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Abstract. Design of new industrial objects characterized by high stylistic content often starts from 

sketches or images of the product to be, subsequently, represented in a 3D digital form by using CAD 

software. To speed up this phase, a number of methods for automatic or semi-automatic translation of 

sketches or images into a 3D model have been devised all over the world also for reverse engineering 

purposes. When the image shading is a crucial information for recovering the final 3D shape, Fast 

Marching is recognized to be among the best method to date, especially for frontally illuminated 

scenes. Unfortunately, such a method cannot be directly applied when object illumination in the 

considered image is oblique. The present work is aimed to propose a simple, but effective, approach 

for recovering 3D shape of objects starting from single side illuminated scenes i.e. for solving 

non-eikonal SFS problems. Tested against a set of case studies, the method proved its effectiveness.    

Introduction 

Computer Aided Design is recognized as an essential task for all the phases characterizing the design, 

the development and the manufacturing of a new industrial product. However, especially for products 

characterized by a strong stylistic content, designers typically develop and communicate their ideas 

using handmade drawings, sketches, photographs or images in general. Such “hand-drawn” 

alternatives are, then, “translated” by CAD draftsmen into 3D models capable to provide a more 

realistic view of the object and to allow a deeper analysis of the stylistic design [1]. This translation 

process, involving a close interaction of stylistic designer and CAD operators in order to produce a 

CAD model carefully representing the designer's intent, is known to be considerably time consuming. 

This is a considerable concern to be considered when cost and time to market are  crucial issues for 

the client and, all the more, when several alternatives have to be evaluated before proceeding with the 

manufacturing process. 

In order to confront with these issues, in the last few years a number of Computer-based methods 

have been devised with the aim of speeding up the 3D reconstruction process from single images or 

sketches [2,3]. In case the designer produces an image, or sketch, where the three-dimensional effect 

of the shape of the designed object is inferable by observing the shading, the most important class of 

methods for performing the 3D reconstruction is the so called Shape-from-Shading (SFS). This 

approach is also very useful for reverse engineering purposes, when a “realistic” image of the object 

to be retrieved is available, but the original (actual or virtual) 3D geometry is not.  

As widely known [4], SFS is a method based on the fact that, once light direction and albedo of the 

object are defined, it is possible to retrieve the slope of the surface with respect to the light direction in 

each point, by analyzing the brightness of the correspondent pixel in the image. 

By assuming the image is generated by using a parallel projection (no perspective) along z direction 

onto xy plane, the surface of the object is completely diffusive (i.e. Lambertian), the albedo is 

uniform, and the light source set at infinite distance, the formulation of the problem is reduced to the 

well-known Partial Differential Equation (PDE), to be solved with respect to z : 
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z ,  is the gradient of z ; 

   is the albedo; 

  yxI ,  is the brightness of the image to be retrieved.  

 

In case light direction corresponds to the viewing direction, the observer and the object are aligned 

and the surface appears frontally illuminated, the PDE (Eq.1) may be simplified into the eikonal form 

[5] shown in Eq.2: 
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The solution of Eq. 2 provides the z coordinates of the points belonging to the (frontally illuminated) 

imaged surface. 

Fast Marching Algorithm 

In the particular case of eikonal problem, several efficient methods have been proposed in literature 

[5]. Among them, the Fast Marching Method (FMM) is, probably, the fastest method to solve eikonal 

forms and, at the same time, the one that provides the best results in terms of accuracy.  

Developed in the nineties by Sethian et al. [6], this method considers a special case of solution front 

evolution, which “actually performs a plane sweep along the lighting direction”. For each time step, 

this plane crosses the surface of the scene ),( yxz   with a 2D closed curve. Seen from the image in the 

light source coordinates ),( yxI , the projection of this curve on the image plane moves as the plane 

sweeps over the surface. 

More precisely, the FMM algorithm proceeds according to the following pseudo-code: 

 

STEP 1 – Retrieve a “cost map” ),( yxC  using Eq.3. This transformation is allowed by the fact 

that the pixel brightness value ),( yxI  varies with the slope of the relative portion of the surface. 

 

 ))),((sin(cos),( 1 yxIyxC                 (3) 

 

STEP 2 – Set a starting region corresponding, on the image, to white pixels relative to the 

maximum or minimum in height of the expected surface. All the points ),( 00 yx of such a region, 

called “solved pixels”, are crossed at time ),( 00 yxT . The staring region coincide with the minima 

values of the cost function corresponding to an absolute maximum or minimum of the expected 

surface. 

 

STEP 3 – Analyze the k-neighborhood of the solved pixels (i.e. the so called “front pixels”) where 

k, typically, is set equal to 4 or 8. The first pixel to be crossed by the wave is the one with smaller 

value in terms of cost. Such a pixel, whose coordinates are generically set equal to ),( 11 yx  is 

crossed at time ),( 11 yxT  provided by Eq.4: 

 

504 Mechanical Science and Engineering IV



 

dTyxTyxT  ),(),( 0011 ,           (4) 

 

Where 0dT  is the transition time from pixel to pixel (it can be set, for instance, by the user). 

The pixel with coordinates ),( 11 yx  can be considered as a new solved pixel. 

 

STEP 4 – Update the starting region with pixel with coordinates ),( 11 yx  and the new starting time 

is set to dTyxTyxT  ),(),( 1100 . 

