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Abstract

Performance-oriented Adaptive Switching Control

Daniele Mari

This thesis addresses the problem of controlling uncertain multivariable systems

by means of adaptive switching control (ASC) schemes. Indeed, in many real applications, a

large number of actuator and/or sensors may be employed so as to achieve the desired control

task, thus requiring to treat the process as a typical multi-input/multi-output system. In

particular, the attention is directed to model-based switching schemes and the goal is to

develop solutions which aim at improving transient/regime performance. The main feature

of the examined architecture is that stability does not depend on model distribution and

performance improvements can be achieved without increasing the number of models.

Part I aims at extending a model-based control approach, so far restricted to single-

input/single-output systems, to a general multivariable setting. The proposed scheme relies

on a “high-level” unit, called the supervisor, which at any time can switch on in feedback

with the process one controller from a finite family of candidate controllers. The supervisor

performs routing/scheduling tasks by monitoring suitable data-based test functionals. In

addition, a possible modification to the original scheme is introduced, whereby switching

among fixed candidate controllers can be suitably combined with an adaptive mechanism,

this idea being of interest for on-line implementation of highly performing ASC schemes.

Part II addresses the problem of the control transfer in model-based ASC schemes.

Indeed, the switching is a source of nonlinearity and can cause variations of closed loop dy-

namics yielding significant performance degradations. To cope with this event, the proposed

technique aims at promptly recovering an adequate closed-loop behavior and it exploits the

model distribution/uncertainty structure so as to suitably reset of the state of the switched-

on controller, in accordance with the regime behavior predicted by the a-priori information.

From an implementation viewpoint, the technique is flexible enough so as to allow the de-

signer to trade off performance vs. memory and/or computational complexity, even when

the process is described by a continuous distribution of models.

Since simulations of adaptive control systems are often useful for performance

evaluation, Part III focuses on a numerical multivariable example.
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Chapter 1

Introduction

“In everyday language, to adapt means to change a behavior to conform to new

circumstances. Intuitively, an adaptive controller is thus a controller that can modify its

behavior in response to changes in the dynamics of the process and the character of the

disturbances” [SS11].

In this thesis we deal with the problem of controlling multivariable linear processes

in presence of large-scale modelling uncertainty, i.e. processes described by models whose

structure and parameters are not all a priori known to the designer. Large uncertainty

is typically the case where no single controller can guarantee a desired behaviour when

connected with the process so, Robust Control design techniques, as the one described

in [ZDG95, GL95, DFT90], turn out to be ineffective. Also, in many control engineering

applications, the process may exhibit significant / fast variations of its dynamics and accord-

ingly, it could be required a control law such to compensate such variations by responding

as quickly as process dynamics changes. This is the case, for example, of the problem of

fight-control systems [SL92, NRR93, BG97]. In such applications, Gain-Scheduling tech-

niques have succeeded the classical Adaptive Control approach. In both ones, the control

architecture, as shown in Figure 1.1, consists of two loops: an inner loop, the ordinary con-

trol system, composed of the process and the controller, and an outer loop which comprises

the tuning mechanism / gain-scheduler. Tuning mechanism adapts in a continuous manner

the parameters of the feedback compensator, based on the data directly measured from the

closed loop system [Mos95, IS96]. However, this solution turns out to be poorly applica-

ble in situations where process dynamics is subjected to fast variations. Gain-scheduler
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Chapter 1. Introduction
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Figure 1.1: Top: Adaptive Control scheme. Bottom: Gain-Scheduling Control scheme.

accommodates, on the contrary, changes in the control action by means of a look-up table

associating the controller parameters to the value of auxiliary variables which carry infor-

mation about the dynamic regime of the process [SA90, RS00]. Typically, these variables

provide no feedback from the actual performance of the closed loop system with the con-

sequence that unstable trends can occur in the inner loop without the gain-scheduling unit

be able to detect them.

Adaptive Switching Control (ASC) schemes can be viewed as an adaptive variant of

Gain-Scheduling. The main idea behind this method to approach the problem of handling

process with large uncertainty / abrupt variations consists in employing adaptive logic-

based switching among a family of pre-computed controllers. To do that, ASC schemes

make use of an outer loop which comprises an high level supervision unit, called supervisor,

such to select the current controller based on recorded process data. Controllers are a-

priori designed to guarantee for each dynamic regime of the process a satisfactory behavior.

Advantages with respect to pre-existing control approaches are evident. First, stability /

higher performance can be always achieved by increasing the number of controllers; second,

the switching rule, its nature being adaptive, can quickly detect the dynamic mode which

currently characterizes the process behavior so that the most suitable controller can be

2



Chapter 1. Introduction

instantly switched-on in feedback with the process. Thereby, once obtained a family of

fixed controllers, the control problem consists in appropriately orchestrating the switching.

Switching among controllers is actually a crucial aspect, as it may generate bad transients

with adverse effects on closed loop performance and, in some case, it can lead to instability.

For this reason, in the last two decades many research efforts have been devoted to the

development of appropriate switching logics −monograph [Lib03] and survey papers [KSe01,

HLe01, AD08] provide an overview of this topic.

This thesis stems from the consideration that a switching logic, even if well de-

signed, could not be sufficient to keep high performance at each situation where the control

system could be in. Of course, control action transfer at the times of switching is a source of

nonlinearity and can cause dramatic transients for the process. Also, using a finite number

of fixed controllers does not allow in general to achieve an exact adaptation of the control

law to the process dynamics. To end, the switching logic should be independent of the “ge-

ometry” of the process. Indeed, in many real processes, such as industrial plants, aircrafts

and communication networks, a large number of actuator and/or sensors may be employed

in order to achieve the desired control task, thus requiring to treat the process as a typical

multi-input / multi-output system.

This thesis is so divided in order to provide some suggestion for each one of the

above mentioned questions. The framework of the control problem is specified in Chapter

2. Part I concerns the adaptive switching logic applied to a generic multivariable system.

In particular, Chapter 3 refers to square systems, while the extension to the non-square

systems is carried out in Appendix A. Appendix B provides some remarks on the design

of a dedicated tuning mechanism to be combined with the switching logic of Chapter 3, in

case the aim be to increase the closed loop performance without destroying the properties

given by the switching logic. Part II deals with the problem to transfer the control action,

controllers being actually dynamic system, which time evolution depends on their imple-

mentation into the ASC scheme. Chapter 4 discusses a multicontroller architecture which

appears adequate to be implemented in ASC schemes and also a parameter is detected

such to be adaptively changed so as to have a performance-oriented transfer. Eventually,

Chapter 5 in Part III considers a linear multivariable system and provides some numerical

results.

3
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Figure 1.2: Adaptive Switching Control scheme with Tuning Mechanism.

Figure 1.2 sums up the three blocks characterizing the supervisory control scheme,

namely supervisor, multicontroller and, possibly, adaptive tuner. Because of the modular

nature of the scheme, property of each block can be separately analysed. The remainder of

this chapter introduces the topics handled in this thesis and it briefly resumes the solutions

proposed to design each block, thus highlighting the new contributions.

1.1 Switching Strategy

Control of processes with large dynamic uncertainties requires the use of multiple

linear time-invariant controllers C1, C2, · · · , CN whenever no single controller can guar-

antee adequate performance for each process configuration. In this respect, a high-level

unit, called Supervisor, is devoted to select the controller to be put in feedback with the

process at each time. To carry out the selection, the supervisor has access to the input /

output records of the process and, by monitoring a family of data-based test functionals

Π(t) := {Π1(t), Π2(t), · · · , ΠN (t)}, t ∈ {0, 1, · · · }, decides whether the currently switched-

on controller is adequate and, in the negative, replaces it by another candidate controller.

Each functional Πi(t) quantifies the suitability of the controller Ci to be placed in feed-
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Chapter 1. Introduction

back with the process, given the data up to time t. The supervisor updates the index

σ(t) ∈ {1, 2, · · · , N} based on a switching logic

σ(t+ 1) = l(σ(t),Π(t)) .

Hysteresis-based switching logics (HSL) as the one considered in Chapter 3 have the advan-

tage, along with avoiding chattering (namely, infinitely fast switching [HLM03b, HLM03a]),

to enjoy properties given by the HSL Lemma 3.1.1 [MMG92], which provides conditions un-

der which the switching stops in a finite time and, the test functional associated to the final

controller is bounded. To cope with this lemma, it is convenient to design test functionals in

order to satisfy basic assumptions of the HSL lemma, i.e., irrespective of switching sequence

σt, to guarantee that i) each test functional admits limit as t → ∞ and, ii) at least one

test functional keeps bounded as t→∞. Nonetheless, the main goal of a switching control

scheme has to be the one to select the right controller without exciting unstable dynamics of

the process. In this respect, we consider the input-output stability in a l2 sense, so defined

for the specific system represented in Figure 1.2: the (switched) inner loop of Figure 1.2 is

input-output l2 stable if there exist two non-negative reals c1 and c2 such that

∥∥zt
∥∥ ≤ c1 + c2

∥∥rt
∥∥ , ∀t ∈ {0, 1, · · · } ,

where z := [u′ y′]′ and
∥∥xt
∥∥ :=

√∑t
k=0 |x(k)|

2. Hence, an appropriate test function should

be such to satisfy the assumptions i) and ii) of the HSL lemma and also, the boundedness

of the Πf (t) as t→∞, where the subscription f indicates the final switching index, should

reflect the input-output l2 stability above defined [ST97, SWPS07, SS11].

The switching strategy presented in Part I has been proposed in [BBM+11a,

BBM+12] and, it is an extension to the multivariable setting of the ASC scheme proposed

for the first time in [BBMT10]. The latter consists in a model-based switching scheme,

based on the assumption that a process model is associated to each controller. So, a model

distribution M1, M2, · · · , MN , is a-priori available, describing the process uncertainty.

Models and controllers allows the designer to determine a family of reference loops (Mi/Ci),

i = 1, 2, · · · , N , each one representing the feedback interconnection between the modelMi

with the controller Ci. Let P indicate the real process, then (P/Ci) denotes the i’th poten-

tial loop. In [BBMT10], Πi(t) evaluates the discrepancy between (P/Ci) and (Mi/Ci) in

response to a fictitious signal vi, known as virtual reference. Leaving the details to Chapter

5



Chapter 1. Introduction

3, it can be obtained by solving, if it is possible, the following equation

vi(t) = y(t) + C−1i u(t) ,

i.e. in words, the virtual reference is the sequence which would reproduce the process

input-output sequences, respectively, ut and yt, should the process be fed-back by the

candidate controller Ci, irrespective of the way ut and yt are generated. With obvious

meaning of symbols, virtual reference vi is hence such that z = (P/Ci) vi, while one has

[u′i y
′
i]
′ =: zi = (Mi/Ci) vi. According to that, test functional is obtained as the following

percentage discrepancy

Πi(t) := max
k≤t

Λi(k) ,

Λ
1/2
i (t) :=

∥∥∥ z̃ti/i
∥∥∥

∥∥ (z − z̃i/i)t
∥∥ , z̃i(t) := z(t)− zi(t) .

which turns out to be computable for each candidate controller Ci, irrespective of the fact

that Ci could be on-line or off-line, thus avoiding pre-routing routines. Essentially, the

overall switching strategy carry out a Reference Loop Identification task: closer the behavior

of (P/Ci) to the one of (Mi/Ci) in response to vi, higher the probability that Ci be selected.

Notice that the use of the max operator allows to satisfy assumption i) of the

HSL lemma, while assumption ii) turns out to be satisfied provided that the minimal /

reasonable requirement that at least one controller exists such to be stabilizing for each

process configuration (see Section 3.2.1). Sections 3.3 and 3.4 tackle the main contributions

of the chapter and show how such test functionals could be able to infer stability of the

candidate controllers. Further, Theorem 3.4.1 resumes the conditions under which the

switched system of Figure 1.2 keeps input-output l2 stable and also, Theorem 3.4.2 provides

a simple variation to the original form of the test functional apt to guarantee offset-free

with respect to a generic class of reference produced by linear time-invariant exo-systems.

The main contribution of the chapter consists in proving that such results hold irrespective

of the “geometry” of the process. In particular, the original interpretation of discrepancy

between potential and reference loop need not hold in case number of outputs be greater

than number of inputs, since the virtual reference need not exist. In this respect, Appendix

A discusses a possible modification of the virtual reference definition which makes it possible

to recover the interpretation in terms of discrepancy for any process geometry. Nevertheless,

6



Chapter 1. Introduction

from Section 3.5, one can conclude that the adopted test functional Πi(t) is always on-line

computable by prefiltering the prediction error based on the nominal modelMi, see Lemma

3.5.1.

ASC schemes, while retaining the fundamental ideas of adaptive control [Mos95,

IS96], enjoy potential advantages over traditional continuous adaptation [Mor95, NB97,

HLM03b]: i) fast adaptation due to the discontinuous fashion of the controller selection

ii) modularity of the control architecture. Because of the latter one, the dynamic of the

supervisor does not affect the inner loop behavior between two switching instants and,

integration into the inner loop of pre-designed control structures is possible, without having

the need to continuously parametrize the controller structure. Further, the use of pre-

designed control structures allows to circumvent shortcomings in the controller synthesis,

such as danger of stabilizability loss of the identified model, which is typically encountered in

formulating adaptive control as a recursive tuning control problem. However, the adoption

of a finite number of controllers may prevent from achieving optimal performance because

of possible detuning arising from the discrete nature of the controller family in contrast

with the possibly continuous nature of the process uncertainty. Even more importantly,

satisfactory trade-offs between the conflicting objectives of number of candidate controllers

(hence memory/computational load) and desired performance need not even exist in some

cases, especially if the process uncertainty set is large. Intuitively, higher performance

is achievable by suitably increasing the number of reference loops, such a result being

formalized in Proposition 3.4.1.

1.1.1 Adaptive Tuning in Switching Control

The main contribution of Appendix B consists in proposing a way to combine an

ASC scheme with a controller tuning algorithm in order to enjoy positive features of both

the techniques: Speed (from switching) and accuracy (from adaptive tuning) of the control

system response. In particular, the tuning algorithm is thought to be applied to the ASC

logic described in Chapter 3 [BBM+11b]. The essential of the idea is the following. Let

switching mechanism select the controller Cf at the time t∗, then (Mf/Cf ) can be thought

as the desired behavior to be achieved. If C(α) denotes a linear time-invariant controller in

a given class parametrized by the vector α, belonging to some set Θα ⊂ Rnα , then the goal

can be to tune α so that (P/C(α)) approaches as much as possible (Mf/Cf ). Such objective

7



Chapter 1. Introduction

can be carried out by means of the virtual reference concept. Indeed, the innovative idea is

the one to parametrize the virtual reference with respect to α as follows

vα(t) = y(t) + C−1(α)u(t) ,

and hence, assuming available a batch of data zt∗, the controller tuning can be therefore

obtained through the minimization, with respect to α, of the following criterion

Λ1/2(α, t∗) :=
‖ (z − zα)

t∗ ‖

‖zt∗α ‖
, α ∈ Θα ,

where zα := [u′α y′α]
′, uα and yα representing the desired behavior on basis on (Mf/Cf ) and

the current value of α. Notice that the functional to minimize is obtained by parametrizing

the test functional used in the switching rule of the previous section, the idea being the

one to carry out a sort of Reference Loop Adaptation task: to adapt C(α) in a continu-

ously way in order that (P/C(α)) behaves as closely as possible to (Mf/Cf ) in response

to vα. Section B.2 explains in detail the tuning algorithm and it discusses the inherit-

ing implementation issues. The originality of the proposed implementation is that, while

tuning algorithm is running, the process continues to be managed by the supervisor. So

tuning and switching has to be thought as two disjoint blocks, i.e. operating in a separate

way. Once the new controller, named CN+1, get available, the corresponding nominal model

MN+1 is obtained as described in Section B.3 and, in particular, Theorem B.3.1 provides

the conditions whereby the properties of switching scheme continue to hold in case the new

reference loop (MN+1/CN+1) be inserted in the switching algorithm. So, CN+1 is added to

the pre-existing controller family and the related ΠN+1 to the family Π(t). In the practice,

to fairly compare ΠN+1 with all the other Πi’s, the switching scheme is simply modified by

resetting all candidate test functionals at time t+ > t∗, i.e. for any i = 1, , · · · , N + 1

Πi(t) := max
t+≤k≤t

Λi(k)

Λ
1/2
i (t) :=

‖ z̃i|
t
t+
‖

‖ (z − z̃i)|
t
t+
‖
, t ∈ Zt+ ,

where Zt+ := {t+, t+ + 1, · · · } and, x|t2t1 := {x(t1), · · · , x(t2)}, t1 < t2. Section B.4 con-

cludes the discussion by enumerating the current open problems.

The idea of combining switching and tuning schemes for adaptive control is not new

in the literature, see for example [NB97, NX00]. However, different from [NB97, NX00], the

8



Chapter 1. Introduction

control design procedure is here formulated as a parameter optimization problem in which

the optimization is carried directly out the controller parameters, with no intermediate

process model identification effort, as in a typical data-driven approach [HGGL98]. Different

from [HGGL98], the proposed procedure needs of a minimum interaction with the process,

the data set being collected only one time by any controller stabilizing the process. The

latter is in general a positive characteristics and, most of all for an adaptive procedure to

be combined with a switching scheme. The tuning procedure alone has been applied also to

Adaptive Optics problems, as the tuning of Adaptive Secondary Mirrors for Ground-based

Large Telescopes − the interest reader can refer to [ABB+11, ABM+12] for more details on

control problems related to Adaptive Optics.

1.2 Transfer of the Control Action

Switching control schemes deal with changing operating dynamic mode of the inner

loop, caused by a substitution of the control law due to the instantaneous switching between

two different controllers. When a switching occurs, the difference between the outputs of

the active controller at the time of switching and the off-line controller to be switched on can

cause dramatic transients in the dynamics of the inner loop, such phenomenon being called

“bump”. The noticeable manifestation of the bump phenomenon is a jump in the process

input, and most importantly a significant deterioration of the actual closed-loop perfor-

mance with respect to the ideal or expected performance following a controller switching.

Numerous approaches, known as bumpless transfer techniques, have been proposed in the

last years to reduce the bumps after switching [AW96, GA96, TW00, ZT02, ZT05, CS06].

However, the concept of bumpless transfer has never been precisely formalized [ZT02] and

it is sometimes misunderstood, as noted in [PVH96]. A common statement which conveys

the idea of bumpless transfer is that of switching smoothly as possible from one controller

to another where the notion of smoothness is understood in the most cases related to the

continuity property (in the mathematical sense) of the process inputs at the switching in-

stants, that is, input signals which does not experience a jump or discontinuity in time when

switching between controllers [AW96]. Such a definition makes sense only for continuous-

time systems while in a discrete time setting the acceptation of bumpless transfer can be

the one to minimize the jump at the process input in some way as defined in [GA96, TW00].

In any case, guaranteeing continuity in time or a small jump at the switching instants does

9



Chapter 1. Introduction

not preclude the inner loop from exhibiting very poor transients with the new on line con-

troller. However, in some case the primary goal of controller switching can be to promptly

recover an adequate input / output process behavior, not to assure smooth control transi-

tions. Indeed, ASC schemes usually manage processes concerned with the case where the

their dynamics can vary and produce abrupt and significant performance degradations of

the feedback loop, indeed suddenly unstable closed-loops. So, switching between controllers

aims at realizing fast transitions which maintain the performance of closed-loop systems. In

such cases hence jumps or abrupt changes in the inputs of the process are actually inherent

to such control strategies. However, the underlying control objective constraints should

not be violated by the transients induced by such instantaneous events. Therefore, it is

appropriate to consider control switching as bumpless when the follow-up transients are

reduced or possibly eliminated from the closed-loop system behavior albeit the occurrence

of jumps in process inputs and the performance still remains good after switching. This

notion of bumpless transfer has been termed conditioned transfer in [PVH96]. It is worth

noticing that this notion applies indifferently to continuous time or discrete time systems

and conveys the idea that switching should take place without perturbing the closed-loop

system to depart from its desired performance.

According to the above motivations, Part II deals with a conditioned transfer

approach which has been thought to be suitably used in model-based ASC schemes, along

with both set-point regulation and tracking problems [BMMT]. The block dedicated to the

control transfer is theMulticontroller. In Figure 1.2, the multicontroller is represented as the

parallel connection of N controllers, where N − 1 controllers are off-line and only is active,

all being alimented by the error signals (r − y), as a typical “multisystem” implementation

[AW97]. Although such an architecture be the most intuitive, it has evident drawbacks: i)

the states of off-line controllers are unpredictably preconditioned before switching ii) so that,

unstable controller can have outputs diverging before being active; iii) implementation load

increases with the number of controllers and, iv) bumpless transfer solutions, suited for such

an architecture, need to use additional circuitry [TW00, ZT05, AW97]. Let {Fi, Gi,Hi,Ki}

be a state-space realization of the i-th controller Ci, i = 1, 2, · · · , N . In Chapter 4, an

alternative multicontroller realization is adopted as the following

q(t+ 1) = Fσ(t) q(t) +Gσ(t) (r(t)− y(t))

u(t) = Hσ(t) q(t) +Kσ(t) (r(t)− y(t))

}

10
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which has the peculiarity to have an unique vector q(t), the switching reducing to change

the gain matrices according to the switching sequence σ(t), dictated by the supervisor.

This “hybrid linear” architecture allows for sidestepping the limits of multisystem one and,

it is commonly used for supervisory control of sampled-data systems [BBMT10, BMST10,

CHP04, ZMF00]. Indeed, though not reflecting optimal-oriented features, it is such to: i)

allow the use of unstable controllers and ii) require a low computational load, the compu-

tational cost being invariant to the number of candidate controllers.

