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Notation

In this work we adopt natural units, where the Planck constant, the speed of light in

the vacuum and the Boltzmann constant are dimensionless an equal to one, ~ = c =

KB = 1.

For ease of writing we identify tensors with their components in particular frames,

so we will have “the stress-energy-momentum tensor T µν”. We use greek indices for

four-vectors’ components, while latin indices i, j, k, l, m, n correspond to the spatial

part, so we have the four current jµ, with µ ∈ {0, 1, 2, 3}, including the charge density,

whilst ji is only the spatial current.

We also adopt the Einstein summation convention to sum over indices that appears

at least once in an upper and once in lower position, and we contract vectors with a

dot:

v · w = vµwµ = vµwνgµν =

3∑

µ,ν=0

vµwνgµν .

Bolded letters are classical (three-)vectors or pseudo-vectors like the (three-)velocity

v or the spatial coordinate x, and contractions of the spatial part of a tensor with

the Levi-Civita symbol. So, being Jµν the angular momentum, J|i = ǫijkJ
jk is the

angular momentum pseudo-vector.

We use the usual notation ∂µ for partial derivatives, for the spatial gradient we

use ∇x, so the the four-divergence of a four-vector is ∂ · u and the three-divergence of

a three-vector is ∇x · v.

We write versors with little hats, so ω̂ is the direction of ω. To distinguish between

quantum operators and their classical counterparts we write operators with a large

hat, except the Dirac field operator which is denoted with a capital Ψ, thus Ĵµν
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is the quantum angular momentum, the generator of proper orthochronous Lorentz

transformations.

We take diag(1,−1,−1,−1) as the Minkowski metric signature, so time-like vectors

have positive inner product uµu
µ > 0.

Fore the levi-Civita symbol in four dimension ǫµνρσ we use the convention:

ǫµνρσ =






1 for even permutations of(0, 1, 2, 3)

−1 for odd permutations ofi (0, 1, 2, 3)

0 otherwise,

so ǫ0ijk = ǫijk or, lowering indices using the metric tensor gµν , ǫ0ijk = −ǫijk.



Introduction

Relativistic hydrodynamics is an important tool in many aspects of modern physics,

from laboratory physics to astrophysics and cosmology. During the last decades we

have seen a renewed interest in the topic, stemming from both its phenomenological

applications and theoretic results. For instance at the very high energies and densities

reached in heavy ion collisions we can produce quark gluon plasma, a deconfined

state of matter where quark and gluons behave like an almost perfect fluid. On the

other hand the Maldacena conjecture of AdS/CFT duality provides universal limits

for transport coefficients, like the widely known relation between shear viscosity and

entropy density η/s ≥ 1/4π.

Relativistic hydrodynamics refers both to special and general relativity. A fluid

is relativistic if it has large enough energy and speed that length contraction, time

dilatation and relativistic covariance in general can not be neglected. It is a term

even used for gravitating fluid systems, not even having necessarily large energies or

velocity. Two important examples are the expansion of the universe and oscillations

of neutron stars. In this work we will only consider a flat space-time, limiting the dis-

cussion to Minkowski space. However our findings have many theoretical implications

on gravitation and cosmology.

Hydrodynamics arises as an effective theory valid in the long-wavelength, low-

frequency limit where the equations of motion can be expressed as conservation laws

for the total four-momentum ∂µT
µν = 0, as well as conserved charge(s) ∂µj

µ = 0

if present. To our best knowledge the right description of microscopic interactions

is quantum mechanics. Being relativistic hydrodynamics a classical theory with only

classical degrees of freedom, it is usually understood that the stress-energy-momentum

tensor, like any other macroscopic object, is the average value of the corresponding

quantum operator T µν = 〈T̂ µν〉.
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The quantum stress-energy-momentum tensor is not uniquely defined in quantum

field theories, unlike its spatial integrals, the hamiltonian Ĥ and linear momentum P̂

operators. An interesting question is thus if different quantum T̂ µν operators will give

the same macroscopic, average, results. Or otherwise, what observables change if we

take a different fundamental tensor.

The main purpose of this work is to answer these questions. We will se that

the problem is strictly related to the presence, or absence, of a fundamental spin

tensor Ŝλ,µν . The spin tensor is an operator which contributes to the total angular

momentum along with T̂ µν in the operator sense. Once we take the average value for

the macroscopic system, it amounts to the internal angular momentum of fluid cells.

We found that previously thought equivalent pairs of stress-energy-momentum

and spin tensors are actually inequivalent. The inequivalence does not show for the

familiar grand grand-canonical ensemble, but it is enough to have a rigidly rotating

system at global equilibrium to find different linear and angular momentum density.

In addition we found that total entropy and transport coefficients are different, out

of equilibrium, if we take different couples of quantum tensors.

An important consideration is that we provided in principle a way to distinguish

between couples of tensors without considering gravity. A measurement proving that

the usual stress-energy-momentum tensor is not the right one would have major con-

sequences in gravitation and cosmology. The presence of a spin tensor and, more

importantly, a non vanishing antisymmetric part of the stress-energy-momentum ten-

sor, for example, would point toward theories with non vanishing torsion, namely

affine theories.



Chapter 1

Relativistic fluids with spin

This chapter is a brief introduction to relativistic fluids with internal angular momen-

tum. We will start in the next section from the general notions of relativistic hydro-

dynamics, and the link between quantum field theories and relativistic fluids. Later

we will show a canonical procedure to build the stress-energy-momentum operator

T̂ µν knowing the action of a system. From the very same procedure the fundamental

spin tensor Ŝλ,µν is introduced. We will see that there is class of transformations,

called pseudo-gauge transformations, which allows to change the fundamental opera-

tors {T̂ , Ŝ}. One particular transformation eliminates the spin tensor. Since pairs of

tensors linked by a pseudo-gauge transformation are commonly believed to be phys-

ically equivalent, we can ask if it is necessary to have a fundamental Ŝλµν operator.

The aim of this work is to study the effects of these transformations on observable

quantities, and we will show that different pairs are actually inequivalent.

1.1 Quantum field theories and relativistic fluids

Relativistic hydrodynamics is a model to describe the behavior of a continuous, macro-

scopic, system with classical -i.e. non quantum- degrees of freedom1. The equation

of motion is the local conservation of four-momentum:

1Causality forbid rigid bodies in special relativity, as they require superluminal propagation of
information to maintain the same relative distances during acceleration. Every relativistic system
can be seen as a fluid or, in general, as a viscoelastic system.
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∂µT
µν(x) = 0.

This means that the stress-energy-momentum tensor T µν corresponds to four-momentum

flux. The total four-momentum P µ then reads:

P µ(t) =

∫

V

d3x T 0µ(x),

and it is constant, provided that the four-momentum flux at the spatial boundary

vanishes, as it is usually required:

∫

∂V

dS ni T
iµ(x) = 0,

where n̂ is the direction of the infinitesimal surface element.The stress-energy-momentum

tensor thus includes the energy density T 00, that is the energy of a microscopic cell;

the linear momentum density T 0i, and the four-momentum flux T iµ. The ideal fluid

[1] reads:

T µν = (ε + p)uµuν − pηµν ,

where ηµν is the Minkowski metric, uµ is the four-velocity of the elementary cell, ε is

the proper energy density, namely the energy density as measured in the comoving

frame, and p is the pressure. As the presence of the pressure suggests, the stress-

energy-momentum tensor contains the relativistic generalization of the stress tensor

(pressure, and dissipative currents for the non ideal fluid), whence “stress”. We will

return in detail to the topic of the general form2 of T µν in chapter 4, showing that

the local four-momentum conservation ∂µT
µν = 0 for perfect fluids corresponds, in

the non-relativistic limit, to the continuity equation and the Euler equation.

Quantum field theory embodies both special relativity and quantum Mechanics

axioms. It is the most common tool to deal with microscopic interactions at relativistic

energies. Relativistic hydrodynamics on the other hand is a classical theory with

classical degrees of freedom. We know that classical observables amounts to the

average value of corresponding quantum operators:

2including the non-ideal case.
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Ocl. = tr
(
ρ̂ : Ô :

)
,

where ρ̂ is the density operator, which describe the state, either pure or mixed, of the

system. So the average value is taken both with respect to the quantum and to the

statistical fluctuations. The normal ordering : · · · : is introduced to avoid zero point

infinities and, in general, it may be necessary to use renormalized operators.

The most straightforward way to study relativistic fluids taking into account mi-

croscopic quantum interactions is therefore to take as the stress-energy-momentum

tensor the mean value of the corresponding operator in quantum field theory:

T µν(x) = tr
(
ρ̂ : T̂ µν(x) :

)
.

where the operator T̂ µν(x) , being the quantum counterparts of the stress-energy-

momentum tensor, must fulfill the equations:

∂µT̂
µν = 0 P̂ µ =

∫
d3x T̂ 0µ(x),

so that the mean value fulfills the classical counterpart. In the next section we will

see a canonical way to build a quantum tensors fulfilling these equations, but, as we

will see in the following one, there is not only one candidate.

1.2 Canonical derivation of quantum tensors

Differently from classical physics in quantum field theory there is not a straightforward

definition of total energy, momentum and angular momentum from the fundamental

objects, field operators. The situation is even worse if we want a definition of local

quantities like four-momentum and angular momentum densities.

In Newtonian mechanics we can write the action of a system (the time integral

of the Lagrangian, or the space-time integral of the Lagrangian density for continuos

systems) so that the principle of least action gives the equation of motion for each

degree of freedom. Noether’s theorem states that the invariance of the action with

respect to a group of global transformations corresponds to a set of conserved currents.

The corresponding conserved charge is the generator of the starting transformation.
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So if we have an invariant action:

A =

∫

Ω

L(φA(x), ∂µφ
A(x), x)d4x

where the infinitesimal transformation reads:





xµ → ξµ = xµ + δxµ = xµ + εXµ

φA(x) → αA(ξ) = φA(x) + δφA(x) = φA(x) + εΦA,

Noether’s theorem guarantees that the four current jµ has a vanishing four-divergence

∂ · j = 0:

jµ =

[
∂L

∂ (∂µφA)
(X · ∂)φA −LXµ

]
− ∂L

∂ (∂µφA)
ΦA,

If we consider the the invariance under space time translation, having the total four-

momentum as the generator, we have:





δxµ = εeµ

δφA(x) = 0,

where eµ is the direction of the space-time translation. The conserved current is

therefore:

jµ =

[
∂L

∂ (∂µφA)
∂νφA − ηµνL

]
eν ,

where ηµν is naturally the Minkowski metric. From the last formula we get the canon-

ical stress-energy momentum tensor T µν
c. :

T µν
c. =

∂L
∂ (∂µφA)

∂νφA − ηµνL.

The procedure remains valid even in the quantum case [4], following the same steps

we have therefore the canonical operator:

T̂ µν
c. =

∂L
∂
(
∂µφ̂A

)∂ν φ̂A − ηµνL,
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where the fields φ̂A are now operators, and the integral of the time component corre-

spond to the generator of quantum space-time translations P̂ µ.

It is important now to extend a little further the discussion. For ease of reading

we will not write an upper hat on the fields, understanding that the same arguments

hold for the quantum system.

Let us consider at this point rotations and boosts, which have the total angular

momentum as the generator. The infinitesimal transformation are:





δxµ = − i

2
εeρσ(Jρσ)

µνxν = 1
2
εeρσ(δµ

ρ δν
σ − δν

ρδ
µ
σ)x

ν = εeµνxν

δφA(x) = − i
2
εeµν(Σµν)

A
A′φA′

,

with eµν constant, unitary and skew symmetric. (Jρσ)µν and (Σµν)
A
A′ are the rep-

resentation of the algebra of the proper orthochronous Lorenz group. (Jρσ)µν =

i(δµ
ρ δν

σ−δν
ρδ

µ
σ) is the vector representation, used for positions x, whilst (Σµν)

A
A′ depends

on the spin of the fields.

The conserved current is:

jλ =

[
i

2

∂L
∂ (∂λφA)

(Σµν)A
A′φA′ − xµ

(
∂L

∂ (∂λφA)
∂νφA − ηλνL

)]
eµν .

Using the definition of the canonical stress-energy-momentum tensor, the latter reads:

jλ = −1

2

[
−i

∂L
∂ (∂λφA)

(Σµν)A
A′φA′

+ xµT λν
c. − xνT λµ

c.

]
eµν ,

so we have the canonical angular momentum four-current:

J λ,µν = −i
∂L

∂ (∂λφA)
(Σµν)A

A′φA′

+ xµT λν
c. − xνT λµ

c. .

the part which does not explicitly depend on the stress-energy momentum tensor is

called the spin tensor:

Sλ,µν
c. = −i

∂L
∂ (∂λφA)

(Σµν)A
A′φA′

.

Excluding possible quantum anomalies, from the action of a quantum field theory we

can build at least a couple of canonical tensors {T̂c., Ŝc.} that fulfills the conservation

equations:
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∂µT̂ µν = 0

∂λ

(
Ŝλ,µν − xµT̂ λν − xν T̂ λµ

)
= 0

⇒





∂µT̂

µν = 0

∂λŜλ,µν = T̂ νµ − T̂ µν ,
(1.1)

and gives the Poincaré algebra generators, total four-momentum and angular momen-

tum operators, when spatially integrated:

∫

V

d3x T̂ 0µ = P̂ µ

∫

V

d3x Ĵ 0µν =

∫

V

d3x
(
Ŝ0,µν + xµT̂ 0ν − xν T̂ 0µ

)
= Ĵµν . (1.2)

1.2.1 Meaning of the spin tensor

We have just seen that Noether’s theorem, when we use it to find the conserved current

linked to Lorentz boost and rotation, provides a new operator, the spin tensor, a part

of the angular momentum current. Total angular momentum and angular momentum

conservation are, in the operator sense:

Ĵµν =

∫

V

d3x
(
Ŝ0,µν + xµT̂ 0ν − xνT̂ 0µ

)
∂λ

(
Ŝλ,µν − xµT̂ λν − xνT̂ λµ

)
= 0.

Therefore for the average value, we have as the total angular momentum:

Jµν =

∫

V

d3x
(
S0,µν + xµT 0ν − xνT 0µ

)
,

where we recognize the orbital angular momentum in the last two terms. Being T 0µ

the linear momentum density, xµT 0ν − xνT 0µ is the orbital angular momentum of a

microscopic fluid cell3. Accordingly the spin tensor correspond to the internal angular

momentum of the fluid cell, i.e. the angular momentum about the position of the cell

as the origin, hence the name spin tensor.

From a kinetic point of view we can build a spin tensor using the average polar-

3The cross product of two vectors is not defined in four dimension. The covariant extension of
angular momentum is thus xµpν − xνpµ. If we consider the spatial components and contract with
the three-dimensional Levi-Civita symbol we recover the familiar angular momentum pseudo-vector
li = 1/2ǫijk(xjpk − xkpj).
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ization of particles, as we have the stress-energy-momentum tensor from the particle

distribution function [1]. When there is a non vanishing polarization of particles, it

is natural to think that the spin tensor represents the density of spin per unit vol-

ume but, as we will see in more detail on the discussion at the end of chapter 2,

particle polarization contribution to total angular momentum can be included in a

fluid having only orbital angular momentum. As we shall see in the next section, the

canonical pair given by the Noether’s theorem is not the only one fulfilling the local

conservation equation and giving the Poincaré algebra generators, and it is possible

to build a pair {T̂ , Ŝ} with a vanishing spin tensor Ŝ ≡ 0.

It is important to stress how the presence, or absence, of a fundamental spin tensor

should be seen from observable quantities, like, for example, energy density, momen-

tum density and total angular momentum density. The presence of a non-vanishing

internal angular momentum density in a macroscopic system is not conclusive. For

instance let us start with a spin-less fluid, a system which does not need a fundamen-

tal spin tensor to be described. We can still measure a non-vanishing internal angular

momentum density because of physical reasons. Any measuring device will perform

an angular momentum measure over a small but finite volume, it will not perform a

direct measure of density. Thus we can not distinguish between a fundamental spin

tensor S0,µν = 〈Ŝ0,µν〉 and small vortices encompassed in the volume of integration.

1.3 Pseudo-gauge transformations

Even if Noether’s theorem gives a canonical couples T̂ µν
c. and Ŝλ,µν

c. , in quantum field

theory the stress-energy-momentum tensor and the spin tensor are not uniquely de-

fined. The canonical couple of tensors is not the only one fulfilling the conservation

equations (1.1) and giving the generators of Poincaré algebra trough the spatial in-

tegral of time components (1.2). Once a particular couple {T̂ , Ŝ} of this tensors is

found, e.g. the canonical couple from Noether’s theorem, it is possible to generate

new couple {T̂ ′, Ŝ ′} using a pseudo-gauge transformation:

T̂ ′µν = T̂ µν +
1

2
∂α φ̂αµ,µ Ŝ ′λ,µν = Ŝλ,µν − Φ̂λ,µν + ∂αẐαλ,µν , (1.3)

where:
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φ̂αµ,ν = Φ̂α,µν − Φ̂µ,αν − Φ̂ν,αµ,

and Φ̂λ,µν , usually called superpotential, is an arbitrary rank three tensor antisymmet-

ric in the last two indices. The last operator Ẑαλ,µν is a rank four tensor, antisymmetric

both in the {αβ} and the {µν} indices. This is an auxiliary supepotential, it is seldom

considered, but is still part of the most general pseudo-gauge transformation.

It is straightforward to check that the new couple still fulfills the continuity

equations (1.1). If we take the four-divergence ∂µT̂
′µν we have the, vanishing, four-

divergence of the starting stress tensor ∂µT̂
µν , and the divergence:

1

2
∂µ∂α

(
Φ̂α,µν − Φ̂µ,αν − Φ̂ν,αµ

)
,

but even the last term vanishes because ∂µ∂α is symmetric in the α ↔ µ exchange

whereas Φ̂α,µν − Φ̂µ,αν − Φ̂ν,αµ is antisymmetric by construction. In a similar manner

the term we add to the total angular momentum is:

−Φ̂λ,µν +
1

2
xµ∂αφ̂αλ,ν − 1

2
xνφ̂αλ,µ + ∂αẐαλ,µν =

=
1

2
∂α

[
xµφ̂αλ,ν − xν φ̂αλ,µ + 2Ẑαλ,µν

]
.

It is the divergence on the α index of of an antisymmetric term in α ↔ λ exchange, so

it vanishes if we take the divergence on the λ index. The spatial integrals
∫

V
T̂ ′0µd3x

and
∫

V
Ĵ ′0,µνd3x of the new tensors are invariant, thus yielding the same generators,

if the following integrals of the superpotentials Φ̂ and Ẑ vanish:

∫

V

∂α

(
Φ̂α,0µ − Φ̂0,αµ − Φ̂µ,α0

)
d3x = 0

∫

V

∂α

[
xµ
(
Φ̂α,0ν − Φ̂0,αν − Φ̂ν,α0

)
− xν

(
Φ̂α,0µ − Φ̂0,αµ − Φ̂µ,α0

)
+ 2Ẑα0,µν

]
d3x = 0,

because of symmetry (the temporal derivative is always vanishing since all the opera-

tors are antisymmetric in the α and 0 indices) and because of the divergence theorem

in three dimension we can write the integrals as boundary conditions:
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∫

∂V

dS n̂i

(
Φ̂i,0µ − Φ̂0,iµ − Φ̂µ,i0

)
= 0 (1.4)

∫

∂V

dS n̂i

[
xµ
(
Φ̂i,0ν − Φ̂0,iν − Φ̂ν,i0

)
− xν

(
Φ̂i,0µ − Φ̂0,iµ − Φ̂µ,i0

)
+ 2Ẑα0,µν

]
= 0.

These conditions are usually ensured taking the superpotential as a combination of

the fields of the theory and enforcing boundary conditions for them; for instance,

the familiar periodic boundary conditions for a box, or requiring some expression

involving the field or its normal derivatives to vanish at the boundary. Usually the

same conditions on the fields ensures both the vanishing of the boundary integrals for

the suerpotentials and for the original tensors:

∫

∂V

dS n̂iT̂
iµ = 0

∫

∂V

dS n̂iĴ
i,µν = 0. (1.5)

It is convenient to remind that the last condition ensure the constancy of the total

four momentum and angular momentum. The simplest case is to take fields (and

their derivatives up to the relevant order4) that vanish at the boundary of the region

occupied by the system, this is a covariant assumption and guarantees that in every

inertial frame the tensors are constant and both P̂ µ and Ĵµν transform as four tensors5.

This is not always possible, for instance the MIT bag model which we will use in the

next chapter. Many times the boundary conditions ensures the vanishing of the flux

only on a particular inertial frame or class of inertial frames but non all of them.

The generators are thus constant only on a class of frames and they do not change

like four-tensors under boost and rotations. We will assume in such cases to perform

calculations in the fixed frame for mathematical convenience.

In conclusion, a pseudo-gauge transformation is always possible, provided that

4We understand here that superpotentials and operators depend only on the fields and field
derivatives, up to a certain order. So they are all vanishing provided fields and derivatives are.

5They transform like tensors under boost and rotations, through the Jacobian matrix. This does
not mean they behave like tensor for general transformations, e.g. the total angular momentum
operator changes its components under translations whilst an actual tensor only change the the
application point, not the components.
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suitable boundary conditions are ensured on the superpotential. In this case the couple

{T̂ , Ŝ} and {T̂ ′, Ŝ ′} are regarded as equivalent in quantum field theory because they

fulfill the same equations, give the same Poincaré algebra generators (i.e. total energy,

momentum and angular momentum, in the operator sense) including the Hamiltonian

and thus the time evolution of the system.

An important transformation of this class is the Belinfante symmetrization, where

the superpotential is Φ̂λ,µν is the spin tensor itself, and ∂αẐαλ,µν is vanishing. After

the transformation the resulting spin tensor ŜB. is vanishing:

Ŝλ,µν
B. = Ŝλ,µν − Φ̂λ,µν = Ŝλ,µν − Ŝλ,µν ≡ 0,

and the new stress-energy-momentum tensor T̂ µν
B. is symmetric in the µ ↔ ν exchange

because of four-momentum and angular momentum conservation:

∂λĴ λ,µν
B. = ∂λ

(
xµT̂ λν

B. − xν T̂ λµ
B.

)
= T̂ µν

B. − T̂ νµ
B. ,

thus the name symmetrization.

This transformation has a particular significance in gravitation [2]. Einstein Field

equation is a classical -that is non-quantum- equation that links geometry and matter.

Geometry through the Einstein tensor, and matter through the -non quantum- stress-

energy-momentum tensor.

Being quantum mechanics our best description of microscopic interaction it is

usually assumed that the classical tensor is the average value of the corresponding

quantum operator. The classical tensor, the average value of the operator, must

be equal to the Einstein tensor. General relativity in its simplest formulation uses

the Levi-Civita connection as the generalization of ordinary partial derivatives to

curvilinear space. Levi-Civita connection only depends on the metric tensor, and it is

both torsion free and compatible with the metric. These properties entails that the

Einstein tensor is symmetric by construction, and so T µν has to be symmetric too.

Using the Belinfante procedure the resulting tensor, other than being symmetric,

correspond to the Hilbert sress-energy-momentum tensor6:

6This tensor, unlike the canonical tensor, does not stem from space-time translation invariance
and it is not trivial that gives the Poincaré algebra generators once integrated.
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− 2√−g

∂(Lmatter

√−g)

∂gµν
,

where g is the determinant of the metric gµν and Lmatter is the matter term in the

Einstein-Hilbert action:

SE.H. =

∫
d4x

√−g

(
1

2k
R − Lmatter

)
.

The Euler-Lagrange equation for the Einstein-Hilbert action is the Einstein field equa-

tion with the Hilbert stress-energy-momentum tensor.

In our work space-time curvature and gravitational coupling have been disre-

garded. For each tensors created with the transformation (1.3), it should be shown

that an extension of general relativity exists having it as a source, this is possible for

example with the canonical tensors, namely Einstein-Cartan theory [3], and Belin-

fante tensors (Einstein-Hilbert), but could not be always possible.
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Chapter 2

Thermodynamical inequivalence:

equilibrium

As seen in the previous chapter, within quantum field theory on a flat space-time, it

is possible to generate apparently equivalent couples of stress-energy-momentum and

spin tensors. In particular we can have different stress-tensors which are e.g. symmet-

ric or non-symmetric. Indeed, gravitational coupling provides an unambiguous way of

defining the stress-energy tensor; in General Relativity, it is symmetric by construction

and the spin tensor vanishes. However, in a likely extension known as Einstein-Cartan

theory (not excluded by present observations) the spin tensor is non-vanishing and

the stress-energy tensor is non-symmetric. A non gravitational way to distinguish

between different tensors would have major consequences in hydrodynamics, gravity

and cosmology.

During this chapter we will see that, despite giving the same total four momentum

and angular momentum, couples of microscopic tensors linked by a pseudo-gauge

transformation (1.3) have different momentum and angular momentum densities1 in

general. Thermodynamics can be used therefore to prove if a particular couple of

microscopic tensors is wrong, without the need to resort to gravitation.

In classical physics we have a stronger requirement with respect to a quantum

theory: we would like the energy, momentum and angular momentum content of any

arbitrary macroscopic spatial region to be well defined concepts; otherwise stated, we

1As reported in our work [5].

21



22 CHAPTER 2. THERMODYNAMICAL INEQUIVALENCE: EQUILIBRIUM

would like to have objective values for the energy, momentum and angular momentum

densities. If these quantities are to be the components of the stress-energy-momentum

and spin tensors, such a requirement strongly limits the freedom to change these

tensors. It is important to stress how these requirements are for the classical tensors,

the average values of the microscopic quantum underlying tensors.

2.1 The equivalence condition

The classical counterpart of a pseudo-gauge transformation can be easily calculated

by applying the expectation value to both sides of the quantum transformation. This

obviously leads to:

T ′µν = T µν +
1

2
∂α (Φα,µν − Φµ,αν − Φν,αµ) (2.1)

S ′λ,µν = Sλ,µν − Φλ,µν + ∂αZαλ,µν ,

so the new angular momentum J ′ is:

J ′λ,µν = J λ,µν + (2.2)

+
1

2
∂α

[
xµ
(
Φα,λν − Φλ,αν − Φν,αλ

)
− xν

(
Φα,λµ − Φλ,αµ − Φµ,αλ

)
+ 2Zαλ,µν

]
.

For a macroscopic system, we would like the mean values of the stress-energy momen-

tum T µν and angular momentum tensors J λ,µν to be invariant under a pseudo-gauge

transformation, and not just their integrals P µ and Jµν . This is because, as previ-

ously mentioned, energy, momentum and total angular momentum densities classically

must take on objective values, independent of the particular quantum tensors. Actu-

ally only four momentum and the spatial part of angular momentum are observable

quantity, there is no clear physical way to measure the boost generator. A minimal

requirement would be the invariance of the aforementioned densities, that is:

T ′0µ = T 0µ J ′0,ij = J 0,ij ,
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however, this is a frame-dependent requirement; a Lorenzt-boosted frame would mea-

sure a different energy-momentum density if only the first row of the stress-energy

tensor was invariant under pseudo-gauge transformations in one particular frame:

(T ′)0µ
R

= Λ0
αΛν

βT
′αβ = Λ0

0Λ
ν
βT

0β + Λ0
i Λ

ν
βT

′iβ 6= Λ0
0Λ

ν
βT

0β + Λ0
i Λ

ν
βT

iβ = (T )0µ
R

,

where (· · · )0µ
R

means that the 0µ components are taken in the boosted reference frame

)R, and Λ is the Jacobian matrix of the boost. In a similar manner the spatial

components of the angular momentum density are not invariant in every frame of

reference.

We are thus to enforce a stricter requirement, namely:

T ′µν = T µν , (2.3)

whilst for the rank three angular momentum tensor, we can make a looser request:

J ′λ,µν = J λ,µν + ηλµKν − ηλνKµ, (2.4)

where K is a vector field. Being the Minkowski metric ηµν diagonal in every inertial

frame, if we limit ourselves to spatial indices µ, ν = 1, 2, 3, the above equation is

enough to ensure that the angular momentum densities, with λ = 0, remain the same.

The procedure used to get the primed tensors impose an additional constrain on

the auxiliary vector field Kµ. Being T ′ given by the average of the quantum tensor

(2.1), equation (2.3) leads to:

1

2
∂α (Φα,µν − Φµ,αν − Φν,αµ) = 0, (2.5)

while comparing equation (2.4) with equation (2.2), if we take the last formula into

account, we obtain as a condition for the angular momentum:
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ηλµKν − ηλνKµ = (2.6)

=
1

2
∂α

[
xµ
(
Φα,λν − Φλ,αν − Φν,αλ

)
− xν

(
Φα,λµ − Φλ,αµ − Φµ,αλ

)]
+ ∂αZαλ,µν =

=
1

2

(
Φµ,λν − Φλ,µν − Φν,µλ − Φν,λµ + Φλ,νµ + Φµ,νλ

)
+ ∂αZαλ,µν =

= −Φλ,µν + ∂αZαλ,µν .

