
UNIVERSITÀ DEGLI STUDI DI FIRENZE
Dipartimento di Sistemi e Informatica

Dottorato di Ricerca in Informatica e Applicazioni
XXV Ciclo

D ATA M I N I N G M O D E L S F O R S T U D E N T D ATA B A S E S

renza campagni

Supervisor: prof. Donatella Merlini

PhD Coordinator: prof. Rosario Pugliese

December, 2012

Renza Campagni : DATA MINING models for student databases, Dottorato di
Ricerca in Informatica e Applicazioni, © December, 2012

To my family:

Maurizio, Laura and Gloria

A C K N O W L E D G E M E N T S

During the last three years I have been very lucky; I had a job that I really liked
but mostly I met people who gave me so much, from whom I have learned so
many things.

First, I would like to thank people of my thesis committee, Bruno, Dino,
Donatella, Renzo and the PhD coordinators Rocco and Rosario.

A particular thanks to Cecilia and Pierluigi: this thesis would not have been
possible without their presence, such as colleagues and friends.

Thanks in advance to Professors Paolo Mancarella and Toon Calders, who
kindly accepted to read this thesis.

Thanks to past and current PhD students, in particular to Leonardo and
Andrea; thanks to all teachers of department, in particular Betti, Michele B.,
Michele L., Pierluigi and Rosario.

A great thanks to Cecilia, Donatella and Renzo who welcomed me like an
old friend and colleague.

Dino and Fosca have taught me all of the subject of this thesis; a particular
thanks to them who have been for me also real friends.

I have to thank my parents who are gone: I owe to them the nature that made
me making this wonderful experience at my no longer young age!

1

C O N T E N T S

1 Introduction 5

2 Data organization 11

2.1 Data warehouse 12

2.2 Types of data 15

3 Data Mining techniques 19

3.1 Supervised and unsupervised learning 21

3.2 Data mining tasks 22

3.3 Clustering analysis 23

3.3.1 K-means clustering 24

3.3.2 DBSCAN clustering 28

3.4 Analysis based on classification 29

3.4.1 Decision trees 30

3.4.2 Hunt’s Algorithm 30

3.5 Association analysis 32

3.5.1 Association rules 32

3.6 Frequent pattern or sequential pattern analysis 35

3.6.1 SPAM 38

3.6.2 CloSpan 39

4 Data mining on student careers 41

4.1 Clustering model 41

4.2 Sequential pattern model 46

4.2.1 The methodology 46

4.2.2 Clustering on sequential patterns 50

4.3 Classification model 51

5 The case study 53

5.1 Context of analysis 53

5.2 Data preprocessing 56

5.3 Applying the clustering model 62

5.3.1 Extending clustering by applying classification model 77

5.4 Applying sequential pattern model 80

5.4.1 Tests and results on students enrolled in 2001-2004 of Cur-
riculum 1 83

5.4.2 Tests and results on all students enrolled in 2001-2007 87

5.5 Analysis of delays distributions 90

5.5.1 Analysis of the real case 91

6 Conclusions and future analysis 99

6.1 The evolution of the C. S. degree at the University of Florence 102

7 Appendix A 105

3

4 Contents

8 Appendix B 111

1
I N T R O D U C T I O N

Rapid advances in data collection and storage technology have enabled organi-
zations to accumulate a vast amount of data and often tools for traditional data
analysis are not sufficiently efficient to produce significant results. Data min-
ing is a data analysis methodology used to identify hidden patterns in a large
data set. This technology blends traditional data analysis methods with sophis-
ticated algorithms for processing large volumes of data; it has been successfully
used in different areas including the educational environment.

Educational data mining (EDM) [9, 43, 59, 62] is an emerging and interest-
ing research area that produces useful, previously unknown regularities from
educational databases for better understanding and improving the educational
performance and assessment of the student learning process (see [78] for a de-
tailed description of the state of the art in this context). It exploits statistical,
machine learning and data mining algorithms over the different types of edu-
cational data. Its main objective is to analyze these types of data in order to
resolve educational research issues. EDM is concerned with developing meth-
ods to explore the unique type of data in educational settings and, using these
methods, to better understand students and the settings in which they learn [8].
On one hand, the increase both in instrumental educational software as well as
state databases of students information have created large repositories of data
reflecting how students learn [57]. On the other hand, the use of Internet in edu-
cation has created a new context, known as e-learning or web-based education,
in which large amounts of information about teaching-learning interaction are
endlessly generated and ubiquitously available [25]. All this information pro-
vides a gold mine of educational data [66]. EDM seeks to use these data reposi-
tories to better understand learners and learning and to develop computational
approaches that combine data and theory to transform practice to benefit learn-
ers. EDM is a research area that involves researchers all over the world from
different and related research areas, which are:

1. Offline education, based on face-to-face contact, that try to transmit knowl-
edge and skills and also study psychologically on how humans learn.
Psychometrics and statistical techniques have been applied to data, like
student’s behavior/performance, curriculum, etc., that was gathered in
classroom environments.

2. E-learning and learning management system (LMS). E-learning provides
online instruction, and LMS also provides communication, collaboration,
administration, and reporting tools. Web mining (WM) techniques have

5

6 introduction

been applied to students data stored by these systems in log files and
databases.

3. Intelligent tutoring system (ITS) and adaptive educational hypermedia
system (AEHS) are an alternative to the just-put-it-on-the-web approach,
trying to adapt teaching to the needs of each particular student. Data
mining has been applied to data picked up by these systems, such as log
files, user models, and so on.

The EDM process converts raw data coming from educational systems into
useful information that could potentially have a great impact on educational
research and practice. This process does not differ much from other application
areas of data mining, like business, genetics, medicine, etc., because it follows
the same steps as the general DM process [79]: preprocessing, data mining and
postprocessing, such as we present in Chapter 3 by introducing the knowledge
discovery in databases process (KDD).

In this thesis we deal with traditional universities data, that is, record data
containing information about students which are usually only treated individ-
ually and for official purposes. However, if properly analyzed, these data could
be used by the academic organizations to understand the behavior of students,
how it is illustrated in [21].

Over the years, several data mining models have been proposed and imple-
mented to analyze the performance of students. For example, in [30, 31], a
model is proposed which presents the advantages of data mining technology
in higher educational systems; the authors give a sort of road map to assist the
institutions to identify the ways to improve their processes. In [28], the authors
illustrate a classification model to investigate the profile of students which most
likely leave university without ending their career. In particular, they use some
classification algorithms implemented in the WEKA system [94]. In [29] a frame-
work is proposed for mining educational data using association rules and, in
[42], in order to explore the factors having impact on the success of univer-
sity students, a system based on the decision tree classification technique is
presented.

Data mining techniques have also been applied in computer-based and web-
based educational systems (see, e.g., [77, 80]). The existing literature about the
use of data mining in educational systems is mainly concerned with techniques
such as clustering, classification and association rules (see, e.g., [29, 92, 94]).

In particular in this thesis we deal with data about graduated students. To
this purpose we introduce the concept of ideal career corresponding to the ca-
reer of a student who has given every examination just after the end of the
corresponding course, without delay, and propose a data mining methodology
to study the student behavior by comparing student careers with the ideal one.

introduction 7

- In a first approach by using the clustering analysis [22], we represent a ca-
reer, also called path, as a trajectory of points in the plane, where the x-axis
is for time and the y-axis is for exam. In particular, the ideal career is de-
fined by a sequence of points τI = ((0, e0), (1, e1), (2, e2), · · · , (n, en), (n+

1, en+1)), where ei is an exam identifier and i its position in the career.
The position i = 0 denotes the starting point of the career while i = n+ 1

corresponds to the final examination given last by all students. This par-
ticular career can be represented by the bisecting line of the first quadrant.
We precise that i represents the order of exams, that is, two students with
the same exam at position i, could have taken it in two different dates:
what is common to the two students is that they have the exam in the
same position in the career. The career of a generic student J is then
represented by a broken line, corresponding to the sequence of points
tJ = ((0, eJ0

), (1, eJ1
), (2, eJ2

), · · · , (n, eJn
), (n+ 1, eJn+1

)), where eJi
is the

identifier of the exam given by student J at time i. A sample is illustrated
in Figure 1.1, where we consider a career of 5 exams and where the green
line represents the ideal career. We then compute the distance between

Figure 1.1: The career (2, 4, 1, 3, 5).

a generic career tJ and τI, by using two different approaches. The first
one uses the Bubblesort distance, which corresponds to the number of in-
versions in the permutation corresponding to tJ. The second approach
is based on the computation of the area between the lines corresponding
to tJ and τI. We finally put into correlation these two distances with the
complete data about students and perform data mining analysis based on
clustering techniques.

- A different analysis is introduced by using the sequential pattern tech-
niques [24]; we propose a methodology that studies the career of students

8 introduction

and compares one another. This technique has been introduced in [3] and
has become an important method in data mining (see, e.g., [92]). Sequen-
tial pattern analysis aims to find relationships between occurrences of
sequential events, that is, to find if any specific order of the occurrences
exists. We can find an interesting approach by this technique in [88]. In
this thesis we consider as events the exams taken by a student; the tem-
poral information is the semester in which the exam has been taken or the
delay with which it has been taken.

We study an organization of the university which allows students to take
an exam in different sessions after the end of the course, as in Italy. In
particular, italian university students can take an exam also with a large
delay, they can try to take an exam several times, without restrictions in
the number of times, and they can decide to refuse a vote of an examina-
tion and give it other times. Therefore, the career of a student can be seen
as a sequence e1e2 . . . en of n exams, where ek precedes ej in the sequence
if ek has been taken at the same time or before ej. The temporal informa-
tion allows us to see the career of a student as a sequence 〈i1i2 . . . im〉

where each element ij is a collection of one or more exams taken in the
same semester or having the same delay. If we use the semester as tempo-
ral information, m indicates the number of semesters in which a student
takes exams; if we use the delay, m indicates the maximum number of
delays, in semesters, with which a student takes one or more exams. By
analyzing the sequential patterns, we can explain some behaviors which
may seem counterintuitive, e.g., course x is scheduled before course y

while many students take exam y before x.

Such information may be helpful for changing courses schedule or to find
out those courses whose exams are considered difficult by the students
and thus could give ideas for reorganizing curricula. Moreover, sequen-
tial patterns can be used to refine the analysis of students by introducing
in the database the Boolean information about the most significant pat-
terns, according to the fact that a student verifies the pattern or not. This
new information can be explored by using clustering techniques in or-
der to understand if students satisfying the patterns have some common
characteristics.

- We deepen our analysis based on clustering and Bubblesort distance, by
extending the model through the technique that uses decision trees [23]. To
this purpose, we add to the database some new attributes, for example
the Bubblesort class which labels the students into K different ways, ac-
cording to the ranges of values of Bubblesort distance in the K clusters
previously found, or the Grade class which labels the students into K1 dif-
ferent ways, according to the large or small final grade of students. These
new attributes can be used to classify students, for example by using a

introduction 9

classification algorithm. The aim is to classify students as talented or not,
and find the attributes which most influence their career. The greater the
database and the information in it are , the more accurate the model based
on this technique will result.

We present our analysis in a real case, by applying our models on a student
database of University of Florence (Italy).

We can also analyze the career of university students from another point
of view, that is, we can study the perspective of each course, by analyzing
the distribution of students with respect to the delay with which they take an
examination, to discover common characteristics between two or more courses.
This is done in terms of Poisson distributions. Usually, good students try to
pass early every exam, but not so good students prefer to postpone many exams,
especially if they are considered too difficult or too technical. This observation
urged us to study the delay distribution of every exam in the hypothesis that it
is a good parameter for classifying students and/or courses.

After an introduction about the context of the thesis, Chapter 2 provides a
basic background on modern organization of databases, with some references
to datawarehouse techniques and to different types of data.

In Chapter 3 we present some brief categorizations of data mining techniques
and a detailed description of those used in the thesis.

Chapter 4 presents our methodology based on several data mining tech-
niques; it is presented on the particular context of analysis, that is, the Italian
Universities organizations and the information systems that are their founda-
tions.

In Chapter 5 we illustrate the data mining methodology in a real case, that
is, the student database of Computer Science degree at the University of Flo-
rence (Italy), relative to academic years from 2001-2002 to 2007-2008. We apply
the different proposed models, from clustering to frequent patterns and clas-
sification, besides the statistical analysis of the delay distributions. For each
considered data set we illustrate the results also by discussing their graphical
representations. In the period under analysis, the Computer Science degree had
different organizations: during the academic years from 2001-2002 to 2003-2004

each student could choose several exams among five different curricula, while
during the other years students could choose between two curricula. For this
reason, we apply our models to several dataset. In particular, for the clustering
model, we consider three different datasets: 1) the dataset of students enrolled
from 2001 to 2003 years and choosing the Database and Information Systems cur-
riculum, 2) the dataset of students enrolled in the same period and choosing
the Distribuited Systems curiculum, finally, 3) the dataset of all students enrolled
from 2001 to 2003 years.

10 introduction

We apply the frequent patterns model first to the dataset 1); the careers of
these students have 25 common exams. Then we apply the frequent patterns
model to the dataset 3); the careers of these students have 16 common exams.

Finally we perform the statistical analysis of the delay distributions on the
dataset 3) of all student.

In Chapter 6, we conclude with an overview of the analysis performed on the
degree program introduced in Chapter 5 and give some ideas for further and
future analysis.

In the Appendixes A and B we list all figures and tables that are not presented
along the chapters.

2
D ATA O R G A N I Z AT I O N

Information assets are immensely valuable to any enterprise, and consequently,
these assets must be properly stored and readily accessible when they are
needed. However, the availability of so many data makes the extraction of the
most important information difficult, if not impossible. We can view results
from any web search, and we will see that the data = information equation is not
always correct, that is, too much data is simply too much.

Data warehousing is a phenomenon grown from the huge amount of elec-
tronic data stored in recent years and from the urgent need to use data to ac-
complish goals that go beyond the routine tasks linked to daily processing. In a
typical scenario, a large corporation (but this is valid also for universities) has
many branches, and senior managers need to quantify and evaluate how each
branch contributes to the global business performance. The corporate database
stores detailed data on the tasks performed by branches. To meet the needs
of managers, tailor made queries can be issued to retrieve the required data.
In order for this process to work, database administrators must first formulate
the desired query (typically an aggregate SQL query) after closely studying
database catalogs. Then the query is processed. This can take a few hours be-
cause of the huge amount of data, the query complexity, and the concurrent
effects of other regular workload queries on the same data. Finally, a report is
generated and passed to senior managers in the form of a spreadsheet.

Many years ago, database designers realized that such an approach is hardly
feasible, because it is very demanding in terms of time and resources, and does
not always achieve the desired results. Moreover, a mix of analytical queries
with transactional routine queries inevitably slows down the system, and this
does not meet the needs of users of either type of queries. Recent advanced
data warehousing processes separate online analytical processing (OLAP) from
online transactional processing (OLTP) by creating a new information repository
that integrates basic data from various sources, properly arranges data formats,
and then makes data available for analysis and evaluation aimed at planning
and decision-making processes.

The field of application of data warehouse systems is not only restricted to
enterprises, but interests almost every field, from epidemiology to demography,
from natural science to education. A property that is common to all fields is the
need for storage and query tools to retrieve information summaries easily and
quickly from the huge amount of data stored in databases or made available by
the Internet. This kind of information allows us to study business phenomena,

11

12 data organization

learn about meaningful correlations, and gain useful knowledge to support
decision making processes.

Until the mid-1980s, enterprise databases stored only operational data, such
as data created by transactional operations involved in daily management pro-
cesses; however, every enterprise must have quick, comprehensive access to the
information required by decision-making processes. This strategic information
is extracted mainly from the huge amount of operational data stored in enter-
prise databases by means of a progressive selection and aggregation process.
An exponential increase in operational data has made computers the only tools
suitable for providing data for decision-making performed by business man-
agers. This fact has dramatically affected the role of enterprise databases and
fostered the introduction of decision support systems (DSS).

The concept of decision support systems mainly evolved from two research
fields: theoretical studies on decision-making processes for organizations and
technical research on interactive Information Technology (IT) systems. However,
the decision support system concept is based on several disciplines, such as
databases, artificial intelligence, man-machine interaction, and simulation, as
described in the overview on Educational Data Mining of C. Romero and S.
Ventura [78]. Decision support systems became a research field in the mid-’70s
and grew more popular in the ’80s.

In practice, a DSS is an IT system that helps managers to make decisions
or choose among different alternatives. The system provides value estimates
for each alternative, allowing the manager to critically review the results. From
the architectural viewpoint, a DSS typically includes a model management sys-
tem connected to a knowledge engine and, of course, an interactive graphi-
cal user interface. Data warehouse systems have been managing the data back
ends of DSSs since the 1990s. They must retrieve useful information from a
huge amount of data stored on heterogeneous platforms. In this way, decision-
makers can formulate their queries and conduct complex analyses on relevant
information without slowing down operational systems.

