
21 September 2024

Determining calcium carbonate reaction kinetics from experimental laboratory data / L.Fusi; A.Monti;
M.Primicerio. - In: JOURNAL OF MATHEMATICAL CHEMISTRY. - ISSN 0259-9791. - STAMPA. - 50:(2012), pp.
2492-2511. [10.1007/s10910-012-0045-3]

Original Citation:

Determining calcium carbonate reaction kinetics from experimental
laboratory data

Published version:
10.1007/s10910-012-0045-3

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/793991 since:

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

DOI:



1 23

Journal of Mathematical Chemistry
 
ISSN 0259-9791
Volume 50
Number 9
 
J Math Chem (2012) 50:2492-2511
DOI 10.1007/s10910-012-0045-3

Determining calcium carbonate
neutralization kinetics from experimental
laboratory data

Lorenzo Fusi, Alessandro Monti & Mario
Primicerio



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media, LLC. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you

wish to self-archive your work, please use the

accepted author’s version for posting to your

own website or your institution’s repository.

You may further deposit the accepted author’s

version on a funder’s repository at a funder’s

request, provided it is not made publicly

available until 12 months after publication.



J Math Chem (2012) 50:2492–2511
DOI 10.1007/s10910-012-0045-3

ORIGINAL PAPER

Determining calcium carbonate neutralization kinetics
from experimental laboratory data

Lorenzo Fusi · Alessandro Monti ·
Mario Primicerio

Received: 10 April 2012 / Accepted: 9 June 2012 / Published online: 22 June 2012
© Springer Science+Business Media, LLC 2012

Abstract In the framework of a research aimed at estimating the performance and
lifetime of porous filters filled with marble powder and used to neutralize acid waters,
we propose a mathematical model for determining the calcium carbonate reaction
kinetics from some experimental data. In particular we show how to determine the
order of the reaction and the reaction rate when calcium carbonate is immersed in a
HCl solution. These parameters are evaluated by means of a fitting procedure based
on least square methods. The experiments are performed using CaCO3 in the form of
a slab and powder and measuring (by means of BET analysis) the specific reaction
surface.

Keywords Neutralization · Mathematical modelling · Calcium carbonate ·
Reaction kinetics

1 Introduction

The calcium carbonate neutralization kinetics can play a key role in the acid mine
drainage remediation. Acid mine drainage (AMD) or Acid rock drainage (ARD) rep-
resents a serious environmental hazard all around the world, especially since it can
cause long term damages to waterways and biodiversity. AMD is mainly originated by
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the exposition of sulfide ores, chiefly iron pyrite, to water and oxygen and it generally
refers to the generation of acid streams from abandoned mines. The consequences
of AMD can be tremendous for aquatic life, the first one to come into contact with
the acid outflow; the extinction of entire fish population has been repeatedly reported,
but the danger occurs also for plants, animals and human beings living along the acid
stream (see [1–5]).

AMD remediation can be performed by means of a wide range of techniques based
on chemical and/or biological mechanisms. Among them, calcium carbonate neutral-
ization is one of the most employed due to low costs and application easiness (see
[6–10]). The overall reaction between the acid stream and calcium carbonate can be
summarized as:

CaCO3 + 2H+ � Ca2+ + H2O + CO2 (1.1)

Calcium carbonate can be added directly to the acid water or otherwise the water can
be forced through the basic bulk, in order to raise the pH of the solution; the process
also triggers the oxidation and precipitation of the dissolved heavy metals as hydrox-
ides. However, in order to optimize the use of calcium carbonate at its full potential as
a remediation agent, it is necessary to have a deep knowledge of the kinetic behavior
of CaCO3 in the specific acid environment in which it will be employed. The aim of
the present work is precisely the kinetic characterization of calcium carbonate neu-
tralization process, by means of a mathematical model based on experimental data.
Three kinds of experiments have been performed for the model development:

– pH evolution assessment of an acid solution reacting with a slab of CaCO3
– pH evolution assessment of an acid solution containing a suspension of CaCO3

powder
– measurement of the specific surface area of calcium carbonate substrates, acid

treated and untreated

The model solution mimics the typical AMD, while volume and stirring conditions
are varied in such a way to allow the assessment of diffusion effects.