Plugging this last result back into equation (2.5) one obtains:

∂νKµ − ηµν (∂ · K) + ∂α∂β

(
Zαµ,βν + Zαν,βµ

)
= 0. (2.7)

If we take the divergence of the last equation, contracting with ∂µ we get the trivial

equation 0 = 0, but contracting with ∂ν we have:

�Kµ − ∂ν (∂ · K) = 0, (2.8)

where naturally � = ∂µ∂µ is the D’Alembert operator. Whilst if we instead take the

trace of (2.7), we have:

3 (∂ · K) + 2∂α∂βZ
αµ , β

µ = 0. (2.9)

Equations (2.5), (2.6), (2.7), (2.8) and (2.9) define a set of non trivial conditions to

be met for the average values of the superpotentials. However in order to prove that

different tensors give different macroscopic results we can consider a subset of pseudo-

gauge transformations, namely the ones with a vanishing2 Ẑαλ,µν . This subset include

the Belinfante transformation and, as we will see in this chapter, it is enough to prove

the inequivalence. Being the terms on the auxiliary superpotential Ẑ vanishing, we

have a simpler condition on the mean value of Φ̂, as the (2.5) reads:

−Φλ,µν = ηλµKν − ηλνKµ,

2Actually only ∂αZαλ,µν have to be vanishing, but this depends on the state of the system, being
Z the mean value of an operator. Taking ∂αẐαµν = 0, or directly a vanishing Ẑ, ensures that the
average value is vanishing too, even if it is not the most general case.
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whislst (2.9) became:

(∂ · K) = 0,

and thus (2.7) simply reads:

∂νKµ = 0. (2.10)

Therefore the equations (2.5) and (2.6) imply that the vector field K is a constant

field. Therefore, as long as we consider only transformations with a vanishing Ẑ

term, in order to verify if the equivalence conditions (2.3) and (2.4) are fulfilled, it is

sufficient to compute the mean value Φ and check if it is of the form:

Φλ,µν = −
(
ηλµKν − ηλνKµ

)
, (2.11)

with a constant Kµ, otherwise the equivalence condition is not fulfilled and inequiva-

lence of the microscopic couples is proven.

It should be emphasized how the conditions on the superpotential, from the simpler

condition for the restricted class (2.11) to the generic conditions from (2.5) and (2.9),

do not need to apply to the quantum tensors Φ̂ and Ẑ, which only have to meet

the boundary conditions (1.4) we have seen on the previous chapter. In fact, it may

happen that the mean value Φ fufills equation (2.11), or more generally that the

superpotentials fulfill (2.5) and (2.6), even though their quantum correspondents Φ̂

and Ẑ do not. This can be possible because of specific features of the density operator

ρ̂. In this case, the couples {T̂ , Ŝ} and {T̂ ′, Ŝ ′} are to be considered equivalent only

with regard to a particular density operator, that is, for a specific quantum state.

We will see in the next two sections that the equivalence between couples of tensors

crucially depends on the symmetry properties of the physical state ρ̂ (either mixed or

pure). Particularly, we shall see that if ρ̂ is the usual thermodynamical equilibrium

operator, proportional to exp
(
−Ĥ/T + µQ̂/T

)
, any quantum tensors Φ̂ and Ẑ will

result in a mean value fulfilling equations (2.5) and (2.6). This means that all possible

quantum microscopic stress-energy and spin tensors will yield the same physics in

terms of macroscopically observable quantities.
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2.2 Grand-canonical ensemble

In non-relativistic statistical mechanics the grand-canonical ensemble is a system at

equilibrium with determined average energy and particle number, in contrast with a

constant, non fluctuating, particle number (canonical and micro-canonical ensemble)

and energy (micro-canonical). Particle number is not conserved at relativistic ener-

gies, because of pair production and annihilation, so the chemical potential refers to a

conserved charge Q̂, like electric charge or baryonic number, instead of particle num-

ber. The thermodynamical equilibrium distribution (in the thermodynamical limit

V → ∞) of a quantum system is then:

ρ̂ =
1

Z
e−

bH/T+µ bQ/T , (2.12)

where Ĥ is the Hamiltonian, and Z is the grand-canonical partition function:

Z = tr
(
e−

bH/T+µ bQ/T
)

.

The state of the system is remarkably symmetric. It is space-time translationally

invariant, since both Q̂ and Ĥ commute with translation operators T̂(a) = exp[ia · P̂ ].

This entails that the mean value of any space-time dependent operator Â(x), including

stress-energy and spin tensor, are independent of the space-time position:

tr
(
ρ̂ :Â(x + a) :

)
= tr

(
ρ̂ : T̂(a)Â(x)T̂(a)−1 :

)
= tr

(
ρ̂ T̂(a) :Â(x) : T̂(a)−1

)
=

= tr
(
T̂(a)−1ρ̂ T̂(a) :Â(x) :

)
= tr

(
ρ̂ :Â(x) :

)
, (2.13)

where the ciclicity of the trace and the transparency of the normal ordering with

respect to translations have been used 3. As a consequence, the average value of any

3Here a comment is in order. The transparency of the normal ordering with respect to a conju-
gation transformation, that is : AF (Ψ)A−1 := A : F (Ψ) : A

−1 where A is a translation or a Lorentz
transformation and F a function of the fields and its derivatives, is guaranteed for free fields pro-
vided that the vacuum |0〉 is an eigenstate of the same transformation, which is always the case. For
interacting fields, we will assume that the definition of normal ordering (for this problem, see e.g.
ref. [6]) is such that transparency for conjugation holds; anyhow, for the examined case in Sect. 3 we
will just need transparency for a free field.
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space-time derivative vanishes, and so will do the divergences on the right hand side of

equation (2.1). Therefore the classical, macroscopic stress-energy-momentum tensor,

the the expectation value of the quantum operator, will be the same regardless of

the particular microscopic quantum tensor used. For instance the canonical and the

Belinfante symmetrized tensors will result in the same average, macroscopic tensor,

despite having in general different algebraic properties in µ ↔ ν exchange. In addition

the mean value ∂αZαλ,µν is vanishing, therefore all couple of tensor give the same

macroscopic in the gand-canonical ensembe if Φ fulfills (2.11), as we will see later.

Before that we can use the symmetry properties of the state of the system to obtain

the components of T µν . The density operator (2.12) manifestly enjoys rotational

symmetry, for Ĥ and Q̂ commute with rotation operators R̂θ̂(θ) = exp
(
iθ · Ĵ

)
4. This

implies that most components of average tensors vanish. To show that, it is sufficient

to choose suitable rotation operators and repeat the same reasoning as in equation

(2.13). For instance, choosing the R2(π) operator, i.e. the rotation of 180 degrees

around the 2 (or y) axis, changing the sign of 1 (or x) and 3 (or z) components and

leaving 2 and 0 unchanged, in the x = (t, 0) one has:

T 12(x) = tr
(
ρ̂ : T̂ 12(x) :

)
= tr

(
R̂2(π)ρ̂ R̂2(π)−1 : T̂ 12(x) :

)
= (2.14)

= tr
(
ρ̂ R̂2(π)−1 : T̂ 12(x) : R̂2(π)

)
= tr

(
ρ̂ R2(π)1

µR2(π)2
ν : T̂ µν(R2(π)−1(x)) :

)
=

= −tr
(
ρ̂ : T̂ 12(R2(π)−1(x)) :

)
= −tr

(
ρ̂ : T̂ 12(x) :

)
= −T 12(x),

where, in the last equality, we have taken advantage of the point independence of all

average values shown in eq. (2.13); thus, T 12((t, 0)) = 0 and, in view of the transla-

tional invariance T 12(x) = 0 ∀x. Similarly, by choosing other rotation operators, it

can be shown that all off-diagonal elements of a rank two tensor vanish. The only

non-vanishing components are the diagonal ones, which, again owing to the rotational

symmetry (if we choose Ri(π/2) and repeat the above reasoning it follows immedi-

ately), are equal:

4Here Ĵ
i = ǫijkĴjk, with εijk the Levi-Civita symbol in three dimensions, and Ĵ is the angular

momentum operator.
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T 11(x) = T 22(x) = T 33(x),

The component T 00(x) can also be non-vanishing and its value is not related to the

other diagonal ones. Altogether, the average stress-energy-momentum tensor can only

have the diagonal (symmetric) form in the rest frame:

T µν =





ε 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p




= (ε + p)t̂µt̂ν − pgµν ,

where t̂ is the unit time vector with components (1, 0) and ε and p have the physical

meaning of proper energy density and pressure. It should be stressed that, for a system

at full thermodynamical equilibrium described by ρ̂ in equation (2.12) they would be

the same regardless of the particular form of the quantum stress-energy tensor; e.g.

for the free Dirac field the canonical tensor is not symmetric but the average value

in the grand-canonical ensemble is nonetheless diagonal, and so symmetric, like the

average value of any other possible microscopic tensor.

As far as the superpotential is concerned, it is easy to calculate, by using suitable

rotations as in the previous case, that the only non-vanishing components are:

Φ1,01(x) = Φ2,02(x) = Φ3,03(x) = −Φ1,10(x) = −Φ2,20(x) = −Φ3,30(x).

Hence, being the average of any tensor point independent, one scalar function B in-

dependent of x, is sufficient to determine difference in angular momentumthat stems

from the pseudo-gauge transformation, for a system at full thermodynamical equilib-

rium:

Φλ,µν = B(ηλν t̂µ − ηλµt̂ν)

This tensor has exactly the form for a “good” superpotential because using eq.s (2.1)

and (2.2) the new primed tensors automatically fulfill the conditions (2.3) and (2.4).

In conclusion, any possible pseudo-gauge transformation will yield the same energy,

momentum and angular momentum density for all inertial frames and so, all quantum
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stress-energy-momentum and spin tensors are equivalent as far as the density operator

(2.12) is concerned.

2.3 Finite angular momentum

In the previous section there was equivalence between any possible couple of micro-

scopic tensors {Ŝ, T̂} and {Ŝ ′, T̂ ′} because of the symmetry properties of the density

matrix (2.12) of the grand canonical ensemble. It is reasonable therefore to expect

a remarkably different situation for a less symmetric state, e.g. a thermodynamical

system having a macroscopic non-vanishing total angular momentum. In this case, in

its rest frame (defined as the one in which the total momentum vanishes) the density

operator reads [7, 9] :

ρ̂ =
1

Zω
e−

bH/T+ω·bJ/T+µ bQ/T (2.15)

where ω has the physical meaning of a constant, fixed angular velocity around which

the system rigidly rotates. The factor Zω is the rotational grand-canonical partition

function:

Zω = tr
(
e−

bH/T+ω·bJ/T+µ bQ/T
)

(2.16)

The density operator (2.15) is much less symmetric than that in (2.12), it has a

privileged direction ω̂, and this has remarkable and interesting consequences on the

allowed transformations of stress-energy and spin tensor. The surviving symmetries

in (2.15) are time-translations T(t) and translations along the ω axis (ω̂ which we

choose to label z axis, without any loss of generality) T(z), rotations around the ω

axis Rω̂(ϕ) and reflection Πω̂ with respect to planes orthogonal to ω (assuming for

simplicity a parity-invariant hamiltonian Ĥ).

The density operator (2.15) can be obtained as a limiting macroscopic case of a

quantum statistical system with finite volume and fixed angular momentum in its

rest frame in an exact quantum sense, i.e. belonging to a specific representation of

the rotation group SO(3) (or its universal covering group SU(2)). This point of view

was presented and the calculations were carried out in ref. [10]. However, for a truly

macroscopic system, it can be more easily obtained by extending to the relativistic

case an argument used by Landau [7], or by maximizing the entropy with the constrain



30 CHAPTER 2. THERMODYNAMICAL INEQUIVALENCE: EQUILIBRIUM

of fixed angular momentum [11]. It should be pointed out that Ĥ, Q̂ and the angular

momentum operator along the ω direction commute with each other, so that the

exponential in (2.15) also factorizes.

The density operator (2.15) implies that, in its rest frame, the system is rigidly

rotating with a velocity field v = ω × x. The classical, non-relativistic derivation by

Landau [7] shows this in a very simple fashion by assuming that the system is made

of macroscopic cells. To show the same thing within a quantum formalism, implies a

little more effort, which is nevertheless quite enlightening.

If we consider a vector field V̂ (x) and calculate its mean value at a point x + a by

using space-time translation operators, we have:

tr
(
ρ̂ : V̂ ν(x + a) :

)
= tr

(
ρ̂ T̂(a) : V̂ ν(x) : T̂(a)−1]

)
= tr

(
T̂(a)−1ρ̂ T̂(a) : V̂ ν(x) :

)

=
1

Zω
tr
(
T̂(a)−1 e−

bH/T+ω·bJ/T+µ bQ/T T̂(a) : V̂ ν(x) :
)

=

=
1

Zω
tr
(
e−

bT(a)−1 bHbT(a)/T+ω·bT(a)−1bJbT(a)/T+µbT(a)−1 bQbT(a)/T : V̂ ν(x) :
)

=
1

Zω

tr
(
e−

bH/T+ω·bT(a)−1bJbT(a)/T+µ bQ/T : V̂ ν(x) :
)

, (2.17)

where known commutation relations [Q̂, P̂ µ] = 0 and [Ĥ, P̂ µ] = 0 have been used

in the last step. Now the angular momentum is not translation invariant, from the

theory of Poincaré group is known that:

T̂(a)−1ĴT̂(a) = Ĵ + a × P̂,

so(2.17) reads:

tr
(
ρ̂ : V̂ ν(x + a) :

)
=

1

Zω
tr
(
e−

bH/T+ω·(bJ+a×bP)/T+µ bQ/T : V̂ ν(x) :
)

= (2.18)

=
1

Zω
tr
(
e−

bH/T+(ω×a)·bP/T+ω·bJ/T+µ bQ/T : V̂ ν(x) :
)

.

We can now use the four-temperature, a four vector defined as:

β =
1

T
(1, ω × a),
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or equivalently:

β =
1

T0

u =
1

T0

(γ, γv), (2.19)

where v = ω × a, γ = 1/
√

1 − v2 and T0 = γT . The vector v is manifestly the

tangential velocity field of a rigid rotation, while T0 is the inverse modulus of β, i.e.

the comoving temperature which differs by the constant uniform T by a γ factor

[12, 13]. The mean value of V ν(x + a) in eq. (2.18) becomes:

tr
(
ρ̂ : V̂ ν(x + a) :

)
=

1

Zω
tr
(
e−β(a)· bP+ω·bJ/T+µ bQ/T : V̂ ν(x) :

)
(2.20)

As long as β is timelike, that means provided that v < 1, it is possible to find a

Lorentz transformation Λ such that:

T0βµ = uµ = Λ0µ = g0λΛ
λ
µ. (2.21)

The most convenient choice is the pure Lorentz boost along the v = ω × a direction.

Being v̂, the direction of the velocity ω × a, ortogonal to ω̂, the boost leaves the

product Ĵ · ω invariant:

Λ = exp[−i arccosh(γ)v̂ · K],

where Ki (i = 1, 2, 3) are the generators of pure Lorentz boosts. Thereby, the trace

on the right hand side of the eq. (2.20) can be rewritten:

tr
(
e−Λ0µ

bP µ/T0+ω·bJ/T+µ bQ/T : V̂ ν(x) :
)

= tr
(
e−

bΛ−1 bP0
bΛ/T0+ω·bJ/T+µ bQ/T : V̂ (x) :

)
=

= tr
(
e−

bΛ−1( bP 0/T0+γω·bJ/T0+γµ bQ/T0)bΛ : V̂ ν(x) :
)

=

= tr
(
Λ̂−1e−

bP 0/T0+γω·bJ/T0+γµ bQ/T0Λ̂ : V̂ ν(x) :
)

=

= tr
(
e−

bP 0/T0+γω·bJ/T0+γµ bQ/T0Λ̂ : V̂ (x) : Λ̂−1
)

=

= (Λ−1)ν
µtr
(
e−

bP 0/T0+γω·bJ/T0+γµ bQ/T0 : V̂ µ(Λ(x)) :
)

(2.22)

Finally, from (2.20) and (2.22) we get:

tr
(
ρ̂ : V̂ ν(x + a) :

)
=

1

Zω
(Λ−1)ν

µtr
(
e−

bP 0/T0+γω·bJ/T0+γµ bQ/T0 : V̂ µ(Λ(x)) :
)

, (2.23)
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which tells us how to calculate the mean value of a vector field at any space-time point

given its value in some other specific point. The most interesting feature of eq. (2.23)

is that the density operator on the right hand side the same as ρ̂ on the left hand side

with the replacement:

T → T0 = γ(a)T ω → γ(a)ω µ → γ(a)µ (2.24)

If we choose x = (0, 0), the origin of Minkowski coordinates, and a purely spatial

a = (0, a) the eq. (2.23) implies:

tr
(
ρ̂ : V̂ ν(0, a) :

)
=

1

Zω

(Λ−1)ν
µtr
(
e−

bP 0/T0+γω·bJ/T0+γµ bQ/T0 : V̂ µ(0, 0) :
)

. (2.25)

That is the average of the vector field at any space-time point (it should be kept in

mind that ρ̂ is invariant by time translation and so any mean value is stationary)

is completely determined by the mean value at the origin of the coordinates, with

the same density operator, modulo the replacement of thermodynamical parameters

in (2.24). This particular value is strongly constrained by the symmetries of ρ̂. We

already identified the ω direction as that of the z (or 3) axis (see fig. 2.1) and consider

the reflection Πz with respect to z = 0 plane and the rotation R3(π) of an angle π

around the z axis; by repeating the same reasoning as for eq. (2.14) for V ν(0) we

can easily conclude that the time component V 0(0) is the only one having a non-

vanishing mean value. Note, though, that the mean value on the right-hand side of

(2.25) depends on the distance r from the axis because the density operator is modified

by the replacement of the uniform temperature T with a radius-dependent T0 = γT .

Therefore, according to eq. (2.25) and using (2.21), the mean value of the vector field

can be written:

Vν(x) = tr
(
ρ̂ : V̂ν(x) :

)
=

=
1

Zω
(Λ−1)ν0tr

(
e−

bP 0/T0(r)+γ(r)ω·bJ/T0(r)+γ(r)µ bQ/T0(r) : V̂ 0(0) :
)
≡ Λ0νV (r) =

= V (r)uν. (2.26)

This means it has to be collinear with the four-velocity field u = (γ, γv) in eq. (2.19)

and, therefore, its field lines are circles centered on the z axis and orthogonal to it.
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Similarly, we can obtain the general form of tensor fields of various rank and specific

symmetry properties as a function of the basic four-velocity field.

However, the previous derivation relies on the fact that the system is infinitely

extended in space. Indeed, at a distance from the axis such that |ω × x| > 1 the

velocity surpass the speed of light in the vacuum and the system has a singularity.

We cannot, therefore, take the strict thermodynamical limit V → ∞ for a system

with macroscopic angular momentum. Instead, we have to enforce a spatial cut-off

at some distance and figure out how this reflects on the most general forms of vector

and tensor fields.

Enforcing a bounded region V for a thermodynamical system implies the replace-

ment of all traces over the full set of states with a trace over a complete set of states

|hV 〉 of the fields for this region V , that we indicate with a subscript V :

tr → trV =
∑

hV

〈hV | . . . |hV 〉.

The density operator ρ̂ is still the same as in (2.15), with the difference that the

partition function is now obtained by tracing over the localized state. It may be

convenient to introduce the projection operator:

PV =
∑

hV

|hV 〉〈hV |

which allows us to maintain the trace over the full set of states, provided that we

replace the density matrix ρ̂ with PV ρ̂ ; indeed for a generic operator Â we have:

trV

(
ρ̂ Â
)

= tr
(
PV ρ̂ Â

)
,

which amounts to state that the effective density operator is now ρ̂V :

ρ̂V =
1

Zω
PV e−

bH/T+ω·bJ/T+µ bQ/T (2.27)

where now, as the rotational partition function, we have:

Zω = tr
(
PV e−

bH/T+ω·bJ/T+µ bQ/T )
)

= trV

(
e−

bH/T+ω·bJ/T+ bQ/T
)

.
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In order to maintain the same symmetry of the density operator in (2.15), PV has to

commute with Ĵz, Ĥ, P̂z, the Lorentz boost along z K̂z and the reflection operator

with respect to any plane parallel to z = 0, Π̂z (see fig. 2.1). These requirements are

met if the region V is a static longitudinally indefinite cylinder with finite radius R

and axis ω̂, and we will henceforth take this assumption.

There are two important consequences of having a finite radius R. As first, because

of the presence of the projector PV , the previous derivation which led us to express

the vector field according to the simple formula (2.26) cannot be carried over to the

case of finite (though macroscopic) radius. The reason is that PV does not commute

with the Lorentz boost along v or, otherwise stated, a Lorentz boost along a direction

other than z will not transform the set of states |hV 〉 into themselves, as needed for

completeness. So, one the one of the crucial steps in eq. (2.22) no longer holds and

specifically:

tr
(
PV Λ̂−1e−

bP 0/T0+γω·bJ/T0+γµ bQ/T0Λ̂ : V̂ ν(x) :
)
6=

6= tr
(
PV e−

bP 0/T0+γω·bJ/T0+γµ bQ/T0Λ̂ : V̂ ν(x) : Λ̂−1
)

.

As a consequence, general vector and tensor fields will be more complicated than in

the unphysical infinite radius case and get additional components. The most general

expressions of mean value of fields in the cases of interest for the stress-energy and spin

tensor will be systematically determined in the next section. The second consequence

is that boundary conditions for the quantum fields must be specified at a finite radius

value R, but we will see that those conditions alone cannot ensure the validity of of

the equivalence conditions, which are local conditions.

2.4 Tensor fields in an axisymmetric system

In this section we will write down the most general forms of vector and tensor fields

in an axisymmetric system, i.e. a system with the same symmetry features of the

thermodynamical rotating system at equilibrium studied in the previous section. The

goal of this section is to establish the conditions, if any, to be fulfilled by the super-
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Figure 2.1: Rotating cylinder with finite radius R at temperature T . Also shown the
inertial frame axes and the spatial parts of the vectors of tetrad (2.28).

potential to generate a good transformation of the stress-energy-momentum and spin

tensors.

2.4.1 Vector field

The decomposition of a vector field will serve as a paradigm for more complicated

cases. The idea is to take a suitable tetrad of space-time dependent orthonormal

four-vectors and decompose the vector field onto this basis. The tetrad we choose is

dictated by the cylindrical symmetry:

u = (γ, γv) τ = (γv, γv̂) n = (0, r̂) k = (0, k̂), (2.28)

where r̂ is the radial versor in cylindrical coordinates, while k̂ is the versor of the z

axis, that is the axis of the cylinder (see fig. 2.1).

Due to symmetry for reflections with respect to z = const planes, the most general
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vector field V has vanishing component on k, and therefore:

V = A(r)u + B(r)τ + C(r)n, (2.29)

where A, B, C are scalar functions which can only depend on the radial coordinate r,

owing to the cylindrical symmetry. Note the presence of two additional components

with respect to the infinitely extended cylinder case in eq. (2.26). For symmetry

reasons the only surviving component of the field at the axis is the time component,

so B(0) = C(0) = 0.

If the field is divergence-free, then C(r) ≡ 0.

2.4.2 Rank 2 antisymmetric tensor field

Any antisymmetric tensor field of rank 2 can be decomposed first as:

Aµν = ǫµνρσXρuσ + Y µuν − Y νuµ,

where:

Xρ = −1

2
ǫραβγAαβuγ Y ρ = Aραuα,

and, thus, X and Y are two space-like vector fields such that X · u = Y · u = 0.

Because of the reflection symmetry with respect to z = const planes, one has Axz =

Ayz = A0z = 0 and this in turn entails that, being uz = 0, the only non-vanishing

component of the pseudo-vector X is along k. Conversely, Y is a polar vector and it

has components along τ and n which must vanish in r = 0. Altogether:

Aµν = D(r)ǫµνρσkρuσ + E(r)(τµuν − τ νuµ) + F (r)(nµuν − nνuµ), (2.30)

with E(0) = F (0) = 0. Since:

ǫµνρσkρuσ = nµτ ν − nντµ,

(which can be easily checked), the expression (2.30) can be rewritten as:
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Aµν = D(r)(nµτ ν − nντµ) + E(r)(τµuν − τ νuµ) + F (r)(nµuν − nνuµ). (2.31)

2.4.3 Rank 2 symmetric tensor field

For the symmetric tensor Sµν we will employ an iteration method in order to write

down the most general decomposition. First, we project the tensor onto the u field:

Sµν = G(r)uµuν + qµuν + qνuµ + Θµν ,

where q · u = 0 and Θµνuν = 0. Then, we decompose the space-like polar vector field

q according to (2.29):

q = H(r)τ + I(r)n,

with H(0) = I(0) = 0, and we project the tensor Θ in turn onto the vector field τ :

Sµν = G(r)uµuν+H(r)(τµuν+τ νuµ)+I(r)(nµuν+nνuµ)+J(r)τµτ ν+hµτ ν+hντ ν+Ξµν ,

being h·u = h·τ = 0 (whence h = K(r)n with K(0) = 0) and Ξµντν = Ξµνuν = 0. This

procedure can be iterated projecting Ξ onto n and the thus-obtained new symmetric

tensor onto k. Thereby, we get:

Sµν = G(r)uµuν + H(r)(τµuν + τ νuµ) + I(r)(nµuν + nνuµ)

+J(r)τµτ ν + K(r)(nµτ ν + nντµ) + L(r)nµnν + M(r)kµkν . (2.32)

However, since uµuν − τµτ ν − nµnν − kµkν = gµν the last term can be replaced with

a linear combination of all other diagonal terms plus a term in gµν and the most

general symmetric tensor can be rewritten, after a suitable redefinition of the scalar

coefficients, as:
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Sµν = G(r)uµuν + H(r)(τµuν + τ νuµ) + I(r)(nµuν + nνuµ)

+J(r)τµτ ν + K(r)(nµτ ν + nντµ) + L(r)nµnν − M(r)gµν

where H(0) = I(0) = K(0) = 0.

2.4.4 Rank 3 spin-like tensor field

The decomposition of a rank 3 tensor is carried out in an iterative way, similarly

to what we have just done for the rank 2 symmetric tensor. First, we project the

tensor onto the vector u and, taking the antisymmetry of µν indices into account, one

obtains:

Φλ,µν = uλ(fµuν − f νuµ) + uλΓµν + Σλµuν − Σλνuµ + Υλ,µν (2.33)

where all vector and tensor fields have vanishing contractions with u for any index.

Particularly, using the general expressions (2.29) and (2.31), the vector field f and

the antisymmetric tensor Γ read:

f = E(r)τµ + F (r)nµ Γµν = D(r)(nµτ ν − nντµ) (2.34)

with E(0) = F (0) = 0. The tensor Σ can be decomposed as the sum of a symmet-

ric and an antisymmetric part; having vanishing contractions with u, according to

eqs. (2.31) and (2.32), it can be written as:

Σλµ = N(r)(nλτµ − nµτλ) + P (r)τλτµ + Q(r)(nλτµ + nµτλ) + R(r)nλnµ + S(r)kλkµ

(2.35)

wiht Q(0) = 0. The tensor Υ is projected in turn onto n and the above procedure is

iterated. Then, similarly to eq. (2.33):

Υλ,µν = χµνnλ + (hµnν − hνnµ)nλ + Θλµnν − Θλνnµ + Λλ,µν (2.36)



2.4. TENSOR FIELDS IN AN AXISYMMETRIC SYSTEM 39

where all tensors have vanishing contractions with u and n. The antisymmetric tensor

χ must be orthogonal to u and n and, therefore, according to eq. (2.31), vanishes. On

the other hand, the vector field h can only have non-vanishing component on τ and

so h = T (r)τ with T (0) = 0. Finally, the tensor Θ must be orthogonal to n, besides

u, hence, using eqs. (2.31) and(2.32), can only be of the form:

Θλµ = U(r)τλτµ + V (r)kλkµ (2.37)

Likewise, the tensor Λ can be decomposed onto τ and, because of vanishing contrac-

tions with u and n, it can be written as:

Λλ,µν = W (r)kλ(kµτ ν − kντµ) (2.38)

Putting together eqs. (2.33), (2.34), (2.35), (2.36), (4.11) and (2.38), the general

decomposition of a rank 3 tensor with antisymmetric µν indices is obtained:

Φλ,µν = D(r)(nµτ ν − nντµ)uλ + E(r)(τµuν − τ νuµ)uλ + F (r)(nµuν − nνuµ)uλ +

+N(r)(nλτµ − nµτλ)uν − N(r)(nλτ ν − nντλ)uµ + P (r)τλ(τµuν − τ νuµ) +

+Q(r)(nλτµ + nµτλ)uν − Q(r)(nλτ ν + nντλ)uµ + R(r)nλ(nµuν − nνuµ) +

+S(r)kλ(kµuν − kνuµ) + T (r)(τµnν − τ νnµ)nλ + U(r)τλ(τµnν − τ νnµ) +

+V (r)kλ(kµnν − kνnµ) + W (r)kλ(kµτ ν − kντµ) (2.39)

with E(0) = F (0) = Q(0) = T (0) = 0.

