant value of 
the angle of attack can only be produced by a constant translational 
velocity or by a constant rotation. In other words, if a constant value of 
x U� , z U� , or yα  is imposed, it is theoretically possible for the flow to 
reach a steady state with respect to the cross-section. Further advantages of 
this notation will be clarified in the following Sections. 

Now, it is clear that the coefficients Rrd  can be univocally determined 
by using information obtained in steady experimental tests. By considering 
a steady state ( constr = ) and comparing Eqs (3.12) and (3.13), one 
obtains that 
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On the other hand, the coefficients Rre  cannot be directly obtained by 
steady experimental tests as no steady state can be reached if the angle of 
attack changes in time ( 0r ≠� ). The equivalences obtained by the 
comparison of Eqs (3.12) and (3.13)  
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have no physical meaning. An estimate of Rre  may be useful for performing 
simplified quasi-steady analyses. Reasonable values can be obtained by 
considering the asymptotic behaviour of the unsteady coefficients, as it will 
be described in Section 3.4. 

3.3 Unsteady forces: Theoretical approach to thin airfoil 

The theory of thin airfoil is briefly recalled below. This theoretical 
approach, although it is not a wholly appropriate for the detailed 
appreciation of unsteady forces in bluff cross-sections, has historically 
provided a guide to the study of the motional aerodynamics of bridge decks. 
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The airfoil is idealized as a flat plate with vanishing thickness-to-width 
ratio immersed into a two-dimensional flow. The motion in the along-wind 
direction is restrained, so that only two degrees of freedom are used, namely 
the heaving and the pitching motion. The flow is assumed as inviscid, and 
incompressible (Fung, 1968). The standard convention for cross-sectional 
degrees of freedom and aerodynamic forces in the theory of thin airfoil is 
depicted in Figure 3.5. 

As to the steady behaviour, all the forces vanish at zero angle of attack, 
i.e. ( ) ( ) ( )0 0 0 0D L MC C C= = = . Moreover, theoretical calculations (e.g. 
Bisplinghoff et al., 1955) show that ( )0 2LC π′ =  and ( )0 2MC π′ = . 

α

L

M

 

Figure 3.5 Thin airfoil convention 

3.3.1 Self-excited forces in frequency domain 

For a harmonic motion with circular frequency ω , lift force and pitching 
moment reads 

 
,

2 2,

NC QS C

NC QS C

L L L L

M M L b L b

= + +

= − +
 (3.17) 

in the special case in which the mid-chord coincides with the shear 
centre (for the general case see Bisplinghoff et al., 1955). In this formulation 
three contributions can be distinguished: (i) non-circulatory terms 

2
NCL b hπρ= ��  and 4 8NCM bπρ α= − ��  that can be interpreted as the inertial 

forces of a portion of air which moves with the cylinder2 and can often be 
neglected; (ii) non-circulatory quasi-steady terms with resultant force 

2
QSL b Uπρ α= �  that are independent of the frequency of oscillations; and 

(iii) circulatory terms with resultant 

                                         
2 Note that the signs of the inertial terms are correct; in fact, the lift force is directed in 
opposite direction with respect to the heaving degree of freedom etc.  
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that represents the non-stationary effects due to the vortex sheets around 
the airfoil and in the wake. In Eq (3.18) 

 ( ) ( )3 4
2w h U bα α= − + +� �  (3.19) 

is the instantaneous vertical velocity of the air particle in contact with the 
tree-quarter chord point of the airfoil, 
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is Theodorsen’s circulatory function (Theodorsen, 1935), see Figure 3.7, 
( )2Hν  ( 0,1ν = ) are Bessel functions of third kind (Hankel functions), and 

2k K=  is a different definition for the reduced frequency that is used in 
the aeronautic field. Also, the reduced velocity is defined as ( )*U U Bf= . 

3.3.2 Self-excited forces in time domain 

The equivalent problem in time domain was solved by Wagner (Wagner, 
1925): 

 ( )
( )

( )
3 4

1
2

s

CL qB s w d
U

π φ σ σ σ
−∞

′= − −∫ , (3.21) 

where φ  is Wagner’s function, and the prime denotes the derivative with 
respect to the non-dimensional time s tU b= . 

Garrick, 1938, pointed out that Wagner’s and Theodorsen’s functions 
are in a Fourier transform relationship, 
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and gave a rational approximation of Wagner’s function as 
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which is correct in its limits, since ( ) 1
20Φ =  and ( )lim 1

s
s

→∞
Φ = , see Figure 

3.6. Jones, 1945, proposed the approximation in the form 

 ( ) ( )
1

1 exp
N

n n
n

s a b sφ
=

− −∑�  (3.24) 

with 2N = , 1 0.165a = , 1 0.041b = , 2 0.335a = , 2 0.320b = . 
According to Jones’ approximation the real and imaginary part of 

Theodorsen’s function are given by 

 ( ) ( )2
2 2 2 2

1 1

1 , .
N N

n n n

n nn n

a a b
F k k G k k

b k b k= =

= − = −
+ +∑ ∑  (3.25) 
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Figure 3.6 Wagner function after Jones’ and Garrick’s approximations 
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Figure 3.7 Real and imaginary parts of Theodorsen’s circulatory function, plotted 
as a function of the reduced frequency (a) and of the reduced velocity (b) 
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3.3.3 Gust response in frequency domain 

After Fung, 1968, we consider an airfoil flying at a uniform speed U  that is 
invested by a vertical sinusoidal gust ( ) ( )( ), expw x t W i t x Uω= −  of 
constant amplitude W .  The lift force reads 

 ( ) ( )expWL cUW i t kπρ ω φ= , (3.26) 

where 

 ( ) ( ) ( )( ) ( ) ( ) ( ) ( )0 1 1 G Gk J k iJ k C k iJ k F k iG kχ = − + = +  (3.27) 

is Sears’ function (Sears, 1941) and ( )J kν  are Bessel function of the first 
kind, see Figure 3.9. 
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Figure 3.8 Küssner’s function after Jones’ and rational approximations 
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Figure 3.9 Sears function, plotted as a function of the reduced frequency (a) and of 
the reduced velocity (b) 

3.3.4 Gust response in time domain 

The gust loading problem can be treated also in the time domain. In this 
case a sharp-edged gust is considered: 
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 ( ), ( )w x t WH t x U= − , (3.28) 

where ( ).H  is Heavyside’s function. The resulting lift force is 

 ( ) ( )21
2 2

2W

W
L U b s

U
π ρ ψ= , (3.29) 

where ψ  is Küssner’s function (Küssner, 1936). 
A rational approximation of Küssner’s function is available (Bisplinghoff 

et al., 1955) 

 ( )
2

2 2.82 0.80
s s

s
s s

ψ
+

+ +
� , (3.30) 

see Figure 3.8. Alternatively, it is possible to use exponential filters as 
already made for Wagner’s function: 

 ( ) ( )
1

1 exp
N

n n
n

s a b sψ
=

− −∑� . (3.31) 

According to Jones, 1945, a suitable approximation is given by 2N = , 
1 0.500a = , 1 1.000b = , 2 0.500a = , 2 0.130b = . Take notice that ( )0 0ψ =  

and ( )lim 1
s

sψ
→∞

= . 
The transform between Sears’ and Küssner’s functions is analogous the 

one between Theodorsen’s and Wagner’s functions:  

 ( )
( )1

d
2

iksk
s e k

ik

χ
ψ

π

∞

−∞
= ∫ . (3.32) 

 

3.4 Unsteady forces: The case of bridge girders 

Below, literature models for self-excited forces are reviewed, discussed and 
placed into the introduced common framework for wind load models. 

3.4.1 Self-excited forces in frequency domain through aeroelastic 

derivatives 

The most widely used unsteady load model for self-excited forces was 
introduced in Scanlan and Tomko, 1971, and further extended in order to 
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account also for along-wind displacements and force. The force components 
induced by a harmonic motion are 

 

* * 2 * 2 * * 2 *
1 2 3 4 5 6

* * 2 * 2 * * 2 *
1 2 3 4 5 6

2 * * 2 * 2 * * 2 *
1 2 3 4 5 6

,

,
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x y
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z y
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y y
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⎛ ⎞⎟⎜= − − + − − ⎟⎜ ⎟⎟⎜⎝ ⎠

⎛ ⎞⎜= − + + − + +⎜⎜⎝

�� �

�� �

�� �
,⎟⎟⎟⎟⎠

 

  (3.33) 

where hP , hH , and hA  ( 1, , 6h = … ) are non-dimensional coefficients 
(‘aeroelastic derivatives3’ or ‘flutter4 derivatives’), which depend on the 
reduced frequency and, in general, on the angle of attack (hence the 
overbar indicating that they are evaluated in the mean steady 
configuration). The superscript ‘d’, is for ‘derivatives’. In the most common 
convention for aeroelastic derivatives, often referred to as Scanlan’s 
convention, lift force and vertical displacement are assumed as positive 
downwards. Therefore the signs in Eq (3.33) have been adjusted 
accordingly in order to match the convention adopted here (Figure 3.2). 

Aeroelastic derivatives are measured experimentally in the wind tunnel 
as functions of the reduced frequency and, in general, of the mean angle 
around which the load is linearized. 

Here, unsteady forces are rewritten as 

0

0

2
0

,

,

x x x x x y x y

z z z z z y z y

y y y y

ad
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� � � �

� � � �

� �� � �� �

� �� � �� �

� �� �
,

y y y yM y M y

z B
D E

U Uα αα α
⎡ ⎤

+ +⎢ ⎥
⎢ ⎥⎣ ⎦

�� �

  (3.34) 

                                         
3 The term ‘derivative’ can be ascribed to the fact that, historically, unsteady coefficients 
substituted those of the linearized quasi-steady load model, which in turn are just the 
derivatives of the steady coefficients with respect to the angle of attack, at least in the case 
of thin airfoil where the drag force is zero. 
4 This name is due to the main historical use of the unsteady coefficients, i.e. the prediction 
of flutter threshold. Nevertheless, this seems now quite reductive. The importance of 
unsteady self-excited effects in the buffeting response is widely demonstrated; self-excited 
forces are responsible in fact for a coupling effect between structural modes, which is 
fundamental for the accurate prediction of the bridge response. 
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i.e., by using the compact notation introduced in Section 3.2.4, as  

 0
, ,

; , , .R

y

ad
Rr Rr x z y

r x U z U

B
R q B D r E r R F F M

U
γ

α=

⎛ ⎞⎟⎜= + =⎟⎜ ⎟⎜⎝ ⎠∑
� �

�  (3.35) 

All the expressions can be written in a compact form. Translational and 
rotational degrees of freedom and the conjugated forces can be treated with 
a unique notation, avoiding developing separate calculations for each case, 
which results in annoying cumbersome expressions, which are quite 
common in the literature. 

The equivalence between the two conventions is easily obtained by 
considering a harmonic motion and comparing Eqs (3.33) and (3.34): 
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 (3.36) 

The choice of x U� , z U� , and yα  as significant degrees of freedom 
highlights the different role of displacements and rotation. A rotation 
produces changes of angle of attack in the same way as translational 
velocities do. When a harmonic motion is considered, the quadrature terms 
are those containing the angular velocity yα�  and translational accelerations 
x U��  and z U�� . 

Some advantages of this representation will be clarified here; further 
details are given in Salvatori and Borri, 2007, and Salvatori, 2007. Another 
representation, similar to some extent to the one introduced here, is 
discussed in Zasso, 1996. 

We observe that Eqs (3.13) and (3.35) are formally identical. This 
simplifies the interpretation of the quasi-steady load model as the limit case 
of the unsteady load model at low reduced frequencies. In particular, we 
have that 

0
limRr RrK

d D
→

= , which is commonly accepted and is demonstrated 
by experimental results (e.g. Chowdhury and Sarkar, 2004). Moreover, by 
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assuming 
0

limRr RrK
e E

→
= , we define a possible criterion for estimating the 

quasi-steady coefficients Rre  in a physically-consistent way. 
The quadrature coefficients for the translational degrees of freedom RrE  

( ,r x U z U= � � ) multiply translational accelerations; therefore, they can be 
interpreted as an equivalent inertia that may represent the mass of the air 
moving together with the cross-section. On the contrary, in the classical 
notation of Eq (3.33), the coefficients multiplying translations and are seen 
as a kind of equivalent stiffness that does not any physical meaning. 

The coefficients RrD  and RrE  do not depend on the normalization and 
allows a comparison of forces between different cross-sections. Contrary to 
the classical representation in terms of hP , hH , and hA  ( 1, , 6h = … ), a 
variation in a coefficients RrD  or  RrE   is directly proportional to the 
variation of the relevant forces, independently of the reduced frequency. 
This fact will be advantageous while identifying indicial functions from 
measured aeroelastic derivatives (see Section 3.5.2). 

For sake of the completeness, we also report two other common 
notations for aeroelastic self-excited forces. The signs are adjusted to match 
the convention on forces of Figure 3.3. 

Küssner’s convention, e.g. Virgoleux, 1992, is mainly used in France. 
Vertical force and moment read 
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 (3.37) 

The coefficients 1
ak , 2

ak , 1
bk , 2

bk , 1
am , 2

am , 1
bm , and 2

bm  can be easily 
related to Scanlan’s derivatives. This notation offers no specific advantages, 
and it is in fact often converted to Scanlan’s one. 

The convention used at the Politecnico di Milano, described in details in 
Zasso, 1996, expresses the forces as 
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��
 (3.38) 

The main objective of this notation is to provide unsteady coefficients * *,i ih a  
( 1,2, 3, 4i = ) converging to steady values, and to allow an easy graphical 
comparison between different cross-sections. 

The self-excited load model via aeroelastic derivatives is well suited for 
frequency domain analyses but results quite unpractical for time-domain 
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simulations, since the aeroelastic derivatives depend on the frequency of the 
response. It is possible to use sophisticate frequency-domain analyses 
methods or, as an alternative, equivalent time-domain methods can be 
developed. 

3.4.2 Self-excited forces in time domain through indicial 

functions 

The classical unsteady load model for self excited forces in the time domain 
reads (Caracoglia and Jones, 2003c) 
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 (3.39) 

This model will be further discussed in Section 3.5. 

3.4.3 Buffeting forces in frequency domain through admittance 

functions 

The unsteadiness of the buffeting effects is usually accounted for by means 
of frequency-dependent transfer functions (aerodynamic admittances). The 
resulting buffeting forces are  
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 (3.40) 

where Ruχ  and Rwχ  ( , ,x z yR F F M= ) are (frequency-dependent) admittance 
functions for the along-wind and vertical turbulence components 
respectively, and the overbar denotes that admittance functions are 
measured at the mean steady angle of attack. The resulting frequency-
domain load model is intrinsically restricted to linear structures.  

3.4.4 Buffeting forces in time domain 

Admittance functions can be transformed into indicial functions by means 
of a procedure analogous to the one used to transform aeroelastic 
derivatives (Salvatori, 2007). 

3.5 Development of an improved indicial function load 

model 

In the following Section 3.5.1, the indicial function model for unsteady 
loading in the time domain is further developed so that some issues of 
literature models are solved and the convergence to the quasi-steady limit is 
ensured. Moreover, in Section 3.5.2, a procedure for the identification of the 
model coefficients is proposed and implemented, so that accuracy problem 
of previous procedures are overcome and the variance of experimental data 
is taken into account. 

3.5.1 The load model 

An alternative for self-excited loads in the pure time-domain is offered by 
the formulation via indicial functions, based on the extension to bluff cross-
sections of the formulation theoretically developed for the airfoil. This 
technique has been introduced in wind engineering by Scanlan et al., 1974. 
A deep discussion is available in Scanlan, 1993. Its further extensions are 
described by Caracoglia and Jones, 2003c. The basic idea is to imagine the 
history of motion as a series of infinitesimal step-wise increments. Indicial 
functions describe the non-stationary evolution in time of loads due to 
translational velocities and rotations.  
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Let us consider the unsteady force , ,x z yR F F M=  at time t  due to a 
unit step-wise change of , , yr x U z U α= � �  that occurs at time tτ < . We 
write the step-change in terms of Heaviside function ( ).H , 

 ( ) ( );r t H t τ= −�  (3.41) 

then we assume that the relevant unsteady force can be written as 

 ( ) ( )0 ,Rai
r Rr RrR t q B d tγ τ= Φ −�  (3.42) 

where the indicial functions RrΦ  describe the evolution in time of the 
normalized unsteady force. The superscript ‘i’ is for ‘indicial’. As 
highlighted by the overdash on the variables, indicial functions can be 
evaluated at different mean angles of attack and identified from the 
aeroelastic derivatives measured at the same angles. Because the step-
change of , , yr x U z U α= � �  results in a constant change of angle of attack, 
after a transient stage due to the sudden change, the flow reaches a new 
steady state around the new position of the cross-section. Therefore the 
unsteady force must converge to the equivalent steady one in Eq (3.13). 
Formally we have that 

 ( ) ( ) 0lim 1, lim .Rai
r Rrt t

r t R t q B dγ

→∞ →∞
= =��  (3.43) 

By comparing Eq (3.42) and (3.43), we have that the indicial functions 
converges to unit for time that goes to infinity, 

 ( )lim 1.Rrt
t

→+∞
Φ =  (3.44) 

We also observe that ( )Rr tΦ  is not properly defined for 0t < ; we 
assume ( ) 0Rr tΦ = . 

Under the assumption of linearity, this model can be extended to any 
history of motion by considering the convolution of the indicial function 
with the motion itself, 

 ( ) ( ) ( ) ( ) ( )
0 0 .R R

r t
ai
r Rr Rr Rr RrR t q B d t dr q B d t r dγ γτ τ τ τ τ

−∞ −∞
= Φ − = Φ −∫ ∫ �   

  (3.45) 
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It is more practical to consider a motion starting at time 0t = . 
Therefore, the lower integration limit is modified and an initial condition 
must be added5: 

 ( ) ( ) ( ) ( ) ( )
0

0
0 .R

t
ai
r Rr Rr RrR t q B d t r t r dγ τ τ τ⎡ ⎤= Φ + Φ −⎢ ⎥

⎣ ⎦∫ �  (3.46) 

The dependence on the initial condition of the motion can be removed 
by integrating by parts Eq (3.46), 

 ( ) ( ) ( ) ( ) ( )
0

0
0 .R

t
ai
r Rr Rr RrR t q B d r t t r dγ τ τ τ⎡ ⎤= Φ + Φ −⎢ ⎥

⎣ ⎦∫ �  (3.47) 

This expression has the further advantage of allowing the development 
of a simpler optimization in the computational implementation (see Section 
3.6). 

It is worth to notice that the right-hand expression in Eq (3.47) can be 
obtained directly by considering the convolution integral of the response 
function ( )RrI t  to a unit impulse (Chen et al., 2000b; Fung, 1968), 

 ( ) ( ) ( ) ( )0 ,R
Rr Rr Rr RrI t B d t tγ δ⎡ ⎤= Φ + Φ⎢ ⎥⎣ ⎦

�  (3.48) 

and by reminding that Dirac delta function ( ).δ  acts as the ‘identity’ with 
respect to convolution. 

The final expression of self-excited forces accounting for all cross-
sectional degrees of freedom reads 
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  (3.49) 

or, by considering the motion starting at 0t = , 

                                         
5 Formally, one can write ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0
0 0

t t

r t r r d H t r H t r dτ τ τ τ τ= + = + −∫ ∫� �  
and then consider the assumption of linearity and the fact that the response associated to 
the stepwise displacement ( )H t  is ( )

0
R

Rr Rrq B d tγ Φ . 
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  (3.50) 

A part from the synthetic notation, the expression proposed here 
introduces some improvements with respect to the usual formulation (e.g. 
Caracoglia and Jones, 2003b; Costa, 2004). In fact, the load model used 
there was borrowed from the theory of the thin airfoil, where no drag force 
is present; the coefficients indicated here as Rrd  (Eq (3.15)) were 
erroneously set as 

x x x yF x F z F Dd d d Cα ′= = =� � , 
z z z yF x F z F Ld d d Cα ′= = =� � , and 

y y y yM x M z M Md d d Cα ′= = =� � , so that the steady limit behaviour was not 
captured. The significance of that convergence was already pointed out by 
Scanlan, 1993. In other works where the equivalence between frequency- 
and time-domain was considered (e.g. Lin and Yang, 1983), no reference to 
asymptotic behaviour was made.  

On the other hand, the expressions introduced here are consistent with 
the quasi-steady limit, and guarantee the convergence to the actual forces 
for all the force components excited by all the motion components. 

The explicit form of Eq (3.49) is 
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which correct the limit behaviour of Eq (3.39). 

3.5.2 Identification of indicial functions from measured 

aeroelastic derivatives 

Experimental procedures to identify indicial functions have been achieved 
only recently by Caracoglia and Jones, 2003a, and are not yet well 
established as those to obtain aeroelastic derivatives. Moreover, imposing 
the theoretical sudden rotation to the cross-section into the wind tunnel 
poses evident physical problems. The same problems also occurs in the 
attempts to obtain indicial functions through computational fluid dynamics 
simulations (e.g. Eusani, 2005; Larsen, 2003). 

Alternatively, it is possible to obtain an approximation of indicial 
functions from (measured or simulated) aeroelastic derivatives. 

The usual approximation of indicial functions is a sum of exponential 
filters (e.g. Höffer, 1997) in the form 
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Φ = − −∑  (3.52) 

where 2s Ut B=  is the non-dimensional time6, Rr
na  and Rr

nb  are non-
dimensional coefficients, and RrN  is the number of terms chosen to 
approximate the indicial function RrΦ . Since indicial functions must 
converge to unit when time goes to infinity, the constrain 0Rr

nb >  is 
enforced. 