2 The general mathematical model

The general equation (see [11–13]) that describes the evolution of the H+ ions con-
centration reacting with the neutralizing calcium carbonate is given by1

dc∗

dt∗
= −k∗S∗(c∗ − c∗

o)γ , (2.1)

where k∗ is the so-called “rate” of the reaction, S∗ is the surface available for the
reaction, γ is the order of the reaction, t∗ is time, c∗ is the molar concentration of
ions at the reacting surface and c∗

o is some threshold concentration below which the

1 Throughout this paper the suffix ∗ stands for dimensional quantities.
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solution can be considered neutral and the reaction stops. In general the reacting sur-
face S∗ is a function of c∗ and time t∗ and therefore another differential equation for
S∗ must be provided. Of course the structure of this differential equation will depend
on the geometry of the reacting medium (irregular, symmetrical, planar, etc.), so that
for some particular geometries this can be easily inferred. Moreover also the rate k∗
can be a function of c∗, but within reasonable variations of c∗ it can be considered
constant (see [12,13]).

The constant k∗ represents the rate at which the reaction occurs, giving a measure
of how fast H+ ions are neutralized by CaCO3. The dimension of k∗ are

[k∗] = 1

(sur f · t ime)
when γ = 1 and [k∗] = conc1−γ

(sur f · t ime)
when γ �= 1.

(2.2)

Hence k∗ measures the velocity (per unit surface) at which calcium carbonate reacts
with H+ ions. In this paper we are interested in determining the two main physical
parameters entering the model, namely k∗ and γ . We will derive such values using
model (2.1) and exploiting data obtained from experiments in which an acid solution
is neutralized using calcium carbonate in different forms (slab, powder, cubes) and
also through the so-called BET analysis, which provides the specific reacting surface
as a function of time. We shall see that the reaction is essentially of order one and that,
in the cases of practical interest, the rate k∗ is essentially constant. Equation (2.1) can
be rewritten in terms of pH

dpH

dt∗
= k∗S∗

ln 10 × 10−pH (10−pH − 10−pHo)γ , (2.3)

where

pH = − log10
(
c∗) . (2.4)

3 Determining the rate constant k∗ with a fixed reaction surface

In this section we determine k∗ exploiting some laboratory measurements of pH at
different times using a reacting surface of fixed area. To this aim we have performed
simple experiments in which a slab of calcium carbonate is placed at the bottom of
a beaker filled with HCl with an initial pH = pHin . The experiments have been per-
formed starting with a strongly acid solution (pHin = 2.18) that is continuously stirred
during the experiments. The pH of the solution is monitored as a function of time and
the experiment is stopped when a fixed “target” pH = pHend is reached. The advan-
tage of this particular geometry is that the surface reacting with the acid water can be
considered to be approximatively constant throughout the experiment.

We integrate (2.1) making the following assumption

(A1) k∗ is constant throughout the process;
(A2) S∗ is constant because of the particular plane geometry of the experiments;
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(A3) The surface concentration [appearing in the r.h.s. of (2.1)] coincides with the
bulk concentration that is monitored during the experiment;

Under these assumptions (2.1) [or equivalently (2.3)] can be integrated starting from
a given initial condition c∗(0) = c∗

in [or pH(0) = pHin] obtaining immediately

c∗ = c∗
o +

[
(c∗

in − c∗
o)1−γ − (1 − γ )t∗k∗S∗]

1
1−γ

, γ �= 1, (3.1)

c∗ = c∗
o + (c∗

in − c∗
o) exp

{−k∗S∗t∗
}
, γ = 1, (3.2)

or, in terms of pH

pH(t∗)=− log10

{

10−pHo +
[(

10−pHin − 10−pHo

)(1−γ )−(1−γ )t∗k∗S∗
] 1

1−γ

}

,

(3.3)

pH(t∗) = − log10

[
10−pHo +

(
10−pHin − 10−pHo

)
exp(−t∗k∗S∗)

]
. (3.4)

To use (3.1)–(3.4) to fit the experimental data thus determining k∗ and γ , we have
to discuss the assumptions above. Concerning (A1), according to the literature (see
[12,13]), k∗ is increasing with c∗ but can be taken as a constant between pH = 2 and
pH = 5.