We are now in a position to find out the conditions to be fulfilled by the su-

perpotential Φ to be a good transformation of the stress-energy and spin tensors

in a thermodynamically equilibrated system with angular momentum, as derived in

Sect. 2.1.

Let us start from eq. (2.6), which is the most constraining. Since:

uλuµ − τλτµ − nλnµ − kλkµ = gλµ,

we can write a rank 3 tensor (2.39) in the form of eq. (2.11) as long as:
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V (r) = U(r) = F (r)

P (r) = R(r) = S(r)

E(r) = W (r) = −T (r)

D(r) = N(r) = Q(r) = 0 (2.40)

which are definitely non-trivial conditions. If these are fulfilled, then the superpoten-

tial (2.39) reduces to:

Φλ,µν = (F (r)nµ+E(r)τµ+P (r)uµ)gλν−(F (r)nν+E(r)τ ν+P (r)uν)gλµ ≡ Kµgλν−Kνgλµ,

Now, the field Kµ = F (r)nµ +E(r)τµ +P (r)uµ ought to be a constant one, according

to eq. (2.10). Since its divergence vanishes, then F (r) = 0 and, by using the definitions

(2.28), we readily obtain the conditions:

F (r) = 0 P (r)/γ = const E(r) = −P (r)ωr (2.41)

In conclusion, only if a quantum superpotential is such that its mean value, calcu-

lated with the density operator (2.27), fulfills conditions (2.40) and (2.41), are the

corresponding transformations (2.1) and (2.2) possible. Otherwise, the original and

transformed stress-energy and spin tensors are inequivalent because they imply dif-

ferent values of mean energy, momentum or angular momentum densities. Since the

most general form of the mean value of the superpotential, i.e. eq. (2.39) is highly

non-trivial, the inequivalence will occur far more often than equivalence. To demon-

strate this, in the next chapter we will consider a specific instance involving the most

familiar quantum field endowed with a spin tensor.



Chapter 3

An example: the free Dirac field

To prove the inequivalence we had to find a significant case where the equivalence

condition is not fulfilled, therefore we studied the simplest quantum field theory en-

dowed with a spin tensor, namely the free Dirac field, and we compared the canonical

tensors with the widely used Belinfante symmetrized couple.

From the Lagrangian density of the free Dirac field:

L =
i

2
Ψγµ

↔

∂µΨ − mΨΨ (3.1)

we obtain, by means of the Noether theorem, the canonical stress-energy and spin

tensors [14]:

T̂ µν =
i

2
Ψγµ

↔

∂
ν

Ψ

Ŝλ,µν =
1

2
Ψ{γλ, Σµν}Ψ =

i

8
Ψ{γλ, [γµ, γν ]}Ψ (3.2)

where:

Σij = ǫijk

(
σk/2 0

0 σk/2

)

and σk are Pauli matrices. Dirac motion equations ensure the angular momentum

conservation and thus the spin tensor obeys:

41
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∂λŜλ,µν = T̂ νµ − T̂ µν =
i

2
Ψγν

↔

∂
µ

Ψ − i

2
Ψγµ

↔

∂
ν

Ψ

The couple of quantum tensors in (3.2) can be changed through the psuedo-gauge

transformation. Accordingly we remind that taking Φ̂ = Ŝ, namely the superpotential

as the original spin tensor itself, a symmetrized stress-energy tensor and a vanishing

spin tensor are obtained:

T̂ ′µν =
i

4

[
Ψγµ

↔

∂
ν

Ψ + Ψγν
↔

∂
µ

Ψ
]

Ŝ ′λ,µν = 0 (3.3)

This transformation is well known as Belinfante’s symmetrization procedure.

One may wonder whether these tensors, fulfilling continuity equations, still exist in

a bounded region breaking the global translational and Lorentz symmetry, such as our

cylinder with finite radius; or if, because of the boundary, they get additional terms

with respect to the usual form. The problem of Dirac field with boundary has been

tackled and solved by the authors of the MIT bag model [15]. First of all, it should

be pointed out that the continuity equations (1.1) certainly apply to tensors (3.2)

and (3.3) on-shell, i.e. for fields obeying the free Dirac equation within the cylinder.

Furthermore, it is possible to find suitable boundary conditions, discussed in the next

subsection, such that the fluxes (1.5) vanish, as needed, without introducing an ad-hoc

discontinuity in the Dirac field. Thereby, the stress-energy and spin tensors retain the

same form as in the usual no-boundary case and the integrals over the bounded region

of the time components have the same physical meaning of conserved generators.

The spin tensor in eq. (3.2) has a remarkable feature which makes it easier to

check the equivalence of the two couples in eq. (3.2) and (3.3): because of the special

properties of gamma matrices, the spin tensor is also antisymmetric in the first two

indices:

Ŝλ,µν = −Ŝµ,λν (3.4)

and thus the mean value of this tensor is greatly simplified. The antisymmetry in the

indices (λ, µ) dictates that all coefficients of symmetric λµ terms of the general form

of this kind of tensor found in eq. (2.39) vanish:
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E(r) = F (r) = P (r) = Q(r) = R(r) = S(r) = T (r) = U(r) = V (r) = W (r) = 0

and that D(r) = N(r), so that S is simply given by:

Sλ,µν = D(r)[(nµτ ν − nντµ)uλ + (nλτµ − nµτλ)uν − (nλτ ν − nντλ)uµ] (3.5)

and it is described by just one unknown radial function D(r). Therefore, according

to the conditions (2.40), the Belinfante tensors (3.3) are equivalent to the canonical

ones (3.2) only if D(r) = 0, i.e. only if the spin tensor has a vanishing mean value.

For λ = 0, eq. (3.5) reads:

S0,µν = D(r)[(nµτ ν − nντµ)u0 − τ 0(nµuν − nνuµ)]

and, because of the antisymmetry, the only non-vanishing components are those with

both µ and ν equal to 1,2,3, indices that we denote with i, j. We can then write, using

(2.28):

S0,ij = D(r)[(niτ j − njτ i)u0 − τ 0(niuj − njui)] =

= D(r)[γ2(niv̂j − nj v̂i) − γ2v2(niv̂j − nj v̂i) =

= D(r)(niv̂j − nj v̂i) = D(r)ǫijkk̂
k (3.6)

Therefore, as expected, the time part of the spin tensor, contributing to the angular

momentum density, is equivalent to a pseudo-vector field D(r) directed along z axis.

According to eq. (2.1), the variation of energy-momentum density reads:

1

2
∂α

(
Φα,0ν − Φ0,αν − Φν,α0

)
=

1

2
∂α

(
Sα,0ν − S0,αν − Sν,α0

)
= −1

2
∂αS0,αν (3.7)

which implies at once that the energy density is unchanged because 0,α0 = 0 in view
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of (3.4), whereas the momentum density varies by a derivative. Using (3.6):

T 0i
Belinfante = T 0i

canonical −
1

2
∂αS0,αi = T 0i

canonical −
1

2
∂αǫαikD(r)k̂k

= T 0i
canonical +

1

2
(rotD)i = T 0i

canonical −
1

2

dD(r)

dr
v̂i (3.8)

Note that this last equation implies that the mean value of the canonical stress-energy-

momentum tensor of the Dirac field has a non-trivial antisymmetric part if D′(r) 6= 0

as, according to local angular momentum conservation:

∂αS0,αi = −∂αSα,0i = T 0i − T i0

Now we can write the angular momentum density variation using eq. (2.2) with Φ = S:

J 0,µν
Belinfante = J 0,µν

canonical +
1

2
∂α

[
xµ
(
Φα,0ν − Φ0,αν − Φν,α0

)
− xν

(
Φα,0µ − Φ0,αµ − Φµ,α0

)]

=
1

2

[
xµ∂α

(
Φα,0ν − Φ0,αν − Φν,α0

)
+ Φµ,0ν − Φ0,µν − Φν,µ0 − (µ ↔ ν)

]

The sum of all terms linear in the superpotential returns a −Φ0,µν while for the

derivative terms we can use eq. (3.7):

J 0,µν
Belinfante = J 0,µν

canonical +
1

2

[
xµ∂α

(
Φα,0ν − Φ0,αν − Φν,α0

)
− (µ ↔ ν)

]
− Φ0,µν

= J 0,µν
canonical −

1

2

[
xµ∂αS0,αν − xν∂αS0,αµ

]
− S0,µν (3.9)

Therefore, by plugging the expression of the mean value of the spin tensor in eq. (3.6),

the angular momentum pseudo-vector corresponding to the angular momentum den-

sity in (3.9) can be finally written:

J Belinfante = J canonical−
1

2

(
x × dD(r)

dr
v̂

)
−D(r) = J canonical−

(
1

2
r
dD(r)

dr
+ D(r)

)
k̂

(3.10)

In order for the canonical and Belinfante tensors to be equivalent, as has been men-
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tioned and as it is apparent from eqs. (3.8) and (3.10) the function D(r) ought to

vanish everywhere. If D′(r) 6= 0, the two stress-energy tensors give two different mo-

mentum densities and are thus inequivalent; if, on top of that, D′(r) 6= −2D(r)/r then

the angular momentum densities are inequivalent as well. In the rest of this section

we will prove that this is exactly the case, i.e. neither of these conditions is fulfilled.

In order to show that this is not a problem arising from peculiar values of the field

at the boundary, we will conservatively enforce boundary conditions such that the to-

tal energy, momentum and angular momentum operators obtained by integrating the

fields within the cylinder are invariant under pseudogauge transformation. Note that

for this to be true, in the case under consideration, it is necessary that the function

D(r) vanishes at the boundary, i.e. D(R) = 0, because the difference between total

angular momenta is:

∫

V

d3x (J Belinfante − J canonical) = −
∫

V

dz dϕ dr r

(
1

2
r
dD(r)

dr
+ D(r)

)
k̂ =

= −2π

∫ +∞

−∞

dz

∫ R

0

dr
d

dr

(
r2

2
D(r)

)
k̂

Thereby, we will demonstrate that, although the stress-energy and spin tensors in

(3.2) and (3.3) lead to the same quantum generators, their respective mean densities

are inconsistent. The problem we are facing is then to solve the Dirac equation within

a cylinder with finite radius and second-quantize the field.

3.1 The Dirac field in a cylinder

The problem of the Dirac field within a cylinder with finite radius has been tackled

by several authors in the context of the MIT bag model [16]. One of the major issues

is the choice of appropriate boundary conditions, not an easy task because the Dirac

equation is a first-order partial differential equation. The authors of the bag model

[15] have shown that the following condition1:

1Actually, in the paper [15], the boundary condition chosen is i/nΨ(R) = Ψ(R), but the change of
sign is indeed immaterial.
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i/nΨ(R) = inµγµΨ(R) = −Ψ(R), (3.11)

ensures the vanishing of the fluxes (1.5) through the border and allows non-trivial

solutions of the Dirac equation within the cylinder (see fig. 2.1) which, however,

extend to the whole space without any discontinuity in the field. The above equation,

in the non-relativistic limit, entails the vanishing of the ”large” components of the

Dirac field at the boundary, that is one is left with the Schrödinger equation with

Dirichlet boundary conditions. We can readily verify the vanishing of fluxes implied

by eq. (3.11) by first noting that:

iΨ(R)/n = Ψ(R) ⇒ Ψ(R)Ψ(R) = (iΨ(R)/n)(−i/nΨ(R)) =

= −Ψ(R)Ψ(R)

⇒ Ψ(R)Ψ(R) = 0, (3.12)

being /n/n = n2 = −1. The equations above imply that the current flux also vanishes

at the boundary because:

ĵµ(R)nµ = Ψ(R)/nΨ(R) = iΨ(R)Ψ(R) = 0.

Since ΨΨ(R) = 0, the outer surface of the cylinder must be such that ∂µΨΨ|R = Ξ̂ nµ

or:

nµ∂µ(ΨΨ)(R) =
∂

∂r
ΨΨ
∣∣∣
r=R

= −Ξ̂(R). (3.13)

Since ΨΨ = 0 for r = R for any ϕ, t, z, then the operator Ξ can only depend on the

radial coordinate, hence on R. The flux of energy-momentum of the canonical tensor

at the boundary is vanishing because, using eq. (3.2) and eqs. (3.11),(3.13):

∫

∂V

dS T̂ µνnµ =
i

2

∫

∂V

dS Ψ/n∂νΨ − ∂νΨ/nΨ =
1

2

∫

∂V

dS Ψ∂νΨ + ∂νΨΨ =

=
1

2

∫

∂V

dS ∂ν(ΨΨ) = −Ξ̂(R)

2

∫

∂V

dS nν = 0.

Likewise, for the orbital part of the angular momentum flux:
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∫

∂V

dS xµT̂ λνnλ − (µ ↔ ν) =
1

2

∫

∂V

dS xµ∂ν(ΨΨ) − (µ ↔ ν) =

=
Ξ̂(R)

2

∫

∂V

dS (xµnν − xνnµ) = 0.

where the last integral vanishes because of the geometrical symmetry z → −z. Finally,

the flux of the spin tensor also vanishes at the boundary because, using (3.2) and

(3.11):

nλŜλ,µν(R) =
1

2

(
Ψ/nΣµνΨ + ΨΣµν /nΨ

)
= − i

2

(
ΨΣµνΨ − ΨΣµνΨ

)
= 0. (3.14)

Therefore, the eq. (1.5) applies and the integrals:

P̂ ν =

∫

V

d3x T̂ 0ν Ĵµν =

∫

V

d3x Ĵ 0,µν , (3.15)

are conserved. Since, we also have, from the Lagrangian, the usual anticommutation

relations at equal times:

{Ψa(t,x), Ψ†
b(t,x

′)} = δabδ
3(x − x′) {Ψa(t,x), Ψb(t,x

′)} = {Ψ†
a(t,x), Ψ†

b(t,x
′)} = 0,

it is easy to check that the conserved hamiltonian i/2
∫

d3x Ψ†
↔

∂ tΨ is indeed, as

expected, the generator of time translations, i.e.:

[Ĥ, Ψ] = −i
∂

∂t
Ψ [Ĥ, Ψ†] = −i

∂

∂t
Ψ†,

and, therefore, putting together the above equation with eq. (3.15) and (3.2), the

conclusion is that:

[Ĥ, Ĵi] = 0,

for the case under examination.

The complete solution of the free Dirac equation for a massive particle in a longi-
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tudinally unlimited cylinder with finite transverse radius, with boundary conditions

of the kind (3.11) has been obtained by Bezerra de Mello et al in ref. [17] and we

summarize it here. In a longitudinally unlimited cylinder, but with finite transverse

radius R, the field is expanded in terms of eigenfunctions of the longitudinal momen-

tum, third component of angular momentum, transverse momentum and an additional

“spin” quantum number [17]. The relevant quantum numbers n = (pz, M, ζ(M,ξ,l), ξ)

take on continuous (pz) and discrete values (M, ζ(M,ξ,l), ξ). The third component of

the angular momentum M takes on all semi-integer values ±1/2,±3/2, . . .; the “spin”

quantum number ξ can be ±1 and the transverse momentum quantum number:

ζ(M,ξ,l) = pT lR, (3.16)

takes on discrete values which are zeroes, sorted in ascending order with the label

l = 1, 2, . . . and depending on M and ξ, of the equation:

J|M− 1
2 |(pT R) + sgn(M) b

(+)
ξ J|M+ 1

2 |(pT R) = 0, (3.17)

where J are Bessel functions and:

b
(±)
ξ =

±m + ξmT

pT
. (3.18)

m being the mass and:

mT =
√

p2
T + m2,

the transverse mass 2; we note in passing that b
(+)
ξ = 1/b

(−)
ξ . The Dirac field itself can

be written as an expansion:

Ψ(x) =
∑

n

Un(x)an + Vn(x)b†
n
, (3.19)

where an and bn are destruction operators of, in order, particles and antiparticles

having quantum numbers n, while:

2In the rest of this section the symbol pTl stands for a discrete variable taking on (M, ξ, l)-
dependent values given by the eq. (3.16) or, later on, by eq. (3.38).
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∑

n

≡
∑

M

∑

ξ=±1

∑

ζ(M,ξ,l)

∫ +∞

−∞

dpz =
∑

M

∑

ξ=−1,1

∞∑

l=1

∫ +∞

−∞

dpz.

The eigenspinors Un and Vn read, in the Dirac representation of the γ matrices and

in cylindrical coordinates (t, r, ϕ, z):

Un(x) = Cn





J|M− 1
2 |(pT lr)

i sgn(M)κξb
(+)
ξ J|M+ 1

2 |(pT lr)e
iϕ

κξJ|M− 1
2 |(pT lr)

−i sgn(M)b
(+)
ξ J|M+ 1

2 |(pT lr)e
iϕ





ei[(M−1/2)ϕ+pzz−εt]

√
2π

Vn(x) =
Cn

b
(−)
ξ





J|M+ 1
2 |(pT lr)

i sgn(M)κξb
(−)
ξ J|M− 1

2 |(pT lr)e
iϕ

κξJ|M+ 1
2 |(pT lr)

−i sgn(M)b
(−)
ξ J|M− 1

2 |(pT lr)e
iϕ





e−i[(M+1/2)ϕ+pzz−εt]

√
2π

, (3.20)

with:

κξ =
ε + ξ

√
ε2 − p2

z

pz
,

and ε =
√

p2
z + p2

T l + m2 being the energy. The eigenspinors (3.20) are normalized so

as to:

∫

V

d3x Ψ†Ψ =
∑

n

a†
n
an + bnb†

n
,

that is with:

∫

V

d3x U †
n
(x)Un′(x) =

∫

V

d3x V †
n
(x)Vn′(x) = δnn′ ;

∫

V

d3x U †
n
(x)Vn′(x) = 0, (3.21)

being δnn′ = δMM ′δξξ′δll′δ(pz − p′z) and the anticommutation relations of creation and

destruction operators:



50 CHAPTER 3. AN EXAMPLE: THE FREE DIRAC FIELD

{an, a†
n′} = {bn, b†

n′} = δnn′ {an, bn′} = {a†
n
, bn′} = 0. (3.22)

The normalization coefficient in (3.20) obtained from the condition (3.21) reads [17]:

(Cn)−2 = 2πR2J2

|M− 1
2 |(pT lR)

κ2
ξ + 1

p2
T lR

2

(
2R2m2

T l + 2ξMRmT l + mR
)
. (3.23)

3.2 Proving the inequivalence

For what we have seen so far, from a purely quantum field theoretical point of view,

the Belinfante tensors (3.3) for the Dirac field in the cylinder could be regarded as

equivalent to the canonical ones in eq. (3.2) because they give, once integrated, the

same generators (3.15). This happens because the condition (1.4) is met for Φ̂ = Ŝ
(what follows from eq. (3.14)) and this implies, taking eq. (3.4) into account, that

all the integrands of (1.4) vanish at the boundary. Yet, these two set of tensors are

thermodynamically inequivalent because, as it will be shown hereafter, it turns out

that, using eq. (3.6):

S0,ij =
1

2
tr
(
ρ̂ :Ψ{γ0, Σij}Ψ:

)
= D(r)ǫijkk

k 6= 0 ⇒ D(r) 6= 0, (3.24)

at some r 6= R (we have used the eq. (3.6)), with ρ̂ we mean ρ̂V written in eq. (2.27),

omitting the · · ·V for ease of reading. This will be enough to conclude that either the

energy-momentum or the angular momentum densities or both have different values

for different sets of quantum tensors, as previously discussed. Note that the boundary

condition (3.14) together with the general expression of the mean value of the spin

tensor (3.5) implies that D(R) = 0, i.e. its vanishing at the boundary.

We can rewrite the inequality (3.24) by taking advantage of the commutation

relation:

[
γλ, Σµν

]
= iηλµγν − iηλνγµ,

implying:
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S0,ij = tr
(
ρ̂ :Ψ†ΣijΨ:

)
−iη0itr

(
ρ̂ :ΨγjΨ:

)
+iη0jtr

(
ρ̂ :ΨγiΨ:

)
= tr

(
ρ̂ :Ψ†ΣijΨ:

)
6= 0,

or, equivalently:

D(r) =
1

2
ǫij3S0,ij =

1

2
tr
(
ρ̂ :Ψ†ǫij3Σ

ijΨ:
)
≡ tr

(
ρ̂ :Ψ†Σ3Ψ:

)
6= 0, (3.25)

where the indices i, j can only take on the value 1 or 2. In the above equation and

henceforth, we can take the Heisenberg field operators at some fixed time t = 0

because of the stationarity of density operator ρ̂. Hence we just need to show that:

tr
(
ρ̂ :Ψ†(0,x)ΣzΨ(0,x) :

)
6= 0 (3.26)

with:

Σz =
1

2





1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1




, (3.27)

for some point x within the cylinder and our goal is achieved.

To calculate the mean value of the spin density in eq. (3.26), we start by observing

that (see Appendix A for the proof):

tr
(
ρ̂ a†

n
an′

)
=

δnn′

e(ε−Mω+µ)/T + 1
tr
(
ρ̂ b†

n
bn′

)
=

δnn′

e(ε−Mω−µ)/T + 1

tr
(
ρ̂ a†

n
bn′

)
= tr (ρ̂ anbn′) = 0 (3.28)

which allows us to work it out by plugging in there the field expansion (3.19):
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tr
(
ρ̂ :Ψ†(0,x)ΣzΨ(0,x) :

)
= (3.29)

=
∑

n

1

e(ε−Mω+µ)/T + 1
[U †

n
(x)ΣzUn(x)] − 1

e(ε−Mω−µ)/T + 1
[V †

n
(x)ΣzVn(x)].

where we have taken into account that the normal ordering of fermions is such that

:bnb†
n′ := −b†

n′bn. By using eq. (3.20) and (3.27):

U †
n
(x)ΣzUn(x) =

C2
n

4π

[
J2

|M− 1
2 |(pT lr) − κ2

ξ b
(+)
ξ

2
J2

|M+ 1
2 |(pT lr)+

+ κ2
ξJ

2

|M− 1
2 |(pT lr) − b

(+)
ξ

2
J2

|M+ 1
2 |(pT lr)

]
=

=
C2

n

4π

[
J2

|M− 1
2 |(pT lr) − b

(+)
ξ

2
J2

|M+ 1
2 |(pT lr)

](
1 + κ2

ξ

)

V †
n
(x)ΣzVn(x) =

C2
n

4π
b
(−)
ξ

2
[
J2

|M+ 1
2 |(pT lr) − b

(−)
ξ

2
J2

|M− 1
2 |(pT lr)

](
1 + κ2

ξ

)
=

=
C2

n

4π

[
−J2

|M− 1
2 |(pT lr) + b

(+)
ξ

2
J2

|M+ 1
2 |(pT lr)

](
1 + κ2

ξ

)
= −U †

n
(x)ΣzUn(x).

hence, by using eqs. (3.23) and (3.25), we can rewrite eq. (3.29) as:

tr
(
ρ̂ :Ψ†(0,x)ΣzΨ(0,x) :

)
= D(r) =

=
∑

M

∑

ξ=±1

∞∑

l=1

∫ ∞

−∞

dpz

[
1

e(ε−Mω+µ)/T + 1
+

1

e(ε−Mω−µ)/T + 1

]
×

×
p2

T l

[
J2

|M− 1
2 |(pT lr) − b

(+)
ξ

2
J2

|M+ 1
2 |(pT lr)

]

8π2RJ2

|M− 1
2 |(pT lR)(2Rm2

T l + 2ξMmT l + m)
. (3.30)

The mean value of the spin tensor is therefore given by the sum of a particle and an

antiparticle term which are equal only for µ = 0. As expected, it vanishes for r = R in

view of the eq. (3.17), yet our goal is to show that it is non-vanishing at some point x

not belonging to the boundary. It is worth pointing out that, if this is the case, the spin

tensor has a macroscopic value because, as it is apparent from (2.27), it is proportional
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to the number density (in phase space) of quanta 1/ exp[(ε − Mω ± µ)/T + 1]. It is

most convenient to consider a point belonging to the rotation axis, i.e. with radial

coordinate r = 0 because Bessel functions of all orders but 0 vanish therein.

We will show that D(0) = 0 for ω = 0 first and that it is an increasing function

of ω/T thereafter. In general, the whole function D(r) must be vanishing for ω = 0

for symmetry reasons. In fact, if ω = 0, the density operator (2.27) has an additional

symmetry, that is the rotation of an angle π around any axis orthogonal to the cylinder

axis, say R2(π). This transformation corresponds to flip over the cylinder, which leaves

the system invariant provided that ω = 0, and has the consequence that any pseudo-

vector field directed along the axis must vanish. Therefore:

tr
(
ρ̂ :Ψ†(0,x)ΣzΨ(0,x) :)

∣∣∣
ω=0

)
= D(r)|ω=0 = 0. (3.31)

We will, however, explicitly work out D(0)|ω=0, because it will be needed to calculate

the derivative as a function of ω/T and also in order to check that the expression (3.30)

fulfills the eq. (3.31) in r = 0. We first not that the function D(r) in eq. (2.27) is the

sum of a particle D(r)+ and an antiparticle D(r)− term. We focus on the particle

term D(r)+, the calculation for D(r)− will be a trivial extension. Let us define (see

eq. (3.16)):

p±,ξ =
ζ(± 1

2
,ξ,l)

R
,

and recalling that J0(0) = 1, from eq. (2.27):

D(0)+ =
1

8π2R

∑

ξ=±1

∞∑

l=1

∫ ∞

−∞

dpz (3.32)





p2

+,ξ(
e(ε− 1

2
ω+µ)/T + 1

)
J0(p+,ξR)2

[
2R
(
p2

+,ξ + m2
)

+ 2ξ
√

p2
+,ξ + m2 + m

]

−
p2
−,ξb

(+)
ξ

2

(
e(ε+ 1

2
ω+µ)/T + 1

)
J1(p−,ξR)2

[
2R
(
p2
−,ξ + m2

)
− 2ξ

√
p2
−,ξ + m2 + m

]




 .

We can rearrange the above sum by noting that the equation (3.17), depending on
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indices (M, ξ) is the same for (−M,−ξ). In fact:

J|−M− 1
2 |(ζ) + sgn(−M) b

(+)
−ξ J|−M+ 1

2 |(ζ) = J|M+ 1
2 |(ζ) − sgn(M)b

(+)
−ξ J|M− 1

2 |(ζ),

However, because of (3.18), −b
(+)
−ξ = b

(−)
ξ = 1/b

(+)
ξ , and so multiplying the right hand

side of above equation by sgn(M)b
(+)
ξ one gets the left hand side of eq. (3.17). Hence,

the zeroes of eq. (3.17) and the one with “reflected” indices (−M,−ξ) are the same:

ζ(−M,−ξ,l) = ζ(M,ξ,l), (3.33)

for any l = 1, 2, . . .. Now we can redefine the indices in the second term of the sum

in eq. (3.32) by turning ξ into −ξ, which changes nothing as ξ = −1, +1 and write:

D(0)+ =
1

8π2R

∑

ξ=±1

∞∑

l=1

∫ ∞

−∞

dpz ×

×





p2

+,ξ(
e(ε− 1

2
ω+µ)/T + 1

)
J0(p+,ξR)2

[
2R
(
p2

+,ξ + m2
)

+ 2ξ
√

p2
+,ξ + m2 + m

]+

−
p2
−,−ξb

(+)
−ξ

2

(
e(ε+ 1

2
ω+µ)/T + 1

)
J1(p−,−ξR)2

[
2R
(
p2
−,−ξ + m2

)
+ 2ξ

√
p2
−,−ξ + m2 + m

]




 .