By imposing a harmonic motion for one degree of freedom at a time in 
the expression of self-excited forces via aeroelastic derivatives and via 
indicial functions, Eqs (3.35) and (3.49) respectively, it is possible to 
express both models in the frequency domain. If also the exponential filters 
of Eq (3.52) are substituted into Eq (3.35), the convolution integrals can be 
calculated analytically. Thus, the two load models can be compared, and 
relationships between indicial function coefficients Rr

na  and Rr
nb , and 

aeroelastic derivatives are obtained, 
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 (3.53) 

It is worth to notice that the quasi-steady behaviour is obtained if 
0Rr

na = , in this case the wind forces do not depend anymore on the 
motion-history, i.e. the unsteady memory-effect is lost. Moreover, the higher 
the values of Rr

na  the more pronounced the unsteady effects are. On the 
other hand the parameters Rr

nb  determine the reduced frequencies where the 
unsteady effects are more relevant. As a consequence, the relevant indicial 
functions have indeed a longer or a shorter decay. Rearranging Eqs (3.53) 
one has 
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6 The time is normalized with respect to the time required for the flow to travel the cross-
section semi-chord. 
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The first equation describes the relative unsteady correction to the in-
phase unsteady coefficients with respect to the steady limit, whereas the 
second represents the unsteady quadrature correction. They are expressed 
as a linear combination with coefficients Rr

na  of the functions 

 ( )
( )

( )
( )

22
*

* *2 22 2
* *

2
, ,

Rr
nn n

D ERr Rr
n n

b U
f U f U

U b U b
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π π
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respectively, which are represented in Figure 3.10. We have that 

 ( ) ( )
* *

* *

1
lim 0, lim .

2
n n

D E RrU U
n

f U f U
b→∞ →∞

= =  (3.56) 

The unsteady in-phase correction tends to zero, i.e. the behaviour tends 
to the quasi-steady one; the quadrature correction tends to a constant 
value. 
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Figure 3.10 Representation of unsteady corrections 

Subsequently, indicial functions coefficients can be identified by means 
of a nonlinear least-square optimization on aeroelastic derivatives m

RrD  and 
m
RrE  measured at discrete values of the reduced wind velocity *

mU , 
1, ,m M= … . The error function ε  to be minimized is 

 ( ) ( )( ) ( )( )2 2

* *
1

, , ,
M

m m m m
Rr Rr Rr Rr Rr Rr Rr Rr

m

D U D E U Eε
=

⎡ ⎤= − + −⎢ ⎥⎣ ⎦∑p p p  (3.57) 

where the vector 

 1 1, , , , ,
Rr Rr

TRr Rr Rr Rr
Rr N Na a b b⎡ ⎤= ⎢ ⎥⎣ ⎦p … …  (3.58) 
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collects the parameters to be determined through the optimization 
procedure. If the aerodynamic coefficients for a certain cross-section are not 
known, it is possible to treat Rrd  as an additional parameter to be 
identified. In that case, the parameter vector becomes 

 1 1, , , , , , .
Rr Rr

TRr Rr Rr Rr
Rr Rr N Nd a a b b⎡ ⎤= ⎢ ⎥⎣ ⎦p … …  (3.59) 

In this case one must consider that the coefficients Rrd  are not 
independent ones from the others as they depend on steady coefficients and 
their derivatives, see Eqs (3.15). Therefore, the optimization must be 
performed considering more than one couple of unsteady coefficients RrD  
and  RrE   at a time. 

An approach similar to the one developed here is the approximation of 
aeroelastic derivatives through rational functions (e.g. Chen et al., 2001; 
Chen et al., 2000a; Karpel, 1982). Some discussion on the rational function 
approximation compared to quasi-steady modelling is available in Lazzari, 
2005. 

In other formulations (e.g. Borri et al., 2002; Borri and Höffer, 2000), 
some additional coefficients are introduced. These do not have direct 
physical interpretation and might introduce an excessive redundancy that 
complicates the identification procedure.  

It is worth to point out that the representation of unsteady coefficients 
in terms of RrD  and  RrE  is more suitable for the identification procedure 
than the classical representation in terms of hP , hH , and hA , 1, , 6h = … , 
where the values at low reduced velocities are scaled down, see Eq (3.36). 
Therefore the values at high reduced velocities would be weighted too much 
in the total error, resulting in a poor approximation at low reduced 
velocities, where unsteadiness is more important. 

In Caracoglia and Jones, 2003b, a procedure for obtaining indicial 
functions from experimental data has been applied to a set of indicial 
functions for lift and moment. They report that for bluff deck sections with 
‘aeroelastically irregular’ behaviour, the identification of indicial function 
coefficients can be challenging, and a low correspondence between the 
experimental behaviour in the frequency-domain and its prediction through 
the indicial function is obtained. On the other hand, they observe that the 
indicial function approach can be potentially successfully applied to 
streamlined or moderately bluff deck sections. This however does not seem 
to be a significant restriction. Nowadays, a general tendency of the 
designers towards box girders with excellent aerodynamic performance is in 
fact registered. 

It is concluded that the approach based on indicial functions identified 
from aeroelastic derivatives can be considered as equivalently suitable with 
respect to frequency-domain formulations. Time-domain methods might be 
used for bridge analyses where the frequency-domain approach is more 
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complicated (e.g. coupled buffeting analysis, analyses including localized 
damping devices), or where it is not applicable (e.g. analyses including 
structural nonlinearities, nonlinear damping devices). 

Finally, in evaluating the accuracy of the approximation reached during 
the identification, one must not forget that unsteady coefficients are not 
deterministic values, but they are affected by experimental errors. Thus, 
the quality of the approximation should be compared with the dispersion of 
the measures. When statistical information on measured unsteady 
coefficients is available, the error function to be minimized can be 
improved. It seems in fact more consistent with the experimental nature of 
unsteady coefficients, to use 

 ( )
( )( ) ( )( )2 2

* *

2 2
1

, ,
,

m m
Rr Rr

m m m mM
Rr Rr Rr Rr Rr Rr

Rr Rr
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p p

p  (3.60) 

where , ,x z yR F F M= , , , yr x U z U α= � � , 2
m
RrDσ  and 2

m
RrEσ  are the variance of 

m-th measured point for the unsteady coefficients, and m
RrD  and m

RrE  are 
the relevant mean values. In this way the accuracy of the experimental data 
is taken into account in the identification of the indicial functions. 

3.6 Numerical issues in the identification and use of 

indicial functions 

Below, some numerical issues in the identification of indicial functions and 
in the implementation of the load model in numerical codes are discussed. 

3.6.1 Nonlinear optimization 

Techniques of nonlinear optimization applied to the present problem are 
discussed in Salvatori and Zahlten, 2005. 

As the objective function to be optimized (Eqs (3.57) or (3.60)) is 
nonlinear in the parameters Rr

nb  (see also Eqs (3.53)), an iterative approach 
is required. The procedure starts with an initial guess 0p . At each step, a 
correction Δp  is evaluated, and the calculations are iterated until 
convergence is obtained. 

Some minimization techniques require the calculation of the gradient 
ε= ∂ ∂g p  and of the Hessian matrix 2 2ε= ∂ ∂G p  of the error function 

with respect to the vector of the parameters. These quantities can be 
calculated numerically or analytically. The latter approach is considered 
here (the small effort is more than compensated by the increase in the 
algorithm efficiency). By deriving Eq (3.57), one obtains 
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where the scripts Rr  and the overbar are omitted for the sake of brevity. 
The expressions in Eqs (3.61) require the analytical calculation of the 

first and second derivatives of Eqs (3.53); the results of the analytical 
calculations are 
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where hlδ  is the Kronecker symbol ( 0hlδ = , if h l≠ ; 1hlδ = , if h l= ). 
Different minimization algorithms have been considered in order to 

develop a robust and accurate identification procedure. Most of the 
highlighted properties are general characteristics of the methods (e.g. Nash, 
1979), and they are tested here on the specific problem. 

Steepest-descent and damped steepest-descent methods. As the gradient 
points opposite to the ‘fall line’ of the surface ( )ε p , a correction αΔ = −p g  
is considered, with the purpose of going ‘downhill’. One problem with this 
method lies in the choice of the constant α , which is usually arbitrary. The 
solution might zigzag down ‘valleys’ and overshoot the minimum. 
Moreover, the procedure becomes very slow close to an extreme value, since 
the gradient approaches the null vector. The results of the identification 
procedure are very poor, even when a ‘damped’ version is considered (before 
accepting a new value of p , the new error is evaluated and, if it is higher 
than the previous one, α  is halved and a new correction is evaluated). 

Gauss-Newton and damped Gauss-Newton methods. The extremum 
condition of vanishing gradient results in a system of nonlinear equations 
that can be solved by a Newton-Raphson technique. This leads to the 
correction 1−Δ = −p G g . This method is very efficient and accurate close to 
an extremum. Nevertheless, a poor initial estimate of 0p  might cause 
divergent iterations, as it was already pointed out for the present problem 
in Scanlan et al., 1974. Moreover, the Hessian matrix might become 
singular. Gauss-Newton method can be ‘damped’ too by scaling down the 
correction Δp  if the error increases with respect to previous iterations. 
This helps in some cases but does not completely solve the problem of 
numerical instability far away from the minimum.  

Levenberg-Marquardt method. It is an attempt to combine the 
advantages of the steepest-descent and Gauss-Newton methods. The 
correction is evaluated as ( ) 1β −Δ = − +p G I g . The method starts close to 
Gauss-Newton’s one with a ‘small’ value of the parameter β . If the error 
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increases, β  is doubled, and the steepest-descent contribution is amplified. 
In this way, a ‘downhill’ path is ensured and the method acts like the 
steepest-descent one far from the global minimum, and like Gauss-Newton’s 
one close to it. For the present problem, however, no substantial 
improvement in robustness is highlighted. 

Direct-search methods. Direct methods do not require the calculation of 
the gradients. Here, the Nelder-Mead method is considered as described in 
Lagarias et al., 1998. A simplex (a set of 1pN +  points in the parameter 
space, where pN  is the number of optimization parameters) is generated 
around the initial guess 0p . The error function is sampled at the simplex 
vertexes. At a new iteration a point is generated, which substitutes the 
vertex of the old simplex in which the error-function took the higher value. 
In this way the simplex moves over the parameter space and eventually 
contracts around the minimum. For the present problem, Nelder-Mead 
algorithm evidences a weaker dependence on the initial guess with respect 
to the other methods, but still diverges in some cases. Moreover, it proves 
relatively inaccurate. 

Trust-region methods. The idea is to approximate the error function 
with a simpler one (e.g. a second order Taylor expansion) in a 
neighbourhood (trust region) of the current guess. A local minimization 
sub-problem is then solved by means of the preconditioned conjugate 
gradient technique. The resulting point is checked in the original function: 
if it improves the solution it is accepted, otherwise the trust region is 
shrunk and the step is repeated. Sophisticated versions of this algorithm 
allow one to restrict the variation of some parameters within an interval. 
Here, the interior-reflective Newton algorithm described by Coleman and 
Li, 1996, and implemented in MatLab® R13 has been considered. Trust-
region methods, even if they converge more slowly than Gauss-Newton’s 
one close to the minimum, prove to be the most robust algorithms among 
those considered here. They exhibit a reduced sensitivity to the initial 
guess, especially if upper and lower boundaries for the parameters are 
specified. 

It has been shown that most of the minimization algorithms may 
exhibit inaccuracy, instability, and a strong sensitivity to the initial guess. 
Although the solution can be found by means of a trial procedure on the 
initial estimate, this could be time-consuming and impracticable when the 
number of parameter is high. Here, a more practical and reliable procedure 
is defined as a combination of the bounded trust-region method with the 
standard Gauss-Newton method. The former algorithm provides a robust 
initial-guess-independent approximation of the solution, which is then 
refined by the latter algorithm that is more precise but would diverge with 
a poor initial guess. 

Bounding the parameter domain proves very effective in preventing 
divergent iterations, and it improves the robustness of the overall 
procedure. 
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As a further development, genetic algorithms should be considered as 
suitable candidate for the optimization procedure. Due to their robustness 
when dealing with many parameters, they may be able to manage a large 
number of exponential terms, providing a better approximation of 
aeroelastic derivatives with irregular behaviour.  

As to the number of exponential groups used in the approximation of 
indicial functions, we briefly discuss literature results, although they are 
obtained with different versions of the load model. For streamlined cross-
sections, with uniform and ‘well-defined’ trends in all derivatives, the use of 
one (Costa, 2004) or two (as in Jones’ approximation of Theodorsen’s 
function) groups of exponential terms is sufficient to capture the general 
behaviour. The use of three or four groups is shown to be necessary 
(Caracoglia and Jones, 2003b) for other cross-sections, but they may 
eventually lead to statistically unmanageable systems, numerically high 
values of the coefficients, and potentially large confidence intervals. 

Here, the number of exponential groups is chosen by means of statistical 
consideration, i.e. by implementing an automatic procedure that compares 
the results obtained with different values of RrN , by using random values 
for the initial guess, and then selects the most accurate result from 
statistics. 

3.6.2 Domain of indicial function parameters for the optimization 

The problem concerns both the identification of the indicial function and 
the evaluation of the convolution integrals. 

The robustness of the identification procedure has been tested also by 
performing a fully automatic identification as a part of a Monte Carlo 
analysis for the evaluation of the reliability of indicial functions with 
respect to the scatter of experimental data (Borri, Costa and Salvatori, 
2005). 

Bounding the scope of the parameters Rr
hb  proves to be very effective in 

preventing the divergence of the identification procedure. The only physical 
constraint is 0Rr

hb > , as it has been discussed in the previous Section. 
Nevertheless, narrower boundaries must be imposed for computational 
reasons. 

Quickly decaying indicial functions require in fact very small time-steps 
in order for the convolution integrals to be accurately evaluated. For 
avoiding excessive computational costs, the time-step size must be chosen 
only with regard to the structure (e.g. following the ‘thumb-rule’ of using 
1/20÷1/50 of the smaller modal period to be simulated). Therefore, an 
upper limit ( )maxRr

hb  must be provided (the higher is Rr
hb , the quickest the 

indicial functions decay). The adopted empirical rule is to chose ( )maxRr
hb  

so that ( )( )exp max 2 =0.9Rr
hb t U B− Δ . 
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On the other hand very small values of Rr
hb  would require very long 

time-histories in order to correctly account for unsteadiness. The adopted 
empirical rule for the lower limit is to chose ( )minRr

hb  so that 
( )( )exp min 2 =0.5Rr

h refb T U B− , where refT  is a reference structural period. 
All this could appear quite tricky, if one thinks to the physical meaning 

of indicial functions. Nevertheless, many clues (Salvatori and Zahlten, 2005 
Borri, Costa and Salvatori, 2005) suggest that different sets of indicial 
functions could be identified, all leading to a correct modelling of the 
unsteady forces. It seems in fact that the model presents some kind of 
redundancy. This delicate aspect must of course be more deeply 
investigated. 

The use of boundaries is suggested and discussed by Salvatori and Borri, 
2005. 

3.7 Numerical example of identification of indicial 

functions 

We use the aeroelastic properties of a streamlined bridge cross-section with 
semicircular fairings and width-to-height ratio 14.3B D =  that has been 
tested in the wind tunnel by Chowdhury and Sarkar, 2004 (there, referred 
to as ‘cross-section B1’). 

In the representation of the unsteady coefficients defined in Eqs (3.36), 
the quasi-steady limit can be more easily recognized (from Figure 3.11 to 
Figure 3.15). Also, this representation is more suitable for the identification 
of the indicial functions, since the error in the approximation of RrD  and 

RrE  is proportional to the one in the approximation of the self-excited 
forces, at all the reduced velocities. 

As measured steady coefficients are not available for the adopted cross-
section, it has been chosen to identify also DC , LC ′ , and MC ′  from the 
aeroelastic derivatives. 

The number of exponential groups in the approximation of each indicial 
function is kept as low as possible, also because of the small number of 
measured values available for the optimization. One group proves adequate 
for modelling all the unsteady contributions except for the vertical force 
excited by the rotation, for which at least two groups are needed. 

The optimization is performed by using a trust-region algorithm and 
developing analytical expressions for the error gradients Rr Rr

ε∂ ∂p  and 
22

Rr Rr
ε∂ ∂p . The parameters resulting from the optimization are reported in 

Table 3.1 and the Figures show the approximations of the unsteady 
coefficients (a-b) and the relevant identified indicial functions (c). 

From the identified coefficients Rrd  through Eqs (3.15) we obtain 
0.71DC = , 5.59LC ′ = , and 1.23MC ′ = . The value of the drag coefficient 

appears much too high for the considered streamlined cross-section. 



3.7 Numerical example of identification of indicial functions 76 
 

 

Luca Salvatori Assessment and Mitigation of Wind Risk of Suspended-Span Bridges 

Nevertheless the trend of *
1P  is appropriately captured in its quasi-steady 

limit (see Figure 3.11b and remind that *
1 2

x xF x F x DKP D d C= → = −� �  as 
*U → ∞ ). Moreover, this numerical example has purely heuristic purposes; 

the goal is to compare the calculations in frequency and time domain. 
Therefore we accept the experimental data as input and do not further 
discuss them here. 

Both the frequency- and time-domain stability analyses are performed 
by incrementing the mean wind velocity step by step. At each step, the 
mean configuration is evaluated by means of a nonlinear static analysis 
under steady wind load. For this purpose, the aerodynamic coefficients DC , 

LC , and MC  are assumed to be linear functions of the angle of attack 
(Figure 5.5); this choice is obligatory, as the values of the coefficients and 
of their first derivative are known only at zero angle of attack. An example 
of deformed configuration under mean steady wind is shown. Since the 
experimental aeroelastic derivatives we use are measured only at zero angle 
of attack, the load is always linearized around this angle and only the 
changes in the structural stiffness due to mean steady deformations are 
accounted for. This does not affect the generality of the method; since 
different sets of indicial functions could be identified for each mean angle 
for which measured aeroelastic derivatives were available. 

Since the considered cross-section is symmetric with respect to the X  
axis, at zero angle of attack the steady lift and moment must vanish and 
the drag must be stationary, i.e. 0L MC C= =  and 0DC ′ = . From Eqs  
(3.15) it follows that 0

x x y z yF z F F x M xd d d dα= = = =� � � . 
As regards the self-excited loads, the vertical force and pitching moment 

due to the horizontal velocity and the horizontal forces due to the vertical 
velocity and rotation are neglected due to the symmetry of the cross-
section.  

Table 3.1 Identified indicial function coefficients 

Indicial function  Identified coefficients 
R r  d a1 b1 a2 b2 
Fx /x U�   -1.42 0.756 0.381 - - 
Fx /z U�   0.00 - - - - 
Fx yθ   0.00 - - - - 
Fz /x U�   0.00 - - - - 
Fz /z U�   -6.30 0.415 0.283 - - 
Fz yθ   5.59 2.445 0.986 -5.531 2.000 
My /x U�   0.00 - - - - 
My /z U�   -1.23 0.321 0.415 - - 
My yθ   1.23 2.069 2.000 - - 

 
Rectangular prisms have also been considered (Matsumoto, Kobayashi 

et al., 1995; Matsumoto et al., 1996) in Chapter 5. 
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Figure 3.11 Deck 1, horizontal force due to horizontal velocity: unsteady 
coefficients in Scanlan’s (a) and proposed (b) notation, and relevant indicial 

function (c) 
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Figure 3.12 Deck 1, vertical force due to vertical velocity: unsteady coefficients in 
Scanlan’s (a) and proposed (b) notation, and relevant indicial function (c) 



3.7 Numerical example of identification of indicial functions 79 
 

 

Luca Salvatori Assessment and Mitigation of Wind Risk of Suspended-Span Bridges 

(a)

0 5 10 15

-30

-20

-10

0

U
*
 [-]

A
er

oe
la

st
ic

 d
er

iv
at

iv
es

 [
-]

 

H*
3
 (measured)

H*
3
 (optimized)

H*
2
 (measured)

H*
2
 (optimized)

 

(b)

0 5 10 15

1

2

3

4

5

U
*
 [-]

U
n
st

ea
d
y 

co
ef

fi
ci

en
ts

 [-
]

 

 

D
F

z
α

y

 (measured)

D
F

z
α

y

 (optimized)

E
F

z
α

y

 (measured)

E
F

z
α

y

 (optimized)

 

(c)
0 5 10 15

1

2

3

4

s [-]

Φ
F

zα y [
-]

 

Figure 3.13 Deck 1, vertical force due to rotation: unsteady coefficients in Scanlan’s 
(a) and proposed (b) notation, and relevant indicial function (c) 
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Figure 3.14 Deck 1, pitching moment due to vertical velocity: unsteady coefficients 
in Scanlan’s (a) and proposed (b) notation, and relevant indicial function (c) 
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Figure 3.15 Deck 1, pitching moment due to rotation: unsteady coefficients in 
Scanlan’s (a) and proposed (b) notation, and relevant indicial function (c) 
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Chapter 4  

Numerical Procedures 

In this Chapter a numerical framework for the numerical analysis of bridges 
under wind action is developed. It is based on a finite element discretization 
of the structure and on the semi-empirical load models presented in 
Chapter 3. A computer program and original numerical procedures are 
developed for evaluating aeroelastic stability and buffeting response in 
presence of self-excited forces, in both frequency and time domains. The 
computational framework includes the generation of the time-histories of the 
wind velocity field, nonlinear structural finite elements formulated according 
to the co-rotational approach, several types of analysis, and macros for the 
parametric generation of the structural models and for Monte Carlo 
simulations. In this way, arbitrary bridges (including also damping devices) 
can be easily simulated and the principal structural and aerodynamic 
features can be taken into account. 

4.1 Computational framework 

The wind load models described in Chapter 3 are used to analyze three-
dimensional bridges. The main strategy is to discretize first the continuous 
problem by considering a discrete set of cross-sections, then to correlate 
with one another these cross-sections. More precisely, the velocity field of 
the oncoming wind is correlated between neighbouring discrete points which 
are connected by finite elements along the span of the bridge. 

A computer program is developed ad hoc. It includes: 
• The parametric generation of the topology of the finite element 

model; 
• A finite element core with an original implementation of 

geometrical nonlinearities and the modelling of the tension-only 
behaviour of the cables; 

• Quasi-steady and unsteady cross-sectional wind loading in the 
frequency and time domains;  
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• The generation of multi-correlated time-histories of the turbulent 
wind velocity through auto-regressive filters; 

• The implementation of some original analysis procedures (in 
addition to literature ones); 

• Post-processing and macros for Monte Carlo analyses. 

4.2 Structural models 

In the following sections, three approaches to the modelling of a suspension 
bridge are shown: (i) two-degree-of-freedom cross-sectional mechanical 
model, (ii) simplified mechanical models with two cross-sections; and (iii) 
full three-dimensional structural models. 