The case of (A2) is more critical since the reacting surface cannot be assumed to
coincide with the geometrical surface. Nevertheless, although S∗ is slightly increasing
(particularly in the early stages of the process), it can be considered as constant, but
not a priori known. Thus the aim of our experiment can be the determination of

K ∗ = k∗S∗, (3.5)

where k∗ could be calculated only if an independent measure of S∗ is available.
Next we pass to discuss (A3) and we confine ourselves to the case γ = 1 for the

sake of simplicity. If we define

u∗(t) = c∗(t∗) − c∗
o, (3.6)

v∗(t∗) = c∗
s (t∗) − c∗

o, (3.7)

where c∗ is the H+ concentration in the bulk and c∗
s is its value at the reacting surface,

we have

du∗

dt∗
= −K ∗v∗. (3.8)

On the other hand, if we assume that the concentration is uniform in the bulk (because
of stirring) and is linear in a boundary layer if width h∗, mass conservation in the bulk
is expressed by
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Fig. 1 Experimental pH and curve fitting: Exp 1

du∗

dt∗
= − D∗

h∗ (u∗ − v∗), (3.9)

where D∗ is a constant proportional to the diffusivity coefficient (namely diffusivity
per unit length). Therefore, combining (3.8) and (3.9) we get

du∗

dt∗
= −

(
K ∗D∗

h∗K ∗ + D∗

)
u. (3.10)

This means that, using (3.1), (3.2) we underestimate K ∗, with an error decreasing with
h∗, i.e. with the increasing of the stirring speed.

Indeed, performing the experiments with increasing stirring speed, we find that the
slope of the curves where pH is plotted as a function of time is increasing with the
speed of the stirring. Of course, the best approximation is found by fitting the curves
of largest slope.

We have performed the fitting of the curves (using least square method) in two sets
different experiments (see Figs. 1, 2) and found the results

pHin pHend γ K ∗

Exp 1 2.18 5.12 0.98 ± 0.02 (28.30 ± 0.3) × 10−5
(

mol

l

)0.02 1

s

Exp 2 2.15 5.5 0.96 ± 0.01 (28.90 ± 0.5) × 10−5
(

mol

l

)0.04 1

s

In the second experiment the volume of acid solution was one half than in the first
one. For comparison we have also done an experiment with a circumneutral solution.
We found the same value for γ , while the value of K ∗ was larger, as it is expected
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Fig. 2 Experimental pH and curve fitting: Exp 2

since the reacting surface (for an equal geometric dimensions) is expected to be much
smaller because the erosion (and thus the rugosity) is much less important. Conse-
quently we take henceforth

γ = 1. (3.11)

As we noted above, to get an estimate for k∗ we have to evaluate S∗. For this purpose
we used the so-called BET analysis that is based on a theory introduced in 1938 by
S. Brunauer, P.H. Emmett and E. Teller (see [14,15]) and since then is called by the
acronym of their names.

Consider the isotherm adsorption of a gas at a pressure P∗ on a surface and define
the following nondimensional quantities

ϕ = P∗

P∗
o

, θ = V ∗
mono

V ∗ , (3.12)

where P∗
o is the saturation pressure, while V ∗ represents the volume of gas adsorbed

(at pressure P∗) and V ∗
mono represents the volume adsorbed by the surface monolayer.

According to the BET theory it is

θ
ϕ

1 − ϕ
= (1 − α)ϕ + α, (3.13)

where α is the inverse of the so-called BET constant and can be expressed in terms of
adsorption energy. Thus, measuring V ∗ at different pressures the quantity V ∗

mono can
be deduced and through the geometric properties of the gas, the area of the adsorbing
surface can be estimated.