We can replace p−,−ξ with p+,ξ because of (3.33) and therefore:

D(0)+ =
1

8π2R

∑

ξ=±1

∞∑

l=1

∫ ∞

−∞

dpz × (3.34)

×





p2

+,ξ(
e(ε− 1

2
ω)/T + 1

)
J0(p+,ξR)2

[
2R
(
p2

+,ξ + m2
)

+ 2ξ
√

p2
+,ξ + m2 + m

]+

−
p2

+,ξb
(+)
−ξ

2

(
e(ε+ 1

2
ω+µ)/T + 1

)
J1(p+,ξR)2

[
2R
(
p2

+,ξ + m2
)

+ 2ξ
√

p2
+,ξ + m2 + m

]




 .
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We are now going to prove that this latter expression is non-vanishing when ω 6= 0.

First, we note that it does vanish when ω = 0. In this case eq. (3.34) yields:

D(0)+
∣∣∣
ω=0

=
1

8π2R

∑

l,ξ

∫ ∞

−∞

dpz ×

×
p2

+,ξ

[
J1(p+,ξR)2 − b

(+)
−ξ

2
J0(p+,ξR)2

]

(e(ε+µ)/T+ + 1)J1(p+,ξR)2J0(p+,ξR)2
[
2R
(
p2

+,ξ + m2
)

+ 2ξ
√

p2
+,ξ + m2 + m

] .

By using again (3.33) to replace p+,ξ with p−,−ξ it is easy to show that the numerator

of the integrand vanishes as:

J1(p+,ξR)2 − b
(+)
−ξ

2
J0(p+,ξR)2 = J1(p−,−ξR)2 − b

(+)
−ξ

2
J0(p−,−ξR)2 =

= J1(ζ(−1/2,−ξ,l))
2 − b

(+)
−ξ

2
J0(ζ(−1/2,−ξ,l))

2 = 0,

in view of the eq. (3.17). Therefore, the spin tensor density in r = 0 vanishes for a

non-rotating system, as expected. To show that it is no longer zero for ω 6= 0 we just

need to show that the derivative with respect to ω/T in ω = 0 is not zero. One has:

∂

∂(ω/T )
D(0)+

∣∣∣
ω=0

=
1

16π2R

∑

l,ξ

∫ ∞

−∞

dpz

e(ε+µ)/T p2
+,ξ

[
J1(p+,ξR)2 + b

(+)
−ξ

2
J0(p+,ξR)2

]

(e(ε+µ)/T + 1)
2
J1(p+,ξR)2J0(p+,ξR)2

[
2R
(
p2

+,ξ + m2
)

+ 2ξ
√

p2
+,ξ + m2 + m

] .

All terms are mainfestly positive except
[
2R(p2

T l + m2) + 2ξ
√

p2
T l + m2 + m

]
in the

denominator when ξ = −1. However, in this case:

R
(
p2

T l + m2
)
−
√

p2
T l + m2 =

√
p2

T l + m2

(
R
√

p2
T l + m2 − 1

)
>

>
√

p2
T l + m2 (Rm − 1),
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which is positive for a radius greater than the Compton wavelength of the particle,

that is positive for any actually macroscopic value of the radius R. The very same

argument applies to the antiparticle term D(0)− of the D(r) function in eq. (3.30)

with the immaterial replacement µ → −µ, hence:

D(0)|ω=0 = 0
∂

∂(ω/T )
D(0)

∣∣∣
ω=0

> 0

It thence follows that the inequality (3.26) must be true for small, yet finite, values

of ω/T and therefore:

D(r) 6= 0 for ω/T > 0

in a finite region around r = 0. Moreover, it is easy to show, by using eq. (3.30), that

the derivative of the function D(r) vanishes in r = 0 for it is proportional to terms,

with N ≥ 0:

2JN(0)J ′
N(0) = JN (0) (JN−1(0) − JN+1(0))

which all vanish because of the known properties of Bessel functions. Hence, the mean

angular momentum density in r = 0 differs between canonical and Belinfante tensors,

i.e. rewriting the eq. (3.10) for r = 0:

J Belinfante(0) = J canonical(0) − D(0)k̂

where D(0) is finite for finite ω and positive. Thus, the Belinfante angular momentum

density is lower than the canonical one by some finite and macroscopic amount.

It’s important to stress how, had we used the definition of average values without

normal ordering, this conclusion would be unaffected. Indeed, the spin tensor in (3.2)

is a bilinear in the fields and therefore the difference between the two definitions is a

vacuum expectation value of the spin tensor:

tr
(
ρ̂ : Ŝ :

)
= tr

(
ρ̂ Ŝ
)
− 〈0|Ŝ|0〉. (3.35)

Vectorial irreducible parts of the spin tensor, such as Ŝ0ij have a vanishing vacuum

expectation value if the vacuum is invariant under general rotations. The vacuum
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of the free Dirac field in the cylinder, dened by an|0〉 = |0〉, is indeed rotationally

invariant. If degenerate vacua existed, the commutation of the Hamiltonian with

angular momentum operators that was shown before (see Eq. (60)) would ensure

that they belong to some irreducible representation of the SU(2) group. However, for

the free Dirac field in the cylinder, the angular momentum operator along the z axis

turns out to be:

Ĵz =
∑

n

M
(
a†
n
an + b†

n
bn
)
,

so that Ĵz|0〉 = 0 on all possible degenerate vacua. This means that the only possible

multiplet is one-dimensional and, thereby, the vacuum is non degenerate and the

second term in the Eq. (3.35) vanishes.

3.2.1 The non-relativistic limit

It would be very interesting to calculate the function D(r) numerically to “see” the

difference between the Belinfante and the canonical tensors and to make sure that

this difference is not a rapidly oscillating function on a microscopic scale, which would

render the macroscopic observation of the difference impossible. This is, though, very

hard in the fully relativistic case but relatively easy in the non-relativistic limit m/T ≫
1, because in this case the eq. (3.17) yielding the quantized transverse momenta

reduces to the vanishing of one single Bessel function. This happens because in the

non-relativistic limit:

b
(+)
ξ =

ξmT + m

pT
=






mT +m
pT

≃ 2m+p2
T /2m

pT
≃ 2m

pT
≫ 1 for ξ = 1

m−mT

pT
≃ −p2

T /2m

pT
= −

(
pT

2m
≪ 1

)
, for ξ = −1

(3.36)

so that the eq. (3.17) in fact reduces to:





J|M+ 1

2 |(pT R) = −sgn(M) pT

2m
J|M− 1

2 |(pT R) ≃ 0 for ξ = 1

J|M− 1
2 |(pT R) = sgn(M) pT

2m
J|M+ 1

2 |(pT R) ≃ 0. for ξ = −1
(3.37)
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Altogether, we can solve the equation JL(pT R) = 0 for all integers L = M + ξ/2 and

take the quantized transverse momenta:

pT l =
ζL,l

R
, (3.38)

where ζL,l l = 1, 2, . . . are now the familiar zeroes of the Bessel function of integer

order L.

We can now write the particle and antiparticle terms in the eq. (3.30):

D(r)± =
∑

M

∑

ξ=±1

∞∑

l=1

∫ ∞

−∞

dpz
1

e(ε−Mω±µ)/T + 1

p2
T l

[
J2

|M− 1
2 |(pT lr) − b

(+)
ξ

2
J2

|M+ 1
2 |(pT lr)

]

8π2RJ2

|M− 1
2 |(pT lR)(2Rm2

T l + 2ξMmT l + m)
,

with, as has been mentioned, D(r) = D(r)+ +D(r)−. In the non-relativistic limit one

has:

2Rm2
T + 2ξMmT + m ≃ 2Rm2 + 2ξMm + m ≃ 2Rm2, (3.39)

where the last approximation is due to the obvious assumption Rm ≫ 1 and that the

term |ξMm| can be comparable to Rm2 only if |M | is very large. However, terms

with large |M | are either suppressed by the exponential exp[ωM/T ] or by the Bessel

functions, which effectively implements the semiclassical equality M ≈ RpT ; since

non-relativistically Rm2 ≫ RpT m ≈ |M |m, the approximation (3.39) is justified. We

then calculate the terms with ξ = 1 and ξ = −1 in the sum in eq. (3.37) separately.

For ξ = 1 one sets M + 1/2 = L and writes the integrand of eq. (3.30), including

approximation (3.39) and taking into account (3.36):

1

e(ε−Lω+ω/2±µ)/T + 1

p2
T

16π2R2m2

J2
|L−1|(pT lr) − 4m2

p2
Tl

J2
|L|(pT lr)

J2
|L−1|(pT lR)

≃

≃ − 1

e(ε−Lω+ω/2±µ)/T + 1

1

4π2R2

J2
|L|(pT lr)

J2
|L−1|(pT lR)

, (3.40)

where pT l is a solution of the first equation in (3.37). Similarly, for ξ = −1 one sets
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M − 1/2 = L and obtains, by using the second of the equations (3.37):

1

e(ε−Lω+ω/2±µ)/T + 1

p2
T

16π2R2m2

J2
|L|(pT lr) − p2

Tl

4m2 J
2
|L+1|(pT lr)

J2
|L|(pT lR)

≃

≃ 1

e(ε−Lω−ω/2±µ)/T + 1

p2
T

16π2R2m2

J2
|L|(pT lr)

p2
Tl

4m2 J
2
|L+1|(pT lR)

=

=
1

e(ε−Lω−ω/2±µ)/T + 1

1

4π2R2

J2
|L|(pT lr)

J2
|L+1|(pT lR)

. (3.41)

Now, by using approximations (3.39),(3.40) and (3.41) we can write the non-relativistic

limit of D(r)± as:

D(r)± =
1

4π2R2

∞∑

L=−∞

∞∑

l=1

∫ ∞

−∞

dpz × (3.42)

× 1

e(ε−Lω−ω/2±µ)/T + 1

J2
|L|(pT lr)

J2
|L+1|(pT lR)

− 1

e(ε−Lω+ω/2±µ)/T + 1

J2
|L|(pT lr)

J2
|L−1|(pT lR)

,

where the first term is to be associated to particles with spin projection +1/2 along the

z axis and the second term to those with projection −1/2. Finally, the integral over pz

in eq. (3.42) can be worked out by first introducing the non-relativistic approximation

ε = m + p2
T /2m + p2

z/2m and then expanding the Fermi distribution. The final result

is:

D(r)± =
1

4π2R2

∞∑

L=−∞

∞∑

l=1

∞∑

n=1

(−1)n+1

√
2πmKT

n
e−n(mc2±µ+p2

T /2m−L~ω)/KT

×
{

en~ω/2KT
J2
|L|(pT lr/~)

J2
|L+1|(pT lR/~)

− e−n~ω/2KT
J2
|L|(pT lr/~)

J2
|L−1|(pT lR/~)

}
,

where we have purposely restored, for reasons to become clear shortly, the natural

constants.

It is very interesting to observe that the functions D(r)±, hence D(r), are non-
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vanishing in the exact non-relativistic limit c → ∞. Indeed, it can be seen from

eq. (3.43) that no factor ~ or c or powers thereof appear as proportionality constants

in front of it, because the D(r)± dimension is already - in natural units - that of an

angular momentum; the only c2 needed is in the exponent, which is compensated by a

shift of the chemical potential, and the only ~’s needed are those multiplying ω and in

the argument of Bessel functions. Since ~ multiplies ω everywhere and D(r) vanishes

for ω = 0, we also see that the difference between canonical and Belinfante densities

is essentially a quantum effect, as it vanishes in the limit ~ → 0; this is expected as

the spin tensor exists only for quantum fields.

For very small values of ~ω/KT these two functions are proportional to ~ω/KT

itself since D(r)|ω=0 = 0, as shown in eq. (3.31). Retaining only the n = 1 term of the

series, corresponding to the Boltzmann limit of Fermi-Dirac statistics, and expanding

the exponentials exp(±n~ω/2KT ) at first order, one obtains the noteworthy equality:

D(r)± = ~tr
(
ρ̂
(
:Ψ†ΣzΨ:

)±) ≃ 1

2

~ω

KT
~tr
(
ρ̂
(
:Ψ†Ψ:

)±)
= ~

1

2

~ω

KT

(
dn

d3x

)±

, (3.43)

where the superscript ± implies that one retains either the particle or theantiparticle

term in the expansion of the free field and (dn/d3x)± is, apparently, the particle or

antiparticle density. The eq. (3.43) can be shown by retracing all the steps of the

calculations carried out for the spin tensor just replacing Σz with the identity matrix.

The function D(r) can be computed with available numerical routines finding

a sufficient number of zeroes of Bessel functions, according to eq. (3.37). For the

numerical computation to be accurate enough one has to make the series in L, l and

n quickly convergent at any r. For the series in L, two requirements should be met:

first (in natural units) ω/T ≪ 1 in order to keep the exponential exp[Lω/T ] relatively

small and, secondly, the radius R should be such that R
√

mT is not too large; this

condition stems from the fact that, as the Bessel functions effectively implement the

semiclassical approximation |L| ≃ pT R and pT ≈
√

mT , the effective maximal value

of L is of the order of R
√

mT . For the series in l, one has to set m/T ≫ 1, so that

large pT ’s are strongly suppressed; this is also the non-relativistic limit condition. For

the series in n, one has to choose µ so as to keep far from the degenerate Fermi gas

case. The function D(r) as a function of r is shown in fig. 3.1 for µ = 0, R = 300,
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T = 0.01, m = 1 and two different values of ω, 10−4 and 2 · 10−4; the function

(r/2)D′(r) − D(r), which is the difference between angular momentum densities for

the canonical and Belinfante tensors, is shown in fig. 3.2.
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Figure 3.1: Function D(r), cor-
responding to the mean value of
the canonical spin tensor for the
free Dirac field, in a rotating cylin-
der at thermodynamical equilib-
rium as a function of radius r, in
the non-relativistic limit.
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Figure 3.2: Difference between the
mean value of the canonical angu-
lar momentum density and the Be-
linfante angular momentum den-
sity for the free Dirac field, in a ro-
tating cylinder at thermodynami-
cal equilibrium as a function of ra-
dius r, in the non-relativistic limit.

The plots in figs. 3.1,3.2 show that the angular momentum density is larger in

the canonical than in the Belinfante case almost everywhere, except for a narrow

space near the boundary, whose thickness is plausibly determined by the microscopic

scales of the problem (thermal wavelength or Compton wavelenght). Thereby, the

observable macroscopic value of the differences between angular momentum densi-

ties, for a rotating system of free fermions, is the slowly varying positive one in the

bulk. While the boundary conditions are needed to ensure the invariance of the total

angular momentum, the rapid drop to zero within a microscopic distance from the

cylinder surface tells us that the chosen boundary conditions at a macroscopic scale of

observation correspond to a discontinuity or a surface effect. Any macroscopic coax-
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ial sub-cylinder of the full cylinder with a radius r < R will therefore have different

total angular momenta whether one chooses the canonical or the Belinfante tensors

in eqs. (3.2) and (3.3) respectively. Such an ambiguity is physically unacceptable and

can be solved only by admitting that these tensors are in fact inequivalent.

3.3 Discussion

We have shown that, in general, couples of stress-energy-momentum and spin tensors

related by a pseudo-gauge transformation and allegedly equivalent in quantum field

theory, are in fact thermodynamically inequivalent. The inequivalence doesn’t show

up for systems - familiar in thermal field theory - globally and locally at rest in an

inertial frame. The symmetry of the density matrix (2.12) ensures that any couple

linked by a pseudo-gauge transformation has the same average values. In this case

symmetry constraints are so strong that is not even necessary that the transformation

is a valid one; provided that the Hamiltonian Ĥ remains the same, even when the

boundary condition (1.4) are not fulfilled, and thus changing some of the quantum

Poincaré group generators, symmetry ensures that the average four momentum and

angular momentum remain the same.

On the other hand it is enough to add a rigid rotation to have a drastically different

behavior. The - looser - symmetry of the system is not enough anymore to ensure

the equivalence for the average values. We have worked out exhaustively an instance

of such inequivalence involving the free Dirac field and shown that, surprisingly, the

canonical and Belinfante tensors imply the same average energy density but different

mean densities of momentum and angular momentum. Particularly, the latter is

almost everywhere larger in the canonical than in the Belinfante case for a small, yet

macroscopic, amount even in the non-relativistic limit.

It is a very important issue what is the right couple of tensors; for instance, if it

was found that the quantum spin tensor is not the trivial Belinfante one (i.e. vanish-

ing) this would have major consequences in hydrodynamics and gravity, even more

if its associated stress-energy tensor had a non-symmetric part, because this could

imply a torsion of the space-time (for a recent discussion see e.g. ref. [18]). From

a theoretical viewpoint we cannot, for the present, determine a thermodynamically

“best” couple of stress-energy and spin tensor, but from an experimental viewpoint,
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in principle we could decide if a specific stress-energy or a spin tensor is wrong by

measuring with sufficient accuracy the angular momentum density of a rotating sys-

tem at full thermodynamical equilibrium kept at fixed temperature T and angular

velocity ω. This measurement would, for instance, be able to reject the canonical or

Belinfante tensor without even the need of resorting to relativistic systems as their

difference has a non-vanishing non-relativistic limit, as has been discussed at the end

of last section. In practice, at a glance, this measurement would not seem an easy one.

According to eq. (3.43), in the non-relativistic limit the difference between these two

tensors is of the order of ~ω/KT times ~ times the particle density, that is particles

have a polarization of the order of ~ω/KT . This ratio is extremely small for ordinary

macroscopic systems; assuming a large angular velocity ω, say 100 Hz, at room tem-

perature T = 300 oK it turns out to be of the order of 10−12. Notwithstanding, this is

precisely the polarization responsible for the observed magneto-mechanical phenom-

ena, the Barnett [19] (magnetization induced by a rotation) and Einstein-De Haas

(rotation induced by magnetization) effects. It is therefore possible that with some

suitable experiment of this sort one can discriminate between spin tensors, the effect

could be enhanced lowering the temperature so much to increase the ratio ~ω/KT ,

e.g. with cold atom techniques.

Since the difference between couples of tensors corresponds, at least for the case

taken into account, to an average polarization of particles, a legitimate question would

be if the presence particle polarization itself requires a fundamental spin tensor. In-

deed the canonical spin tensor directly depends on the representation of SU(2) the

fields are in. More over that the canonical angular momentum density is mostly, ex-

cept near the border, the Belinfante angular momentum density plus the average spin

tensor, the polarization of particles.

The issue is whether a phenomenological macroscopic spin density, like the mag-

netization in the Barnett and Einstein-De Haas can be reproduced by the quantum

Belinfante stress-energy-momentum tensor or, more generally, by a purely orbital an-

gular momentum, thus eliminating the need of a fundamental spin tensor.

Considering only the free Dirac field for simplicity’s sake, it is easier and enlighten-

ing to work in the non-relativistic limit. If we take the canonical (3.2) and Belinfante

(3.3) couples of tensors, and perform the non-relativistic limit (following [20]) we have:
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T̂ 0i
canonical

n.r.−→ − i

2
Φ†

↔

∇ Φ

∣∣∣
i

T̂ 0i
Belinfante

n.r.−→ T̂ 0i
canonical +

1

2
∇× Φ†ΣΦ

∣∣∣
i

Ŝ0,ij
canonical

n.r.−→ εijkΦ
†ΣkΦ,

where Φ is the two-component field (the “large” upper components of the Dirac spinor

field in the c → ∞ limit, in the spinorial representation of the gamma matrices), and

Σ are the Pauli matrices divided by 2. From the above equation it ensues that the

total angular momentum density reads:

jcanonical = x ×
(
− i

2
Φ†

↔

∇ Φ

)
+ Φ†ΣΦ

jBelinfante = x ×
(
− i

2
Φ†

↔

∇ Φ

)
+ x ×

[
1

2
∇×Φ†ΣΦ

]
.

The difference between the Belinfante and canonical angular momentum density can

be easily re-expressed as a total derivative, as expected:

jBelinfante = jcanonical +
1

2
∇
(
x · Φ†ΣΦ

)
− 1

2

∑

j

∂j

(
xjΦ†ΣΦ

)
.

Despite the lack of a microscopic spin tensor, even in the Belinfante case there is

a contribution of the polarization to the total angular momentum. We wonder at

this point why the very fact that the expectation value of Φ†ΣΦ is non-zero (as it

is indeed in the Barnett experiment) should rule out the Belinfante tensors or other

possible couples with a vanishing spin tensor. It is not even enough to show that
1
2
∇
(
x · Φ†ΣΦ

)
− 1

2

∑
j ∂j

(
xjΦ†ΣΦ

)
has a non-vanishing expectation value. Showing

that singles terms are non-vanishing does not lead to conclude that a fundamental spin

tensor exists unless we show (and this is the crucial point) how much they contribute

to total angular momentum density.



Chapter 4

Decomposition of the stress tensor

Thus far, in this work, we have been focusing on momentum densities and equilibrium

properties of relativistic fluids. The information of the stress-energy-momentum ten-

sor however is not limited to the four momentum density, as the name implies. Pres-

sure and dissipative forces like shear stress play an important role in hydrodynamics

and thermodynamics. The fundamental quantum tensor themselves are related to the

entropy production out of equilibrium. These are the main topic of our work [27]

and will be discussed in more detail in chapter 6, while in this chapter we will briefly

present the decomposition of the macroscopic stress tensor in terms of four velocity

proper energy density, pressure and dissipative terms.

We will start from the simplest case, the perfect fluid, and we will limit the dis-

cussion to an isotropic fluid for mathematical convenience. It will be understood that

anisotropies will require a more general treatment.

4.1 The perfect fluid

The simplest relativistic fluid is the relativistic generalization of the perfect fluid. In

non relativistic mechanics a perfect fluid is a continuous system with vanishing shear

stress at equilibrium1 and out of equilibrium, it doesn’t have heat flux and all the

energy transport occurs through the speed of fluid cells and mechanical transport.

The non relativistic fluid is described by five degrees of freedom. Three for the

1Up to this point this is the generic definition of a fluid.

65
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fluid velocity v, one for the density ρ and one for the pressure p. Being a perfect fluid

there is no shear stress and, since we assume isotropy as already said, the only source

of surface forces is the pressure, a single degree of freedom.

For the relativistic perfect fluid mass density is replaced by proper energy density

ε, namely the energy density in the rest frame of the fluid cell2. In the non relativistic

limit the mass term mc2 become the dominant part of particles’ energy over the

kinetic energy term p2/2m + · · · , therefore ε/c2 → ρ when c → ∞. Three-velocity v

is replaced by four-velocity uµ. This is a four component vector, but there are still

only three degrees of freedom, since the vector field has to be time-like u · u = 0. The

relativistic perfect fluid is thus described by five degrees of freedom, proper energy

density ε, four-velocity uµ and pressure p.

Having only the four velocity uµ and the Minkowski metric ηµν to build a rank

two tensor3, T µν will be symmetric. Indeed the only rank two tensor we have are

uµuν and ηµν . If we want to write two linearly independent tensors, we have uµuν and

∆µν = ηµν −uµuν , namely the projectors along the four velocity and orthogonal. The

stress-energy-momentum tensor is therefore:

T µν = Auµuν + B∆µν .

Now T 00 is the energy density, using the definition of proper energy density in the

local rest frame (where u(x) = (1, 0)) we have ε(x) = T 00(x), but in the local rest

frame ∆00 is vanishing, so A ≡ ε.

Concerning the last coefficient B, we can show that it is the pressure using the

local four momentum conservation equation:

0 = ∂µT µν = (Dε)uν + ε θ uν + εAν + ∇νB − Bθuν − BAν ,

where θ = ∂ ·u is the divergence of four-velocity, D = uµ∂µ is the convective derivative,

∇ν = ∆µν∂µ is the spatial derivative4 and Aµ = Duµ is the four-acceleration.

Contracting with the projector ∆µ
ν the last equation reads:

2Opposed to the laboratory frame.
3As we will see later, gradients of uµ correspond to dissipative terms.
4In the comoving frame, they correspond to the temporal derivative and the spatial gradient since

ui and ∇0 vanish.
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(ε − B)Aµ = −∇µB. (4.1)

Now we need to see the non-relativistic limit c → ∞ and write explicitly the speed

of light in the vacuum c. In the non relativistic limit u = (γ, γv/c) → (1, 0), where

γ = (1 − v2/c2) is the Lorentz factor. Therefore:

∆µν = ηµν − uµuν →





0 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1




⇒ ∇µ → (0,−∇x),

here we wrote ∇x to distinguish the actual spatial gradient from relativistic spatial

gradient ∇ν which, in general, is a combination of space and time derivatives. The

right hand side of (4.1) correspond in the non-relativistic limit to ∇xB. On the other

hand the four acceleration is:

Aµ = Duµ =

(
Dγ

(Dγ)v/c + γDv/c

)

,

and accordingly5:

Dγ = D

[(
1 − v2

c2

)− 1
2

]
= −1

2

(
1 − v2

c2

)− 3
2 2v · Dv

c2
= − 1

c2
γ3v · Dv

Dv = uµ∂µv =
(
γ∂0 + γ

v

c
· ∇x

)
v =

1

c
γ (∂t + v · ∇x)v =

1

c
γa,

where a is the three-acceleration6 of a fluid cell. The four-acceleration then reads:

Aµ =
1

c2

(
−γ4v · a/c

−γ4(v · a)v/c2 + γ2a

)
.

Equation (4.1) can be rewritten:

5It is worth to remind that ∂0 = 1

c
∂t if we write explicitly the speed of light.

6It is formally identical to the definition of non-relativistic acceleration of a fluid cell.
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ε − B

c2

(
−γ4v · a/c

−γ4(v · a)v/c2 + γ2a

)

= −∇νB,

in the non-relativistic limit the time component becomes the trivial equation 0 = 0,

but, being limc→∞ ε/c2 = ρ, the spatial parts become:

ρ a− lim
c→∞

B

c2
a = ∇xB,

taking B = −p we get the Euler equation, namely the equation of motion of a non-

relativistic perfect fluid. Accordingly the stress-energy-momentum tensor of a rela-

tivistic perfect fluid is:

T µν = εuµuν − p∆µν .

We have already seen that three of the components of the local four momentum conser-

vation ∂µT
µν = 0 (namely the projection orthogonal to the four-velocity) correspond

to the relativistic Euler equation. The non-relativistic limit of the remaining (the

projection along the four-velocity) is the continuity equation. If we write it explicitly:

0 = uν∂µT
µν = Dε + (ε + p) θ = ∂µ (εuµ) + pθ.

It is convenient here to divide both members by c and write the explicit dependence

on the speed of light:

∂t

(
γ

ε

c2

)
+ ∇x

(
γ

ε

c2
v
)

+
1

c2
p
[

∂tγ + ∇x · (γv)
]

= 0,

the first two terms in the non relativistic limit become ∂tρ and ∇x ·(ρv), while the last

one vanishes because p/c2 → 0, even if the term in brackets (∇x · v for c → ∞) does

not necessarily vanish. The non-relativistic limit is therefore the continuity equation:

∂tρ + ∇x · (ρv) = 0.
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4.2 Symmetric stress-energy tensor

The next simplest case is that of a general spin-less fluid, namely a non ideal fluid. It is

not only defined by proper energy density, pressure and four velocity. It is important

at this point to discuss the physical interpretation of four-velocity before going on.

In non-relativistic hydrodynamics the velocity field v is taken as the average veloc-

ity of (classical) particles in the small but finite region of the fluid cell. In relativistic

quantum mechanics, which we want to use to get the macroscopic quantities as mean

values of corresponding operators, however we can not use the same definition. In

quantum mechanics there is not a clear definition of velocity, particles are delocalized

and, especially at relativistic energies, there is not even a fixed number of particles7.

There is not a unique definition of four velocity in relativistic hydrodynamics. We

can start from the previous example of a perfect fluid to introduce one. For the perfect

fluid the energy flux T i0(x) seen from an observer locally at rest is vanishing, being

the stress-energy-momentum tensor diagonal:

T µν |R = (εuµuν − p∆µν) |R =





ε 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p




,

where |R means that we are taking the components on the local rest frame. Therefore

we can define the four-velocity of a relativistic fluid as the time-like direction that

fulfills:

∆µ
α T ανuν = 0 ⇒ T i0|R = 0. (4.2)

This amounts to the Landau prescription [21] and is usually referred to as the Landau

frame. Another widely used definition is that of Eckart [22], where the four-velocity

is taken as the direction of a conserved time-like four current jµ:

uµ =
jµ

√
j · j ,

7Because of pair creation-annihilation and because the state of the system is not constrained to
be an eigenstate of particle number operator.
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the four current reads then jµ = nuµ where n =
√

j · j is the proper charge density8.