4.2.1 Cross-sectional model 

The simplest mechanical model for bridge analysis consists in a two-
dimensional unit-span rigid cross-section restrained in the along-wind 
direction and elastically supported (Figure 4.1). The stiffness of the vertical 
and rotational springs is usually chosen in such a way as to obtain the 
correct frequencies for two selected modes (a vertical bending one and a 
torsional one). 

This model reproduces the cross-sectional physical models that are 
tested into the wind tunnel in order to measure unsteady coefficients. It is 
able to predict flutter speed in bridges with ‘good’ behaviour, i.e. those 
where only two structural modes give significant contribution to the critical 
flutter mode. 

 

Figure 4.1 Cross-sectional mechanical model with two-degree-of-freedom  

4.2.2 Simplified bridge model with two cross-section 

In some analyses presented in Section 5.3, a simplified finite element model 
of a suspension bridge with two loaded cross-sections and with neglected 
flexibility of the towers will be considered. This model, depicted in Figure 
4.2, represents a first extension of the cross-sectional model toward the 
three-dimensional behaviour and allows one to consider four structural 
modes, namely the symmetric and the skew-symmetric vertical and 
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torsional ones. Thanks to the reduced number of degrees of freedom, it is 
possible to simulate very long time histories of the buffeting response in a 
reasonable computational time. In this way, an analysis of the extreme 
values of the response is made possible. 

 

Figure 4.2 Simplified structural model of a suspension bridges with two cross-
sections 

4.2.3 Full bridge model 

Finally, complete three-dimensional finite-element models of the bridge are 
considered. In the analyses presented in Chapter 5, ‘fishbone-like’ models 
will be used (Figure 4.3). The rigidity of the deck cross-section is obtained 
through a penalty approach, although multi-degree-of-freedom geometrical 
constrains would also be possible. 

 

Figure 4.3 Schematic representation of the discrete structural model of a suspension 
bridge 

4.3 Finite element discretization 

The structure is modelled by means of finite elements (e.g. Bathe, 1996). 
The geometrical nonlinearities of beam and cable elements are implemented 
according to the co-rotational approach, and also the tension-only 
behaviour of cables is modelled.  
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4.3.1 Co-rotational approach to geometrical nonlinearities 

Geometrical nonlinearities are included by means of the so-called co-
rotational approach (e.g. Felippa, 2000). 

The basic idea is to consider arbitrary rigid body motions and small 
deformations around the rigidly-displaced configuration rC  (Figure 4.4). 

The main advantage of this formulation is that, once the nonlinear 
transformation of the finite element degrees of freedom from the original 
configuration to the configuration rC  is applied, standard small-strain finite 
elements, including those with material nonlinearities, can be used. In this 
way, literature models can be easily reused. The internal forces obtained in 
the configuration rC  can be back-transformed into the original finite-
element coordinates by imposing that the rate of deformation energy is 
conserved in the co-rotational transformation. 

For the sake of brevity, no details will be given in this dissertation, and 
only the elements that will be used in bridge analysis are listed in the next 
Sections. 

C0

Cr

C

arbitrary
rigid motion

small
local strains

 

Figure 4.4 Co-rotational approach 

4.3.2 Cable element 

A two-node three-dimensional cable element is developed. In this case the 
only small-strain degree of freedom is the length variation 1d . The relevant 
internal force 1F  is the normal force in the cable. 
In addition to the geometrical nonlinearities, a simple nonlinear constitutive 
law is introduced in order to simulate the tension-only behaviour of cables. 
The local force is given by 

 ( )

( )

( ) ( )

( )

( ) ( )

1

1

1 1

0, if 0, 

, if >0, 

e

e
e e

e e
e

d

F E A
d d

⎧ ≤⎪⎪⎪⎪= ⎨⎪⎪⎪⎪⎩ A

 (4.1) 

where E  is the (equivalent) Young modulus of the cable, A  is the cable 
cross-section, and the notation ( )e  denotes the e-th elements, being ( )eA  its 
length. 
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4.3.3 Beam element 

In order to model bridge deck and towers, a two-node three-dimensional 
beam element is also developed. The element has six small-strain degrees of 
freedom: the length variation, the relative torsion between the two nodes, 
and two rotations for each node in the directions orthogonal to the element 
axis in the current configuration. 

Here, it is only worth mentioning that a second-order-tensor description 
of rotations (e.g. Crisfield, 1991) is required, since the classical approach is 
valid only in the case of small rotations (where the order of two consecutive 
rotations does not affect the final result). 

Just to show the capabilities of the developed nonlinear approach, a 
simple example of a cantilever beam in bending is shown in Figure 4.5. For 
each load step only a few iterations (3 to 5) are required for evaluating the 
new configuration with a relative precision of 10-9. 

 

Figure 4.5 Cantilever beam discretized by 9 co-rotational elements: deformed 
configuration for increasing bending moment M 

4.3.4 Further structural elements 

Further structural elements, which will be used in Chapter 6 to model 
damping devices, are springs and viscous dashpots. A two-degree-of-freedom 
visco-elastic element is used, whose local internal forces are given by 

 
1 1 1( )

2 22

1 1 1 1
,

1 1 1 1
e

K

F d d
k c

F dd

⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ − ⎤ ⎡ − ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= = +⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

F
�

�  (4.2) 
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where k  is the spring constant, c  the linear viscous damping, 1d  and 2d  
are the finite-element degrees of freedom, and 1F  and 2F  the internal forces 
power-conjugated with the rates of 1d  and 2d . 

It is worth noticing that nonlinear elements can be readily implemented 
once their constitutive behaviour is assigned. 

4.3.5 Aerodynamic loading 

Wind actions are applied through special one-node ‘elements’ characterized 
by an orientation and an along-span influence length A . The nodal wind 
forces are given by 

 ( ) ( )

( )

( )

( )

,

e
x

e e e
wind z

e
y

F

F

M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

P A  (4.3) 

where xF , zF , and yM  are given by the load models described in 
Chapter 3, depending on the analysis. 

4.4 Generation of wind field time histories 

Discrete time-histories of the turbulent wind are considered at the nodes of 
the finite element model. 

The auto-regressive filters described in Section 2.1.3 are used for the 
numerical generation of the multi-correlated processes, by using the power 
spectral densities in Eqs (2.13), (2.14), and (2.15). The cross-spectrum of 
the along-wind and vertical turbulence components is assumed as in 
Eq (2.20), and the exponentially decaying coherence functions described in 
Section 2.1.2 are used. 

The order of the auto-regressive filter has been chosen as 15P = . 
As an example, Figure 4.6 shows a generated time-history of the along 

wind turbulence component. In Figure 4.7, the power spectral density of the 
generated time-history is compared to the original target spectrum. A good 
agreement is observed. 
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Figure 4.6 Example of generated time-history of turbulent wind velocity 
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Figure 4.7 Example of target and generated turbulent spectrum 
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4.5 Nonlinear static analysis under steady wind 

Let us first consider the case in which the wind loading is static, i.e. the 
mean quasi-steady forces are applied. The balance equation of the discrete 
model at a given mean wind velocity is given by 

 ( ) ( )K dead s= +F d P P d  (4.4) 

where KF  is the vector of the internal structural forces, d  the vector of the 
nodal degrees of freedom of the finite element model, deadP  the load vector 
of dead loads, and sP  the vector of the aerodynamic steady loads obtained 
by assembling the load in Eq (3.1), i.e. 

( ) ( )( ) ( )
( )( ) ( )( ) ( )( ), ,
e e e T

e e e s s s
s x y z y y yF F Mα α α⎡ ⎤= ⎢ ⎥⎣ ⎦

P d A , where ( )eA  is the influence 
length assigned to the e-th one-node ‘element’ representing a finite length 
strip of bridge deck, and ( ) ( ) ( ) ( ), ,

Te e e e
yx z α⎡ ⎤= ⎣ ⎦d  the relevant node 

displacements. 
The static analysis includes structural and aerodynamic nonlinearities 

and is performed by means of an incremental-iterative procedure, where the 
mean wind velocity is incremented stepwise, and the equilibrium is found at 
each step by solving Eq (4.4) through a Newton-Raphson technique: the 
displacement vector d  in the steady configuration is then obtained. 

4.6 Stability analysis: divergence 

The stability analysis with respect to divergence can be performed during 
the static analysis under steady wind by checking at each incremental step 
of the mean wind velocity the eigenvalues of the total tangent stiffness 
matrix tot a,s= +K K K , where K= ∂ ∂K F d  is the tangent stiffness matrix 
of the structure and a,s s= ∂ ∂K P d  is the stiffness contribution due to the 
steady aerodynamic forces. As soon as the matrix totK  is no more positive 
defined the critical wind velocity for divergence is reached. 

4.7 Modal analysis around the deformed configuration 

Modal analysis around the equilibrium configuration is performed by 
solving the standard eigenproblem 

 ( )2
m mω− =M K 0Φ  (4.5) 

where M  is the mass matrix, mω  and mΦ  are the circular frequency and 
the shape of the m-th eigenmode respectively, and the overdash denotes 
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that a quantity is evaluated at the steady configuration =d d 1. From now 
on, mode shapes are considered as mass-normalized. 

4.8 Time-domain simulations 

Let us now consider the dynamic settings. The discretized equation of 
motion reads 

 ( ) ,K dead wind+ + = +Md Cd F d P P�� �  (4.6) 

where d  is the vector of nodal degrees of freedom, M  the mass matrix (we 
use a lumped-mass approach, otherwise also inertia forces would be 
nonlinear in the co-rotational formulation), C  the linear damping matrix, 

KF  the vector of the internal structural forces, and deadP  and windP  are the 
dead and wind loads respectively. 

For the dynamic analyses we consider a model linearized around the 
mean steady configuration d , which is evaluated through nonlinear static 
calculations for each given value of the mean wind velocity U  by solving 
the algebraic system ( ) ( ),K dead s U= +F d P P d , where the vector sP  
assembles the wind steady forces. The linearized equation of motion is 

 d d d ,a b+ + = +M C K P P�� �  (4.7) 

where δ = −d d  is the vector of the displacements around the mean steady 
configuration, K

=

⎡ ⎤= ∂ ∂⎢ ⎥⎣ ⎦d d
K F d  the tangent structural stiffness matrix, and 

aP  and bP  are the vectors assembling the self-excited aeroelastic forces and 
the buffeting forces respectively, all evaluated in the mean steady 
configuration. 

In the case of the load model based on aeroelastic derivatives, the vector 
of the aeroelastic load is 

 ( ) ( )d d, , ,AD AD AD
a a aU Uω ω= − −P K C �  (4.8) 

where the matrixes  AD
aK  and AD

aC  assemble the contributions of each 
modelled cross section, i.e. 

                                         
1 In general, also inertia forces have nonlinear expressions in a co-rotational approach to 
finite elements. In this case, however, the masses have been lumped into the nodes in order 
to consider linear inertia forces. Therefore, M does not depend on the configuration and the 
overdash is not required in the notation. 
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respectively. 
Below we also consider the quasi-steady case. 
If the structural behaviour is linearized around d  and the load 

nonlinearities are kept, equation (4.6) becomes 

 ( ) ( ), , ,K dead q nl t+ + − + = +Md Cd K d d F P P d d�� � �  (4.10) 

If also the load is linearized, one has 

 ( ) ( ), , , ,K dead q l t+ + − + = + −Md Cd K d d F P P d d d�� � �  (4.11) 

where 

 ( ) ( ), , ,q l s b a at tδ δ = + − δ − δP P P K C� �  (4.12) 

is the vector of linearized quasi-steady forces obtained by assembling 
equations (8), δ = −d d  is the vector of the (small) displacements around 
the steady configuration, bP  results from the assembly of equations (3.11) 
with ( ) ( ) ( ) ( ) ( ), ,

Te e bq e bq e bq e
b x z yF F M⎡ ⎤= ⎢ ⎥⎣ ⎦P A , aK  and aC  are the matrixes collecting 

the opposites of the coefficients multiplying displacements and velocities 
respectively in equations (3.13), i.e. 
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Finally, one obtains 

 ( ) ( ) ( ).a a b tδ + + δ + + δ =M C C K K P�� �  (4.14) 

The solution in the time domain is obtained here by means of conditionally 
stable Newmark method or by Runge-Kutta methods by reducing the 
system to a first-order one as shown in Section 3.4. If structural or load 
nonlinearities are considered, standard Newton-Raphson iterations are 
performed at each time-step. 

In the time domain the unsteady linearized problem reads 

 d d d d d , , ,IF IF IF IF IF IF
a b a a a conv b conv+ + = + = − − + +M C K P P K C P P�� � �  (4.15) 

where the vector IF
aP  is obtained from the indicial function load model in 

Eqs (3.50). The matrixes IF
aK  and IF

aC  and the vector IF
convP  assemble the 

contributions from each modelled cross-section, i.e. 
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 (4.16) 

respectively. 
The time integration of Eq (4.15) is performed by means of Newmark’s 

scheme with the trapezoidal rule, whereas the convolution integrals are 
evaluated through the left rectangular rule. The trapezoidal rule is 
unconditionally stable for linear problems but it may induce spurious 
oscillations in the solution Bathe and Baig, 2005; Kuhl and Crisfield, 1999. 
However, this usually occurs when a transient component changes ‘quickly’ 
with respect to the time-step size, which is not the case of the present 
analysis. When typical bridge characteristics are used, the choice of the 
time-step size is dictated by the evaluation of the convolution integrals, so 
that no particular problem arises in the integration of the equations of 
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motion. The computational efficiency can be improved by using a smaller 
time-step for the evaluation of the convolution integrals and a larger one for 
the integration of the equations of motion; in this case an interpolation 
scheme must be provided from the coarser to the finer time-discretization. 
Other computational aspects are discussed in Borri, Salvatori et al., 2005. 

The formulation described by Eq (4.16) has some similarities with the 
one obtained through the rational function approach; a discussion on this 
method is available in Lazzari, 2005, where a comparison with the quasi-
steady approach is presented in the case of a two-degree-of-freedom system. 

Below, an applicative example of a full bridge is offered. For expository 
reasons, the results in frequency- and time-domain will be presented in 
reverse order with respect to the one of the theoretical descriptions in this 
Section. 

4.8.1 Computational efficiency of the indicial-function approach 

Time-domain aeroelastic simulations of bridges through indicial functions 
might be expensive in terms of computational resources, since: 

• The time-step used in the simulations must be kept small to 
avoid numerical damping and to accurately evaluate the 
convolution integrals of Eq (3.50); 

• Iterations must be performed at each time-step, in order to take 
into account the structural nonlinearity, if necessary; 

• Several simulations at different mean wind velocity must be 
carried out, both for determining aeroelastic stability threshold 
and for evaluating buffeting response; 

• Simulations must be long enough in order to accurately observe 
the critical condition, or to perform Monte Carlo simulations for 
buffeting effects; 

• At each time-step the convolution integrals become longer and 
longer; the time to compute the loads increases therefore as the 
square of time-steps. 

For systematic studies as well as in the preliminary design phase of a 
bridge, strategies to save computing time would be very useful. One 
approach, discussed in Borri, Salvatori et al., 2005, and Salvatori and 
Spinelli, 2006b, is to reduce the complexity of the FE structural model and 
therefore the number of cross-sections where the convolution integrals must 
be evaluated. 

Here, computational strategies dealing with finite aeroelastic memory 
are discussed. In Eq (3.50), time-derivatives of indicial functions RrΦ�  
appear. These vanish for time that goes to infinity. In particular, for a memT  
‘sufficiently large’, the following implications hold: 
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Thus, Eq (3.50) can be rewritten as 
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A finite memory approach with an incremental formulation was proposed in 
Borri et al., 2002, but no investigation of the computing time involved was 
performed and the choice of the length of the memory was made in a safe 
but arbitrary way. Here the question of the memory length is systematically 
investigated, weighting computational performance and accuracy. Thanks 
to the expressions of the load adopted here (Eq (3.50)), an optimized non-
incremental model with fading aeroelastic-memory is developed and 
implemented, and a criterion to evaluate the optimal size of the memory is 
proposed. An abrupt reduction in the computing time is observed when 
passing to the finite memory model. Buffeting Monte Carlo simulations 
greatly profit of the computational efficiency of the proposed procedure. 

In order to find a general criterion for the choice of the memory length 
memT  suitable for a given set of indicial functions, the scalar index 
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is proposed, which accounts for the relative size of the neglected tail of the 
indicial function that converges ‘more slowly’. 

4.8.2 Numerical solution of the integral-differential problem 

Time-step size influences both the time-integration of the equations of 
motion and the evaluation of the convolution integrals of the self-excited 
loads. Different time-integration algorithms of different convergence order, 
as well as different algorithms for the evaluation of the convolution 
integrals are compared and a criterion for the optimal choice of the time-
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step, providing computational performances and satisfying accuracy, is 
proposed. 

The integration in the time-domain is obtained through Newmark’s 
scheme. Constant average-acceleration is chosen in order to guarantee 
unconditional numerical stability. This is particularly important when self-
excited forces are considered. They are in fact responsible for instability 
phenomena that must be clearly distinguishable from spurious numerical 
artefacts. If nonlinearities are accounted for, the solution at each time-step 
is obtained by means of the Newton-Raphson approach. For the linear case, 
Runge-Kutta integration methods have also been considered; although they 
provide higher order convergence, the additional computational effort is 
worthless, as the time-step must be kept small in any case in order to 
provide adequate precision for the integration of the convolution integrals 
of the load (see Section 3). 

The convolution integrals are computed by means of the left rectangular 
rule: 

 ( ) ( ) ( )( ) ( )
1

0
0

nt

Rr Rr
h

t r d t n h t r h tτ τ τ
−

=

Φ − Δ Φ − Δ Δ∑∫ � ��  (4.20) 

where n  is the step number, and tΔ  = time-step size (t n t= Δ ). With 
this kind of numerical integration the result of the integral is independent 
on the current (unknown) state ( )r n tΔ . An alternative for increasing the 
accuracy of the integration over the steepest initial part of the indicial 
functions could be the choice of the trapezoidal integration rule or of 
Simpson’s rule. The summation would include the current step. 

4.9 Stability analysis: bifurcation in frequency domain  

The aeroelastic stability of the system is studied, as usual, by considering 
the homogenous solution of the linearized system, i.e. equation (4.14). 

Let 
1 2
, , ,

Nm m m
⎡ ⎤= ⎢ ⎥⎣ ⎦…Φ Φ Φ Φ  be the matrix whose columns are N  selected 

mass-normalized modal shapes. Considering �δ Φξ  (exactly equal if all 
structural modes are taken into account), the system is projected onto a 
reduced modal space, that is 

 ( ) ( ) ( ),T T T
a a b t+ + + + =C C K K P�� �ξ Φ Φξ Φ Φξ Φ  (4.21) 

and the homogeneous solution is in form 

 ( ) ˆ ,tt eλ=ξ ξ  (4.22) 
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where ξ̂  is a constant vector. By introducing = �η ξ , the homogeneous 
system ( b =P 0 ) is represented in the state space and reduced to a first 
order system of differential equations, namely 

 ,= +A b�ψ ψ  (4.23) 

where 
T

T T⎡ ⎤= ⎢ ⎥⎣ ⎦ψ η ξ  and 
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The solution of Eq is in the form ( ) ( )ˆ exp ,t tλ=ξ ξ  where ξ̂  is a 
constant vector. Hence, we obtain the nonlinear complex eigenproblem 

 ( )( ) ˆ, n nU ω λ− =A I 0ψ  (4.25) 

where ˆ ˆ ˆˆ ˆ
T T

T T T T
n n n n nξ λξ ξ⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ψ η . Consequently, the stability of the 

system is evaluated through the spectral analysis of A . Each couple of 
conjugated eigenvalues can be written as 21n n n n niλ ν ω ω ν= − ± − , where 

n nω λ=  is the circular frequency, ( )Ren n nν λ ω= −  the damping ratio 
(including both structural and aerodynamic damping), and i  the imaginary 
unit. Since the matrix A  depends on the frequency, the problem is 
nonlinear and each eigenvalue must be computed iteratively. Here we focus 
on the stability analysis, therefore, we are only interested in the lowest-
damping mode, which is potentially responsible for instability. More in 
general, it is possible to repeat the nonlinear calculation for each mode; in 
this way the structural modes that were coupled by aeroelastic effects can 
again be uncoupled. This allows frequency-domain buffeting analyses. 

The flowchart of the stability analysis is schematized in Figure 4.8. We 
start with zero mean wind velocity and an assumption on the frequency of 
the critical mode. Then U  is increased step by step. At each step a 
nonlinear static analysis is performed in order to obtain the mean steady 
configuration; the angles of attack along the bridge span and the structural 
modes are evaluated. The matrix A  is assembled and its spectral analysis 
performed. Then the lowest-damping eigenvalue is selected. The relevant 
frequency is in general different from the trial one, therefore the calculation 
is repeated by updating the frequency at each iteration until convergence. 
The real part of the converged eigenvalue decides the stability of the 
system; if a positive damping is obtained, U  is incremented and the old 
frequency is used as initial assumption for the next iterative loop. The 
analysis ends as soon as non-positive damping is obtained. 

Each component of the critical eigenvector ˆ
crξ  can be interpreted as the 

contribution (in absolute value and phase angle) of the relevant structural 
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mode to the critical one. Finally, ˆ
crΦξ  is the complex critical mode shape 

in the coordinates of the finite element model. 
Take note that the stability analysis could be performed directly in the 

state space of the finite-element degrees of freedom rather than by 
introducing a modal subspace. However there would be some computational 
disadvantages, and the comparison with the classical bi-modal approach 
(e.g. Dyrbye and Hansen, 1996) would not be possible. 

In Jain et al., 1996a, a multi-modal flutter analysis is presented as an 
extension of the classical bi-modal analysis. The critical undamped 
harmonic solution is imposed into the discretized equations of motion. In 
order to allow non-trivial solutions, the matrix describing the system must 
be singular. The condition of vanishing (complex) determinant is found 
numerically by simultaneously varying the mean wind velocity and the 
frequency. One disadvantage of this procedure is that the determinant has 
no direct physical interpretation. On the other hand, by performing the 
eigenvalue analysis, as done here, one can follow the evolution of the 
frequency and damping of each mode at increasing wind velocity; in this 
way the parallelism with wind tunnel experimental tests, where the flow 
velocity is always controlled, is more evident. 