The analysis has been performed with a cycle of adsorption/desorption of nitrogen
at 77 ◦K, using automatic analyzer ASAP 2010 Micromeritics. The nitrogen adsorp-
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tion isotherm has been performed by means of successive controlled additions of
gaseous nitrogen to the burette containing the sample; after each addition the equilib-
rium pressure has been measured, the saturation pressure has been evaluated every 2 h.
The nitrogen desorption isotherm has been assessed after the absorption cycle, through
consecutive controlled withdrawals of gaseous nitrogen from the burette containing
the sample; after each withdrawal, the equilibrium pressure has been measured.

We have analyzed 26 parallelepipeds of CaCO3 with dimensions 0.4×0.8×0.8 cm
that had been immersed in a solution whose pH is increased from pH ≈ 2 to pH ≈ 4.
The time needed to reach the pH target was 22 min and the solution has been kept
stirred (720 rpm). We have obtained that the total reacting surface was 5453 ± 72 cm2

whereas the geometrical surface was 66.5 cm2. Thus, the ratio between the two sur-
faces is 81.92 ± 1.08. This means that in the experiments 1 and 2

S∗ ≈ (1.061 ± 0.014) × 103 cm2, (3.14)

so we get the following estimated value of k∗

k∗ = (2.67 ± 0.06) × 10−7 1

cm2 · s
. Exp 1. (3.15)

k∗ = (2.73 ± 0.08) × 10−7 1

cm2 · s
. Exp 2. (3.16)

4 Determining the rate constant k∗ with an evolving reaction surface

Another series of experiments was performed using marble powder as the neutraliz-
ing agent. We used 12 g of CaCO3 powder uniformly distributed in 1.8 l of an acid
solution. The powder is so fine that gravity settling does not occur and the boundary
layer is negligible. On the other hand, in this case the reacting surface is not constant
since the marble particles are consumed during the process.

The experiments were performed in the following way

(i) A fixed amount of CaCO3 powder is immersed in a fixed volume V ∗ of HCl
until a target pH1 is reached at some time t∗1 . Then the powder is filtrated and
the residual mass is dried, weighted and sent to BET analysis, which provides
S∗(t∗1 ).

(ii) The same amount of powder is again immersed in the same volume of HCl but
now the experiment is stopped at some time t∗2 > t∗1 corresponding to pH2 > pH1.
Once again the residual CaCO3 is dried, weighted and analyzed through BET,
providing S∗(t∗2 ) and so on until the pH target is reached.

Now (2.1), where—according to the discussion of the previous section—we set γ = 1,
gives

c∗ = c∗
o + (c∗

in − c∗
o) exp

⎡

⎣−k∗
t∗∫

0

S∗(τ ∗)dτ ∗
⎤

⎦ (4.1)
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Fig. 3 Exp 1: fitting of k∗ by means of (4.2)

pH(t∗) = − log10

⎡

⎣10−pHo + (10−pHin − 10−pHo) exp

⎛

⎝−k∗
t∗∫

0

S∗(τ ∗)dτ ∗
⎞

⎠

⎤

⎦ .

(4.2)

Having the data for pH(t∗) and for S∗(t∗) we can obtain k∗ as a result of a simple
fitting procedure. The experimental conditions are the following

pHin pHend
Exp 1 2.07 3.76
Exp 2 2.15 3.98
Exp 3 2.18 5.05

and the curve fitting (Figs. 3, 4, 5) by means of (4.2) is easily performed. In Fig. 6 the
function S∗ = S∗(t∗) is shown. The curve is obtained interpolating (using piecewise
cubic Hermite polynomial) the experimental BET data at different times. Consequently
we have the following

k∗
Exp 1 (2.7 ± 0.2) × 10−7 cm−2 · s−1

Exp 2 (3.1 ± 0.2) × 10−7 cm−2 · s−1

Exp 3 (3.3 ± 0.4) × 10−7 cm−2 · s−1

The results agree with the results of the previous section [see (3.16)] where we antic-
ipated that the constant k∗ could be underestimated because of the approximation of
assumption (A3).