2.1 data warehouse

By referring to the complete discussion presented in [39], we define data ware-

housing as a collection of methods, techniques and tools used to support knowl-

edge workers (senior managers, directors, managers, and analysts) to conduct
data analyses that help performing decision making processes and improving
information resources. We precise that data warehousing is only one of the dif-
ferent data organizations on which data mining techniques can be applied, but
in this thesis we refer to many issues that are typical of this technical context. A
data warehouse process is a set of tasks that allow us to turn operational data
into decision making support information:

2.1 data warehouse 13

• accessibility to users not very familiar with IT and data structures;

• integration of data on the basis of a standard enterprise model;

• query flexibility to maximize the advantages obtained from the existing
information;

• information conciseness allowing for target-oriented and effective analy-
ses;

• multidimensional representation giving users an intuitive and manage-
able view of information;

• correctness and completeness of integrated data.

Data warehouses (also indicated in this thesis by DW) are placed right in the
middle of this process and act as repositories for data. They make sure that the
requirements set can be fulfilled. Referring to [49] we can give the following
definition:

A data warehouse is a collection of data that supports decision-making
processes. It provides the following features:

• It is subject-oriented.

• It is integrated and consistent.

• It shows its evolution over time and is not volatile.

Data warehouses are subject-oriented because they depend on enterprise-
specific concepts, such as customers, products, sales, and orders, rather than
students, exams and grades. On the contrary, operational databases depend on
many different enterprise-specific applications.

We emphasize on integration and consistency because data warehouses take
advantage of multiple data sources, such as data extracted from production
and then stored to enterprise databases, or even data from a third party’s in-
formation systems; we will see a sample of data integration in the case study
presented in Chapter 5. A data warehouse should provide a unified view of
all the data. Generally speaking, we can state that creating a data warehouse
system only requires that existing information is rearranging. This implicitly
means that an information system should be previously available.

Operational data usually cover a short period of time, because most trans-
actions involve the latest data. A data warehouse should enable analyses that
instead cover a few years. For this reason, data warehouses are regularly up-
dated with operational data and keep on growing, that is, periodically its tables
are refreshed by adding new rows into them. If data were visually represented,
it might proceed like so: a photograph of operational data would be made at

14 data organization

regular intervals. The sequence of photographs would be stored to a data ware-
house and results would be shown in a movie that reveals the status of an
enterprise from its foundation until present.

Several differences exist between operational databases and data warehouses,
some connected with query types, others depending on the users. Table 2.1,
presented also in [39], is a good schema to understand the most important
differences.

Feature Operational databases Data Warehouses

Users Thousands Hundreds

Workload Preset transactions Specific analysis queries

Access To hundreds/thousands
of records, write and read
mode

To millions of records,
mainly read-only mode

Goal Depends on applications Decision-making support

Data Detailed, both numeric
and alphanumeric

Summed up, mainly nu-
meric

Data integration Application-based Subject-based

Quality In terms of integrity In terms of consistency

Time coverage Current data only Current and historical
data

Updates Continuous Periodical

Model Normalized Denormalized, multidi-
mensional

Optimization For OLTP access to a
database part

For OLAP access to most
of the database

Table 2.1: Differences between Operational Databases and Data Warehouses.

For what concerns the data warehouse architecture, we can have different mod-
els, depending on how many physical data levels we have. The single-layer ar-
chitecture, which has the goal to minimize the amount of data stored, is not
frequently used and provides a virtual warehouse level; in this architecture,
OLAP accesses are performed on the data transactional layer. The requirement
for separation plays a fundamental role in defining the typical architecture for
a data warehouse system; it is typically called a two-layer architecture to high-
light a separation between physically available sources and data warehouses;
it consists in four subsequent data flow stages: source layer, data staging, data
warehouse layer and analysis. With data staging layer we mean the whole set of
phases to extracting, transforming and loading. These phases need that hetero-
geneous sources of data are merged into one common schema.

2.2 types of data 15

The third layer in the three-layer architectures is the reconciled data layer or
operational data store. This layer materializes operational data obtained after
integrating and cleaning source data. As a result, those data are integrated, con-
sistent, correct, current, and detailed; they are then ready for any type of analy-
sis, including the data mining, as we will present in the following chapters. The
data warehouse is not directly populated from its sources, but from reconciled
data. The main advantage of the reconciled data layer is that it creates a com-
mon reference data model for the whole enterprise. At the same time, it sharply
separates the problems of source data extraction and integration from those of
data warehouse population. We may assume that even two-layer architectures
can have a reconciled layer that is not specifically materialized, but only virtual,
because it is defined as a consistent integrated view of operational source data.
Figure 2.1 shows the most complete architecture of a datawarehouse, with the
three layers of data.

As we already observed, the datawarehouse systems are the most popular
among the tools to support decision making activities. In addition to these, how-
ever, there are wider and more etergeneo solutions, which together are known
as business intelligence (BI) systems. Techniques on which the BI systems are
based are already known for some time but have only recently begun to attract
the attention of users to whom the experience with the data warehouse systems
has developed the tendency towards the use of sophisticated approaches, such
as data mining, that we will see in the next chapter.

2.2 types of data

In the data mining research area, besides the problem of the huge amount of
data, we have to deal with several types of data and with data quality ([75, 93]);
in this sense we think it is important to present a brief overview about the types
of data. In general, a data set can be viewed as a collection of data object, called
also record, point, vector, event, observation, or entity, but we know that there are
many types of data sets and, as the field of data mining develops and matures,
a greater variety of data sets becomes available for analysis. We group the types
of data sets into three principal groups : record data, graph-based data and ordered

data [90].
In particular, there are different variations of record data. Much data mining

work assumes that the data set is a collection of records, each of which consists
of a fixed set of data fields, or attributes, as shown in Figure 2.2. There is no ex-
plicit relationship among records or data fields, and every record has the same
set of attributes. Record data is usually stored either in flat files or in relational
databases. Relational databases are certainly more than a collection of records,
but data mining often does not use any additional information available in a

16 data organization

Figure 2.1: The three-layer architecture of a DW (source [39])
.

2.2 types of data 17

relational database. Rather, the database serves as a convenient place to find
records.

Tid Refund Marital

Status

Taxable

Income

Cheat

1 Yes Single 125K No

2 No Married 100K No

3 No Single 70K No

4 Yes Married 120K No

5 No Divorced 95K Yes

6 No Married 60K No

7 Yes Divorced 220K No

8 No Single 85K Yes

9 No Married 75K No

10 No Single 90K Yes

Table 2.2: A sample of record data.

Transaction data is a special type of record data, where each record, or transac-
tion, involves a set of items. For example, in a grocery store, the set of products
purchased by a customer during one shopping trip constitutes a transaction
(Figure 2.3), while the individual products that were purchased are the items.
This type of data is called market basket data because the items in each record
are the products in a person’s market basket. As we will discuss in Chapter 4, for
the analysis of students based on the sequential pattern technique we refer to
this representation of data, while for the traditional clustering analysis we refer
to record data.

Tid Items

1 Bread, Coke, Milk

2 Beer, Bread

3 Bread, Coke, Diaper, Milk

4 Bread, Bread, Diaper, Milk

5 Coke, Diaper, Milk

Table 2.3: A sample of transaction data.

Another type of record data is the data matrix. If the objects in a collection
of data all have the same fixed set of numeric attributes, the data objects can
be thought of as points, or vectors, in a multidimensional space, where each

18 data organization

dimension represents a distinct attribute describing the object. A set of such
data objects can be interpreted as an m by n matrix, where there are m rows,
one for each object, and n columns, one for each attribute. This matrix is called a
data matrix or a pattern matrix; it is the standard data format for most statistical
data. Samples of this data can be seen in Table 2.4.

Projection

of x Load

Projection

of y Load

Distance Load Thickness

10.23 5.27 15.22 2.7 1.2

12.65 6.25 16.22 2.2 1.1

Table 2.4: A sample of data matrix.

In this chapter we have addressed several issues that allow us to obtain a
useful foundation for the data analysis of an information system. In fact, if our
goal is to discover any hidden information in the data, we must make sure
we will set our analysis on corrected and well organized data; this represents
an essential element in order to perform a good analysis with data mining
techniques.

3
D ATA M I N I N G T E C H N I Q U E S

Data mining is an integral part of the knowledge discovery in databases pro-
cess (KDD), which is the overall process of converting raw data into useful
information.

This process, showed in Figure 3.1, consists in a series of transformation
steps, from data preprocessing to postprocessing of data mining results. The
input data can be stored in several formats and may reside in a centralized
data repository or be distributed across multiple sites, as we already observed
in Chapter 2. The purpose of preprocessing is to transform the raw input data
into an appropriate format for subsequent analysis. The step involved in data
preprocessing includes merging data from multiple sources, cleaning data to
remove noise and duplicate observations and selecting records and features
that are relevant to the data mining task at hand. Because of the many ways
data can be collected and stored, data preprocessing is the most laborious and
time-consuming step in the overall knowledge discovery process.

Data mining results have to be integrated into a decision support system; for
example, in business or in more particular educational applications, the insight
offered by data mining results can be integrated with management tools of pro-
motional campaigns, so that effective marketing promotions can be conducted
and tested. This integration requires a postprocessing step, as we will see in the
case study presented in Chapter 5, ensuring that only valid and useful results
are embedded into the decision support system. Traditional analysis tools such
as OLAP, introduced in the previous chapter, represent a base for a decision
support system, but the data mining allows to make a big leap in the direction
of the extrapolation of the knowledge of hidden relationships among data.

Figure 3.1: An overview of the steps that compose the KDD process (source [35]).

19

20 data mining techniques

The Origins of Data Mining

Brought together by the goal of meeting the challenge of the difficulty of in-
tegrating different and new types of data sets, researchers from different dis-
ciplines began to focus on developing more efficient and scalable tools that
could handle diverse types of data. This work, which culminated in the field
of data mining, built upon the methodologies and algorithms that researchers
had previously used. In particular, data mining draws upon ideas, such as sam-
pling, estimation, and hypothesis testing from statistics and search algorithm,
modeling techniques, and learning theories from artificial intelligence, pattern
recognition, and machine learning. Data mining has also adopted ideas from
other areas, such as optimization, information theory and information retrieval.
The topic of data mining has inspired many textbooks. Some of these, such as
[11], have a strong emphasis on business application, others [48] have an em-
phasis on statistical learning or [32, 55] on machine learning. There are also
some more specialized books, for example on web mining [26], while in [46]
the author illustrates how data mining differs from statistics.

In recent years data mining has been applied also to particular areas, such as
social network and sentimental analysis. For what concerns network analysis, for
which we can refer to [68] for a useful overview, we observe that the starting
point is The Small World Problem, an experiment by which S. Milgram, in 1967,
considered the graph of acquaintance chains and then (1969), with J. Travers,
tried experimentally that there were same regularities that could variate if we
changed starting populations [63]. An interesting basic paper that deepened
this area is [40]. Sentimental analysis, also called opinion mining, is a recent disci-
pline at the crossroads of the following different areas:

• information retrieval, that is, the activity of obtaining information rele-
vant from a collection of information resources. Searches can be based on
metadata or on full-text indexing;

• text mining, that refers to the process of deriving high-quality information
from text, deriving through the devising of patterns and trends;

• computational linguistics, that is, an interdisciplinary field dealing with
the statistical or rule-based modeling of natural language from a compu-
tational perspective.

Opinion mining tries to detect the opinions expressed in the natural language
texts. It focuses not on the subject mentioned by a document, but on the opinion
that the documentexpresses [58]. A particular problem in the area of opinion
mining is the comparative sentences mining, that is related to a context quite
different from opinion sentence identification or classification. Sentiment clas-
sification studies the problem of classifying a document or a sentence based on
the subjective opinion of the author, instead comparisons can be subjective or

3.1 supervised and unsupervised learning 21

objective. A typical example of opinion is The picture quality of camera X is great,
besides, an example of comparative sentences can be Camera X is better than Y.
This problem [53, 54] has many applications, from industry, to know customer
opinions about some products in comparison with other products, to politics,
to know if people like more a candidate in comparison with another.

Data Mining and Ethics

The use of data for data mining has serious ethical implications, and practi-
tioners of data mining techniques must act responsibly by making themselves
aware of the ethical issues that surround their particular applications. When
applied to people, data mining is frequently used to discriminate, who gets
the loan, who gets the special offer, and so on. Certain kinds of discrimina-
tion, racial, sexual, religious, and so on, are not only unethical but also illegal.
However, the situation is complex: everything depends on the application.

Recent work in what are being called reidentification techniques has provided
sobering insight into the difficulty of anonymizing data. The aim is to anonymize
the data; by removing all personal information we cannot be sure that data are
really anonymous, because we can leave in the information something useful.
There is growing interest in developing data mining algorithms that maintain
user privacy; as a result, the preserving privacy is an important and recent area
of research that accompanies the data mining. Among some general reference
in this area we cite [4]; we can also refer to [38, 64] to pursue this issues.

3.1 supervised and unsupervised learning

Data and Knowledge Mining consists in learning from data. In this context,
data are allowed to speak for themselves and no prior assumptions are made.
This learning from data comes in two flavors: supervised learning and unsuper-

vised learning.
In supervised learning (often also called directed data mining) the variables

under investigation can be split into two groups: explanatory variables and de-
pendent variables. The target of the analysis is to specify a relationship between
the explanatory variables and the dependent variable. To apply directed data
mining techniques the values of the dependent variable must be known for
a sufficiently large part of the data set.

Unsupervised learning is closer to the exploratory spirit of data mining as
stressed in the definitions given above. In unsupervised learning situations
all variables are treated in the same way and there is no distinction between
explanatory and dependent variables. However there are still some targets to
achieve, such as general data reduction or more specific clustering.

The separating line between supervised and unsupervised learning is the
same that distinguishes discriminant analysis from cluster analysis. Supervised

22 data mining techniques

learning requires that the target variable is well defined and that a sufficient
number of its values is given. Typically, for unsupervised learning either the
target variable is unknown or has only been recorded for a too small number
of cases.

The large amount of data usually present in data mining tasks allows to
split the data file in three groups: training cases, validation cases and test cases.
Training cases are used to build a model and estimate the involved parameters.
The validation data helps to see whether the model obtained with the chosen
sample may be generalized to other data. In particular, it helps avoiding the
phenomenon of overfitting, that is, the situation in which the model is too near
to the considered data. Test data can be used to assess the various methods and
to choose the one performing the best job on the long run.

3.2 data mining tasks

Today there are several data mining techniques (corresponding to different al-
gorithms) and various definitions about data mining categories can be given.
Data mining tasks can be divided into two major categories:

• descriptive tasks, where the objective is to derive patterns (correlations,
trends, clusters, . . .) that summarize the underlying relationship between
data;

• predictive tasks, by which the value of a particular attribute target, or
dependent variable, can be predicted by using the values of other attributes.

Typical methods of descriptive modeling are density estimation, smoothing,
data segmentation and clustering. There are by now some classic papers and
books in the literature on density estimation [85] and smoothing [47]. Cluster-
ing is a well studied and well known technique in statistics. Many different
approaches and algorithms, distance measures and clustering schemata have
been proposed. The most widely used method of choice is K-means clustering.
Although K-means is not particularly tailored for a large number of observa-
tions, it is currently the only clustering scheme that has gained positive reputa-
tion in both the computer science and the statistics community. The reasoning
behind cluster analysis is the assumption that the data set contains natural clus-
ters which, when discovered, can be characterized and labeled. While for some
cases it can be difficult to decide to which group the data belong, we assume
that the resulting groups are well separated and carry an intrinsic meaning. In
segmentation analysis, in contrast, the user typically sets the number of groups
in advance and tries to partition all cases in homogeneous subgroups.

Predictive modeling belongs to the category of supervised learning, hence
one variable is clearly labeled as target variable X and it will be explained as
a function of the other variables. The nature of the target variable determines

3.3 clustering analysis 23

the type of model: classification model, if X is a discrete variable, or regression
model, if it is continuous. Many models are typically built to predict the be-
havior of new cases and to extend the knowledge to objects that are new or
not yet as widely understood, such as predicting the value of the stock market,
the outcome of the next governmental election, or the health status of a person.
For example banks use classification schemes to group their costumers into
different categories of risk.

3.3 clustering analysis

Cluster analysis divides data into groups (clusters) that are meaningful, use-
ful, or both. If meaningful groups are the goal, then the cluster should capture
the natural structure of the data. In some cases, however, cluster analysis is
only a useful starting point for other purposes, such as data summarization.
Cluster analysis has long played an important role in a wide variety of fields:
psychology and other social sciences, biology, statistics, pattern recognition, in-
formation retrieval, machine learning and data mining.

Cluster analysis groups objects only on the basis of information found in
the data describing the objects and their relationships. The goal is to group to-
gether objects that are similar or related and, at the same time, are different or
unrelated to the objects in other clusters. The greater is the similarity (or homo-
geneity) within a group and the greater are the differences between groups, the
more distinct are the clusters.

In many applications the notion of a cluster is not well defined depending on
the nature of data and on the desired results. Cluster analysis is related to other
techniques that are used to divide data objects into groups. For instance, clus-
tering can be regarded as a form of classification since it creates a labeling of
objects, by deriving these labels only from the data. For this reason cluster anal-
ysis is referred as unsupervised classification, while, for example, classification
based on decision trees is supervised classification.