The main contribution of Chapter 4 consists in proposing a method such to min-

imize the transient effects due to switching and to recover as soon as possible the desired

behavior, without increasing the computational cost needed to implement a hybrid linear

system. The idea of the method stems from the fact that transient after switching is due

to the states of the inner loop at the time of switching. In this respect, the exosystem gen-

erating the reference signals and the processor have states which can not be manipulated

however, the one of the multicontroller can be arbitrarily set at each time. So, one can

condition the state q of the multicontroller at the time of switching in order to recover as

soon as possible some pre-specified desired behavior. In Section 4.3, the desired behavior is

specified to be the steady state dynamics of the closed loop
(
P/Cσ(ts)

)
, where Cσ(ts) is the

controller which is switched on at the switching time ts. Accordingly, the multicontroller

state is reinitialized so as to minimize the discrepancy between actual and steady-state

closed-loop behaviors, the sense of the minimization being specified in Section 4.3. The

reinitialization consists in a linear map as in classical initial value compensation / controller

state resetting schemes [Joh00, HIKH09, YSTH96, HM98, PHGne] and depends affinely by

a pre-computed set of constant gains on the same closed-loop data as the ones in input

to the supervisor. In particular, Section 4.3 describes how to obtain such a set of gains

by solving off-line performance-oriented control problems suitably defined in case the pro-

cess be supposed to be coincident with one of the available nominal models. Section 4.4

proposes an innovative procedure to suitably “robustify” the solution of Section 4.3 so as

to still provide explicit, though suboptimal, solutions in case the process uncertainty be a

continuum (and so, not completely representable by a finite model distribution) and only

a finite number feedback-gain matrices is allowed such to allow the designer to trade off

performance vs. memory savings and/or computational complexity.

11



Chapter 2

Problem Framework: Square

Systems

This chapter aims at framing the control problem and providing the basic assump-

tions which are considered in the body of the thesis.

We tackle the problem of guaranteeing stability / performance of uncertain multi-

variable processes, where the uncertainty is “someway” structured. The process is denoted

by a map P : Rp 7→ Rp with a structure depending on a finite number of parameters, each

one taking value in some set. According to that, let θ indicate the vector of parameters and

Θ the parameters uncertainty set, namely θ ∈ Θ ⊆ Rnθ , with nθ number of parameters.

Then, it possible to define the set P containing all possible configurations / modes of the

process as follows

P := {P(θ), θ ∈ Θ} , (2.1)

where each element P(θ) represents a particular configuration of the process.

Hereafter, we deal with discrete-time, strictly causal, square (with dimension p ≥

1), linear and time invariant (LTI) dynamic systems and will assume that matrix fraction

descriptions (MFDs, for short) of the process such as the following

P(θ) : A−1(θ, d)B(θ, d) = N(θ, d)D−1(θ, d) , (2.2)

12
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are available, where d stands for the unit backward shift operator and

A(θ, d) = Ip + A1(θ)d+ · · · + Ana(θ)d
na ,

B(θ, d) = B1(θ)d+ · · · + Bnb
(θ)dnb ,

are polynomial matrices of dimensions p×p with strictly Schur greatest common left divisor

(g.c.l.d.). Similar definitions apply also to the right MFD N(θ, d)D−1(θ, d). Note that

no constraint needs to be specified about the way the vector θ affects the coefficients of

polynomials A(θ, d) and B(θ, d) (and accordingly, N(θ, d) and D(θ, d)).

Remark 2.0.1 The reason for considering a discrete-time setting is that our interest is

mainly directed to sampled-data processes to be managed by digital control systems. The

polynomial formulation is, moreover, motived by the ultimate goal to provide a control ar-

chitecture which exploits the only information regarding to the input-output process records,

the state of the process being unknown / not accessible in the most of the practical cases.

Based on the uncertainty set Θ, a family of N controllers

C = {Ci, i ∈
←−
N} (2.3)

is supposed to be a-priori designed. Namely, each process configuration in the set P should

be satisfactorily controlled by at least one of the controllers Ci, so as that C turns out to

provide some sort of covering property [ABD+01]. More specifically, the attention is focused

on one-degree-of-freedom LTI controllers, each one characterized by MFDs as follows

Ci : R
−1
i (d)Si(d) = Yi(d)X

−1
i (d) , (2.4)

where

Ri(d) = Im + Ri1d+ · · ·+ Rinrd
nr ,

Si(d) = Si0 + Si1d+ · · ·+ Sinsd
ns ,

are polynomial matrices of dimensions p × p with strictly Schur g.c.l.d.. As beforehand, a

similar definition applies to the right MFDs Yi(d)X
−1
i (d).

Before proceeding, the loop which can be obtained by the feedback connection

between the process P(θ) and the pre-designed controller Ci will be indicated as (P(θ)/Ci)

and referred to as the i-th potential loop with respect to the configuration P(θ). According

to that, the basic requirement of the control problem can be stated as follows.

13
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a1. For every process configuration P(θ) ∈P, there is at least one controller Ci ∈ C such

to guarantee internal stability of the feedback loop (P(θ)/Ci).

Assumption a1 is sufficient to have well-posedness of the control problem, the pro-

cess being always stabilizable by at least one controller and also, it allows to determine the

minimum number of controllers to be used relatively to the process uncertainty. Hereafter,

we will name assumption a1 as feasibility condition.

The second assumption, which will turn out to be essential to carry on this disser-

tation, is the following.

a2. Each controller Ci, i ∈
←−
N , is designed with respect to a process modelMi.

Assumption a2 is reasonable from a practical viewpoint, the controller Ci being

pre-designed, in most of the cases, based on a model representing a particular dynamic

mode of the process. Thus, let us assume available a family

M := {Mi, i ∈
←−
N } (2.5)

of N discrete-time strictly causal LTI dynamic systems with MFDs

Mi : A−1i (d)Bi(d) = Ni(d)D
−1
i (d) , (2.6)

where

Ai(d) = Ip + Ai1d+ · · ·+ Ainad
na ,

Bi(d) = Bi1d+ · · · + Binb
dnb ,

are polynomial matrices of dimensions p× p with strictly Schur g.c.l.d.. Similar definitions

apply to the right MFDs Ni(d)D
−1
i (d). The family M is hence taken as a representative

set of all possible process configurations and form, along with C , a finite family

F := {(Mi/Ci) , i ∈
←−
N } (2.7)

of internally stable feedback loops, each one designed to fulfil desired prescriptions.

In (2.7) and hereafter, (Mi/Ci) denotes the i-th reference-loop or nominal-loop,

which consists of the nominal modelMi with the corresponding feedback controller Ci.

14



PART I

Controller Selection Strategy
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Chapter 3

Model-based Switching Control for

Uncertain Square Systems

In many control systems, such as industrial plants, aircrafts, and communication

networks, a large number of actuators and/or sensors are employed in order to achieve de-

sired control tasks. In these control applications, the inputs and outputs cannot be usually

grouped into pairs, and treated as if they were separate single-input single-output (SISO)

sub-systems, because the interactions between a generic input and any given output can be

non-negligible. Consequently, one has to tackle the control design as a genuine multiple-

input multi-output (MIMO) problem. The situation is even more complicated whenever

the multivariable system to be controlled is poorly known. One of the approaches for

controlling uncertain plants is the introduction of feedback adaptation. The extension of

adaptive control algorithms developed for SISO systems to a MIMO setting is non triv-

ial. Some MIMO adaptive control algorithms based on the model reference approach and

the pole placement approach can be found in [SB89, Tao03]. In recent years, adaptive

switching control (ASC) has emerged as an alternative to conventional continuous adap-

tation, providing an attractive framework for combining tools from adaptive and robust

control [MMG92, HLM03b, FAP06, SWPS07, BBMT10]. ASC usually embeds a finite fam-

ily of precomputed candidate controllers {C1, C2, · · · , CN} and a supervisor S which selects

at any time the controller to be switched-on in feedback with the process: the selection

being based on the input/output process records [Mor95]. Although the ASC literature
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is quite vast, most of the works deal with the SISO case with notable exceptions being

[WG94, CN94, SP97, CD99].

Present chapter addresses the problem of controlling an uncertain square system

by means of ASC schemes [BBM+12, BBM+11a], see Figure 3.1 for a typical scheme. In

particular, we focus on a scheme which combines Multi-Model architectures with the Un-

falsified control, proposed in [BBMT10, BBMT11] for SISO systems. Such scheme exploits

a supervisory unit which performs in real-time both the scheduling task (when to switch)

and the routing task (which controller to select), by monitoring test functionals, pairwise

associated with the given candidate controllers, as indicators of controller suitability. Each

test functional provides a measure of percentage discrepancy between the potential loop,

made up by the uncertain process in feedback with the candidate controller, and a reference

loop related to the same candidate controller. In this way, the selection of the controller

bases on identifying which dynamics, among those associated to the reference loops, is the

best one to be reproduced by the process. Section 3.2 explains, more in detail, this selection

idea with particular attention to the square systems. In general, the adopted test functional

can be obtained by exploiting the concept of a virtual reference. However, while in the SISO

/ square systems, this tool does not pose particular questions, the situation becomes more

intricate for the non-square systems since, in this case, such virtual references need not

exist. Appendix A is devoted to the analysis of the latter case and provides a constructive

proof that, irrespective of the existence of such virtual references, the proposed approach

still maintains its intuitive interpretation of discrepancy. The most appealing feature of this

ASC scheme consists in the ability to make inference of the stability properties of the re-

sulting switched system, as depicted in Figure 3.1. Once a stable behavior for the switched

system is guaranteed, selection rule follows performance requirements based on the family

of reference loops. According to that, Sections 3.3 and 3.4 carry out an analysis of the

main characteristics and results regarding to the use of such test functionals along with the

hysteresis-based switching rule, as defined in Section 3.1. Eventually, Section 3.5 accounts

for implementation aspects.

Let S denote the linear space of all the real-valued sequences on Z+ := {0, 1, · · · }.

Given a vector-valued real sequence x ∈ S of dimension n, xt denotes its time truncation

up to time t, i.e., xt := {x(0), x(1), . . . , x(t)}, with x(k) ∈ Rn. Hereafter, we consider the
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P(θ) ∈P

C1

C2

CN

...

S

r(t)

σ(t)

−

y(t)u(t)

Figure 3.1: Typical ASC arrangement.

space l2(Z+) of all vector-valued real sequences with bounded l2-norm defined as

‖xt‖2 :=
t∑

k=0

|x(k)|2 , (3.1)

where | · | denote the Euclidean norm. Namely, the space l2(Z+) denotes the linear space

of the sequences belonging to S with bounded energy. Then, the following notion of input-

output l2-stability is adopted in the reminder of the chapter.

Definition 3.0.1 A causal system H with input w = {wi, i ∈ m}, m := {1, 2, · · · , m} and

output v = {vj , j ∈ p}, p := {1, 2, · · · , p} is said to be input-output l2-stable if, for every

input w ∈ S, there exist finite positive reals ci, i = 1, 2, such that

∥∥vt
∥∥ ≤ c1 + c2

∥∥wt
∥∥ , ∀t ∈ Z+ , (3.2)

where v denotes the system output response to the input w.

The constant c1 allows for consideration of systems with non-zero initial state. It

should be emphasized that stability of the system H requires that (3.2) holds true, possibly

with different constants c1, c2, for any possible input. Before proceeding, some comments

are in order. For clarity of exposition, in the sequel, the analysis will be carried out assuming

zero process initial conditions, that means

y(k) = u(k) = 0, k = −1,−2, · · · , (3.3)
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and absence of noises/disturbances. Nonetheless, the results to be presented can be readily

extended to the general case along the same lines as those of [BBMT10, BMST10]. In

accordance with the mentioned restrictions, next definition is introduced in order to avoid

possible ambiguities.

Notation. Given an LTI dynamic system with transfer matrix F (d), and left MFD, F (d) =

G−1(d)H(d), with input u and output y, by the notation y(t) = F (d)u(t) we mean that the

sequence y(t), t ∈ Z+, is computed via the following difference equation (detG0 6= 0)

nG∑

k=0

Gk y(t− k) =
nH∑

k=0

Hk u(t− k) , y(k) = u(k) = 0, k = −1,−2, · · · , (3.4)

whereG(d) =
∑nG

k=0Gk d
k andH(d) =

∑nH
k=0Hk d

k, with d the unit backward shift operator.

3.1 Supervisory Control System and Switching Logic

By referring to Figure 3.1, let the switched system be represented as follows

y(t) = P(θ, u)(t)

u(t) = Cσ(t)(r − y)(t)

}
(3.5)

where t ∈ Z+, P : Θ × Rp 7→ Rp, p ≥ 1, denotes the map describing the input-output

behavior of the process as follows

A(θ, d) y(t) = B(θ, d)u(t) (3.6)

with input u(t) ∈ Rp and output y(t) ∈ Rp, while r(t) ∈ Rp represents the reference to be

tracked by the process output. Finally, the map σ : Z+ 7→
←−
N ,
←−
N := {1, 2, · · · , N}, refers

to the controller switching sequence: The subscript σ(t) identifying, among all N available

candidate controllers, the one connected in feedback to the process at time t, thus defining

the configuration of the switching controller C(·). Hereafter, the linear time-varying feedback

system (3.5) will be denoted by (P(θ)/Cσ(·)).

The unit generating the sequence σt is the so-called supervisor S. It handles the

input-output records to the process up the current time t and selects which controller to

connect in feedback to the process at the time t. Accordingly, the switching controller

Cσ(t) turns out to coincide with one element Ci from the finite family C of pre-designed

controllers.
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In order to decide which candidate controller has to be placed in feedback with

process, the supervisor embodies a family

Π := {Πi, i ∈
←−
N } (3.7)

of test functionals such that, in broad terms, Πi(t) quantifies the suitability of the i-th

candidate controller Ci to be placed in feedback with the process P(θ), given the data up to

time t. In particular, we will make use of the well-known hysteresis switching logic (HSL)

which computes at each step the least index i∗(t) in
←−
N such that Πi∗(t)(t) ≤ Πi(t), ∀i ∈

←−
N .

Then, the switching sequence σ is given by 1

σ(t+ 1) = l(σ(t),Π(t)), σ(0) = i0 ∈
←−
N

l(i,Π(t)) =

{
i, if Πi(t) < Πi∗(t)(t) + h

i∗(t), otherwise





(3.8)

where the constant h > 0 determines the hysteresis value.

Next lemma establishes the limiting behavior of the switched system (P(θ)/Cσ(·))

subject to (3.8), provided that the family of cost indices Π be suitably chosen. Let Σ denote

the class of all possible switching sequences σt giving rise to (3.5). Consider the following

assumptions.

hsl1. For each σt ∈ Σ and i ∈
←−
N , Πi(t) admits a limit (even infinite) as t→∞;

hsl2. For each σt ∈ Σ, there exist integers µ ∈
←−
N such that Πµ(·) is bounded

Lemma 3.1.1 HSL Lemma [MMG92]. Let σt the switching sequence resulting from (3.5)

with (3.8). Then, for any initial condition and reference r, if hsl1 and hsl2 hold, there is a

finite time tf ∈ Z+, after which no more switching occurs. Moreover, Πσ(tf )(·) is bounded.

3.2 Test Functionals-based selection

In the Unfalsified Control, proposed for the first time in [ST97], the idea consists

in cleverly design the test functionals family so as to detect any instability trends exhibited

1Alternative to (3.8), a multiplicative HSL, where l(i,Π(t)) = i if (1 + h) Πi(t) < Πi∗(t)(t) - the so called

scale-independent HSL [ABD+01] - can be considered.
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by the switched system (3.5). In particular, the key property to be required to the family

Π is known with the name of cost detectability property [SWPS07].

Definition 3.2.1 Given the family Π, as defined in (3.7), and the controller set C in (2.3),

the pair (Π/C ) is said to be l2-cost detectable if for every sequence Ctσ ∈ C with finitely

many switching times and final switched-on controller Cf ∈ C , the following statements are

equivalent: 1) Πf (t) keeps bounded as t → ∞; 2) Input-output l2 stability of the system

(P(θ)/Cσ(t)) mapping r into z = (u, y) is unfalsified by the sequence (r, z)t.

The concept of unfalsified stability of a system stems from the model-free / data-

driven paradigm which aims at adjusting the parameters of the switching controller Cσ(·)

from time to time without a-priori information about dynamics characteristics of the process

and, by only using a single infinite-length experiment. Notice also that, safe operations with

Π need no hypothesis neither on the structure of the uncertainty set Θ nor on the (linear

/ non-linear) nature of the process. In broad terms, stability of the system (P(θ)/Cσ(·)) is

unfalsified by the (recorded) sequence (r, z)t if there exist finite nonnegative reals a1 and

a2 such to guarantee the stability requirement so as specified in Definition 3.0.1, i.e.

∥∥zt
∥∥ ≤ a1 + a2

∥∥rt
∥∥ , ∀t ∈ Z+ . (3.9)

Otherwise, the stability of the system is said to be falsified by (r, z)t.

Notice that cost-detectability property enables test functionals to be used in the

HSL. The test functionals proposed in [SWPS07, SS08] allow to select in a finite time a final

controller yielding, in an l2-sense, a finite affine gain from the reference r to the process

data z, under the minimal requirement consisting in the feasibility of the control problem

(see Assumption a1 in Chapter 2). However, these functionals can yield a critical behavior

for the switched system as they need not provide protection against the temporary insertion

in the loop of destabilizing controllers. Indeed, significant initial transients and temporary

trends to divergence are typically experienced before the final controller be switched-on.

The basic idea of the Multi-Model Unfalsified ASC scheme, proposed for the first

time in [BBMT10], stems from the possibility to combine the Unfalsified philosophy with

Multiple-Models architectures, studied in [ABD+01, HLM03a, Mor97], in order to overcome

the limits of classical unfalsified schemes by exploiting the advantages of the use of multiple

models, based on Assumption a2.
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In the Multi-Model ASC schemes a dynamical nominal model is associated with

every candidate controller and the supervisor compare norms of sequences of estimation

errors based on the various nominal models. According to that, the controller associated to

the nominal model yielding the prediction error norm of minimum magnitude is believed to

be the most suitable one. Such functionals do not exhibit the cost detectability property

and stability properties of the switched system is typically only guaranteed if the process

is tightly approximated by at least one nominal model, as analysed in [HLM03a]. On the

contrary, learning transients can be typically made small at the cost of very dense nominal

model distribution.

Eventually, the smart intuition which has given rise to the ASC scheme in [BBMT10]

was the possibility to use multiple models into the unfalsified approach and so, to enjoy

the positive features of both approaches. Indeed, it has been experienced, see [BBMT10,

BBMT11, BBM+12], that the time duration of learning transients decreases and, also sta-

bility is ensured if, for any element in the process uncertainty set Θ, there is at least one

stabilizing candidate controller, irrespective of the models distribution density. Contrarily

to Multi-Model schemes, stability robustness against un-modelled dynamics in the large is

hence automatically guaranteed.

Next section reviews the basic idea of the Multi-Models Unfalsified ASC archi-

tecture with particular attention to the case of multivariable square systems. The case of

non-square systems is discussed in Appendix A.

3.2.1 Reference-loop Identification in case of Square Systems

Given a family F of candidate reference loops, see (2.7), for each process configura-

tion a desired behavior is known, which would be opportune to reproduce by the switching

rule, once stability is guaranteed. For this reason, test functionals are designed so as to

carry out a reference-loop identification task. In broad terms, the aim consists in selecting

a candidate controller Cσ in such a way that (P(θ)/Cσ) behaves as close as possible to one

of the candidate reference loops in F . Accordingly, the overall idea of the Multi-Model

Unfalsified approach can be formulated based on satisfying the two following goals.

1) Basic goal. The loop (P(θ)/Cσ) exhibit a stable behavior in response to the sequence

of the reference rt.
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2) Ideal goal. At time t, the controller index σ(t) in (3.8) be updated, based on the test

functionals

Πi(t) = max
k≤t

∥∥∥[(P(θ)/Ci)r − (Mi/Ci)r]
k
∥∥∥

‖ [(Mi/Ci)r]
k ‖

, (3.10)

where (P(θ)/Ci)r and (Mi/Ci)r denote the behavioral data produced by the loops

(P(θ)/Ci) and (Mi/Ci), respectively, in response to the reference r.

Remark 3.2.1 The use of the max operator allows to satisfy Assumption hsl1 of HSL

Lemma, and, in general, it means that the search for the controller minimizing the dis-

crepancy between actual and nominal behavior is carried out with respect to the whole

observation interval up to the current time t.

Remark 3.2.2 One of the advantages of using percentage criteria is essentially that, in case

of large uncertain process dynamic range, it is possible to have a different cost associated

to each index i ∈
←−
N . Test functionals in normalized form like (3.10) thus help to avoid

possible biases associated with the controller selection. More details about this topic can

be found in [VS95, MA01].

The test functional (3.10) allows to compare the performance levels achievable by

the use of each candidate controller, (P(θ)/Ci) exhibiting an input-output stable behavior

/ being not falsified by couple (r, z) (using the terminology of [SWPS07]) if and only if

Πi(t) stays bounded for t→ ∞. Indeed the sequence [(Mi/Ci)r]
k in (3.10) keeps bounded

by construction; on the contrary, [(P(θ)/Ci)r]
k grows unbounded in case the potential loop

(P(θ)/Ci) show an unstable behavior in response to the reference r. Hence, Assumption

hsl2 turns out to be satisfied under the preliminary hypothesis of feasibility of the control

problem. Unfortunately, on line computation of (3.10) is impossible without using logics

like pre-routing, which in general have to be ruled out because typically cause large and

long-lasting learning transients. In fact, on line computation of (3.10) would require to

compute the response of (P(θ)/Ci) to r for each of the N candidate controllers, which is

not possible unless all controllers are sequentially tested or, N exact copies of the process

P(θ) are available, each one connected with a candidate controller.

The unfalsified approach provides, under certain conditions, a tool for side-stepping

the above mentioned problem. At each time and for each candidate controller, one computes
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Ci

Ci

−
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−

−

P

Mi

vi(t)

y(t)u(t)

yi/i(t)ui/i(t)

ỹi/i(t)

ũi/i(t)

Figure 3.2: Detail of a Multi-Model Unfalsified ASC scheme: notice that, with z̃i/i =[
ũ′i/i ỹ

′
i/i

]′
:= z − zi/i.