123

Author's personal copy



2500 J Math Chem (2012) 50:2492–2511

0 50 100 150 200 250 300 350

2

2.5

3

3.5

4

4.5

5

time, sec

pH

fitted

experimental

Fig. 4 Exp 2: fitting of k∗ by means of (4.2)
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Fig. 5 Exp 3: fitting of k∗ by means of (4.2)

5 The ideal case of spherical particles

In this section we develop a simple mathematical model for the experimental setting
of the previous section (marble powder suspended in an acid solution), but making the
additional simplifying assumption that the powder is made of N spherical particles of
the same radius.
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Fig. 6 Plot of the function S∗ = S∗(t∗) interpolating the BET experimental data

Of course, applying this model will not give us a precise evaluation of k∗, but since
the estimates that will be obtained are of the same order of magnitude of the results of
Sects. 3 and 4, we will infer that this ideal situation is not too far from giving realistic
results.

We take a volume V ∗ of acid HCl solution and suppose that N spheres of CaCO3
are immersed in such a volume. Molar mass balance implies that the rate at which
moles (per unit volume) of H+ ions are neutralized is twice the rate at which moles (per
unit volume) of CaCO3 are consumed. As before we denote by c∗ the acid molar con-
centration (mol/Vol), by S∗ the total reacting surface of the spheres, by r∗ the radius
of the single sphere and by ρ∗ the molar density (mol/Vol) of the spheres. Assuming
spatial homogeneity (diffusion is neglected and all the main variables depend only on
time t∗, as in the case of a stirred solution) we have

d

dt∗
(2c∗V ∗) = d

dt∗

(
4Nρ∗πr∗3

3

)

, (5.1)

where the coefficient 2 on the l.h.s is due to the stoichiometric coefficient in the l.h.s
of (1.1). From (5.1)2

2V ∗ dc∗

dt∗
= 4Nρ∗πr∗2 dr∗

dt∗
. (5.2)

2 The volume V ∗ is supposed to be sufficiently larger than the volume occupied by CaCO3 (as in the case
of the experiments considered in this paper), so that it can be treated as a constant.
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We still assume that the reaction kinetics is of the type (2.1) and write

− dc∗

dt∗
= k∗S∗(c∗ − c∗

o)γ = k∗4Nπr∗2
(c∗ − c∗

o)γ , (5.3)

Plugging (5.3) into (5.2) we get the evolution equation for r∗

− dr∗

dt∗
=
(

2k∗V ∗

ρ∗

)
(c∗ − c∗

o)γ . (5.4)

The system is therefore governed by the following set of ODE’s

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−dc∗

dt∗
= k∗4Nπr∗2

(c∗ − c∗
o)γ , c∗(0) = c∗

in,

−dr∗

dt∗
=
(

2k∗V ∗

ρ∗

)
(c∗ − c∗

o)γ , r∗(0) = r∗
in,

(5.5)

where c∗
in and r∗

in represent the molar acid initial concentration and the spheres initial
radius respectively. Clearly we suppose that c∗

in > c∗
o , otherwise the solution would

be already neutralized. We rescale the variables in the following manner

c = c∗

c∗
o
, r = r∗

r∗
in

, t = t∗

t∗o
, (5.6)

where t∗o is a characteristic time to be selected. The nodimensional formulation of
(5.5) is

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−dc

dt
=
(

t∗o
t∗H

)
r2(c − 1)γ , c(0) = cin,

−dr

dt
=
(

t∗o
t∗s

)
(c − 1)γ , r(0) = 1.