Various types of clustering can be distinguished: hierarchical versus parti-
tional, exclusive versus overlapping, complete versus partial. The most com-
monly discussed distinction among different types of clusterings is whether
the set of clusters is nested or unnested, or in a more traditional terminology,
hierarchical or partitional (see, e.g.,[36, 52, 56, 96]). A partitional clustering is
simply a division of the set of data objects into non-overlapping subsets such
that each data object is in exactly one subset. If we allow clusters to have sub-
clusters, then we obtain a hierarchical clustering, which is a set of nested clus-
ters organized as a tree. Each node in the tree is the union of its children; in
particular the root of the tree is the cluster containing all the objects.

We can also distinguish different types of clusters. For example, we have
well-separated clusters and density-based clusters. In the first case a cluster is

24 data mining techniques

Figure 3.2: A sample of well separated clusters (source [92]).

a set of objects in which each object is closer, or more similar, to every other
object in the cluster than to any object not in the cluster. Sometimes a threshold
is used to specify that all the objects in a cluster must be sufficiently close to
one another. The distance between any two points in different clusters is larger
than the distance between any two points within a group. A sample of optimal
well separated clusters is illustrated in Figure 3.2. With density-based clusters
a cluster is a region dense of objects that is surrounded by a region of low
density. This type of cluster is often employed where the clusters are irregular
or intertwined, and when noise and outliers are present 1. In density-based
clustering clusters are defined as areas of higher density than the remainder of
the data set. Objects in these sparse areas, that are required to separate clusters,
are usually considered to be noise or border points; we can see a sample of
optimal density based clusters in Figure 3.3. A general survey of clustering is
given in [51], while in [10] we find a survey of clustering techniques for data
mining.

3.3.1 K-means clustering

Input data characteristics are important to decide what type of clustering is the
best for the data mining analysis. K-means is a very simple algorithm based on
partitional approach; it is the most famous among the clustering algorithms and
in many cases it gives good results. Each cluster is associated with a centroid

(center point) and each point is assigned to the cluster with the closest centroid.

1 Outliers are different from the noise data: an outlier is a data object that deviates significantly
from the normal objects as if it were generated by a different mechanism; noise is a random error
or variance in a measured variable and should be removed before outlier detection.

3.3 clustering analysis 25

Figure 3.3: A sample of density based clusters (source [92]).

The number of clusters, K, must be specified. The original K-means algorithm
was proposed by MacQueen [60] and, with many of its variations, is described
in detail in the books by Anderberg [5] and by Jain and Dubes [50]. Figure 3.4
shows the steps of the algorithm:

K-means algorithm

1: Select K points as initial centroids.

2: repeat

3: Form K clusters by assigning each point to its closest centroid.

4: Recompute the centroid of each cluster.

5: until Centroids do not change.

Figure 3.4: The K-means algorithm.

By applying the implementation of K-means algorithm in WEKA [94] to data
in Table 3.1, by considering the two dimensions (attributes) FinalGrade and
Time, respectively the degree grade and the time, in years, to graduate for a
university student, we obtain the clusters showed in the Figure 3.5.

We can see two clusters; the red one corresponds to good students, which
have a high FinalGrade and a small Time; the students not so good, which
correspond to the blue stars, have a low FinalGrade and a large Time.

Recomputing the centroid of each clusters in the K-means algorithm is fun-
damental to ensure that every point is assigned to the cluster containing the
points at which really it is nearest. For this, the distance of each point to its
closest centroid has to be minimized. By considering data whose proximity
measure is the Euclidean distance, we can use the sum of the squared error (SSE)

26 data mining techniques

Id-Student Sex FinalGrade Time

10 F 110 1400

20 M 95 1380

30 M 100 2000

40 F 103 1180

50 M 98 2030

60 F 106 1220

70 F 110 1003

Table 3.1: A table of a student database.

to measure the quality of a clustering. By using the SSE measure, the error of
each data point, that is its Euclidean distance to the closest centroid, is calcu-
lated, then the total sum of the squared errors is computed. If we have to choose
between two different sets of clusters (as we illustrate later), produced by two
different executions of K-means, we prefer the one with the smallest squared
error. It is important also to observe that the obtained clusters depend on the
initial choice of centroids.

These and other considerations are the basic concepts of clustering analysis
by K-means; the goodness of this technique depends for example on the choice
of the initial centroids. In the following paragraphs we give some hints, but for
an exhaustive discussion we refer to [92].

Choosing initial centroids

When random initialization of centroids is used, different runs of K-means pro-
duce different total SSEs. Choosing the good initial centroids is the key of the
basic K-means procedure; a common approach is to choose the initial centroids
randomly, but the resulting clusters are often poor. We explicitly observe that,
since the K-means algorithm finds local optimum for SSE, different initial cen-
troids may lead to a different local optimum. A good technique to address the
problem of choosing initial centroids is to perform multiple runs, each with
a different set of randomly chosen initial centroids, and then select the set of
clusters with the minimum SSE. We observe that the efficacy of this strategy
depends on the data set and the number of clusters required.

Derivation of K-means to minimize the SSE

The centroids for the K-means algorithm can be mathematically derived when
the proximity function is the Euclidean distance and the objective is to minimize

3.3 clustering analysis 27

Figure 3.5: Clusters corresponding to the students data of Table 3.1.

the SSE. This is done by minimizing the following equation, which refers to one
dimensional data,

SSE =

K
∑

i=1

∑

x∈Ci

(ci − x)2,

where Ci is the ith cluster, x is a point in Ci and ci is the mean of the ith cluster.
We can solve for the kth centroid ck, by differentiating the SSE , setting it equal
to 0 and solving; we obtain that the best centroid for minimizing the SSE of a
cluster is the mean of the points in the cluster. The K-means algorithm can be
applied to a variety of different objective functions; we can use the Manhattan
distances of points from the center of their clusters and choose the data partition
which minimizes the sum of this distance absolute error (SAE). By considering one
dimensional data, that is, dist = |ci − x|, we have

SAE =

K
∑

i=1

∑

x∈Ci

dist(ci, x).

Analogously to what was done for SSE, by solving for ck, we find that ck =

median {x ∈ Ck}, the median of the points in the cluster. The median of a group
of points is linear to compute and less susceptible to distortion by outliers.

28 data mining techniques

In the open source software WEKA we can run the K-means algorithm with
both measures, SSE and SAE.

3.3.2 DBSCAN clustering

Density-based clustering locates regions of high density that are separated from
one another by regions of low density. DBSCAN is a simple and effective density-
based clustering algorithm that illustrates a number of concepts important for
any density based clustering approach. There are several distinct methods for
defining density; DBSCAN is based on the center-based approach, in which den-
sity is estimated for a particular point in the data set by counting the number
of points within a specified radius, Eps, of that point. This includes the point
itself. This method is simple to implement, but the density of any point will
depend on the specified radius. For example, if the radius is large enough, then
all points will have a density of m, the number of points in the data set. Like-
wise, if the radius is too small, then all points will have a density of 1. There are
several approaches for deciding on the appropriate radius; we refer to [34, 82]
to explore this topic and to [6] for OPTICS, an interesting outgrowth of DBSCAN.

The center-based approach to density allow us to classify a point as being in
the interior region of a dense region (a core point), on the edge of a dense region
(a border point), or in a sparsely occupied region (a noise point). One of the
most important differences between K-means and DBSCAN is about noise; both
DBSCAN and K-means are partitional clustering algorithms that assign each object
to a single cluster, but K-means typically clusters all the objects, while DBSCAN

discards objects that it classifies as a noise. In particular, the main difference
is in the forms of the clusters that two methods can obtain; K-means always
obtains convex clusters whereas DBSCAN allows for non-spherical clusters. In
other words, DBSCAN clusters according to the axiom if two points are close, and

in a dense region, they should be in the same cluster, while K-means is rather based
upon the axiom every point should be closer to the center of its own cluster than to

the center of another cluster. Figure 3.6 shows the steps of the algorithm DBSCAN.

DBSCAN algorithm

1: Label all points as core, border, or noise points.

2: Eliminate noise points.

3: Put an edge between all core points that are within Eps of each other.

4: Make each group of connected core points into a separate cluster.

5: Assign each border point to one of the clusters of its associated core points.

Figure 3.6: The DBSCAN algorithm.

3.4 analysis based on classification 29

3.4 analysis based on classification

Classification, the task of which is to assign objects to one among several pre-
defined categories, is a pervasive problem encompassing many different appli-
cations. The input data for a classification task is a collection of records. Each
record, also known as an instance or example, is characterized by a tuple (x, y) ,
where x is the attribute set and y is a special attribute, designed as the class label

(also known as category or target attribute). The class label must be a discrete
attribute and this is the distinguishing feature of classification from regression,
a predictive model task in which y is a continuous attribute. Classification is the
task of learning a target function f that maps each attribute set x to one of the
predefined class labels y. The target function is also known as a classification
model, which can serve as an explanatory tool to distinguish between objects
of different classes (descriptive modeling), but it can also serve to predict the
class label of unknown records. Classification techniques are most suited for
predicting or describing data sets with binary or nominal categories. They are
less effective for ordinal categories (for example to classify a person as a mem-
ber of high, medium or low income group), because they do not consider the
implicit order among the categories. However there are some approaches using
cost-sensitive classification; classifying a high instance as medium receives a
lower penalty than classifying it as low. The goal is to minimize the expected
cost and in this way classifiers that predict an ordinal class attribute can be
learned.

A classification technique is a systematic approach for building classification
models from an input data set. There are many classifiers, such as rule based,
neural networks and decision tree classifiers; each technique employs a learn-
ing algorithm to identify a model that best fits the relationship between the
attribute set and class label of the input data. The model generated by a learn-
ing algorithm should both fit the input data well and correctly predict the class
labels of records it has never seen before.

A general approach for solving classification problems starts by identifying a
training set which consists of records whose class labels are known; the training
set is used to build a classification model, which is subsequently applied to
the test set, which consists of records with unknown class labels. Evaluation of
the performance of a classification model is based on the count of test records
correctly and incorrectly predicted by the model. The tool and the parameters
by which the evaluation can be given are the confusion matrix, the accuracy,
the precision and the recall (see, e.g., [92]).

30 data mining techniques

Figure 3.7: General approach for building a classification model (source [92]).

3.4.1 Decision trees

Building an optimal decision tree is the key problem in decision tree classi-
fiers. In general, many decision trees can be constructed from a given set of
attributes. While some of the trees are more accurate than others, finding the
optimal tree is computationally infeasible because of the exponential growth of
the search space. However, various efficient algorithms have been developed to
construct a reasonably accurate, although suboptimal, decision tree in a reason-
able amount of time. These algorithms usually employ a greedy strategy that
builds a decision tree by making a series of locally optimal decisions according
to the attribute to be used for partitioning the data. For example, Hunt’s algo-
rithm, which is the basis of many decision tree induction algorithms, including
ID3, C4.5 and CART, is of this kind. An overview of decision tree induction
algorithms can be found in the survey articles [17, 65, 67, 81].

3.4.2 Hunt’s Algorithm

Hunt’s algorithm builds a decision tree in a recursive fashion by partitioning
the training records into successively purer 2 subsets. The general recursive
procedure is defined in Figure 3.8.

The procedure is recursively applied to each subset until all the records in
the subset belong to the same class. The Hunt’s algorithm assumes that each
combination of attribute sets has a unique class label during the procedure. If

2 A subset A is purer than a subset B if A contains more records belonging to a particular class
than B contains.

3.4 analysis based on classification 31

Hunt’s algorithm

1: Let Dt be the set of training records that reach a node t.

2: If Dt contains records that belong to the same class yt, then t is a

leaf node labeled as yt.

3: If Dt is an empty set, then t is a leaf node labeled by the default class, yd.

4: If Dt contains records that belong to more than one class, use an attribute

test (that is an attribute of the whole data sets) to split the data into smaller

subsets.

Figure 3.8: The Hunt’s algorithm.

all the records associated with Dt have identical attribute values except for the
class label, then it is not possible to split these records any further. In this case,
the node is declared a leaf node with the same class label as the majority class
of training records associated with this node.

Various considerations can be made about this algorithm, both for what con-
cerns the methods to express test conditions of different types of attributes, and
for what concerns the measures for the selection of the best split.

There are many measures to determine the best way to split the records.
These measures are defined in terms of the class distribution of the records
before and after splitting and they are often based on the degree of impurity of
the child nodes. The smaller the degree of impurity, the more skewed is the
class distribution. For example, by considering a two class problem, the class
distribution at any node can be written as (p0,p1), where p1 = 1− p0. A node
with class distribution (0, 1) has zero impurity, whereas a node with uniform
class distribution (0.5, 0.5) has the highest impurity. Some of the most used
measures of node impurity are:

Entropy(t) = −

c−1
∑

i=0

p(i|t)log2p(i|t),

Gini(t) = 1−

c−1
∑

i=0

[p(i|t)]2,

Classificationerror(t) = 1−maxi[p(i|t)],

where p(i|t) denotes the fraction of records belonging to class i at a given node
t, c is the number of classes and 0log20 = 0 in entropy calculations.

In the case study illustrated in Chapter 5 we will present some results ob-
tained with the implementation of C4.5 algorithm in the open source software
WEKA. This algorithm employs the entropy measure as its splitting function. An

32 data mining techniques

in-dept discussion of the C4.5 decision tree algorithm is given in [76], where
the author, besides explaining the methodology for decision tree growing and
tree pruning, also describes how the algorithm can be modified to handle data
sets with missing values. Another well known algorithm is CART, developed by
Breiman et al. [76]; it uses the Gini index as its splitting function. These decision
tree algorithms assume that the splitting condition is specified one attribute at
a time. An option for using linear combinations of attributes is proposed in a
CART implementation [14].

We refer to [92] for details and further information of this topic and on clas-
sification techniques in general.

3.5 association analysis

Association analysis is the discovery of interesting relationships (rules) hidden
in large data sets. It studies the frequency of items occurring together in trans-
actional databases and is based on a threshold, called support (s), that identifies
the fraction of transactions that contain an itemset. Another threshold, confi-

dence, which is the conditional probability that an item appears in a transaction
when another item appears, is used to find association rules.

The support count (σ) of an itemsets is defined as the frequency of its occur-
rences.

For example, in the transactional database of Table 3.2 the list of exams for
each student is showed; by considering the itemsets i1 = {7} and i2 = {3, 7}, we
have σ(i1) = 3, σ(i2) = 2, s(i1) = 0.75 and s(i2) = 0.5. In fact, by considering
the itemset i1, the exam 7 is taken by 3 students, and this represents the 75%
of students. By considering the itemset i2, the pair of exams 3, 7 is taken by 2

students, and this represents the 50% of students.

Id-Student Items (exams)

10 1, 2, 3, 4, 5, 7

20 1, 2, 3, 4, 7

30 1, 4, 7

40 1, 2, 3, 5

Table 3.2: A transactional student database.

3.5.1 Association rules

Rule induction methods are widely applied tools for mining large data bases.
They are often used as a starting point in undirected data mining, that is, when
we do not know what specific patterns to look for. One form of rule induc-

3.5 association analysis 33

tion methods are association rules, well known in market basket analysis. They
were proposed in [1] with the aim to provide an automated process, which
could find new connections among items, and especially to answer questions
like: which products (items) are likely to be bought together? Association rules have
been involved in many areas and applications, such as in telecommunication or
insurance business.

In general, an association rule is an implication of the form X → Y , where
X and Y are mutually exclusive itemsets. The quality of an association rule is
measured by support and confidence (see [15] to investigate the use of objective
measures to filter patterns).

Let I be the set of items and D be a transaction database. A transaction t

contains a subset of items chosen from I. The transaction width is defined as the
number of items present in a transaction. A transaction tj is said to contain an
itemset X if X is a subset of tj. The support count of an itemset X, that is the
number of transactions that contain it, can be stated as follows:

σ(X) = |ti|X ⊆ ti, ti ∈ D| ,

where the symbols | | denote the number of elements in a set.
If X e Y are two disjoint itemsets of elements in D, the rule X → Y has support s

in the database D, if the fraction s of transactions in D contains X ∪ Y. A rule
holds with confidence c = c(X → Y), if the fraction c of transactions in D that
contain X also contain Y. The formal definitions of these metrics are

Support, s(X → Y) =
σ(X∪ Y)

N
;

Confidence, c(X → Y) =
σ(X∪ Y)

σ(X)
.

By referring to the example of Table 3.2, with X = {3, 7} and Y = {2}, for the
rule R = X → Y we have s(R) = 0.5 and c(R) = 1.

Most data mining software offers a procedure to generate all association
rules with confidence and support that exceed some user specified minimum
thresholds minsup for support, and minconf for confidence. A common strat-
egy adopted by many association rule mining algorithms is to decompose the
problem in two major subtasks:

1. Frequent itemset generation, whose objective is to find all the itemsets
that satisfy the minsup threshold. These itemsets are called frequent item-
sets.

2. Rule generation, whose objective is to extract all the high confidence rules
from the frequent itemsets found in the previous step. These rules are
called strong rules.