In the Eckart frame (4.2) is not fulfilled an there is an energy flux even in the rest

frame (the heat flux), on the other hand the conserved current jµ in the Landau

frame is not always parallel to four-velocity and the right decomposition of the four

current is jµ = nuµ + νµ, where n = j · u is still the proper charge density (having

a different four velocity we changed the comoving frame and it is different from the

Eckart frame proper charge density) while νµ is the diffusion current, non vanishing

in the Landau comoving frame. They are the most common choices, nevertheless it

is possible to take other definitions of four-velocity and have both a heat flux and a

diffusion current.

In the remainder of this work, in order to be as general as possible, we will not

make assumptions on the choice of four velocity definition. Therefore we will have a

non vanishing heat flux and diffusion current.

As in the previous case we can use the definition of proper energy density to see

that ε = uµuνT
µν , and we can decompose the remaining parts of the stress-energy-

momentum tensor projecting along the four-velocity direction and perpendicularly.

The proper energy density is the projection of both indices along the four-velocity

direction, we already saw the heat flux, usually called q:

qµ = uρT
ρν∆µ

ν = ∆µ
ρT

ρνuν ,

the last equality is due to the symmetry of T µν . The perfect fluid has a vanishing

heat flux. This means that every definition of four-velocity is equivalent for the perfect

fluid, and every four current is parallel to the energy flux.

The remaining part, usually referred to as the stress tensor is:

Πµν = ∆µ
ρ∆

ν
σT

ρσ,

this is usually divided in the trace and traceless part9:

−1

3
Πµνηµν = −1

3
Πµν∆µν = p − π0

8The charge density in a particular frame is j0, the proper charge density is the density in the
comoving frame and is a Lorentz scalar.

9In order to have al the parts of T µν divided in tensors on the same representation of the rotation
group.
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πµν = Πµν − 1

3
Πρσηρσ∆µν ,

the perfect fluid has both πµν and π0 vanishing, which we will see to correspond to a

vanishing shear and bulk viscosity. Pressure p can not be isolated here from algebraic

consideration, and it needs thermodynamics to be separated from the dissipative part

π0.

The most general form of a symmetric stress-energy-momentum tensor is thus:

T µν = εuµuν − p∆µν + π0∆
µν + qµuν + uµqν + πµν . (4.3)

We can easily recognize the perfect fluid part, and using thermodynamics we can

clarify the role of the other terms. Let us start from the four-momentum conservation

equation:

0 = ∂µT
µν = Dǫ uν + ǫ θ uν + ǫAν −∇νp + p θ uν + pAν + ∇νπ0 − π0 θ uν − π0A

ν+

+(∂ · q)uν + q · ∂uν + θqν + Dqν + ∂µπ
µν ,

contracting all the terms with the four-velocity, the last equation reads:

Dǫ + (ǫ + p)θ + ∂ · q + u · Dq + uν∂µπ
µν − π0θ = 0. (4.4)

It is worth now to rewrite some terms in a more convenient form:

∂ · q = ∂ ·
(

T0
q

T0

)
= T∂ ·

(
q

T0

)
+

1

T0

q · ∂T0 = T0∂ ·
(

q

T0

)
+

1

T0

q · ∇T0

u · Dq = D (u · q) − q · Du = −q · A

uν∂µπµν = ∂µ (πµνuν) − πµν∂µuν = −1

2
πµν∇〈µuν〉,

where the scalar T0 is the local temperature T0 = 1/
√

β · β, i.e. the temperature
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measured in a comoving frame; and ∇〈µuν〉 denotes:

∇〈µuν〉 =
(
∆ρ

µ∆
σ
ν + ∆ρ

ν∆
σ
µ − 2/3∆µν∆

ρσ
)
∂ρuσ,

which has the same algebraic properties of πµν , symmetric in he µ ↔ ν exchange,

orthogonal to the four-velocity in both indices and traceless.

Equation (4.4) now reads:

Dǫ + (ǫ + p)θ + T0∂ ·
(

q

T0

)
+

1

T0

q · (∇T0 − T0A) − 1

2
πµν∇〈µuν〉 − π0θ = 0. (4.5)

Now we can use the known thermodynamic relations between proper entropy density,

temperature, proper energy density and pressure to rewrite the last equation as the

divergence of the entropy flux, which must be non negative. The relations between

proper energy density, pressure temperature and proper entropy density, for a system

at equilibrium are the relativistic generalizations of the usual thermodynamic relations

for volumetric densities:

T0s = ǫ + p T0ds = dǫ. (4.6)

These relations only hold for thermodynamic equilibrium, but an usual approximation

is to assume that the same relations even hold for a system out of equilibrium. This

amounts to neglect other contributions to entropy, being them small as long as the

system is close enough to equilibrium, since they have to vanish at equilibrium. Using

the last relations out of equilibrium, the first and the second term of (4.5) read:






(ǫ + p)θ = T0s θ

Dǫ = T0Ds

⇒ Dǫ + (ǫ + p)θ = T0∂ · (su), (4.7)

therefore we have:

T0∂µ

(
suµ +

1

T0

qµ

)
= π0θ +

1

2
πµν∇〈µuν〉 −

1

T0

qµ (∇µT0 − T0A
µ) . (4.8)

We can recognize in the left hand side the temperature times the divergence of the
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entropy flux10. The right hand side must be therefore non-negative and vanish at

thermodynamical equilibrium. The latter can be easily verified considering that the

equilibrium four temperature fulfills a Killing equation [23]:

(
∂µβν + ∂νβµ

)

eq.
= 0. (4.9)

Indeed if we write the derivatives ∇µuν explicitly in their βµ dependence:

∇µuν = ∇µ

(
βν√
β · β

)
= T0∆

ρ
µδ

σ
ν ∂ρβσ − 1

2
T 3

0 ∆ρ
µβν2β

σ∂ρβσ = T0∆
ρ
µ∆

σ
ν∂ρβσ, (4.10)

we can write all the multiplying factors of π0, πµν and qµ in the right hand side of

(4.8) as derivatives of the four temperature:

θ = ∇µu
µ = T0∆

ρ
µ∆

σµ∂ρβσ = T0∆
ρσ∂ρβσ ≡ 1

2
T0∆

ρσ (∂ρβσ + ∂σβρ) , (4.11)

while:

∇〈µuν〉 = T0

(
∆ρ

µ∆σ
ν −

1

3
∆µν∆

ρσ

)
(∂ρβσ + ∂σβρ) , (4.12)

and finally:

∇µT0 − T0A
µ =

(
gµρ − βµβρ

β · β

)
∂ρ

[
(β · β)−

1
2

]
− (β · β)−

1
2 (β · β)−

1
2 βρ∂ρ

[
(β · β)−

1
2 βµ

]
=

= −1

2
(β · β)−

3
2

(
gµρ − βµβρ

β · β

)
2βσ∂ρβσ − (β · β)−

3
2

(
gµσ∂ρβσ − βµβσ

β · β

)
βρ∂ρβσ =

= −T 3

[(
gµρ − βµβρ

β · β

)
βσ +

(
gµσ∂ρβσ − βµβσ

β · β

)
βρ

]
∂ρβσ =

= −T 3∆µρβσ (∂ρβσ + ∂σβρ) . (4.13)

Plugging (4.9) into (4.11), (4.12) and (4.13) we find that the right hand side of (4.8)

is vanishing at equilibrium.

10This amounts to the entropy transport, suµ entropy density time four velocity, plus the heat
flux. We remind here that qµ is the energy flux in the rest frame.
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To ensure that (4.8) has a non-negative right hand side out of equilibrium we take

the same approach of non relativistic hydrodynamics and insert transport coefficients:

π0 = ζθ = ζ
[

∂tγ + ∇x · (γv)
]
,

where ζ is the relativistic generalization of bulk viscosity,

πµν = η∇〈µuν〉,

while η is the relativistic shear viscosity,

qµ = κ (∇µT0 − T0A
µ) ,

and κ is the relativistic thermal conductivity. We can write then (4.3) using transport

coefficients:

T µν = εuµuν − p∆µν + ζ θ ∆µν + κ [(∇µT0 − T0A
µ)uν + µ ↔ ν] + η∇〈µuν〉. (4.14)

It can be easily checked that in the non relativistic limit the heat flux become11

(0,−κ∇xT ) as we would expect from the Fourier law, the four-acceleration contribu-

tion vanishes because Aµ is of higher order in 1/c. In a similar way the bulk viscosity

term become ζ∇x·vδij and the last one become η (∂ivj + ∂jvi − 2/3∇x · v δij) /2. With

the pressure term they form the non relativistic stress tensor. This is the relativistic

Navier-Stokes theory, the relativistic covariant extension of the ordinary Navier-Stokes

equations.

Before continuing with the next section and the generalization to a non symmetric

stress-energy-momentum tensor, it is worth to note that the approximation used in

(4.7), namely to use the equilibrium relations between entropy pressure and tempera-

ture out of equilibrium, lead to causality violation and instabilities [24], it is possible

to obtain a causal theory if we add other terms to non-equilibrium entropy [25] thereby

obtaining new transport coefficients, usually relaxation times of dissipative currents.

The relativistic Navier-Stokes theory however is still used as a low-frequency approx-

11In non-relativistic thermodynamics both the local temperature T0 = 1/
√

β · β and the laboratory
temperature T = 1/β0 correspond to the ordinary temperature of the fluid cell.
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imation of causal dissipative theories. We are only interested in the lowest approxi-

mation, therefore in the rest of this work we will not take into account causality and

stability problems, and we will limit the discussion to the relativistic Navier-Stokes

dissipative equations.

4.3 The general case

In the most general case, the fluid system have a non vanishing spin tensor and, due

to local angular momentum conservation, the divergence of the spin tensor will be the

non symmetric part of the stress-energy-momentum tensor:

∂λSλ,µν = −2T µν
a T µν = T µν

s + T µν
a





T µν

s = 1
2
(T µν + T νµ)

T µν
a = 1

2
(T µν − T νµ) .

In this section we want to see if we can extend the relativistic Navier-Stokes dissipative

theory to a non-symmetric stress tensor. We can decompose the symmetric part T µν
s

as in (4.3):

T µν
s = εuµuν − p∆µν + π0∆

µν + qµuν + uµqν + πµν ,

and, using the same approach, we can decompose in a similar manner the antisym-

metric part T µν
a :

T µν
a = Rµν + rµuν − uµrν,

where:

Rµν = ∆µ
ρ T ρσ

a ∆ν
σ rµ = ∆µ

ρ T ρν
a uν = −uν T νρ

a ∆µ
ρ.

Therefore the stress-energy-momentum tensor reads:

T µν = T µν
s + T µν

a = εuµuν − p∆µν + π0∆
µν + qµuν + uµqν + πµν +

+Rµν + rµuν − uµrν . (4.15)
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We could follow the same procedure used for the symmetric tensor, taking the local

four-momentum conservation equation, contracting with the four-velocity and, assum-

ing the equilibrium thermodynamical relations hold even out of equilibrium, finally

extract the divergence of entropy current. It is important however to stress that the

relations (4.6), even at equilibrium, only hold for a spin-less fluid, we can expect a

contribution to entropy from the spin tensor (for instance in [26] they have an ad-

ditional term for both relations). Furthermore we can expect another term in the

entropy current. The energy flux in the local rest frame is not anymore qµ being there

another non vanishing term rµ, so we expect:

sµ = suµ +
1

T0

(
qµ + rµ

)
+ other possible terms.

In order to extend the relativistic Navier-Stokes theory to a system with a non sym-

metric part of T µν we will use a new approach. Let us start with the general entropy

curent (see B.1 in Appendix B):

sµ = φµ + T µνβν −
1

2
Sµ,αβωαβ . (4.16)

The divergence of entropy current, which must be non-negative, reads:

∂ · s = ∂ · φ + (∂µT
µν) βν + T µν∂µβν −

1

2

[(
∂λSλ,µν

)
ωαβ + Sλ,µν

(
∂λωµν

)]
=

= ∂ · φ + T µν
s ∂{µβν} + T µν

a ∂[µβν] −
1

2
Sλ,µν∂λωµν + T µν

a ωµν =

= ∂ · φ + T µν
s ∂{µβν} + T µν

a

(
∂[µβν] + ωµν

)
− 1

2
Sλ,µν∂λωµν , (4.17)

where local four-momentum and angular momentum conservation have been used,

and ∂{µβν} and ∂[µβν] stand for the symmetrization and antisymmetrization of the

µ,ν indices. Hereafter we will show how to recover the relativistic Navier-Stokes

theory from this equation if there is no internal angular momentum, then the same

procedure will be applied to the general case in order to extend the theory.
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Recovering the relativistic Navier-Stokes theory

When we have a vanishing spin tensor the last equation become:

∂ · s = ∂ · φ + T µν
s ∂{µβν}, (4.18)

but the last term is, due to the decomposition (4.3):

T µν
s ∂{µβν} = εuµuν∂µβν + ∆µν∂µβν (π0 − p) + πµν∂µβν + qµuν (∂µβν + ∂νβµ) ,

reminding that β = 1/T0u and the algebraic properties of q and πµν , we have:

εuµuν∂µβν =

[
1

T0
εuµuν∂µuν ≡ 0

]
+ εD

(
1

T0

)
= εD

(
1

T0

)

πµν∂µβν =
1

2
πµν

(
∆ρ

µ∆σ
ν −

1

3
∆µν∆

ρσ

)
(∂ρβσ + ∂σβρ)

qµuν (∂µβν + ∂νβµ) = qµ∆µ
ρuσ (∂ρβσ + ∂σβρ) ,

and using (4.11), (4.12) and (4.13) we have:

∆µν∂µβν (π0 − p) =
1

T0
π0 θ − 1

T0
p θ

πµν∂µβν =
1

2T0
πµν∇<µuν>

qµuν (∂µβν + ∂νβµ) = − 1

T 2
0

qµ

[
∇µT0 − T0A

µ
]
.

Plugging all in (4.18) and multiplying T0 we have:

T0∂ · s = T0∂ · φ + T0εD

(
1

T0

)
− p θ + π0 θ +

1

2
πµν∇<µuν> − 1

T0

qµ

[
∇µT0 − T0A

µ
]
.

Provided that the first three terms on the right hand side vanish, this is the entropy

production for the relativistic Navier-Stokes theory. Let us see now the proper entropy
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density:

s = uµs
µ ⇒ T0s = T0φ · u + ε,

this is the first of the (4.6), as long as12:

T0φ · u = p,

and it actually can be used as a thermodynamical definition of pressure (which we

remind that it can not be separated from π0 only using algebraic properties). Thus:

φµ = pβµ + φ̃µ,

therefore we have:

∂ · φ = ∂ · φ̃ +
1

T0

p θ + D

(
p

T0

)
.

and accordingly:

T0∂ · φ + T0εD

(
1

T0

)
− p θ = T0∂ · φ̃ + T0D

(
p

T0

)
+ T0εD

(
1

T0

)
=

= T0∂ · φ̃ + T0D

(
ε + p

T0

)
− Dε = T0∂ · φ̃ + T0Ds − Dε.

The entropy production is then:

T0∂ · s = T0∂ · φ̃ + T0Ds − Dε + π0 θ +
1

2
πµν∇<µuν> − 1

T0

qµ

[
∇µT0 − T0A

µ
]
.

Entropy production must vanish at equilibrium. Since we have already seen that the

last three terms vanish at equilibrium, it means that:

[
T0∂ · φ̃ + T0Ds − Dε

]

eq.
= 0,

to recover the entropy production of the relativistic Navier-Stokes theory we assume

12This is true for homogeneous equilibrium [23]
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that this expression is vanishing even out of equilibrium. This is consistent with the

theory and we fully recover the relativistic Navier-Stokes theory if we assume that

both ∂ · φ̃ and T0Ds − Dε are individually vanishing.

Internal angular momentum

Using the general decomposition (4.15), when we have a non vanishing spin tensor,

the entropy current reads:

sµ = φµ − 1

2
Sµ,αβωαβ +

1

T0

[
εuµ + qµ + rµ

]
.

We can already find the proper energy density contracting with the four-velocity:

s = uµs
µ = φ · u +

1

T0
ε − 1

2
σµνωµν ,

where σµν = uλSλ,µν is the proper internal angular momentum density. If we multiply

all members of the last equation with the local temperature T0 we get:

T0s = ε + T0φ · u − 1

2
σµνΩµν ,

with Ωµν = T0ωµν . We use now the same thermodynamical definition for pressure

used in the last paragraph, then:

T0s = ε + p − 1

2
σµνΩµν .

This provides the generalization of the first relation in (4.6), and, as expected, it

includes a spin contribution. We can rearrange the first terms of (4.17) like in the last

paragraph but we have to remind that the proper entropy density is different:

T0∂ · s = T0∂ · φ + T0εD

(
1

T0

)
− p θ + π0 θ +

1

2
πµν∇<µuν> − 1

T0
qµ

[
∇µT0 − T0A

µ
]
+

−1

2
T0Sλ,µν∂λωµν + T0T

µν
a

(
∂[µβν] + ωµν

)
,

whilst the last term includes:
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T µν
a

(
∂[µβν] + ωµν

)
= Rµν∆ρ

µ∆σ
ν

(
∂[ρβσ] + ωρσ

)
+ rµ∆ρ

µu
σ
[(

∂ρβσ − ∂σβρ

)
+ 2ωρσ

]
,

Since the four-temperature fulfills (4.9), these terms vanish at global equilibrium. We

have already seen that the terms in π0, πµν and qµ on the entropy production equation

vanish at equilibrium too. On the other hand, the other terms on the right hand side

read, following the steps in the last paragraph:

T0∂ · φ + T0εD

(
1

T0

)
− p θ − 1

2
T0Sλ,µν∂λωµν =

= T0∂ · φ̃ + T0D

(
ε + p

T0

)
− Dε − 1

2
T0σ

µνDωµν −
1

2
T0S̃λ,µν∂λωµν =

= T0∂ · φ̃ − 1

2
T0S̃λ,µν∂λωµν + T0D

(
ε + p − 1

2
σµνΩµν

T0

)
− Dε +

1

2
ΩµνDσµν =

= T0∂ · φ̃ − 1

2
T0S̃λ,µν∂λωµν + T0Ds − Dε +

1

2
ΩµνDσµν ,

where S̃λ,µν = ∆λ
αSλ,µν = Sλ,µν − uλσµν . At global equilibrium this term has to

vanish. Since ωµν is constant at equilibrium [23], we need:

[
T0∂ · φ̃ + T0Ds − Dε +

1

2
ΩµνDσµν

]

eq.

= 0.

We assume now that the equilibrium relation between thermodynamical quantities

even holds for a system out of equilibrium, as we did for the spin-less fluid, in order to

have the generalization of Navier-Stokes theory. The entropy production thus reads:

T0 ∂ · s = π0 θ +
1

2
πµν∇<µuν> − 1

T0

qµ

[
∇µT0 − T0A

µ
]

+

+T0R
µν∆ρ

µ∆σ
ν

(
∂[ρβσ] + ωρσ

)
+ T0r

µ∆ρ
µuσ

[(
∂ρβσ − ∂σβρ

)
+ 2ωρσ

]
+

−1

2
T0S̃λ,µν∂λωµν .

It is important to stress how adding internal angular momentum preserve the T µν
s
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contribution to entropy production, therefore we still have shear viscosity η bulk

viscosity ζ and thermal conductivity κ. However, as we will see later in detail, the

presence of a fundamental spin tensor in general change the values of these coefficients.

The other terms can provide a new generation of transport coefficients. Being

more interested however on the effects of pseudo-gauge transformations on the known

transport coefficients here we will limit the discussion to the simplest case, namely

of a system with a vanishing S̃. The antisymmetric part T µν
a amounts, up to a

constant, to the divergence of Sλ,µν , which includes S̃λ,µν . Therefore Rµν and rµ are

not independent of S̃λ,µν in principle. If S̃λ,µν is vanishing the contribution of Rµν

and rµ to entropy are:

T0R
µν∆ρ

µ∆
σ
ν

[
ωρσ −

(
−1

2

)
(∂ρβσ − ∂σβρ)

]

2T 2
0 rµ∆

µρβσ

[(
−1

2

)
(∂ρβσ − ∂σβρ) − ωρσ

]
.

As we have seen the equilibrium relation between ωµν and βµ (4.9) ensures that the

equilibrium contribution of the two terms vanish. If ωµν = −∂[µβν] even out of equi-

librium rµ and Rµν do not contribute to entropy production, otherwise the last two

terms have to be non negative out of equilibrium, thus we have two new transport

coefficients, λ and τ :

Rµν = λ

{
T0 ∆ρ

µ∆σ
ν

[
ωρσ −

(
−1

2

)
(∂ρβσ − ∂σβρ)

]}

rµ = τ

{
2T 3

0 ∆µρβσ

[(
−1

2

)
(∂ρβσ − ∂σβρ) − ωρσ

]}
.

In order to be consistent with thermodynamics, ωµν still have to be equivalent to

−∂[µβν] at global equilibrium. It is not difficult to find examples of antisymmetric

tensors which reduce to the antisymmetric part of four-temperature gradient. For

instance we can take ωµν = −∂[µβν] plus higher order derivatives of four temperature13.

13As already said four temperature gradient is constant at equilibrium [23].
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Chapter 5

Relativistic response theory

5.1 Introduction

In the last chapter we have seen the decomposition of the stress-energy-momentum

tensor and how transport coefficients, like viscosity and thermal conductivity, arise

if we take into account thermodynamic relations. During this chapter we will show

how we can get transport coefficients from the microscopic theory studying the linear

response, namely the response of the hydrodynamic system to a deviation from global

equilibrium, up to the linear order in the perturbation, allegedly small.

Here we consider for mathematical simplicity the example of shear viscosity for a

fluid without internal angular momentum. However it is understood that the same

arguments hold for the other transport coefficients. Furthermore when we consider

a non symmetric stress-energy-momentum tensor, the arguments are still valid using

the symmetric part T µν
s instead of the full tensor T µν . Other transport coefficients

which may stem from the antisymmetric part T µν
a will not be considered during this

work, and may be an interesting subject for further investigations.

Starting from the general stress-energy-momentum tensor (4.14) we write explicitly

the temperature and four-velocity dependence1:

T µν = εuµuν − p∆µν + ζ (∂ρu
ρ) ∆µν + κ

[(
∇µT − Tuρ∂ρu

µ
)

uν + µ ↔ ν
]
+

1We understand however the uµ dependence of the projector ∆µνto ease the notation.

83
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+η

[
∇µuν + ∇νuµ − 2

3
(∂ρu

ρ)∆µν

]
.

A very familiar global equilibrium configuration is the homogeneous equilibrium, in

which the system is static and the macroscopic degrees of freedom do not depend

on the position. Looking from the rest frame the four velocity is u = (1, 0) and the

temperature T is constant. This corresponds to the canonical equilibrium in statistical

mechanics2, as we have already seen on chapter 2.2 it entails that the only surviving

terms are the first two of the right hand side:

T µν
h.e. = εδµ

0 δν
0 + pδµ

i δν
j δij =





ε 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p




,

where |h.e. stands for homogeneous equilibrium. We consider now a small deviation

from global equilibrium in the form of a small perturbation of the y component of

four velocity3 δuy. Furthermore we take a perturbation with a non vanishing gradient

only on the x direction:

δuy(x) ⇒ ∂xδu
y 6= 0.

This entails that the four-divergence ∂ρu
ρ is vanishing, being the derivative on the

same direction of the vector index. Even the four-acceleration Aµ = uρ∂ρu
µ is van-

ishing, since the only non vanishing element of the gradient, namely ∂xu
y ≡ ∂xδu

y, is

multiplied by ux = 0. Therefore the remaining parts of the stress-energy-momentum

tensor out of equilibrium only are:

εuµuν − p∆µν + η (∇µuν + ∇νuµ) ,

but being:

∇µuν = ∂µuν − uµuρ∂ρu
ν ,

2Or grand canonical, if we consider conserved charges at equilibrium with a thermal bath.
3Here we assume a Cartesian reference, meanwhile the direction of the axes has no effect.
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and having seen that uρ∂ρu
ν = 0, it reads:

εuµuν − p∆µν + η (∂µuν + ∂νuµ) = εuµuν − p∆µν − η∂xδu
y
(
δµ
xδν

y + δν
xδµ

y

)
.

Being the homogeneous equilibrium tensor diagonal, the deviation from equilibrium

of the xy component of the stress-energy-momentum tensor is just:

δT xy = T xy − T xy|h.e. = −η ∂xδu
y = η ∂xδuy,

the multiplication of the shear viscosity η, times the known gradient of the perturba-

tion of the four-velocity ∂xδuy. This is already linear in the perturbation δu, but in

general it may be necessary to take only the lowest order. For instance if we had u0

in the last formula we would have:

u0 =
√

1 + u · u =

√
1 + (δuy)

2 ≃ 1 +
1

2
(δuy)

2 ,

therefore it remains unitary up to the linear order in the perturbations. In a similar

way it is possible to check that we can identify four-velocity perturbation with four-

temperature perturbations, still up to the linear order. The previous four-velocity

perturbation corresponds to a four-temperature perturbation δβy which only depends

on the x coordinate, since βµ = uµ/T0 and the local temperature T0 is:

T0 =
1√
β · β =

1√
(β0)

2 − (δβy)
2

=
Th.e.√

1 − (δβy/β0)
2
≃ Th.e.

1 − (Th.e.δβy)
2 /2

≃

≃ Th.e.

[
1 +

1

2
T 2

h.e. (δβy)
2

]
= Th.e. +

1

2
T 3

h.e. (δβy)
2 .

It differs only by a quadratic term in the perturbation. Using the same arguments we

can identify temperature perturbations with δβ0.

We can thus study the response of the stress-energy-momentum tensor, up to the

linear order in the four-temperature perturbation, to find transport coefficients. We

want to use the mean values of quantum operators as the macroscopic tensors, and

so we need both the equilibrium expectation values and the non-equilibrium ones. It
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is not difficult, at least at the conceptual level, to get the equilibrium expectation

values of operators. What we need, to find transport coefficients from the microscopic

underlying theory, is a method to compute average values for a system out of equi-

librium. We need way to describe microscopically a non equilibrium state which is

close to global equilibrium and differing for a small but known perturbation of the

four temperature.

5.2 The Zubarev method

A suitable formalism to calculate transport coefficients for relativistic quantum fields,

studying the linear response instead of going through kinetic theory, was developed

by Zubarev [30, 31]. The method extends to the relativistic domain a formalism

already introduced by Kubo [32] for non relativistic statistical mechanics. In this

approach it is introduced the non-equilibrium density operator that we need for the

non-equilibrium average values, which reads [33]4:

ρ̂ =
1

Z
exp[−Υ̂] =

1

Z
exp

[
− lim

ε→0
ε

∫ t′

−∞

dt eε(t−t′)

∫
d3x T̂ 0ν(x)βν(x)

]
, (5.1)

where we understand that the position x, and later the derivatives ∂µ, refer to the

variables of integration, and not t′; the Z factor is analogous to a partition function,

a normalization factor to have tr (ρ̂) = 1:

Z = tr
(
e−

bΥ
)

= tr

(

exp

[

− lim
ε→0

ε

∫ t′

−∞

dt eε(t−t′)

∫
d3x T̂ 0ν(x)βν(x)

])

.

The operators in the exponential of Eq. (5.1) are in the Heisenberg representation.

It should be stressed that in the formula (5.1) covariance is broken from the very

beginning by the choice of a specific inertial frame with its time. However, it can be

shown that the operator ρ̂ is in fact time-independent, hence independent of t′, which

4Here ε clearly stands for a small parameter and is not related to the proper energy density. We
assume that the difference is big enough to avoid misunderstandings.
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can be arbitrarily chosen. Indeed if we take the time derivative of Υ̂ we have:

∂t′Υ̂ = lim
ε→0

ε

[∫
d3x T̂ 0ν(t′,x)βν(t

′,x) − ε

∫ t′

−∞

dt eε(t−t′)

∫
d3x T̂ 0ν(x)βν(x)

]

= 0,

thus, ρ̂ is a good density operator in the Heisenberg representation. When we consider

the familiar homogeneous equilibrium four-temperature βµ = δ0
µ1/T , with constant

temperature T , the exponent Υ̂ reads:

Υ̂ = lim
ε→0

ε

∫ t′

−∞

dt eε(t−t′)

∫
d3x T̂ 0ν(x)βν(x) =

1

T
lim
ε→0

ε

∫ t′

−∞

dt eε(t−t′)

∫
d3x T̂ 00(x) =

=
1

T
lim
ε→0

ε

∫ t′

−∞

dt eε(t−t′)Ĥ.

Being the hamiltonian Ĥ time independent5, the limit is easily computed:

Υ̂ =
1

T
Ĥ,

so the density matrix (5.1) reads:

ρ̂ =
1

Z
exp

[
−Ĥ/T

]
.