This framework for multimodal analysis in the 2N-dimensional state 
space can be extended to unsteady calculations (e.g. Jain et al., 1998) by 
introducing frequency dependent aeroelastic derivatives into the expressions 
of aC  and aK . This way, for each incremental velocity-step, additional 
iterations on the frequency must be performed. Nevertheless, the framework 
presented here is not followed for usual unsteady analyses, as aeroelastic 
derivatives with sufficiently fine dependence on the angle of attack are 
seldom available. 

A similar nonlinear eigenvalue problem in the state-space is obtained in 
Chen et al., 2001 and Chen et al., 2000a, where a rational function 
approximation of aeroelastic derivatives is used for the frequency domain 
multi-modal analysis in order to obtain a frequency independent 
description. 
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Figure 4.8 Flowchart of the stability analysis in the frequency-domain 

A comparison of different frequency domain approaches considering two, 
more than two, or all the structural modes is followed in Ge and Tanaka, 
2000, where it is pointed out that for long span bridges more than two 
modes can be involved into the flutter instability. 

A multi-mode complex analysis including coupled buffeting response is 
also developed by Minh et al., 2000. An evaluation of the importance of the 
coupling aeroelastic effects on buffeting simulations is available in Chen et 
al., 2004. 

The proposed method is completely general and covers all instability 
phenomena driven by unsteady self-excited forces. From the mathematical 
point of view, in fact, galloping, torsional flutter and coupled flutter are 
Hopf bifurcations and can be studied by means of the same procedure. A 
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posteriori, it is possible to ‘label’ the instability phenomenon by observing 
the modal contributions to the critical mode. If the vertical or the torsional 
modes prevail, one will have galloping or torsional flutter respectively, 
whereas if both vertical and torsional contributions are important, the 
phenomenon will be called coupled flutter. 

 



 

Luca Salvatori Assessment and Mitigation of Wind Risk of Suspended-Span Bridges 

Chapter 5  

Computational Results 

In this Chapter some computational results obtained through the 
implementation of the developed computational framework are presented. 
First of all, the proposed load model based on indicial functions is validated 
by means of a full-bridge analysis in which time-domain simulation results 
are compared with multi-modal frequency-domain ones. Then, the reliability 
of the indicial function approach is discussed. Furthermore, by means of a 
simplified structural model, it is shown how secondary critical modes can be 
simulated and visualized. Finally, some results that may be helpful in the 
prediction of structural vulnerability are presented: the effects on flutter and 
buffeting response of the along-span wind coherence, of the mean steady 
deformations, and of load and structural nonlinearities are evaluated. 

5.1 Validation of the indicial function approach for full-

bridge analyses 

As a sample structure an ideal suspension bridge, similar to Jaingyin Bridge 
(Figure 5.1a), with 1400m main span and streamlined deck-aerodynamics is 
chosen. The main geometrical and mechanical characteristics of the 
structure are depicted in Figure 5.2 and reported in Table 5.1 (the stiffness 
properties of the towers are omitted for the sake of brevity); a steel deck is 
assumed. The main span of the bridge is discretized with 20 elements; the 
relevant finite element model has 714 degrees of freedom. Rayleigh damping 
is considered and a damping ratio of 0.5% is assigned to the first vertical 
and torsional modes. We use the aeroelastic properties of the streamlined 
bridge cross-section with semicircular fairings and width-to-height ratio 

14.3B D =  that has been tested in the wind tunnel by Chowdhury and 
Sarkar, 2004 (where it is referred to as ‘cross-section B1’). 

A two-degree-of-freedom system is available in Zahlten et al., 2004. 
Three-dimensional results are obtained in Borri and Salvatori, 2006, and 
further developed in Salvatori and Borri, 2007. 
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                             (a)                                                           (b) 

Figure 5.1 Jaingyin Bridge (a); Bosporus Bridge I (b) 

D
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Amain

Ahang

 

Figure 5.2 Geometry of the bridge 

Table 5.1 Main geometrical and mechanical characteristics of the bridges 

Description Symb. Unit Jaingyin Bosporus 
main span length Lmain [m] 1400 1074 
side span length Lside [m] 320 231 
tower height Htow [m] 190 154.5 
deck height above ground level Hdeck [m] 60 60 
main cable sag h [m] 128 91.5 
number of hangers in the main span Nhang [-] 70 50 
deck width B [m] 35 28 
deck height D [m] 2.45 3.00 
main cable cross-section area Amain [m2] 0.5500 0.2045 
hanger cross-section area Ahang [m2] 0.0090 0.0060 
deck mass per unit-span mdeck [ton/m] 14.0 10.3 
deck rotational mass per unit-span Θdeck [ton m2/m] 1400 743 
deck cross-section area Adeck [m2] 1.40 1.10 

deck moment of inertia about X Jy,deck [m4] 2.50 1.70 
deck moment of inertia about Z Jz,deck [m4] 145 111 
deck torsional constant Jt,deck [m4] 11.00 6.05 
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Figure 5.3 Reference configuration (thin blue lines) and mean configuration under 
critical wind (thick black lines); displacement magnification factor 1.0. 

The frequency-domain approach based on aeroelastic derivatives and 
nonlinear complex eigenvalue analysis is compared with its equivalent time-
domain counterpart based on indicial functions and direct integration of the 
equations of motion. The aeroelastic stability analysis is chosen as 
benchmark. A numerical example is offered where the equivalency of the 
two approaches is proved for a full-bridge model. Advantages and 
disadvantages of the two techniques are discussed. 

The most sophisticated methods in the frequency domain are the so-
called multi-modal approaches (e.g. Jain et al., 1998), where some selected 
modes of the structure can contribute to the bridge response and to the 
flutter critical mode. 

An alternative approach is based on indicial functions (e.g. Borri and 
Höffer, 2000) or analogous time-domain counterparts of the aeroelastic 
derivatives (e.g. Chen et al., 2000b). Indicial functions can be identified 
through experimental tests or by means of a numerical procedure that uses 
experimental aeroelastic derivatives as input parameters. 

When the indicial functions are extracted from aeroelastic derivatives, 
the multi-modal approach and the time-domain simulations are 
theoretically equivalent. Nevertheless, the numerical identification of 
indicial functions introduces a degree of approximation. Moreover, time-
domain methods in bridge aeroelasticity are sometimes considered with 
some scepticism, since they require a more complicated numerical 
manipulation of the experimental data if compared with the well-
established frequency-domain methods. 

Here, the equivalence of frequency- and time-domain methods is verified 
through a full-bridge study case. 
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First, cross-sectional load models for self-excited forces are briefly 
reviewed and placed into one general framework. A new compact notation 
which also clarifies some physical aspects is introduced. 

Three load models are considered: (i) the quasi-steady model, (ii) the 
frequency-domain unsteady model based on aeroelastic derivatives, and (iii) 
a time-domain unsteady model based on indicial functions. The first model 
is exactly valid only for constant angles of attack, the second one holds for 
harmonic motions, whereas the third one is completely general. Within the 
proposed common framework it is easier to compare the load models in 
those regimes where two or all of them hold true simultaneously. In 
particular: 

• Loads obtained through aeroelastic derivatives (ii) should 
converge to quasi-steady loads (i) as the oscillation frequency 
goes to zero, i.e. the angle of attack changes very slowly with 
respect to the mean flow velocity; 

• Indicial loads (iii) must tend asymptotically, as time goes to 
infinity, to quasi-steady loads (i) when a step-wise change of 
angle of attack is imposed; in this way a consistent 
normalization of the indicial functions is achieved; 

• Indicial loads (iii) must be equivalent to the loads obtained 
through aeroelastic derivatives (ii) when a harmonic motion is 
considered; in this way a method for the identification of the 
unsteady contribution in the indicial function load model is 
obtained. 

Based on these considerations, a method for the identification of the 
indicial functions from measured aeroelastic derivatives (and aerodynamic 
coefficients, if available) is presented. It is based on the approximation of 
indicial functions as sums of exponential filters and on nonlinear 
optimization techniques. Further details on the load model, the 
identification procedure, and the notation are given in Salvatori, 2007. 

The stability analysis is then chosen as benchmark for the comparison of 
the load models. 

In the frequency domain a multi-modal stability analysis based on 
nonlinear eigenproblem solution is developed as a generalization of the 
procedure presented in Salvatori and Spinelli, 2006a, for quasi-steady loads. 
In the time domain the analysis consists in the direct integration of the 
equations of motion and in the evaluation at each time-step of the unsteady 
load as a function of the history of motion. 

A numerical example is offered, where an ideal suspension bridge is 
considered. The stability analysis is performed by using both frequency- 
and time-domain methods and the results are compared. 

Pros and cons of the presented techniques are discussed, and some 
perspectives are given. 
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The main new achievements in the present work are: 

• The formulation of an indicial function load model consistent 
with the quasi-steady limit; 

• The identification of indicial functions from aeroelastic 
derivatives in such a way as to preserve a good approximation of 
the self-excited loads also at low reduced velocities; 

• The development of a unified framework for frequency- and 
time-domain calculations of full-bridge aeroelasticity; 

• The numerical validation of the equivalency of the two 
approaches for a three-dimensional full bridge model. 

5.1.1 Stability analysis in the time domain 

At each incremental step, the equations of motion are linearized around the 
mean steady configuration and the indicial-function load model is 
considered. A perturbation from the steady configuration is imposed as 
initial condition. Direct time-integration of equations of motion is 
performed by using a time-step of 0.001 s. Then the history of motion is 
analyzed. At sub-critical mean wind velocities the oscillations are damped 
down (Figure 5.4a), whereas at super-critical mean wind velocities diverging 
oscillations appear (Figure 5.4c). The borderline condition of stationary 
oscillations represents the critical stability threshold (Figure 5.4b) and is 
obtained for a mean wind velocity of 75.7 m/s. The relevant critical 
frequency of 0.241 Hz is computed through the Fourier analysis of the 
motion history. 
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Figure 5.4 Time-histories of motion at mid-span: pre-critical (a), critical (b), and 
post-critical (c) regime 
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5.1.2 Stability analysis in the frequency domain 

The stability analysis in the frequency domain is performed according to 
the procedure described in Section 4.9. Since the present goal is the 
comparison with the time-domain simulations of the full structure, a high-
dimensional modal subspace is adopted by considering the first fifty natural 
modes of the bridge. 

As a first analysis, we evaluate the aeroelastic stiffness and damping by 
using the approximation of unsteady coefficients given by Eqs (3.53). In 
this case the analysis is theoretically equivalent to the time-domain one 
based on identified indicial functions, as confirmed by the numerical results 
which agree within the computational accuracy. A mode with non-positive 
damping is firstly obtained at a mean wind velocity of 75.8m/s with a 
frequency of 0.236 Hz. The natural modes of the structure and their 
contributions to the critical mode are reported in Table 5.2 and a graphical 
representation is given in Figure 5.6. The critical mode is a symmetric 
coupled vertical-torsional flutter (Figure 5.7). Also a small lateral 
contribution is present; this might not be expected for a streamlined cross-
section (consider also that the contribution of *

1xF xD KP=�  always provides 
a positive aerodynamic damping). The lateral contribution is due to mixed 
structural modes (mainly the vertical-lateral mode #9), which appear as 
the structure is linearized around the steady configuration under mean 
wind. The mean configuration, in turn, is affected by the high steady drag 
which is responsible for large lateral displacements and consequent 
significant modifications in the tangent structural stiffness. The absolute 
value of the critical mode shape can also be easily obtained from the time-
domain simulations by extracting the maxima from the displacement 
history. These, appropriately rescaled, are reported in Figure 5.7a, where a 
very good agreement with the frequency-domain results can be observed. 



5.1 Validation of the indicial function approach for full-bridge analyses 108 
 

 

Luca Salvatori Assessment and Mitigation of Wind Risk of Suspended-Span Bridges 

-10 -5 0 5 10
-1

-0.5

0

0.5

1

angle of attack [deg]

A
er

od
yn

am
ic

 c
oe

ff
ic

ie
nt

s 
[-]

 

 

C
D

C
L

C
M

 

Figure 5.5 Aerodynamic coefficients 
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Figure 5.6 Relative contributions in absolute value [%] and phase angle [deg] of the 
structural modes to the critical mode 
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Table 5.2 Natural modes of the structure around the mean steady configuration 
and their contributions to the critical mode 

Structural modes at 
U = Ucr = 75.8 m/s 

 Contribution 
to critical mode 

mode 
# 

f 
[Hz] 

Modal 
shape(*) 

 abs 
[%] 

phase 
[deg] 

1 0.081 L1+V1  3.0 -24 
2 0.110 V2  0.0 146 
3 0.139 V1  20.7 -21 
4 0.183 L2  0.0 -172 
5 0.191 V3  30.5 0 
6 0.200 cables  0.6 140 
7 0.204 cables  0.0 7 
8 0.213 V4  0.0 -3 
9 0.222 L1+V1  15.8 -175 

10 0.259 L2+cables  0.0 -165 
11 0.276 V5  3.9 -77 
12 0.279 T1  19.1 127 
13 0.334 V6  0.0 140 
14 0.343 T2  0.0 148 
15 0.349 L3  1.8 -27 
16 0.352 L3+V5+cable  1.6 -56 
17 0.357 cables  0.0 -34 
18 0.368 cables  0.0 143 
19 0.405 V7  0.1 92 
20 0.421 L3+V7+cable  0.4 143 
21 0.467 V7+cables  0.0 139 
22 0.478 T2  0.2 -31 
23 0.481 V8  0.0 -24 
24 0.487 L3+cables  0.3 -29 
25 0.530 cables  0.0 -34 
26 0.539 T3  0.5 -67 
27 0.553 L3+V9+cable  0.6 -25 
28 0.559 V9  0.0 18 
29 0.563 cables  0.0 151 
30 0.643 cables  0.2 128 

(*) Prevalent modal shape (L = lateral, V = vertical, T = 
torsional) and number of half-waves. 
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Figure 5.7 Critical mode shape: absolute value (a) and phase angle (b). 

As a further analysis, the frequency-domain calculations are repeated by 
using linear and spline approximations of the unsteady coefficients. The 
results are summarized in Figure 5.8. Also the quasi-steady model described 
in Section 3.2.3 is considered for the comparison. Since quasi-steady 
coefficients are not frequency-dependent, the calculations can be performed 



5.1 Validation of the indicial function approach for full-bridge analyses 111 
 

 

Luca Salvatori Assessment and Mitigation of Wind Risk of Suspended-Span Bridges 

equivalently in the frequency- and time-domain; in particular the 
eigenproblem is solved without need for iterations. 

The difference between distinct kinds of interpolation of the unsteady 
coefficients can be quite significant in case of coarse or scattered data. With 
reference to the cross-section considered here, Figure 5.8 shows the 
unsteady coefficient *

2y yME KAα =  which may play an important role in the 
aeroelastic stability. It is possible to observe that, at some reduced 
velocities, the difference between the two kinds of interpolation has the 
same magnitude of the difference between interpolations and approximation 
(even in this case where only one exponential group is used). In the final 
results, no remarkable differences are observed, since the critical condition 
is reached at a reduced velocity * 9crU � , where the interpolations and the 
approximation of all the significant unsteady coefficients are very close 
together. 

One should not forget that aeroelastic derivatives are not deterministic 
data but are affected by experimental errors. Therefore the use of the 
approximation resulting from the identification of the indicial functions 
might be regarded as a suitable option also for the frequency-domain 
analysis. 

Finally, it is observed that the quasi-steady load model, which is 
sometimes used where time-domain simulations are necessary (e.g. 
nonlinear structures), is not able to accurately predict the critical velocity. 
This remarks the importance of the developed unsteady load model in the 
time domain. 
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Figure 5.8 Interpolations and approximation of a sample derivative 
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Table 5.3 Critical conditions for aeroelastic stability bridge A (1400 m + bridge 1) 

Analysis type Ucr 

[m/s] 
fcr 

[Hz] 
TD - indicial functions 75.7 0.241 
FD - approximation of unsteady coefficients 75.8 0.236 
FD - linear interpolation of unsteady 75.9 0.238 
FD - spline interpolation of unsteady 75.3 0.239 
Quasi-steady approach 66.0 0.245 

5.1.3 Remarks 

The indicial function load model for unsteady self-excited forces in the 
time-domain has been further developed by including the consistency with 
the quasi-steady limit. The indicial functions are identified from measured 
aeroelastic derivatives in a suitable representation of the data, in such a 
way that the accuracy of the predicted unsteady forces is preserved also at 
low reduced velocities. 

In order to allow the comparison with frequency-domain results, a 
multi-modal analysis procedure based on the solution of a nonlinear 
complex eigenproblem in the state-space has been developed too. 

A numerical example has been provided, in which a full three-
dimensional model of a sample suspension bridge is considered. The flutter 
stability analysis has been taken as benchmark for the comparison of the 
time- and frequency-domain approaches. The analyzed case shows that full-
bridge simulations based on identified indicial functions and multi-modal 
analysis based on aeroelastic derivatives are mathematically and 
numerically equivalent. In particular, the results are exactly the same 
(within numerical errors) when the approximation of the aeroelastic 
derivatives induced by the identification of the indicial functions is used 
also in the frequency domain. Moreover, when dealing with frequency-
domain results, comparable differences may appear between distinct 
interpolations and between a specific interpolation and the indicial function 
approximation. On the other hand, the quasi-steady approach provides only 
qualitative results. 

From the computational point of view, the stability analysis in the time 
domain is much more expensive, also because the time-step size must be 
kept small in order to accurately evaluate the convolution integrals. On the 
other hand, accounting for the modal coupling in the buffeting simulations 
is straightforward in the time-domain, whereas in the frequency domain the 
analysis is more complicated and requires the evaluation of several 
nonlinear eigenmodes and the integration over a wide range of frequencies. 

We conclude that time-domain methods shall be used for bridge analysis 
where the frequency-domain approach is more complicated (presence of 
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localized damping devices, coupled buffeting analysis, etc.) or not applicable 
(analysis including structural nonlinearities Salvatori and Spinelli, 2006b, 
nonlinear damping, etc.). Most likely, where the two approaches are 
equivalent, as in the case of the stability analysis, frequency-domain 
methods shall be preferred since they rely directly on experimental data and 
are computationally less expensive. Nevertheless, also in these cases time-
domain methods may be used as numerical proof, as the results are 
obtained through entirely different computations. In general, the two kinds 
of analysis shall be considered as complementary tools. 

5.2 Reliability of the indicial function approach 

In this Section a numerical procedure is set up to evaluate the reliability of 
indicial functions. In principle, analyses in frequency and time domain are 
equivalent. De facto, each step to identify critical flutter condition is 
affected by some error that can compromise the reliability of the global 
procedure. Below, frequency- and time-domain evaluations of critical flutter 
condition are compared in the case of non-deterministic values of the flutter 
derivatives and of the indicial functions identified from them; a rough but 
indicative probabilistic model is used (e.g. Borri, Costa and Salvatori, 
2005). 

A Monte-Carlo procedure is set up. Sets of aeroelastic derivatives are 
generated assuming a Gaussian distribution of the measurements. For each 
set of aeroelastic derivatives, an eigenvalue analysis is performed to identify 
the critical condition. Critical velocities and frequencies are stored for the 
statistical analysis. 

For each set of generated aeroelastic derivatives, the relevant indicial 
functions are identified. Critical flutter velocity is then evaluated by means 
of time domain simulations by adjusting the wind velocity until the critical 
condition is reached. 

The steps above are assembled in a unified automatic procedure in order 
to obtain statistics in terms of critical frequency and velocity (calculated 
both directly from the aeroelastic derivatives and from the relevant 
identified indicial functions). For indicial functions, the distributions of the 
estimated coefficients are also extracted. 

As study case, a streamlined rectangular section with dimensional ratio 
B/D = 12.5 is considered; the relevant aeroelastic derivatives are shown in 
Figure 5.9. For the evaluation of the critical condition, the mechanical 
system, whose properties are collected in Table 5.4, is selected. 
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Figure 5.9 Measured aeroelastic derivatives (+) and approximation obtained 
through the indicial function identification (-) 

Table 5.4 Geometrical and mechanical properties of the analysed cross-section 

length  L = 0.920 m 
width B =  0.375 m 
height D = 0.03 m 
vertical-mode frequency fz = 5.87 Hz 
mass m = 3.810 kg/m 
vertical-mode damping ratio νz = 0.0018 
torsional-mode frequency fα = 8.30 Hz 
rotational inertia I = 0.037 kg m2/m 
torsional-mode damping ratio να = 0.0028 
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Critical velocity Ucr
0 and critical frequency fcr

0 corresponding to non-
scattered measured data are calculated as reference values. The 
disagreement between the frequency- and the time-domain results are due 
to the use of the literature indicial function load model as in Section 3.3.2 
instead of the one developed in Section 3.5 that, as it has been shown in 
Section 5.1, eliminate this discrepancy. 

For the Monte-Carlo procedure, the standard deviation of the 
aeroelastic derivatives is taken as 20% of the mean value. In order to obtain 
some first rough indications, 700 sets of scattered aeroelastic derivatives are 
generated. In the identification procedure, all the indicial functions are 
approximated with one exponential group. 

The distributions of critical flutter velocities and frequencies are 
compared for frequency- and time-domain analyses (Figure 5.10), and 
relevant statistics are quantified in Table 5.5 and Table 5.6. 

Table 5.5 Critical velocities obtained from aeroelastic derivatives (AD) and indicial 
functions (IF) 

 Ucr
0 μ (Ucr) σ (Ucr) y (Ucr) k (Ucr) 

 [m/s] [m/s] [m/s] [-] [-] 
AD 18.22 18.35 2.17 -0.96 5.02 
IF 15.73 15.06 1.34 0.32 3.59 

 

Table 5.6 Critical frequencies obtained from aeroelastic derivatives (AD) and 
indicial functions (IF) 

 fcr
0 μ (fcr) σ (fcr) y (fcr) k (fcr) 

 [Hz] [Hz] [Hz] [-] [-] 
AD 7.02 7.00 0.37 0.71 5.63 
IF 7.51 7.56 0.11 -0.33 2.91 

 
This statistical analysis shows that results obtained with time domain 

simulations are less sensitive to the scatter of data, if compared with those 
obtained by means of eigenvalue analyses due to the averaging effect of the 
identification procedure. It is underlined that this is a purely numerical 
effect. 