34 data mining techniques

The computational requirements for frequent itemset generation are generally
more expensive than those of rule generation. A lattice structure can be used to
enumerate the list of all possible itemsets. A brute force approach for finding
frequent itemsets is to determine the support count for every candidate itemset
in the lattice structure; this approach can be very expensive, because we need to
compare each candidate against every transaction. If the candidate is contained
in a transaction, its support count will be incremented.

By considering a data set containing d items, we have that the total number
of itemsets is 2d and the total number of possible rules extracted from the data
set is given by the following expression:

R =

d−1
∑

k=1

(

d

k

) d−k
∑

j=1

(

d− k

j

)

 = 3d − 2d+1 + 1.

For example, for d = 6 we have R = 602 rules. The number of comparisons in
the brute force approach is a O(NMw), where N is the number of transactions,
w the maximum transaction width and M = 2k − 1.

The most used technique to reduce the computational complexity of frequent
itemsets generation is based on the Apriori principle, introduced with the corre-
sponding algorithm by the authors in [2], and which allows to eliminate some
of the candidate itemsets without counting their support values.

Apriori principle. If an itemset is frequent, then all of its subsets must be frequent.

Conversely, if an itemset is infrequent, then all of its supersets must be infre-
quent too. Hona et al. [44] developed the min-Apriori algorithm for finding as-
sociation rules in continuous data without discretization. Considerations about
the time and storage complexity of the Apriori algorithm are in [33], while other
algorithms for mining frequent itemsets include the DHP (dynamic hash and
pruning) algorithm proposed in [70] and the Partition algorithm developed in
[83]. The method used by the Apriori algorithm to generate frequent itemsets is
showed in Table 3.9.

For the pseudo code of the frequent itemset generation part of the Apriori

algorithm and for a detailed analysis of association analysis we refer to [92]; we
find an implementation of the Apriori algorithm in WEKA [94]. Many algorithms
have been developed based on the Apriori principle; one of the most serious
problems is to reduce the number of rules generated during the execution of
the algorithm. An overview about this aspect is treated in the last part of the
following section.

3.6 frequent pattern or sequential pattern analysis 35

Apriori algorithm

1: Let k=1.

2: Generate frequent itemsets of length 1.

3: repeat

4: Generate length (k+ 1) candidate itemsets from length k frequent itemsets.

5: Prune candidate itemsets containing subsets of length k that are infrequent.

6: Count the support of each candidate by scanning the Database.

7: Eliminate candidates that are infrequent, leaving only those that are frequent.

8: until No new frequent itemsets are identified.

Figure 3.9: The Apriori algorithm.

3.6 frequent pattern or sequential pattern analysis

When an ordinal relation, usually based on temporal precedence, exists among
events occurring in the data of a transactional database, we are dealing with
sequential patterns. If we refer to a table of the database containing the transac-
tions, each row records the occurrences of events associated with a particular
object at a given time. For example, we can have a record indicating that at
timestamp t = 1 the customer A bought the products P1 and P2. Such infor-
mation can be used for identifying recurring features of a dynamic system or
predicting future occurrences of certain events.

Since its introduction, sequential pattern mining has become an important data
mining tool, and it has been used in a broad range of applications, including
the analyses of customer purchase behavior, disease treatments, Web access
patterns, DNA sequences and many others. The problem is to find all sequen-
tial patterns with higher, or equal support to a predefined minimum support
threshold in a data sequence database, similarly to what introduced for associa-
tion analysis. The support of a sequential pattern is the number, or percentage,
of data sequences in the database containing that pattern. Different techniques
and algorithms have been proposed to improve the efficiency of this task.

In this section we present the basic concepts of sequential patterns analysis.
A sequence is an ordered list of elements and can be denoted as

s = 〈i1i2i3 . . . im〉 ,

where each element ij is a collection of one or more events, i.e.,

ij =
{

e1, e2, . . . , ekj

}

, j = 1, · · · ,m.

The events of an element correspond to the same temporal information, that
is, occur at the same time. The length of a sequence corresponds to the number

36 data mining techniques

of elements in the sequence, while a k-sequence is a sequence that contains k

events.

sequence s sequence t Is t a subsequence of s?

〈{2, 4} {3, 5, 6} {8}〉 〈{2} {3, 6} {8}〉 Yes

〈{2, 4} {3, 5, 6} {8}〉 〈{2} {8}〉 Yes

〈{1, 2} {3, 4}〉 〈{1} {2}〉 No

〈{2, 4} {2, 4} {2, 5}〉 〈{2} {4}〉 Yes

Table 3.3: Sequences and subsequences.

A sequence t is a subsequence of another sequence s if each ordered element in
t is a subset of an ordered element is s. Formally, the sequence t = 〈t1t2 . . . tm〉

is a subsequence of s = 〈s1s2 . . . sn〉 if integers 1 6 j1 6 j2 6 ... 6 jm 6 n

exist such that t1 ⊆ sj1 , t2 ⊆ sj2 ,. . . , tm ⊆ sjm . If t is a subsequence of s, then
we say that t is contained in s. Table 3.3 gives examples illustrating the idea of
subsequences for various sequences.

Let D be a data set containing one or more data sequences, that are ordered lists
of events associated with single data object. Similarly to the association analysis,
the support of a sequence s is the fraction of all data sequences that contain it. If
the support for s is greater than or equal to a user-specified threshold minsup,
then s is a sequential pattern or frequent sequence. Given a data set of sequences D
and a user-specified minimum support threshold minsup, the task of sequential

pattern discovery is to find all sequences with support > minsup.
Table 3.4 illustrates the situation presented in Table 3.2 by considering the

temporal information. In particular, the table contains the fields Student-Id,
Semester and Exams which represent the student identifier, the temporal in-
formation and the list of identifiers for the exams, respectively. For example,
student with identifier 10 has taken exams with identifier 3, 2 and 7 in the
semester 1 and exam 1 in the semester 2.

According to Table 3.4, the identifier of an exam can be seen as an event
and a list of exams can be seen as an element. The sequence 〈{3, 2, 7} {1} {4, 5}〉
is associated to student 10 and represents a portion of his (her) career. This
sequence has length 3 and corresponds to a 6-sequence. Instead, if D is given
by the careers of students 10, 20, 30, and 40,

s10 = 〈{3, 2, 7} {1} {4, 5}〉

s20 = 〈{3} {7, 2} {4, 1}〉

s30 = 〈{4, 7} {1}〉

s40 = 〈{2, 1} {3, 5}〉

3.6 frequent pattern or sequential pattern analysis 37

Id-Student Semester Exams

10 1 3, 2, 7

10 2 1

10 3 4, 5
...

...
...

20 1 3

20 2 7, 2

20 4 4, 1
...

...
...

30 2 4, 7

30 3 1
...

...
...

40 2 2, 1

40 3 3, 5
...

...
...

Table 3.4: Database of sequences.

the new sequence s = 〈{1} {5}〉 has support 0.5 in D since s is a subsequence for
s10 and s40.

Several algorithms were proposed in the literature for the generation of se-
quential patterns, all based on concept related to the generation of association
rules, examined in Section 3.5.1. In [89] the authors illustrate the method for
handling concept hierarchy using extended transactions, while an alternative
algorithm was proposed in [45], where frequent data items are generated one
level at a time. One of the problem related to searching frequent patterns is the
high number of patterns that can be generated from data and that we have to
analyze. If the minimal support threshold is set too low, or the data is highly
correlated, the number of frequent patterns itself can be prohibitively large. To
overcome this problem, several proposals have been made to construct a concise
representation of the frequent patterns, instead of mining all frequent patterns.
About these considerations we refer to [19, 20], where the authors illustrate
how in many cases, first mining the concise representation and then creating
the frequent itemsets from this representation outperforms existing frequent set
mining algorithms.

The association analysis formulation described is based on the premise that
the presence of an item in a transaction is more important than its absence. As a
consequence, patterns that are rarely found in a database are often considered

38 data mining techniques

to be uninteresting and are eliminated using the support measure. Such pat-
terns are known as infrequent patterns. Although a vast majority of infrequent
patterns are uninteresting, some of them might be useful to the analysis, partic-
ularly those that correspond to negative correlations in the data. The problem of
mining infrequent patterns has been investigated by many authors. For exam-
ple, in [84] the problem of mining negative association rules is examined using
a concept hierarchy, while in [91] the idea of mining indirect associations for se-
quential and non-sequential data is proposed. There have been proposed quite
a few interesting and effective algorithms, such as CLOSET [73], MAFIA [18],
CHARM [97] and CloSpan developed for efficient mining of frequent closed
itemsets. ; in particular, CHARM regards itemsets mining and it represents an
important study in this field.

In the following sections we illustrate the main technical characteristics of
the two algorithms used in this thesis, SPAM and CloSpan, to find sequential
patterns.

3.6.1 SPAM

SPAM (Sequential Pattern Mining) is an efficient algorithm integrating a variety
of algorithmic contributions into a practical tool, described in [7]. The algorithm
is based on the construction of a lexicographic tree of sequences which is tra-
versed in a depth-first manner and in which the root is conventionally labeled
0. An additional feature of SPAM is its property of online outputting sequential
patterns of different length (compare this to a breadth-first search strategy that
first outputs all patterns of length one, then all patterns of length two, and so
on).

The implementation of SPAM we consider uses a vertical bitmap data layout
allowing for simple and efficient counting. For the sake of clarity, we illustrate
the main concepts for understanding how the algorithm SPAM works and refer
to the above cited bibliography for a complete description.

A sequence-extended sequence is a sequence generated by adding a new transac-
tion consisting of a single item to the end of its parent’s sequence in the tree. An
itemset-extended sequence is a sequence generated by adding an item to the last
itemset in the parent’s sequence, such that the item is greater than any item in
the last itemset. For example, if we have a sequence sa = ({a,b, c} , {a,b}), then
({a,b, c} , {a,b} , {a}) is a sequence-extended sequence of sa and ({a,b, c} , {a,b,d})
is an itemset-extended sequence of sa.

Each sequence in the sequence tree can be considered as either a sequence-
extended sequence or an itemset-extended sequence. If sequences are generated
by traversing the tree, each node in the tree can generate sequence-extended
children sequences and itemset-extended children sequences.

3.6 frequent pattern or sequential pattern analysis 39

The algorithm SPAM generates sequence-extended sequences by the sequence-

extension step (S-step) and itemset-extended sequences by the itemset-extension

step (I-step). Thus each node n in the tree has two associated sets: Sn, the set
of candidate items that are considered for a possible S-step extension of node
n, and In, which identifies the set of candidate items that are considered for a
possible I-step extension.

The other important phase of SPAM is pruning, based on the algorithm Apriori

and aimed at minimizing the size of Sn and In at every node n. The technique
guarantees that all nodes corresponding to frequent sequences are visited. The
S-step and I-step pruning phases go as follows.

The first technique prunes S-step children. Consider a sequence s at node
n and suppose its sequence-extended sequences are sa = (s,

{

ij
}

) and sb =

(s, {ik}). Suppose sa is frequent but sb is not frequent. By the Apriori principle,
(s,

{

ij
}

, {ik}) and (s,
{

ij, ik
}

) can not be frequent, since both contain the sub-
sequence sb. Hence, we can remove ik from both Sm and Im, where m is any
node corresponding to a frequent sequence-extended child of s.

The second technique prunes I-step children. Consider the itemset-extended
sequences of s = (s ′, {i1, ...; in}). Suppose the sequences are sa = (s ′,

{

i1, ..., in, ij
}

)

and sb = (s ′, {i1, ..., in, ik}), and suppose that ij < ik. If sa is frequent and sb is
not frequent, then by the Apriori principle, (s ′,

{

i1, ..., in, ij, ik
}

) cannot be fre-
quent. Hence, we can remove ik from Im, where m is any node corresponding
to a frequent itemset-extended child of s. Finally we can remove from Sm the
same items as we did using S-step pruning. Suppose that during S-step prun-
ing (s, {il}) was discovered to be infrequent. Then ((sa, {il}) will be infrequent
for any frequent itemset-extended child sa of s.

3.6.2 CloSpan

CloSpan is an algorithm for mining closed sequential patterns in a sequence
database. Given a collection of sequences and a minimum support threshold,
it is able to find all of the subsequences whose frequency is above the thresh-
old. When mining long frequent sequences, or when using very low support
threshold, the performance of efficient methods for mining frequent patterns
often deteriorates dramatically. An interesting solution, called mining frequent
closed itemsets [71], was proposed to overcome this difficulty. A frequent item-
set I is closed if there exists no superset of I with the same support in the
database. Before CloSpan there have been no efficient methods developed for
mining closed sequential patterns. Most techniques developed in closed item-
set mining cannot work for frequent subsequence mining because subsequence
testing requires ordered matching which is more difficult the simple subset test-
ing. There are two approaches for mining closed or max frequent patterns; the
first greedily finds the final closed pattern set, the second finds a closed pat-

40 data mining techniques

tern candidate set and conducts post pruning on it. In [95] authors explore the
second approach, by considering that with the today’s technology to maintain
a great number of sequences in main memory is easy and the sequences have
overlapped parts, that is, there exist compressed data structures to store them.
The algorithm CloSpan develops several efficient search space pruning meth-
ods. A novel concept about the equivalence of projected database is introduced,
which can unify these optimizations in a single step. A simple condition of such
equivalence is formalized and a hash-based algorithm is designed to efficiently
execute the search space optimization with negligible cost. The performance
of CloSpan shows that it not only generates a complete closed subsequences
set which is substantially smaller than that generated, for example, by PrefixS-
pan [74], an algorithm which explores prefix-projection in sequential pattern
mining, but also runs much faster.
CloSpan divides the mining process into two stages; in the first stage a can-

didate set, usually larger than the final closed sequence set, is generated. The
second stage helps eliminate non-closed sequences. The search space pruning
phase of CloSpan does not modify the underlying frequent pattern mining al-
gorithm but it only defines the early termination condition of search branches;
this method could be extended to other existing sequential pattern mining algo-
rithms, like SPAM. We could find that it is feasible to calculate the corresponding
size of projected database in SPAM with a little additional cost.

In Chapter 5, by comparing some results obtained with SPAM and CloSpan,
we will see that CloSpan is effectively better than SPAM for what concerns the
number of generated patterns.

4
D ATA M I N I N G O N S T U D E N T C A R E E R S

In this work we propose a methodology, composed by several models, to be
applied to a database containing information about students and their exams
in a university organization. In particular, for each student, the database con-
tains general information such as the sex, the place of birth, the grade obtained
at the high school level, the year of enrollment at the university, the date and
the grade of final examination besides information about each exam, that is,
the identifier of the exam, the date and the grade. We refer to an organization
of the university which allows students to take an exam also many times, in
different sessions, after the end of the course, as in Italy; we do not have in-
formation about exams retakes, that is, we do not know if students fail some
trials, although this seems to be highly relevant for assessing the success rate of
the educational. Some constrains between exams can be fixed in order to force
students to take some exams in a specific order; however, usually students have
many degrees of freedom to choose their own order of exams. An important
information which is a basilar aspect of our methodology is the semester; an aca-
demic year is divided into two semesters, during which the courses are taken
according to the established curriculum. A student can take an exam in the
same semester of the course, that is, just after the end of the course, or later,
with a delay of one or more semesters. As we illustrate in Chapter 5, we need
to look at several heterogeneous sources to find the necessary information to
insert in the student database the temporal information, that is, the semester of
each course. This phase, such as we presented in Section 2.1 when we consid-
ered the design of a datawarehouse, is very important to obtain a good level
of integrated, corrected and datailed data, over which we can perform a Data
Mining analysis.

4.1 clustering model

The information on the semester just introduced allows us to define an ideal path

and to compare it with the path of a generic student. More precisely, we con-
sider a database containing the data of N students, each student characterized
by a sequence of n exams identifiers and a particular path I = (e1, e2, · · · , en),
the ideal path, corresponding to the ideal student who takes every examination
just after the end of the corresponding course, without delay. Since in the same
semester there are many courses, the ideal path is not unique. In this thesis we
consider courses relative to the same semester sorted according to the prefer-

41

42 data mining on student careers

ence of students, that is, in the ideal path the order of the exams corresponding
to courses taken in the same semester is chosen according to the order preferred
by students. In this case, the number of semesters is not important to determine
the ideal path, but it is sufficient to know the number of exams. For example,
if the degree program has 3 semesters and 7 exams, two in the first semester,
three in the second and two in the third, we can represent the ideal career by
the sequence (1, 2, 3, 4, 5, 6, 7); in this sample, for what concerns the exams of
the first semester, the code 1 was assigned to the exam that students preferred
to take before the other one, that is, with code 2. Similar considerations can be
made for the exams of the other two semesters. A different solution consists in
giving the same temporal identifier to courses in the same semester; in this case
if we have s semesters, we can assign to the exams the values varying from 1

to s . For example, such as in the previous example, with s = 3, the sequence
(1, 1, 2, 2, 2, 3, 3) would represent an ideal path of 7 exams, two in the first and
third semester and three in the second.