This is the canonical equilibrium distribution, as we expected. The non-equilibrium

operator (5.1) is thus consistent with the equilibrium distribution, and in general it is

a state that explicitly depends on the four temperature βµ. We can use it for states

arbitrarily close to global equilibrium and, at the end, find transport coefficients using

the linear response.

5This is not always true, but for simplicity we assume the first equation on (1.5) is always met,

ensuring the time independence of the Hamiltonian operator Ĥ .
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5.2.1 Linear response using Zubarev method

We have seen that (5.1) is a good density matrix to compute the components of T µν

out of equilibrium, but typically it is not an easy task to directly compute the non-

equilibrium components, and some approximations are usually adopted. As first we

note that the ε dependent part in (5.1) can be written as a time derivative εeε(t−t′) =

∂0

[
eε(t−t′)

]
. Therefore exponent Υ̂ reads:

Υ̂ = lim
ε→0

∫ t′

−∞

dt ∂0

[
eε(t−t′)

] ∫
d3x T̂ 0ν(x)βν(x) = lim

ε→0

∫ t′

−∞

dt ∂µ

[
eε(t−t′)

] ∫
d3x T̂ µν(x)βν(x),

reminding the continuity equation ∂µT̂ µν = 0, after integrating by parts we have:

Υ̂ = lim
ε→0

{∫ t′

−∞

dt ∂µ

[
eε(t−t′)

∫
d3x T̂ µν(x)βν(x)

]
−
∫ t′

−∞

dt eε(t−t′)

∫
d3x T̂ µν(x)∂µβν(x)

}
=

=

∫
d3x T̂ 0ν(t′,x) βν(t

′,x) + lim
ε→0

∫ t′

−∞

dt eε(t−t′)

∫
dS ni T̂ iν(x) βν(x)

− lim
ε→0

∫ t′

−∞

dt eε(t−t′)

∫
d3x T̂ µν(x) ∂µβν(x).

The first term is the so-called local thermodynamical equilibrium one, which is defined

by the same formula of the global equilibrium with an x-dependent four-temperature,

whereas the term dependent on their derivatives is interpreted as a perturbation. We

have already seen that at equilibrium the density matrix correspond to the usual

canonical equilibrium distribution, that means the surface term in the last equation

vanishes for the equilibrium four temperature. In order to neglect the boundary term

it is usually taken a non-equilibrium four-temperature that matches the equilibrium

four temperature at the boundary, or, calling δβµ the difference between the four

temperature and the homogeneous equilibrium four-temperature δβµ|∂V ≡ 0. In this

way the last equation reads:
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Υ̂ =

∫
d3x T̂ 0ν(t′,x) βν(t

′,x) − lim
ε→0

∫ t′

−∞

dt eε(t−t′)

∫
d3x T̂ µν(x) ∂µδβν(x).

Dividing the exponent of the density matrix in two operators Â and B̂:

ρ̂ =
1

Z
exp

[
−Υ̂
]

=
1

tr
(
exp

[
Â + B̂

]) exp
[
Â + B̂

]

with:

Â = −
∫

d3x T̂ 0ν(t′,x) βν(t
′,x) B̂ = lim

ε→0

∫ t′

−∞

dt eε(t−t′)

∫
d3x T̂ µν(x) ∂µδβν(x),

we can take the lowest order in B̂, being the perturbation δβµ small by hypothesis,

hence:

Z = tr
(
e

bA+ bB
)
≃ tr

(
e

bA
[
1 + B̂

])
= ZLE

(
1 + 〈B̂〉LE

)
⇒ 1

Z
≃ 1

ZLE

(
1 − 〈B̂〉LE

)

and, using the Kubo formula:

e
bA+ bB =

[
1 +

∫ 1

0

dz ez( bA+ bB)B̂e−z bA

]
e

bA ≃
[
1 +

∫ 1

0

dz ez bAB̂ e−z bA

]
e

bA,

where the subscript LE stands for Local Equilibrium and implies the local equilibrium

partition function for ZLE = tr
(
e

bA
)
, and the calculation of average values with the

local equilibrium density operator, that is ρ̂LE = e
bA/ZLE, for 〈· · ·〉LE. Thereby, putting

all together and retaining only first-order terms in B̂ we get:

ρ̂ ≃
(
1 − 〈B̂〉LE

)
ρ̂LE +

∫ 1

0

dz ez bAB̂e−z bAρ̂LE.

Therefore we can approximate the average value of a generic operator Ô with:
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〈Ô〉 ≃
(
1 − 〈B̂〉LE

)
〈Ô〉LE + 〈Ô

∫ 1

0

dz ez bAB̂e−z bA〉LE.

Being interested in linear response and transport coefficients, we take6 Ô = T̂ µν(y).

Even after these approximations calculating the local equilibrium expectation values

usually proves to be a daunting task. However we can use our starting assumption of

a small deviation from equilibrium δβ, and replace the local equilibrium averages with

the global equilibrium. More precisely we replace the operator Â = −
∫

d3xT̂ 0νβν

with the equilibrium operator −Ĥ/T , then the local equilibrium density matrix ρ̂L.E.

becomes homogeneous equilibrium distribution ρ̂0 = exp
[
−Ĥ/T

]
/Z, and the mean

value of the stress-energy-momentum tensor reads:

T µν =
(
1 − 〈B̂〉0

)
T µν |0 + 〈T̂ µν

∫ 1

0

dz e−z bH/T B̂ ez bH/T 〉0 .

Using these approximations we can already write the linear response δT µν = T µν−T̂ µν
0 :

δT µν = 〈T̂ µν

∫ 1

0

dz e−z bH/T B̂ ez bH/T 〉0 − 〈B̂〉0 T µν |0 , (5.2)

we do not even need to explicitly compute the equilibrium values T µν |0 since the first

term in the right hand side has a part that simplifies with the second term. Indeed

the operator B̂ is an integral of T̂ ρσ∂ρδβσ, so the first term on the right hand side of

the last equation consists on the combination of integrals of:

〈T̂ µν(y)

∫ 1

0

dz e−z bH/T T̂ ρσ(x) ez bH/T 〉0 =
1

β

∫ 1

0

du〈T̂ µν(y)ei(iu) bH T̂ ρσ(t,x)e−i(iu) bH〉0 =

=
1

β

∫ 1

0

du〈T̂ µν(y)T̂−1(iu, 0)T̂ ρσ(t,x)T̂(iu, 0)〉0 =
1

β

∫ 1

0

du〈T̂ µν(y)T̂ ρσ(t + iu,x)〉0,

where β = 1/T is the inverse of the (constant) equilibrium temperature T , and we

performed a change of variables zβ = u, and a time translation of a complex time

6We are using y here because we already used x as an integration variable in B̂.
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interval iu. The last term can be rewritten in a more convenient form:

1

β

∫ 1

0

du〈T̂ µν(y)T̂ ρσ(t + iu,x)〉0 =
1

β

∫ 1

0

du

∫ t

−∞

dτ ∂τ 〈T̂ µν(y)T̂ ρσ(τ + iu,x)〉0 + (5.3)

+ lim
τ→−∞

1

β

∫ 1

0

du〈T̂ µν(y)T̂ ρσ(τ + iu,x)〉0,

using the fact that correlation at infinite time distances vanishes:

lim
∆t→∞

〈Ô1(t)Ô2(t + ∆t)〉 = lim
∆t→∞

〈Ô1(t)〉〈Ô2(t + ∆t)〉,

and time translation invariance of the equilibrium distribution, the last term of (5.3),

once integrated following the definition of B̂, exactly simplifies with the last term on

the right hand side of (5.2). Furthermore the first term on the right hand side of (5.3)

can be written as a commutator of T̂ µν components. Indeeed:

1

β

∫ 1

0

du

∫ t

−∞

dτ ∂τ 〈T̂ µν(y)T̂ ρσ(τ + iu,x)〉0 =
1

iβ

∫ t

−∞

dτ

∫ 1

0

du ∂u〈T̂ µν(y)T̂ ρσ(τ + iu,x)〉0 =

=
1

iβ

∫ t

−∞

dτ
[
〈T̂ µν(y)T̂ ρσ(τ + iβ,x)〉0 − 〈T̂ µν(y)T̂ ρσ(τ,x)〉0

]
,

but, using the cyclic property of trace and the definition of time translation operator

T̂(t0) = exp
[
−it0Ĥ

]
and equilibrium distribution ρ̂0 = exp

[
−βĤ

]
/Z0, we have:

〈T̂ µν(y)T̂ ρσ(τ + iβ,x)〉0 = tr
(
ρ̂0T̂

µν(y)T̂−1(iβ)T̂ ρσ(τ,x)T̂(iβ)
)

=

=
1

Z0
tr
(
e−β bH T̂ µν(y)e−β bH T̂ ρσ(τ,x)eβ bH

)
=

=
1

Z0
tr
(
e−β bH T̂ ρσ(τ,x)T̂ µν(y)

)
=

= 〈T̂ ρσ(τ, x)T̂ µν(y)〉0,

hence:
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1

β

∫ 1

0

du

∫ t

−∞

dτ ∂τ 〈T̂ µν(y)T̂ ρσ(τ + iu,x)〉0 =
1

iβ

∫ t

−∞

dτ〈
[
T̂ ρσ(τ,x), T̂ µν(y)

]
〉0 .

The linear response for a small deviation δβµ from equilibrium, after some mathemat-

ical steps, is thus:

δT µν(y) = lim
ε→0

1

iβ

∫ t′

−∞

dt eε(t−t′)

∫ t

−∞

dτ

∫
d3x〈

[
T̂ ρσ(τ,x), T̂ µν(y)

]
〉0∂ρδβσ(x). (5.4)

These arguments can e extended to more general cases. For instance, if we take into

account conserved charges, we can start from the density matrix:

ρ̂ =
1

Z
exp

[
− lim

ε→0
ε

∫ t′

−∞

dt eε(t−t′)

∫
d3x

(
T̂ 0νβν(x) − ĵ0ξ(x)

)]
,

where ξ = µ/T is a scalar function whose physical meaning is that of a point-

dependent ratio between comoving chemical potential µ and comoving temperature

T ; the partition function here is:

Z = tr

(
exp

[
− lim

ε→0
ε

∫ t′

−∞

dt eε(t−t′)

∫
d3x

(
T̂ 0νβν(x) − ĵ0ξ(x)

)])
.

The global equilibrium here is βeq. = (β, 0) and ξ = βµ, both constant. If we consider

a four temperature perturbation like in the previous case we still get (5.4), but, due

to the richer structure, we can also treat chemical potential perturbations.



Chapter 6

Non-equilibrium inequivalence

During this chapter we will show that different pairs of stress-energy-momentum and

spin tensors {T̂ , Ŝ} imply different average values of physical quantities in thermody-

namical non-equilibrium situations. Most notably, transport coefficients and the total

entropy production rate, both obtained using the non-equilibrium statistical opera-

tor, are affected by the choice of tensors of the relativistic quantum field theory under

consideration1.

In order to use the Zubarev density matrix, introduced in the previous chapter, to

calculate the average values T̂ µν out of equilibrium, we will start with an extension

of the method in the general case of a theory with a spin tensor and, possibly, a non

symmetric stress-energy-momentum tensor. Then we will show the effects of pseudo-

gauge transformations on the non-equilibrium density matrix, and on total entropy.

At last we will show that shear viscosity, and in general transport coefficients, depend

on the choice of microscopic tensors.

6.1 Nonequilibrium density operator

To extend the Zubarev formalism to the case of a generic couple of microscopic oper-

ators {T̂ , Ŝ}, we start from the formula previous formula:

1This is essentially our work in [27].
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ρ̂ =
1

Z
exp[−Υ̂] =

1

Z
exp

[
− lim

ε→0
ε

∫ t′

−∞

dt eε(t−t′)

∫
d3x

(
T̂ 0νβν(x) − ĵ0ξ(x)

)]
. (6.1)

In the formula (6.1) the possible contribution of a spin tensor is simply disregarded;

therefore, the formula is correct only if the stress-energy tensor is the symmetrized

Belinfante one, whose associated spin tensor is vanishing. To find the appropriate

extension of the formula (6.1) with a spin tensor we will follow the same steps seen

in the last chapter to find what lack in order to have the right operator form for the

equilibrium configuration of four-temperature βµ. Using the identity:

eε(t−t′)
(
T̂ 0νβν(x) − ĵ0ξ(x)

)
=

(
∂

∂xµ

eε(t−t′)

ε

)(
T̂ µνβν(x) − ĵµξ(x)

)
,

integrating by parts and taking into account the continuity equations ∂µT̂
µν = ∂µĵ

µ =

0, the operator Υ̂ in Eq. (6.1) can be rewritten as:

Υ̂ =

∫
d3x

(
T̂ 0νβν(t

′,x) − ĵ0ξ(t′,x)
)

+ lim
ε→0

∫ t′

−∞

dt eε(t−t′)

∫
dS ni

(
T̂ iνβν(x) − ĵiξ(x)

)

− lim
ε→0

∫ t′

−∞

dt eε(t−t′)

∫
d3x

(
T̂ µν∂µβν(x) − ĵµ∂µξ(x)

)
. (6.2)

At equilibrium, the right hand side should reduce to the known form, which, at least for

the most familiar form of thermodynamical equilibrium where βeq = (β, 0) = (1/T, 0)

with constant global2 temperature T , and ξeq = µ/T = const is readily recognized in

the first term setting β = βeq and ξ = ξeq:

2In this case the local temperature 1/
√

β · β coincides with the global temperature.
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Υ̂eq =

∫
d3x

(
T̂ 0νβeq

ν − ĵ0ξeq
)

+ lim
ε→0

∫ t′

−∞

dt eε(t−t′)

∫
dS ni

(
T̂ iνβeq

ν − ĵiξeq
)

− lim
ε→0

∫ t′

−∞

dt eε(t−t′)

∫
d3x

(
T̂ µν∂µβ

eq
ν − ĵµ∂µξ

eq
)

=

= Ĥ/T − µQ̂/T + lim
ε→0

∫ t′

−∞

dt eε(t−t′)

∫
dS ni

(
T̂ iνβeq

ν − ĵiξeq
)

+

− lim
ε→0

∫ t′

−∞

dt eε(t−t′)

∫
d3x

(
T̂ µν∂µβ

eq
ν − ĵµ∂µξ

eq
)

. (6.3)

Hence, the two rightmost terms of (6.3) must vanish at equilibrium. Indeed, the

surface term is supposed to vanish through a suitable choice of the field boundary

conditions while the third term vanishes in view of the constancy of βeq and ξeq.

However, this is not the case for the most general form of equilibrium; in the most

general form (see discussion in ref. [23]), while the scalar ξeq stays constant, the four-

vector β fulfills a Killing equation, whose solution is [1]:

βeq
ν (x) = beq

ν + ωeq
νµxµ, (6.4)

with the four-vector beq and the antisymmetric tensor ωeq constants. Therefore:

∂µβeq
ν = −ωeq

µν ,

which in general is non-vanishing, so that the third term on the right hand side of

Eq. (6.3) survives. For instance, for the thermodynamical equilibrium with rotation

[23], the tensor ω turns out to be:

ωeq
λν = ω/T

(
δ1
λδ

2
ν − δ2

λδ
1
ν

)
, (6.5)

ω being the angular velocity and T the temperature measured by the inertial frame.

even for rotating equilibrium the global temperature 1/β0
eq. the same as the local

temperature1/
√

β2
eq..

In order to find the appropriate generalization of the operator Υ̂, let us plug the

formula (6.4) of general thermodynamical equilibrium into the (6.3):
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Υ̂eq =

∫
d3x

(
T̂ 0νβeq

ν − ĵ0ξeq)
)

+ lim
ε→0

∫ t′

−∞

dt eε(t−t′)

∫
dS ni

(
T̂ iν(beq

ν + ωeq
νµxµ) − ĵiξeq

)
+

+ lim
ε→0

∫ t′

−∞

dt eε(t−t′)

∫
d3x T̂ µνωeq

µν (6.6)

where the ∂µξ
eq = 0 has been taken into account. For a symmetric stress-energy-

momentum tensor T̂ , the last term vanishes, but if a spin tensor is present T̂ may

have an antisymmetric part. Particularly, from the angular momentum continuity

equation:

T̂ µνωeq
µν =

1

2
(T̂ µν − T̂ νµ)ωeq

µν = −1

2
∂λŜλ,µνωeq

µν , (6.7)

so that the last term on the right hand side of Eq. (6.6) can be rewritten as:

lim
ε→0

∫ t′

−∞

dt eε(t−t′)

∫
d3x T̂ µνωeq

µν = −1

2
ωµν lim

ε→0

∫ t′

−∞

dt eε(t−t′)

∫
d3x ∂λŜλ,µν (6.8)

= −1

2
ωeq

µν lim
ε→0

∫
d3x

∫ t′

−∞

dt eε(t−t′) ∂

∂t
Ŝ0,µν − 1

2
ωeq

µν lim
ε→0

∫ t′

−∞

dt eε(t−t′)

∫
dS niŜi,µν .

The first term on the right hand side can be integrated by parts, yielding:

−1

2
ωeq

µν lim
ε→0

∫
d3x

∫ t′

−∞

dt eε(t−t′) ∂

∂t
Ŝ0,µν = (6.9)

= −1

2
ωeq

µν

∫
d3x Ŝ0,µν(t′,x) +

1

2
ωeq

µν lim
ε→0

ε

∫ t′

−∞

dt eε(t−t′)

∫
d3x Ŝ0,µν(x).

Plugging the Eq. (6.9) into (6.8) and this in turn into (6.6) we obtain:
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Υ̂eq =

∫
d3x

(
T̂ 0νβeq

ν − ĵ0ξeq − 1

2
ωeq

µνŜ0,µν

)
+

+ lim
ε→0

∫ t′

−∞

dt eε(t−t′)

[
beq
ν

∫
dS niT̂

iν − ξeq

∫
dS niĵ

i

− 1

2
ωeq

µν

∫
dS ni(x

µT̂ iν − xν T̂ µi + Ŝi,µν)

]
+

−1

2
ωeq

µν lim
ε→0

ε

∫ t′

−∞

dt eε(t−t′)

∫
d3x Ŝ0,µν(x), (6.10)

where the surface term involving T̂ in Eq. (6.6) has been rearranged taking advantage

of the antisymmetry of the ω tensor. The surface terms in the above equations now are

manifestly the total momentum flux, the charge flux and the total angular momentum

flux through the boundary. All of these terms are supposed to vanish at thermody-

namical equilibrium through suitable conditions enforced on the field operators at the

boundary, so that the (6.10) reduces to:

Υ̂eq =

∫
d3x

(
T̂ 0νβeq

ν − ĵ0ξeq − 1

2
ωeq

µν Ŝ0,µν

)
+

−1

2
ωeq

µν lim
ε→0

ε

∫ t′

−∞

dt eε(t−t′)

∫
d3x Ŝ0,µν(x). (6.11)

The first term on the right hand side just gives rise to the desired form of the equi-

librium operator. For instance, for a rotating system with ω as in Eq. (6.5) one has

[23]:

∫
d3x

(
T̂ 0νβeq

ν − ĵ0ξeq − 1

2
ωeq

µνŜ0,µν

)
= Ĥ/T − µQ̂/T − ωĴ/T,

Ĵ being the total angular momentum, which is the known form [11]. Nevertheless, the

second term in Eq. (6.11) does not vanish and, thus, must be subtracted away with a

suitable modification of the definition of the Υ̂ operator. The form of the unwanted

term demands the following modification of (6.1):
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ρ̂ =
1

Z
exp[−Υ̂] = (6.12)

=
1

Z
exp

[
− lim

ε→0
ε

∫ t′

−∞

dt eε(t−t′)

∫
d3x

(
T̂ 0νβν(x) − ĵ0ξ(x) − 1

2
Ŝ0,µνωµν(x)

)]
,

where ωµν(x) is an antisymmetric tensor field which must reduce to the constant ωeq
µν

tensor at equilibrium. It is easy to check, by tracing the previous calculations, that

the equilibrium form of Υ̂ reduces to the desired form:

Υ̂eq =

∫
d3x

(
T̂ 0νβeq − ĵ0ξeq − 1

2
ωeq

µν Ŝ0,µν

)
,

as the spin tensor term in Eq. (6.11) cancels out. Therefore, the operator (6.12) is the

only possible extension of the non-equilibrium density operator with a spin tensor.

The new operator Υ̂ can be worked out the same way as we have done when

obtaining Eq. (6.2) from Eq. (6.1):

Υ̂ =

∫
d3x

[
T̂ 0νβν(t

′,x) − ĵ0ξ(t′,x) − 1

2
Ŝ0,µνωµν(t

′,x)

]
+ (6.13)

+ lim
ε→0

∫ t′

−∞

dt eε(t−t′)

∫
dS ni

[
T̂ iνβν(x) − ĵiξ(x) − 1

2
Ŝi,µνωµν(x)

]
+

− 1

2
lim
ε→0

∫ t′

−∞

dt eε(t−t′)

∫
d3x

{
T̂ µν

s [∂µβν(x) + ∂µβν(x)] +

+T̂ µν
a [∂µβν(x) − ∂µβν(x) + 2ωµν(x)] − Ŝλ,µν∂λωµν(x) − 2ĵµ∂µξ(x)

}
,

where:

T̂ µν
s =

1

2
(T̂ µν + T̂ νµ) T̂ µν

a =
1

2
(T̂ µν − T̂ νµ),

and the continuity equation for angular momentum has been used. The first term on

the right hand side is the new local thermodynamical term whilst the third term can

be further expanded to derive the relativistic Kubo formula of transport coefficients

(see Appendix C).
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6.2 Density operator and pseudo-gauge transfor-

mations

A natural requirement for the density operator (6.12) would be its independence of the

particular couple of stress-energy and spin tensor, because one would like the mean

value of any observable Ô :

O ≡ tr(ρ̂ Ô),

to be an objective one. In ref. [28] we showed that even at thermodynamical equilib-

rium with rotation this is not the case for the components of the stress-energy and

spin tensor themselves because they change through the pseudo-gauge transformation

(1.3). However, at equilibrium, ρ̂ itslef is a function of just integral quantities (to-

tal energy, angular momentum, charge) which are invariant under a transformation

(1.3) provided that boundary fluxes (1.4) vanish as it is usually assumed, so a spe-

cific observable Ô, including the components of a specific stress-energy tensor, does

not change under (1.3). However, it is not obvious that this feature persists in a

non-equilibrium case, in fact we are going to show that, in general, this is not the

case.

Let us consider the operator Υ̂ in (6.12) and how it gets changed under a pseudo-

gauge transformation (1.3). It is trivial to see that a transformation involving only

the Ẑ superpotential will typically change the density matrix changing only the spin

tensor ∆Ŝλ,µν = ∂αẐαλ,µν :

Υ̂′ = Υ̂ lim
ε→0

ε

∫ t′

−∞

dt eε(t−t′)

∫
d3x

[
∂iẐ

i0,µν(x)
]
ωµν(x),

where we used the antisymmetry of Ẑ. We know that the spatial integral of ∂iẐ
i0,µν is

vanishing as long as the boundary conditions (1.4), needed to preserve the generators

of Poincaré algebra, are fulfilled. In the general case for an arbitrary ωµν the non-

equilibrium density matrix will change.

A more interesting case is that of transformation with a vanishing Ẑ superpoten-

tial and non-vanishing Φ̂, namely the subset of pseudo-gauge transformation which

includes the Belinfante symmetrization procedure. Since the superpotential changes
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both the stress-energy-momentum tensor T̂ and the spin tensor Ŝ, after a transfor-

mation we have:

Υ̂′ = Υ̂ +
1

2
lim
ε→0

ε

∫ t′

−∞

dt eε(t−t′)

∫
d3x

(
∂λϕ̂

λ0,νβν(x) + Φ̂0,µνωµν(x)
)

, (6.14)

where, we remind:

ϕ̂λµ,ν = Φ̂λ,µν − Φ̂µ,λν − Φ̂ν,λµ, (6.15)

is antisymmetric in the first two indices. We can rewrite Eq. (6.14) as:

Υ̂′ − Υ̂ =
1

2
lim
ε→0

ε

∫ t′

−∞

dt

∫
d3x eε(t−t′)

[
∂λ(ϕ̂

λ0,νβν(x)) − ϕ̂λ0,ν∂λβν + Φ̂0,µνωµν(x)
]

(6.16)

=
1

2
lim
ε→0

ε

∫ t′

−∞

dt eε(t−t′)

[∫
dS ni ϕ̂

i0,νβν(x) −
∫

d3x
(
ϕ̂λ0,ν∂λβν − Φ̂0,µνωµν(x)

)]
,

where we performed an integration by parts. Let us now write the general fields β

and ω as the sum of the equilibrium values and a perturbation, that is:

β(x) = βeq(x) + δβ(x) ω(x) = ωeq + δω(x), (6.17)

and work out first the equilibrium part of the right hand side of Eq. (6.16). As

∂λβ
eq
ν = −ωeq

λν one has:

(Υ̂′ − Υ̂)|eq =
1

2
lim
ε→0

ε

∫ t′

−∞

dt eε(t−t′)

[∫
dS niϕ̂

i0,νβeq
ν +

∫
d3x

(
ϕ̂λ0,νωeq

λν + Φ̂0,µνωeq
µν(x)

)]
=

=
1

2
lim
ε→0

ε

∫ t′

−∞

dt eε(t−t′)

∫
dS ni ϕ̂

i0,νβeq
ν +

+

∫
d3x

(
Φ̂λ,0νωeq

λν − Φ̂0,λνωeq
λν − Φ̂ν,λ0ωeq

λν + Φ̂0,µνωeq
µν

)
=

=
1

2
lim
ε→0

ε

∫ t′

−∞

dt eε(t−t′)

∫
dS niϕ̂

i0,νβeq
ν , (6.18)
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where we have used the Eq. (6.15) and the antisymmetry of indices of the superpo-

tential Φ̂. By using the Eq. (6.4), the last expression can be rewritten as:

lim
ε→0

ε

∫ t′

−∞

dt eε(t−t′)

[
beq
ν

∫
dS niϕ̂

i0,ν +
1

2
ωeq

νµ

∫
dS ni(x

µϕ̂i0,ν − xνϕ̂i0,µ)

]
.

The two surface integrals above are the additional four-momentum and the additional

total angular momentum in the operator sense, after having made a pseudo-gauge

transformation with a vanishing Ẑ superpotential. If the boundary conditions ensure

that the momentum and total angular momentum fluxes vanish (in order to have

conserved energy and momentum operators) for any couple (T̂ , Ŝ) of tensors, then

the two fluxes in the above equations must vanish. Therefore, we can conclude that:

Υ̂′|eq = Υ̂|eq.

Now, let us focus on the non-equilibrium perturbation of the Υ̂ operator.

(Υ̂′ − Υ̂)|non−eq =
1

2
lim
ε→0

ε

∫ t′

−∞

dt eε(t−t′)

[∫
dS ni ϕ̂

i0,νδβν + (6.19)

−
∫

d3x ϕ̂λ0,ν∂λδβν − Φ̂0,µνδωµν

]
=

=
1

2
lim
ε→0

ε

∫ t′

−∞

dt eε(t−t′)

[∫
dS ni ϕ̂

i0,νδβν+

−
∫

d3x (Φ̂λ,0ν − Φ̂0,λν − Φ̂ν,λ0)∂λδβν − Φ̂0,µνδωµν

]
=

=
1

2
lim
ε→0

ε

∫ t′

−∞

dt eε(t−t′)

[∫
dS ni ϕ̂

i0,νδβν+

−
∫

d3x Φ̂λ,0ν(∂λδβν + ∂νδβλ) − Φ̂0,λν

(
1

2
(∂λδβν − ∂νδβλ) + δωλν

)]
,

where the dependence of δβ and δω on x is now understood. It can be seen that

it is impossible to make this difference vanishing in general. One can get rid of the

surface term by choosing a perturbation which vanishes at the boundary and the last
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term by locking the perturbation of the tensor ω to that of the inverse temperature

four-vector:

δωλν(x) = −1

2
(∂λδβν(x) − ∂νδβλ(x)), (6.20)

but it is impossible to cancel out the term:

δΥ̂ ≡ −1

2
lim
ε→0

ε

∫ t′

−∞

dt eε(t−t′)

∫
d3x Φ̂λ,0ν(∂λδβν(x) + ∂νδβλ(x)), (6.21)

unless in special cases, e.g. when the tensor Φ̂ is also antisymmetric in the first two

indices. Using the same arguments it is possible to prove that the density matrix will

change in the most general case of peudogauge transformations (1.3).