(5.7)

where t∗H e t∗s are the reaction and consumption characteristic times

t∗H = 1

4Nπr∗2

in k∗c∗γ−1
o

, t∗s = ρ∗r∗
in

2k∗V ∗c∗γ

o
, (5.8)

and where cin = c∗
in/c∗

o > 1. We select t∗o = t∗s (consumption characteristic time).
From (5.7)1 it is easy to see that

(c(t) − 1)1−γ = (cin − 1)1−γ − (1 − γ )

t∫

0

(
t∗s
t∗H

)
r2(τ )dτ, γ �= 1, (5.9)
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and

c(t) = 1 + (cin − 1) exp

⎧
⎨

⎩
−
(

t∗s
t∗H

) t∫

0

r2(τ )dτ

⎫
⎬

⎭
, γ = 1. (5.10)

System (5.7) can also be rewritten as

⎧
⎪⎪⎨

⎪⎪⎩

dc

dr
=
(

t∗s
t∗H

)
r2,

c(1) = cin,

(5.11)

and hence we can write c as a function of the radius r

c(r) = cin + 1

3

(
t∗s
t∗H

)
(r3 − 1). (5.12)

Remark 5.1 The ratio of the characteristic times is given by

t∗s
t∗H

= 4Nπr∗3

in ρ∗

2V ∗c∗
o

=: 3N s
in

2N H
o

, (5.13)

where

N s
in = 4

3
Nπr∗3

in ρ∗, (5.14)

is the overall initial number of CaCO3 moles and

N H
o = V ∗c∗

o, (5.15)

is the number of acid moles when the concentration c∗
o is reached (neutralized solu-

tion). We notice that such a ratio does not depend on γ and k∗.

Remark 5.2 Recalling that cin > 1 it is easy to show that, from (5.9), (5.10), c > 1.

5.1 Reaction of order γ = 1

If the order of the reaction is 1, the adimensional concentration is given by (5.10),
while the concentration as a function of the radius is given by (5.12). From (5.10) it is
evident that complete neutralization (c = 1) cannot be reached in a finite time. More-
over, looking at (5.12), if the spheres disappear in a finite time then the concentration
becomes

c = cin − 1

3

(
t∗s
t∗H

)
. (5.16)

123

Author's personal copy



2504 J Math Chem (2012) 50:2492–2511

Recalling that c > 1 (see Remark 5.2), the condition ensuring the complete consump-
tion of the spheres is

cin − 1

3

(
t∗s
t∗H

)
> 1. (5.17)

Therefore when (5.17) holds, the reactant is depleted in a finite time. When γ = 1 the
system of ODE’s (5.7) can be integrated to get an explicit expression for t (r). Indeed,
from (5.7)2 (with γ = 1) and (5.12), we have

− dt

dr
= 1

A3r3 − B3 , (5.18)

where

A3 =: 1

3

(
t∗s
t∗H

)
, B3 =:

[
1 + 1

3

(
t∗s
t∗H

)]
− cin = A3 + (1 − cin). (5.19)

After some algebra

− 3B
dt

dr
=
[

1

B

1

Ar − B
− (A/B)r + 2

A2r2 + ABr + B2

]
, (5.20)

whose integration between 1 and r provides t (r)

t (r) = 1

3AB2

{

ln

[
|A − B|
|Ar − B| ·

√|A2r2 + ABr + B2|
√|A2 + AB + B2|

]

+√
3 arctan

(
2Ar + B√

3B

)
− √

3 arctan

(
2A + B√

3B

)}

(5.21)

From (5.19), we notice that, when B > 0, spheres are not depleted while, when B = 0
depletion occurs in an infinite time. The case B < 0 corresponds to depletion in a
finite time. In particular, when B < 0, the depletion time td is obtained setting r = 0
in (5.21)

td = 1

3AB2

[

ln
|A − B|

|B| ·
√|B2|

√|A2 + AB + B2|

+√
3 arctan

(
1√
3

)
− √

3 arctan

(
2A + B√

3B

)]

. (5.22)

From (5.12) we see that the concentration at time td is

cd = cin − 1

3

(
t∗s
t∗H

)
= cin − A3 = 1 − B3 > 1 (5.23)
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When B > 0 the radius of each sphere tends to rend > 0 and this limit is obtained
setting c = 1 in (5.12)

rend = 3

√

1 + (1 − cin)
3t∗H
t∗s

= B

A
> 0. (5.24)

When B = 0 we have rend = 0.