Without loss of generality, we can assume that ei = i, i = 1, · · · ,n, that is,
I = (1, 2, · · · ,n), and we can choose to represent the ideal path with the identity

permutation of integers from 1 to n.
The path of a student J with J = 1, · · · ,N, can be seen as a sequence SJ =

(eπJ(1), eπJ(2), · · · , eπJ(n)) of n exams, where eπJ(i), i = 1, · · · ,n, is the iden-
tifier of the exam taken by the student J at time i and πJ indicates the corre-
sponding permutation of 1, · · · ,n. Therefore, SJ can be seen as a permutation
of the integers 1 through n.

As illustrated in [22], the idea is to understand how the order of the exams
affects the final result of students. To this purpose, we compare a path SJ with
I by using the Bubblesort distance, which is defined as the number of exchanges
performed by the Bubblesort algorithm to sort an array containing the num-
bers from 1 to n. The number of exchanges can be computed easily since it
corresponds exactly to the number of inversions in the permutation. Given a
permutation π = (π1,π2, · · · ,πn) of the integers 1 through n, an inversion is
a pair i < j with πi > πj. If qj is the number of i < j with πi > πj then
q = (q1,q2, · · · ,qn) is called the inversion table of π [61]. We use the notation
σ(π) to denote the number of inversions in the permutation, that is, the sum
of the entries in the inversion table: σ(π) =

∑n
j=1 qj. For the position above,

this also represents the Bubblesort distance of π from the identity permuta-
tion. For example, the permutation π = (5, 2, 3, 1, 4), as illustrated in Table 4.1,
corresponds to q = (0, 1, 1, 3, 1) and σ(π) = 6.

The Bubblesort distance is bounded above by n(n− 1)/2; moreover, if we as-
sume a uniform distribution over the n! permutations, then the average number
of inversion is n(n− 1)/4 (see, e.g., [86]).

A second approach for understanding how the order of the exams affects
the results of students concerns the graphical representation of the careers; we
represent them in the integer lattice, where the x-axis denotes the time and

4.1 clustering model 43

index 1 2 3 4 5

π 5 2 3 1 4

q 0 1 1 3 1

Table 4.1: The inversion table for permutation (5, 2, 3, 1, 4).

SJ σ(SJ) ASJ,I

(2,1,3,4,5) 1 1.5

(2,1,3,5,4) 2 3

(1,2,5,4,3) 3 4

(2,4,1,3,5) 3 5

(3,5,1,2,4) 5 8.8

(5,2,3,1,4) 6 8

(5,4,3,2,1) 10 12

Table 4.2: Some careers and their distances from the ideal career for n = 5.

the y-axis the sequence of the exams according to the order of the ideal career.
We precise that it is possible that two students have the same ideal career but
they end their studies in different times; it is also possible that two students
end their studies in the same time, but in a different order. Our model only
considers the order in which exams are taken by students, without considering
the exact time. The ideal career is defined by the sequence of points

τI = ((0, e0), (1, e1), (2, e2), · · · , (n, en), (n+ 1, en+1)),

where e0 = 0 denotes the starting point of the career and en+1 = n+ 1 denotes
the final examination given last by all students. Therefore, τI can be represented
as the bisecting line of the first quadrant. The career of a generic student J is
then represented by a broken line corresponding to the sequence of points

tJ = ((0, eJ0
), (1, eJ1

), (2, eJ2
), · · · , (n, eJn

), (n+ 1, eJn+1
)).

i ei

1 Calculus

2 Programming

3 Algorithms and Data Structures

4 Databases

5 Theoretical Computer Science

Table 4.3: A sample scenario for the careers in Table 4.2.

44 data mining on student careers

By convention, we have eJ0
= 0 and eJn+1

= n+ 1 for every student J, that is,
the resulting trajectory begins at (0, 0) and terminates at the point (n+ 1,n+ 1) ,
that is, the sequence is artificially extended with the final exam en+1, marking
the end of the sequence. We then compare the career of a student J with I

by computing the area between tJ and τI, that is, the sum of the areas of the
triangles between the two lines, as follows:

AJ,I =

n
∑

i=0

∫ i+1

i

|(x− i)(eJi+1
− eJi

) + eJi
− x|dx

In Table 4.2 we illustrate the careers of 7 students for n = 5 and their distances
from the ideal career (1, 2, 3, 4, 5); Table 4.3 gives a sample scenario. Two of these
careers are illustrated in Figures 4.1 and 4.2. It is evident from the graphical
representation that the career (2, 1, 3, 4, 5) is closer to the ideal career than the
career (2, 1, 3, 5, 4). The first career has σ = 1 and A = 1.5, while the second
one has σ = 2 and A = 3. We can conclude that the two representations are
similar but not identical. We put in evidence that it is possible to have students
ending in the same time but in different order, but in our case study, such as
we will present in Chapter 5, this does not happen. For a generic student J we

Figure 4.1: The career (2, 1, 3, 4, 5).

compute σ(SJ) and AJ,I, J = 1, · · · ,N; these new values are inserted into the
database in order to compare the career of the generic student with the ideal
path I.

After this preprocessing phase, we can assume that for each student our
database contains at least the following information: the graduation time, that
is, the total length of study, Time, the final grade, FinalGrade, the Bubblesort

distance and the Area distance, together with other personal information. We

4.1 clustering model 45

Figure 4.2: The career (2, 1, 3, 5, 4).

can proceed by applying a cluster algorithm, for example K-means (see Chap-
ter 3). We wish to point out that the Bubblesort and Area distances are new
attributes inserted in our database, such as any other, for example the year of
enrollment, the mark obtained at the high school, and so on; we use an imple-
mentation of K-means that uses the Euclidean distance to assign each point to
the appropriate centroid; at the step 3 of the algorithm described in Table 3.4, for
each point the closest centroid is found by computing the Euclidean distance.

If the cluster algorithm splits the students into K well defined groups char-
acterized by similar Bubblesort distance and/or Area distance, we can infer
important conclusions about students and the degree program. We observe ex-
plicitly that students who have taken the exams in the same order, that is, stu-
dents with the same path, can have different final grade and graduation time.
The idea is to understand if there exists a relation between the two distances
and the success of students, that is, if students taking the exams with an order
which is similar to the ideal path, obtain better results than the other students.
In other words, if the students corresponding to paths having small distance
from the ideal path achieve good performance, then, for example, we may con-
clude that the academic degree is well structured. However, if there exist many
good students with large distances, and some of them have good performance,
then we can infer that some courses may be scheduled in an incorrect order and
the organization should probably be modified. These are some considerations
that we can infer from the proposed clustering analysis; we will examine this
issue when we will present the results of the case study in Chapter 5.

46 data mining on student careers

4.2 sequential pattern model

As far as we know, there are no many works based on sequential pattern min-
ing in the context of education. Recently, in [72] the authors discuss student
and education responsible perspectives on curriculum mining and present the
achievements of the ongoing project aiming to develop curriculum mining soft-
ware including process mining, data mining and visualization techniques, by
using pattern sets.

Our methodology [24] involves the use of the SPAM algorithm proposed in [7],
an implementation of which can be found in [87], or the more efficient CloSpan
algorithm [27, 95], which finds the closed patterns, that is, those containing no
super-sequence with the same support. Therefore, the career of a student can be
seen as a sequence e1e2 . . . en of n exams, where ek precedes ej in the sequence
if ek has been taken at the same time or before ej. The temporal information
allows us to see the career of a student as a sequence 〈i1i2 . . . im〉 where each
element ij is a collection of one or more exams taken in the same semester
or having the same delay. We illustrate a general methodology which can be
applied to any kind of university degree, provided a preprocessing phase is
performed on the original data to take into account temporal information.

In Section 3.6 we described the sequential pattern theory. We now explain
our methodology based on sequential pattern analysis, by using the algorithm
SPAM or the algorithm CloSpan. This second algorithm is more efficient than
the first one, because it produces a smaller number of frequent patterns than
those produced by SPAM, such as we illustrated in Chapter 3, Section 3.6.2. We
also present how the student data have been processed to perform a pattern
analysis. Our model provides two different steps; the first for the generation
of the sequential patterns, the second for the selection of the most interesting
among them.

4.2.1 The methodology

In order to study sequential patterns in any student database, we consider the
career of a student, that is, the way the student implements her or his exams over
the degree-learning time: a student can take an exam immediately after a course
(the ideal choice) or later. We study the career of students and compare one
another. As we pointed out in the Introduction, the sequential pattern technique
has been introduced in [3] and has become an important method in data mining
(see, e.g., [92]).

In particular, we consider as events the exams taken by a student; the tem-
poral information is the semester in which the exam has been taken or the delay

with which it has been taken.

4.2 sequential pattern model 47

As already observed, we consider an organization of the university which
allows students to take an exam in different sessions after the end of the course,
as in Italy; we refer to the career of a student such as a sequence e1e2 . . . en
of n exams, as we introduced just before. By analyzing the sequential patterns,
we can explain some behaviors which may seem counterintuitive, e.g., course x

is scheduled before course y while many students take exam y before x. Such
information may be helpful for changing course schedules or to find out those
courses whose exams are considered difficult by the students and thus could
give insight for reorganizing the curricula.

In Section 4.1 we have defined the ideal career as the sequence of n exams
taken by an ideal student; in this representation the order of exams relative
to courses given in the same semester is the one chosen by most students. By
convention, we identified the ideal career by the identity permutation, that is,
we identified the first exam in the sequence by code 1, the second by code 2,
and so on. The career of a generic student was therefore a permutation of the
integers 1 to n.

By representing the career of students by permutations we only consider
the order in which the exams have been taken by students. Sequential pattern
analysis, by dealing the temporal information, allows us to study the careers in
greater depth than using the clustering.

Finding sequential patterns in large databases is an important data mining
problem. There are several algorithms implementing techniques for finding fre-
quent sequences based on the Apriori principle [92], introduced in Chapter 3,
according to which if an itemset is frequent, then all of its subsets must also be
frequent, or, if an item set is infrequent then all its supersets must also be infre-
quent. The algorithms SPAM and CloSpan, which are used in our model, belong
to this category.

Id-Student Semester Exam

10 1 3

10 1 2

10 1 7

10 2 1
...

...
...

20 1 3

20 2 7

20 2 2
...

...
...

Table 4.4: Example of data input for SPAM.

48 data mining on student careers

Frequent sequences

1 - 4

1 -1 5 - 2

2 - 3

2 -1 1 - 2

2 -1 4 - 2

2 -1 5 - 2

2 7 - 2

2 7 -1 1 - 2

2 7 -1 4 - 2

3 - 3

3 -1 1 - 2

3 -1 4 - 2

4 - 3

5 - 2

7 - 3

7 -1 1 - 3

7 -1 4 - 2

Table 4.5: Output of SPAM on data of Table 4.4.

Table 4.5 shows the output obtained by using SPAM with a support equal to
0.5 from the data of Table 3.4, in the format accepted by SPAM and illustrated in
Table 4.4. Each line of the output file is a frequent sequence and can be inter-
preted as follows. The last number is the frequency of the sequence; the data
in Table 4.5 correspond to the output obtained by running SPAM by considering
an input data set of 4 students and by choosing minsup equal to 0.5; with these
parameters we obtain all the sequences that have frequency > 2. The number
−1 between two numbers, representing two exam codes, indicates that the two
exams are taken in different times (semesters, if we use this temporal informa-
tion), that is, the first exam is taken one or more semesters before the second;
the symbol − indicates the end of the sequence. For example, the first line of
the output indicates that 4 students have taken exam 1; the eighth line indicates
that 2 students have taken exams 2 and 7 in the same semester and then have
taken exam 1 in a later semester. In this example, only the exam with code 4 has
been taken by all students; in fact only the first line has a support = 4. Besides
we can observe that the longest patterns are 3-sequence, introduced in Section
3.6, corresponding to the eighth and ninth lines; they are two 3-sequences of
length 2 (they involve 2 elements).

4.2 sequential pattern model 49

The example illustrated in Tables 4.4 and 4.5 refers to the use of sequential
pattern analysis where the temporal information corresponds to the semester in
which the student takes exams. Another temporal information which can be
used is the delay with which a student takes exams. This delay is expressed in
semesters and is the difference between the semester in which the student takes
an exam and the semester in which the course has been given by the teacher.
The frequent patterns obtained by using one or the other temporal information
have a different meaning. With the semester, we obtain patterns emphasizing
the order with which students prefer to take exams; with the delay, we ob-
tain patterns grouping the exams according to the delay with which they are
taken by students. These patterns can be used to understand which exams are
more difficult for the students or, on the contrary, do not present great difficul-
ties. Therefore these results can suggest to modify the schedule of the degree
program or confirm that the degree program is well structured. We observe ex-
plicitly that the use of specific temporal information changes the representation
as a sequence of the ideal career introduced in Section 4.2.1. Table 4.6 shows an
example of preprocessed data with the two temporal information, by referring
to the careers of students in Table 3.4, where Semester1 is the semester in which
the course was given by a teacher and Semester2 is the semester in which stu-
dent took the corresponding exam. For example, with the semester, the student
10 has career c

[s]
10 = 〈{3, 2, 7} {1} {4, 5}〉, where the apex s indicates the semester;

with the delay, the same student has career c
[d]
10 = 〈{3, 2, 7, 1} {4, 5}〉, where the

apex d indicates the delay. It is important to note that in our analysis we con-
sider only a gap of semester (or delay), regardless of the exact values of the gap,
which can be either a semester or more semesters.

More precisely, if n is the number of exams, S the number of semesters in
which the degree program is organized and pj the number of exams corre-
sponding to the semester j, then the ideal career corresponds to the sequence

c
[s]
I = 〈i1 . . . iS〉 , ij =

{

j−1
∑

k=1

pk + 1, . . . ,
j−1
∑

k=1

pk + pj

}

,

with
∑S

j=1 pj = n, where the temporal information is the semester. Where we
consider the delay as temporal information, the ideal career corresponds to the
sequence

c
[d]
I = 〈{1, . . . ,n}〉 .

By considering a career of n = 12 exams, with 4 semesters and p1 = p3 = 3,
p2 = 4, p4 = 2 we obtain c

[s]
I = 〈{1, 2, 3}{4, 5, 6, 7}{8, 9, 10}{11, 12}〉 and c

[d]
I =

〈{1, . . . , 12}〉 .
In Chapter 5, we examine a real student database by using both approaches.

50 data mining on student careers

Id-Student Exam Semester1 Semester2 Delay

10 3 1 1 0

10 2 1 1 0

10 7 1 1 0

10 1 2 2 0

10 4 1 3 2

10 5 1 3 2

20 3 1 1 0

20 7 1 2 1

20 2 1 2 1

20 4 1 4 3

20 1 2 4 2
...

...
...

...
...

Table 4.6: An example of postprocessed data for a student database.

4.2.2 Clustering on sequential patterns

By using one of the two algorithms presented in Chapter 3, SPAM or CloSpan,
a fundamental step of our model is searching the frequent patterns that sat-
isfy the specified threshold minsup and consists in considering one of the two
temporal information associated to each exam. Among the sequential patterns
found, we have to discover the most meaningful, that is, those having a higher
support or showing a particular behavior. We stress that this phase cannot be
completely automated and requires a deep knowledge of the context under ex-
amination. In particular, it is mandatory to know the organization of the degree
program and the schedule of courses.

An obvious criterion is to consider the patterns of greater length or involv-
ing the maximum number of exams, and between them, to select those most
regular, for example corresponding to subsequences of the ideal career; alter-
natively we can consider the patterns showing unexpected irregularities. Since
we chose to denote the ideal career as the identity permutation, it is simple to
discover patterns which are ordered subsequences of the ideal career. For ex-
ample, according to the Section 4.2.1, if c[s]I = 〈{1, 2, 3}{4, 5, 6, 7}{8, 9, 10}{11, 12}〉,
then the sequence 〈{3}{5, 7}〉 is obviously a subsequence of cI while 〈{8}{5}{7}〉 is
not. The pattern selection step can be simplified by processing the result of SPAM
(or CloSpan) to obtain a more readable format in which the frequent sequences
are sorted according to the number of exams and to the length.

The database may contain several kinds of information about students. For
example, for each student we can have the grade obtained at the high school

4.3 classification model 51

level, the type of high school, the year of enrollment at the university, the mark
of final examination and the length of the studies.

The next step consists in inserting in the database the information relative to
the sequential patterns previously identified; in practice, every student verify-
ing the pattern P has assigned value 1, 0 otherwise. The aim is to understand if
students satisfying the patterns have some common characteristics. In Table 4.7
we illustrate a sample scenario corresponding to the patterns 〈{1}{5}〉, 〈{7}{5}〉,
〈{7}{1}〉 and the information about the exams of students showed in Table 3.4,
where the temporal information is the semester. Once the database has been
updated in this way, we can perform a clustering analysis to find out if there
is any correlation between student attributes and the sequential patterns. We
could find that students verifying some patterns corresponding to particular
subsequence of the ideal career obtain better results, that is, a high grade in a
small time, than students not verifying them; if this happens we could conclude
that the degree program is well structured because students following it have
good performances. In Chapter 5, we apply this methodology to a real case
study.

Id-Student 〈{1}{5}〉 〈{7}{5}〉 〈{7}{1}〉

10 1 1 1

20 0 0 1

30 0 0 1

40 1 0 0

Table 4.7: Some patterns for Table 3.4.