Statistics on aerodynamic (Figure 5.11) and indicial function coefficients 
(Figure 5.12) are also obtained. The identified coefficients have broad 
distributions that result in very different indicial functions, as evidenced in 
Figure 5.11. On the other hand, the results in the simulations produce 
narrow banded distributions of critical velocities and critical frequencies. 

The bipolar distribution observed in some of the coefficients underlines 
a certain redundancy in the self-excited model. Analyses on different cross-
sections and in the sub-critical wind velocity range should be further 
addressed. 
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Figure 5.10 Distributions of critical flutter velocity (a) and frequency (b) calculated 
via aeroelastic derivatives and indicial functions (vertical axis reports the number 

of samples) 
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axis reports the number of samples) 
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Figure 5.12 Distributions of indicial function coefficients (vertical axis reports the 
number of samples) 

Three main results are observed: (i) the critical wind velocity and the 
critical frequency based on the non-scattered data almost coincide with the 
mean values of the distribution obtained, (ii) the variances obtained with 
indicial functions are much lower than those obtained through aeroelastic 
derivatives, and (iii) the distribution of critical condition obtained through 
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indicial functions are narrow-banded, in spite of the broad boundaries of the 
indicial functions that produced them. 

The indicial functions take into account all the reduced frequencies 
simultaneously; therefore, some scatter is compensated. Since the results 
based on aeroelastic derivatives are directly based on experimental tests, 
their reliability can be tentatively assumed in order to express in 
probabilistic terms the risk of aeroelastic phenomena (Mannini, 2006). On 
the other hand, indicial functions are a numerical device for using measured 
aeroelastic derivatives in the time domain. The apparent increase in the 
reliability of results obtained through indicial functions is only a numerical 
effect. For this reason, where probabilistic analyses are required, indicial 
functions shall be used with care. 
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Figure 5.13 Indicial functions for non-scattered data (full lines) and boundaries of 
the envelopes for scattered data (dashed lines) 

5.3 Effects of structural nonlinearity and of along-span 

turbulence coherence 

The response of suspension bridges to wind excitation is studied by means 
of numerical simulations with a specifically developed finite element 
program implementing full structural nonlinearities. A pure time-domain 
load model, linearized around the average configuration, is considered. The 
self-excited effects are included through the indicial function formulation, 



5.3 Effects of structural nonlinearity and of along-span turbulence coherence 118 
 

 

Luca Salvatori Assessment and Mitigation of Wind Risk of Suspended-Span Bridges 

whereas the buffeting is considered according to the quasi-steady model. 
The response under turbulent wind, both fully and partially correlated, is 
evaluated through a Monte Carlo approach. A simplified structural model is 
considered, where only two cross-sections are modelled. This allows a high 
reduction of the number of degrees of freedom (DoFs) but maintains many 
characteristics of the true bridge, precluded to the classical 2-DoF sectional-
model (e.g. considering more than two modes, including structural 
nonlinearities, introducing along-span wind coherence). The case studies of 
a long-span suspension bridge and a light suspension footbridge are 
analyzed. It is observed that structural nonlinearities deemphasize the 
presence of a critical flutter wind velocity, as they limit the oscillation 
amplitudes. On the other hand, fully correlated flow may produce an 
important underestimation of the structural response. 

Due to the theoretical complexity arising for bluff cross-sections with 
irregular geometry, the predominant design tool in wind engineering is the 
boundary layer tunnel, where intensive experimental campaigns with 
scaled-down models are performed. Long bridges present however scaling 
problems, as they require a very small scale to fit into wind tunnels. For 
instance, the testing of an Akashi-Kaikyo Bridge 1:100 model has been 
carried out in an over 40 m wide wind tunnel. As well known, it is 
impossible for intrinsic scaling problems to reproduce the real flow in the 
wind tunnel. In particular, the along-span correlation of turbulence can be 
very tricky to simulate. 

For these reasons, the most common approach consists in testing cross-
sectional models. These models are commonly used for the aerodynamic 
characterization of the selected deck through aerodynamic coefficients and 
aeroelastic derivatives. The extension of cross-sectional results to the entire 
structure, however, is not straightforward. Frequency-domain multi-modal 
approach Jain et al., 1996a offers interesting possibilities but does not allow 
structural nonlinearities to be taken into account. On the other hand, 
mixed frequency-time domain simulations usually evaluate aeroelastic 
derivatives at a single frequency that is often obtained through a trial 
procedure and is valid only at the critical flutter condition (e.g. Zahlten, 
2004). A different approach in the mixed domain is proposed in Diana et 
al., 2005, which divide the spectrum in several ‘bands’ and, after solving the 
equations of motion in the time domain for each band, apply the 
superposition effects. This method is confined however to linear structures 
too. 

The suspension cables have a strong geometrical stiffness only for 
uniform loads and offer different stiffness characteristics for symmetric and 
non-symmetric load patterns. Moreover, structural nonlinearities are 
important for cable-structures as suspension bridges, and the hangers 
themselves could exhibit nonlinear behaviour, as they are unable to sustain 
compressions (e.g. Augusti et al., 2002). 
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In order to take into account the effects of structural nonlinearities, full 
time-domain simulations must be performed (e.g. Chen and Kareem, 2001; 
Ding and Lee, 1999), that could be done through indicial function model 
(e.g. Borri et al., 2002). 

Time-domain simulations also offer other advantages. The overall 
structural behaviour is automatically taken into account, avoiding modal 
decomposition. Furthermore, the combination of self-excited and buffeting 
forces is straightforward and the along-span wind coherence can be easily 
considered (e.g. Iannuzzi and Spinelli, 1986). 

The present work will investigate the effects of structural nonlinearities 
and along-span coherence through time-domain simulations. The questions 
are, on one hand, how structural nonlinearities affect the response in the 
vicinity of the flutter velocity, and, on the other hand, whether the along-
span coherence influences in a positive or a negative manner the behaviour 
of suspension bridges. 

As the adopted indicial function load model introduces an explicit 
dependence of the load on the displacement history, it is not possible to use 
standard structural analysis programs. An ‘ad hoc’ developed finite element 
(FE) implementation is then provided. 

5.3.1 Mechanical models 

The simplest mechanical model for the study of bridge deck aerodynamics is 
a cross-sectional model. This classical academic model consists in a simple 
2D rigid cross-section, whose translational and rotational DoFs are 
supported by (usually linear) springs. The model has three DoFs (which 
often reduce to two as horizontal displacement is neglected). Once assigned 
the translational and rotational masses to the cross-sectional model, the 
stiffness of the springs is chosen so that the frequencies of three selected 
modes (one vertical, one lateral and one torsional) of the complete structure 
are reproduced. The cross-sectional model is well suited for testing load 
models and for comparison with wind tunnel experimental tests. 
Nevertheless, the results obtained through this model are of uncertain 
extensibility to the complete structure. Moreover, it is not possible to 
include realistic structural nonlinearities. 

An alternative, adopted in the present work, consists in developing 
finite element models of the structure and to consider the wind action as 
applied on several cross-sections (either as nodal load or as distributed load 
on specific one-dimensional elements). 

A bridge model can include many tens of loaded cross-sections and can 
have few thousands DoFs. In some cases, the computing time may become 
quite an issue, in fact: 
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• Non-stationary forces require the calculation of the convolution 
integrals of the indicial function model (for each cross-section); 

• The time-step size must be sufficiently ‘small’, to avoid 
numerical damping and to accurately evaluate the convolution 
integrals; 

• At each time-step the solution is found iteratively, if structural 
nonlinearities are considered; 

• Simulations are carried out at different mean wind velocities; 
• Time-histories must be sufficiently long to provide reliable 

statistics, if a Monte Carlo approach for turbulence effect 
evaluation is followed (like in this work). 

For preliminary studies, simplified models with a low number of cross-
sections should be considered in order to reduce the computational costs. 

The simplest non-trivial model considering two cross-sections is shown 
in Figure 4.2, where the additional assumption of negligible compliance of 
the pylons is made. Neglecting the drag effect allows a further reduction of 
the number of DoFs. 

The two-sectional FE model represents a computationally-light 
extension of the classical cross-sectional model, and introduces some 
important features of the full bridge. It considers in fact four relevant 
modes (vertical symmetric and skew-symmetric, torsional symmetric and 
skew-symmetric), it includes the geometrical nonlinearities of suspension 
cables and the mono-lateral behaviour of hangers, and it allows a first 
evaluation of the effect of the along-span wind turbulence coherence. 
Emphasizing symmetric and skew-symmetric effects, the two-sectional 
model gives a clear view of the tendency of structural behaviour depending 
on different load and structural properties. Finally, although more detailed 
models are necessary to accurately analyze a true structure, simplified 
models can be a useful tool during the preliminary design phase. 

5.3.2 Numerical model 

A comprehensive program for the analysis of bridges under wind excitation 
has been developed. In fact, commercial programs cannot consider history-
dependent loads. Moreover, a single tool including model generation, multi-
correlated wind field generation, FE solver and post-processing analyses, 
allows a simpler integration of the various part and an easier 
autoimmunization of the simulations. 

At first, a pre-processing routine generates the FE model, given a few 
geometrical and mechanical characteristics as dimensions, section 
properties, etc. In addition, the number of modelled cross-section is an 
input for the pre-processor. This allows, after the analysis of a simplified 
model, the generation of more refined discretization just by modifying one 
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input parameter. As to loading, indicial self excited forces and quasi-steady 
buffeting are superposed (e.g. Salvatori and Spinelli, 2004; Salvatori and 
Spinelli, 2006b; Scanlan, 1984). 

5.3.3 Numerical example 

In order to show the effectiveness of the proposed approach, the results of 
numerical simulations on two-cross-section FE models are presented for two 
different structures. 

A long-span suspension bridge is considered, with the dimensions and 
the mechanical characteristics of the Bosporus Bridge (Turkey). The 
geometrical and mechanical properties are reported together with the 
results of the modal analysis in Table 5.1. 

Table 5.7 modal periods T and shapes (right). 

Mode T [s] Mode shape 
1 9.26 Vertical Skew-symmetric 
2 5.14 Vertical Symmetric 
3 2.39 Torsional Symmetric 
4 1.62 Torsional Skew-symmetric 

 
For the aerodynamic characteristics the rectangular cross-section with 

width/height ratio B/D = 12.5 is used. This streamlined cross-section is 
known to flutter in a coupled vertical-torsional mode, as also experimentally 
verified in Righi, 2003. 

5.3.4 Linear structure in laminar flow 

As a first step, simulations are performed with linear structure under 
laminar flow. 

Without wind fluctuations, a perturbation from the static equilibrium 
(i.e. an initial condition on displacements or velocities) must be provided in 
order to activate the self-excited forces. Here, initial displacements are 
imposed considering a random-coefficient linear superposition of the four 
significant mode shapes (assuming a 1cm maximum nodal displacement). 

The structural response is characterized by aerodynamically damped 
oscillation at ‘low’ mean wind velocity (Figure 5.14a) and by diverging 
oscillation at ‘high’ mean wind velocity (Figure 5.14c). The borderline 
condition of stable amplitude oscillation (Figure 5.14b) is obtained at an 
intermediate wind velocity Ucr that characterizes the critical flutter 
condition. A coupled symmetrical flutter is obtained at a critical wind 
velocity Ucr,sym = 61 m/s, with a flutter frequency fcr,sym = 0.35 Hz (the 
symmetrical vertical and torsional modes contributing to flutter instability 
have frequencies fvert,sym = 0.19 Hz and ftors,sym = 0.42 Hz respectively). Such 
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results are in good agreement with the bi-modal analytical solution 
Ucr,sym = 62 m/s and fcr,sym = 0.33 Hz, that is obtained considering an 
idealized 2-DoF structural model reproducing the symmetric vertical mode 
and the symmetric torsional mode (Dyrbye and Hansen, 1996). 
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(c)                                                         (d) 

Figure 5.14 Time-histories of motion: (a) sub-critical velocity and linear structure, 
(b) critical velocity and linear structure, (c) super-critical velocity and linear 

structure, (d) super-critical velocity and nonlinear structure 

5.3.5 Secondary unstable flutter modes 

Theoretically, each couple of vertical and torsional modes that have 
‘similar’ shapes can couple into a flutter mode that has the same shape and 
is characterized by a critical frequency (usually intermediate between those 
of the two structural modes) and a critical wind velocity. Of course, only 
the flutter mode with the lowest wind velocity is stable and has therefore a 
practical relevance. Nevertheless, it is interesting to verify the theoretical 
predictions through time-domain simulations. In the example, it is in fact 
possible to observe the secondary flutter mode, by imposing purely skew-
symmetric initial conditions to the motion and U > Ucr,sym. In this way, the 
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symmetric flutter is not activated as long as the numerical error does not 
introduce a spurious symmetric component into the motion, which then 
jumps to the stable symmetric flutter, as shown in Figure 5.16. 

The unstable coupled skew-symmetric flutter is obtained for a wind 
velocity Ucr,ant = 92m/s, with a flutter frequency fcr,ant = 0.30 Hz (the skew-
symmetric vertical and torsional modes have frequency fvert,ant = 0.11 Hz 
and ftors,ant = 0.62 Hz respectively, the analytical solution gives 
Ucr,ant = 99 m/s and fcr,ant = 0.45 Hz). 

5.3.6 Nonlinear structure in laminar flow 

If the structural nonlinearities are taken into account, the structural 
response changes at super-critical velocities. In laminar flow, after a 
diverging phase, the oscillations stabilize at constant amplitude (Figure 
5.14d), whose value depends only on the wind mean velocity. This effect is 
well known in the aeronautic field, where several authors investigated the 
post-critical behaviour of a 2-DoF airfoil supported by nonlinear springs 
with polynomial (usually cubic or quadratic) restoring forces (e.g. Poirel 
and Price, 1997; Shahrzad and Mahzoon, 2002). In this work, the ‘actual’ 
structural nonlinearities of the bridge are taken into account, and the limit 
cycle oscillation amplitudes at different wind velocities are plotted in Figure 
5.17 (qualitatively similar plots can be found in the last mentioned 
reference). 

It can be observed that the effects of structural nonlinearities in limiting 
the oscillation amplitude is more pronounced for the torsional motion than 
for the vertical one. This could also be explained by considering the quality 
of the structural nonlinearities. The torsional motion exhibits as a matter of 
fact a bilateral hardening behaviour. For the vertical motion, on the other 
hand, the structure hardens when moving downwards and softens when 
moving upwards, as the main cable tension increases or decreases 
respectively. 

5.3.7 Effects of fully and partially correlated wind fluctuations 

and of structural nonlinearities 

In the cases of turbulent wind (partially or fully correlated), a Monte Carlo 
approach is adopted. Four cases are considered combining fully and 
partially correlated wind fields with linear and nonlinear analyses. 

Simulations are performed varying the mean wind velocity from 5 m/s 
to 100 m/s (step 5 m/s plus some extra values in the vicinity of the critical 
velocity). For each value of the mean wind velocity, five fully correlated 
and five partially correlated wind time-histories are generated (simulating 
600 s each). The structural response is then calculated through both linear 
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and nonlinear analyses. An example of wind and relevant response time-
histories is reported in Figure 5.15. 
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Figure 5.15 Example of time-history: wind fluctuations (top); vertical response 
(middle); torsional response (bottom) 

The response time-histories are divided into time-intervals in such a way 
as the motion can be considered uncorrelated. This is achieved by choosing 
the duration of each interval equal to the time lag of the autocorrelation 
functions to be less than 20%. Finally, the peak value in each interval is 
used for a statistical analysis. 

An example of motion peak distribution is plotted in Figure 5.18. The 
median value is used as a significant measure of the central tendency, and 
will be referred to as ‘oscillation amplitude’ in the following. 

The oscillation amplitudes at different mean wind velocities are plotted 
in Figure 5.19 for the four combinations of partially and fully correlated 
turbulence with linear and nonlinear structures. 
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Figure 5.16 Time-histories of motion for second unstable flutter mode (skew-
symmetric): (a) inter-critical velocity Ucr,sym = 61 m/s < U = 75 m/s 

< Ucr,ant = 92 m/s, the skew-symmetric motion is damped; (b) super-critical 
velocity Ucr,sym = 61 m/s < Ucr,ant = 92 m/s < U = 105 m/s, the skew-symmetric 

motion diverges. In all cases, after a few cycles, the motion jumps to the diverging 
symmetric flutter 
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Figure 5.17 Amplitudes in the limit cycle oscillation at different mean wind 
velocities: vertical (a) and torsional (b) DoFs 
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Figure 5.18 Example histograms of the distribution of peaks for vertical (a) and 
torsional (b) DoFs 



5.3 Effects of structural nonlinearity and of along-span turbulence coherence 128 
 

 

Luca Salvatori Assessment and Mitigation of Wind Risk of Suspended-Span Bridges 

 (a)

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

U [m/s]

z 
[m

] (
m

ed
ia

n)

 

 

partially correlated - linear

partially correlated - nonlinear

fully correlated - linear

fully correlated - nonlinear

 

(b)

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

U [m/s]

α
y 

[d
eg

] (
m

ed
ia

n)

 

 

partially correlated, linear

partially correlated, nonlinear

fully correlated, linear

fully correlated, nonlinear

 

Figure 5.19 Vertical (a) and torsional (b) responses versus mean wind velocity. The 
dotted vertical line at U = 61 m/s corresponds to the critical mean wind velocity 

at flutter evaluated through the simulations in laminar flow. 



5.3 Effects of structural nonlinearity and of along-span turbulence coherence 129 
 

 

Luca Salvatori Assessment and Mitigation of Wind Risk of Suspended-Span Bridges 

Focusing on the linear structure behaviour, it is observed that the 
motion amplitude grows as the mean wind velocity increases, and, both for 
fully correlated and for partially correlated winds, it diverges in 
correspondence of the critical wind velocity calculated in laminar flow. 

For the nonlinear structure, on the other hand, no divergence is 
observed and the motion amplitude keeps increasing but is limited also at 
super-critical wind velocities. As already remarked, a more effective 
limitation is observed for the torsional motion than for the vertical one. 

By comparing the oscillation amplitudes for fully and partially 
correlated winds (for both linear and nonlinear structures), it is evinced 
that the vertical oscillation amplitude is much greater for partially 
correlated wind, whereas the torsional amplitude is slightly larger for fully 
correlated wind. 

This behaviour can be explained by observing that: (i) the lower 
frequency modes are the most excited by the turbulence, as the wind 
turbulence has higher power at the lowest frequencies; (ii) fully correlated 
wind introduces energy into the system only for the symmetric modes (the 
work of a symmetric load on an skew-symmetric displacement is zero), 
whereas partially correlated wind excites also skew-symmetric modes; (iii) 
as the lower-frequency vertical mode of the structure is skew-symmetric, it 
follows that the vertical motion will have larger amplitude in case of 
partially correlated wind. On the other hand, the lower-frequency torsional 
mode is symmetric and therefore will be more excited by fully correlated 
wind. 

Finally, it is worth to report that no hanger going slack has been 
detected. 

5.3.8 Remarks 

A comprehensive tool for the time-domain analysis of suspension bridges 
has been developed. It includes the parametric generation of the structural 
model, a fully nonlinear FE solver, where history-dependent wind loads 
have been implemented, and a post-processor for result analysis. The use of 
simplified models reduces the computational effort, allowing Monte Carlo 
simulations. Many fundamental aspects of the true bridge are still 
considered (more than two modes, mass and geometrical nonlinearities of 
suspension cables, mono-lateral behaviour of hangers, along-span wind 
turbulence coherence). 

According to the implemented structural and load models, the 
numerical simulations show that: 

• If the bridge is considered as a linear structure, the critical value 
of the mean wind velocity is not affected by the presence of 
turbulence or by its level of correlation. 
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• If structural nonlinearities are considered, the oscillation 
amplitude is usually reduced in the sub-critical velocity range. 
Moreover, the critical wind velocity is no more a meaningful 
limit, as the oscillations are limited also in the super-critical 
velocity range. 

• To consider fully correlated turbulence can result in an 
important underestimation of the structural response, especially 
if the structure is dominated by skew-symmetric modes, as may 
happen for suspension bridges. Therefore, along-span coherence 
should be considered in the bridge design. 

It seems that the hanger slack is not a crucial problem for practical 
applications. 

Although the results are obtained on a simplified model with two cross-
sections, they suggest a qualitative trend. More refined discretization 
(which will allow considering more modes, as well as a more accurate 
evaluation of along-span coherence effects) will be considered in the future.  

5.4 Nonlinearities and linearizations 

In the analyses presented below (Salvatori and Spinelli, 2006a), the 
structural nonlinearities are considered only in the static calculations used 
to determine the mean steady position around which the motion develops. 
Frequency-domain stability analysis intrinsically requires a linearized 
model. This is adopted also in the time-domain in order to allow the 
comparison with frequency-domain results. 

Unlike steady coefficients, aeroelastic derivatives and admittance 
functions require a relatively complicated experimental procedure for their 
identification. For this reason, they are usually measured for a single mean 
angle of attack (typically the null value). Only recently, for the cross-
sections of important bridges, aeroelastic derivatives have been identified 
also for a few different values of the mean angle of attack. Therefore, it is 
not possible in practical calculations (or it is possible only in a very rough 
way) to take into account the correct configuration around which the 
unsteady load model is linearized. 

A framework for the numerical analysis of bridges under wind excitation 
is outlined. It is based on a structural finite element scheme and cross-
sectional wind load models. Two aspects are investigated: (i) how 
considering the mean steady configuration in the aerodynamic stability 
calculation; and (ii) the effects of load nonlinearities on structural response. 
A quasi-steady load model is adopted, which is able to deal with the 
considered problems by using experimental data easily available in the 
practice. By means of numerical examples, it is pointed out (i) that both 
the modifications in structural tangential stiffness and in the aerodynamic 
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coefficients due to the mean steady deformation may affect the aeroelastic 
stability threshold and (ii) that load linearization may produce an 
underestimation of the structural response. 

Bridges are strongly sensitive to the wind action which may increase the 
vulnerability of crucial links as the length of the main spans becomes larger 
and larger and the architectonic design follows complex shapes due to 
aesthetic needs. 