(if possible) the solution vi(t) ∈ Rp of the following difference equation

Si(d)vi(t) = Ri(d)u(t) + Si(d)y(t) . (3.11)

In words, vti equals the i-th virtual reference sequence which would reproduce the recorded

input-output sequences, respectively, ut and yt, should the process P(θ) be fed-back by the

candidate controller Ci, irrespective of the way ut and yt are generated. Let

z(t) :=

[
u(t)

y(t)

]
, (3.12)

this means that, being (P(θ)/Cσ(·)) the linear (time-varying) transformation (3.5) mapping

the r into z, we have

z =
(
P(θ)/Cσ(·)

)
r = (P(θ)/Ci) vi .

In the sequel, the virtual reference concept will be rearranged as follows. For each

reference-loop (Mi/Ci), we define the closed-loop response of (Mi/Ci) to vi as

yi/i(t) =Mi(ui/i)(t)

ui/i(t) = Ci(vi − yi/i)(t)

}
(3.13)
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Accordingly, by letting zi/i = (Mi/Ci) vi :=
[
u′i/i y

′
i/i

]′
, the test functionals (3.10) turns

out to be modified as follows

Πi(t) = max
k≤t

‖ [(P(θ)/Ci)vi − (Mi/Ci)vi]
k ‖

‖ [(Mi/Ci)vi]
k ‖

. (3.14)

In (3.14), numerical questions arise relating to the computation of sequences vti ’s.

The virtual references are always well-defined in case of square systems (see [BBMT10]

for the analysis in the particular case of SISO systems) and questions arise only on their

numerical computation: the solution of (3.11) is actually “numerically stable” only if the

determinant of the polynomial matrix Si(d) is strictly Schur. Appendix A shows how

handling virtual references in case Si(d) is not strictly Schur and also in the more general case

of non-square systems, where the virtual reference need not even exist, with the consequence

that the original interpretation in terms of discrepancy between potential and nominal loops

falls down.

3.3 Stability Inference and Performance Requirements

Before comparing the performance levels of the candidate loops (P(θ)/Ci)’s, it is

necessary to be able to make inference on the their stability properties. The main feature of

the Multi-Model Unfalsified ASC scheme is actually that one to associate the boundedness

of the test functional Πi(·) to the internal stability of the loop (P(θ)/Ci). In order to show

the validity of the latter sentence, it is convenient to rewrite (3.14) as follow

Πi(t) := max
k≤t

Λi(k) , (3.15)

Λ
1/2
i (t) :=

∥∥∥ z̃ti/i
∥∥∥

∥∥ (z − z̃i/i)t
∥∥ , (3.16)

where z̃i/i := z − zi/i, as shown in Figure 3.2.

Coprime factor model error representations [GL95], hereafter briefly recalled for

the reader’s benefit, are a convenient framework to work with. Let the uncertain process

P(θ) in (3.5) be represented, as in Figure 3.3, in the coprime factor perturbed form based
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Bi(d)

∆Bi(θ, d)

A−1i (d)

∆Ai(θ, d)

εi(t)

y(t)u(t)

Figure 3.3: Coprime model error representation.

on the nominal modelMi

P(θ) :

{
Ai(d) y(t) = Bi(d)u(t) + εi(t)

εi(t) = ∆Ai(θ, d) y(t) + ∆Bi(θ, d)u(t)
(3.17)

where

∆Ai(θ, d) := Ai(d)−A(θ, d) , ∆Bi(θ, d) := B(θ, d)−Bi(d) , (3.18)

and εi(t) ∈ Rp represents the equation error. Accordingly, let us define

∆θ/i(d) := [∆Bi(θ, d) ∆Ai(θ, d) ] , (3.19)

and consider the polynomial matrices

Ξi/i(d) := Ai(d)Xi(d) +Bi(d)Yi(d) , (3.20)

Ξθ/i(d) := A(θ, d)Xi(d) +B(θ, d)Yi(d) , (3.21)

whose determinants equal the characteristic polynomials of the i-th reference loop and,

respectively, the i-th potential loop. In particular, the first one is strictly Schur by con-

struction for all i’s ∈
←−
N , (Mi/Ci) being internal stable − see Assumption a2; while, the

second one turns out to be strictly Schur at least for one index i in the set
←−
N , as assured

through the feasibility condition − see Assumption a1.

Next lemma allows us to establish the main features of (3.15)-(3.16) in terms of

stability inference / cost detectability property.
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Lemma 3.3.1 Consider the rational matrices

Qi/i(d) :=

[
Yi(d)

Xi(d)

]
Ξ−1i/i (d) , (3.22)

Qθ/i(d) :=

[
Yi(d)

Xi(d)

]
Ξ−1θ/i(d) . (3.23)

Then,

Qθ/i(d)−Qi/i(d) = Qθ/i(d)∆θ/i(d)Qi/i(d) . (3.24)

Proof. See Appendix C. �

From Lemma 3.3.1, one can conclude that

z̃i(t) = Qi/i(d)∆θ/i(d) z(t)

= Qθ/i(d)∆θ/i(d)
[
I −Qi/i(d)∆θ/i(d)

]
z(t)

= Qθ/i(d)∆θ/i(d) (z(t)− z̃i(t)) . (3.25)

and so, under the assumption of zero initial conditions, the following condition

‖z̃ti‖ ≤ ‖Qθ/i∆θ/i‖∞ ‖(z − z̃i)
t‖ , (3.26)

holds, where ‖·‖∞ indicates the H∞-norm of a linear system. Accordingly, the boundedness

of (3.16) depends on the one of ‖Qθ/i∆θ/i‖∞, namely on the internal stability of the loop

(P(θ)/Ci). In fact, for the switched-on controller, say Ci, the corresponding test functional

in (3.16) can grow unbounded if and only if Ci does not stabilize the proces, this property

being connected with the cost detectability condition of Definition 3.2.1. In Section 3.4, it

will be shown more accurately how, based on (3.26), it is possible to ensure input-output

l2-stability of the switched system (3.5).

Different from stability robustness, high performance depends on the distribution

M of models. Some comments are in the following. Given any configuration of the process

P(θ), let us define S(P(θ)) ⊆
←−
N as the set of all indices s ∈

←−
N such that the potential loop

(P(θ)/Cs) is internally stable. Obviously, from Assumption a1, it follows that S(P(θ)) 6= ∅

holds for any θ ∈ Θ and, for that θ the finite values

βi(θ) :=
∥∥Qθ/i∆θ/i

∥∥
∞
≤
∥∥Qθ/i

∥∥
∞

∥∥∆θ/i

∥∥
∞
, ∀i ∈ S(P(θ)) (3.27)
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turn out to quantify the distance between the i-th potential loop from the related reference

loop. Accordingly, smaller

β(θ) := min
i∈S(P(θ))

βi(θ) , (3.28)

higher the performance achievable in correspondence of the process configuration P(θ).

Notice that, for each i belonging to S(P(θ)), “closer” the nominal modelMi to P(θ), smaller

the value βi(θ), the latter being depending on the magnitude of coprime perturbations
∥∥∆θ/i

∥∥
∞
. The closeness of the process configuration to a nominal model can be thought as

a guaranty of performance in case, under Assumption a2, the reference loops reflect desired

behaviors 2 .

3.4 Main results

This section provides the main result characterizing the Multi-Model Unfalsified

ASC scheme, which consists in assuring stable behavior of the switched system (P(θ)/C(·))

when the supervisory unit S exploits the test functional defined as in (3.15)-(3.16). In

this respect, (3.25) would be sufficient per se to prove the input-output l2-stability of the

switched system. In addition, conditions on the uncertainty set Θ are derived, such to allow

a performance-oriented design of the models distribution.

Starting from the last mentioned task, we asserts that whenever the process un-

certainty set Θ is compact and, also, it is a priori known, then the distribution M can be

designed dense enough in P so as to ensure that, for any θ ∈ Θ, there exist indices i ∈
←−
N ,

yielding stable loops (P(θ)/Ci) and such that

β(θ) < β ,

where the positive real β is a performance parameter. More specifically, the following result

can be stated, whose proof follows along the same lines of the SISO case and can found in

[BBMT11].

2It is well to notice that the two terms of the rightmost member of (3.27) are disjoint with respect to

stability / performance requirements. Indeed, the index i in Qθ/i(d) refers only to the controller Ci and so,

the norm
∥

∥Qθ/i

∥

∥

∞
accounts for the stability of (P(θ)/Ci). On the contrary, the index i in ∆θ/i(d) considers

only the model Mi,
∥

∥∆θ/i

∥

∥

∞
thus defining a measure of the process/model distance, irrespective of stability

property of (P(θ)/Ci).
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Proposition 3.4.1 Let Θ be a compact set, and the map θ 7→ P(θ) continuous on Θ.

Then, for any positive real β, there always exists a finite model family such that:

max
θ∈Θ

β(θ) := β̄ < β , (3.29)

where β(θ) is defined as in (3.28).

A model distribution for which property (3.29) holds will be denoted by M (β̄).

Now, the main result of this section can be stated.

Theorem 3.4.1 Consider the switched system (3.5) under zero initial conditions. Let the

sequence σt be selected in accordance with the HSL (3.8), with test functionals as in (3.15)-

(3.16). Then, under the feasibility condition a1, for any reference r ∈ S, the switched

system is input-output l2-stable. Further, under a model distribution M (β) the total number

of switches Nσ is bounded as follows

Nσ ≤ N

⌈
β̄ 2

h

⌉
, (3.30)

where ⌈α⌉ denotes the smallest integer greater than or equal to α ∈ R+.

Proof. See Appendix C. �

Remark 3.4.1 It can be shown that Theorem 3.4.1 also extends to the cases of nonzero

process initial conditions and/or nonzero disturbances. As for the first issue, see [BBMT10].

In relation to the latter issue, a detailed discussion on how to ensure cost-detectability in

noisy environments can be found in [BMST10].

According to the next lemma, one can asserts that safe behavior of the switched

system (3.5) can be ensured by means of (3.15)-(3.16) even if uncertainty set Θ is not a

compact and / or the process does not reflect a linear behavior.

Lemma 3.4.1 Consider the switched system (P(θ)/Ci). Then, the family of test functionals

Π(t) := {Πi(t), i ∈
←−
N }, with Πi(t) as in (3.15)-(3.16), along with the controller family C , as

in (2.3), yields a cost detectable pair (Π,C ), provided that the polynomial matrices Si(d)’s,

i ∈
←−
N , see (2.4), have no roots on the unit circle, i.e detSi(d) 6= 0 if d = ejω, ω ∈ [−π , π].
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Proof. See Appendix C. �

To sum up, Proposition 3.4.1 and Theorem 3.4.1 show that the Multi-Model Un-

falsified ASC scheme accounts for both the issues of performance and stability robustness,

respectively. In fact, while stable behavior of (P(θ)/Cσ(·)) is guaranteed under the only fea-

sibility condition, performance can be achieved by designing the nominal model distribution

M dense enough in P. More specifically, the smaller β, the smaller (for any possible process

configuration) β(θ) and hence, the closer the behavior of the final closed-loop (P(θ)/Cf ) to

the behavior of the corresponding reference loop (Mf/Cf ). However, although stability ro-

bustness can be obtained by means of a small number of pre-computed controllers, in many

cases guaranteeing high performance (which means keeping β̄ small) needs of a number of

controllers too high to be managed by a moderate memory / computational load. Appendix

B deals with this problem and provides some remarks about the possibility to combine an

algorithm of fine controller tuning with the proposed ASC scheme.

3.4.1 Tracking Properties

Hereafter, we discuss how previous results can be extended so as to ensure asymp-

totic tracking. Assume that the reference r(t) ∈ Rp be such that

Φ(d)r(t) = 0 , (3.31)

where Φ(d) := φ(d) Ip, with φ(d) is a polynomial with simple roots on the unit circle and

φ(0) = 1. This amounts to assuming that r(t) is a bounded sequence.

Consider a left MFD of the process configuration P(θ), as specified by (2.2). Nec-

essary and sufficient condition for the existence of a linear time-invariant controller ensuring

asymptotic tracking is the following [DG75].

a3. The polynomial matrices B(θ, d) and Φ(d) are left coprime, for each θ ∈ Θ.

Multiplying (3.31) by A(θ, d) and (3.6) by Φ(d), and subtracting the resulting equations,

we obtain

A(θ, d)Φ(d) e(t) = B(θ, d) η(t) . (3.32)
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where e(t) = r(t) − y(t) is the tracking error and η(t) := Φ(d)u(t). In such a case, any

stabilizing controller Ci of the form

Φ(d)u(t) = Yi(d)X
−1
i (d) e(t), (3.33)

ensures asymptotic tracking. Such a controller has transfer matrix Φ−1(d)Yi(d)X
−1
i (d)

and, in agreement with the so-called Internal Model Principle, incorporates the model of

the reference to be tracked [DG75, FW76, Mos95, WF79].

Using (3.32) and (3.33), the switched system (3.5) can be therefore rewritten as

e(t) = Pn (θ, η)(t)

η(t) = Cσ(t)(e)(t)

}
(3.34)

where Pn(θ) denotes the “new” process with input η, output e and transfer matrix as in

(3.32). Essentially, this means that the tracking problem for system (3.5) is transformed

into an equivalent zero-regulation problem for (3.34).

By exploiting such an equivalence, a simple approach for ensuring, along with

stability, the offset-free tracking property, consists in designing the family F of nominal

loops (Mi/Ci)’s so as to satisfy the following conditions.

a4. For each candidate model Mi, the polynomial matrices Bi(d) and Φ(d) are left co-

prime.

a5. Each candidate controller Ci stabilizes the corresponding modelMi, and ensures offset-

free tracking in the sense of (3.33).

Under such design conditions, we can modify the test functional (3.16) by replacing z with

ζ := [ η′ e′ ]′, and, similarly, zi/i with ζi/i :=
[
η′i/i (vi − yi/i)

′
]′
, where ηi/i is given by

ηi/i(t) = Φ(d)ui/i(t), while vi is obtained by solving Si(d) vi(t) = Ri(d) e(t) + Si(d) η(t).

This leads to

Λ
1/2
i (t) :=

∥∥∥ ζ̃ti/i
∥∥∥

∥∥∥ (ζ − ζ̃i/i)t
∥∥∥
, (3.35)

where ζ̃i/i := ζ−ζi/i. The so-modified test functional now provides a measure of discrepancy

between potential and nominal loops with respect to system (3.34), by which we get at once

the following.
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Theorem 3.4.2 Consider the switched system (3.5) under zero initial conditions. Let the

sequence σt be selected in accordance with the HSL (3.8), with test functionals as in (3.15)-

(3.35). Let r(t) satisfy (B.6) and assume that condition a3 holds. Further assume that

F has been designed so as to satisfy conditions a4 and a5. Then, under the feasibility

condition a1, the switched system (3.5) is input-output l2-stable and offset-free, i.e. e(t)→ 0

as t→∞.

Proof. See Appendix C. �

Remark 3.4.2 Notice that, given any reference r(t) ∈ Rp such that

Φ̃(d) r(t) = 0 , (3.36)

where Φ̃(d) is a polynomial matrix with Φ(0) = Ip, the use of a polynomial matrix Φ(d)

as in (3.31) guarantees asymptotic tracking provided that φ(d) = det Φ̃(d). Although con-

servative, the use of Φ(d) in place of Φ̃(d) turns out to be a convenient choice from a

controller design viewpoint. To see that, suppose to use Φ̃(d). Then, one set the condi-

tion −A(θ, d) Φ̃−1(d) = Φ
−1

(θ, d) Ā(θ, d), with Φ(θ, d) and Ā(θ, d) left coprime and such

that detΦ(θ, d) = det Φ̃(d) and det Ā(θ, d) = detA(θ, d), for each θ ∈ Θ. Hence, As-

sumption a3 becomes the following [DG75, WF79]: The polynomial matrices B(θ, d) and

Φ(θ, d) are externally skew prime for each θ ∈ Θ, i.e. there exist two polynomial matrices

Φ̂(θ, d) and B̂(θ, d) of suitable dimensions such that Φ(θ, d)B(θ, d) = B̂(θ, d) Φ̂(θ, d) , with

det Φ̂(θ, d) = detΦ(θ, d) and, B(θ, d) and Φ̂(θ, d) right coprime for each θ ∈ Θ (see Corollary

1 in [WF79]). So, multiplying (3.36) by Ā(θ, d) and (3.6) by Φ(θ, d), with simple algebra

one obtain

Ā(θ, d) Φ̃(d) e(t) = B̂(θ, d) η(θ, t) ,

where η(θ, t) := Φ̂(θ, d)u(t). Hence, the controller guaranteeing asymptotic tracking de-

pends, in general, on θ, its transfer matrix being Φ̂−1(θ, d)Yi(d)X
−1
i (d), and turns out to

be impractical unless Φ̂(θ, d) = Φ̂(d) for each θ ∈ Θ.

3.5 ASC scheme Implementation Aspects

In this section, we discuss the main implementation aspects related to the com-

putation of (3.16) and (3.35). For simplicity of exposition, consider at time the former. As

32



Chapter 3. Model-based Switching Control for Uncertain Square Systems

it is possible to see, the proposed ASC methodology hinges upon the computation of the

sequence z̃i/i. In this respect, Appendix C allows us to asserts that z̃i/i can be obtained

via the difference z − zi/i, where zi/i’s can be always computed by running reference-loops

suitably modified (see Figure A.2) driven by a modified virtual reference, without posing

any question related to numerical aspects. Nonetheless, it is convenient to provide an al-

ternative tool for computing z̃i/i, consisting in suitably filtering the input-output process

records.

Lemma 3.5.1 Consider the vector valued sequence z̃i/i in (3.16). Then, under zero process

initial conditions one has that

z̃i/i(t) =

[
−Yi(d)

Xi(d)

]
Ξ−1i/i (d) ǫi(t) (3.37)

exactly holds, where ǫi(t) := Ai(d) y(t)−Bi(d)u(t) represents the prediction error based on

Mi.

Proof. See Appendix C. �

Remark 3.5.1 Notice that εi(t) = ǫi(t), ∀t ≥ 0, holds in case of zero initial conditions, see

(3.3), since in such a case (3.6) holds ∀t ≥ 0. Non zero initial condition are treated more in

detail in [BBMT10].

Remark 3.5.2 The prefiltering of the prediction error (3.37) was already suggested for

SISO systems, see [BBMT10], as an alternative procedure for computing (3.14) in the

presence of non-minimum phase controllers, viz. in case the computation of the vi’s were

not numerically stable, so as the one of (3.14). Note also that, Lemma 3.5.1 reinforces the

interpretation of (3.16) in terms of identification for control. For similar uses of filtering

the prediction error in the framework of identification for control, the reader is referred to

[MN95, Gev93].

Remark 3.5.3 Along the same lines of the proof of Lemma 3.5.1 in Appendix C, it is

straightforward to see that ζi/i can be obtained as zi/i by (3.37) and ǫi given by ǫi(t) =

Ai(d) e(t) −Bi(d) η(t).
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A second main aspect related to the implementation of the ASC scheme of Figure

3.1 concerns how arranging the multicontroller C(·). The way of transferring the control

action from a controller to an other one is actually a critical aspect and influences, in the

negative, the behavior of the overall switching scheme. Into the control loop, each switching

inevitably yields non-linear effects, which entities are usually unpredictable. Supervisor can

not prevent such phenomenons, they being due to the time-varying nature of the switched

system (3.5). However, it is possible to implement the multicontroller through clever archi-

tectures, so as to prevent / reduce such undesirable effects. Part II of this thesis is devoted

to the analysis of the control transfer problem.

3.6 Concluding Remarks

This chapter has discussed the problem of controlling uncertain square systems

by means of an ASC scheme which selects the right controller among a family of pre-

designed controllers. Selection is carried out by comparing test functionals suitably chosen

to evaluate the suitability of each controller to be connected in feedback with the process.

Specifically, the analysis concerns the Multi-Model Unfalsified ASC approach, introduced

in [BBMT10] for handling SISO systems. The approach has been extended to generic

multivariable systems (the case of non-square systems is considered in Appendix A) and,

it is possible to see that, by suitably redefining the test functionals, the same stability and

performance features characterizing the SISO systems carry over to the generic multivariable

case with no additional assumptions on the process to be controlled. In particular, it is

shown that, under the only reasonable requirements to have a stabilizing controller for each

process configuration, a stable behavior of the switched system in response to a generic

bounded reference signal is guaranteed. In addition, a simple variant of the basic scheme

has been proposed which ensures, along with stability, the offset-free tracking with respect

to signals originated through LTI exosystems.
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Reference-loop Identification in

case of Non-Square Systems

The main problem when one have to handle non-square systems is that the ideal

goal of the reference-loop identification task (see Section 3.2.1) can become meaningless.

Indeed, the virtual reference, obtained by solving (3.11), need not even exist and, accord-

ingly, the original interpretation in terms of discrepancy between potential and nominal

loops falls down.

As known, in square systems (so as for SISO cases) questions originate only on

numerical aspects. However, it is sufficient that the determinant of polynomial matrix

Si(d) be strictly Schur to get vi well-defined. In order to analyse what happen to the

virtual reference based on the “geometry” of the system, some results of linear algebra are

briefly recalled [ZDG95].

Lemma A.0.1 Consider the linear equation

Gx = L , (A.1)

where G ∈ Rm×p, and L ∈ Rm are given matrices. Then, the following statements are

equivalent:

i) there exists a solution x ∈ Rp;

ii) the columns of L ∈ ImG.
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Furthermore, the solution, if it exists, is unique if and only if G has full column rank.

Lemma A.0.2 Consider the linear equation (A.1), where m ≤ p and G has full row rank,

i.e., rankG = m. Then, the solution, if any, can be expressed as

x = G†L+ (Ip −G
†G)γ , (A.2)

where γ ∈ Rp while G† := G′ (GG′)−1 denotes right pseudo-inverse of G.

More in detail, the first term G†L of (A.2) represents one particular solution of

(A.1); in particular, it is the solution of minimum Euclidean norm among all solutions. The

second term (Ip −G
+G)γ of (A.2) embodies all solutions of linear equation Gx = 0m, viz.