5.2 Reaction of order γ �= 1

When the reaction rate is different from 1, we cannot obtain an explicit expression for
t (r). Indeed from (5.7)

− dt

dr
= 1

[A3r3 − B3]γ . (5.25)

Integrating (5.25) between r and 1 we get

t (r) =
1∫

r

dξ

[A3ξ3 − B3]γ . (5.26)

Analogously to the previous case, when B < 0 the function t (r) is bounded and the
spheres are consumed in the finite time

td = t (0) =
1∫

0

dξ

[A3ξ3 − B3]γ , (5.27)

with concentration at t = td [see again (5.12)] given by

cd = cin − 1

3

(
t∗s
t∗H

)
= cin − A3 = 1 − B3 > 1 (5.28)

We can show that when B > 0 the radius tends to rend = B/A ∈ (0, 1) and in case
B = 0 we have rend = 0. In both cases the radius rend is reached in a finite or infinite
time depending on γ . From the definition of B and A, when B > 0, it is easy to check
that 0 < B/A < 1 [see (5.19)]. Let us then consider

t

(
B

A

)
=

1∫

B
A

dξ

[A3ξ3 − B3]γ . (5.29)
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Introducing the new variable

z = ξ3 −
(

B

A

)3

, (5.30)

integral (5.29) becomes

t

(
B

A

)
= 1

3A3γ

1−
(

B
A

)3

∫

0

dz

[z + ( B
A

)3]2/3zγ
. (5.31)

Since

(
B

A

)3

� z +
(

B

A

)3

� 1, (5.32)

we have that

1

3A3γ

1−
(

B
A

)3

∫

0

dz

zγ
� t

(
B

A

)
� A2

3A3γ B2

1−
(

B
A

)3

∫

0

dz

zγ
. (5.33)

Therefore from the theory on improper integrals

• γ < 1, ⇐⇒ t (B/A) < ∞,

• γ ≥ 1, ⇐⇒ t (B/A) = ∞.

This means that, when B > 0 and γ < 1 the radius of the spheres tends to rend =
B/A ∈ (0, 1) in a finite time. On the other hand, when γ > 1, the radius of the spheres
tends rend = B/A ∈ (0, 1) in an infinite time.

Remark 5.3 We notice that, in case γ < 1, at time t = t (B/A) we have r = B/A and
hence, from (5.25), dr/dt = 0, implying c = 1 (complete neutralization is reached).
In case γ � 1 complete neutralization is reached in an infinite time.

When B = 0 (which is a very peculiar case) we have a slightly different situation.
Clearly rend = 0 and from (5.29)

t (0) =
1∫

0

dξ

A3γ ξ3γ
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

A3γ

ξ1−3γ

1 − 3γ

∣∣∣∣

1

0
= 1

A3γ
< ∞, γ <

1

3
,

+∞, γ ≥ 1

3
.

(5.34)

Summarizing we can get the following scheme
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• Case (I), B < 0, ⇐⇒ r = 0, c = cd > 1, (from 5.28),
t = td , (from 5.27)

• Case (II), B > 0, γ ≥ 1, ⇐⇒ r = rend , c = 1, t = t

(
B

A

)
=∞,

• Case (IIbis), B > 0, γ < 1, ⇐⇒ r = rend , c = 1, t =
t

(
B

A

)
< ∞,

• Case (III), B = 0, γ ≥ 1/3, ⇐⇒ r = 0, c = 1, t =
t

(
B

A

)
= ∞,

• Case (IIIbis), B = 0, γ < 1/3, ⇐⇒ r = rend , c = 1,

t = 1

A3γ
< ∞.

In (IIbis) the neutralization time can be estimated from (5.33) and numerically calcu-
lated from (5.29). Of course all these cases can be rewritten also for the dimensional
variables.