In order to evaluate wind loads, wind tunnel tests are commonly carried 
out. Since scaled-down models of complete bridges are expensive and 
present intrinsic scaling problems, in general the aerodynamic 
characterization of cross-sectional models is used. Nevertheless, it is not 
straightforward to extend cross-sectional results to the whole bridge, and to 
capture accurately the overall behaviour of complex structures. 

Some approaches based on cross-sectional load models are discussed 
below. The main focus is on load models based on steady coefficients. As 
will be clarified in what follows, these models are actually suitable for the 
present investigations and they make use of experimental data easily 
available for practical calculations.  

Two main aspects are investigated: 

• The influence of the steady deformations due to the mean 
component of the wind action on the critical wind velocity for 
aerodynamic stability. 

• The effects of load nonlinearities on the structural response. 

An essential problem in analyzing bridges is the evaluation of the flutter 
threshold, i.e. the critical mean wind velocity that induces dynamic 
instability due to fluid-structure interaction. The most common approach 
for practical calculations relies on a linear representation of the wind loads 
based on unsteady coefficients. Two or more structural modes are 
combined, and the consequent stability problem is solved in the frequency 
domain. The standard bi-modal procedure is described in Dyrbye and 
Hansen, 1996; more recently, multimodal procedures have been introduced, 
as described in Jain et al., 1998. Commonly, the deformations induced by 
the mean wind action are neglected for both the structure and the 
aerodynamics. The structural modes are evaluated in the reference 
configuration (static equilibrium under dead loads) by means of standard 
computer codes, and the aeroelastic derivatives are obtained from 
experimental tests by considering oscillations around the zero angle of 
attack. Really, the wind-induced motion develops around a deformed 
configuration which can be evaluated by means of a nonlinear static 
analysis. The linearization of the problem should then be performed around 
that configuration, as pointed out by Scanlan and Jones, 1990. Structural 
modes should be evaluated by using tangent stiffness and the variation of 
the angle of attack along the span of the bridge should be considered. On 
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the other hand, aeroelastic derivatives are usually measured only for the 
zero angle of attack, or, in some extraordinary cases, for a very small 
number of values of the same angle. Alternatively, it is possible to use a 
quasi-steady approach to aeroelasticity. This way, unsteady effects in the 
fluid-structure interaction are neglected but it is sufficient to use steady 
coefficients. These are obtained from simple experimental tests and are 
commonly available for a wider range of angles and in a refined manner. 
For this reason, the quasi-steady approach is chosen here to obtain an 
estimate of the error that arises by neglecting steady deformations for the 
structure and/or the aerodynamics. The results of stability analysis 
obtained by linearization around the reference configuration and around the 
steady deformed configuration are compared. 

A second problem is the evaluation of the structural response to wind 
gusts. Again, the quasi-steady load model allows us to easily include load 
nonlinearities as well as the coupling between buffeting and self-excited 
actions. It is therefore a suitable tool for evaluating the effects of load 
nonlinearities on the structural behaviour in a consistent way. The 
structural response obtained by means of the nonlinear quasi-steady load 
model will be compared with that obtained through a linearization of the 
same model. The use of the quasi-steady approach represents a 
simplification to the problem that allows the use of more easily available 
experimental data. Although the unsteady effects are neglected, 
qualitatively correct results can be expected for streamlined bridge decks at 
low reduced frequencies. 

5.4.1 Numerical examples 

As a sample structure, the Bosporus suspension bridge (Turkey, main span 
1074 m) is considered. Rayleigh damping coefficients are chosen in such a 
way as to assign a damping ratio of 0.5% to the first two vertical modes. 

With respect to the aerodynamic properties, two different cross-sections 
are considered: a streamlined one (section ‘A’) and a bluffer one (section 
‘B’). 

Cross-section ‘A’ is the one of Severn suspension bridge (whose 
aerodynamics is very similar to the one of the actual Bosporus Bridge). The 
relevant coefficients are plotted in Figure 5.20, as measured in Falco et al., 
1978, where 0.3β = −  is suggested for this cross-section; it is also pointed 
out that the considered cross-section is only slightly affected by the value of 
the reduced velocity, i.e. the quasi-steady approximation should be 
acceptable. 
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Figure 5.20 Cross-section ‘A’: aerodynamic coefficients 
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Figure 5.21 Cross-section ‘B’: aerodynamic coefficients 

Cross-section ‘B’ is the one of the Tacoma replacement bridge. The 
relevant aerodynamic coefficients are plotted in Figure 5.21, as reported in 
Simiu and Scanlan, 1996. As no further experimental indication is available, 
the usual assumption 0β =  is accepted. The use of this kind of cross-
section for such a bridge is of course merely hypothetic and no variation in 
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deck stiffness or inertia has been considered in order to focus on the 
aerodynamic differences. Moreover, unsteady effects are of basic importance 
for bluff cross-sections. Therefore, the results obtained with the quasi-
steady approach have mainly heuristic purposes in this case.  

All the analyses presented below are obtained by discretizing the main 
span into 10 elements (11 aerodynamic cross-sections). Preliminary tests 
with more refined discretizations proved to bring no significant accuracy 
improvement, whereas the computational cost increases rapidly with the 
number of cross-sections. 

5.4.2 Effects of mean angle of attack on stability 

Let us focus on the critical wind speed for aerodynamic stability by making 
use of the analysis presented. In order to evaluate the matrix A , a 
nonlinear static analysis should be performed for each increasing value of 
the mean wind velocity and the tangent structural and aerodynamic 
stiffness and the aerodynamic damping should be evaluated for the relevant 
mean steady value of the displacements. 

As a matter of fact, the effects of displacements on structural stiffness 
are often neglected. Moreover, aerodynamic stiffness and damping are 
usually evaluated through aeroelastic derivatives measured only at zero 
mean-angle of attack. This way, although the unsteadiness is taken into 
account, the possible influence of the deformed configuration is completely 
neglected. Aware of this fact, the designers of bridge cross-sections have 
recently started to obtain aeroelastic derivatives at a few different mean 
angles of attack. 

Here, the approach based on quasi-steady load model is adopted. Even 
though unsteadiness is neglected, the effects of the angle of attack are 
accounted for in a consistent way (Salvatori and Spinelli, 2005; Salvatori 
and Spinelli, 2006a). 

The critical conditions for aerodynamic instability are sought by using 
tangent structural stiffness and aerodynamic coefficients in the reference 
configuration 0C  or in the configuration UC  deformed under mean wind. 

For each aerodynamic cross-section, the critical wind velocity is 
determined in four cases by combining structural properties in 0C  or UC  
with aerodynamic properties in 0C  or UC . The system is projected into the 
space of the first 20 natural modes (enough to include the skew-symmetric 
torsional mode). The results in terms of critical condition are reported in 
Table 5.8. 

It can be noticed that both the modification in structural tangent 
stiffness and the changes in the angle about which we linearize the 
aerodynamic coefficients affect the critical velocity. For cross-section ‘B’, 
the differences are quite large, and the result considering reference 
configuration both for structure and for aerodynamics are not safety 
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preserving. Moreover, in case of aerodynamics evaluated in 0C  and 
structure evaluated in UC , the dynamic instability is not even obtained as 
shown in Figure 5.22, where no negative damping is reached. 
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Figure 5.22 Cross-section ‘B’: total damping (structural + aerodynamic) versus 
mean wind velocity 

Deformed configurations at critical wind velocities are visualized in 
Figure 5.23 and Figure 5.24, whereas the results of modal analysis in the 
reference and deformed configurations at critical wind velocity are reported 
in Table 5.9. For cross-section ‘A’, the small values of the pitching moment 
induces small (negative) rotations and the negative lift produces higher 
tension in the main cables, resulting in higher natural frequencies 
(hardening behaviour). For cross-section ‘B’, the high negative pitching 
moment induces large negative rotations; this results in the partial 
unloading of the downwind cable which reduces its geometrical stiffness and 
therefore its natural frequencies. 

For the two cases of structure and aerodynamics evaluated in the same 
(reference or deformed) configuration, the instability modes are visualized 
in Figure 5.31 and Figure 5.32. As expected, the streamlined cross-section 
‘A’ is subjected to couple vertical-torsional flutter instability, whereas the 
bluff cross-section ‘B’ is prone to torsional flutter instability. The 
contributions of the natural modes to the instability modes are reported in 
Table 5.10 and Table 5.11 and visualized in Figure 5.25 and Figure 5.26. 
Take note that in case of coupled flutter (cross-section ‘A’) the torsional 
contribution is mainly given by the first torsional mode, whereas the 
vertical contribution is given by the first two symmetric modes. It can be 
also observed that the mean static deformation influences slightly the 
critical shapes and the relative contributions of structural modes instability 
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mode, but the critical wind velocity is significantly affected by the choice of 
the centre of the linearization, especially in the case of cross-section ‘B’. 

Table 5.8 Critical flutter conditions 

 Ucr fcr  
Cross-section ‘A’ [m/s] [Hz] 

Modes and aerodynamics in C0 67.5 0.322 
Modes in CU, aerodynamics in C0 67.9 0.323 
Modes in C0, aerodynamics in CU 67.2 0.325 
Modes and aerodynamics in CU 68.7 0.325 

   
Cross-section ‘B’   

Modes and aerodynamics in C 0 26.4 0.330 
Modes in CU, aerodynamics in C0 - - 
Modes in C0, aerodynamics in CU 23.3 0.334 
Modes and aerodynamics in CU 22.8 0.336 
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Figure 5.23 Cross-section ‘A’: steady displacements at critical velocity 
(Ucr = 68.7 m/s) 
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Figure 5.24 Cross-section ‘B’: steady displacements at critical velocity 
(Ucr = 22.8 m/s) 



5.4 Nonlinearities and linearizations 138 
 

 

Luca Salvatori Assessment and Mitigation of Wind Risk of Suspended-Span Bridges 

Table 5.9 Structural modes in the reference configuration and in the steady 
configuration under critical mean wind velocity 

 No wind 
 

 Section ‘A’ 
at Ucr = 68.7 m/s 

 Section ‘B’ 
at Ucr = 22.8 m/s 

mode 
# 

f 
[Hz] 

mode 
shape(*) 

 f 
[Hz] 

mode 
shape(*) 

 f 
[Hz] 

mode 
shape(*) 

1 0.105 L1  0.10 L1  0.105 L1
2  0.131 V2  0.13 V2  0.132 V2
3  0.156 V1  0.16 V1  0.156 V1
4  0.211 V3  0.21 V3  0.211 V3
5  0.262 L2  0.26 L2  0.261 L2
6  0.266 V4  0.27 V4  0.267 V4
7  0.297 cables  0.31 cables  0.289 cables 
8  0.313 cables  0.32 cables  0.310 cables 
9  0.321 cables  0.34 cables  0.330 cables 
10  0.344 cables  0.35 V5  0.347 V5
11  0.347 V5  0.36 cables  0.351 cables 
12  0.369 T1  0.37 T1  0.369 T1
13  0.430 V6  0.44 V6  0.431 V6
14  0.468 cables  0.48 cables  0.458 cables 
15  0.496 cables  0.52 cables  0.503 cables 
16  0.516 V7  0.52 V7  0.517 V7
17  0.553 cables  0.56 T2  0.537 cables 
18  0.559 T2  0.57 cables  0.559 T2
19  0.572 cables  0.60 cables  0.588 V8
20  0.583 cables  0.60 V8  0.592 cables 

(*) L = lateral, V = vertical, T = torsional, # = number of half-waves in the mode shape 
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Table 5.10 Cross-section ‘A’: contributions of natural modes to instability mode 

  Structure and 
aerodynamics in C0 
(Ucr = 67.5 m/s) 

 Structure and 
aerodynamics in CU 
(Ucr = 68.7 m/s) 

mod
e 
# 

 contributio
n 
[%]  

phase 
[deg] 

 contributio
n 
[%] 

phase 
[deg] 

1  0.5 7  0.1 -56 
2  0.0 -179  0.0 2 
3  24.5 (V1) -178  24.5 (V1) 2 
4  17.3 (V3) 6  15.9 (V3) -174 
5  0.0 169  0.0 180 
6  0.0 9  0.0 154 
7  0.0 66  0.8 23 
8  0.0 -151  0.0 150 
9  0.9 -42  6.7 (mixed) -8 
10  0.0 131  4.7 (V5) -49 
11  6.9 (V5) -51  0.0 -11 
12  49.5 (T1) 0  46.7 (T1) 0 
13  0.0 178  0.0 167 
14  0.1 17  0.0 -64 
15  0.0 -11  0.3 -177 
16  0.3 166  0.3 -13 
17  0.0 -104  0.0 13 
18  0.0 19  0.0 30 
19  0.0 163  0.0 177 
20  0.1 85  0.0 180 
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Table 5.11 Cross-section ‘B’: contributions of natural modes to instability mode 

  Structure and 
aerodynamics in C0  
(Ucr = 26.4 m/s) 

 Structure and 
aerodynamics in CU  
(Ucr = 22.8 m/s) 

mode 
# 

 contributio
n [%] 

phase 
[deg] 

 contribution 
[%] 

phase
[deg] 

1  0.5 -1  0.8 -173 
2  0.0 -32  0.0 -177 
3  3.2 2  1.7 -178 
4  2.3 -1  1.1 1 
5  0.0 -93  0.0 -149 
6  0.0 0  0.0 -179 
7  0.0 -19  0.7 9 
8  0.0 -123  0.0 -177 
9  9.3 (mixed) 179  17.6 (mixed) 29 
10  0.0 92  1.0 -2 
11  1.8 -178  0.0 -89 
12  82.6 (T1) 0  76.6 (T1) 0 
13  0.0 89  0.0 1 
14  0.2 -2  0.4 -176 
15  0.0 -172  0.1 3 
16  0.1 5  0.0 180 
17  0.0 79  0.0 173 
18  0.0 -121  0.0 -110 
19  0.0 -144  0.1 7 
20  0.6 -91  0.0 9 
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Figure 5.25 Cross-section ‘A’: contributions of structural modes to instability mode 
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Figure 5.26 Cross-section ‘B’: contributions of structural modes to instability mode 
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Figure 5.27 Cross-section ‘A’: instability mode shape (absolute value) and phase 
angle 
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Figure 5.28 Cross-section ‘B’: instability mode shape (absolute value) and phase 
angle 
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5.4.3 Effects of load nonlinearities 

In order to evaluate the effects of load nonlinearities, a Monte Carlo 
approach based on time-domain simulations is adopted. The structural 
response is evaluated both with the nonlinear quasi-steady load model and 
with the linearized quasi-steady load model, while the structure is assumed 
to behave always linearly. For the linearization of structure and loads (in 
case of linearized loads), the mean steady configuration is considered. 

Analyses are performed for several values of the mean wind velocity, 
ranging from zero to the critical one. For each velocity step, 1800s of wind 
field time-history (with time-step 0.05s) are generated, and time 
integrations are performed by using the nonlinear and the linearized 
versions of the quasi-steady load model. 

The results in terms of root mean square (RMS) and maximum (MAX) 
of the response at mid-span are depicted in Figure 5.29 for the cross-section 
‘A’ and in Figure 5.30 for the cross-section ‘B’. 

Figure 5.31 and Figure 5.32 show the RMS of along-span response at 
sample mean wind velocities for cross-section ‘A’ and ‘B’ respectively. It 
can be noticed that the along-span maximum in the vertical response is not 
at mid-span. The wind turbulence provides in fact more energy at the lower 
frequencies. As the vertical mode with lower frequency is skew-symmetric 
(mode 2), it gives no contribution at mid-span and maximum contributions 
at quarter- and three-quarter-span. 

It can be seen that the linearized model produces an underestimation of 
the response, in case of both cross-sections, and even in the serviceability 
velocity range. A similar conclusion has also been obtained by Chen and 
Kareem Chen and Kareem, 2001, by using an unsteady load model which 
includes nonlinear effects of the low-frequency turbulence. 

As to the critical flutter threshold, no influence of load nonlinearities is 
observed. This result is confirmed by other works such as Borri and Costa, 
2004, where a cubic development of quasi-steady self-excited load is applied 
to a 2-DoF spring-supported cross-section. In the present work, the 
investigation is extended to the case of fully nonlinear load and complete 
three-dimensional modelling of the bridge. 
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Figure 5.29 Cross-section ‘A’: comparison of linear and nonlinear response at mid-
span 
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Figure 5.30 Cross-section ‘B’: comparison of linear and nonlinear response at mid-
span 
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Figure 5.31 Cross-section ‘A’: RMS of structural response at U = 40 m/s 
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Figure 5.32 Cross-section ‘B’: RMS of structural response at U = 12 m/s 
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5.4.4 Remarks 

The proposed approach allows us to easily consider the dependence of wind 
load on the angle of attack and load nonlinearities, and requires 
experimental coefficients that can be obtained by simple tests. 

Two main aspects have been investigated: 

• the error introduced in the estimation of the critical stability 
threshold by neglecting the influence of the steady deformed 
configuration on the modal analysis or on the aerodynamic 
properties (mean angle of attack), 

• the effects of load nonlinearities on the structural response. 

As to the first item, the examples indicate that the steady deformations 
could not always be neglected and significant, possibly not safety 
preserving, errors can be introduced by the linearization around the 
reference configuration. Moreover, it seems that both the variations of 
structural stiffness and of aerodynamics are influent. Therefore, the results 
of the steady analysis (nonlinear static) should be taken into account for 
the calculation of the modal shapes and frequencies, as well as for the 
introduction of the appropriate angles of attack in the aerodynamic 
coefficients. Where aeroelastic derivatives measured at the proper angles of 
attack are available, the framework developed here for the calculation of 
the stability threshold could be easily extended to consider load 
unsteadiness by introducing iterations on the critical frequency. The use of 
unsteady coefficients would be of course mandatory in order to obtain 
accurate results, especially for bluff cross-section (as cross-section ‘B’ in the 
examples which may be affected by the simplifications in the quasi-steady 
load model); further analyses seem necessary in that direction. 

As to the second item, it appears that the linearization of the loads is 
qualitatively acceptable but may produce an underestimation of the 
structural response, and be therefore not safety preserving. As the design is 
usually carried out by performing only linearized analyses, this effect should 
be at least included as safety factor. On this topic, more refined 
investigations are advised, supported by experimental campaigns and 
numerical fluid dynamic simulations. 

Further structures and aerodynamics should be investigated in order to 
generalize this results that are based on selected examples. 

The modelling of bridge aerodynamics is a challenging topic and many 
aspects are not yet resolved. The designers should carefully consider the 
type of analysis to perform and be aware of the possible underestimation of 
the response due to some kind of simplifications. Although the unsteadiness 
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of the fluid-structure interaction is lost, the quasi-steady load model is able 
to provide qualitative indications. 

The proposed method is simple to apply, as it does not require 
complicate wind tunnel tests, and allows useful estimates. 

On one hand, it is possible to perform the stability analysis choosing 
different linearizations of the structure and of the aerodynamics. If the 
results obtained by linearization around the reference configuration would 
be deeply different from those obtained around the steady configuration, 
one may decide to measure aeroelastic derivatives also by taking into 
account the proper angles of attack, and to perform the relevant unsteady 
calculations for the stability threshold. 

On the other hand, it is possible to compare the structural response to 
gust excitation by using nonlinear or linearized load models. This aspect 
provides an estimate of the error produced by the linearization of the load. 
A comparable relative error may be expected in presence of unsteadiness 
and, if relevant, it may be included as a factor to the results obtained by 
using unsteady linearized models. Possible large differences between linear 
and nonlinear quasi-steady results may motivate experimental campaigns 
and stimulate further development and validation of nonlinear unsteady 
load models. 

5.5 Summary of results 

The results obtained in this Chapter can be summarized as follows: 

• It has been shown that full-bridge simulations based on 
identified indicial functions and multi-modal analysis based on 
aeroelastic derivatives are mathematically and numerically 
equivalent. In particular, they give exactly the same results 
(within numerical errors) when the approximation of the 
aeroelastic derivatives induced by the identification of the 
indicial functions is used also in the frequency domain. 
Moreover, when dealing with frequency-domain results, 
comparable differences may appear between distinct 
interpolations and between a specific interpolation and the 
indicial function approximation. On the other hand, the quasi-
steady approach provides only qualitative results. 
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• When a probabilistic approach to unsteady coefficients is 
adopted, identified indicial functions tend to compensate the 
scatter in the measured aeroelastic derivatives, as all the reduced 
frequencies are simultaneously considered. Since this effect might 
be considered as purely numerical, it should not be mistaken for 
an increase in reliability. Nevertheless, if safety coefficients 
obtained from the direct application of aeroelastic derivatives are 
considered, the indicial function approach can be confidently 
used. 

• Time-domain methods shall be used for bridge analysis where 
the frequency-domain approach is more complicated (presence of 
localized damping devices, coupled buffeting analysis, etc.) or 
not applicable (analysis including structural nonlinearities, 
nonlinear damping, etc.). Most likely, where frequency- and 
time-domain approaches are equivalent, as in the case of the 
stability analysis, frequency-domain methods shall be preferred 
since they rely directly on experimental data and are 
computationally less expensive. Nevertheless, also in these cases 
time-domain methods may be used as a numerical proof, as the 
results are obtained through entirely different computations. In 
general, the two kinds of analysis shall be considered as 
complementary tools. 

• The critical velocity for aeroelastic instability may be 
significantly affected by the mean steady deformations of the 
structure, which modify both the structural stiffness and the 
aerodynamic response (by changing the angle of attack). 

• The role of nonlinear terms in wind loading is estimated through 
a quasi-steady approach by comparing nonlinear loading to 
linearized one. In general the linearization produces an 
underestimation of the buffeting response. 

• Structural nonlinearities affect buffeting response too. Also in 
the post-critical regime the oscillation amplitude is limited by 
structural nonlinearities, and oscillations with a limit cycle are 
observed, if laminar oncoming flow is considered. 