We have thus come to the conclusion that the non-equilibrium density operator

does depend, in general, on the particular choice of stress-energy and spin tensor of the

quantum field theory under consideration. Therefeore, the mean value of any observ-

able in a non-equilibrium situation shall depend on that choice. It is worth stressing

that this is a much deeper dependence on the particular stress-energy and spin tensor

than what we showed in chapter (2) for thermodynamical equilibrium with rotation.

Therein, mean values of the angular momentum densities and momentum densities

were found to be dependent on the pseudo-gauge transformation because the relevant

quantum operators could be varied, but not because the density operator ρ̂ was de-

pendent thereupon. In fact, at non-equilibrium, even ρ̂ varies under a transformation

(1.3). Note that, in principle, even the mean values of the total energy and momentum

could be dependent on the quantum stress-energy tensor choice although boundary

conditions ensure, as we have assumed, that the total energy and momentum opera-

tors are invariant under a pseudogauge transformation. This happens, again, because

the density operator is not invariant under (1.3). In formula:

tr(ρ̂′P̂ ′µ) = tr(ρ̂′P̂ µ) 6= tr(ρ̂P̂ µ).

It must be pointed out that the variation of the Zubarev non-equilibrium density

operator (6.21) depends on the gradients of the four-temperature field and it can be

thus a small one if we are close to thermodynamical equilibrium. In the next Section

we will show in more details how the mean values of observables change under a small
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change of the nonequilibrium density operator, or, in other words, when the system

is close to thermodynamical equilibrium.

6.3 Variation of mean values and linear response

We will first study the general dependence of the mean value of an observable Ô on the

spin tensor by denoting by δΥ̂ the supposedly small variation, under a transformation

of the operator Υ̂. Henceforth, we will consider only the subset of pseudo-gauge

transformations with a vanishing Ẑ term, since using the most general transformation

would result in complicating the mathematics only, without changing the results.

The variation δΥ̂ can be either the one in Eq. (6.21) or the more general (only

bulk terms) in Eq. (6.19). In formula:

tr(ρ̂′Ô) =
1

Z ′
tr(exp[−Υ̂′]Ô) =

1

Z ′
tr(exp[−Υ̂ − δΥ̂]Ô), (6.22)

being Z ′ = tr(exp[−Υ̂ − δΥ̂]). We can expand in δΥ̂ at the first order (Zassenhaus

formula):

Z ′ ≃ Z − tr
(
exp[−Υ̂]δΥ̂

)
(6.23)

tr
(
exp[−Υ̂ − δΥ̂]Ô

)
≃ tr

(
exp[−Υ̂](I − δΥ̂ +

1

2
[Υ̂, δΥ̂] − 1

6
[Υ̂, [Υ̂, δΥ̂]] + . . .)Ô

)
,

hence, denoting by 〈.〉 = tr(ρ̂.), at the first order in δΥ̂:

tr(ρ̂′Ô) ≡ 〈Ô〉′ ≃ 〈Ô〉(1+〈δΥ̂〉)−〈ÔδΥ̂〉+1

2
〈[Υ̂, δΥ̂]Ô〉−1

6
〈[Υ̂, [Υ̂, δΥ̂]]Ô〉+. . . (6.24)

which makes manifest the dependence of the mean value on the choice of the super-

potential Φ̂.

As has been mentioned, close to thermodynamical equilibrium, the operator δΥ̂ is

“small” and one can write an expansion of the mean value of the observable Ô in the

gradients of the four-temperature field, according to relativistic linear response theory

[33]. This method, just based on Zubarev’s nonequilibrium density operator method,

allows to calculate the variation between the actual mean value of an operator and

its value at local thermodynamical equilibrium for small deviations from it. In fact,
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it can be seen from Eq. (6.21) that the operator δΥ̂, from the linear response theory

viewpoint, is an additional perturbation in the derivative of the four-temperature field

and therefore the difference between actual mean values at first order turns out be

(see Appendix C for reference):

∆〈Ô〉 ≃ − lim
ε→0

T

2i

∫ t′

−∞

dt eε(t−t′)

∫
d3x 〈[Φ̂λ,0ν(x), Ô]〉0(∂λδβν(x) + ∂νδβλ(x)), (6.25)

where 〈. . .〉0 stands for the expectation value calculated with the equilibrium density

operator, that is:

ρ̂0 =
1

Z0
exp[−Ĥ/T + µQ̂/T ]. (6.26)

Since tr(ρ̂0[Φ̂
λ,0ν , Ô]) = tr(Φ̂λ,0ν [Ô, ρ̂0]) the right hand side of (6.25) vanishes for all

quantities commutating with the equilibrium density operator, notably total energy,

momentum and angular momentum. Nevertheless, in principle, even the mean values

of the conserved quantities are affected by the choice of a specific quantum stress-

energy tensor, though at the second order in the perturbation δβ.

We now set out to study the effect of a pseudo-gauge transformation on the total

entropy. In non-equilibrium conditions, entropy is usually defined as [11]:

S = −tr(ρ̂LE log ρ̂LE), (6.27)

where ρ̂LE is the local thermodynamical equilibrium operator, namely:

ρ̂LE(t) =
exp[−

∫
d3x

(
T̂ 0νβν(x) − ĵ0ξ(x) − 1

2
Ŝ0,µνωµν(x)

)
]

tr(exp[−
∫

d3x
(
T̂ 0νβν(x) − ĵ0ξ(x) − 1

2
Ŝ0,µνωµν(x)

)
])

, (6.28)

which - as emphasized in the above equation - is explicitely dependent on time, unlike

the Zubarev stationary nonequilibrium density operator (6.12); of course the time

dependence is crucial to make entropy increasing in nonequilibrium situation. In order

to study the effect of pseudo-gauge transformations on the entropy it is convenient to

define:
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Υ̂LE =

∫
d3x

(
T̂ 0νβν(x) − ĵ0ξ(x) − 1

2
Ŝ0,µνωµν(x)

)
, (6.29)

for which it can be shown that, with calculations similar to those in the previous

section, the variation induced by the transformation is:

δΥ̂LE =
1

2

{∫
dS ni ϕ̂

i0,νδβν+ (6.30)

−
∫

d3x

[
Φ̂λ,0ν(∂λδβν + ∂νδβλ) − Φ̂0,λν

(
1

2
(∂λδβν − ∂νδβλ) + δωλν

)]}
.

As has been mentioned, it is possible to get rid of the first and last term through a

suitable choice of the perturbations, but not all of them.

Since δΥ̂LE is a small term compared to Υ̂LE we can determine the variation of

the entropy (6.27). First, we observe that, expanding the trace in δΥ̂LE at first order

(see also Eq. (6.23):

Z ′
LE ≡ tr

(
exp[−Υ̂LE − δΥ̂LE]

)
≃ tr

(
exp[−Υ̂LE](I − δΥ̂LE)

)
=

= ZLE(1 − 〈δΥ̂LE〉bΥ),

where 〈〉bΥ stands for the averaging with the original Υ̂LE local equilibrium operator.

Hence, the new entropy reads:

S ′ =
1

Z ′
LE

tr
(
exp[−Υ̂LE − δΥ̂LE](Υ̂LE + δΥ̂LE)

)
+ log Z ′

LE ≃

≃ 1

ZLE
(1 + 〈δΥ̂LE〉bΥ) tr

(
exp[−Υ̂LE − δΥ̂LE](Υ̂LE + δΥ̂LE)

)
+

+ log ZLE + log(1 − 〈δΥ̂LE〉bΥ). (6.31)

We can now further expand the exponentials as we have done in Eq. (6.23). First:
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tr
(
exp[−Υ̂LE − δΥ̂LE]Υ̂LE

)
≃ tr

(
exp[−Υ̂LE](I − δΥ̂LE +

1

2
[Υ̂LE, δΥ̂LE]+

−1

6
[Υ̂LE, [Υ̂LE, δΥ̂LE]] + . . .)Υ̂LE

)
=

= tr(exp[−Υ̂LE]Υ̂LE) − tr(exp[−Υ̂LE]δΥ̂LE Υ̂LE) =

= ZLE〈Υ̂LE〉bΥ − ZLE〈δΥ̂LE Υ̂LE〉bΥ, (6.32)

where, in the second equality, we have taken advantage of commutativity and ciclicity

of the trace. Then:

tr
(
exp[−Υ̂LE − δΥ̂LE]δΥ̂LE

)
≃ tr

(
exp[−Υ̂LE](I − δΥ̂LE +

1

2
[Υ̂LE, δΥ̂LE]+

−1

6
[Υ̂LE, [Υ̂LE, δΥ̂LE]] + . . .)δΥ̂LE

)

≃ tr(exp[−Υ̂LE]δΥ̂LE) = ZLE〈δΥ̂LE〉bΥ, (6.33)

keeping only first order terms. Thus, Eq. (6.31) can be rewritten as:

S ′ ≃ 1

ZLE
(1 + 〈δΥ̂LE〉bΥ) tr

(
exp[−Υ̂LE − δΥ̂LE](Υ̂LE + δΥ̂LE)

)
+

+ log ZLE + log(1 − 〈δΥ̂LE〉bΥ) ≃

≃ 1

ZLE
(1 + 〈δΥ̂LE〉bΥ)

(
ZLE〈Υ̂LE〉bΥ − ZLE〈δΥ̂LE Υ̂LE〉bΥ + ZLE〈δΥ̂LE〉bΥ

)
+

+ log ZLE + log(1 − 〈δΥ̂LE〉bΥ) ≃

= (1 + 〈δΥ̂LE〉bΥ)
(
〈Υ̂LE〉bΥ − 〈δΥ̂LE Υ̂LE〉bΥ + 〈δΥ̂LE〉bΥ

)
+

+ log ZLE + log(1 − 〈δΥ̂LE〉bΥ). (6.34)
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Retaining only the first order terms in δΥ̂LE, expanding the logarithm for 〈δΥ̂LE〉LE ≪
1 and inserting the original expression of entropy:

S ′ ≃ S − 〈δΥ̂LE Υ̂LE〉bΥ + 〈δΥ̂LE〉bΥ〈Υ̂LE〉bΥ. (6.35)

Therefore, the variation of the total entropy is, to the lowest order, proportional

to the correlation between Υ̂ and δΥ̂, which is generally non-vanishing. It is now a

sensible physical question to ask where does this variation arise. Indeed, this variation

stems from the variation of transport coefficients, which affect the entropy production

rate, hence its total amount. We have seen in the last chapter the link between the

stress-energy-momentum tensor and transport coefficients and how to calculate them

studying the linear response. We can thus see the difference in transport coefficients

using the modified Zubarev density matrix (6.12).

6.4 Transport coefficients: shear viscosity as an ex-

ample

In this section we will prove that a transformation on the microscopic tensors results

in a difference in the predicted values of transport coefficients calculated with the

relativistic Kubo formula, which is obtained by working out the mean value of the

stress-energy tensor itself with the linear response theory and the nonequilibrium den-

sity operator in Eq. (6.1). For this purpose, the derivation in ref. [33] must be extended

to the most general expression of the nonequilibrium density operator including a spin

tensor, that is, Eq. (6.12); it can be found in Appendix C.

The equation (6.25), yielding the difference of mean values of a general observable

under pseudogauge transformations, cannot be straightforwardly used to calculate

the mean value of the stress-energy tensor setting Ô = T̂ µν(y) because T̂ µν(y) gets

transformed itself. It is therefore more convenient to work out the general expression

of the Kubo formula and study how it is modified by transformations thereafter.

We will take shear viscosity as example, the transformation of other transport

coefficients being derivable with the same reasoning. As we have shown, the symmetric

part of the, macroscopic, stress-energy-momeum tensor has the same structure for

systems with or without internal angular momentum, including the shear stress part
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and shear viscosity.

For the symmetric part of the stress-energy tensor T µν
s ≡ 1/2(T µν + T νµ), using

the general formula of relativistic linear response theory (Eq. C.14 of Appendix C),

the difference δT µν
s (y) between actual mean value and the equilibrium value reads, at

the lowest order in gradients:

δT µν
s (y) = lim

ε→0

T

i

∫ t′

−∞

dt
1 − eε(t−t′)

ε

∫
d3x 〈

[
T̂ ρσ(x), T̂ µν

s (y)
]
〉0∂ρδβσ(x) (6.36)

−1

2
lim
ε→0

T

i

∫ t′

−∞

dt eε(t−t′)

∫
d3x 〈

[
Ŝ0,ρσ(x), T̂ µν

s (y)
]
〉0δωρσ(x)

−1

2
lim
ε→0

T

i

∫ t′

−∞

dt eε(t−t′)

∫ t

−∞

dτ

∫
d3x 〈

[
Ŝ0,ρσ(τ,x), T̂ µν

s (y)
]
〉0

∂

∂t
δωρσ(x).

In order to obtain transport coefficients, a suitable perturbation must be chosen which

can be eventually taken out from the integral. Physically, it corresponds to the en-

forcement of a particular hydrodynamical motion and observe the response in the

stress-energy tensor to infer the dissipative coefficient. The perturbation δβ is taken

to be a stationary one and non-vanishing only within a finite region V , at whose

boundary it goes to zero in a continuous and derivable fashion. The perturbation δω

is also taken to be stationary and it can be chosen either to vanish or like in Eq. (6.20);

in both cases, one gets to the same final result.

Let us then set δω = 0 and expand the perturbation δβ = (0, 0, δβ ·β, 0) dependent

on x1 in a Fourier series (it vanishes at some large, yet finite boundary). Since we

want the higher order gradients of the perturbation to be negligibly small (the so-

called hydrodynamic limit), the Fourier components with short wavelength must be

correspondingly suppressed. The component with the longest wavelength will then be

much larger than any other and, therefore, δβ · β(x) can be approximately written,

at least far from the boundary, as A sin(πx1/L) where L is the size of the region V in

the x1 direction and A is a constant. The derivative of this perturbation reads:

∂1δβ2(x) =
π

L
A cos(πx1/L) = ∂1δβ2(0) cos(πx1/L) ≡ ∂1δβ2(0) cos(kx1),

where k ≡ π/L. Therefore, by defining k = (k, 0, 0) and plugging the last equation in
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Eq. (6.36):

δT µν
s (y)= lim

ε→0

T

i
∂1δβ2(0)

∫ t′

−∞

dt
1 − eε(t−t′)

ε

∫

V

d3x cosk · x〈
[
T̂ 12(x), T̂ µν

s (y)
]
〉0

= lim
ε→0

T∂1δβ2(0) Im

∫ t′

−∞

dt
1 − eε(t−t′)

ε

∫

V

d3x eik·x〈
[
T̂ 12(x), T̂ µν

s (y)
]
〉0, (6.37)

taking into account that the commutator is purely imaginary. To extract shear vis-

cosity we have to evaluate the stress-energy tensor in y = 0 to make it proportional

to the derivative of the four-temperature field in the same point and we have to take

the limit L → ∞ which implies V → ∞ and k → 0 at the same time:

δT µν
s (ty, 0) = (6.38)

= lim
ε→0

lim
k→0

T ∂1δβ2(0) Im

∫ t′

−∞

dt
1 − eε(t−t′)

ε

∫
d3x eik·x〈

[
T̂ 12(x), T̂ µν

s (ty, 0)
]
〉0,

where it has been assumed that the integration domain goes to its thermodynamic

limit independently of the integrand. Because of the time-translation symmetry of

the equilibrium density operator ρ̂0, the mean value in the integral only depends on

the time difference t − ty. Thus, choosing the arbitrary time t′ = ty and redefining

the integration variables, the Eq. (6.38) can be rewritten as:

δT µν
s (ty, 0) = (6.39)

= lim
ε→0

lim
k→0

T ∂1δβ2(0) Im

∫ 0

−∞

dt
1 − eεt

ε

∫
d3x eik·x〈

[
T̂ 12(x), T̂ µν

s (0)
]
〉0,

which shows that the mean value δT µν
s (ty, 0) is indeed independent of ty, which is

expected as δβ is stationary.

We can now take advantage of the well known Curie symmetry “principle” which

states that tensors belonging to some irreducible representation of the rotation group

will only respond to perturbations belonging to the same representation and with
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the same components 3. In our case the Curie principle implies that only the same

component of the symmetric part of the stress-energy tensor, i.e. T̂ 12
S , will give a

non-vanishing value:

δT 12
s (ty, 0) = (6.40)

= lim
ε→0

lim
k→0

T ∂1δβ2(0) Im

∫ 0

−∞

dt
1 − eεt

ε

∫
d3x eik·x〈

[
T̂ 12

s (x), T̂ 12
s (0)

]
〉0.

From the above expression, a Kubo formula for shear viscosity can be extracted setting

δβ = (1/T )δu:

η = lim
ε→0

lim
k→0

Im

∫ 0

−∞

dt
1 − eεt

ε

∫
d3x eik·x〈

[
T̂ 12

s (x), T̂ 12
s (0)

]
〉0, (6.41)

which, after a little algebra, can be shown to be the same expression obtained in

ref. [33]. Because of the rotational invariance of the equilibrium density operator,

shear viscosity is independent of the particular couple (1, 2) of chosen indices. It is

worth pointing out that if we started from Eq. (C.15) instead of Eq. (C.14), choosing

δω = 0 or like in Eq. (6.20), we would have come to the same formula for shear

viscosity; in the latter case, the third contributing term in Eq. (C.15) would have

been of higher order in derivatives of δβ, hence negligible.

Now, the question we want to answer is whether the equation (6.41) is invariant by

a pseudo-gauge transformation, which turns the symmetric part of thestress-energy

tensor into:

T̂ ′µν
s = T̂ µν

s − 1

2
∂λ(Φ̂

µ,λν + Φ̂ν,λµ) = T̂ µν
s − ∂λΞ̂

λµν , (6.42)

where:

1

2
(Φ̂µ,λν + Φ̂ν,λµ) ≡ Ξ̂λµν , (6.43)

Ξ̂ being symmetric in the last two indicess. We will study the effect of the transfor-

mation on the mean value of the stress-energy tensor in the point y = 0 starting from

3This is true provided that the right hand side of Eq. (6.39) is a continuous function of k for
k = 0 or that its limit for k → 0 exists, i.e. it is independent of the direction of k
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the formula Eq. (C.15) instead of Eq. (C.14) with δω = 0 or like in Eq. (6.20), which

allows us to retain only the first contributing term to δT 12
S (0). The perturbation δβ is

taken to be stationary and t′ is set to be equal to ty = 0. Eventually,the appropriate

limits will be calculated to get the new shear viscosity. Thus:

δT
′12
s (0) = δT 12

s (0) + lim
ε→0

∫ 0

−∞

dτ
1 − eετ

ε

∫
d3x〈

[
∂αΞ̂α12(τ,x), ∂βΞ̂β12(0, 0)

]
〉0 ×

×(∂1δβ2(x) + ∂2δβ1(x)) + (6.44)

− lim
ε→0

∫ 0

−∞

dτ
1 − eετ

ε

∫
d3x
(
〈
[
∂αΞ̂α12(τ,x), T̂ 12

s (0, 0)
]
〉0 + 〈

[
T̂ 12

s (τ,x), ∂αΞ̂α12(0, 0)
]
〉0
)
×

×(∂1δβ2(x) + ∂2δβ1(x)).

We can simplify the above formula by noting that the mean value of two operators at

equilibrium can oly depend on the difference of the coordinates, so:

〈
[
Ô1(y), ∂µÔ2(x)

]
〉0 =

∂

∂xµ
〈
[
Ô1, Ô2

]
〉0(y − x) = − ∂

∂yµ
〈
[
Ô1, Ô2

]
〉0(y − x),

hence, the Eq. (6.44) can be rewritten as:

δT
′12
s (0) = δT 12

s (0) + (6.45)

− lim
ε→0

∫ 0

−∞

dτ
1 − eετ

ε

∫
d3x

{
∂2

∂xα∂xβ
〈
[
Ξ̂α12(τ,x), Ξ̂β12(0, 0)

]
〉0 (∂1δβ2(x) + ∂2δβ1(x)) +

+
∂

∂xα

(
〈
[
Ξ̂α12(τ,x), T̂ 12

s (0, 0)
]
〉0 − 〈

[
T̂ 12

s (τ,x), Ξ̂α12(0, 0)
]
〉0
)

(∂1δβ2(x) + ∂2δβ1(x))

}
.

We are now going to inspect the two terms on the right-hand side of the above

equation. If the hamiltonian is time-reversal invariant, it can be shown (see Appendix

D):

〈
[
T̂ ij

s (τ,x), Ξ̂αij(0, 0)
]
〉0 = (−1)n0〈

[
Ξ̂αij(0, 0), T̂ ij

s (−τ,x)
]
〉0 = (−1)n0〈

[
Ξ̂αij(τ,−x), T̂ ij

s (0, 0)
]
〉0,
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where n0 is the total number of time indices among those in the above expression.

Similarly, if the hamiltonian is parity invariant, then:

〈
[
Ξ̂αij(τ,−x), T̂ ij

s (0, 0)
]
〉0 = (−1)ns〈

[
Ξ̂αij(τ,x), T̂ ij

s (0, 0)
]
〉0,

where ns is the total number of space indices. Using the last two equations, the (6.45)

becomes:

δT
′12
s (0) = δT 12

s (0) + (6.46)

− lim
ε→0

∫ 0

−∞

dτ
1 − eετ

ε

∫

V

d3x

{
∂2

∂xα∂xβ
〈
[
Ξ̂α12(τ,x), Ξ̂β12(0, 0)

]
〉0(∂1δβ2(x) + ∂2δβ1(x))+

+2
∂

∂xα
〈
[
Ξ̂α12(τ,x), T̂ 12

s (0, 0)
]
〉0(∂1δβ2(x) + ∂2δβ1(x))

}
.

The two terms on the right hand side of (6.45) can be worked out separately. Using

invariance by time-reversal and parity, one has:

〈
[
Ξ̂αij(τ,x), Ξ̂βij(0, 0)

]
〉0 = (−1)n0〈

[
Ξ̂βij(0, 0), Ξ̂αij(−τ,x)

]
〉0 =

= (−1)n0〈
[
Ξ̂βij(τ,−x), Ξ̂αij(0, 0)

]
〉0 = (−1)n0+ns〈

[
Ξ̂βij(τ,x), Ξ̂αij(0, 0)

]
〉0 =

= 〈
[
Ξ̂βij(τ,x), Ξ̂αij(0, 0)

]
〉0, (6.47)

being n0 + ns = 6. Hence, the first term on the right hand side of (6.45) can be

decomposed as:

− lim
ε→0

∫ 0

−∞

dτ
1 − eετ

ε

∫

V

d3x

(
∂2

τ 〈
[
Ξ̂0ij(τ,x), Ξ̂0ij(0, 0)

]
〉0 + 2∂τ

∂

∂xk
〈
[
Ξ̂kij(τ,x), Ξ̂0ij(0, 0)

]
〉0

+
∂

∂xk

∂

∂xl
〈
[
Ξ̂kij(τ,x), Ξ̂lij(0, 0)

]
〉0
)

(∂iδβj(x) + ∂jδβi(x)), (6.48)

and, similarly, the second term as:
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−2 lim
ε→0

∫ 0

−∞

dτ
1 − eετ

ε

∫

V

d3x
(
∂τ 〈
[
Ξ̂012(τ,x), T̂ 12

s (0, 0)
]
〉0+

+
∂

∂xk
〈
[
Ξ̂k12(τ,x), T̂ 12

s (0, 0)
]
〉0(∂1δβ2(x) + ∂2δβ1(x))

)
. (6.49)

All terms in Eqs. (6.48) and (6.49) with a space derivative do not yield any contribution

to first-order transport coefficients. This can be shown by, firstly, integrating by

parts and generating two terms, one of which is a total derivative and the second

involves the second derivative of the perturbation δβ. The total derivative term can

be transformed into a surface integral on the boundary of V which vanishes because

therein the perturbation δβ is supposed to vanish along with all of its derivatives

(see previous discussion). The second term, involving higher derivatives, does not

give contribution to transport coefficients at first order in the derivative expansion.

Therefore, the Eq. (6.46) turns into:

δT
′12
s (0) = δT 12

s (0) +

− lim
ε→0

∫ 0

−∞

dτ
1 − eετ

ε

∫

V

d3x ∂2
τ 〈
[
Ξ̂012(τ,x), Ξ̂012(0, 0)

]
〉0(∂1δβ2(x) + ∂2δβ1(x))

−2 lim
ε→0

∫ 0

−∞

dτ
1 − eετ

ε

∫

V

d3x ∂τ 〈
[
Ξ̂012(τ,x), T̂ 12

s (0, 0)
]
〉0(∂1δβ2(x) + ∂2δβ1(x)) +

+O(∂2δβ), (6.50)

which can be further integrated by parts in the time τ , yielding:

δT
′12
s (0) = δT 12

s (0) +

− lim
ε→0

∫ 0

−∞

dτ (δ(τ) − εeετ )

∫

V

d3x 〈
[
Ξ̂012(τ,x), Ξ̂012(0, 0)

]
〉0(∂1δβ2(x) + ∂2δβ1(x))

−2 lim
ε→0

∫ 0

−∞

dτ eετ

∫

V

d3x 〈
[
Ξ̂012(τ,x), T̂ 12

s (0, 0)
]
〉0(∂1δβ2(x) + ∂2δβ1(x)) +

+O(∂2δβ), (6.51)
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provided that, for general space-time dependent operators Ô1 and Ô2

lim
τ→−∞

∫

V

d3x enετ∂τ 〈
[
Ô1(τ,x), Ô2(0, 0)

]
〉0 = 0

lim
τ→−∞

∫

V

d3x enετ〈
[
Ô1(τ,x), Ô2(0, 0)

]
〉0 = 0,

with n = 0, 1, which is reasonable because thermodynamical correlations are expected

to vanish exponentially as a function of time for fixed points in space 4.

From Eq. (6.51) the variation of the shear viscosity can be inferred with the very

same reasoning that led us to formula (6.41), that is:

∆η = η′ − η =

= − lim
ε→0

lim
k→0

Im

∫ 0

−∞

dτ (δ(τ) − εeετ )

∫
d3x eikx1〈

[
Ξ̂012(τ,x), Ξ̂012(0, 0)

]
〉0 +

−2 lim
ε→0

lim
k→0

Im

∫ 0

−∞

dτ eετ

∫
d3x eikx1〈

[
Ξ̂012(τ,x), T̂ 12

s (0, 0)
]
〉0. (6.52)

If the first integral is regular, then the ε → 0 limit kills one term and the (6.52)

reduces to:

∆η = η′ − η =

= − lim
k→0

∫

V

d3x cos kx1〈
[
Ξ̂012(0,x), Ξ̂012(0, 0)

]
〉0

−2 lim
ε→0

lim
k→0

Im

∫ 0

−∞

dτ eετ

∫
d3x eikx1〈

[
Ξ̂012(τ,x), T̂ 12

s (0, 0)
]
〉0. (6.53)

In general, this difference is non-vanishing. Therefore, the existence of a spin tensor

in the underlying quantum field theory affects the transport coefficients.

4There might be singularities on the light cone, however for fixed x and 0 and integration over a
finite region V , in the limit τ → −∞ light cone is not involved
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6.5 Discussion

It is important to stress that the dependence of the transport coefficients on the par-

ticular set of stress-energy and spin tensor of the theory is physically meaningful. This

means that the variation of some coefficient is not compensated by a corresponding

variation of another coefficient so as to eventually leave measurable quantities un-

changed. This has been proved in Sect. 6.3 where we showed that total entropy itself

undergoes a variation under a transformation of the stress-energy and spin tensor (see

Eq. (6.35).

A second question is whether at least one specific physical system exists for which

the transformation (1.3) actually leads to different values for e.g. transport coefficients

or other quantities in non-equilibrium situations. We do not carry out full calcula-

tions, however we provide some general considerations about a specific instance, spinor

electrodynamics.

Starting from the symmetrized gauge-invariant Belinfante tensor, having Ŝ = 0:

T̂ µν =
i

4

(
Ψγµ

↔

∇
µ

Ψ + Ψγν
↔

∇
µ

Ψ
)

+ F̂ µ
λF̂

λν +
1

4
gµνF̂ 2 (6.54)

where ∇µ = ∂µ − ieAµ is the gauge covariant derivative, one can generate other

stress-energy tensors with suitable gauge-invariant rank three tensors and then setting

Φ̂ = −Ŝ ′ where Ŝ ′ is the new spin tensor, having thus a vanishing Ẑ term. One of

the best known is the canonical Dirac spin tensor:

Φ̂ = − i

8
Ψ{γλ, [γµ, γν ]}Ψ

({ } stands for anticommutator) which is gauge-invariant and transforms the Belin-

fante tensor (6.54) back to the canonical one obtained from the spinor electrodynamics

lagrangian (see also [28] for a detailed discussion). However, this is totally antysim-

metric in the three indices λ, µ, ν and thus the variation of Υ̂ operator (see Eq. (6.21)

as well as transport coefficients, which depend on the symmetrized Ξ̂ tensor (6.43)

vanish.