4.3 classification model

We can extend the analysis presented in Section 4.1 through the technique based
on decision trees. To this purpose, we need to add to the database a new at-
tribute class which labels the students into different ways; we can choose the
Bubblesort_class to label the students into K groups, according to the ranges
of values of Bubblesort distance in the K clusters previously found. For exam-
ple, with K = 2, we can assign the label smallDist to good students, that is, those
having good final results; we assign largeDist to not so good students, having
worst final results. This new attribute can be used to classify students, for ex-
ample by using the C4.5 algorithm, introduced in Section 3.4.1 (see e.g, [92]).
The aim is to classify students as talented or not and find the attributes which
most influence their career.

We can also try to classify with respect to other attributes: for example, we
can predict whether a student obtains a high (low) final grade or has a long

52 data mining on student careers

(short) career, by introducing a Grade_class or a Time_class attribute in the
database. The most interesting use of classification techniques is to build pre-
dictive models, in which the value of a particular attribute can be predicted by
using the values of other attributes. In our analysis we can obtain a predictive
model if we choose, for example, the Grade_class; by analyzing the values of
the other information in the student database, properly preprocessed, we can
obtain a model that shows which are the attributes that determine belonging to
the high grade class rather than low grade class.

We can also be interested to descriptive classification models; for example
if we choose the Bubblesort_class, which labels students into near the ideal
career and far from it, according to the clustering results, we obtain a descriptive
model, because the information about the distance which a student takes from
the ideal career is related to the final grade and the duration time.

We explicitly observe that the greater are the database and more the informa-
tion in it, the more accurate will result the model based on this technique.

5
T H E C A S E S T U D Y

In this chapter we present the analysis performed by applying the data mining
models presented in Chapter 4 on a real case. We consider a university student
database, that is, data for a comprehensive management of the entire life-cycle
of students by beginning with the complex phase of the entry of students into
the training programs of university, then by dealing teaching, courses and ex-
aminations; in this sense the database represents the support for the career of
students from an administrative and educational point of view. In particular,
the management of the careers of students includes information about recruit-
ment and enrollment, from the teaching/learning and the administration point
of view. Each university expresses its strategic goals modeling the courses and
the education paths; in every university information system there are modules
that manage the planning and scheduling of courses; consequently informa-
tion about the planning of the courses is stored in the database, obtained after
an important preprocessing phase. This database can be considered such as a
datawarehouse containing all the information about the students and their ca-
reers and on which the data mining analysis can be performed. We used the
software WEKA [94] for the implementation of the K-means algorithm to perform
the clustering analysis. This software, that was developed at the University of
Waikato in New Zealand, provides implementations of learning algorithms that
we can apply to our datasets. Among algorithms provided by WEKA, for our anal-
ysis we use also the J48 algorithm, that is an implementation of C4.5, one of
the most used algorithms to perform the classification analysis. For the frequent
pattern analysis we used SPAM and CloSpan, that were illustrated in Section 3.6.

5.1 context of analysis

The context of our analysis is based on students enrolled for the first time at the
degree courses in Computer Science and Statistics at the University of Florence
(Italy) from 2001-2002 up to 2007-2008 academic years, according to Ministerial
Decree n. 509/1999. We consider students who did not enroll before to another
degree course; students from other courses than the under consideration ones,
waiving the studies or declined, are excluded from the analysis.

Data concern the laurea triennale, that is, the academic degrees under analysis
are structured in three years; the information is available in two data files, the
first containing general information about students, the second containing the

53

54 the case study

information about all the exams taken by every student. Tables 5.1 and 5.2
illustrate the organization of the data source considered in our analysis.

Field Description

PROG anonymous identifier of student

RESULT = AI if student abandoned

= AT if student is currently enrolled

= LT if the student is a graduate

IMM-YY enrollment academic year

IMM-COURSE enrollment degree program

= 317 Statistics

= 371 Computer Science

HS-CODE highschool

= 1 Professional school

= 2 Technical school

= 3 Educational psychology school

= 4 Scientific high school

= 5 Classic high school

= 6 Linguistic high school

= 7 Art high school

= 8 Other school

= 9 Foreign school

HS-VOTE final highschool grade

LAU-YY degree program academic year

LAU-VOTE degree grade

LAU-DATE degree date

Table 5.1: The general information about student.

In the source database there are 544 students of which 110 students in Statis-
tics and 434 in Computer Science, while the table of exams has 8469 records.
We concentrated our analysis on the graduated students in Computer Science
(IMM-COURSE=371 and RESULT=LT in Table 5.1), so that we considered 141

students and their exams. Every year of the academic degree in Computer Sci-
ence is organized in two semesters; there are several courses in each semester
and at the end of a semester students can take their examinations. Students can
take exams in different sessions during the same year of the course, after its
end, or in later years. In the period under analysis, the Computer Science de-

5.1 context of analysis 55

Field Description

PROG anonymous identifier of student

EXA-CODE exam code

EXA-PROG exam prog

EXA-DESC exam description

EXA-YY academic year of the exam

EXA-DATE exam date

EXA-VOTE exam grade in thirtieths; 31 is cum laude

EXA-RAT rating examination if provided

Table 5.2: Information about exams.

gree had different organizations: during the academic years from 2001-2002 to
2003-2004 each student could choose several exams among five different curric-
ula, while during the other years students could choose between two curricula.
In particular, in the first three years, the curricula were:

1.a Database and Information Systems;

1.b Distributed Systems;

1.c Numerical Applications;

1.d Physics Applications;

1.e Information Sciences.

During the academic years 2004-2005 and 2007-2008 the curricula were:

2.a Computer Science;

2.b Computer Science Applications.

In our analysis, for the first three years, we consider data of students of
the Curricula 1.a and 1.b, because most of the students enrolled during aca-
demic years from 2001-2002 to 2003-2004 chose these curricula. In particular, 38
students chose the Curriculum 1.a, 47 students chose the Curriculum 1.b, the
remaining 8 students were divided between the other curricula. During the aca-
demic years from 2004-2005 to 2007-2008, Curricula 1.a and 1.b were merged
into a single curriculum, called Curriculum 2.a; the other old curricula were
merged into the new Curriculum 2.b.

Much of this information is not available in the data files from which our
analysis began; an important preprocessing phase was required to obtain a
useful database for our data mining analysis. In the following sections, we refer
to Curriculum 1.a with Curriculum 1 and to Curriculum 1.b with Curriculum
2.

56 the case study

5.2 data preprocessing

Several cleaning and transformation operations were necessary to obtain a cor-
rect database to perform our analysis. As we presented in Chapter 2.1, many
steps have to be performed to obtain corrected, consistent and complete data
for a good analysis. First of all, we detected missing and wrong data; for exam-
ple in the source data files there were some exams having the date successive
to the date of the final exam (that is, by referring to fields in Tables 5.1 and 5.2,
LAU-DATE < EXA-DATE); in other records the grade of the exam was missing.
Every time we corrected the mistake by adopting the best technique according
to general rules for data mining; for example if in a record the date of an exam
was missing, we inserted in the corresponding record field the date, according
to the schedule of courses and the behavior of the students. If the grade of an
exam was missing, we assigned the grade according to the mean of the exam
grades calculated for all students having taken that exam, and for all exams
of the student. In the source database some exams were recorded in different
ways compared to the corresponding laboratory tests; in some cases we have a
single record and a single grade for the theoretical and the practical exam, in
others we find two different records, one for the theoretical exam and the other
for the laboratory test. We decided to modify the data to have a unique type of
recording, in agreement to the examination involved.

Apart the operations to make the data consistent and complete, a prepro-
cessing phase was necessary to add some indispensable information for our
analysis, such as the semester (according to its different definitions) and the
curriculum chosen by each student.

After organizing the source data in relational tables and solving the problems
of bad or missing data, we performed several steps by modifying data and
adding new information.

Different curricula

The preprocessing phase aims to obtain a database describing the career of each
student as a sequence of exams. We needed the following information:

• for each curriculum, the established exams and their schedule in years
and in semesters;

• for each student, the chosen curriculum;

• for each student, the list of courses with the semester in which they were
taken, and the list of the corresponding exams, sorted by the semester in
which they were taken.

We found some important information by looking at several heterogeneous
sources, such as paper documentation relative to the academic years under

5.2 data preprocessing 57

consideration and old on-line documents about the organization of the degree
program. For example, by compiling the list of the required exams of a specific
curriculum, we were able to assign a curriculum to every student; by consider-
ing the schedule of each curricula and the enrollment year of each student, we
assigned to each exam of each student the semester in which the student would
have taken the course and taken the corresponding exam.

For each curriculum we formulated the ideal career, as introduced in Chapter
1 and defined precisely in Sections 4.1 and 4.2.1; let us remember that the ideal
career is the sequence of exams that corresponds to the ideal student, who
takes every exam at the end of the corresponding course, without delay. There
are several particular cases; for example, if a student delays every exam exactly
the same time, his/her career, in terms of sequence of ordered exams, will be
equal to the ideal career. Another special case can be if a student takes exams
in the reverse order to that of the ideal career; with data of our case study these
cases do not happen but are possible and, such as we will see, do not modify
our clustering analysis.

The semester

The methodologies presented in Chapter 4 are based on the careers of students
expressed in terms of the semester in which each exam is taken by the students.
This information is fundamental for our purposes; its level of granularity is the
best for our analysis because it allowed to uniform all the years considered,
and because the semester represents the actual and useful period in which an
academic year is divided. For each exam and for each student, we inserted
in the source database several temporal information about the semester: the
semester of the course, that is, the semester in which the course was given by
the teacher; the semester of the exam, that is, the semester in which the student
has taken the exam, and the delay, that is, the difference between the previous
two semesters.

Data for analysis

Tables 5.3 and 5.4 show an example of the most important information in our
final database. In particular, in Table 5.3 the column HSchool is the result of
a transformation, because in the source database we had numerical codes to
indicate the different types of high school, such as shown in Table 5.1; we first
defined groups of high schools, then we associated a label to each group. We
will illustrate in the next sections that, for example, in classification analysis
we need discrete attributes. The column Curriculum corresponds to a new at-
tribute, inserted in the database after that a curriculum was assigned to every
student.

In Table 5.4 the attribute Exam indicates the new encoding of exams, that can
be a numerical or alphabetical code; in the preprocessing phase we assigned

58 the case study

Id-Student Enrollment Curriculum HSchool HGrade Date FinalGrade

10 2001 1 Lyceum 92 15-12-2005 100

20 2001 2 Lyceum 100 17-12-2004 110

50 2001 1 Lyceum 80 10-02-2006 102

60 2001 1 Technic 90 15-12-2005 100

70 2001 2 Technic 92 15-12-2005 100

110 2002 2 Technic 92 07-07-2007 100

120 2002 1 Lyceum 100 12-04-2008 105
...

...
...

...
...

...
...

Table 5.3: A sample of table of students.

Id-Student Exam Date Grade Semester1 Semester2 Delay

10 PR 15-01-2002 28 1 1 0

10 BD 22-02-2002 28 1 1 0

10 LP 28-02-2002 26 1 1 0
...

...
...

...
...

...
...

20 PR 20-01-2002 30 1 1 0

20 LP 27-02-2002 26 1 2 1
...

...
...

...
...

...
...

Table 5.4: A sample of table of exams.

5.2 data preprocessing 59

numerical codes to the exams, so that we can easily sort the exams and obtain
the ideal career as the identity permutation (see Section 4.1). The attributes
Semester1, Semester2 and Delay represent the new temporal information in-
troduced in the data mining models described in Chapter 4.

Tables 5.5 and 5.6 show the schedule of the Computer Science degree pro-
gram for Curricula 1 and 2 during the academic years from 2001-2002 to 2003-
2004. After inserting all information in these tables we can perform the prepro-
cessing step that, for each exams of each student, adds into the database the
attributes about the different temporal information. Before applying tha data

Figure 5.1: Distribution of grades obtained at highschool from graduate students.

mining model to our students data, we can analyze the distributions of some
attributes, such as Figures 5.1, 5.2 and 5.3 illustrate. We obtained these distri-
butions by using a function of WEKA, that for each distribution chooses how
many intervals to use to display the data distribution. In particular, such as we
can see in Figure 5.1, for the attribute HighGrade, that is, the grade obtained
at the highschool, the range of grades from 60 to 100 is divided in 6 intervals
long 8; the most of students of our case study obtained a good grade, equal or
greater than 80. For what concerns the attribute Grade, that is, the final degree
grade, such as we can see in Figure 5.2, there are 6 intervals, corresponding to
the entire range from the minimum grade 83 to the maximum grade 110 (111

indicates cum laude). Also for this attribute we can observe that the most of stu-

60 the case study

Exam Description Semester

1 Programming 1

2 Algebra 1

3 Differential Calculus 1

4 Algorithms and Data Structures 2

5 Computer Architecture 2

6 Mathematical Logic 2

7 Integral Calculus 2

8 Databases and Information Systems 3

9 Physics 3

10 Programming Methodologies 3

11 Concurrent Programming 3

12 Numerical Calculus 3

13 Languages and Compilers 4

14 Computer Networks 4

15 Laboratory of Information Systems 4

16 Laboratory of Operating Systems 4

17 Operating Systems 4

18 Probability and Statistics 4

19 Software Engineering 5

20 Communication Techniques 5

21 Human-Computer Interaction 5

22 Distributed Databases 5

23 Theoretical Computer Science 5

24 IT Work Organization 6

25 Data Structures for Databases 6

Table 5.5: Table of exams for Curriculum 1.

5.2 data preprocessing 61

Exam Description Semester

1 Programming 1

2 Algebra 1

3 Differential Calculus 1

4 Algorithms and Data Structures 2

5 Computer Architecture 2

6 Mathematical Logic 2

7 Integral Calculus 2

8 Databases and Information Systems 3

9 Physics 3

10 Programming Methodologies 3

11 Concurrent Programming 3

12 Numerical Calculus 3

13 Languages and Compilers 4

14 Computer Networks 4

15 Laboratory of Computer Networks 4

16 Laboratory of Operating Systems 4

17 Operating Systems 4

18 Probability and Statistics 4

19 Software Engineering 5

20 Communication Techniques 5

21 Programming of Networks 5

22 Modeling and Simulation 5

23 Theoretical Computer Science 5

24 Networks Security 6

25 Concurrent and Distributed Systems 6

Table 5.6: Table of exams for Curriculum 2.

62 the case study

Figure 5.2: Distribution of final grades obtained from students.

dents obtained good grades, greater than 97. Finally, Figure 5.3, concerning the
duration time of studies in days, illustrates that there is a large part of students
(exactly 41 students) who graduated without delays; however there are some
students having a too large degree time and this is an aspect that deserves to
be deepened.

5.3 applying the clustering model

We analyzed the careers of the students beginning their studies during the
academic years from 2001-2002 to 2003-2004 and graduated up to now. We
considered students belonging to the two most chosen curricula: Databases and

Information Systems and Distributed Systems. In particular, we analyzed the ca-
reers of N = 85 students characterized by a sequence of n = 25 exams. As
illustrated in Section 4.1, the ideal career corresponds to a student which has
given every examination just after the end of the corresponding course, with-
out delay. Therefore, for each curriculum we computed the ideal career, after
we had identified the semester in which courses were originally hold by the
teacher.

In the ideal career, courses relative to the same semester can be sorted by
taking into account the preference of students or by giving the same identifier

5.3 applying the clustering model 63

Figure 5.3: Distribution of graduation times of students.

to courses in the same semester, as illustrated in Chapter 4. As we will see
later, our tests show that the results obtained are the same by using one or
the other ideal career. It could be interesting to apply our model by using a
random ideal career; as we refer in the conclusions, we intend to investigate
in this direction, to prove that this observation can indicate a weakness of the
method (insensitivity to the ideal path) as a strength (stability against small
changes).

Tables 5.7 and 5.8 illustrate the two ideal careers, according to Tables 5.5 and
5.6.

〈{1, 2, 3} {4, 5, 6, 7} {8, 9, 10, 11, 12} {13, 14, 15, 16, 17, 18} {19, 20, 21, 22, 23} {24, 25}〉

Table 5.7: The ideal career for curricula of Tables 5.5 and 5.6.

We note that we obtain the same ideal career for both curricula, because we
use the same numerical code. We observe that, for example, for Curriculum
1 the exam code 25, the last in Table 5.7, corresponds to the exam Data Struc-

tures for Databases, as showed in Table 5.5, while for Curriculum 2, as showed in

64 the case study

〈{1, 1, 1} {2, 2, 2, 2} {3, 3, 3, 3, 3} {4, 4, 4, 4, 4, 4} {5, 5, 5, 5, 5} {6, 6}〉

Table 5.8: The ideal career when exams of a same semester have the same code.

Table 5.6, the same code corresponds to the exam Concurrent and Distributed Sys-

tems. We can observe that the two curricula differ only in five exams, which are
scheduled in the last year, apart from the exams with code 15, corresponding re-
spectively to Laboratory of Information Systems for Curriculum 1 and to Laboratory

of Computer Networks for Curriculum 2, that are exams of the second semester
of the second year. The organization of the first two years of Curriculum 1 and
Curriculum 2 is the same, except for one exam.