 

STEP 5 – Update the cost map by subtracting to all the remaining neighbors of the original starting 

region the value dT : 

 

dTyxCyxCnew  ),(),( .            (5) 

 

STEP 6 – Iterate steps 3-5 until all the pixels are solved. The final result of this procedure consists 

of a surface S  resembling the expected ones. 

 

Unfortunately, the FMM has the two main following drawbacks: 1) it is able to retrieve only 

monotonic surfaces and 2) it is able to correctly solve only frontally illuminated images. The first 

issue has been successfully overcome by segmenting the image in monotonic areas and in 

recomposing the obtained surfaces to obtain the entire domain [7]. This work aims to confront with 

the second issue, proposing a new approach to solve SFS problems with oblique lighting, i.e. 

non-eikonal problems. The devised method, described in the following Section, does not claim to be a 

rigorous mathematical procedure but, instead, to be a practical and effective method for solving the 

oblique-illumination problem, allowing to reliably retrieve a surface resembling the expected one. 

This is in fact demonstrated by the successful application of the proposed method to a number of case 

studies.   

FMM-based approach for 3D geometry recovery under oblique illumination 

Let us assume that FMM provides the exact solution i.e. the actual surface generating the image 

),( yxI , in case of frontal illumination; in other words that it solves successfully the eikonal equation.  

Once we face up to a non-eikonal problem, i.e. when the illumination of the scene is oblique, the 

FMM is not able to solve the SFS problem directly. In fact, if this method is applied directly to the 

input image, pretending the illumination to be frontal, the obtained solution results into a distorted 

solution 'S . This can be, for instance, seen in Fig. 1b, where the reconstruction of spherical segment 

under side illumination is provided and compared with the ground truth (Fig.1a). Moreover, the 

solution would not coincide with the one obtained by a rotation of 'S surface to align observer with 

illuminant.     
 

 
Fig. 1. (a) Spherical segment ground truth; (b) spherical segment reconstructed using FMM.  
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Conversely, the algorithm we propose, allows to obtain satisfactory surfaces in case of oblique 

lighting condition, just following a few simple steps: 

 

STEP 1 – Solve the SFS problem applying the 6-steps algorithm described above (i.e. the FMM) 

to the input image ),( yxI  (see for instance Fig. 2a), as if the scene on the image is under frontal 

illumination; the result consists of a surface 'S (see Fig. 2b) . 

 

STEP 2 – Get the normal map 'nm  from 'S .  

 

STEP 3 – Rotate each unit vector of the normal map 'nm  around the axis n  normal to the plane 

identified by L  and ]1,0,0[0 L   by an angle  , defined, in its turn, as the angle between L  and 

0L themselves (see Fig. 2c). Such a rotation allows the definition of a new normal map 

''' nmRnm  , where R  is the rotation matrix around n .   

 

STEP 4 – Compute the image ),('' yxI  as the dot product between each unit vector belonging to 

''nm and 0L . The new image ),('' yxI  resembles the starting one (i.e. ),( yxI ) but now, actually, it 

represents the scene under frontal illumination. As a result, this step allows to bring the oblique 

SFS problem back to a SFS frontal one.  

 

STEP 5 – Solve the new SFS problem, by applying FMM to ),('' yxI . At the end of this step, the 

final surface S  is obtained (see Fig. 2d); under the hypothesis stated at the beginning of this 

Section, S surface illuminated by L , exactly generates the image ),( yxI .  

 

In Fig. 3 the surface of the hemisphere of Fig. 1 and the error map (projected in the xy plane) 

between S  and the ground truth are shown, demonstrating the effectiveness of the reconstruction.  
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Fig. 2 – (a) Starting exemplificative image; b) surface  recovered after STEP 1; (c) Evaluation 

of the normal map  after STEP 3; (d) Final surface  after STEP 5. 

 

Fig. 3. (a) Spherical segment reconstructed using the proposed algorithm; (b) Error map in the 

plane xy.  

Case Study 

The procedure described above, providing a practical method for solving non-eikonal problems, has 

been tested on an extensive set of case studies. For this purpose, the procedure has been implemented 

using Matlab® programming environment. In the present section an exemplificative case study is 

shown. This concerns the 3D surface reconstruction of a commercial PC mouse starting from a single 

synthetic image obtained using oblique illumination (see Fig. 4a). In Fig. 4b the surface 'S  obtained 

after STEP 1 is shown; Fig. 4c shows the final surface S . 
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Fig.4. (a) Image of a commercial PC mouse obliquely illuminated; (b) reconstruction after STEP 1 

of the proposed procedure; (c) final surface .  

Conclusions 

The present paper described a simple and effective method for recovering the 3D geometry of objects 

starting from single images where shading is represented under oblique illumination. The method is 

described by a step-by-step procedure meant to simplify the whole reconstruction problem. Even if, 

from a strictly mathematical point of view, the proposed approach is not rigorous, it proves to be 

effective in performing accurate 3D reconstruction as demonstrated by a series of case studies. The 

transformation proposed is only valid for the pure Lambertian model and a single light source at 

infinity. As a consequence future works will be addressed to other illumination models. Moreover, 

further test will be addressed to assess the method robustness on real-life images.   
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