(Ip − G
+G)γ ∈ Ker(G). When m = p and rank(G) = m, then G+ = G−1 and the (A.1)

has only one solution given by x = G−1L.

Before proceeding, let us assume that the process P(θ) have m inputs, i.e. u(t) ∈

Rm, and p outputs, i.e. y(t) ∈ Rp. Accordingly, polynomial matrices Si(d) and Ri(d) have

dimensions m× p and m×m, respectively. Then, let us rewrite (3.11) as follows

Si0vi(t) = Ri(d)u(t) + Si(d)y(t) + [Si0 − Si(d)] vi(t) := ξi(t) . (A.3)

Based on Lemmas A.0.1 and A.0.2 and (A.3), the following conclusions can be drawn

regarding the existence of the virtual reference with respect to the geometry of the process.

1) Case m = p. If Si0 has full column rank, the virtual reference

vi(t) = S
−1
i0 ξi(t) (A.4)

always exists unique.

2) Case m < p. If Si0 has full row rank, (Si0S
′
i0) is invertible and all the possible vi’s

are given by

vi(t) = S
†
i0ξi(t) + (Ip −S

†
i0Si0)ν(t) , (A.5)

where ν(t) ∈ Rp is an arbitrary signal.

3) Case m > p. The virtual reference vi need not exist unless ξi(t) ∈ ImSi0.
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P(θ) ∈P

R1(d)
−1

R2(d)
−1

RN (d)
−1

S1(d)

S2(d)

SN (d)

...

...

S

w(t)

σ(t)

σ(t)

σ(t)

−

y(t)u(t)

Figure A.1: Equivalent representation of the ASC scheme of Figure 3.1 based on the

observer-form implementation of the switching controller Cσ(·).

Note that in the cases 1 and 2, equation (3.11) is numerically stable, provided

that the polynomial matrix Si(d) be such that det(Si(d)) and det(Si(d)
′ Si(d)) are strictly

Schur polynomials, respectively. However, it is the case 3 which motivates the adoption of

a virtual reference different from the one used in (3.11). To this end, let

w(t) := Sσ(t)(d)r(t) (A.6)

be a modified real reference. In accordance to (A.6), an representation of the switched

system (3.5), equivalent to that one of Figure 3.1, is depicted in Figure A.1, where the

polynomial matrices Ri(d) and Si(d) are now in the forward path and, respectively, in the

backward path of control loop, known as “observer-form implementation” 1. Thereby, we

1In the unfalsified control, observer-form implementation of the controllers has been proposed for the first

time in [DAL07] in order to remove the restrictive assumption on the controllers family, which requires all

the candidate controllers be minimum-phase and biproper. Let us assume the controller Ci be switched-on,
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R−1i (d)

−

Si(d)

P(θ)
wi(t) y(t)u(t)

Figure A.2: New i-th potential control loop, referred to as ̂(P(θ)/Ci).

can consider, in place of vi, the signal

wi(t) = Ri(d)u(t) + Si(d)y(t) , (A.7)

so that the i-th potential control loop of Figure 3.2 becomes the one depicted in Figure A.2.

In the light of (A.7) and Figure A.2, we can therefore replace the test functionals in (3.14)

by

Πi(t) = max
k≤t

∥∥∥∥
[

̂(P(θ)/Ci)wi − ̂(Mi/Ci)wi
]k∥∥∥∥

∥∥∥∥
[

̂(Mi/Ci)wi
]k∥∥∥∥

, (A.8)

then observer form implementation of the controller, proposed in [DAL07], is equivalent to the feedback

interconnection as shown in the following figure

−

[Si(d) (Ip −Ri(d))]

P(θ)
r(t) y(t)

u(t)

which clearly justifies why this configuration is referred to as the observer-form. Note that, by substituting

the signal w(t), as in (A.6), in the place of r(t), observer-form implementation turns out to be equivalent

to the typical one-degree-of-freedom implementation. Similar controller implementation is also utilized in

[DLVL09] for validating controllers by using closed-loop data. The reader is referred to [ZDG95] for further

discussion on the observer-based controllers and the link to the controller implementation in above figure.
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ỹi(t)

ũi(t)

Figure A.3: Details of a Multi-Model Unfalsified ASC scheme with candidate controllers

implemented via the observer-form.

where, with obvious meaning of the symbols, ̂(P(θ)/Ci) and ̂(Mi/Ci) denote the i-th poten-

tial loop and the i-th reference loop, respectively, where the controller Ci implemented in

the observer form. Consistently with the observer-form arrangement, functional (A.8) can

be equivalently rewritten as follows

Πi(t) := max
k≤t

Λi(k) , (A.9)

Λ
1/2
i (t) :=

∥∥ z̃ti
∥∥

‖ (z − z̃i)t ‖
, (A.10)

with z̃i := z − zi, where

z = ̂(P(θ)/Ci)wi

stems from (A.7) and zi = ̂(Mi/Ci)wi := [u′i y
′
i ]
′, i ∈

←−
N , as shown in Figure A.3.
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Notice that, in contrast with (3.16), the test functional (A.10) is always well-

defined, since (A.7) is always numerically stable 2. This leads us to make the following

comments.

(i) From a conceptual point of view, approach based on (A.8) still maintains an interpre-

tation in terms of discrepancy between potential and nominal loops, both driven by

a virtual reference signal. In particular, as much the sequences wti ’s approximate the

sequence wt, as the solution obtained by (A.9)-(A.10) approaches the ideal goal, i.e.

zt ≈ [(P(θ)/Ci) r]
t and zti ≈ [(Mi/Ci) r]

t.

(ii) From a practical point of view, even when vi keeps bounded, the approach based on

(A.9)-(A.10) does not pose questions related to numerical aspects/implementation. It

can be seen as the direct counterpart of the pre-existing approach based on (3.14) for

SISO systems [MCMS07].

Eventually, the merit of (A.8) is to recover, for non-square systems, an interpre-

tation of the test functional in terms of discrepancy between potential and nominal loop

(which is, in broad terms, a form of identification for control) even in case the classical

virtual references vi’s in (3.11) do not exist. Obviously, there is no need to implement the

switching controller C(·) as in Figure A.1. Indeed, the test functionals (A.10) are only used

in order to update the controller switching index into the switching logic (3.8) and, as for

the square case, can be computed by filtering the prediction error as described in Lemma

3.5.1.

2For SISO systems, test functionals based on wi were indeed considered in order to obtain numerically

stable solutions in the presence of non-minimum phase controllers, without the need to reconfigure the

control action [MCMS07].
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Appendix B

Performance-oriented Controller

Tuning: Some Remarks

In recent years, ASC schemes have emerged as an alternative to conventional con-

tinuous adaptation in order to control processes in presence of large model uncertainties.

Compared to conventional forms of adaptation, switching control offers the definite advan-

tage that controller selection is carried out by means of logic-based switching rather than

continuous tuning, thus allowing fast (discontinuous) adaptation of the control system. In

this respect, [Mor95] provides a general overview of the topic.

Adaptive switching control has been approached by several diversified techniques,

within both model-free control [FB86, ST97, SWPS07] and, model-based control [NX00,

Mor95, ZMF00, PK01, HLM03a, BBMT10]. Although these contributions originate from

fundamentally different approaches, the common idea is to have a finite family of pre-

designed candidate controllers, so that, for each possible process model in the process un-

certainty set, at least one of the controllers performs satisfactorily. However, the adoption

of a finite number of candidate controllers may prevent from achieving optimal performance

because of possible detuning arising from the discrete nature of the controller family in con-

trast with the possibly continuous nature of the process uncertainty. Even more importantly,

satisfactory trade-offs between the conflicting objectives of number of candidate controllers

(hence memory/computational load) and desired performance need not even exist in some

cases, especially if the process uncertainty set is large.
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In this appendix, the aim consists in proposing an architecture which combines an

ASC scheme with a controller tuning algorithm in order to enjoy of positive features of both

the techniques: Speed (from switching) and accuracy (from tuning) of the control system

response. In particular, the tuning algorithm is thought to be applied to the ASC scheme

described in Chapter 3 [BBM+11b]. The idea is the following. Given a family of N pre-

designed candidate controllers, one of these is first selected via switching; then, by means

of an appropriate tuning mechanism, which is discussed in Section B.2, the parameters of a

new controller are adjusted so as to design the (N + 1)-th candidate controller, potentially

yielding higher performance. The peculiarity is that, while tuning algorithm is running,

the process continues to be managed by the supervisor. Tuning and switching has to be

thought as two disjoint blocks, i.e. operating in a separate way. Once tuning procedure stops

and the new controller is ready to be used, then it is added to the pre-existing controller

family. More details on the combination between switching scheme and tuning algorithm

are provided in Section B.3, even if some problem is still open. Section B.4 takes care of

the current open problems. It has to be pointed out that the idea of combining switching

and tuning schemes for adaptive control is by no means new in the literature, see for

example [NB97, NX00]. However, despite the similarities, the approach developed hereafter

differs from that in [NB97, NX00], since the control design procedure is formulated as

a parameter optimization problem in which the optimization is carried directly on the

controller parameters, with no intermediate process model identification effort. Further,

different from existing data-driven controller tuning techniques, as for example that one

in [HGGL98], the algorithm proposed hereafter need of a minimum interaction with the

process, the latter being a positive characteristics for an adaptive procedure to be combined

with a switching scheme.

B.1 Model distribution-based Performance: An example

The switching scheme built via the adoption of (3.15)-(3.16) allows one to consider

adaptive control systems in which both the issues of robustness and performance can be

taken into account. In fact, while stability is guaranteed under the only feasibility condition

a1, performance requirements can be achieved by designing the nominal model distribution

M dense enough in P. In broad terms, fixed a desired value for β, it is necessary to design

a model distribution M (β̄) with β̄ ≤ β, where β̄ is defined as in (3.29). As previously said,
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KPθi
KIθi

Stability Interval

C1 0.98 0.98 θ ∈ [0.3, 0.946)

C2 0.36 0.68 θ ∈ [0.3, 2.174)

C3 0.08 0.3 θ ∈ [0.3, 3.5]

Table B.1: Controllers coefficients.

the smaller β, the closer (for any possible process in P) the behavior of the final closed-loop

(P(θ)/Cf ) to the behavior of the reference-loop (Mf/Cf ).

However, further aspects arise concerning (3.29). In many cases, it may in fact

be difficult to achieve a desired β̄, while retaining a moderate memory/computational load.

To see this, consider for simplicity a SISO problem (p = 1) which consists in controlling an

oscillatory uncertain system P(θ) [APH98], with continuous-time transfer function

P (θ, s) =
b(θ)

A(s)
=

9θ

(s+ 1)(s2 + s+ 9)
, (B.1)

where θ ∈ [0.3, 3.5]. For each θ, the corresponding controller Cθ has been selected as the one

among all proportional-integral (PI) controllers C̃θ with continuous-time transfer function

C̃θ(s) =
S̃θ(s)

R̃θ(s)
=
K̃Pθ

s+ K̃Iθ

s
, (B.2)

satisfying the weighted H∞ mixed-sensitivity criterion [Kwa91]

Cθ(s) = inf
(K̃Pθ

,K̃Iθ
)
sup
ω>0

|A(j ω)|2

|χ̃θ(j ω)|
2

(
|j ω|2 +

∣∣∣V (j ω)(K̃Iθ + j ω K̃Pθ
)
∣∣∣
2 )
,

where V (s) := 1/(1 + s/ωv), ωv := 1.88 rad/s, while χ̃θ(s) := A(s) s + b(θ) (K̃Pθ
s + K̃Iθ).

Three different continuous-time controllers Cθi have been designed relatively to the nominal

process modelsMθi corresponding to the following three values:

• θ1 = 0.3;

• θ2 = 1;

• θ3 = 3.5.
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Figure B.1: Switching mechanism with pre-designed controllers. Legend: Reference (thin

black), process output (bold black), desired output (bold grey).

The discrete-time nominal modelsMi and related controllers Ci are the ones resulting from

the use of an input zero-order holder with sampling time Ts equal to 0.1 s, and the subscript

i corresponds to θi, i ∈
←−
3 . In particular, the controllers have transfer functions

Ci(d) =
Si(d)

Ri(d)
=

(KPi +KIi)−KPi d

1− d
, (B.3)

with KPi = KPθi
and KIi = KIθi

Ts. The coefficients KPi and KIi are reported in Table

B.1, along with the corresponding stability intervals.

The reference r(t) to be tracked is a square-wave with zero-mean, amplitude 2.5

and period 50 s. The controller index is selected by the rule (3.8) with (3.15)-(3.16), and

hysteresis constant h set equal to 0.1 1.

Assume that θ = 1.5, and let σ(0) = 1. Fig. B.1 shows that C2 is switched-on as

the final controller right after start-up. However, (P(1.5)/C2) does not behave as desired,

1All simulations reported hereafter consider a case with zero process initial conditions and zero noises

and disturbances.
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N 3 6 9 12 15 18 > 80

β̄ 2.402 1.316 0.897 0.675 0.529 0.472 < 0.1

Table B.2: Dependence of β̄ from N .

its closed-loop response being drastically different compared to the desired one given by the

reference-loop (M2/C2).

To achieve definite performance improvements, one is forced to increase the number

N of candidate reference-loops. To this end, we have constructed M (β̄) model distributions

for various values of β̄ covering the whole uncertainty interval [0.3 , 3.5], where for each N ,

the models have been logarithmically distributed over the such an interval. Table B.2

indicates that N > 80 is needed so as to achieve a value of β̄ less than the hysteresis

constant h and makes the selection rule sensible to the performance requirements.

An alternative procedure for enhancing the performance is hereafter proposed and

it is presented for the particular case of SISO systems.

B.2 Fine Controller Tuning Algorithm

Let Cf denote the final controller selected according to (3.8) with (3.15)-(3.16).

According to data, Cf is therefore recognized as the controller such that the closed-loop

behaves as closely as possible to one of the N candidate reference-loops. Consequently,

among all candidate reference-loops, (Mf/Cf ) yields the reference-loop behavior more likely

to be achievable by designing a new controller.

To this end, let C(α) denote a controller in a given class parametrized by the vector

α which belongs to some set Θα ⊆ Rnα , which transfer function is given by

C(α, d) =
S(α, d)

R(α, d)
(B.4)

where S(α, d) := s0(α)+s1(α)d+ · · ·+snr(α)d
nr and R(α, d) := 1+r1(α)d+ · · ·+rnr(α)d

nr

are here polynomials. Then, the corresponding virtual reference vα ∈ Rp can be computed

by solving the difference equation

S(α, d) vα(t) = R(α, d)u(t) + S(α, d) y(t) , (B.5)
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which, as for (3.11), is such that z =
(
P(θ)/Cσ(·)

)
r = (P(θ)/C(α)) vα. A suitable variable

to describe the desired closed-loop behavior can be the complementary sensitivity of the

reference-loop (Mf/Cf )

Wf (d) :=
Mf (d)Cf (d)

1 +Mf (d)Cf (d)
=
Bf (d)Sf (d)

χf (d)
. (B.6)

where Mf (d) := Bf (d)/Af (d) and Cf (d) := Sf (d)/Rf (d) denote the transfer functions of

nominal modelMf and controller Cf , respectively, while χf (d) := Af (d)Rf (d)+Bf (d)Sf (d)

is the closed loop characteristic polynomial of (Mf/Cf ). According to (B.6), one can gen-

erate the signals

yα(t) =Wf (d) vα(t)

uα(t) = C(α, d) (vα(t)− yα(t))

}
(B.7)

which represent the desired behavior in response to the reference vα. In particular, yα

indicates the desired process output while uα is the signal which should be the input to the

process, if the latter was connected with the controller C(α) and its output coincided with

the desired one yα.

Assuming available a batch of data zt, the controller tuning can be therefore ob-

tained through the minimization, with respect to α, of the following criterion

Λ1/2(α, t) :=
‖ (z − zα)

t ‖

‖ztα‖
, α ∈ Θα , (B.8)

where zα := [uα yα]
′. In view of (B.6), the optimization criterion (B.8) simply amounts to

finding the vector α such that (P(θ)/C(α)) in response to vα behaves, as closely as possible,

to the desired behavior given by (B.7).

Remark B.2.1 Notice that, the functional (B.8) has the same structure of the one used in

the switching rule, see (3.16). By the tuning algorithm, indeed, the idea consists in carrying

out a sort of reference loop adaptation task, where the controller is selected from an infinite

set of controllers parametrized by the vector α.

The solution can be obtained based on an iterative gradient-descent approach

αj+1 = αj − ηj H
−1
j

∂Λ

∂α
(αj , t) (B.9)

initialized from α0 := α̂f , where α̂f denotes the parameter vector associated to Cf . As

usual, Hj is some appropriate positive definite matrix, e.g. the Hessian of Λ(αj , t), while ηj
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is a positive scalar which determines the step size. As can be easily checked, the gradient

∂Λ/∂α is given by

∂

∂α
Λ(α, t) = −

2

‖ztα‖
2

t∑

k=0

{
[ zα(k) + (Λ(α, t) − 1) zα(k) ]

′ ∂

∂α
zα(α, k)

}
(B.10)

where

∂

∂α
zα(α, k) :=

[
∂uα(k)/∂α

∂yα(k)/∂α

]
(B.11)

Based on (B.5)-(B.6), the gradient ∂Λ(α, t)/∂α can be therefore computed from collected

data as follows

∂

∂α
zα(α, k) =

[
(1−Wf (d))C

′(α, d) y(k)

−Wf (d)C
−2(α, d)C ′(α, d)u(k)

]
(B.12)

with C ′(α, d) := ∂C(α, d)/∂α.

Remark B.2.2 Notice that, the above minimization procedure has similarities with the

Iterative Feedback Tuning (IFT) approach of [HGGL98], since optimization is carried out

directly on the controller parameters, with no intermediate process model identification

effort. The main difference is that, here, thanks to the virtual reference variable vα, it

is not required that C(α) be connected in feedback with the process in order to update

the controller parameters. We note, also, that such a procedure can be extracted from

the switching context and used for the data-based design of a controller for an unknown /

uncertain process.

B.2.1 Implementation Issues

As for vi’s in (3.11), numerical constraints exist also in the computation of the

virtual reference for SISO systems. Indeed, numerical computation of the vα in (B.5) re-

quires that S(α, d) be strictly Schur. While the results considered here hinge upon such an

assumption, a way for sidestepping this problem could be to show that the same conclu-

sions hold true for possible non-stable invertible controllers, provided that modified virtual

references be appropriately defined, see Appendix A and [DAL07]. However, a possible way

to active the tuning mechanism in presence of nonminimum-phase candidate controllers

consists in letting S(α, d) := S̃(α, d)Suf (d), where S
u
f (d) is fixed and contains all roots of

Sf (d) into and on the unit circle (on the contrary, Ssf (d) contains all the others and hence
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Sf (d) := Suf (d)S
s
f (d)). Then a virtual signal ṽα(t) := Suf (d) vα(t), can be computed by

solving

S̃(α, d) ṽα(t) = R(α, d)u(t) + S(α, d) y(t) .

In this respect, S̃(α, d) has to keep strictly Schur.

Similarly, numerical computation of (B.7) and (B.12) may not be feasible if C(α)

and/or its gradient with respect to α, namely ∂C(α, d)/∂α, are unstable, i.e. R(α, d) is

not strictly Schur. Appropriate procedures for coping with this situation can be found in

([HGGL98]). However, as elaborated next in more detail, though the developments of this

appendix can be generalized so as to cover the case where C(α) and/or the gradient of C(α)

are unstable, stability of the map from vα to uα in (B.7) is required to extend Theorem

3.4.1 to the case where switching and tuning are combined. A possible way for allowing

the use of unstable candidate controllers is to let R(α, d) := R̃(α, d)Ruf (d), where R
u
f (d)

is a fixed polynomial containing all roots of Rf (d) into and on the unit circle, consistently

Rsf (d) contains all other roots of Rf (d), namely Rf (d) = Rsf (d)R
u
f (d). Accordingly, uα in

(B.7) can be computed as

uα(t) =
Af (d)R

s
f (d)

χf (d)

S̃(α, d)

R̃(α, d)
ṽα(t) ,

which yields a stable map, provided that R̃(α, d) keeps strictly Schur. Consistently, yα in

(B.7) becomes

yα(t) =
Bf (d)S

s
f (d)

χf (d)
ṽα(t) .

Enforcing S̃(α, d) and R̃(α, d) to be strictly Schur can be approached in many ways, e.g. by

resorting to constrained optimization routines, or by the use of penalty functions [Ber96,

Sny05].

B.3 ASC Scheme with Fine Controller Tuning

The controller design scheme, though iterative, does not require C(α) to be con-

nected in feedback with the process in order to update the vector α, since the idea is based

on virtual experiments. Such a feature makes it possible to improve the performance of the

switching scheme of Chapter 3, while retaining guaranteed stability properties.
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Given t∗ ∈ Z+, t∗ > 0, such that σ(t) = f ∈
←−
N for t ≥ t∗, let C(α∗) with transfer

function

C(α∗, d) =
S(α∗, d)

R(α∗, d)
(B.13)

be the controller resulting from the minimization of Λ(α, t∗) by means of (B.9), where

α0 := α̂f , f ∈
←−
N

Wf (d) =
Mf (d)Cf (d)

1+Mf (d)Cf (d)
=

Bf (d)Sf (d)
χf (d)

α∗ := α̺





(B.14)

α̂f being associated to Cf , while ̺ represents the number of iterations. In accordance with

(B.6), the transfer function Mα∗(d) of the nominal modelMα∗ corresponding to C(α∗) can

be therefore obtained from the open-loop transfer function of (Mf/Cf ), i.e. by solving

Mα∗(d)C(α∗, d) = Mf (d)Cf (d) . (B.15)

Integration of the tuning scheme into the switching one is hence simply achieved

by adding the (N+1)-th reference-loop (MN+1/CN+1) := (Mα∗/C(α∗)) to the initial family

of candidate reference-lops F , which therefore becomes

Fe := {(Mi/Ci) , i ∈
←−−−
N + 1} . (B.16)

Clearly, the feasibility condition a1 is not destroyed by the introduction of an

additional candidate controller in the family C . Accordingly, by restricting to the case

p = 1, one concludes that the ASC scheme of Chapter 3 combined with the above described

tuning algorithm continues to guarantee input-output l2 stability of the switched system

(3.5) in accordance to Theorem 3.4.1, provided that the new reference loop (MN+1/CN+1)

be internally stable. This is captured by the next lemma.