Let us define m̄∗ as the total mass of CaCO3 at some time and let S̄∗ be the specific
surface (surface per unit mass) provided by the BET analysis so that

m̄∗ = 4

3
π r̄∗3

N ρ̂∗, (5.35)

m̄∗ · S̄∗ = 4π r̄∗2
N , (5.36)

where ρ̂∗ is CaCO3 density3 and r̄∗ is the radius of the spheres at the same time.
Dividing (5.35) by (5.36) we get

r̄∗ = 3

S̄∗ρ̂∗ , (5.37)

which inserted into (5.35) or into (5.36) provides the number

N = m̄∗ · S̄∗3 · ρ̂∗2

36π
. (5.38)

This means that the radius of the particles at any time r∗(t∗) can be calculated in
terms of the mass of the marble powder m∗(t∗) measured at the same time:

r∗(t∗) = r̄∗ 3

√
m∗(t∗)

m̄∗ . (5.39)

3 The density ρ̂∗ represents mass per unit volume of CaCO3 (typically ≈ 2.7 g/cm3). Denoting with Ms
the molecular weight of CaCO3 (Ms ≈ 100 g/mol) the relation between molar density and density is
ρ̂∗ = Msρ

∗.
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From the knowledge of V ∗ (which we recall has been taken sufficiently large4) and
from the knowledge of c∗

o we can now determine the characteristic times

t∗H = 1

4Nπr∗2

in k∗c∗γ−1
o

, t∗s = ρ∗r∗
in

2k∗V ∗c∗γ

o
, (5.40)

where k∗, γ have to be found and where we recall that the ratio t∗s /t∗H does not depend
on k∗ [see (5.13)]. The adimensional constants A and B [not depending on k∗, γ , see
(5.19)] are thus obtained and we determine the function t (r) by means of (5.26), i.e.

t (r) =
1∫

r

dξ

[A3ξ3 − B3]γ . (5.41)

Recalling that r(t) is strictly monotone (decreasing) we can build the inverse of
(5.41), namely r(t). Then we plug this function into (5.12) and we get the concentra-
tion as a function of time and hence the function pH(t). Now we must compare the plot
of pH(t) obtained from the model with the experimental one. Since pH(t∗) = pH(t t∗s ),
we fit the rate constant k∗ and the order of the reaction γ through the dimensional
characteristic time t∗s [see (5.40)]. In what follows we show the results of three exper-
iments. In all the experiments c∗

o = 7.9433 × 10−11 mol/cm3, which corresponds to
pH = 7.1. In what follows m∗

in , m∗
end denote the initial and final mass, whereas r∗

in ,
r∗

end the initial and final radii.

5.2.1 Example 1

In this experiment we have

m∗
in = 12.18 g, m∗

end = 12.00 g, ρ̂ = 2.7 g/cm3, V ∗ = 1800 cm3

(5.42)

S∗ =2.7 × 10−4 cm2/g, pHo =7.1, pHin =2.02, pHend =3.99, (5.43)

implying

c∗
in = 9.5499 × 10−6 mol/cm3, N = 1.5225 × 1013 (5.44)

r∗
in = 4.1357 × 10−5 cm, r∗

end = 4.1152 × 10−5 cm. (5.45)

In this case the values for k∗, γ are (see Fig. 7)

k∗ = 2.15 × 10−7 1

s · cm2 , γ = 0.95. (5.46)

4 In the experiments the ratio between the water volume and the volume occupied by CaCO3 spheres is
O(10−3).
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Fig. 7 Example 1. Fitting of k∗
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Fig. 8 Example 2. Fitting of k∗

5.3 Example 2

In this experiment we have

m∗
in = 12.18 g, m∗

end = 11.83 g, ρ̂ = 2.7 g/cm3, (5.47)

S∗ =2.5 × 10−4 cm2/g, pHo =7.1, pHin =2.15, pHend =5.10, (5.48)
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implying

c∗
in = 7.0795 × 10−6 mol/cm3, N = 1.1915 × 1013 (5.49)

r∗
in = 4.4878 × 10−5 cm, r∗

end = 4.4444 × 10−5 cm. (5.50)

In this case k∗, γ are (see Fig. 8)

k∗ = 4.3 × 10−7 1

s · cm2 , γ = 0.97. (5.51)

As we can see, although the assumption of monogranular powder is completely
unrealistic, the results are in the same range of the ones evaluated in the real situation.
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