Then, for each student J of both curricula we computed the distances σ(J)

and AJ,I from the ideal career and inserted these values into two fields Bubble-

sort and Area of the database; in order to compute these distances we used the
software Maple [37].

As already observed, we considered also the alternative representation of the
ideal career (see Table 5.8), in which exams taken in the same semester have
the same code (as we introduced in 4.1); for each student of both curricula we
computed the distance BubblesortSem, that is, the number of inversions in
the permutation corresponding to the student with respect to the ideal career
in Table 5.8. As we will see later, numbers indicating this distance are smaller
than those corresponding to the Bubblesort distance, computed when the ideal
career is that in Table 5.7. In fact with this alternative representation of the
ideal career, it can happen that students taking exams in different order have
the same career representation. By referring to the example indicated in Section
4.1, let us consider the sequence (1, 2, 3, 4, 5, 6, 7), the ideal career of 7 exams
scheduled in three semester; there are two exams in the first semester, three
in the second and two in third. The alternative ideal career corresponds to
the sequence (1, 1, 2, 2, 2, 3, 3). Table 5.9 shows the distances from the two ideal
careers of two student careers. We can observe that the Bubblesort distances are
different, while the two careers have the same BubblesortSem distance (= 0)
from the alternative ideal career.

Student career Bubblesort BubblesortSem

(1, 2, 5, 4, 3, 7, 6) 4 0

(2, 1, 4, 5, 3, 6, 7) 3 0

Table 5.9: A sample of two student careers and their distances from the two represen-
tations of the ideal career.

5.3 applying the clustering model 65

As a curiosity, for what concerns the Bubblesort distance computed for our
student careers, we obtained an average value of 95.79 and 80.57 respectively
for the two curricula, against the theoretical value of 150; this value is computed
over all 25! permutations of numbers 1 to 25, as discussed in Chapter 4, while
our real values correspond to a small number of permutations. We note that the
careers we analyzed were all different, with different distances, that is, there are
not students with the same career. We tried to sort our data according to both
fields, Bubblesort and Area, and as already illustrated in Table 4.2, we found
some pairs of careers having values of Bubblesort and Area in reverse order,
as illustrated in Tables 5.10, 5.11 and 5.12; this holds for example for students
with Id-Student 39 and 45.

Student 39 has an Area distance equal to 133.13, smaller than the Area dis-
tance of student 45, that is equal to 140.19. Instead the Bubblesort distance of
student 39 is equal to 101, larger than the Bubblesort distance of student 45,
that is equal to 45. However, although these two distances are not completely
equivalent, the difference seems not to be important for the clustering analysis.
This will be best seen in the results showed in the next subsection.

To understand how the order of the exams affects the career of the students,
we performed several tests by using the K-means implementation of WEKA (see,
e.g., [94]). We first analyzed the careers of students separately for the two curric-
ula. In particular, in both cases, we obtained significant results with K = 2 and
by selecting as clustering attributes the graduation time, Time, and the final
grade, FinalGrade. The results obtained separately for the two curricula show
that the results are not influenced from particular choices of curriculum. With
these parameters we can see that students are well divided into two groups:
the group of students who graduated relatively quickly and with high grades
and the group of students who obtained worst results. Luckily, we observed
that students in the first group are characterized by small values of Bubblesort

and Area, while students in the second group have larger values. Our analysis
shows also that the career of a student seems not to be affected by the results
achieved at the high school level. We performed similar tests by adding the
distance values as attributes of clustering, and we obtained two more distinct
clusters, which divide students more precisely in terms of Time, FinalGrade

and Bubblesort (or Area) distance. We finally analyzed together the students
belonging to the two curricula obtaining 2 clusters with the same characteris-
tics as before, thus confirming our previous analysis. This result confirms that,
regardless of the curriculum, the more students follow the order given by the
ideal career, the more they obtain good performance in terms of graduation
time and final grade.

Before the clustering analysis, we conducted an important study about the
correlation between all attributes that characterize our students; the correla-
tion matrix illustred in Figure 5.4 shows that there are better correlations be-
tween attributes Time and Bubblesort (Bubb.)(0.55) and between attributes Fi-

66 the case study

Id-

Student

HighSchool Area Bubblesort Bubbl.Sem Time FinalGrade

13 scientific 184.42 140 124 3126 99

23 scientific 174.33 128 115 2767 100

25 scientific 170.04 119 108 1540 102

29 technical 78.36 57 45 3052 108

39 other 133.13 101 90 2580 95

45 scientific 140.19 98 86 2111 100

47 scientific 72.02 54 38 1593 105

49 scientific 131.34 100 86 1957 100

55 technical 134.47 106 92 1670 99

56 scientific 89.24 67 52 2034 105

60 scientific 91.04 73 55 2111 96

65 scientific 190.52 142 124 2321 96

66 technical 165.19 119 104 2111 86

67 technical 98.13 77 63 1460 92

71 scientific 192.06 136 120 3003 89

74 other 111.21 80 65 1376 106

76 technical 166.49 106 94 2767 98

79 technical 182.09 128 115 2402 99

80 technical 168.32 121 106 2767 92

82 scientific 200.29 135 117 2402 97

83 technical 124.21 96 79 2402 105

84 scientific 159.31 117 102 3579 97

93 scientific 78.06 56 45 1824 97

96 scientific 115.05 91 77 2034 98

97 technical 78.26 60 46 2111 99

103 technical 110.04 89 80 3496 93

105 technical 73.02 59 44 3126 95

110 technical 108.17 76 64 1904 100

112 scientific 122.29 102 93 3052 89

115 other 175.26 131 117 2188 93

120 technical 118.14 87 70 1540 100

140 technical 125.07 88 74 1460 99

144 technical 103.36 72 62 1540 101

145 technical 84.15 68 60 1540 105

Table 5.10: Table of students enrolled during 2001-2002 and 2003-2004 of curricula 1

and 2 - first part.

5.3 applying the clustering model 67

Id-

Student

HighSchool Area Bubblesort Bubbl.Sem Time FinalGrade

146 scientific 79.01 62 52 2038 104

147 technical 116.25 81 72 2324 99

148 technical 150.16 114 102 2403 93

149 technical 112.26 86 77 2038 93

150 scientific 75.52 54 44 1540 99

151 technical 70.03 50 41 1540 103

153 scientific 67.05 50 40 1376 97

154 scientific 70.19 58 48 1670 106

156 technical 107.16 84 74 2324 93

160 technical 88.38 62 52 2038 106

161 scientific 139.18 110 99 2114 103

162 scientific 89.23 77 67 2038 105

163 technical 150.35 114 104 3132 91

164 technical 105.03 80 65 3132 100

172 other 113 88 76 1957 98

173 technical 159.11 121 115 2688 95

175 technical 58.48 43 37 1593 98

176 technical 116.37 76 69 3000 89

178 technical 94.04 63 57 1593 99

179 technical 169.34 122 117 2583 91

180 scientific 115.57 86 75 3067 100

183 technical 155.16 117 110 2688 94

189 other 165.38 125 108 2583 94

191 scientific 180.01 123 116 2403 103

192 other 113.34 74 68 1460 102

197 scientific 80.29 59 47 1540 106

202 scientific 37.02 29 18 1306 111

203 technical 101.23 76 63 1670 91

217 other 136.54 96 82 2762 99

219 scientific 112.13 85 70 1593 99

225 technical 162.35 121 105 2121 85

226 technical 97.24 80 65 2768 108

233 scientific 110.44 77 66 1960 97

234 technical 67.48 51 33 1542 111

Table 5.11: Table of students enrolled during 2001-2002 and 2003-2004 of curricula 1

and 2 - second part.

68 the case study

Id-

Student

HighSchool Area Bubblesort Bubbl.Sem Time FinalGrade

236 scientific 94.03 62 48 1460 98

246 scientific 190.28 146 139 2767 90

250 scientific 133.42 97 86 2219 103

252 scientific 56.04 40 26 1960 100

254 scientific 94.03 64 48 1383 105

256 scientific 161.03 122 108 2039 96

257 scientific 162.42 120 108 2039 98

264 other 103.03 77 71 1960 102

270 scientific 79.11 59 44 1306 107

292 scientific 155.22 107 96 2398 91

296 technical 155.19 103 93 1750 98

311 technical 220.55 175 169 2398 98

312 technical 51.05 35 23 1096 111

313 technical 86.11 64 52 2639 106

314 scientific 219.14 155 147 2937 89

317 other 120.13 86 78 1852 101

321 scientific 49.04 40 28 1593 111

Table 5.12: Table of students enrolled during 2001-2002 and 2003-2004 of curricula 1

and 2 - third part.

5.3 applying the clustering model 69

nalGrade (FinalG.) and Bubblesort (-0.58) than between attributes FinalGrade

and Time (-0.44). We obtain similar results with the Area and the Bubblesort-

Sem (Bubb.Sem) distances; also these attributes are well correlated with the
final grade and with the time. We can also note that the HighGrade (HighG.),
that is, the vote that students obtained at the high school, is not well correlated
with the final results of university studies.

Area Bubb. Bubb.Sem AreaSem Time FinalG. HighG.

Area 1 0 0 0 0 0 0

Bubb. 1 1 0 0 0 0 0

Bubb.Sem 1 1 1 0 0 0 0

AreaSem 0.90 0.96 0.98 1 0 0 0

Time 0.48 0.55 0.52 0.48 1 0 0

FinalG. -0.53 -0.58 -0.58 -0.59 -0.44 1 0

HighG. -0.27 -0.30 -0.31 -0.31 -0.16 -0.35 1

Figure 5.4: Matrix of correlations amomg attributes of student dataset.

Results on students of Curriculum 1

We performed several tests by using K = 2 and the clustering attributes Bub-

blesort distance, FinalGrade and Time. Figures 5.7, 5.8, 5.9 correspond to tests
with clustering attributes Bubblesort distance, FinalGrade and Time; the at-
tribute Time is expressed in days while the FinalGrade is an integer between
66 and 110 (111 denotes 110 cum laude). Figure 5.7 shows students divided into
two well separated clusters; the good students correspond to red stars, having
high FinalGrade and small Time. The not so good students correspond to blue
stars, having low FinalGrade and large Time distances. We observe that we
have well separated clusters also by performing clustering without the attribute
Bubblesort distance, but the introduction of the attribute distance (Bubblesort

or Area) determines clusters better separated than clusters obtained without the
distance as clustering attribute. Figures 5.8 and 5.9 emphasize the correlation
between FinalGrade and Bubblesort distance, and between Time and Bubble-

sort distance, respectively; we can conclude that students having high final grade

and graduated in a relative small time have a small distance from the ideal career. We
also performed test by using the Area distance. The results are similar and are
illustrated in Appendix A, Figures 7.1, 7.2 and 7.3.

We deepened the clustering analysis by investigating the correlation index to
measure the goodness of obtained clusters; as illustrated in [92], the correlation
index computed by using the proximity and similarity, or incidence, matrices
(see, e.g. [41, 69]), is a way to measure the goodness of obtained clusters. In

70 the case study

particular, we computed the proximity matrix P = (Pij) having one row and
one column for each element of the dataset; each element Pij represents the
Euclidean distance between elements i and j in the dataset. In the incidence
matrix I = (Iij) each element Iij is 1 or 0 if the elements i and j belong to the
same cluster or not. Finally, we computed the Pearson’s correlation, as defined
in [92], between the linear representation by rows of matrices P and I. For the
clustering results illustrated in Figures 5.7, 5.8 and 5.9, we obtained a Pearson’s
correlation of −0.38; we also computed the cosine similarity between the linear
representation by rows of matrices P and I , by obtaining a value of 0.42.

We present also the results of the test performed by using k = 2 and the
clustering attributes FinalGrade, Time and BubblesortSem distance, that is,
the distance from the ideal career illustrated in Table 5.8; in Appendix A, the
Figures 7.6, 7.7 and 7.8 show clusters that are similar to those obtained with the
Bubblesort and Area distances; this confirms that the choice of the ideal career
showed in Table 5.7 is not restrictive for our case study. Figures 5.5 and 5.6 show
the details of the results, with the coordinates of the two centroids, obtained by
considering the Bubblesort and the BubblesortSem distance respectively. We
can observe that the results are very similar for what concerns the centroids;
they obviously have different values for the distances, but very similar values
of Time and FinalGrade.

Results on students of Curriculum 2

Also for this subset of students we performed similar tests as those described
in the previous subsection, that is, by considering K = 2 and the clustering
attributes Bubblesort distance, FinalGrade and Time. We obtained similar re-
sults, which we can see in Figures 5.10, 5.11 and 5.12. We again evaluated the
clusters, by obtaining a Pearson’s correlation of −0.54 and a cosine similarity
of 0.39. Also for these data we obtain good results by considering the Area

distance instead of Bubblesort distance. We performed also for these students
tests by considering the BubblesortSem distance, obtaining the results of Fig-
ures 7.9, 7.10 and 7.11, showed in Appendix A. We again observe that the choice
on the ideal career is indifferent, that is, the results of clustering analysis did
not change.

Results on students of Curricula 1 and 2

Also for the entire dataset, referring to alla students enrolled from 2001 to 2003

years, we performed the analysis with K = 2 and with the clustering attributes
Bubblesort distance, FinalGrade and Time. Figures 5.13, 5.14 and 5.15 illus-
trate the results on students of Curricula 1 and 2, by using the Bubblesort

distance. We point out that we obtained similar results also by using the Area

and the BubblesortSem distances; in particular, by comparing the results of
Figures 5.14 and 5.15 with Figures 7.4 and 7.5, in Appendix A, we can observe

5.3 applying the clustering model 71

=== Run information ===

Scheme: weka.clusterers.SimpleKMeans -N 2 -A "weka.core.

EuclideanDistance -R first-last" -I 500 -S 35678

Relation: Student2001-2003Cur1-weka.filters.unsupervised.

attribute.Remove-R1-2,5-6,8-10

Instances: 38

Attributes: 3

Bubblesort

Time

FinalGrade

Test mode: evaluate on training data

=== Model and evaluation on training set ===

kMeans

======

Number of iterations: 6

Within cluster sum of squared errors: 3.0802570187792853

Missing values globally replaced with mean/mode

Cluster centroids:

Cluster#

Attribute Full Data 0 1

(38) (18) (20)

==

Bubblesort 98.0789 76.0556 117.9

Time 2251.8684 1801.7778 2656.95

FinalGrade 98.7368 103.0556 94.85

Clustered Instances

0 18 (47%)

1 20 (53%)

Figure 5.5: Log of the results obtained by WEKA K-means on the students of Curriculum
1, by using Bubblesort distance.

72 the case study

=== Run information ===

Scheme: weka.clusterers.SimpleKMeans -N 2 -A "weka.core.

EuclideanDistance -R first-last" -I 500 -S 10

Relation: Student2001-2003Cur1-weka.filters.unsupervised.

attribute.Remove-R1-3,5-6,8,10

Instances: 38

Attributes: 3

Time

FinalGrade

BubblesortSem

Test mode: evaluate on training data

=== Model and evaluation on training set ===

kMeans

======

Number of iterations: 6

Within cluster sum of squared errors: 3.046748970467072

Missing values globally replaced with mean/mode

Cluster centroids:

Cluster#

Attribute Full Data 0 1

(38) (20) (18)

===

Time 2251.8684 2656.95 1801.7778

FinalGrade 98.7368 94.85 103.0556

BubblesortSem 86.5263 106 64.8889

Clustered Instances

0 20 (53%)

1 18 (47%)

Figure 5.6: Log of the results obtained by WEKA K-means on the students of Curriculum
1, by using BubblesortSem distance.

5.3 applying the clustering model 73

Figure 5.7: Students of Curriculum 1 with respect to FinalGrade and Time.

Figure 5.8: Students of Curriculum 1 with respect to FinalGrade and Bubblesort dis-
tance.

74 the case study

Figure 5.9: Students of Curriculum 1 with respect to Bubblesort distance and Time.

Figure 5.10: Students of Curriculum 2 with respect to FinalGrade and Time.

5.3 applying the clustering model 75

Figure 5.11: Students of Curriculum 2 with respect to FinalGrade and Bubblesort

distance.

Figure 5.12: Students of Curriculum 2 with respect to Bubblesort distance and Time.

76 the case study

Figure 5.13: Students with respect to FinalGrade and Time.

Figure 5.14: Students with respect to FinalGrade and Bubblesort distance.

5.3 applying the clustering model 77

that with the Area distances we obtained very similar clusters than with the
Bubblesort distance. Also in this case we can conclude that the information
about the distance of a student career from the ideal career allows us to split
students into two well defined groups.

The clusters obtained by considering all students have a Pearson’s correlation
of −0.47 and a cosine similarity of 0.39.