Lemma B.3.1 Given an arbitrary t∗ ∈ Z+, t∗ > 0, let CN+1 be the controller resulting

from the minimization of Λ(α, t∗) by means of (B.9)-(B.14). Furthermore, letMN+1 denote

the corresponding nominal model computed via (B.15). Then, provided that CN+1 be stable,

causal, stably and causally invertible (CSCI), the reference-loop (MN+1/CN+1) is internally

stable.

Proof. The proof simply follows from the fact that internal stability of (MN+1/CN+1) is

equivalent to the stability of its generalized sensitivity matrix TN+1(d)
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Figure B.2: Left: Controller parameter vector αk; Right: Test functional Λ(αk, t∗), k =

1, 2, · · · , ̺ = 1400.

TN+1(d) := (1 +MN+1(d)CN+1(d))
−1

[
−MN+1(d)CN+1(d) CN+1(d)

MN+1(d) −1

]

=

[
−Wf (d) CN+1(d) (1 −Wf (d))

Wf (d)/CN+1(d) −(1−Wf (d))

]
(B.17)

which is stable. �

Remark B.3.1 Notice that the same conclusions of Lemma B.3.1 hold true if CN+1(d) =

Cuf (d)C
s
N+1(d), where Cuf (d) contains all the unstable zeros and poles of Cf , and with

CsN+1(d) stable and minimum-phase.

Given (MN+1/CN+1), the control scheme is simply modified by adding at some

instant t+ ∈ Z+, t+ > t∗, the test functional corresponding to (MN+1/CN+1) into the

switching logic. Notice that, in practice, to fairly compare ΠN+1 with all the other Πi’s, all

candidate test functionals are reset at time t+, i.e.

Πi(t) := max
t+≤k≤t

Λi(k) (B.18)

Λ
1/2
i (t) :=

‖ z̃i/i
∣∣t
t+
‖

‖ (z − z̃i/i)
∣∣t
t+
‖
, t ∈ Zt+ , i ∈

←−−−
N + 1 (B.19)
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Figure B.3: Switching mechanism with real-time controller design. Legend: Reference

(thin black), process output (bold black), desired output (bold grey).

where Zt+ := {t+, t+ + 1, · · · } and, x|t2t1 := {x(t1), · · · , x(t2)}, t1 < t2.

B.3.1 Tuning-based Performance: An Example (Continued)

Consider the example of Section B.1. Consistently with the adopted notation, let

t∗ := 80 s, and t+ := 100 s. Before t+, the supervisor switches among the three pre-designed

candidate controller, and selects C2. Accordingly, the tuning algorithm starts at time t∗ by

minimizing the loss function Λ(α, t∗) based on recorded data zt∗ and reference model W2(d)

corresponding to the reference-loop (M2/C2), where model and controller have the following

transfer functions

M2(d) =
0.0014d(1 + 3.533d)(1 + 0.256d)

(1− 0.905d)(1 − 1.820d + 0.905d2)
,

C2(d) =
0.428(1 − 0.8411d)

1− d
. (B.20)
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The controller to be designed is chosen to be of the form

C(α, d) = αa +
αb

1− d
(B.21)

initialized from α0 = [αa0 αb0] := α̂2 = [0.360 0.068]′. The left side of Figure B.2 shows

that the loss function Λ(α, t∗) approaches zero quite rapidly, with corresponding parameters

vector α∗ = [0.240 0.045] (right side of Figure B.2). Accordingly, a fourth reference-loop,

(M4/C4), is built with

C4(d) :=
0.285(1 − 0.8411d)

1− d
(B.22)

andM4 obtained from (B.15),

M4(d) :=
0.0021d(1 + 3.533d)(1 + 0.256d)

(1− 0.905d)(1 − 1.820d + 0.905d2)
. (B.23)

At time t+, all test functionals are reset and Π4 is inserted into the switching logic. As

shown in Fig. B.3, C4 is soon switched on as the final controller, the behavior of (P/C4)

being pretty close to the one dictated by the desired behavior represented byW2(d) (in fact,

M4 matches almost perfectly with the discrete-time process corresponding to θ = 1.5).

B.4 Concluding Remarks and Open Problems

Controlling an uncertain process by means of a finite family of pre-designed con-

trollers, managed by a supervisory unit, has evident advantages with respect to the classical

continuous adaptive control in terms of speed of adaptation of the control action. However,

the discrete nature of the control need not guarantee high performance in correspondence

of all process configurations, most of all in case of large process uncertainty. Although a

first solution to improve the performance could be obtained by increasing the number of

the candidate controllers, computational aspects may force the designer to work with a

limited candidate set. To this end, in this appendix a novel, provably correct, adaptive

switching control scheme has been introduced, wherein the use of pre-designed controllers

is combined with a data-based controller design procedure. By on-line generating a new

candidate controller, the modified switching scheme proves to compare favourably to a pure

switching-based mechanism, thus resulting of practical relevance for on-line implementation

of highly performing adaptive control systems. Positive features of this tuning mechanism

are the following: i) Switching and tuning mechanisms run in a separate way, supervisor
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keeps the complete management of the process at each time and interaction between the

two schemes occurs only at the time the new candidate controller is added to the controller

family; ii) Tuning mechanism does not influence the properties of the switching scheme (see

Theorem 3.4.1); iii) The experimental load, typically cumbersome in data-driven controller

tuning mechanisms, is reduced at the minimum thanks to the use of the virtual reference

tool. However, some questions regarding technical aspects of the algorithm are still open:

i) The minimization procedure needs not to alter the unstable part of the initial controller,

thus imposing the use of constrained optimization algorithms; ii) Final switching time is

not detectable so, an automatic mechanism for activating the tuning procedure could be

useful to reduce the waiting times due to pre-scheduled activation rules. Referring to the

example, indeed, we can see that the tuning algorithm could start few seconds after the

power-on time of the control system, rather than at the time 80 s (as pre-scheduled by the

designer), see Figures B.1 and B.3.
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Proofs

Hereafter, the operator d and the time t will be omitted, where possible, for sake

of simplicity. All the results are generalized to the case of non-square systems, that is for

systems with m inputs, i.e. u ∈ Rm, and p outputs, i.e. y ∈ Rp, all polynomial matrices

having hence consistent dimensions.

Before proceeding, we present the following result.

Lemma C.0.1 Let Ψi/i := RiDi + SiNi, whose determinant equals that of (3.20). Then,

the following relationships hold

YiΞ
−1
i/iAi = DiΨ

−1
i/iSi , (C.1)

XiΞ
−1
i/iBi = NiΨ

−1
i/iRi . (C.2)

�

Proof of Lemma C.0.1. Consider first (C.1), and notice that

SiA
−1
i Ξi/i = SiA

−1
i (AiXi +BiYi)

= SiXi + SiNiD
−1
i Yi

= RiYi + (Ψi/i −RiDi)D
−1
i Yi

= Ψi/iD
−1
i Yi ,
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where the third equality follows from SiXi = RiYi and the definition of Ψi/i. In turns,

SiA
−1
i Ξi/i = Ψi/iD

−1
i Yi ⇒

Ψ−1i/iSiA
−1
i = D−1i YiΞ

−1
i/i ⇒

DiΨ
−1
i/iSi = YiΞ

−1
i/iAi .

Likewise,

Ξi/iX
−1
i Ni = (AiXi +BiYi)X

−1
i Ni

= AiNi +BiR
−1
i SiNi

= BiDi +BiR
−1
i (Ψi/i −RiDi)

= BiR
−1
i Ψi/i ,

where the third equality follows from BiDi = AiNi and the definition of Ψi/i. Hence,

Ξi/iX
−1
i Ni = BiR

−1
i Ψi/i ⇒

X−1i NiΨ
−1
i/i

= Ξ−1
i/i
BiR

−1
i ⇒

NiΨ
−1
i/iRi = XiΞ

−1
i/iBi .

�

Proof of Lemma 3.3.1. It follows from

Ξ−1θ/i − Ξ−1i/i = Ξ−1θ/i (Ip − Ξθ/i Ξ
−1
i/i )

= Ξ−1θ/i (Ξi/i − Ξθ/i) Ξ
−1
i/i

= Ξ−1θ/i

[
∆Bi(θ) ∆Ai(θ)

] [ −Yi
Xi

]
Ξ−1i/i .

�

Proof of Lemma 3.5.1. For reasons of generality, hereafter we refer to Figure

A.3, instead of Figure 3.2. Accordingly, since ui and yi in (A.10) 1 can be obtained as

ui = DiΨ
−1
i/iwi , yi = NiΨ

−1
i/iwi ,

1Notice that, in the square case and vi well-defined, figures A.3 and 3.2 are equivalent and so, ui ≡ ui/i

and yi ≡ yi/i.
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then, by using (C.1) and (C.2), one has

u− ui = u−DiΨ
−1
i/iwi

= u−DiΨ
−1
i/i (Riu+ Siy)

= (Im −DiΨ
−1
i/iRi)u−DiΨ

−1
i/iSiy

= (Di −DiΨ
−1
i/iRiDi)D

−1
i u− YiΞ

−1
i/iAiy

= (Di −DiΨ
−1
i/i

(Ψi/i − SiNi))D
−1
i u− YiΞ

−1
i/i
Aiy

= DiΨ
−1
i/iSiA

−1
i Biu− YiΞ

−1
i/iAiy

= YiΞ
−1
i/iBiu− YiΞ

−1
i/iAiy

= −YiΞ
−1
i/i (Aiy −Biu) ,

and with similar algebra, y − yi = XiΞ
−1
i/i(Aiy −Biu). Thereby, one get

[
u− ui

y − yi

]
=

[
−Yi

Xi

]
Ξ−1i/i ε ,

and so, (3.37) follows from the second one of (3.17) and by supposing zero plant initial

conditions as in (3.3). �

Proof of Theorem 3.4.1. As in the proof of Lemma 3.5.1, we consider zi in

place of zi/i. According to that, the transfer matrix of the system mapping z− z̃i to z̃i coin-

cides with Qθ/i∆θ/i, (3.25) holding also in the non-square case. Therefore, under feasibility

condition a1, Assumption hsl2 is satisfied. Moreover, Assumption hsl1 is automatically

satisfied because of the maximum operator in (A.9). Thus, Lemma 3.1.1 holds, and con-

troller switching always stops in a finite time for every reference sequence r ∈ S. By Lemma

3.1.1, the test functional Λ
1/2
f related to the final switched-on controller Cf is bounded, viz.

there exists a positive real κ such that

Λ
1/2
f (t) ≤ κ, ∀t ∈ Z+ . (C.3)

Then, by triangular inequality, one has

‖zt‖ ≤ κ ‖(z − z̃f )
t‖+ ‖z̃tf‖ ≤ (1 + κ) ‖(z − z̃f )

t‖ .
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Recalling (3.25), one finds that

z − z̃f = z −Qf/f ∆θ/f z(t)

= z −

[
−Yf

Xf

]
Ξ−1f/f (Af y −Bf u)

= z −

[
−Yf

Xf

]
Ξ−1f/f Af (y −NfD

−1
f u) . (C.4)

The first m rows of (C.4) yield

u+ Yf Ξ
−1
f/f Af (y −NfD

−1
f u) = DfΨ

−1
f/fSf y + (Im −DfΨ

−1
f/fSfNfD

−1
f )u

= DfΨ
−1
f/fSf y + [Im −DfΨ

−1
f/f (Ψf/f −RfDf )D

−1
f ]u

= DfΨ
−1
f/fSf y +DfΨ

−1
f/fRf u

= DfΨ
−1
f/f

[
Rf Sf

]
z , (C.5)

where the first inequality follows from (C.1). Likewise, the last p rows of (C.4) yield

y −Xf Ξ
−1
f/f Af (y −NfD

−1
f u) = (Ip −Xf Ξ

−1
f/f Af ) y +Xf Ξ

−1
f/f Bf u ,

as AfNf = BfDf . From (C.2) we get Xf Ξ
−1
f/f Bf = NfΨ

−1
f/fRf . Moreover,

Ip −Xf Ξ
−1
f/f Af = Xf Ξ

−1
f/f Af (A

−1
f Ξf/f X

−1
f − Ip )

= Xf Ξ
−1
f/f Af [A

−1
f (Af Xf +Bf Yf )X

−1
f − Ip ]

= Xf Ξ
−1
f/f Bf (Yf X

−1
f )

= Nf Ψ
−1
f/f Rf (R

−1
f Sf ) ,

which finally yields

y −Xf Ξ
−1
f/f Af (y −NfD

−1
f u) = NfΨ

−1
f/f

[
Rf Sf

]
z . (C.6)

Combining (C.5) and (C.6), (C.4) can be therefore rewritten as

z − z̃f =

[
Df

Nf

]
Ψ−1f/f

[
Rf Sf

]
z . (C.7)

Further, regardless of the state the controller Cf is in at time t∗, one has Rf u(t)+Sf y(t) =

Sf r(t) for t > t∗ + ncf with ncf = max{deg Sf ,deg Rf}. This, along with the fact that

determinant of Ψf/f is strictly Schur, implies that

∥∥(z − z̃f )t
∥∥ ≤ α

∥∥rt
∥∥+ δ (C.8)
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for some positive reals α and δ. Hence, input-output l2-stability follows at once.

Consider next that the HSL (3.8) and the test functionals (A.9)- (A.10) (or (3.15)-

(3.16)) assure that the value of Πi(t), every time that the controller Ci is switched-on,

increases at least by h. Under a model distribution M (β), there always exists a stabilizing

controller, say Cs, such that Πs(t) ≤ β 2. Hence, each index can be switched-on at most

⌈β 2/h⌉ times since in the negative, its test functional would exceed the upper-bound of

Πs(·), contradicting (3.8). �

Proof of Lemma 3.4.1.

Suppose that there are finitely many switching times and let Cf be the final

switched-on controller. According to Definition 3.2.1, cost detectability of the pair (Π,C )

holds provided that Πf (t) is bounded as t→∞ if and only if there exist finite nonnegative

reals ai , i = 1, 2, such that (3.9) holds.

(if ): Πf (t) is bounded implies that (3.9) holds for some finite nonnegative reals

ai, i = 1, 2. See proof of Theorem 3.4.1 from C.3 to C.8.

(only if ): (3.9) holding for some finite nonnegative reals ai , i = 1, 2 implies that

Πf (t) is bounded. Suppose that (3.9) holds, then

Λf (t) =

∥∥∥z̃tf
∥∥∥

∥∥(z − z̃f )t
∥∥ ≤ 1 +

∥∥zt
∥∥

∥∥(z − z̃f )t
∥∥ ≤ 1 +

a1 + a2
∥∥rt
∥∥

∥∥(z − z̃f )t
∥∥ (C.9)

Note that the denominator in (C.9) is monotonically non-decreasing and so, the rightmost

term of (C.9) diverges only if
∥∥rt
∥∥ diverges as t → ∞. Thus, to have Λf (t) bounded as

t → ∞, it is only needed to show that the rightmost term of (C.9) remains bounded as
∥∥rt
∥∥→∞. To see this, notice that, based on (C.7), after an opportune time t∗ one has

z − z̃f =

[
Df

Nf

]
Ψ−1
f/f

Sf r , (C.10)

which implies

∥∥(z − z̃f )t
∥∥ ≥ δ min

ω∈[−π , π]
λmin

([
Df

Nf

]
Ψ−1f/f Sf

)
∥∥rt
∥∥ = κ

∥∥rt
∥∥ , (C.11)

where the positive real δ ∈ (0 , 1] accounts for the truncation effects on the l2-norm and

λmin(M) stands for the least singular value of the polynomial matrix M(d). Further, κ > 0
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as Sf has no root on the unit circle, Nf and Df having strictly Schur greatest common right

divisor (g.c.r.d.). Hence, recalling (C.9), boundedness of Πf (t) as t→∞ follows at once. �

Proof of Theorem 3.4.2.

With obvious meaning of symbols, we refer to ζi in place of ζi/i (and so ζ̃i in

place of ζ̃i/i) to account for the non-square case. Hence, exploiting the results of Theorem

3.4.1 we obtain that switching stops onto some candidate controller Cf , and Λ
1/2
f (t) ≤ κ1

for some positive real κ1. By virtue of the design conditions a4 and a5, ζf (·) converges to

zero, and, hence, ‖ζtf‖ ≤ κ2 for some positive real κ2
2. By triangular inequality, we obtain

‖ζt‖ ≤ κ1 (1 + κ2) =: κ (C.12)

from which we conclude that ζ(·) converges to zero. This proves the offset-free tracking

property.

As for input-output l2-stability, notice first that (C.12) implies

i) ‖yt‖ ≤ κ+ ‖rt‖;

ii) ‖ηt‖ ≤ κ.

By Bezout identity, a3 implies the existence of two polynomial matrices J1(θ) and

J2(θ) such that

Φ J1(θ) + J2(θ)B(θ) = I (C.13)

Multiplying both the sides of (C.13) by u, we get J1(θ) η+ J2(θ)A(θ) y = u. By combining

the last equality with i) and ii), we obtain the desired result. �

2Notice that, in the general case of non-square systems, necessary condition for asymptotic tracking is

that m ≥ p.
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Chapter 4

Performance-Oriented Transfer for

Model-based Switching Schemes

In adaptive switching control, most of the attention has been devoted to the study

of strategies for on-line controller selection -see [Lib03] for a rather recent survey on the

topic. On the other hand, very few schemes have been proposed to properly handle the

transitions between controllers. In different contexts, the issue of how to transfer be-

tween controllers has received a lot of attention from the research community over the

last decades. More specifically, there have been numerous approaches aimed at minimiz-

ing or reducing the bumps in the control signal after switching, namely bumpless transfer

[AW96, TW00, ZT02, ZT05, CS06]. In the literature, such approaches are mainly motivated

by the goal of ensuring smooth control transitions between stabilizing controllers. However,

similarly to fault-tolerant control, adaptive switching control is mainly concerned with the

case where the process dynamics can vary and produce abrupt and significant performance

degradations of the feedback loop, indeed suddenly unstable closed-loops. In such a context,

the primary goal of controller switching is to promptly recover an adequate input/output

process behavior, not to assure smooth control transitions. Approaches aimed at enhancing

the closed-loop performance (for example, improving tracking output performance), rather

than assuring smooth control transitions, have been proposed in the literature, and they

are usually referred to as conditioning techniques [HKH87, PVHW88, YQK10]. Their main

positive feature is the simple design procedure as well as the moderate computational bur-

den, the latter being an important factor for real-time implementation when the number
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of controllers is large. Actually, also the bumpless transfer approach in [TW00] could be

regarded as a conditioning technique. It indeed reduces to the Hanus’s conditioning scheme

under particular assumptions and conditions. However, the key aspect of conditioning is the

process-independent formulation of the control transfer problem (indeed, they are also re-

ferred to as self-conditioning techniques). Although such a feature may look appealing from

a conceptual point of view, it has to be expected that definite performance improvements

can be effectively achieved only if a set of models approximating the process uncertainty

is available and suitably exploited. Note that, in adaptive switching control, the main mo-

tivation for resorting to multiple models architectures is indeed essentially identical, see

[ABLM01, BBMT10] for a detailed discussion of this point.

More technically, the “bump phenomenon” is known to be directly related to the

initial value of the output of the off-line controller to be switched on as compared to that

of the on-line controller at the switching instant. Clearly, when these two output signals

are equal or very close, “almost continuity” of the signal at the process input is achieved,

thereby allowing a smooth transition where undesirable transients are avoided or minimized.

It has been recognized that the bump phenomenon originating from the mismatch between

controllers outputs can be translated into conditions on the controllers states. Indeed,

controllers being dynamical systems, their state must have the correct value when a (closed

loop mode) switching occurs, and if this is not the case, the corresponding control loops

experience undesirable and harmful switching transients.

This chapter deals with a model-based control transfer approach which has been

thought to be well suited for ASC schemes, along with both set-point regulation and tracking

problems [BMMT]. The solution is realized via shared-state multicontroller architecture,

described in Section 4.2, equipped with a suitable controller state reset map, as in classical

initial value compensation / controller state resetting schemes [Joh00, PHGne]. The reini-

tialization of the common state is active at each switch-on time and depends affinely, by a

pre-computed set of constant gains, on the same closed-loop data as the ones in input to

the supervisor, thus not requiring additional information. Sections 4.3 and 4.4 describe how

to obtain such a set of gains by solving off-line performance-oriented control problems suit-

ably defined. More specifically, the candidate feedback-gain matrices are the ones resulting

from the steady-state response of the feedback loop made up by the switched-on controller
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and the related process model. Accordingly, the multicontroller state is reinitialized so as

to minimize the discrepancy between actual and steady-state closed-loop behaviors. The

sense of the minimization is specified in Section 4.3 wherein an optimal reinitialization is

achievable for the process, as it is supposed to be coincident with one of the available nom-

inal models. Moreover, since ASC schemes are usually concerned with the case where the

process uncertainty can not be completely represented by the model distribution, namely

Θ is a continuum or a discrete with too high cardinality, in Section 4.4 we discuss how the

optimal solution can be suitably “robustified” so as to still provide explicit, though subop-

timal, solutions, where only a finite number feedback-gain matrices is allowed such to allow

the designer to trade off performance vs. memory savings and/or computational complex-

ity. In Section 4.5 a numerical example is carried out which aims at showing the benefits

of the optimal / robust solutions and also, a comparison with a pre-existing conditioning

technique id discussed in Section 4.5.1. Before proceeding, Section 4.1 resumes the overall

problem.

4.1 Overall Problem

The control framework is the same as the one described in Chapter 2. Hereafter,

the interest refers to better characterize the multicontroller architecture and, more in gen-

eral, how managing the transfer of the control action among controllers.

