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Abstract. Damped interconnection represents an advanced strategy to mitigate the effects of seismic pounding between 
adjacent structures built at poor mutual distance. The effects of pounding can be particularly severe in slender R/C 
structures, including civic or bell towers. An emblematic case study falling in this class of structures, i.e. a monumental 
R/C bell tower constructed in the early 1960s in Florence, is analyzed in this paper. In order to assess the effects of 
pounding, a non-linear dynamic finite element enquiry was carried out by simulating collisions between the tower and the 
adjacent masonry church with a multi-spring-damper viscoelastic contact model, originally implemented in this study. 
The survey results show that pounding affects the seismic response of the two buildings as early as an input seismic 
action scaled at the amplitude of the normative basic design earthquake level. A damped interconnection-based retrofit 
hypothesis to prevent pounding is then proposed, which consists in linking the two structures by means of a pair of fluid-
viscous dissipaters. Thanks to the added damping produced by these devices, the impacts are totally annulled, bringing 
the structural members of the tower to safe levels.   

Keywords: Added Damping, Passive Control, Seismic Pounding Mitigation, Non-linear Fluid-Viscous Dissipaters, R/C 
Towers, Structural Assessment, Seismic Retrofit. 
PACS: 46.70.-p  

INTRODUCTION 

One of the greatest sources of vulnerability of structures designed before the advent of modern Technical 
Standards is represented by seismic pounding, which occurs when the distance between adjacent buildings is not 
wide enough to avoid collision during their earthquake-induced motion. The damaging effects of pounding can be 
particularly severe in slender R/C structures, including various types of civic or bell towers. Indeed, these buildings 
are characterized by high horizontal translational deformability at least in one of the two main directions in plan, and 
by limited structural redundancy. In this respect, the case study analyzed in this paper is emblematic, being 
represented by a R/C bell tower constructed in the early 1960s to replace the existing 19th century tower of the 
Chiesa del Sacro Cuore in Florence (Figure 1). The new tower was built at a very narrow distance from the façade of 
the church due to the lack of reference Technical Standards at the time, as typical of a large stock of modern heritage 
R/C structures [1]. As a consequence of the little width of the gap, averagely equal to 20mm along the height, the 
two structures appear to be remarkably pounding-prone.  

MODAL ANALYSIS OF THE BELL TOWER AND THE CHURCH  

A complete finite element model of the church and the bell tower was generated by the SAP2000NL commercial 
calculus program [2], based on the original design documentation collected through record research, as well as on 
supplementary laser measurements [3]. The model of the tower was constituted by a complete mesh of frame 
elements. The model of the church included frame elements, for the wooden roof and the R/C dome, and shell 
elements, for the masonry walls. A modal analysis of the two structures was initially carried out by the model, the 
results of which show a first mode of the tower alone, mixed translational along the direction orthogonal to the 
façade (y)–rotational around the vertical axis (z), with vibration period of 1.94 s and effective associated masses 
equal to 80% of the seismic mass of the tower along y, and 22.4% around z. The corresponding shape is plotted in 
the right image of Figure 1. The second mode, concerning the bell tower alone too, is mixed translational along the 
direction parallel to the façade (x)–rotational, with period of 1.39 s and associated masses equal to 93.1% along x, 
and 66.9% around z. The third mode is translational along x–rotational, with period of 0.39 s and associated masses 

11th International Conference of Numerical Analysis and Applied Mathematics 2013
AIP Conf. Proc. 1558, 2466-2469 (2013); doi: 10.1063/1.4826040

©   2013 AIP Publishing LLC 978-0-7354-1184-5/$30.00

2466



equal to 
with peri
features a
include a
0.21 s an
very diffe
structural

FIGUR

A spe
dampers 
time-hist
dampers 
between 
becomes 
likely to b

 

was part
impact fo
coefficien

 

Consi
Hertz ana
with the n
compone
this case,
assigned.
damper i
complete
assembla
disconne
linear da
balance b
model w
pounding
joints rep
beam of t

3.4% along x,
iod of 0.38 s
all mixed tran
a significant tr
nd 0.17 s, equ
ferent dynamic
l characteristi