Nevertheless, other gauge-invariant Φ̂-like tensors can be found. For instance, one

could add a superpotential like:



116 CHAPTER 6. NON-EQUILIBRIUM INEQUIVALENCE

Φ̂ =
~

2

m2
ec

4
ΨγλΨF̂ µν

(we have purposely restored natural constants) which is gauge invariant and which

gives rise to a non-vanishing variation of the symmetrized tensor Ξ̂ (6.43), thus a

variation of thermodynamics. It is also interesting to note that the “improved”

stress-energy tensor by Callan, Coleman and Jackiw [34] with renormalizable ma-

trix elements at all orders of perturbation theory, is obtained from the Belinfante’s

symmetrized one in Eq. (6.54) with a transformation of the kind (1.3) setting (for the

Dirac field and vanishing constants [34]):

Ẑαλ,µν = −1

6

(
gαµgλν − gανgλµ

)
ΨΨ

and requiring Ŝ ′ = Ŝ = 0 so that Φ̂λ,µν = ∂αẐαλ,µν , hence:

Φ̂λ,µν = −1

6

(
gλν∂µ − gλµ∂ν

)
ΨΨ

Ξ̂λµν =
1

2
(Φ̂µ,λν + Φ̂ν,λµ) = −1

6

[
gµν∂λ − 1

2
(gλν∂µ + gλµ∂ν)

]
ΨΨ

T̂ ′µν = T̂ µν − ∂λΞ̂
λµν = T̂ µν +

1

6
(gµν

� − ∂µ∂ν)ΨΨ

which is just the improved stress-energy tensor [34].

It is likely (to be verified though) that the aforementioned modified stress-energy

tensors imply a different thermodynamics with respect to the original Belinfante sym-

metrized tensor. More in general, once the implied different values of e.g. transport

coefficients are theoretically calculated and known, it is possible, at least in principle,

to pin them down with a suitably designed thermodynamics experiment and thus

confirm or disprove a particular stress-energy tensor.

In order to have an order of magnitude estimate, we could consider as a superpo-

tential for (6.54) the operator5:

Φ̂λ,µν =
1

8m
Ψ
([

γµ, γλ
] ↔

∇
ν

−
[
γν , γλ

] ↔

∇
µ)

Ψ,

5This amounts to the gauge-invariant version of the one used in ref. [1] to obtain a conserved
spin current
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therefore the symmetric part that provide a different shear viscosity after the trans-

formation reads:

Ξ̂λ,µν =
1

16m
Ψ
([

γλ, γµ
] ↔

∇
ν

+
[
γλ, γν

] ↔

∇
µ)

Ψ.

Noting that the structure of the above tensor is very similar to the Belinfante stress-

energy tensor itself (6.54), it is not difficult to find a rough estimate of the variation

of shear viscosity induced by the transformation. If we look at (6.53) we note that

Ξ̂012 mainly differs from T̂ 12 in (6.54) by the factor 1/m. The physical dimension of

the superpotential is that of a stress-energy-momentum tensor multiplied by a time,

and therefore this term must be of the order of ηℏ/mc2τ where τ is the microscopic

correlation time scale of the original stress-energy-momentum tensor or the collisional

time scale in the kinetic language and η the shear viscosity obtained from the original

tensor. Thus, the expected relative variation of shear viscosity in this case is of the

order:
∆η

η
≈ O

(
ℏ

mc2τ

)
,

which is (as it could have been expected) a quantum relativistic correction governed

by the ratio (λc/c)/τ being λc the Compton wavelength. For the electron, the ratio

(λc ≈ 10−21 sec, which is a very small time scale compared to the usual kinetic time

scales, yet it could be detectable for particular systems with very low shear viscosity.
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Chapter 7

Conclusions

In this work we have studied the effect of changing the pairs of fundamental stress-

energy-momentum and spin tensor {T̂ , Ŝ} with another one linked by a pseudo-gauge

transformation {T̂ ′, Ŝ ′}. Despite the common belief that such pairs are physically

equivalent, or at least that only gravitational effects can distinguish between them,

we found that they are in fact inequivalent, both for system at thermodynamical

equilibrium and transport coefficients.

We have seen that his inequivalence is strongly linked with the symmetries of the

state of the system, which we use to take mean values and to find the macroscopic,

classical, tensors {T,S}. Even though a system at homogeneous equilibrium have the

same mean values for every pair of fundamental tensors, being it canonical or grand

canonical global equilibrium. The looser symmetry of a rigidly rotating system allows

to see the inequivalence.

Besides in chapter 6 we have seen that a pseudo-gauge transformation change the

value of transport coefficients, even for a system arbitrarily close to homogeneous

equilibrium, which does not show inequivalence in mean densities. Farther, this dif-

ference can not be compensated by a variation in other coefficients in order to leave

observable quantities unchanged, as the entropy itself change (out of equilibrium) if

we change the couple of fundamental tensors.

For the time being we lack a theoretical way to identify the right pair of tensors,

but could prove if a couple is wrong with high precision measurements, for instance,

of angular momentum density and transport coefficients.

119
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In both cases we have seen that the difference is a small quantum effect but is not,

in principle, out of the range of possible experimental investigations. The greatest

difficulties in developing possible tests lie in the calculations of the effects in relevant

cases. The explicit calculation in chapter 3 was for a very ideal case. In cold gas

experiments it is possible to reach very low temperatures, and thus a ratio ℏω/KT of

the order of a few precent, but mutual interactions of particles and interactions with

external fields (trapping the atoms in a spatial region) have to be taken into account.

Regarding transport coefficients, quark gluon plasma has a very low viscosity, making

it an interesting candidate for a shear viscosity tests, but it may prove necessary to

take into account the high external magnetic fields produced in peripheral heavy ion

collisions. These strong magnetic fields, providing a privileged direction, break the

isotropy assumption thus requiring a more general framework.



Appendix A

Creation and destruction

operators, average

We follow the argument used in [1]. The aim is to calculate:

tr
(
ρ̂ a†

n
an′

)
,

with ρ̂ given by eq. (2.27). For this purpose we define, with β = 1/T :

a†
n
(β) = e−β( bH−ω bJ−µ bQ)a†

n
eβ( bH−ω bJ−µ bQ) (A.1)

and similarly for an, bn and b†
n
. Now, from the above equation one can readily check

that:

∂a†
n
(β)

∂β
= [a†

n
(β), Ĥ − ωĴ − µQ̂], (A.2)

and, since:

[Ĥ, a†
n
] = εa†

n
[Ĵ , a†

n
] = Ma†

n
[Q̂, a†

n
] = qa†

n

one readily obtains that eq. (A.2) is equivalent to:

∂a†
n
(β)

∂β
= (−ε + Mω + µq)a†

n
(β)

which is solved by, being a†
n
(0) = a†

n
:
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a†
n
(β) = a†

n
e−β(ε−Mω−µq) (A.3)

We can now write:

tr
(
ρ̂ a†

n
an′

)
= tr

(
ρ̂ a†

n
eβ( bH−ω bJ−µ bQ)e−β( bH−ω bJ−µ bQ)an′

)
=

= tr
(
e−β( bH+ω bJ−µ bQ)an′ ρ̂ a†

n
eβ( bH−ω bJ−µ bQ)

)
=

=
1

Zω

tr
(
e−β( bH−ω bJ−µ bQ)an′ PV e−β( bH−ω bJ−µ bQ)a†

n
eβ( bH−ω bJ−µ bQ)

)
=

=
1

Zω
tr
(
PV e−β( bH−ω bJ−µ bQ)an′ a†

n
(β)
)

= tr
(
ρ̂ an′a†

n
(β)
)
,

where we have used the ciclicity of the trace, the definition of ρ̂ in eq. (2.27), the

commutation relations with the volume projector PV , and the eq (A.1). It should be

pointed out that the ciclicity of the trace can be used safely because a complete set of

states for the cylinder with finite radius can be constructed with eigenvectors of the

operators Ĥ,Ĵz and Q̂. By using eq. (A.3) and the anticommutation relation (3.22),

the above equation can also be written as:

tr
(
ρ̂ a†

n
an′

)
= tr

(
ρ̂ an′a†

n
(β)
)

= tr
(
ρ̂ an′a†

n

)
e−β(ε−Mω−µq) =

=
(
−tr

(
ρ̂ a†

n
an′

)
+ δnn′

)
e−β(ε−Mω−µq),

whence:

tr
(
ρ̂ a†

n
an′

)
=

δnn′

eβ(ε−Mω−µq) + 1
.

The above method can be used for the calculation of other bilinear combinations of

creation and destruction operators, leading to the equalities reported in eq. (3.28).



Appendix B

General form of the entropy

current

Here we will present the formula for entropy current we use to introduce transport

coefficients for a generic stress-energy tensor. We will follow mainly [23], while we

disregard charge currents for mathematical ease.

The global equilibrium density matrix reads, if we consider rotations:

ρ̂ =
1

Z
exp

[
−Ĥ

T
+

ω · Ĵ
T

]
Z = tr

(
exp

[
−Ĥ

T
+

ω · Ĵ
T

])
.

Without loss of generality, we can call ω̂ the z (or 3) axis and write the exponent using

the stress-energy-momentum and spin tensors, understanding the position dependence

of operators:

−Ĥ

T
+

ω · Ĵ
T

= − 1

T

∫
d3xT̂ 00+

1

T

∫
d3x

[
1

2
ω
(
δ1
µδ2

ν − δ1
νδ

2
µ

) (
xµT̂ 0ν − xν T̂ 0µ + Ŝ0,µν

)]
=

= −
∫

d3x

(
T̂ 0νβν(x) − 1

2
Ŝ0,αβωαβ(x)

)
,

where β = 1/T (1, ω × x) is the four temperature of the rigidly rotating system,

and ωµν = ω/T
(
δ1
µδ2

ν − δ1
νδ

2
µ

)
. Calling dΣµ the space-like hyper-surface element of

the three dimensional space (embedded in Minkowski space-time), the last equation
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reads:

−Ĥ

T
+

ω · Ĵ
T

= −
∫

dΣµ

(
T̂ µνβν −

1

2
ωαβŜµ,αβ

)
.

Total entropy S thus reads:

S = −tr (ρ̂ ln ρ̂) = ln Z +

∫
dΣµ

[
T µν(x)βν(x) − 1

2
Sµ,αβ(x)ωαβ(x)

]
.

For an entropy current to exist in relativistic thermodynamics the logarithm of the

partition function must be written as an integral over the same hypersurface of a

vector eld, hereby defined as the thermodynamic potential current:

ln Z =

∫
dΣµ φµ,

so that the entropy current reads:

sµ(x) = φµ(x) + T µν(x)βν(x) − 1

2
Sµ,αβ(x)ωαβ(x). (B.1)

The last formula holds for rotating equilibrium, it naturally holds for vanishing angular

velocity ω and, as reported in [23], can be extended to a more general class of thermo-

dynamical equilibrium. The equilibrium relation between ωµν and four-temperature

is still ωµν = −1/2∂[µβν]. The interpretation of the thermodynamic potential current

φµ is not yet clear in the most general case but corresponds to pressure times four

temeprature φµ = pβµ for homogeneous (non-rotating) equilibrium.

In relativistic Navier-Stokes theory it is assumed that equilibrium thermodynamic

relations even hold if the system is out of equilibrium. So we will use (B.1) as a general

form of entropy current, though the relation between ωµν and four-temperature out

of equilibrium is unclear.



Appendix C

Linear response theory with spin

tensor

We extend the relativistic linear response theory in the Zubarev’s approach to the

case of a non-vanishing spin tensor. The (stationary) nonequilibrium density opera-

tor is the one in Eq. (6.12), with Υ̂ expanded as in Eq. (6.13). As has been shown in

Sect. 6.1, at equilibrium only the first term of the Υ̂ operator survives in Eq. (6.13);

therefore, one can rewrite that equation using the perturbations δβ, δξ and δω which

are defined as the difference between the actual value and their value at thermody-

namical equilibrium:

Υ̂ =

∫
d3x

[
T̂ 0νβν(t

′,x) − ĵ0ξ(t′,x) − 1

2
Ŝ0,µνωµν(t

′,x)

]

+ lim
ε→0

∫ t′

−∞

dt eε(t−t′)

∫
dS ni

[
T̂ iνδβν(x) − ĵiδξ(x) − 1

2
Ŝi,µνδωµν(x)

]

−1

2
lim
ε→0

∫ t′

−∞

dt

∫
d3x eε(t−t′)

{
T̂ µν

s

[
∂µδβν(x) + ∂µδβν(x)

]
+

+T̂ µν
a

[
∂µδβν(x) − ∂µδβν(x) + 2δωµν(x)

]
+

−Ŝλ,µν∂λδωµν(x) − 2ĵµ∂µδξ(x)
}

, (C.1)

where it is henceforth understood that x = (t,x).

In fact, we will use a rearrangement of the right-hand-side expression which is more
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convenient if one wants to work with an unspecified, yet small, δω. Therefore, the

above equation is rewritten as:

Υ̂ =

∫
d3x

(
T̂ 0νβν(t

′,x) − ĵ0ξ(t′,x) − 1

2
Ŝ0,µνωµν(t

′,x)

)

− lim
ε→0

∫ t′

−∞

dt eε(t−t′) ∂

∂t

∫
d3x

(
T̂ 0νδβν(x) − 1

2
Ŝ0,µνδωµν(x) − ĵ0δξ(x)

)
,(C.2)

what it can be easily obtained from Eq. (6.12) integrating by parts in time.

For the sake of simplicity we calculate the linear response with ξeq = δξ = 0, but

it can be shown that our final expressions hold for ξeq 6= 0 (in other words with a

non-vanishing chemical potential µ 6= 0). Let us now define:

Â = −
∫

d3x

(
T̂ 0νβν(t

′,x) − 1

2
Ŝ0,µνωµν(t

′,x)

)
,

and:

B̂ = lim
ε→0

∫ t′

−∞

dt eε(t−t′) ∂

∂t

∫
d3x

(
T̂ 0νδβν(x) − 1

2
Ŝ0,µνδωµν(x)

)
,

so that:

ρ̂ =
1

Z
exp[−Υ̂] =

1

Z
exp[Â + B̂], (C.3)

with Z = tr exp[Â + B̂].

The operator B̂ is the small term in which ρ̂ will be expanded, according to the

linear response theory. It can can be rewritten in a way which will be useful later on.

Since:

∫
d3x

∂

∂t
T̂ 0ν(x) δβν(x) =

∫
d3x ∂µ

(
T̂ µν(x) δβν(x)

)
−
∫

d3x ∂iT̂
iν(x) δβν(x) =

=

∫
d3x T̂ µν(x)∂µδβν(x) −

∫

∂V

dS n̂iT̂
iν(x) δβν(x),

then:
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B̂ = lim
ε→0

∫ t′

−∞

dt eε(t−t′)

∫
d3x

(
T̂ µν∂µδβν(x) − 1

2

∂

∂t

(
Ŝ0,µνδωµν(x)

))
−
∫

∂V

dS n̂iT̂
iν(x) δβν(x).

The perturbation δβ must be chosen such that δβ|∂V = 0 so that only the bulk term

survives in the above equation:

B̂ = lim
ε→0

∫ t′

−∞

dt eε(t−t′)

∫
d3x

(
T̂ µν∂µδβν(x) − 1

2

∂

∂t

(
Ŝ0,µνδωµν(x)

))
. (C.4)

At the lowest order in B̂:

Z =tr
(
e

bA+ bB
)
≃ tr

(
e

bA
[
1+B̂

])
= ZLE

(
1+〈B̂〉LE

)
⇒ 1

Z
≃ 1

ZLE

(
1−〈B̂〉LE

)
, (C.5)

and:

e
bA+ bB =

[
1 +

∫ 1

0

dz ez( bA+ bB)B̂e−z bA

]
e

bA ≃
[
1 +

∫ 1

0

dz ez bAB̂ e−z bA

]
e

bA, (C.6)

where the subscript LE stands for Local Equilibrium and implies the calculation of

mean values with the local equilibrium density operator, that is ρ̂LE = e
bA/tr(e

bA).

Thereby, putting together (C.5) and (C.6) and retaining only first-order terms in B̂:

ρ̂ ≃
(
1 − 〈B̂〉LE

)
ρ̂LE +

∫ 1

0

dz ez bAB̂e−z bAρ̂LE,

hence the mean value of an operator Ô(y) becomes:

〈Ô(y)〉 ≃
(
1 − 〈B̂〉LE

)
〈Ô(y)〉LE + 〈Ô(y)

∫ 1

0

dz ez bAB̂e−z bA〉LE. (C.7)

Let us focus on the last term, which, by virtue of (C.4), contains expressions of this

sort:
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〈Ô(x)X̂ ′(z, t,x)〉LE ≡ 〈Ô(x)ez bAX̂(t,x)e−z bA〉LE,

where X̂ is a general notation for components of either T̂ or Ŝ or ∂0Ŝ. From the

identity:

〈Ô(y)X̂ ′(z, t,x)〉LE =

∫ t

−∞

dτ 〈Ô(y)∂τX̂
′(z, τ,x)〉LE + lim

τ→−∞
〈Ô(y)X̂ ′(z, τ,x)〉LE,

and the observation that correlations vanish for very distant times, one obtains:

〈Ô(y)X̂ ′(z, t,x)〉LE =

∫ t

−∞

dτ〈Ô(y)∂τX̂
′(z, τ,x)〉LE + lim

τ→−∞
〈Ô(y)〉LE〈X̂(τ,x)〉LE, (C.8)

where we have also taken advantage of the commutation between exp[Â] and exp[±zÂ].

We now approximate (see [33]) the local equilibrium density operator with the

nearest equilibrium operator ρ̂0 in Eq. (6.26), which also implies that:

Â ≃ −Ĥ/T,

where Ĥ is the hamiltonian operator (which ought to exists given the chosen boundary

conditions). The straightforward consequence of this approximation is that the second

term on the right hand side in Eq. (C.8) can be written as:

〈X̂(−∞,x)〉LE ≃ 〈X̂(−∞,x)〉0 = 〈X̂(t,x)〉0

because the mean value is stationary under the equilibrium distribution. There-

fore, the Eq. (C.8) can be approximated as:

〈Ô(y)X̂ ′(z, t,x)〉LE ≃
∫ t

−∞

dτ 〈Ô(y)∂τX̂
′(z, τ,x)〉0 + 〈Ô(y)〉0〈X̂(t,x)〉0, (C.9)

and the (C.7) as:
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〈Ô(y)〉 ≃
(
1 − 〈B̂〉0

)
〈Ô(y)〉0 +

∫ 1

0

dz 〈Ô(y)e−z bH/T B̂ez bH/T 〉0. (C.10)

Once integrated, the second term in (C.9) gives rise to a term which cancels out

exactly the 〈B̂〉0〈Ô(y)〉0 in the equation above, which then becomes:

〈Ô(y)〉 ≃ 〈Ô(y)〉0 + 〈Ô(y)B̂′′〉0, (C.11)

where B̂′′ is an operator built flollowing (C.4), but substituting in any instance the

terms X̂ ′(z, t,x) with the integrals
∫ t

−∞
dτ ∂τX̂

′(z, τ,x).

Let us now take care of the first term in Eq. (C.9) and integrate it in z:

∫ 1

0

dz

∫ t

−∞

dτ 〈Ô(y)∂τX̂
′(z, τ,x)〉0 =

1

β

∫ β

0

du

∫ t

−∞

dτ 〈Ô(y)∂τe
−u bHX̂(τ,x)eu bH〉0,

where β = 1/T and βz = u. As Ĥ is the generator of time translations:

1

β

∫ β

0

du

∫ t

−∞

dτ 〈Ô(y)∂τe
−u bHX̂(τ,x)eu bH〉0 =

1

β

∫ β

0

du

∫ t

−∞

dτ 〈Ô(y)∂τX̂(τ + iu,x)〉0 =

=
1

iβ

∫ β

0

du

∫ t

−∞

dτ 〈Ô(y)
∂

∂u
X̂(τ + iu,x)〉0 =

1

iβ

∫ β

0

du

∫ t

−∞

dτ
∂

∂u

(
〈Ô(y)X̂(τ + iu,x)〉0

)
=

=
1

iβ

∫ t

−∞

dτ

∫ β

0

du
∂

∂u

(
〈Ô(y)X̂(τ + iu,x)〉0

)
=

1

iβ

∫ t

−∞

(
〈Ô(y)X̂(τ + iβ,x)〉0 − 〈Ô(y)X̂(τ,x)〉0

)
.

On the other hand:

〈Ô(y)X̂(τ + iβ,x)〉0 = tr(ρ̂0Ô(y)e−β bHX̂(τ,x)e+β bH) =
1

Z0
tr(e−β bHÔ(y)e−β bHX̂(τ,x)eβ bH) =

=
1

Z0
tr(Ô(y)e−β bHX̂(τ,x)) = tr(X̂(τ,x))ρ̂0Ô(y)) = 〈X̂(τ,x)Ô(y)〉0.

Hence, putting the last three equations together, we have:
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∫ 1

0

dz

∫ t

−∞

dτ 〈Ô(y)∂τX̂
′(z, τ,x)〉0 =

1

iβ

∫ t

−∞

dτ 〈[X̂(τ,x), Ô(y)]〉0. (C.12)

Substituting now X̂ with its specific operators, Eq. (C.11) can be expanded as:

δ〈Ô(y)〉=〈Ô(y)〉−〈Ô(y)〉0 ≃ lim
ε→0

1

iβ

∫ t′

−∞

dt eε(t−t′)

∫ t

−∞

dτ

∫
d3x 〈

[
T̂ µν(τ,x), Ô(y)

]
〉0∂µδβν(x) +

−1

2
lim
ε→0

1

iβ

∫ t′

−∞

dt eε(t−t′) ∂

∂t

∫ t

−∞

dτ

∫
d3x 〈

[
Ŝ0,µν(τ,x), Ô(y)

]
〉0δωµν(x) =

= lim
ε→0

1

iβ

∫ t′

−∞

dt eε(t−t′)

∫ t

−∞

dτ

∫
d3x 〈

[
T̂ µν(τ,x), Ô(y)

]
〉0∂µδβν(x) +

−1

2
lim
ε→0

1

iβ

∫ t′

−∞

dt eε(t−t′)

∫
d3x 〈

[
Ŝ0,µν(t,x), Ô(y)

]
〉0δωµν(x) +

−1

2
lim
ε→0

1

iβ

∫ t′

−∞

dt eε(t−t′)

∫ t

−∞

dτ

∫
d3x 〈

[
Ŝ0,µν(τ,x), Ô(y)

]
〉0

∂

∂t
δωµν(x). (C.13)

The first term on the right hand side of the above equation can be integrated by parts

using:

∫ t′

−∞

dt eε(t−t′)

∫ t

−∞

dτ f(τ) =

∫ t′

−∞

dt
∂

∂t

(
eε(t−t′)

ε

)∫ t

−∞

dτ f(τ) =

=
1

ε

∫ t′

−∞

dτ f(τ) −
∫ t′

−∞

dt
eε(t−t′)

ε
f(t) =

∫ t′

−∞

dt
1 − eε(t−t′)

ε
f(t),

so that the Eq. (C.13) can be finally written:

δ〈Ô(y)〉= lim
ε→0

1

iβ

∫ t′

−∞

dt
1 − eε(t−t′)

ε

∫
d3x 〈

[
T̂ µν(x), Ô(y)

]
〉0∂µδβν(x) + (C.14)

−1

2
lim
ε→0

1

iβ

∫ t′

−∞

dt eε(t−t′)

∫
d3x 〈

[
Ŝ0,µν(x), Ô(y)

]
〉0δωµν(x) +

−1

2
lim
ε→0

1

iβ

∫ t′

−∞

dt eε(t−t′)

∫ t

−∞

dτ

∫
d3x 〈

[
Ŝ0,µν(τ,x), Ô(y)

]
〉0

∂

∂t
δωµν(x).
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There is another useful expression of the δ〈Ô(y)〉 which can be obtained starting from

the expression (6.13) of Υ̂, where the continuity equation for angular momentum was

implemented from the beginning. Repeating the same reasoning as above, it can be

shown that one gets to:

δ〈Ô(y)〉= lim
ε→0

1

2iβ

∫ t′

−∞

dt
1 − eε(t−t′)

ε

∫
d3x〈

[
T̂ µν

S (x), Ô(y)
]
〉0(∂µδβν(x) + ∂νδβµ(x)) +

+ lim
ε→0

1

2iβ

∫ t′

−∞

dt
1 − eε(t−t′)

ε

∫
d3x〈

[
T̂ µν

A (x), Ô(y)
]
〉0(∂µδβν(x) − ∂νδβµ(x) + 2δωµν(x)) +

−1

2
lim
ε→0

1

iβ

∫ t′

−∞

dt eε(t−t′)

∫ t

−∞

dτ

∫
d3x〈

[
Ŝλ,µν(τ,x), Ô(y)

]
〉0∂λδωµν(x) +

−1

2
lim
ε→0

1

iβ

∫ t′

−∞

dt eε(t−t′)

∫ t

−∞

dτ

∫
d3x 〈

[
Ŝ0,µν(τ,x), Ô(y)

]
〉0

∂

∂t
δωµν(x) (C.15)

As we have pointed out, these expressions hold when ρ̂0 has a non-vanishing chemical

potential.
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Appendix D

Discrete symmetries

During the calculations for the linear response we found the average values of terms

of the form:

〈
[
Ôµ1···µn

1 (τ,x), Ôν1···νn

2 (0, 0)
]
〉0

where Ô2 and Ô2 are tensors of rank respectively m and n and hermitian operators,

e.g. the commutator 〈
[
T̂ 12

S (τ,x), Ξ̂α12(0, 0)
]
〉0 in Eq. (6.45)(46).

As long as we take as the equilibrium distribution the non rotating density matrix

ρ0 = exp[−Ĥ/T ]/Z, the system enjoys translation, rotation, time reversal and parity

invariance, provided the the hamiltonian Ĥ is itself parity an time reversal invariant.

The symmetry under this class of transformations allows to write the mean value in

more convenient forms. For any linear unitary transformation T̂ which doesn’t change

the state of the system he have:

〈Ô〉0 = tr
(
ρ̂0 Ô

)
= tr

(
T̂−1ρ̂0T̂ Ô

)
= tr

(
ρ̂0 T̂ÔT̂−1

)
= 〈T̂ÔT̂−1〉0

the average value of the transformed operator. Henceforth translation invariance

imply in our case that we can translate both operators of the same distance without

changing the mean value:

〈
[
Ôµ1···µn

1 (τ,x), Ôν1···νn

2 (0, 0)
]
〉0 = 〈

[
Ôµ1···µn

1 (τ + a0,x + a), Ôν1···νn

2 (a0, a)
]
〉0
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and so, for (a0, a) = (−τ,−x) it reads:

〈
[
Ôµ1···µn

1 (τ,x), Ôν1···νn

2 (0, 0)
]
〉0 = 〈

[
Ôµ1···µn

1 (0, 0), Ôν1···νn

2 (−τ,−x)
]
〉0

On a similar manner parity invariance of the state means that performing a parity

transformation on the argument doesn’t change the mean values, hence:

〈
[
Ôµ1···µn

1 (τ,x), Ôν1···νn

2 (0, 0)
]
〉0 = (−1)ns〈

[
Ôµ1···µn

1 (τ,−x), Ôν1···νn

2 (0, 0)
]
〉0

The overall sign in the above formula depends on the number of total spatial indices

ns among µ1, · · ·νm, ν1, · · · νn since parity, besides changing the sign of the spatial

variables x, change the sing of tensors with an odd number of spatial indices.

Time reversal works in a similar way, but an important difference is that time

reversal Θ is antiunitary and antilinear. An operator Â transforms thus using:

Â → ΘÂ†Θ−1

instead of the more familiar rule for linear transformations. It follows that operators

in a product invert their relative order, hence for commutators:

[
Â, B̂

]
→ Θ

[
Â, B̂

]†
Θ−1 = Θ

[
B̂†, Â†

]
Θ−1

Hermitian operators are self adjoint Ĥ† = Ĥ, but the hermitian conjugation still change

the order of hermitian operators in a commutator. Time reversal invariance for the

density matrix ensures that the mean value at the beginning reads:

〈
[
Ôµ1···µn

1 (τ,x), Ôν1···νn

2 (0, 0)
]
〉0 = (−1)n0〈

[
Ôν1···νn

2 (0, 0), Ôµ1···µn

1 (−τ,x)
]
〉0

where n0 is the number of temporal indices.
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