Since, in general, it is desired both to stabilize the process P(θ) and also to cause

its output to track a prescribed reference trajectory, let the references vector r(t) ∈ Rp be

given by the autonomous LTI exosystem

η(t+ 1) = E η(t)

r(t) = L η(t)

}
(4.1)

such to satisfy the following assumption.

a6. The matrix E has eigenvalues on the unit circle with algebraic multiplicity one.

Remark 4.1.1 Assumption a6 addresses the problem of output regulation (sometimes

known as generalized tracking problem), which can be found discussed more in detail in

[IMS03]. In broad terms, such assumption refers to a subset of all the bounded sequences,

namely, the ones generated by a linear model with simple eigenvalues on the unit circle.
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u(t)

u1(t)

u2(t)

uN (t)

...

q1(t+ 1) = F1 q1(t) +G1 e(t)

u1(t) = H1 q1(t) +K1 e(t)

q2(t+ 1) = F2 q2(t) +G2 e(t)

u2(t) = H2 q2(t) +K2 e(t)

qN (t+ 1) = FN qN (t) +GN e(t)

uN(t) = HN qN (t) +KN e(t)

r(t)− y(t)

σ(t)

Figure 4.1: Multi-system controller realization.

Notice that the autonomous system in (4.1) can be represented in terms of au-

tonomous difference equations through the polynomial matrix Φ(d), as defined in (3.31).

Then, by assuming condition a3 of Section 3.4.1 holds, controllers exist such to guarantee

asymptotic tracking. Also, the family of candidate controllers can be designed according to

the conditions a4 and a5.

Next section accounts for how implementing the multicontroller system.

4.2 State-shared multicontroller implementation

The switching scheme developed in Chapter 3 hinges upon the multicontroller Cσ(·)

in (3.5). As shown in Figure 3.1, the classical approach to implement Cσ(·) consists in placing

each of the latent controllers under separate feedbacks, as a typical multi-system architecture

[AW97]. In broad terms, at every time, the supervisor selects one of the controllers in C ,

while the other ones operate in stand-by mode driven by the signal (r − y). This take

inevitably to precondition their state vectors, namely qi, i ∈
←−
N , before the switch-on time.

The multicontroller resulting from a multi-system architecture is depicted in Figure 4.1,

where {Fi, Gi,Hi,Ki} represents a state-space realization of the i-th controller Ci, i ∈
←−
N .
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u(t)

F1

F2

FN

G1

G2

GN

H1

H2

HN

K1

K2

KN

e(t)

...

...

...

...

σ(t)

σ(t) σ(t)

σ(t)

q(t)q(t+ 1)
d

Figure 4.2: Hybrid linear controller realization.

As it is possible to see, the reason why the multi-system architecture is impractical is

twofold: first, it is advisable to simplify the implementation by avoiding to run the N

controllers Ci; even more importantly, in order to make computations numerically possible,

it is required that each controller − whether or not in charge of the process − run in

a stable fashion, i.e. Fi’s have to be strictly Schur matrices. Also, as widely discussed

in [YQK07], multi-system architecture suggests to derive bumpless / conditioning transfer

schemes, see [GA96, TW00, GL95, ZT02, ZT05], where the state of each idle controller is

forced to evolve in an appropriate way, usually to achieve some optimal goals, by appending

the controller with additional circuitry. Clearly, such solutions become cumbersome and

hard to implement when the number of controller is large.
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A more convenient way to implement the multicontroller Cσ(·), whose idea is illus-

trated in Figure 4.2, consists in realizing a hybrid linear system as the following

q(t+ 1) = Fσ(t) q(t) +Gσ(t) e(t)

u(t) = Hσ(t) q(t) +Kσ(t) e(t)

}
(4.2)

which has the peculiarity to share a state vector q(t) and, the control transfer reduces

to switch a number of feedback gain matrices according to the switching sequence σ(t),

dictated by the supervisory unit. Architecture as in (4.2), known also as state-sharing mul-

tirealizations [Mor95, SAB06], are commonly used for supervisory control of sampled-data

systems [BBMT10, BMST10, CHP04, ZMF00] since, though not reflecting optimal-oriented

features, posses a number of desirable properties. First, they allow the use of unstable can-

didate controllers, since there is no need to implement each candidate controller as a single

dynamical system; second, they need of low computational load, the computational cost

being invariant to the number of candidate controllers.

In the present case, where the controllers are available by an input-output descrip-

tion, each one being defined through MFDs as in (2.4), a possible state vector can be defined

as follows

q(t) :=
[
e(t− 1)′ · · · e(t− nc)

′ u(t− 1)′ · · · u(t− nc)
′
]′
, (4.3)

where e(t) := r(t) − y(t) is the tracking error, nc := max
i∈
←−
N
{degSi,degRi}, with degM

standing for to the highest degree of all the entries of M(d). Accordingly, the output of the

multicontroller can be thought as the one of a linear regression obtained by

Cσ(t)(e)(t) := [Sσ(t)1 · · · Sσ(t)nc
−Rσ(t)1 · · · −Rσ(t)nc

] q(t) + Sσ(t)0 e(t) , (4.4)
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which has an equivalent realization in the state-space form provided that the matrices Fi,

Gi ,Hi and Ki assume the form

Fi =




0p · · · 0p 0p 0p · · · 0p 0p

I(nc−1) p

0p
...

0p

0(nc−1) p

0p
...

0p

Si1 · · · Si (nc−1) Sinc
−Ri2 · · · −Ri (nc−1) −Ri nc

0(nc−1) p

0p
...

0p

I(nc−1) p

0p
...

0p




Gi =




Ip

0p
...

0p

Si0

0p
...

0p




Hi =
[

Si1 · · · Si (nc−1) Sinc
−Ri2 · · · −Ri (nc−1) −Ri nc

]
Ki =

[
Si0

]





(4.5)

with i ∈
←−
N .

Remark 4.2.1 In case nsi := degSi < nc and/or nri := degRi < nc for some i, imple-

mentation (4.5) is obtained by simply setting Si nc−j = 0, j = 0, · · · , (nc − nsi − 1) and,

consistently, Ri nc−k = 0, k = 0, · · · , (nc − nri − 1).

Remark 4.2.2 Multicontroller scheme similar to (4.2) have been proposed in [BMM99,

TWY07]. A different approach is also adopted in [BF08], where the controller state is reset

to zero at each switching time. However, such techniques do not follow any performance-

oriented strategy for the control transfer.

Remark 4.2.3 Notice that the state-space realization (4.5) provides an equivalent descrip-

tion, in terms of input-output behavior, of the left MFD of the controller Ci, see (2.4). Given

a family C of stabilizable and detectable controllers Ci as defined in (2.4), i.e. such that Ri(d)

and Si(d) have strictly Schur g.l.c.d., then the state-space representations {Fi, Gi,Hi,Ki},

i ∈
←−
N , are stabilizable and detectable as well. In particular, the eigenvalues of Fi contain

the roots of the determinant of Ri(z), with z = d−1 here assumed to be the unit forward

shift operator, and extra unobservable eigenvalues in z = 0. If Ri(d) and Si(d) are coprime,

then (Fi, Gi) is reachable [Mos95].

Prompted by these observations, the goal is to propose a performance-oriented

approach for the control transfer which, while optimizing an engineering significant per-

formance index, preserve all desirable features of the hybrid linear architectures described
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above. More specifically, we propose a model-based approach to the control transfer, which

exploits the nominal models available to the supervisory unit and aims at resetting the

state of the multicontroller so as to optimize (in a sense to be defined) the closed-loop tran-

sient response by using the available input-output process data, along with the state of the

exosystem in (4.1).

4.3 Optimal conditioning

In this section the best possible scenario is first considered. Let the process P(θ)

coincide with the one of the nominal models, namely P(θ) =Mi and, at the time ts, the

supervisory unit switches-on the corresponding controller Ci, so that Ci is placed in feedback

with the process after ts.

To cope with this situation where the input-output process data are available 1,

an equivalent description, in terms of input-output behavior, of the process MFDs defined

in (2.2) can be derived. Along the same lines as before, the input-output process behavior

can be represented by the following state-space system

x(t+ 1) = Ai x(t) + Bi u(t)

y(t) = Ci x(t)

}
(4.6)

where the state vector assumes of the form

x(t) :=
[
u(t− 1)′ · · · u(t− np)

′ y(t− 1)′ · · · y(t− np)
′
]′

(4.7)

1This is an usual situation in adaptive/fault-tolerant control, the process state being not accessible in

many applications.
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with np := max
i∈
←−
N
{degAi,degBi} and, accordingly, the dynamics matrices are as follows

Ai =




0p · · · 0p 0p 0p · · · 0p 0p

I(np−1) p

0p
...

0p

0(np−1) p

0p
...

0p

Bi1 · · · Bi (np−1) Binp
−Ai2 · · · −Ai (np−1) −Ai np

0(np−1) p

0p
...

0p

I(np−1) p

0p
...

0p




Bi =




Ip

0p
...

0p

0p

0p
...

0p




Ci =
[

Bi1 · · · Bi (np−1) Binp
−Ai2 · · · −Ai (np−1) −Ai np

]





(4.8)

Remark 4.3.1 Same considerations as in Remark 4.2.1 can be done also for state-space

realization in (4.8).

The solution, which will be developed in the sequel, consists in resetting the mul-

ticontroller state in (4.2) at switching time ts in such a way that the future behavior of

the current closed-loop (P(θ)/Ci), where the process P(θ) is supposed to be coincident with

the model Mi, be as close as possible, in a sense to be specified, to the desired offset-free

steady-state behavior of the loop (Mi/Ci).

Let

w(t) :=

[
x(t)

q(t)

]
, and z(t) :=

[
u(t)

e(t)

]
(4.9)

denote, respectively, the state and the output vectors of the closed-loop switched system

(P(θ)/Cσ(·)), defined in (3.5). Then, the time evolution of such vectors starting from the

switching time ts can be described by the following state-space system

w(t+ 1) = Acli w(t) + B
cl
i r(t)

z(t) = Ccli w(t) +Dcli r(t)

w(ts) =

[
x(ts)

q(ts)

]





(4.10)
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where t ∈ Z ts := {ts, ts+1, · · · } and, the matrices Acli , B
cl
i , C

cl
i and Dcli , characterizing the

closed-loop behavior, assume the form

[
Acli Bcli

Ccli Dcli

]
:=




Ai − BiKi Ci BiHi BiKi

−Gi Ci Fi Gi

−Ki Ci Hi Ki

−Ci 0 I




(4.11)

As known, see [IMS03], the controller Ci solves the output regulation problem 2 ,

for each initial condition
(
x(ts), q(ts), η(ts)

)
, if and only if the Sylvester equation

Acli

[
Xi

Qi

]
+ Bcli L =

[
Xi

Qi

]
E (4.12)

admits an unique solution [X ′i Q
′
i]
′ such that

0p = −CiXi + L (4.13)

holds. In (4.12), uniqueness of [X ′i Q
′
i]
′ stems from the fact that the spectra (consisting in

set of eigenvalues) of Acli and E are disjoint by hypothesis, Acli being a stability matrix by

construction (cf. Assumption a5) and E having all the eigenvalues on the unit circle (cf.

Assumption a6) [OS62].

Define

x̃(t) := x(t)−Xi η(t) , and q̃(t) := q(t)−Qi η(t) (4.14)

and, accordingly, consider

w̃(t) :=

[
x̃(t)

q̃(t)

]
. (4.15)

2Given the system (4.6) with exosystem (4.1), the controller Ci, with state-space realization

{Fi, Gi, Hi, Ki}, is such that:

(a) the closed-loop system (4.10) is asymptotically stable;

(b) for every initial conditions
(

x(ts), q(ts), η(ts)
)

lim
t→∞

e(t) = 0

holds.
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Then, in the new coordinates, the state equation in (4.10) becomes

w̃(t+ 1) = Acli w̃(t)

w̃(ts) =

[
x(ts)−Xi η(ts)

q(ts)−Qi η(ts)

]




(4.16)

Since Acli is a stability matrix, one has that

lim
t→∞

w̃(t) = 0 (4.17)

for every initial condition
(
x(ts), q(ts), η(ts)

)
. This corresponds to have process and con-

troller states x(t) and q(t) converging, as t→∞, at the steady-state solutions x̄(t) := Xi η(t)

and q̄(t) := Qi η(t), respectively, which values depend on the state of the exosystem at the

time ts as follows
3

x̄(t) = XiE
t−ts η(ts)

q̄(t) = QiE
t−ts η(ts)

}
(4.20)

Accordingly, the output vector of the closed-loop system z(t) converge to its steady-state

value

z̄(t) :=

[
ū(t)

ē(t)

]
, (4.21)

which components are given by

ū(t) := (Ki (−CiXi + L) +HiQi) η(t)

ē(t) := −(CiXi − L) η(t)

}
(4.22)

and, under the condition (4.13) 4 , one has

ū(t) = Ui η(t) = UiE
t−ts η(ts)

ē(t) = 0

}
(4.23)

3Steady-state solutions (4.20) derive from the condition (4.12), which expresses the existence of an in-

variant subspace for the closed-loop system

η(t+ 1) = E η(t)

w(t+ 1) = Acl
i w(t) + Bcl

i Lr(t)

}

(4.18)

having the form

V =
{

(η,w) | w =

[

Xi

Qi

]

η
}

, (4.19)

and on which the restriction reduces to η(t+ 1) = E η(t) [IMS03].
4Note that condition (4.13) expresses the fact that the steady-state tracking error ē in (4.22) is zero at

each point of the invariant subspace V , defined in (4.19). Asymptotic tracking, namely ē(t) = 0, is actually
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where Ui := HiQi.

Thus, process / controller initial conditions
(
x(ts), q(ts)

)
do not affect the regime

behavior of (4.16); on the contrary, they determine its transient behavior ŵ(t) = Acli
t−ts w(ts).

Hereafter, the attention will be however focused on q(ts), which is the only free assignable

variable, process and exosystem being not-manipulable dynamics systems. Indeed, the idea

is the one to operate on the specific choice of q(ts) in order to manage the transient behavior

of closed-loop system (P(θ)/Ci) after switching.

A suitable variable to account for the discrepancy, at time t, between the actual

behavior from the steady-state (regime) behavior can be the following

z̃(t) := z(t)− z̄(t) =

[
u(t)− Ui η(t)

e(t)

]
. (4.24)

Denote by (w̃(t, ξ), z̃(t, ξ)) the solution pair resulting from (4.16) and (4.24) when

the controller initial state q(ts) is set to be equal to ξ. Also define

q◦(ts) := Fσ(ts−1) q(ts − 1) +Gσ(ts−1) e(ts − 1) (4.25)

which, in essence, coincides with the state of the multi-controller Cσ(·) in (4.2) at the time

ts in case no particular action (like state reset map) is applied when a switching occurs.

The performance index for control transfer to be minimized is as follows,

q(ts) = argmin
ξ
f(ξ) , (4.26a)

f(ξ) :=
∞∑

k=ts

| z̃(k, ξ) |2Ψ + |ξ − q◦(ts) |
2
Ω , (4.26b)

where Ψ and Ω are symmetric non-negative definite matrices, [Ψ Ω ] 6= 0, and |x|2ψ := x′ψx.

achieved if and only if the unique solution of (4.12) satisfies (4.13): (if ) let initial condition
(

w(ts), η(ts)
)

of

(4.18) be in V , then the corresponding trajectory {
(

w(t), η(t)
)

, t ≥ ts} remains in V and yields a copy of

the trajectory of the exosystem {η(t) , t ≥ ts}, which do not converge to
(

0, 0, 0) because the exosystem

is neutrally stable (assumption a6). Thus, the only way of having asymptotic tracking is that ē(t), as a

function of w̄(t), is zero at any point of V ; (only if ) let initial condition
(

w(ts), η(ts)
)

of (4.18) be outside V ,

all trajectories of (4.18) converge, as t −→ ∞, to V , and hence yield a tracking error which asymptotically

decays to zero. According to that, the steady-state process input turns out to be ū(t) = Hi Qi η(t) and it is

possible to show, that it coincides with the feed-forward control action capable of keeping e(t) identically at

zero if the initial condition of (4.6), namely, x(ts), is set equal to Xi η(ts) [IMS03].
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Remark 4.3.2 Appropriate choices of weighting matrices can be used to trade off high

regulation performance vs. smooth control output signals. Indeed, the second term in the

right-hand-side of (4.26) accounts for the discrepancy between ξ and the multi-controller

state which would be obtained with no reinitialization procedure. A practical motivation

for the presence of this term is that in model-based architectures the choice of σ(ts) is

often based on the outcome of a process-model estimation process. Since the smaller Ω is,

the more aggressive the control action turn out to be, the choice of Ω should reflect the

confidence in the switching decision strategy.

Let Li be the symmetric non-negative definite solution of the Lyapunov equation

(Acli )
′ LiA

cl
i + (Ccli )

′Ψ Ccli = Li , (4.27)

which always exists unique being Acli a stability matrix. Let us partition Li as follows

Li =

[
L1i L2i

L′2i L3i

]
, (4.28)

the dimensions of blocks L1i, L2i and L3i being in accordance with the ones in (4.11).

The main result of this section can be stated.

Proposition 4.3.1 Let Assumption a6 holds. Further, assume that Acli is a stability ma-

trix and that the unique solution [X ′i Q
′
i]
′ of (4.12) satisfies (4.13). Then, the optimal

solution q(ts) of (4.26) always exists and satisfies

(L3i +Ω) q(ts) =
[
−L′2i (L3iQi + L

′
2iXi) Ω

]



x(ts)

η(ts)

q◦(ts)


 , (4.29)

where Li is as in (4.27).

Proof. Consider the following state-space system

w̃(t+ 1, ξ) = Acli w̃(t, ξ)

z̃(t, ξ) = Ccli w̃(t, ξ)

w̃(ts, ξ) =

[
x(ts)−Xiη(ts)

ξ −Qiη(ts)

]





(4.30)
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for t ∈ Zts , which time evolution depends on the initial controller state ξ. Then, one has

∞∑

k=ts

| z̃(k, ξ) |2Ψ =

∞∑

k=ts

| w̃(k, ξ) |2Ψi
= | w̃(ts, ξ) |

2
Li

(4.31)

where Ψi := (Ccli )
′Ψ Ccli and Li is as in (4.27). Thus the objective function f(ξ) in (4.26b)

can be rewritten as

f(ξ) =




x(ts)−Xi η(ts)

Qi η(ts)− q
◦(ts)

ξ −Qi η(ts)




′ 


L1i 0 L2i

0 Ω Ω

L′2i Ω L3i +Ω







x(ts)−Xi η(ts)

Qi η(ts)− q
◦(ts)

ξ −Qi η(ts)


 (4.32)

and the result follows by equating to zero the gradient of (4.32) with respect to ξ. Note

that (4.29) always admits a solution since im([L′2i Ω ]) ⊆ im([L3i Ω ]). �

Note that the solution of (4.29) is in general not unique. In fact, unless the

couple (Hi, Fi) is observable, the matrix L3i, related to the Observability Gramian of the

realization {Fi, Gi,Hi,Ki}
5 , turns out to be singular. However, all such solutions would

yield the same input-output behavior. So, a particular solution of (4.29) is given by

q(ts) = Υi v(ts) , (4.33)

where

Υi =
[
Vi Pi Ti

]
, (4.34)

v(ts) =
[
x(ts)

′ η(ts)
′ q◦(ts)

′
]′
, (4.35)

with
Vi := −(L3i +Ω)† L′2i

Pi := (I − Ti)Qi − ViXi

Ti := (L3i +Ω)†Ω





(4.36)

M † denoting the Moore-Penrose inverse of the matrix M . Accordingly, the related optimal

cost becomes

f(q(ts)) = v(ts)
′ G′i∆i Gi v(ts) , (4.37)

5More specifically, one has

L3i =
∞
∑

k=ts

(F k
i )

′ H ′
i ΨHi (F

k
i ) .
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where

∆i :=




L1i 0 L2i

0 Ω Ω

L′2i Ω L3i +Ω


 , and Gi :=




I −Xi 0

0 Qi −I

Vi Pi −Qi Ti


 .

Eventually, the proposed solution for the conditioning of the control transfer

amounts to set the multi-controller Cσ(·) as in the following

q(t) =

{
Υσ(t) v(t) , if σ(t) 6= σ(t− 1)

q◦(t) , otherwise

u(t) = Hσ(t) q(t) +Kσ(t) e(t)

q◦(t+ 1) = Fσ(t) q(t) +Gσ(t) e(t)





(4.38)

which results the same as (4.2) with an additional state reset map at the times of switching,

namely at all t’s such that σ(t) 6= σ(t− 1).

Remark 4.3.3 In case the state realization of the family of candidate controllers is as in

(4.5), then the vector state q◦ to be used in (4.38) is defined as follows

q◦(t) :=
[
e(t− 1)′ · · · e(t− nc)

′ u(t− 1)′ · · · u(t− nc)
′
]′
. (4.39)

Remark 4.3.4 Note that q(ts) in (4.33) depends affinely on the closed-loop data sequence

v(ts), while the gain matrices Vi, Pi and Ti can be pre-computed off-line for each reference-

loop (Mi/Ci) ∈ F . As a result, the new multi-controller can still be implemented as a hybrid

linear system, see (4.38), with an additional computational cost only consisting of solving a

matrix-vector product at each switching time. However, it has to be noted that (4.29) does

not represent the optimal solution to the problem of minimizing the closed-loop transients

after switching. It only yields the optimal controller state reset map. More general solutions

for a similar problem have been considered in [TW00, ZT05]. Such solutions require the

adoption of additional dynamic compensators, which must be active at all times, i.e. before,

at and after switching. This kind of approach is hence typically not amenable to hybrid

linear implementations and, it would be suitable for multi-system implementations even if,

in such a case, the total computational cost usually became cumbersome as the number

of candidate controllers would increase. Thereby, although potentially suboptimal with
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respect to multi-system based approaches, where additional compensators run in parallel

to the on/off-line controllers (to achieve the conditioning of the controllers states), the

proposed solution turns out to be very low in computational load, thus simplifying the

implementation for real-time operations.