RE 1.  Views o

N

ecial “multi-sp
and m associ

tory analyses. 
and relevant
the colliding
a function of

be selected in

ticularly adop
force transmitt
nt of restitutio

istently with m
alytical law, i
n exponent fix

ents is drawn 
, and i=1,..,m 
. As the gap c
s driven to its

ed by the impa
age; the exist
cts the dampe

ampers from 3
between simu

was incorporat
g, in the posit
present the pot
the tower, and

, and 2.7% ar
s and associat
nslational–rota
ranslational c

ual to about 1/
c properties of
cs.  

of the bell tower

NON-LINE

pring-damper
iated springs 
 The respons
t springs, foll

g structures. T
f �(t), which 

n the analysis. 

pted in this en
ting spring; a

on r: 

model [4], the
i.e. expressed
xed at 3/2 for 
in Figure 2a. 
in general �

closes, the da
s pre-impact p
act-transmittin
ting gap at r
er in the rebou
3 to 9 highlig

ulation capacit
ted at the inte
tions marked b
tential physic
d the correspo

ound z. The f
ted masses eq
ational modes 
contribution in
/9 and 1/11 o
f the two struc

r and the church

EAR DYNA

” viscoelastic
was devised 
e of the mod
lowing the va
This way, the
allows reprod
The special re

eq �2)(tc �

nquiry, where
and �= impac

2

59
� �

e impact force
d as a n-power

pounding com
The activatio

� is governed b
amper starts to
position by th
ng Hertzian sp
est between 
und phase (re

ghted that the 
ties and comp
erface betwee
by the pairs o
al impact spot

onding spots o

fourth, and las
qual to 14.9%
too, the form

n y direction a
f the first per
ctures along th

 
 
 
 
 
 
 
 
 

 
h and first mod

AMIC ANA

c contact mod
in this study

del is based o
ariation of th

e resulting equ
ducing in piec
elation propos

H )�(
m

m
tk

e m1, m2=mas
ct damping ra

16)-�9([

1 2

�

�

rr

r

e transmitting
r law of the r
mputation. Th
on of each dam
by a gap (nam
o react, adding
e associated l
pring describe
the two adja

eb-gap). A num
5-damper ass

putational time
en the bell to
of joints deno
ts situated on 
n the church f

st significant, 
% along y, an
er of which w
are the fifth a
riod of the tow
he potential po

de shape of the f

ALYSIS O

del constituted
to simulate th

on the sequen
he interpenetr
uivalent damp
ce-wise linear
sed in [4]:  

21

21

mm

mm

�

sses of the im
atio, defined 

16]�

g spring is ass
relative displa
he version of t
mper, with da
med gap-Ci in F
g its response
linear spring, 
ed above, plac
acent structure
merical enqui
semblage in F
es. Therefore,
ower and the 
ted by letters 
the four rear 

façade.  

mode is trans
nd 3.9% aroun
with period of 
and sixth ones
wer along the 
ounding direc

finite element m

F POUNDI

d by an in-ser
he effects of 

ntial activation
ration depth �
ping coefficie
r form any re

mpacting stru
in [4] as the 

sumed to be n
acement betwe
the multi-sprin
mping coeffic
Figure 2a), to 
e to the alread
with stiffness

ced in parallel 
es (named re
iry carried out
Figure 2a is c
, this version 
church for th
A-A’ through

columns and 

slational along
nd z. The chu
0.48 s. The fir
s, with vibrati
 same axis. T
tion, as expec

model of the tw

ING  

ries assemblag
pounding in 
n and disconn
�(t) (with t=t
ent of the ass
lation betwee

uctures; kH=st
following fu

non-linear and
een the collid
ng-damper mo
cient ci � wh
which an init

dy activated d
 kdi. The cont
to the multi-s

est-gap); and 
t by varying t
capable of be
of the multi-s
he time-histor
h E-E’ in Fig
at the top of th

g y–rotational
urch structure
rst modes that
ion periods of

This highlights
cted from their

o structures. 

ge of m linear
finite element
nection of the
time variable)
semblage, ceq

en ceq and �(t)

(1)

iffness of the
unction of the

(2)

d governed by
ding members
odel with m=5
here i=1,..,5 in
tial opening is
dampers. Each
tact element is
spring-damper

the gap that
the number of
aring the best
spring-damper
ry analysis of

gure 2b. These
he rear arcade

, 
e 
t 
f 
s 
r 

r 
t 
e 
) 
, 
) 

e 
e 

y 
, 
5 
n 
s 
h 
s 
r 
t 
f 
t 
r 
f 
e 
e 

2467



 

 

 (a)                                                                                                                                   (b) 

 

 
 

FIGURE 2. Multi-spring-damper contact model and positions of the five contact elements incorporated in the finite element 
model of the two structures. 