• The effects of along-span wind coherence have been investigated 
too. Of course, the coherence is crucial in estimating a realistic 
buffeting response. Moreover, the use of perfectly correlated 
wind may not be always safety-preserving. In fact, if the 
buffeting response is dominated by skew-symmetric structural 
modes, as it is the case with most suspension bridges at 
moderate wind speeds, a perfectly correlated turbulence would 
not contribute to the excitation of these modes. 
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Chapter 6  

Mitigation Strategies 

In this Chapter some design strategies for the mitigation of wind risk are 
presented and compared by means of a risk-based analysis. The risk of 
bridge collapse due to aeroelastic instability and the one of bridge closure to 
traffic due to excessive buffeting vibrations are considered. After a short 
review of the possible approaches for reducing wind-induced vulnerability, 
some examples are offered in the special case of a suspension bridge. In 
particular the possible advantages of introducing secondary cables with 
opposed curvature, crossed hangers, or tuned mass control devices are 
evaluated. The examples offered are of heuristic nature and show the 
potentiality of the risk management framework in helping the decision 
making process, as well as the versatility of the developed computational 
environment in simulating the behaviour of different structures. The 
effectiveness of tuned mass control systems in mitigating aeroelastic 
instability and buffeting risks is highlighted. 

6.1 Bridge performances 

Long-span bridges represent a great challenge in structural engineering. 
Their sensitivity to wind action has been already discussed in Sections 1.3 
and 2.2. Here the general performances are briefly recalled before focusing 
on two specific wind-related issues, namely the risk of failure due to 
aeroelastic instability and the risk of closure to traffic due to excessive 
buffeting vibrations. 

In fact, the total wind risk for a bridge is given by the sum of several 
contributions that can be roughly summarized as follows: 

• Risk of collapse due to aeroelastic instability. This aspect is 
discussed in Section 6.1.1. 
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• Risk of total or partial strength failure due to mean wind action, 
buffeting action, and (more rarely) vortex induced vibrations. 
The consequences of this risk are the collapse of the bridge or 
the costs of its reparation (including those of temporary closure 
to traffic). 

• Risk of fatigue damage due to buffeting, vortex-induced 
vibrations, and wind-rain vibrations. The consequences are the 
costs of the substitution of the damaged elements and closure to 
traffic during the reparations. 

• Risk of temporary loss of serviceability. Under strong winds 
regular traffic may be prevented by the discomfort due to 
buffeting or vortex-induced vibrations, or by the direct wind 
loading on vehicles. Also, if the bridge carries a railway, 
excessive mean deformations may produce a loss of serviceability 
by preventing trains form using the bridge. The risk of 
serviceability loss due to buffeting are treated in Section 6.1.2. 

In a general case it would be useful to define three limit states, which 
may be associated to mean wind velocities: (1) a warning limit, at which 
the management of the bridge should activate the alert state, (2) an 
activation limit, at which the bridge should be actually closed to traffic, and 
(3) a failure limit, at which the bridge is in danger of collapse. The 
activation limit and the failure limit will be discussed in Sections 6.1.2 and 
6.1.1, respectively. As to the warning limit, it could be defined by taking 
into account the probability that a mean wind velocity could evolve to the 
activation limit velocity. 

6.1.1 Aeroelastic instability 

Aeroelastic instabilities represent an ultimate limit state for a bridge. If the 
critical velocity for a static instability is exceeded, the bridge will collapse 
or be severely damaged before reaching a post-critical stable configuration. 
If a critical velocity for a dynamic aeroelastic instability is exceeded, the 
large oscillations (although limited by nonlinear aerodynamic or structural 
effects, as it has been shown in Sections 5.3 and 5.4) will rapidly lead the 
bridge to partial or total collapse. 

The calculation of the probability of failure due to aeroelastic 
instabilities requires the knowledge of the probability distributions of the 
mechanic and aerodynamic parameters and of the mean wind velocity in 
the bridge location. All these probability function should be suitably 
combined (see Section 1.1) and the result is a yearly probability of failure. 

Static instability is seldom a concern for standard bridges. Where 
torsional divergence is a problem, it would be possible to solve the problem 
by improving the torsional stiffness of the bridge or by modifying the cross-
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section aerodynamics in such a way that a smaller slope of the moment 
coefficient is achieved. 

According to Simiu and Scanlan, 1996, aeroelastic stability can be 
improved with respect to flutter by: 

• Changing the geometry of the cross section. Streamlined closed-
box girders are more stable than solid girders with ‘H-types’ 
sections (like original Tacoma Bridge’s ones) or truss girders 
with unslotted roadways. 

• Increasing the torsional frequency and the torsion-to-bending 
frequency ratio. This can be achieved by using closed box girder, 
deep truss-girders closed by roadway and wind bracing to 
constitute a latticed tube, or by different structural schemes as 
discussed in Sections 6.3.1 and 6.3.2. 

• Increasing the bridge damping (see Section 6.3.3). 
• Increasing deck inertia. This solution, however, has obvious 

disadvantages in the static setting. 

6.1.2 Loss of serviceability due to buffeting action 

Long span bridges constitute crucial links; therefore, their closure due to 
excessive discomfort for the users or due to blockage by an accident must 
be avoided as far as possible. 

The loss of serviceability might be caused by the direct action of the 
wind on vehicles (see Section 1.4) or by excessive vibrations due to vortex 
shedding or buffeting. 

Here the case of user discomfort due to buffeting vibrations is discussed. 

 

Figure 6.1 Maximum acceptable accelerations for vertical motion (Irwin, 1978) 

The psychological effect of bridge oscillations is a crucial aspect. The 
human response to vibration depends on several factors, including the 
acceleration, the frequency of vibration, the duration of the event, and the 
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direction of the motion relative to the human body. In case of suspended-
span bridges the motion due to buffeting and vortex shedding is 
predominantly vertical (although in suspension bridges a lateral motion is 
also possible). Irwin, 1978, suggested base curves of acceptability of vertical 
vibrations due to frequent and rare events as functions of the frequency of 
oscillation (Figure 6.1). 

More often, the comfort criterion is expressed in terms of acceleration 
only, either considering the peak value or the standard deviation. 

According to the British Standards, the peak acceleration during a wind 
storm must be lower than 0.04 g , where g  is the acceleration of gravity, as 
long as the mean wind speed is below 20 m/s. 

In Canada (e.g. Peter, 1999) the serviceability criterion prescribes peak 
accelerations be smaller than 0.05 g or 0.10 g depending on whether the 
wind speed is below or above 13 m/s. 

Gu et al., 2002, proposed a criterion based on the design wind speed dU  
of the bridge with the maximum acceptable peak acceleration given by 

 0.1 exp 0.9163 ,
20

d
peak

d

U U
a g

U

⎛ ⎞− ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ −⎝ ⎠
 (6.1) 

where U  and dU  are expressed in m/s. It is clear that Eq (6.1) is not well 
defined. Moreover, for the present purposes the criteria in which the limit 
acceleration depends on the wind velocities do not seem to be acceptable. 

In the case of vortex induced vibrations, lower limit accelerations are 
considered due to the higher probability of occurrence; British instructions 
(United Kingdom Department of Transport, 2001) recommend that 
accelerations may be considered acceptable up to approximately 
0.0025 m/s2 for vehicles and 0.04 m/s2 for pedestrians, whereas the 
American Society of Civil Engineers suggests a limit of 0.005 g (American 
Society of Civil Engineers, 1981). 

6.2 Strategies for wind-risk mitigation in suspension 

bridges 

As a matter of fact, the current solution for very-long-span bridges is the 
suspension scheme, as demonstrated by some recent achievements such as 
Humber Bridge (UK, 1981, centre span of 1410 m), Jiangyin Bridge (China, 
1998, 1385 m), Storebælt Bridge (Denmark, 1998, 1624 m), Akashi-Kaikyo 
Bridge (Japan, 1998, 1991 m), and by the proposed designs for Messina 
Strait Crossing (Italy, 3300 m). 

In the practice, the sensitivity of these structures to wind action has 
been faced so far mainly by acting on the bridge deck design, either by 
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increasing the stiffness through a very rigid truss-girder (as preferred in US 
and Japan), or by improving the aerodynamic performances through closed 
box or multi-box girders (as mostly adopted in Europe and, more recently, 
in China). In Figure 6.2, two paradigmatic examples of these two design 
philosophies are shown: the heavy latticed girder of the Akashi-Kaikyo 
Bridge (Figure 6.2a) and the very streamlined deck of the Jaingyin Bridge 
(Figure 6.2b). The relevant cross-sections are reported in Figure 6.3a and 
Figure 6.3b respectively. 

Solid plate stiffening girders with deck slab have extremely poor 
aerodynamic and aeroelastic properties and are sensitive to vortex-shedding 
excitation. They also have very small torsional stiffness that results in a 
proneness to flutter instability. For these reasons, they are used nowadays 
only for short span bridges. 

    
                               (a)                                                          (b) 

Figure 6.2 Latticed truss girder of the Akashi-Kaikyo Bridge, 1991 m main span 
(a); streamlined box girder of the Jaingyin Bridge, 1385 m main span (b) 

Open truss deck girders generally do not develop significant lift forces 
and are not sensitive to vortex shedding excitation, since they shred the 
flow to such an extent that coherent vortexes are not likely to be produced. 
However, these girders receive very high drag forces.  

As to aeroelastic stability, this is usually achieved by providing a high 
torsional-to-vertical frequency ratio. Horizontal bracing are adopted in 
order to produce an effective closed torsion cell. The aeroelastic properties 
of truss girders can be improved by incorporating longitudinal slots in the 
deck which permit ventilation between the upper and lower surfaces. 

The demand for lateral stiffness against high drag and for torsional 
stiffness against aeroelastic instability results in heavy bridge decks and, as 
a consequence, in expensive designs. Nevertheless, since this solution is 
based on a well-established knowledge, it is considered quite reliable. 
Significantly, the designer of the longest-span bridge to date, the Akashi-
Kaikyo Bridge, after a very long and thorough experimental campaign in 
the wind tunnel, where many tens of different aerodynamic solutions where 
tested, decided for an heavy and expensive latticed girder in order to ensure 
a sufficient reliability. 
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An alternative approach consists in trying to reduce the stiffness and 
strength demand by improving the aerodynamic performances of the deck. 
The idea is to minimize the forces on the structure instead of contrasting 
them. 

The choice of streamlined box girders with good aeroelastic 
characteristics allows reducing the demand for torsional stiffness. Decks 
with lower thickness are therefore possible, and the drag force is 
consequently reduced. In this way, the aforementioned vicious circle can be 
somehow reversed. 

Extreme examples of this design philosophy are the multi-box girders 
such as the one proposed for the Messina Bridge (Figure 6.3c). The 
resulting cross-sections have very appealing aerodynamic and aeroelastic 
properties that, in principle, reduce the demand for structural resources. As 
a matter of fact, a multi-box girder has a much lower torsional stiffness 
than a single box girder with the same cross-sectional dimensions. 

(a)         (b)  

(c)  

Figure 6.3 Truss girder of the Akashi-Kaikyo bridge (a); single box girder of the 
Jaingyin Bridge (b); multi box girder of the Messina Bridge design 

Our knowledge of fluid structure interaction problems in case of bluff 
bodies is incomplete and is therefore supported by intensive (and expensive) 
wind tunnel campaigns performed on cross-sectional models, in order to 
characterize the aerodynamic behaviour of the selected deck. For intrinsic 
scaling problems, however, it is not possible to reproduce in the wind tunnel 
all the characteristic of a full-scale real flow. Therefore, an extreme 
aerodynamic optimization based on such cross-sectional tests might not 
cover all the risks concerning the global behaviour and it has no chance to 
capture three-dimensional phenomena in the flow. 

For these reasons, it may seem unreliable to base the design of strategic 
structures only on the aerodynamic aspect, for which the theoretical 
knowledge is weaker. 
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A strong optimization of the deck in the aerodynamic sense needs to be 
supported by additional structural resources which the transparent deck is 
unable to provide. 

Useful structural devices are restraining the suspended deck torsionally 
at the towers and providing a rigid connection between the main cable and 
the deck at mid-span so that the stiffness of the structural system for skew-
symmetric loading is improved (Gimsing, 1983). 

The structural scheme may be enhanced by using different hanger 
arrangements (e.g. hangers crossed in the transversal plane or zigzagging in 
the longitudinal direction between the main cables and the bridge deck) or 
the introduction of secondary cables as originally proposed by Musmeci, 
1971. These solutions are further explored in Sections 6.3.1 and 6.3.2. 

Matsumoto et al., 2006, suggest reducing the coupling effect of 
structural modes by modifying the mode shapes. 

In any case, in order to improve the design and increase its reliability it 
is possible to include damping systems. Passive dampers in different 
schemes, tuned mass control (TMC) systems, or even active damping 
devices are possible. On one hand, damping proves helpful against buffeting 
and vortex induced vibrations. On the other hand, localized damping 
devices may increase the critical wind velocity for flutter instability. Some 
possible solutions are discussed in Section 6.3.3. 

Finally, it is possible to consider devices that dynamically modify the 
aerodynamic and aeroelastic properties of the cross-section. These may be 
active or passive controlled winglets (Figure 6.4) that modify the flow 
around the cross-section according to its movement (e.g. Cobo del Arco and 
Aparicio, 1999; Fujino, 2002; Wilde et al., 1999). 

       
                            (a)                                                           (b) 

Figure 6.4 Active (a) and passive (b) aerodynamic control (Fujino, 2002; Wilde et 
al., 1999) 

6.3 Numerical examples of wind-risk mitigation 

Some examples of risk mitigation on a specific suspension bridge are offered 
in the next Sections. 

As a sample structure a suspension bridge with the mechanical 
characteristics of Bosporus Bridge (see Figure 5.1, Table 5.1, Figure 5.2) 
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and the aerodynamics of the rectangular cross-section with width-to-height 
ratio 12.5B D =  (see Chapter 3) is considered. 

A location with a reference wind speed of 25 m/s and a terrain 
roughness length 0 0.0035mZ =  is chosen. 

Three approaches to wind-risk reduction are considered: (i) the 
introduction of hanger crossed in a vertical plane orthogonal to the axis of 
the bridge span, (ii) the use of secondary cables with opposed curvature 
with respect to the main cables, and (iii) the installation of tuned mass 
control devices. 

The structural damping is assumed as 0.5% of the critical modal 
damping in all the analyses. In addition to this, the contribution of the 
viscous elements, where present, is considered as described in Section 4.3.4. 

The standard suspension scheme is taken as reference for the evaluating 
the effectiveness of the mitigating approaches against mean steady 
deformations, aeroelastic instability, and buffeting vibrations. 

The mean steady deformations are evaluated according to the procedure 
described in Section 4.5. This preliminary static analysis is performed for 
providing the correct linearization of structure and aerodynamics before 
checking the aeroelastic stability. The results in terms of mean steady 
displacements at mid-span for an arbitrary mean wind velocity of 50 m/s 
are reported for each solution considered in order to give an estimate of the 
structural stiffness. 

The aeroelastic stability analysis is performed according to the 
procedures developed in Section 4.9. In all the considered cases, the critical 
condition is given by the onset of coupled flutter. For the reference 
structure a critical mean wind velocity of 60.9 m/s is obtained. 

The critical mean wind velocity is evaluated and rendered in 
probabilistic terms by using the mean wind velocity profile in Eq (2.2) and 
the extreme value distribution in Eq (2.3). 

As to the buffeting analysis, the bridge response is simulated at several 
mean wind velocities by following a Monte Carlo approach in the time-
domain. The self-excited aeroelastic coupling effects are included through 
the proposed extended indicial function model, whereas buffeting loading is 
evaluated through a quasi-steady approach. The turbulent wind field is 
generated through auto-regressive filters, starting from literature spectra 
and coherence functions, according to the procedure described in Section 
4.4. 

Since the wind process is assumed as ergodic, the typical response can 
be obtained through a single simulation, provided that sufficiently long 
time histories are simulated. For each example, the average response in 
terms of displacements in the mid-span cross-section is plotted versus the 
mean wind velocity. 

The adopted time-domain approach is particularly important in the 
analyses that follow. In fact, structural nonlinearities are particularly 
important for the considered cable structures (e.g. Salvatori and Spinelli, 
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2006b), and the mono-lateral response of hangers, which is not an issue for 
standard suspension bridges, must be carefully considered when crossed-
hangers or complex cable configurations are adopted. Finally, time-domain 
methods are particularly useful in the simulation of the damping devices, 
even in the linear case, since the frequency-domain analysis is usually 
restricted to modal damping only. 

The serviceability conditions of the bridge are evaluated according to 
the curve for storm conditions proposed by Irwin, 1978 (see Section 6.1.2). 
The analysis procedure is described below. 

The time histories of the vertical displacements at the leading and 
trailing edge of the cross section for a given mean wind velocity are given 
by 
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where Y  is the along-span abscissa. The maxima along the bridge span of 
the root mean square acceleration at the leading and trailing edge are 
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The larger of these is selected as characteristic response of the structure: 

 ( )rms rms
rms max , .a a a+ −=  (6.4) 

In this way a curve that relate rmsa  to the mean wind velocity is 
obtained for each example. 

The obtained response in terms of rmsa  must be compared to the 
acceptable values of the RMS acceleration as in Figure 6.1. 

The frequency of excitation is evaluated from the power spectral density 
function of the bridge response. Since several peaks, corresponding to the 
structural modes ‘corrected’ by the aeroelastic effects, are present, some 
further assumptions have been made. By looking at the diagrams in Figure 
6.1, it is clear that in the frequency range of the first structural modes of 
the bridge (below 1 Hz) the lower frequencies are potentially more 
disturbing. It has then been decided to consider the maximum acceptable 
acceleration corresponding to the lowest-frequency mode among those that 
contribute to buffeting response in the vertical direction. In the cases 
analyzed the skew-symmetric vertical one with frequencies around 0.13 Hz 
is selected. This mode also gives the most important contribution to 
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buffeting response at low wind velocities (whereas at higher wind velocities 
the symmetric contributions increase more and more until a symmetric 
coupled flutter instability is initiated). The relevant tolerable RMS 
acceleration is about 0.6 m/s2. This value is then used to obtain the critical 
velocity for loss of serviceability serv

crU  from the curves that relate the 
response in terms of rmsa  to the mean wind velocity. 

From the values of the critical velocity for loss of serviceability and the 
extreme value distribution of the mean wind velocity, it is possible to 
obtain the average number of days per year n  in which the bridge has to 
stay closed to traffic: 

 ( )365 ,serv
U crn U= ⋅ P  (6.5) 

where UP  denotes the yearly probability of exceedance of the mean wind 
velocity and is assumed as in Eq (2.2). 

The hypotheses used for the analyses in next sections are summarized 
below: 

i) Fully nonlinear structural behaviour; 
ii) Wind loading on bridge deck only; 
iii) Vortex excitation neglected; 
iv) Unsteady indicial self-excited loading; 
v) Quasi-steady buffeting loading; 
vi) Ultimate limit state for aeroelastic instability (static and 

dynamic); 
vii) Serviceability limit state for excessive vertical acceleration; 
viii) Deterministic structure and aerodynamics (Vulnerability ); 
ix) Type I extreme value distribution for the mean wind velocity 

(Hazard Exposure∗ ); 
x) Deterministic values of the losses (Consequences ). 

The simplifying hypotheses (ii) and (v) could be easily removed once 
the aerodynamic characteristics of towers and cables and the admittance 
functions for the bridge deck are provided. The relevant load models are 
already implemented in the developed computational program. 

 In order to obtain a fully probabilistic model the probability 
distributions of structural and aerodynamic properties should also be 
considered in order to evaluate the Vulnerability . In Section 5.2 it has been 
shown that a probabilistic approach to aerodynamic behaviour is in general 
possible. Nevertheless, it is the Author’s opinion that this can only provide 
a rough estimate of the true probability distribution of the aerodynamic 
properties, since it is very difficult to predict how the uncertainties of wind 
tunnel measurements propagate to the full scale, where, just for instance, 
the Reynolds number are some order of magnitude higher (unless high-
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pressure or low-temperature wind tunnels are used, which is unlikely to 
happen for civil structures). 

The risk term Hazard Exposure∗  is given by the probability of having 
(in the bridge location and for a given time span) a wind storm with a 
given mean wind velocity in the direction orthogonal to the bridge span. 

Some remarks on the Consequences  of the risk are given in Section 6.4. 

6.3.1 Example 1: Crossed-hangers 

In order to increase the torsional stiffness of the bridge deck, it is possible 
to cross some hangers in such a way that they connect each cable with the 
opposite side of the deck. This is usually not possible at mid-span, where 
the crossed hangers would interfere with the vehicular traffic and would be 
in any case inefficient due to their high inclination with respect to the 
vertical direction. 

In the present example, the hangers are crossed only in the first and last 
fifth of the main span, so that a suitable clearance is ensured for the 
vehicles (Figure 6.5). 

The results of the static, buffeting, and stability analyses are reported in 
Table 6.1. 

A general increase (around 15%) in the torsional stiffness is highlighted 
by the reduction of both the mean steady rotations and the period of the 
main torsional mode. Although the torsion-to-bending frequency increases, 
no significant enhancement in the critical velocity for flutter instability is 
observed. This can be explained by the strong multi-modal nature of the 
critical mode, which receives crucial contributions by more than two 
structural modes, so that the classical flutter solution based on bi-modal 
analysis becomes meaningless (see also Salvatori and Spinelli, 2006c). It 
seems however that an higher efficiency against flutter instability is possible 
for other bridges and with different arrangements of the crossed hangers 
(Bartoli et al., 2006). 

    
                                               (a)                                                           (b) 

Figure 6.5 Suspension scheme with crossed hangers (a); cross-section (b) 

Table 6.1 Results for the mitigation through crossed hangers 

   Reference bridge X-hangers 
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x [m]  1.07 1.06 
z [m]  -0.47 -0.43 

Mean steady displacements 
      (mid-span, U = 50 m/s) 

θy [deg]  -1.05 -0.89 
lat. [s]  9.50 9.50 
vert. [s]  6.42 6.42 

Period of symmetric modes 

tors. [s]  2.71 2.29(*) 
Vertical-to-torsional frequency ratio [-]  2.37 2.80(*) 
Critical velocity for stability [m/s]  60.9 61.2 
Critical velocity for serviceability [m/s]  27.9 33.0 
(*) mixed modes: the frequency ratio is not well-defined in these cases 

 

 

Figure 6.6 Buffeting response at mid-span for the torsional degree of freedom 
(crossed hangers) 

As to buffeting vibrations, a non negligible reduction of the response 
amplitude is observed. As an example, in Figure 6.6 the buffeting response 
of the torsional degree of freedom at mid-span is compared to the relevant 
one for the classical suspension scheme. According to the adopted criteria of 
serviceability, the mean wind velocity for closure to traffic increases by 18% 
with respect to the one in the classical suspension solution with vertical 
hangers. The achieved mitigation of buffeting response will be further 
discussed in Section 6.4. 