4.3.1 Time-Weighted cost

Since the goal consists on reducing as much as possible the transient effects, the

first samples of the sequence z̃i(ξ)|
∞
ts may be more weighted into the cost (4.26b). In this

respect, given γ ∈ (0 , 1], in place of
∑∞

k=ts
|z̃(k, ξ)|2Ψ, one can substitute an γ-exponentially

weighted l2-norm as follows:
∞∑

k=ts

γ2 (k−ts) |z̃(k, ξ)|2Ψ . (4.40)

By defining the new vector w̃γ(t, ξ) := γ(t−ts) w̃(t, ξ), one has that (4.30) becomes

w̃γ(t+ 1, ξ) = γAcli w̃γ(t, ξ)

γ(t−ts) z̃(t, ξ) = Ccli w̃γ(t, ξ)

w̃γ(ts, ξ) = w̃(ts, ξ)





(4.41)

with t ∈ Zts and, the solution to the problem (4.26) continues to be provided by (4.29)

where the matrix Li, see (4.28), turns out to be computed through the Lyapunov equation

as follows

(Acli )
′ γ Li γA

cl
i + (Ccli )

′Ψ Ccli = Li . (4.42)

4.4 Robust Conditioning

The foregoing developments consider the ideal case of exact-match of the process

with one of the nominal models. Such a case applies to situations where the process can

take on a finite number of possible configurations and so, if the supervisory unit selects

the right controller, the state reset obtained by (4.33) yields the best transient in terms

of the cost (4.26b). However, although this is a subject of interest in the study of the so-

called switched systems, in many practical situations, like adaptive/fault tolerant control

problems, the exact-match between process and model is not realistic. Indeed, if the process

does not belong to the model distribution M (see (2.7)), the use of the state reset (4.33)

turns out to return a suboptimal solution. This scenario occurs when each controller takes
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care of more than one process configuration. Hereafter, let us assume that a finite cover for

Θ exists as follows

Θ ⊂
N⋃

i=1

Θi , (4.43)

where Θi is the region associated to Ci, i.e. such that the closed-loop system (P(θ)/Ci)

is internally stable for all θ ∈ Θi. In this case, the supervisor allows only to restrict the

uncertainty region where the process could be in. Indeed, it may be impossible, if Θ is a

continuum, or not convenient, if Θ is a discrete with too high cardinality, to store in the

computer memory one nominal model for each process parameter θ, along with (in case)

the related controller.

The idea to deal with the control transfer in case of large process uncertainty

consists in optimizing the choice of the gain matrices for the state reset map directly with

respect to the uncertainty subsets, namely for each controller Ci we will consider the corre-

sponding Θi. Hence, in this section the scenario is the following. Given the process P(θ)

with θ ∈ Θi, at the time ts, the supervisory unit switches-on the corresponding controller

Ci, which is placed in feedback with the process after the switching 6.

By the arguments of Section 4.3, for any θ ∈ Θi, the optimal multi-controller state

resetting is given by the vector

q(ts) = Υi(θ) v(ts) (4.44)

with Υi(θ) = [Vi(θ)
′ Pi(θ)

′ Ti(θ)
′]′, which matrix components result from (4.36), solved

with respect to the closed-loop (P(θ)/Ci). Hence, the cost achieves the optimal value

f(Υi(θ) v(ts)) = v(ts)
′ Gi(θ)

′∆i(θ)Gi(θ) v(ts) , (4.45)

where

∆i(θ) :=




L1i(θ) 0 L2i(θ)

0 Ω Ω

L2i(θ)
′ Ω L3i(θ) + Ω


 , and Gi(θ) :=




I −Xi(θ) 0

0 Qi(θ) −I

Vi(θ) Pi(θ)−Qi(θ) Ti(θ)


 ,

with [Xi(θ)
′ Qi(θ)

′]′ and Li(θ) being solutions of (4.12)-(4.13) and (4.27), respectively, both

solved with respect to (P(θ)/Ci).

6Given a set Θi, sufficient conditions exist on P(θ) under which Ci solves the output regulation problem

for any value of θ ∈ Θi. In turns, the result stems from a sort of “robustification” of conditions (4.12) and

(4.13). The interested reader is referred to [IMS03].
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Remark 4.4.1 Since Li(θ), where

Li(θ) =

[
L1i(θ) L2i(θ)

L2i(θ)
′ L3i(θ)

]
,

if it exists, is related to the Observability Gramian of the closed-loop system (P(θ)/Ci) and

Ω is symmetric and non-negative definite, then it is possible to show that, by construction,

also ∆i(θ) continues to be symmetric non-negative definite. Accordingly the cost as in

(4.44) is non-negative, i.e. f(Υi(θ) v(ts)) ≥ 0 for each θ ∈ Θi and finite-value vector v(ts).

More realistically, consider a reinitialization gain matrix Υ̃i :=
[
Ṽi P̃i T̃i

]
which

is common for all θ ∈ Θi. Then, the cost related to the actual process P(θ) resulting from

the state resetting by the vector Υ̃i v(ts) turns out to be

f(Υ̃i v(ts)) = v(ts)
′ G̃i(θ)

′∆i(θ) G̃i(θ) v(ts) , (4.46)

with

G̃i(θ) :=




I −Xi(θ) 0

0 Qi(θ) −I

Ṽi P̃i −Qi(θ) T̃i


 . (4.47)

Remark 4.4.2 As widely discussed in the Section 4.3, the choice of q(ts) does not affect

the regime behavior of the system (P(θ)/Ci), provided that Ci solves the output regulation

problem. According to that, one has f(Υ̃i v(ts)) <∞ for any possible choice of Υ̃i.

The use of Υ̃i in place of Υi(θ) takes to a degradation on the transient performance

after the switching. Indeed, one has that

f(Υ̃i v(ts)) ≥ f(Υi(θ) v(ts)) (4.48)

holds for each θ ∈ Θi and finite-value vector v(ts), Υi(θ) v(ts) being the optimal solution.

Let us define the performance loss function li(·) related to Θi, due to replacing Υi(θ) with

Υ̃i, as follows

li(θ) := f(Υ̃i v(ts))− f(Υi(θ) v(ts)) (4.49)

which has the feature to be non-negative definite and upper-bounded for each θ ∈ Θi, i.e.

∞ > li(θ) ≥ 0 with θ ∈ Θi. By simple algebra, we can write

li(θ) = v(ts)
′Di(θ) v(ts) (4.50)
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where

Di(θ) := G̃i(θ)
′∆i(θ) G̃i(θ)−Fi(θ) , and Fi(θ) := Gi(θ)

′∆i(θ)Gi(θ) , (4.51)

and so we obtain

li(θ) ≤ λmax (Di(θ)) ‖v(ts)‖
2 , θ ∈ Θi , (4.52)

with λmax (M) standing for the maximum eigenvalue of M , Di(θ) being a real symmetric

matrix. Accordingly, in order to to reduce as much as possible the performance degradation

li(θ), the reinitialization gain matrix related to Θi can be determined via the following

optimization problem

Υi(Θi) = arg inf
Υ̃i

γi , subject to (4.53a)

λmax (Di(θ)) < γi , ∀ θ ∈ Θi

γi > 0

}
(4.53b)

and the robust solution of (4.26) turns out to be obtained as

q(ts) = Υi(Θi) v(ts) . (4.54)

Note that the first condition in (4.53b) can be equivalently set as follows

γi I + Fi(θ)− G̃i(θ)
′∆i(θ) G̃i(θ) ≻ 0 , θ ∈ Θi . (4.55)

Remark 4.4.3 Condition (4.55) derives from the following arguments. Given (4.52) and

the first of (4.53b), one have that

v(ts)
′Di(θ) v(ts) ≤ v(ts)

′ (λmax (Di(θ)) I) v(ts) < v(ts)
′ (γi I) v(ts)

holds for all θ ∈ Θi and finite-value vectors v(ts), accordingly v(ts)
′ (D(θ)− γi I) v(ts) < 0.

Then (D(θ)− γi I) ≺ 0 holds for all θ ∈ Θi.

Notice that, by means of standard manipulations, the first condition in (4.53b)

can be expressed as a Linear Matrix Inquality (LMI) constraint with respect to Ṽi, P̃i, T̃i

and the optimization problem (4.53) can be formulated as follows
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Υi(Θi) = arg inf
Υ̃i

γi , subject to (4.56a)




γi I + Fi(θ) G̃i(θ)
′H(θ)′

H(θ) G̃i(θ) I
0

0 γi


 ≻ 0 , ∀ θ ∈ Θi , (4.56b)

with Hi(θ) := (∆i(θ))
1/2. More specifically, condition (4.56b) is a direct consequence of the

Schur complement 7.

Remark 4.4.4 The variant proposed in this section enjoys the same positive features of

the basic scheme of Section 4.3, since Υi(Θi) can be pre-computed off-line for each candidate

controller Ci ∈ C . In particular, G̃i(θ) depends affinely on the design parameters Ṽi, P̃i, T̃i

(cf. (4.47)) and hence, (4.56) is a Linear Matrix Inequality (LMI) with respect to such design

parameters for each θ. While solution of (4.56) is straightforward when Θi is discrete, viable

approaches exist in the literature for dealing also with a continuum of LMI constraints. For

instance, approximation schemes such as the one in [CC06] prove relevant in this regard.

4.5 An Example

In order to show the effectiveness of the proposed method for the control transfer

problem, consider the following hybrid linear process

χ̇(t) = Āj χ(t) + B̄j u(t)

y(t) = C̄ χ(t)

}
(4.57)

made up by 5 regimes, where each triple
{
Āj , B̄j , C̄

}
(corresponding to a single regime) is

the discrete-time version (by means of an input zero-order holder with sampling time equal

7Schur complement [BEFB94]. Suppose Q and R are symmetric matrices. Then, the condition

[

Q S

S′ R

]

≻ 0

is equivalent to

R ≻ 0 end Q− S R† S′ ≻ 0 .
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regime j airspeed (knots) αj βj δj

1 50-75 0.06635 0.1198 0.9770

2 75-100 0.2 0.5 1.9

3 100-125 0.285 0.9 2.73

4 125-150 0.3681 1.42 3.5446

5 150-175 0.5045 2.526 5.112

Table 4.1: Parameters values at different airspeed ranges.

to 0.1 s) of a continuous-time linear system with state-space representation {Ācti , B̄
ct
i , C̄

ct}

as follows

Āctj =




−0.0366 0.0271 0.0188 −0.455

0.0482 −1.0100 0.0024 −4.02

0.1000 αj −0.7070 βj

0 0 1 0




B̄ct
j =




0.422 0.176

δj −7.590

−5.520 4.490

0 0




C̄ct =

[
1 0 0 0

0 0 0 1

]

which value is specified in Table 4.1. Accordingly, the process uncertainty is a discrete

Θ = {θ1, · · · , θ5} ,

where θj = [αj βj δj ]
′ indicates the parameters vector.

In particular, the process is a 2-inputs/2-outputs system which represents a linear

approximation of the longitudinal and vertical dynamics of a helicopter moving at different

longitudinal airspeeds: The state χ(t) is a four components vector made up by longitudinal

velocity χ1(τ) [kt], vertical velocity χ2(t) [kt], pitch rate χ3(t) [deg/s] and, pitch angle

χ4(t) [deg]. The aim is to control the longitudinal velocity y1(t) and pitch angle y2(t) by

means of collective pitch u1(t) and longitudinal cyclic pitch u2(t) of the rotor blades. More

technical details can be found in [AW97] and [NB97]. In the following, all simulations

consider the process to be fixed at a pre-specified regime and, also, represent an unit step of

the longitudinal velocity, while the pitch angle is kept unchanged. Then, a switch from the

initial controller to the right one in the pre-designed family is supposed to be performed,

once it is correctly detected, by a high-level supervision unit.
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from C2 to C1 from C1 to C2

process configuration P(θ1) P(θ2) P(θ3) P(θ4) P(θ5)

non conditioning 3905 1837 1268 1622 5349

optimal conditioning 519 103 75 307 311

robust conditioning 295 91 113 232 311

Table 4.2: Values of the cost f(q(ts)) for each possible simulation scenario in case the

switching occurs at ts = 5 s. Legend: Non state conditioning (q(ts) = q◦(ts)), optimal

state conditioning (q(ts) = Υi v(ts)), robust state conditioning (q(ts) = Υi(Θi) v(ts)), index

i indicating the switched-on stabilizing controller. In all cases Ψ = I4 and Ω = 0.1 I2 nc.

Consistently with the previous chapters, P(θj) indicates the process dynamics

associated to the j-th discrete-time regime. In the present case, two optimal discrete-time

controllers Ci, i = 1, 2, with integral action have been designed in accordance with the

performance criterion
∞∑

k=0

|e(k)|2 + |ν(k)|2 ,

where ν(k) := u(k)−u(k−1). The first controller, C1, has been designed in correspondence

of P(θ3) and stabilizes regimes 1-4: Θ1 = {θ1, · · · , θ4}. The second one, C2, refers to P(θ5)

and stabilizes regime 5 only: Θ2 = θ5. This simple scenario aims at representing a situation

wherein, although the process can assume a finite number of possible configurations, a lower

number of controllers is assumed to be sufficient to guarantee high control performance.

MFDs as in (2.4) and (2.6) are suitably obtained both for controllers and for related

nominal models, namelyM1 = P(θ3) andM2 = P(θ5), respectively. The implementation

adopted to realize the multicontroller is the state-sharing one as in (4.2). Eventually, for

controller C1, both the optimal state reset map related to the modelM1, namely the gain

matrix Υ1 obtained by (4.26), and the robust variant related to the uncertainty subset Θ1,

namely Υ1(Θ1) obtained by (4.53), have been pre-designed. As for C2, the optimal state

reset map, Υ2 by (4.26), related toM2 has been computed.

Optimal / robust state conditioning

In the left side of Figure 4.3, the process is supposed to be P(θ3) and the controller

C2 to be connected in feedback with the process at the initial time t = 0 s. A high-level
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supervision unit (which is immaterial to specify for the present purposes) switches the

multicontroller from C2 to C1 at ts = 5 s. As expected, in a model-matching case the

optimal state resetting given by Υ1 v(ts), as in (4.33)-(4.36), provides the best transient

with respect to the ones obtained by the robust one Υ1(Θ1) v(ts), where Υ1(Θ1) is obtained

by solving (4.56), and non state reinitialization q◦(ts) as in (4.25), see Table 4.2 for the

related cost values. Note that, contrarily to the classical multicontroller implementation

yielding a huge bump on the process outputs, by the two state reset maps it is possible to

produce a jump on the control actions such to reduce the picks on the outputs, so allowing

to promptly recover the regime behavior charactering the final control loop (P(θ3)/C1).

Indeed, multicontroller implementation (4.2), with common state as in (4.3), preconditions

its state so as to maintain continuity of the controller output signal 8 , with consequent

performance degradation of the closed loop behavior.

The right side of Figure 4.3 depicts results for the case wherein the process is P(θ4)

and the setup is as before. In this case, a model-mismatching case, the best transient is

provided, contrarily to the previous case, by the robust state reset map Υ1(Θ1) v(ts) as in

(4.54), see Table 4.2 for the cost values.

Eventually, the multicontroller architecture as in (4.38) with optimal / robust state

conditioning prove to compare favorably with respect to the state-sharing architecture with

no controller state resetting (4.2). Table 4.2 sums up all the possible scenarios.

4.5.1 State reset map vs. dynamic compensation

This section aims at briefly showing the differences between the implementation

by hybrid linear controller with state reset map, as described in (4.38), and the multisystem

implementation of Figure 4.1, where each controller is equipped with a dedicated dynamic

compensator.

In particular, we consider the architecture proposed in [ZT05] which aims at re-

covering as soon as possible a predefined “target” response in a l2 sense. The approach is

8Obviously, the concept of continuity of a signal makes sense only for continuous-time systems but does

not extend to discrete-time devices as our controllers, simply because it is difficult to talk about continuity

in time of some variable on a discrete time setting. Here, the concept of “continuity” has to be meant with

the acceptation of a minimum jump of the signal value between two consecutive sampling instants.
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Figure 4.3: Controller transition from C2 to C1 at t = 5 s. Left: process configuration

corresponding to P(θ3). Right: process configuration corresponding to P(θ4). In both

cases Ψ = I4 and Ω = 0.1 I2nc . Legend: Non state conditioning (solid grey), optimal state

conditioning (solid black), robust state conditioning (dash black).
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accordingly a typical conditioned transfer technique, even if authors in [ZT05] refer to as

bumpless transfer technique. The control scheme is appropriately rearranged for the specific

study case here considered 9. More specifically, the dynamic compensator is as follows

xe(t+ 1) = Ā3 xe(t) + B̄3 (u(t) − yc(t))

υ1(t) = Φ1 xe(t)

υ2(t) = −C̄ xe





(4.58)

where, consistently with the notation adopted in the previous section, the triple {Ā3, B̄3, C̄}

corresponds to the state-space realization of the nominal modelM1, this technique being a

model-based conditioned transfer. The time evolution of the state vector xe(t) is piloted by

the difference signal between the process input and the off-line controller output C1, while

the two outputs, υ1(t) and υ2(t), pre-condition both the input and the output of the off-line

controller before the latter one be inserted in feedback with the process. The matrix Φ1 is

devoted to pre-condition the output of controller C1 and aims at minimizing a non-negative

real gain γ such that

∞∑

k=ts

|µ(k)− µT (k)|
2 ≤ γ |χ(ts)− χT (ts)| , (4.59)

where µ(t) = Cµ χ(t)+Dµ u(t) is the performance output and µT (t) = Cµ χT (t)+Dµ u(t) is

its target value, obtained by the target value χT (t) of the model state χ(t). In [ZT05], it is

9Scheme of the adopted multi-system controller implementation with dynamic compensator:

u(t) y(t)

r(t)

yc(t)uc(t)

σ(t)

υ1(t)

υ2(t)

−

−

−

P(θj)C1

C2

Dynamic

Compensator
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shown that χT (t) corresponds to the steady-state value at t of the state of process model (in

this particular applicationM1)
10. In particular, the value of Φ1 is a priori determined by

the state-space realizations of nominal model and controller. The interest reader is referred

to [ZT05] for more details concerning the solution of the problem (4.59).

Hereafter, some simulations are carried out in order to compare the approach based

on state reset map, proposed in the previous sections, and the one obtained through the

use of additional dynamic compensator as in (4.58).

As first scenario, consider the case wherein the process is in the third regime P(θ3)

(model-matching case) and, a switching occurs between the (initial) controller C2 and C1

at time 15 s. The weight matrices of criterion (4.26) are set as follows: Ψ = [02; I2] and

Ω = 02nc . Criterion (4.59) is set by imposing Cµ =
[
04×2; C̄

]
and Dµ = [02; 02]. These

particular choices allow to have the same objective for both procedures. According to the

arguments of Remark 4.3.4, the left side of Figure 4.4 shows that the dynamic compensation

provides a prompter transient on the process output than a simple state reinitialization

however, as predictable, it needs of a strong control action, which can be undesirable in

case the process inputs be subject to some saturation constraint. Notice that, this scenario

corresponds to have “control action-free” objectives, the difference between process output

and its regime value being the only term to be minimized. In the right side of Figure 4.4

(where the simulation setup keeps the same) switching occurs at 5 s. In this case, the

optimal state reset map given by (4.33) provides a better transient with respect to the

dynamic compensator, the latter one being sensible to the switching time with respect to

the power-on time of the control loop. Indeed, dynamic compensator needs of a certain

time horizon to correctly precondition the state of the off-line controller.

A second scenario is depicted in Figure 4.5, where the process is in the first regime

P(θ1) (model-mismatching case). In this case, it is considered the robust state reset map

(4.54) as state reinitialization to carry out the comparison. Notice that, at the most of the

knowledge of the author, the approach in [ZT05] does not have a robust variant. Indeed,

in a case of process/model-mismatching, the transient behavior given by the dynamic com-

pensator deteriorates compared with the model-matching case, such device being designed

10Note that, in [ZT05] authors implicitly assume that the process state be accessible. On the contrary,

dynamic compensator as in (4.58) can be however obtained by making use of model state-space realizations

as specified in (4.8).
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to be used by supposing to know the exact model of the process. Accordingly, the tran-

sient yielded by the robust state reset turns out to be comparable at the first output and

prompter at the second one, while the inputs keep two order of magnitude smaller than the

ones produced by the dynamic compensator.

As final scenario, consider newly the simulation presented in the first scenario

wherein at present we set Cµ =
[
04×2; C̄

]
, Dµ = [I2; 02] and, also, Ψ = I4 and Ω = 02nc

in order to weight the control action in both cases (note that, so doing, there is no exact

correspondence between the two related objectives). Figure 4.6 shows how the control action

provided by the dynamic compensator considerably reduces its magnitude with respect to

the previous two scenarios and transient behavior by the two approaches turns out to be

very close.

4.6 Concluding Remarks

This chapter discusses the control transfer problem in model-based switching

schemes. Two different architectures for implementing the multicontroller have been com-

pared: the multi-system- based realization and the hybrid linear realization. From the

comparison, it arises that the latter one proves to be more suitable in cases where the num-

ber of controllers is high, its computational being independent of the number of controllers.