 
The non-linear dynamic analyses were carried out by assuming seven artificial ground motions generated from 

the pseudo-acceleration elastic response spectrum of the Italian seismic Standards for the city of Florence, scaled at 
the amplitude of the basic design earthquake level (BDE, with a 10% probability of being exceeded over the 
reference period of 50 years fixed for the building), and the local soil conditions of the church site. As way of 
example of the results of the numerical enquiry, Figure 3 includes plotting of the interpenetration depth and contact 
force time-histories obtained from the most demanding of the seven motions for the element linking joints C and C’, 
for which the maximum values of both quantities were surveyed. These graphs highlight maximum � values equal to 
5.6 mm, and peak impact forces of about 165 kN. Similar results are obtained for the other contact elements, 
assessing severe pounding response conditions. These data are reflected in the stress states of the tower members, 
and particularly of the columns, where maximum percent increases of about 33% in bending moment, 25% in shear, 
and 9% in normal force, are observed in pounding conditions. This causes the current safety margins of the columns 
to annul totally as early as the BDE level of seismic action, and prompts to adopt a pounding mitigation strategy. 

 

 

 

 

FIGURE 3. Interpenetration depth and impact force time-histories obtained from the most demanding input motion for C-C’ 
joints. 

DAMPED INTERCONNECTION-BASED MITIGATION STRATEGY  

The pounding mitigation strategy selected for this case study, recently proposed for application to adjacent frame 
buildings [5], consists in linking the potentially colliding structures with high-capacity fluid-viscous (FV) dampers. 
This class of dissipaters has been the subject of a wider research activity developed over the last two decades by the 
second and third author, which included several FV damper-based seismic protection technologies [6-15]. The 
analytical expression of the damping reaction force FFV exerted by the dissipaters is [6]: 

 
�

		� )())(()( FVFV tdtdsgnctF ��  (3) 

where d=displacement; d� =velocity; c=damping coefficient; sgn(·)=signum function; |·|=absolute value; and 
��fractional exponent ranging from 0.1 to 0.2. In order to keep the architectural intrusion of the intervention to the 
minimum, only two FV dissipaters were installed, and namely in the positions marked by the pairs of joints A-A’ 
and E-E’ in the Figure 2b. The design analysis led to select the following properties of the two devices: cFV=600 
kN(s/m)�: �=0.15; maximum reaction force FFV,max=500 kN; stroke s=±50 mm; maximum damping energy capacity 
Ed=100 kJ. A new set of non-linear dynamic analyses was carried out to evaluate the benefits of the intervention, 
removing the five contact elements from the computational model and substituting them with the two FV dampers, 
so as to reproduce the new structural configuration. The results are summarized in Figure 4, which includes plotting 
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of the time-history of relative displacements of the bell tower with respect to the church (measured again at the top 
C-C’ position in Figure 2b), obtained from the most demanding input ground motion scaled at BDE amplitude.  

  
 
 
 
 
 
 
 
 

 

FIGURE 4. Relative displacement time-history obtained from the most demanding input motion and installation detail of one of 
the two dampers (plan view). 

The graph shows that the maximum value of the relative displacement is equal to 13.8 mm. As this value is 
lower than the assumed gap depth at rest, pounding does not occur. Concerning the technical installation of the 
dampers, it is very simple and non-invasive from an architectural viewpoint, as shown in the design drawing in 
Figure 4, displaying a plan view of the intervention.  

Based on the results of this study, the proposed damped-interconnection strategy appears to be an effective 
pounding mitigation strategy also for special slender R/C structures, such as the one examined in this paper. 
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