6.3.2 Example 2: Cables with opposite curvature 

The idea of a cooperating structural system composed by a deck supported 
by a multi-cable system has been first suggested for long span bridges by 
Musmeci, 1971, who proposed an interesting structural model of suspension 
bridge integrated by stabilizing cables with opposed curvature for the 
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design of Messina Strait Crossing (Figure 6.7). The secondary cables should 
provide additional stiffness and resistance. The lateral stiffness can be 
further increased by laying the secondary cables on non-vertical planes. The 
idea is that a structural redundancy may result in additional safety, which 
could compensate some not-yet-experienced effects on super long spans. 
Some first investigations on this innovative suspension scheme have been 
carried out by Borri et al., 1993, who evidenced remarkable benefits under 
the action of steady wind. Astiz, 1998, pointed out the potentialities of this 
solution. In Borri, Costa, Majowiecki and Salvatori, 2005, a more detailed 
study on the efficiency of an analogous scheme is presented by means of a 
simplified model under dynamic wind loading. Then, in Salvatori and 
Spinelli, 2006c, the model is further extended to cover the full three-
dimensional behaviour, including the drag effects, the structural 
nonlinearities, as well as self-excited and buffeting loading. 

    
                                            (a)                                                            (b) 

Figure 6.7 Musmeci’s suspension scheme (a) and detail of the bridge deck (b) 
(Musmeci, 1971) 

Below, three versions of the suspension schemes with secondary cables 
are analyzed: (i) one with the secondary cables lying on vertical planes 
(Figure 6.8), (ii) one with the secondary cables lying on planes inclined by 
45 degrees with respect to the vertical (Figure 6.9), and (iii) one with the 
secondary cables lying on slightly inclined planes and including crossed 
hangers below the bridge deck (Figure 6.10). 

The relevant analysis results are summarized in Table 6.2. 
Let us first analyze the case of secondary cables lying on a vertical 

plane. The main advantage of this scheme is the reduction of the mean 
steady deformations due to an overall increase in stiffness. At mid-span the 
mean steady displacements are reduced by 20%, 34%, and 13% in the 
lateral and vertical directions and in pitching rotation respectively. 

The effects on flutter are even self-defeating, as it can be easily 
explained by using simple mechanical model. 
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                                         (a)                                                          (b) 

Figure 6.8 Suspension scheme with secondary cables lying on vertical planes (a); 
cross-section (b) 

  
                                         (a)                                                          (b) 

Figure 6.9 Suspension scheme with secondary cables lying on 45-deg planes (a); 
cross-section (b) 

       
                                         (a)                                                          (b) 

Figure 6.10 Suspension scheme with secondary cables and crossed hangers below 
the deck (a); cross-section (b) 

Let us first consider the suspension cables of a bridge without the deck 
(Figure 6.11a). In this case it is obvious that the vertical and torsional 
frequencies are exactly equal. Now we add the bridge deck (Figure 6.11b): 
since its mass is not concentrated at the deck sides the torsional frequency 
is decreased by deck inertia less than the bending frequency; moreover, also 
the deck stiffness plays a role in separating the frequencies. In fact, the 
vertical bending stiffness, which is inversely proportional to the cube of 
span length, is negligible with respect to the torsional one, which is 
inversely proportional to the span length. Therefore, the vertical-torsional 
frequency separation is mainly given by the relative contribution of the 
bridge deck to the total stiffness and inertia of the bridge. When the 
secondary cables are introduced (Figure 6.11c), the relative contribution of 
the bridge deck is reduced in favour of that of the cable system. In our 
example the frequency ratio reduces from 2.37 to 1.95 with a negative effect 
on the critical velocity for instability. In fact only a slight reduction is 
observed, because the effect of the reduced frequency separation is partially 
balanced by the overall increase of the frequencies. The negative effects 
described can be partially alleviated by the use of Kevlar and carbon fibre 
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cables because of their lighter weight (Borri, Costa, Majowiecki, Salvatori 
et al., 2005). 

 
                       (a)                                (b)                               (c) 

Figure 6.11 Schematic representation of the main cables (a), of the classical 
suspension scheme (b), and of the suspension scheme with secondary cables (c) 

Buffeting vibrations are only slightly mitigated, and the critical velocity 
for serviceability increases by about 5% (see also Figure 6.12). 

In order for the secondary cables not to go slack during buffeting 
excitation, a pre-stress equivalent to 40% of the deck dead weight must be 
considered. It is then clear that this solution is not economical for long span 
bridges since the increased stresses will result in much larger cable cross-
sections and consequent augmented construction costs. On the other hand, 
this solution is quite appealing for footbridges (where the negative lift 
cancelling the deck dead weight can be cured by the presence of the 
secondary cables). 

 

Figure 6.12 Buffeting response at mid-span for the torsional degree of freedom 
(secondary cables, vertical) 
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When the secondary cables are disposed on 45-deg-inclined planes, the 
lateral stiffness is further increased, so that lateral displacements are 36% 
smaller of those for the standard suspension scheme. No additional 
advantages are highlighted for stability and buffeting (see also Figure 6.13). 
In this case the pre-stress had to be increased up to a 47% of those induced 
by dead weight. 
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Figure 6.13 Buffeting response at mid-span for the torsional degree of freedom 
(secondary cables at 45 deg) 

Table 6.2 Results of mitigation through secondary cables in various arrangements 

Secondary cables   Reference
bridge vert. 45 deg X-hang. 

x [m] 1.07 0.86 0.68 0.75 
z [m] -0.47 -0.31 -0.50 -0.29 

Mean steady displacements 
       (mid-span, U = 50 m/s) 

θy [deg] -1.05 -0.91 -1.14 -0.73 
lat. [s] 9.50 8.87 7.49 8.28 
vert. [s] 6.42 5.38 5.66 5.34 

Period of symmetric modes 

tors. [s] 2.71 2.76 2.97 2.60(*) 
Vertical-to-torsional frequency ratio [-] 2.37 1.95 1.91 2.05(*) 
Critical velocity for stability [m/s] 60.9 60.8 61.1 66.3 
Critical velocity for serviceability [m/s] 27.9 29.3 29.4 32.0 
(*) mixed modes: the frequency ratio is not well-defined in these cases 

 
An interesting characteristic of the suspension scheme with secondary 

cables is that crossed hangers can be placed below the bridge deck. 
Contrary to the case in which the hangers are crossed above the deck, in 
this case the crossed hangers can be placed along the whole bridge span 
without interfering with traffic. This results in an important increase in 
stiffness, particularly for the pitching degree of freedom, for which the 
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steady rotation are reduced by more than 30%. Again, in presence of 
crossed hangers the structural modes are no more purely vertical or 
torsional, but many mixed modes appear. The flutter instability can be 
reliably predicted only through a multi-modal analysis (or through direct 
time domain simulations). In our example, the critical velocity for flutter 
instability increases of 9%, although the frequency ratio reduces from 2.37 
to 1.95. The presence of secondary cables with crossed hangers reduces the 
buffeting response. According to the adopted criteria of serviceability, the 
mean wind velocity for closure to traffic increases by 15% with respect to 
the one in the classical suspension scheme (see also Figure 6.14). The 
achieved mitigation of buffeting response will be further discussed in 
Section 6.4. 

 

Figure 6.14 Buffeting response at mid-span for the torsional degree of freedom 
(secondary cables + crossed hangers below the bridge deck) 

6.3.3 Example 3: Tuned Mass Control Systems 

The effectiveness of damping in controlling several kind of vibrations, 
including buffeting and vortex induced ones, is well known by bridge 
designers.  

On the other hand, structural damping is traditionally not considered as 
an effective measure against aeroelastic instability. Nevertheless, localized 
damping devices might increase also the critical wind flutter velocity, 
contrary to modal damping which only slightly affects the flutter threshold. 

Some long-span suspension bridges such as the Severn Bridge (UK) 
adopt inclined hangers zigzagging between the main cables and the bridge 
deck in order to take advantage of the hysteresis of the helical ropes 
(Gimsing, 1983). Distributed dampers installed in a suspension bridge deck 
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are used for seismic retrofitting in Murphy and Collins, 2004. In Li et al., 
2005, multiple TMC devices are designed to control the vibrations induced 
by high-speed trains in suspension bridges. Dampers have been also used to 
solve problems of pedestrian-bridge dynamic interaction in footbridges such 
as the Millennium Bridge in London. 

TMC systems (TMCSs) have been considered to withstand aeolian risk 
too, including buffeting vibrations (e.g. Kwok and Samali, 1995; Ricciardelli 
et al., 2003) and flutter instability. 

In Pourzeynali and Datta, 2005, the efficacy of TMCSs in increasing the 
critical flutter velocity is pointed out, especially if semi-active devices are 
used. Semi-active lever-type TMCSs, where the frequency can be tuned by 
varying the lever arm length, are proposed also by Gu et al., 2002. 
Optimization of multiple TMCSs against flutter instability is studied by 
Kwon and Park, 2004, who also account for the uncertainties in wind 
tunnel coefficients. Active control through piezoelectric actuators is also 
possible (e.g. Songa et al., 2006). In Gu et al., 1998, numerical and 
experimental analyses are carried out; mass and frequency ratios, the 
viscous damping of the devices and the modal damping of the structure are 
treated parametrically; an increase up to 40% of the critical mean wind 
velocity is obtained, corresponding to a mass ratio of 5.6%. Passive TMCSs 
provided of disk brakes have been installed, for instance in the Bronx 
Whitestone Bridge (e.g. Barelli et al., 2006). In Figure 6.15 an example of 
TMCS designed against torsional flutter in a footbridge is shown (see also 
Zahlten and Eusani, 2006). 

    
                           (a)                                                            (b) 

Figure 6.15 Kehl-Strasbourg footbridge on the Rhine (a) and the installed tuned 
mass control systems (b) 

Chen and Kareem Chen and Kareem, 2003, propose a method for 
optimizing TMCS parameters against flutter and observe that the 
effectiveness of this countermeasure strongly depends on the aeroelastic 
properties of the cross-section. They distinguish between ‘soft’ and ‘hard’ 
type flutter. In the former case, the negative aerodynamic damping 
increases slowly with the reduced velocity in such a way that the control 
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due to TMC devices is quite effective and a significant increase in the 
critical flutter velocity is obtained. In the latter case, the aerodynamic 
damping increases rapidly with the reduced velocity and only a slight 
increase in the critical flutter velocity can be obtained. The question of the 
oscillation amplitude of control masses and the actual possibility of housing 
them inside a steel-box deck is raised. Other authors (e.g. Chen and Cai, 
2003) suggest that special movable devices allowing large displacements of 
the masses can be temporarily installed to maintain the serviceability of 
critical links during hurricanes. 

Passive devices do not require any power source and are therefore more 
suitable in case of catastrophic events. 

Here it is chosen to equip the bridge with linear TMCSs (e.g. Beards, 
1995; Beranek and Vér, 1992; Petersen, 2001) distributed along the central 
fifth of the main span and positioned as schematized in Figure 6.16. 

Each mass-dashpot-spring device is chosen with the same properties. 
Two cases with different values of the total control mass are considered, 
namely 50 and 100 tons per deck side. These correspond to 0.6% and 1.2% 
of the total mass of the bridge deck respectively, so that the static design of 
the structure is not significantly affected by the presence of the control 
devices. The stiffness of the springs is initially chosen in such a way as to 
obtain a frequency of each device equal to the critical flutter frequency of 
the original bridge and then varied until an optimum response is obtained 
(e.g. Eusani, 2005). The damping of the devices is assumed as 4% of the 
critical damping of each oscillator and is not varied in this preliminary 
analysis.  

    
                                          (a)                                                          (b) 

Figure 6.16 Suspension bridge with attached tuned mass control devices (a); cross-
section (b) 

The relevant analysis results are summarized in Table 6.3. 
As expected, neither the static response under mean wind nor the modal 

frequencies are significantly modified by the presence of the control devices. 
A remarkable increase in the critical flutter velocity is observed (+8% and 
+23% with 50- and 100-ton-TMC respectively). Also the buffeting response 
is significantly reduced (see Figure 6.17), so that the critical velocity for 
loss of serviceability increases of 10% and 26% in the two analyzed 
configurations. It is worth noticing that the benefits increase more than 
proportionally with the total control mass and that they are achieved 
without modifying the overall design of the bridge (the mass of the devices 
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is negligible with respect to the one of the bridge deck and of the main 
cables). The achieved mitigation of buffeting response will be further 
discussed in Section 6.4. 

The introduction of tuned mass devices appears as the most effective 
solution in reducing both instability and buffeting risks. Even without 
performing a detailed optimization, it has been shown that significant 
advantages can be obtained by adding a relatively small amount of mass. 

Table 6.3 Results of mitigation through tuned mass control systems 

TMC   
 

Reference
bridge 50 ton 100 ton 

x [m]  1.07 1.06 1.06 
z [m]  -0.47 -0.46 -0.46 

Mean steady displacements 
      (mid-span, U = 50 m/s) 

θy [deg]  -1.05 -1.04 -1.04 
lat. [s]  9.50 9.57 9.63 
vert. [s]  6.42 6.48 6.54 

Period of symmetric modes 

tors. [s]  2.71 3.33(*) 3.42(*) 
Vertical-to-torsional frequency ratio [-]  2.37 1.92(*) 1.91(*) 
Critical velocity for stability [m/s]  60.9 65.7 74.7 
Critical velocity for serviceability [m/s]  27.9 30.8 35.2 
(*) mixed modes: the frequency ratio is not well-defined in these cases 

 

 

Figure 6.17 Buffeting response at mid-span for the torsional degree of freedom 
(tuned mass control systems) 
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6.4 Summary of results 

The results obtained in the previous Sections are summarized in Table 6.4 
and visualized in Figure 6.18 in terms of critical wind velocity for 
aeroelastic instability and loss of serviceability. 

Table 6.4 Summary of results 

Bridge Crit. velocity
(stability) 

Probability 
of failure 

Critical vel. 
(serviceability) 

Closure 
to traffic 

 [m/s] [1/year] [m/s] [days/year] 

Reference 60.9 8.1×10-14 27.9 32.4 
X-hangers 61.2 (+0.5%) 5.7×10-14 33.0 (+18%) 1.8 
Sec. cables (vert.) 60.8 (-0.2%) 9.1×10-14 29.3 (+5%) 15.5 
Sec. cables (45 deg) 61.1 (+0.3%) 6.5×10-14 29.4 (+5%) 14.7 
Sec. cables (X-hang.) 66.3 (+9%) 1.1×10-16 32.0 (+15%) 3.3 
TMC (50 ton) 65.7 (+8%) 2.2×10-16 30.8 (+10%)) 6.7 
TMC (100 ton) 74.7 (+23%) 1.0×10-18 35.2 (+26%)) 0.4 
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Figure 6.18 Critical wind velocities for serviceability and ultimate limit states 
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These results can be readily rendered in probabilistic terms by using the 
extreme value distribution of the mean wind velocity and the wind velocity 
profile as described in Section 6.3. 

In this way the yearly probability of bridge failure due to aeroelastic 
instability can be obtained. The relevant results are reported in Figure 6.19. 
It is clear that instability is definitely not an issue for the analyzed bridge, 
since the relevant probabilities of failure are negligible in all cases. However, 
the interesting benefits of a three-dimensional cable-structure solution and 
of the introduction of tuned mass control devices are noticeable.  
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Figure 6.19 Yearly probability of failure due to aeroelastic instability 

In a similar way, the critical velocity for bridge serviceability can be 
translated into economical terms by evaluating the average number of days 
per year in which the bridge must be closed to traffic due to excessive 
vibrations. The relevant results are reported in Figure 6.20. 

In the case of buffeting response, the classical suspension solution 
appears as unacceptable, since the bridge would stay closed about one 
month per year in average. All the considered alternative solutions actually 
help to improve serviceability. Where crossed hangers are introduced, either 
from the main cables or from the secondary cables, the benefits are more 
pronounced, since the torsional contribution to buffeting is dramatically 
reduced by the improved torsional stiffness. The most effective solutions are 
however those where tuned mass control devices are used. In particular, in 
the case in which devices with a total mass of 100 tons are used, the 
average closure to traffic drops to 0.4 days/year. 
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Figure 6.20 Loss of survivability due to buffeting vibrations 

The results obtained can then be easily translated into economical terms 
and used to choose among different solutions by comparing their costs with 
their benefits. 

The general costs of bridge closure or failure include social losses that 
are very difficult to assess, but in the case in which the risk analysis is 
performed by the company that builds and manages a bridge (a realistic 
scenario), the losses due to the bridge closure can be estimated for instance 
from the non-perceived toll incomes, in such a way that the money spent to 
build a mitigation device can be compared to the extra income the device 
allows during the lifetime of the bridge. 

It can be concluded that improvements in the structural scheme and the 
use of control devices may provide reliable benefits in bridges with 
optimized aerodynamics (and therefore poor structural resources of the 
deck). 

More detailed analyses should include the evaluation of stresses in the 
solutions based on cables arrangements in order to evaluate the actual 
feasibility of these suspension schemes and allow their structural design. 

As to the solutions based on tuned mass control devices, they appear 
very promising, if one considers that only a rough optimization of the 
control parameters has been performed. Therefore, optimization (e.g. Lee et 
al., 2006; Zuo and Nayfeh, 2004) is one of the natural development of the 
preliminary encouraging results. The issue of the travel length of the masses 
and of the possibility of placing the devices within the bridge deck height 
shall also be evaluated. Oscillation amplitude can be possibly limited by the 
introduction of passive or semi-active mechanical devices. The proposed 
analysis method in the time domain is especially suitable for this purpose, 
since the direct simulation of the nonlinear devices is readily possible. Also, 
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the fatigue life of the viscous elements of the control devices shall be 
estimated in order to include its cost in the risk analysis. 

In a more complete risk approach, the probabilistic approach should be 
extended to structure and aerodynamics and the risks due to vortex 
shedding and direct loading on vehicles should be included. 

Finally, one may expect that different solution may be optimal in 
different ranges of span length. Therefore, parametric analyses are 
eventually planned, where a bridge with typical characteristics might be 
(automatically) designed with different lengths, and the effectiveness of the 
different mitigation strategies might be compared. 

The main results described in this Chapter can be summarized as 
follows: 

• The versatility and usefulness of the developed computational 
environment have been shown; 

• Some particular strategies for mitigating the risk of aeroelastic 
instability and buffeting discomfort have been analyzed; 

• The effectiveness of tuned mass control devices in the 
simultaneous mitigation of flutter and buffeting risks, at least in 
the considered study case, has been demonstrated by numerical 
results; 

• Some of potentialities of the risk management framework in 
helping the decision making process have presented. 
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Chapter 7  

Concluding Remarks 

The present work has addressed the vulnerability of flexible bridges under 
wind action within the general framework of the risk management. 
Particular attention has been paid to the risk of aeroelastic instabilities and 
of buffeting oscillations in presence of self-excited phenomena. 

In order to assess the bridge response during a wind storm, a 
computational framework based on semi-empirical cross-sectional models for 
the wind loading and on the finite element discretization of the structure 
has been developed. 

A time-domain model for unsteady wind loading has been derived as a 
development of load models based on indicial functions. Some inaccuracy 
issues of the existing load models have been overcome, and the consistency 
with the quasi-steady limit has been ensured. A numerical procedure for the 
identification of the load model coefficients from wind tunnel experimental 
data has been proposed and implemented, with regard also for the 
reliability of the original measured quantities. The proposed time-domain 
method for full-bridge simulations has been then validated against multi-
modal frequency-domain analyses (the two approaches must be equivalent, 
if a linear structural behaviour is assumed in the time-domain analyses 
too). The time-domain approach is particularly important, because it allows 
the simulation of structural nonlinearities and damping devices which are 
crucial aspects in the analysis of flexible bridges and in the relevant wind-
risk mitigation. 

By using the developed computational environment, several results on 
the evaluation of bridge response, and therefore of the vulnerability, have 
been obtained. In particular, the effects on aeroelastic stability and 
buffeting response of the along-span wind coherence, of the mean steady 
deformations, and of load and structural nonlinearities have been evaluated. 

Finally, mitigation strategies against aeroelastic instability and buffeting 
oscillations have been discussed. A risk-based comparison of some of the 
mitigating solutions has been performed in the special case of a suspension 
bridge. Structural improvements such as crossed hangers and secondary 
cables with opposed curvature have been considered, as well as the 
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possibility of installing tuned mass control devices. The results have been 
rendered in terms of probability of collapse and expected number of days of 
closure to traffic per year. In this way, a cost-benefit analysis of different 
solutions for risk mitigation is easily achievable. The solutions based on 
damping devices have provided promising results in buffeting- and flutter-
risk mitigation. 

 
Further developments are possible in several directions. 
As to load models, the systematic identification of different aerodynamic 

cross-sections is in progress, together with an improvement of the buffeting 
model, including some considerations on nonlinear unsteady loading. This 
analysis shall also include the validation of the method by the numerical 
comparison of unsteady buffeting response in the time and frequency 
domains for a full bridge, in a similar way to the one presented in this work 
for the stability analysis. 

The method for risk assessment and comparison of mitigation strategies, 
which has been developed here, is only partially based on probabilistic 
methods, since the structural and the aerodynamic properties have been 
assumed as deterministic. As a matter of fact, a fully probabilistic model 
would be possible only in the case of a particular structure, and would 
require detailed specific information. Therefore, only a sensitivity analysis 
seems possible. The framework that has been developed would be useful for 
further analyses, where tentative probability distributions for the structural 
and aerodynamic characteristics could be assumed and the way they 
combine together in affecting the final results could be parametrically 
investigated. In that case the target would be the definition of safety 
coefficients, which appears as the only approach suitable for practical 
applications. 

Finally, the developed computational environment, thanks to its 
generality, makes it possible to envision new analyses for assessing the 
effectiveness of further structural solutions against wind risk. For example, 
the feasibility and efficiency of nonlinear damping devices or of structural 
solutions characterized by geometrical or physical nonlinearities could be 
easily evaluated by direct simulations.  
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