Also, it allows to manage with unstable controllers. By a hybrid linear controller architec-

ture, controllers can share their states and, accordingly, only one (common) state vector

turns out to be operative at each time. The idea to condition the control transfer consists

so in solving a problem of optimal / robust reset of the multicontroller state at each time

of switching. The aim is to provide the optimal transient with respect to a pre-specified

performance index in case of exact matching between process and nominal model. A robust

variant is also proposed for more general cases, where the process uncertainty does not co-

incide with the models distribution. The state reinitialization is obtained through a linear

map and gains characterizing such a map can be a priori computed starting from available

models and controllers. Hence, computational burden of the resulting hybrid linear con-

troller with state reset map does not increase with respect to the original implementation,

thus proving to be suitable to be applied in case of a large number of controllers. A sim-

ulative example has been also carried out to show the effectiveness of the method and to
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Figure 4.4: Process configuration corresponding to P(θ3) and controller transition from

C2 to C1. Left: Switching at t = 15 s. Right: Switching at t = 5 s. Legend: Optimal state

conditioning (solid black), dynamic compensation (dash dot grey).

compare its features compared with the ones of a multi-system implementation equipped

with additional dynamic compensator for the manage of control transfer.
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Figure 4.5: Process configuration corresponding to P(θ1) and controller transition from

C2 to C1. Left: Switching at t = 15 s. Right: Switching at t = 5 s. Legend: Robust state

conditioning (solid black), dynamic compensation (dash dot grey).
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Figure 4.6: Process configuration corresponding to P(θ3) and controller transition from

C2 to C1 (weight on the control actions). Left: Switching at t = 15 s. Right: Switching at

t = 5 s. Legend: Optimal state conditioning (solid black), dynamic compensation (dash dot
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Simulative Example
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Chapter 5

A Four Carts Example

Since simulation of adaptive control systems are often useful for performance eval-

uation, this chapter focuses on a dynamic system which has been designed as extension to

the multivariable case of the benchmark problem proposed in [BW92] and also, it is used in

[BBM+12, MCC01] in the context of switching supervisory control. In the sequel, first the

controller selecting rule presented in Chapter 3 and the conditioning solutions of Chapter

4 are sequentially tested by separate experiments. Then, a general control scheme which

exploits both techniques is considered in order to show possible performance improvements.

Consider the process represented in Figure 5.1, made up by four carts mechanically

coupled by springs and dampers, where the control problem consists in positioning the

external carts by applying manipulable forces to the internal ones. The resulting system is

square with 2 inputs and 2 outputs and, the continuous-time state-space representation is

as follows
ẋ(τ) = Āct(θ)x(τ) + B̄ct u(τ)

y(τ) = C̄ct x(τ)

}
(5.1)

where τ indicates the continuous time, u(τ) ∈ R2 and y(τ) ∈ R2 are the vectors containing

the forces on the internal carts and the positions of the external ones respectively, x(τ) ∈ R8
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m m m m

y1 y2

u1 u2

θ[1] θ[2] θ[3]

ccc

Figure 5.1: Four carts plant.

is the state vector containing positions and velocities of the four carts and

Āct(θ) =




0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

− θ[1]

m
θ[1]

m 0 0 − c
m

c
m 0 0

θ[1]

m − (θ[1]+θ[2])
m

θ[2]

m 0 c
m −2c

m − c
m 0

0 θ[2]

m − (θ[2]+θ[3])
m

θ[3]

m 0 c
m −2c

m − c
m

0 0 θ[3]

m − θ[3]

m 0 0 c
m

c
m




B̄ct =




0 0

0 0

0 0

0 0

0 0

− 1
m 0

0 1
m

0 0




C̄ct =

[
1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

]

Each cart has mass m equal to 1 Kg and the dampers have a viscous damping coefficient c

equal to 0.1 Ns/m, while the vector

θ =




θ[1]

θ[2]

θ[3]


 (5.2)

with θ[i] ∈ R, i = 1, 2, 3, denotes the value of stiffness of the three springs.

Control scheme setting. The supervisor S adopts the switching rule described in Chapter 3,

so, the controller index σ is selected in accordance with the HSL (3.8) with test functionals

(3.15)-(3.16). Given a family of discrete-time controllers as in (2.4), the multicontroller Cσ(·)

is a discrete-time device realized by a hybrid linear architecture as in (4.2), with common
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state given by

q(t) :=
[
e(t− 1)′ · · · e(t− nc)

′ u(t− 1)′ · · · u(t− nc)
′
]′
, (5.3)

where e(t) := r(t) − y(t), nc := max
i∈
←−
N
{degSi,degRi}, with degM standing for to the

highest degree of all the entries of M(d). Eventually, assume zero plant initial condition

and zero noises and disturbances.

Hereafter, two different scenarios are taken in account.

5.1 First Scenario: Monodimensional Uncertainty

Consider the case where only the spring connecting the carts on the left has an

uncertain stiffness parameter θ[1] ∈ Θ, where

Θ = [0.1, 1.2] N/m , (5.4)

while the other springs are assumed to have a known stiffness coefficient θ[2] = θ[3] = 0.7

N/m. For this scenario, three different one-degree-of-freedom continuous-time LTI con-

trollers have been designed in order to guarantee stability and performance requirements on

the whole uncertain interval Θ, defined in (5.4). The three controllers Ci, i = 1, 2, 3, have

been designed with integral action in accordance to the following performance criterion

∫ ∞

−∞

|e(τ)|2Ψei
+ |ν(τ)|2Ψνi

,

where ν(τ) := s u(τ), where, here, s indicates the Laplace operator. The weight matrices

are as follows: Ψei = ψei I2, with ψe = {10, 1, 0.1} and, Ψνi = I2, i = 1, 2, 3. Such

controllers have been designed relatively to nominal models Mi = P(θi) corresponding to

three stiffness representative values:

• θ
[1]
1 = 0.25 N/m;

• θ
[1]
2 = 0.50 N/m;

• θ
[1]
3 = 1.00 N/m.
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Figure 5.2: Monodimensional uncertainty. Stability ranges of the three controllers: Θ
[1]
1 =

(0.08, 0.28) N/m, Θ
[1]
2 = (0.18, 0.54) N/m, Θ

[1]
3 = (0.36, 1.28) N/m.

Then, nominal models and related controllers are discretized by means of an input

zero-order holder with sampling time equal to 0.1 s. Figure 5.2 shows the subintervals Θ
[1]
i ,

i ∈
←−
3 , wherein each controller Ci guarantees internal stability. Note that

Θ =

3⋃

i=1

Θ
[1]
i .

In the following simulations, the reference signals r1(τ) ∈ R and r2(τ) ∈ R, to be

tracked from the positions of the external carts, are assumed to be set-points equal to 1 m

and -2 m with respect to an equilibrium position (r1, r2)eq = (0, 0). Further, the hysteresis

constant h is set equal to 0.1.

First, focus only on the supervision rule, the multicontroller being assumed with-

out state reset map. In this case, Table 5.1 reports simulation results related to different

stiffness values of the uncertain spring. Such simulations ranges on the overall uncertainty
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Switching Logic Process Behavior

θ[1] Initial index Final index Final time Max. values of Max. values of

|y1| and |y2| |u1| and |u2|

0.10 3 1 3.40 s 2.38 and 6.11 6.46 and 6.72

0.15 2 1 7.60 s 1.64 and 3.34 2.77 and 3.20

0.20 3 2 3.30 s 3.83 and 5.46 6.36 and 7.30

0.27 3 1 3.40 s 4.95 and 6.27 6.33 and 8.35

0.35 3 2 54.0 s 63.4 and 89.0 40.5 and 47.2

0.40 1 2 8.80 s 2.84 and 3.72 2.99 and 2.77

0.45 3 2 7.40 s 4.35 and 4.07 4.63 and 4.90

0.60 1 3 45.6 s 7.56 and 9.95 7.02 and 6.72

0.65 1 3 20.6 s 4.38 and 6.53 4.56 and 5.29

0.75 2 3 21.6 s 2.25 and 3.05 2.81 and 2.77

0.80 1 3 4.00 s 2.01 and 3.15 2.37 and 2.48

0.90 1 3 3.40 s 2.20 and 3.13 2.23 and 2.48

1.20 2 3 6.20 s 1.99 and 2.55 2.27 and 2.28

Table 5.1: Monodimensional uncertainty. Simulation results obtained by switching among

3 controllers with non state conditioning.

interval, and show how the switching sequence always ends in finite time on the more ad-

equate controller, i.e. the one guaranteeing internal stability with respect to the process

configuration. Note that, in most cases, such controller is associated to the nominal model

closer to the process realization. However, the selection turns out to be stability-based:

indeed, for θ[1] = 0.35, the nominal model closer to the process is the first one, i.e. M1,

nonetheless, the final choice falls upon C2, C1 being destabilizing; same considerations hold

for θ[1] = 0.60 and θ[1] = 0.65.

Consider now the multicontroller. At present, assume that a (not specified) high-

level supervision unit determines the mode of the multicontroller, according to a pre-

scheduled switching sequence. The aim is to evaluate the possible improvement on transient

behavior after the switching by means of the conditioning techniques of Chapter 4. To this

96



Chapter 5. A Four Carts Example

end, Figure 5.3 compares the values of the cost (4.26b) with respect to the process un-

certainty θ for the following solutions: non state conditioning (solid grey), optimal state

conditioning (solid black) and, robust solution conditioning (dash black). More specifically,

the figure refers to a case wherein the switching is scheduled 3 s after the power-on time of

the control system. As it is possible to see, the proposed approaches yields a huge improve-

ment compared with the case of no state-resetting. Of course, the multicontroller is always

assumed to switch on the stabilizing controller. In particular, for each case represented in

figure, it is possible to detect a neighbourhood of the nominal point (corresponding to the

nominal model), wherein the optimal state reset map provides the best solution. On the

contrary, far from the nominal points, the robust solution turns out to produce the best

values, this being in accordance to the continuous nature of the process uncertainty. The

robust solution, in particular, is obtained by solving the optimization problem as in (4.56)

on a “discrete scenario”, see [CC06], namely, by sampling the uncertainty Θ from θmin = 0.1

with a sampling step ∆θ = 0.002, simulations having shown that such uncertainty sampling

provides a satisfactory trade-off between computational load and performance improve-

ments. Eventually, Figure 5.4 depicts the three solutions for two particular values of the

uncertainty.

The way how conditioning / bumpless techniques influence the closed loop be-

havior of the adaptive supervisory control schemes is, in general, unpredictable. Indeed,

in general, although architectures dedicated to control transfer aim at improving the tran-

sients of a control system at the time of switching, stability / performance characteristics

of the resulting switching scheme can be subjected to dramatic consequences. However, the

switching scheme adopted in Chapter 3, combined with state reset map proposed in Chap-

ter 4 is such that the stability property of the original switching scheme keeps unchanged.

Indeed, stability only depends on the preliminary feasibility condition a1 and also, the

idea of resetting the multicontroller state allows not to alter the stability properties of the

switched control system, the latter being a favourable feature for a control transfer device.

However, this could not prevent / avoid undesired transients due to possible malfunction-

ing of the supervision rule. In this respect, Figure 5.5 shows the ASC scheme behavior

in case of switching rule be combined with the robust state conditioning as in (4.54), for

two different process configurations. As it can be seen in Figure 5.6, such solution takes

to an improvement of the closed loop dynamics, compared with the one obtained by using
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Figure 5.3: Monodimensinal uncertainty. Values of the cost (4.26b) for each possi-

ble process configuration / control transfer in case the switching occurs at 3 s (Ψ =

diag
(
I2 , 10

3 I2
)
, Ω = 02nc). Legend: Non state conditioning (solid grey), optimal state

conditioning (solid black), robust state conditioning (dash black) − × 10 indicates that the

values of the curve have to be multiplied by 10.98
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non state conditioning (4.25). In both cases, Ψ = diag(I2 , 10
3 I2) and the weight matrix Ω

has been set equal to 0.001 I2 nc , the latter one being dictated by the desire to provide an

aggressive control actions at times of switching in order to track as soon as possible the ref-

erence signals. As previously anticipated in Remark 4.3.2, in the adaptive control context,

however, this could be not always the best choice and so, the setting of weight matrices can

be sometimes critical. To show that, Figure 5.7 depicts one of the cases of Table 5.1, which

corresponds to consider the process in θ[1] = 0.6 and C1 as initial controller. Notice that,

in case non state resetting be pre-imposed, the switching rule needs long time to select the

right controller (nonetheless, this does not yield high magnitude of signals). Then, suppose

to reinitialize the multicontroller state by the robust reset map. So doing, we see that the

choice of the weight matrices turns out to affect the closed loop behavior: smaller Ω is,

more long the process outputs keeps around the reference signals, thus increasing the time

needed to the supervisor to detect an unstable trend and recognize the right controller (the

values of weight matrices are specified in the figure). So, we can conclude that the values

of resetting weight matrices, namely Ψ and Ω, have to be suitably chosen in base of the

confidence in the decision ability of the switching rule.

5.2 Second Scenario: Bidimensional Uncertainty

Consider now a more complex case, which requires a larger number of controllers

to satisfy the feasibility assumption a1. Specifically, assume that both the external springs

have the uncertainty on the stiffness value, namely, θ[1] ∈ [0.18, 1.6] N/m and θ[3] ∈

[0.18, 1.6] N/m, while the internal spring takes on a known constant value θ[2] = 0.7 N/m.

Accordingly, the uncertainty set corresponds to

Θ = [0.18, 1.6] × [0.18, 1.6] N/m . (5.5)

In this case, we need of nine candidate controllers to guarantee feasibility condition

a1, where the plant configurations corresponding to nine nominal models are indicated in

Figure 5.8, along with the stability ranges of the corresponding controllers. Hence, given

Mi(s) = A−1i (s)Bi(s) (with s the Laplace operator), i ∈
←−
3 , denoting the continuous-time

left MFD of the process model with stiffness θi, the corresponding one-degree-of-freedom

continuous-time controller with right MFD Ci(s) = Yi(s)Xi(s)
−1 can be selected among all

stabilizing controllers C̃(s) = Ỹ (s)X̃−1(s) in accordance with the following weighted H∞
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Figure 5.5: Monodimensional uncertainty. Response of the switching control scheme with

robust state conditioning. Left: Process configuration corresponding to θ[1] = 0.35 and

σ(0) = 3; Right: Process configuration corresponding to θ[1] = 0.75 and σ(0) = 2.
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Figure 5.6: Monodimensional uncertainty. Response of the switching control scheme with

no / robust state conditioning. Left: Process configuration corresponding to θ[1] = 0.35 and

σ(0) = 3; Right: Process configuration corresponding to θ[1] = 0.75 and σ(0) = 2. Legend:

Non state conditioning (grey), robust state conditioning (black)
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mixed-sensitivity criterion [Kwa91]:

Ci(s) = arg inf
C̃

sup
ω
σ[ΦWi(jω)] ,

where σ denotes maximum singular value and ΦWi(s) the W -weighted mixed sensitivity

matrix

ΦWi(s) =

[
{Ψu

i }
−1/2Wi(s)Ỹ (s)

{Ψy
i }
−1/2Wi(s)X̃(s)

]
Ξ̃−1i (s)Ai(s) ,

with Ξ̃i(s) := Ai(s)X̃(s)+Bi(s)Ỹ (s). Then, models and controllers have been discretized by

means of an input zero-order holder with sampling time equal to 0.1 s. The use of a control

design technique different from the previous section is motivated by the desire to show

how the supervisor / multicontroller architectures do not depend on the adopted controller

family, as well as a robust control design is resulted to be the most adequate technique to

be applied to a so large process uncertainty. The results indicated in Table 5.2 show the
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Right: Values corresponding to the nominal models.

behavior of the switched control system in response to two square waves, r1(τ) and r2(τ),
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of amplitudes and periods equal to ±2.5 m and 150 s, and ±1.5 m and 100 s, respectively.

Simulations are carried out with a switching control scheme where the hysteresis constant

h is set equal 0.05 and, the multicontroller is equipped with the robust state reset map

(4.54) (where, Ψ = diag(I2 , 10
3 I2), Ω = 0.001 I2 nc and, the discrete scenario is obtained

by sampling the uncertainty using a squared grid, each cell having side equal to 0.01).

The table considers a set of process configurations supposed to be representative for the

whole uncertainty, while Figure 5.9 depicts two of the most critical scenarios, as reported

in Table 5.2. Consistent with intuition, the most critical cases are those involving process

parameters close to the boundary regions of destabilizing controllers. Nonetheless, from the

performance point of view, the closed-loop behavior always remains satisfactory, the process

inputs-outputs always being kept at a moderate level.

5.3 Concluding Remarks

This chapter has been devoted to the analysis of a numerical example, which has

allowed us to test the effectiveness both of the controller selecting rule, described in Chapter

3, and of the multicontroller state conditioning techniques, discussed in Chapter 4. From

simulations we conclude that: i) the switching logic is always able to detect unstable trends

and to stop on a stabilizing controller, provided that condition a1 be satisfied; ii) the

optimal / robust conditioning of the multicontroller state improves the transient behavior

after switching for each process configuration (note that, the process varies continuously with

the uncertain parameters); iii) stability property of the switching scheme keeps unchanged

for each (finite) reinitialization of the state of the multicontroller, in particular, the weight

matrices characterizing the state reset map have to be appropriately chosen, based on the

confidence in the switching decision ability.
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Switching Logic Process Behavior

[θ[1] θ[3]] Initial index Final index Final time Max. values of Max. values of

|y1| and |y2| |u1| and |u2|

[0.25, 0.30] 6 1 0.90 s 2.57 and 1.56 7.63 and 5.70

[0.30, 1.30] 8 3 0.70 s 2.51 and 1.66 7.61 and 7.71

[0.60, 0.20] 2 4 0.80 s 2.50 and 1.53 14.39 and 5.68

[0.40, 1.20] 1 6 0.70 s 2.53 and 1.61 14.34 and 9.17

[0.70, 0.70] 5 8 2.70 s 2.62 and 1.65 6.07 and 5.14

[1.00, 0.65] 9 8 48.70 s 3.29 and 2.51 12.90 and 27.23

[0.90, 1.40] 1 9 0.60 s 2.55 and 1.52 14.62 and 10.03

[1.25, 1.30] 3 9 0.60 s 2.54 and 1.55 15.52 and 4.45

[1.40, 0.60] 4 8 0.70 s 2.55 and 1.58 8.34 and 10.30

[0.35, 0.40] 7 2 135.7 s 3.96 and 3.27 10.59 and 29.68

[0.30, 0.85] 8 3 0.70 s 2.51 and 1.73 7.60 and 6.32

[0.50, 0.90] 9 6 0.80 s 2.52 and 1.50 6.59 and 4.50

[1.40, 0.30] 3 7 0.60 s 2.59 and 1.52 16.91 and 5.70

[0.55, 0.55] 1 5 0.60 s 2.52 and 1.54 13.23 and 8.95

[0.80, 0.35] 1 5 101.5 s 3.67 and 2.45 55.96 and 14.76

Table 5.2: Bidimensional uncertainty. Simulation results obtained by switching among 9

controllers with robust state conditioning.
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Figure 5.9: Bidimensional uncertainty. Response of the switching control scheme with ro-

bust state conditioning. Left: Process configuration corresponding to [θ[1], θ[3]] = [0.35, 0.40]

and σ(0) = 7; Right: Process configuration corresponding to [θ[1], θ[3]] = [0.80, 0.35] and

σ(0) = 1.
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Conclusions

In this thesis adaptive switching control schemes have been tackled and, solutions

have been proposed to respond to the questions of how selecting the right controller and

then, how transferring the control action.

Part I has been devoted to the controller selection strategy in case of multivariable

systems. The selection is carried out with respect to a finite family of pre-fixed controllers

with the possible addition of one adaptive controller. In particular, Chapter 3 has been fo-

cused on the problem of controlling uncertain squared systems by means of an ASC scheme

which exploits pre-fixed controllers. Selection is carried out by comparing test functionals

suitably chosen to evaluate the suitability of each controller to be connected in feedback

with the process. In such a chapter the Multi-Model Unfalsified ASC approach, introduced

in [BBMT10] for handling SISO systems, has been extended to square systems. The case

of non-square systems has been separately treated in Appendix A. In general, it has been

shown that, by suitably redefining the test functionals, the same stability and performance

features of the SISO systems carry over to the generic multivariable case with no additional

assumptions on the process to be controlled. More specifically, under the only reasonable

requirements to have a stabilizing controller for each process configuration, a stable behavior

of the switched system with response to a generic bounded reference signal is guaranteed.

In addition, a simple variant of the basic test functional has been proposed such to ensure,

along with stability, the offset-free tracking with respect to signals originated by LTI ex-

osystems. Appendix B has dealt with the problem to increase performance by means of the

combination of the ASC scheme with an adaptive mechanism which aims at suitably tuning

an additional controller to be compared with the pre-fixed family. The proposed mechanism

for the on-line generation of new controller has proven to be an interesting solution for dif-

ferent reasons: i) It runs separately with the switching scheme, which continues to have the
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complete management of the process, and interaction between the two schemes occurs only

at the time the new controller is added to the controller family; ii) It does not influence the

characteristics of the switching scheme; iii) The experimental load, typically cumbersome

in data-driven controller tuning mechanisms, is reduced at the minimum, thanks to the use

of the virtual reference tool. However, some questions regarding technical aspects of the

algorithm continue to be open.

Part II has discussed the control transfer problem to model-based switching schemes.

Chapter 4 has compared two different architectures for implementing the multicontroller into

an ASC scheme: the multi-system-based realization and the hybrid linear realization. By

the comparison, the latter one has proved to be more suitable in cases where the number of

controllers is high, its computational cost being independent of the number of controllers.

Also, it allows to manage with unstable controllers. By a hybrid linear architecture, con-

trollers can share their states and, accordingly, only one (common) state vector turns out to

be operative at each time. The idea to improve the transient performance at each switching

time has been the one to condition the control transfer by suitably resetting the state of the

multicontroller. In particular, the state reinitialization has been obtained through a linear

map where related gains can be a priori computed with respect to process uncertainty and

available controllers. Hence, computational burden of the resulting hybrid linear controller

with state reset map does not increase with respect to the original implementation, thus

proving to be suitable to be applied in case of a large number of controllers.

In Part III, a numerical example has been considered in order to test the effective-

ness both of the controller selecting rule, described in Chapter 3, and of the multicontroller

state conditioning techniques, discussed in Chapter 4. From simulations of Chapter 5 it

has been possible to see that: i) The switching logic detects unstable trends and stops on

a stabilizing controller, provided that it exist; ii) By the conditioning of the multicontroller

state, the transient behavior improves performance after switching; iii) Stability property

of the switching scheme keeps unchanged by conditioning the state of the multicontroller.
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