5.3.1 Extending clustering by applying classification model

We extend the results obtained with clustering model by running the WEKA J48

algorithm (an implementation of C4.5 algorithm, introduced in Section 3.4.1).
We performed several tests applying the algorithm to different sets of students
and by choosing different class attributes. For example, by running J48 on stu-
dents of Curriculum 1 and Curriculum 2 enrolled in the academic years from
2001-2002 to 2003-2004, we obtained a good classification tree, showed in Figure
5.16, by using the FinalGrade class, labeled with Grade, for simplicity. We can
observe that the results obtained with clustering showed in Figures 5.7, 5.8 and
5.9 are confirmed; students having a small distance from the ideal career obtain
good results, that is, a high FinalGrade and a small Time. We observe that the
tree can be considered a forecasting model, because a student may have, for
example, a high grade if he/she will maintain a small distance from the ideal
career. In this model the type of high school (node HighSchool) is considered;
Figure 5.16 shows also that students from the scientific school will have a good
grade if they maintain very close to the ideal career. This result was obtained
by using both the tree cross-validation that the training set. We could perform
a more accurate analysis by considering information about dropouts and failed
students; however we do not have this type of data and we can only consider
the behaviour just illustrated. Results obtained by using the Bubblesort class

and the Time class are showed in Figures 5.17 and 5.18 respectively. In partic-
ular, Figure 5.18 is a sample of overfitting, that is, with our limited data, the
model is too close to the data; Figure 5.17 ia clear even if a bit trivial: students
which will obtain a large or medium final grade could have a small distance
from the ideal career, while students with a small grade could be far from the
ideal career.

We precise that for a good predictive analysis, we also need to consider the
dropouts, but, as we just observed, we do not have this information; we will
consider this aspect to perform additional analysis, such as we will present in
Chapter 6.

78 the case study

Figure 5.15: Students with respect to Bubblesort distance and Time.

Figure 5.16: Decision tree with class = FinalGrade.

5.3 applying the clustering model 79

Figure 5.17: Decision tree with class = Bubblesort.

Figure 5.18: Decision tree with class = Time.

80 the case study

5.4 applying sequential pattern model

We considered the graduated students which began their career during the
years 2001-2007. For each student, the data sets contain, among other fields,
the identifier of the student, Id-Student, the year of enrollment, Enrollment,
the date, Date and the mark, FinalGrade, of final examination, and, for each
exam, the identifier of the student, Id-Student, the identifier of the exam, Exam,
the date, Date, and the corresponding mark, Grade. For each student there are
many items, one for each examination taken by the student, such as Tables 5.3
and 5.4 illustrate. As we already said, for each student, we added the attribute
Time corresponding to the length of studies. In Tables 5.13 and 5.14 a portion
of real data are illustrated.

By adding to Table 5.14 the temporal information, as we did in Section 5.2,
we obtain Table 5.15, from which we can easily obtain the file to use as input for
the algorithm SPAM, by selecting, for each student and for each exam, the fields
Id-Student, Exam and Semester2 (or Delay). The file obtained in this way is
just in the format accepted by SPAM and illustrated in Table 4.4 of the previous
chapter. As already observed, during the years 2001-2007 the organization of
the academic degree suffered several changes and provided different curricula.
For this reason, it is not possible to analyze together all the exams of all the
students in the database. So we decided to analyze the following two groups of
students characterized by the same subset of exams:

1) a subset of the data containing 950 records corresponding to the 25 exams
taken by 38 students of the Curriculum 1 during the years 2001-2004 (see
Table 5.5);

2) a subset of the data containing 2256 records corresponding to the 16 ex-
ams taken by all the 141 students. Table 5.16 shows these exams. We ob-
serve that the order of exams is different from that shown in Tables 5.5
and 5.6; in this case we are dealing with exams taken by all students en-
rolled during the whole period under analysis. As already observed, in
this period there were some changes about the academic degree schedule.
The order of exams presented in Table 5.16 reflects these considerations.

These data sets are not very large but allowed us to illustrate the methodology
on a real case study.

Table 5.17 shows some frequent patterns obtained by running SPAM on data
set 1); this output has been obtained by a useful postprocessing phase, because,
as we presented in Section 4.2.1, the output of SPAM is not very simple to read.
In Table 5.17 the number at the right of each row indicates the support of
the pattern, the braces enclose the items (or events or exams) and brackets
enclose the frequent patterns. In our analysis it has been useful to sort the
output according to the number of items involved in the patterns, as we have
already observed in Section 4.2.2.

5.4 applying sequential pattern model 81

Id-Student Enrollment Date FinalGrade Time

75 2001 2005-07-08 106 1540

148 2002 2008-04-29 104 2937

156 2002 2007-04-27 106 2111

314 2003 2006-09-06 110 cum laude 1593
...

...
...

...
...

Table 5.13: Data for students

Id-Student Exam Date Grade

75 18 2002-01-14 27

75 21 2002-02-20 28

75 15 2002-09-04 26

75 19 2004-01-29 25
...

...
...

...

148 2 2003-01-31 22

148 21 2003-02-25 25

148 1 2003-06-10 24

148 17 2004-06-04 27
...

...
...

...

Table 5.14: Data for exams

Student Exam Date Semester1 Semester2 Delay

75 18 2002-01-14 1 1 0

75 21 2002-02-20 1 1 0

75 15 2002-09-04 2 2 0

75 19 2004-01-29 3 5 2
...

...
...

...
...

...

148 2 2003-01-31 1 1 0

148 21 2003-02-25 1 1 0

148 1 2003-06-10 2 2 0

148 17 2004-06-04 2 4 2
...

...
...

...
...

...

Table 5.15: Data for finding patterns

82 the case study

Exam Description

1 Programming

2 Computer Architecture

3 Differential Calculus

4 Integral Calculus

5 Algorithms and Data Structures

6 Languages and Compilers

7 Physics

8 Computer Networks

9 Concurrent Programming

10 Operating Systems

11 Probability and Statistics

12 Programming Methodologies

13 Numerical Calculus

14 Laboratory of Operating Systems

15 Communication Techniques

16 Theoretical Computer Science

Table 5.16: Common exams of 141 students.

5.4 applying sequential pattern model 83

By starting from the input format used by SPAM, we performed an important
preprocessing phase to obtain the appropriate input format for the algorithm
CloSpan, such as described in [27]. This algorithm also produces an output that
needs a postprocessing step.

For each data set we run both algorithms to find frequent patterns; in the
next sections we present tests and results and compare the outputs obtained
with SPAM and CloSpan; as we could expect, CloSpan is always more efficient
than SPAM about the number of patterns produced.

5.4.1 Tests and results on students enrolled in 2001-2004 of Curriculum 1

We ran SPAM on our data set of students by using several values of support. In
Table 5.17 we can see a small subset of the 1271 patterns produced by SPAM on
the students data set 1), by using the semester as temporal information and
minsup equal to 0.5. As we already observed, we processed this result to obtain
a more readable format in which the frequent sequences are sorted according
to the number of events; the maximum value of events in a pattern was 5 and,
in particular, we obtained twelve 5-sequences of length 4, one 5-sequence of
length 5, almost two hundred 4-sequences and many other sequences involv-
ing a smaller number of exams. In this case the ideal career corresponds to the
identity permutation of length 25 and the career of a generic student is a per-
mutation of the integers 1 to 25. In particular, when the temporal information
is the semester, we have

s
[s]
I = 〈{1, 2, 3}{4, 5, 6, 7}{8, 9, 10, 11, 12}{13, 14, 15, 16, 17, 18}{19, 20, 21, 22, 23}{24, 25}〉 .

By comparing this sequence with Table 5.17 we can find some interesting re-
sults. For example, we can observe that 70% of students take exams according to
the pattern in the third line. This pattern corresponds to the ideal career except
for exam with code 12 which should be taken before the pair 16, 17. Exam code
12 corresponds to Numerical Calculus, while the pair 16, 17 to Operating systems

and the corresponding Laboratory. A more detailed analysis on the data base
shows also that the average rating for exam 12 is lower than the corresponding
rates for 16, 17 and that the average delay of exam 12 is much larger than the
delay of the pair 16, 17. Therefore we can conclude that exam 12 is considered
very difficult by students.

A similar analysis has been done for other frequent sequences. For example,
line 6 in Table 5.17 show that the exams 19, Software Engineering, and 12, Nu-

merical Calculus, are made in reverse order than expected from the ideal career
by a large part of the students. Again, the average grade of exam 12 is smaller
than that of exam 19.

By running SPAM with minsup equal to 0.5 we also obtained frequent patterns
with minsup equal to 1; some of them are obvious, for example each exam was

84 the case study

Frequent sequences

〈{4} {8} {16, 17} {12}〉 0.5

〈{2} {8} {16, 17} {25}〉 0.5

〈{1} {10} {16, 17} {12}〉 0.7

〈{2} {8} {3} {7} {12}〉 0.5
...

〈{2} {8} {21} {12}〉 0.5

〈{2} {8} {19} {12}〉 0.6

〈{2} {8} {17} {25}〉 0.6

〈{1} {13} {19} {18}〉 0.6

〈{4} {8} {17} {12}〉 0.5
...

〈{8} {23}〉 1

〈{13} {23}〉 1

〈{1} {23}〉 1
...

〈{3}〉 1

〈{2}〉 1

〈{1}〉 1

Table 5.17: Some frequent sequences for the data set of students 1) obtained with SPAM:
minsup= 0.5

5.4 applying sequential pattern model 85

Figure 5.19: Students of data set 1) with respect to FinalGrade and Time: pattern P1 in
evidence.

taken by 100% of the students, while others are non trivial, as for example
〈{8} {23}〉, 〈{13} {23}〉 and 〈{1} {23}〉. These patterns show that all students gave
exam 23, Theoretical Computer Science, after exams 8, 13 and 1, corresponding
to Databases and Information Systems, Languages and Compilers and Programming.
At a first sight, these patterns might seem not interesting, because the exam 23

corresponds to a course of semester 5 (first semester of the third year), while
exams 8, 13 and 1 correspond to courses given in previous semesters (3, 4 and
1, respectively). However, SPAM gives this kind of result only for exam 23, while
there are other exams corresponding to courses given in semesters 5 and 6,
for example exams 19, Software Engineering, and exam 25, Data structures for

databases, which are not so frequently taken after other particular exams. More-
over, we explicitly observe that in the years under consideration, prerequisites
between exams were not fixed. Again, the analysis highlights a difficulty of
students to take the exam 23.

We performed identical tests (with the same values of support) with CloSpan,
obtaining the same results. The algorithm CloSpan produces, for this data set,
an output of 1060 patterns; also in this case the maximum value of events in
a pattern was 5, there were twelve 5-sequences of length 4 but only 140 4-
sequences, while with SPAM they were 200. After the postprocessing phase, we
obtain the following sample output:

〈(1) (10) (16 17) (12)〉 24 4 5,

86 the case study

where 24 indicates the support, 4 is the length of the pattern, that is, the
number of its itemsets, and 5 is the number of the items involved in the pat-
terns; we compared this pattern with the third pattern of Table 5.17, that is,
〈{1} {10} {16, 17} {12}〉 0.7. We observe that they correspond to the same pattern
with the same support. In fact, in the output of CloSpan the support is expressed
in frequencies (24 out of 38 students), in the output of SPAM the support is ex-
pressed in percentage. In CloSpan output the three numbers at the end of each
row are: the frequency of students verifying the pattern, the number of ele-
ments of the patterns (itemsets of pattern) and the number of events (exams)
involved in the pattern.

Table 5.19 shows the comparison between the output of SPAM and CloSpan.
We also run SPAM on the students data set 1) by using the delay as temporal

information and minsup equal to 0.3, thus obtaining 3853 patterns with maxi-
mum value of events equal to 6. In this case, we have s

[d]
I = 〈{1, . . . , 25}〉 and we

found the interesting 5-sequence 〈{8, 13, 14, 15, 24}〉 of length 1 verified by 30%
of students. Exam 14 corresponds to Computer Networks, exam 15 to Laboratory

of Information Systems and, finally, exam 24 to IT Work Organization. We explic-
itly observe that all the exams in the pattern are Computer Science exams. An
analysis of the database shows that the students verifying the pattern take the
corresponding exams with delay equal to zero. We can conclude that students
take without difficulties the exams in the pattern.

Clustering on frequent patterns

As illustrated in Section 4.2.2, we updated the database with the Boolean in-
formation about the frequent patterns which appeared to be most interesting
and performed many tests by using the K-means implementation of WEKA (see,
e.g., [94]). Among the various patterns, for data set 1), we considered the pat-
tern P1 = 〈{1} {13} {19} {18}〉 with support 60% (see Table 5.17) and the pattern
P2 = 〈{8, 13, 14, 15, 24}〉 , examined above. The cluster analysis on the attributes
P1 and P2, together with the final grade and graduation time, with K = 2,
shows that students who satisfy both patterns achieve better results than those
who do not satisfy them. Figure 5.7 illustrates the two distinct clusters: the
red one corresponds to the group of students who graduated relatively quickly
and with high grades; the other cluster corresponds to students who obtained
worse results. Figure 5.19 highlights students who verify pattern P1. A possible
interpretation of this result is that pattern P1 involves an almost ordered sub-
sequence of the ideal career, with only an inversion between 18 and 19, and P2
identifies students without delay in the corresponding exams.

5.4 applying sequential pattern model 87

5.4.2 Tests and results on all students enrolled in 2001-2007

For what concerns the larger data set 2), having s
[d]
I = 〈{1, . . . , 16}〉 , the sequen-

tial pattern and clustering analysis gave similar results. In particular, we point
out the pattern P3 = 〈{2, 6, 7, 8, 11}〉 verified by 45 students and obtained by
using the delay as temporal information. In this case, by using minsup equal to
0.3, SPAM produced 708 patterns with maximum value of events equal to 6.

Figure 5.20: Students of data set 2) with respect to FinalGrade and Time: pattern P3 in
evidence.

The cluster analysis on the attribute P3, together with the final grade and
graduation time, with K = 2, shows that students satisfying the pattern (red
and blue in Figure 5.13) achieve good results. Figure 5.20 highlights students
verifying pattern P3. Tests on this data set gave good results also with K = 3,
such as Figures 5.21 and 5.22 show. There is a medium group of students having
medium results, that is, medium FinalGrade and medium Time. In particular,
Figure 5.22 shows that students having worst results (corresponding to green
stars in Figure 5.21) do not verify the pattern P3. Table 5.18 shows the log
file obtained by WEKA, with the coordinates of the three centroids; the medium
students correspond to cluster 0, and to blue stars in Figure 5.21.

We performed identical tests (with the same dataset and the same values of
support) with CloSpan, obtaining the same results obtained with SPAM. We refer
to Table 5.19 that points out that CloSpan is more efficient than SPAM for what
concerns the number of resulting patterns, because, as we illustrated in Section
3.6.2, CloSpan produces only closed patterns (i.e. patterns corresponding to sets

88 the case study

Figure 5.21: Students of data set 2) with respect to FinalGrade and Time with K = 3.

Figure 5.22: Students of data set 2) with respect to FinalGrade and Time with K = 3

and pattern P3 in evidence.

5.4 applying sequential pattern model 89

=== Run information ===

Scheme: weka.clusterers.SimpleKMeans -N 3 -A "weka.core.

EuclideanDistance

-R first-last" -I 500 -S 123

Relation: Student0107withpattern-weka.filters.unsupervised.

attribute.Remove

-R1-3,5

Instances: 141

Attributes: 3

FinalGrade

Time

Ignored:

P:{2,6,7,8,11}

Test mode: evaluate on training data

=== Model and evaluation on training set ===

kMeans

======

Number of iterations: 6

Within cluster sum of squared errors: 5.210414793664353

Missing values globally replaced with mean/mode

Cluster centroids:

Cluster#

Attribute Full Data 0 1 2

(141) (59) (44) (38)

==

FinalGrade 99.539 98.4407 94 107.6579

Time 1952.0284 1728.9661 2697.5909 1435.0789

Clustered Instances

0 59 (42%)

1 44 (31%)

2 38 (27%)

Table 5.18: Log of the results obtained by WEKA K-means on the students data set 2)
with K = 3.

90 the case study

Data set 1 Data set 2

SPAM with semester

and minsup=0.5

1261 234

CloSpan with semester

and minsup=0.5

1060 233

SPAM with delay and

minsup=0.3

3853 708

CloSpan with delay

and minsup=0.3

2181 646

Table 5.19: Comparing outputs of SPAM and CloSpan.

that do not have supersets with the same support). In particular, we can observe
that the difference is more significant when the execution of SPAM produces a
great number of patterns. We can note this fact by reading the values in the first
column of Table 5.19, that is, by considering the results concerning data set 1).

5.5 analysis of delays distributions

A statistical analysis can be accomplished by data verifying (auditing) with the
aim to know if data are generated by a particular model. Among the analysis of
this kind we are interested to the analytical representation of statistical distribu-
tions. It consists in finding a mathematical function that represents an observed
statistical phenomenon. Often in statistics we have to deal with the following
problem: we have some quantitative observations x1, x2, .., xn and we wish to
verify if these observations (our samples) originate from a particular population
characterized by a density function that we know through an analytical form.
In the analytical representation we can single out the following phases:

1. choice of the function (model) that best fits the characteristics of the data
distribution;

2. estimation of the parameters of the selection function;

3. calculating the degree of matching of the observed frequencies compared
with those obtained with the theoretical model.

A frequency distribution is one of the most common graphical tools used
to describe a single population. It is a tabulation of the frequencies of each
value (or range of values). There is a wide variety of ways to illustrate fre-
quency distributions, including histograms, relative frequency histograms, den-
sity histograms, and cumulative frequency distributions. Histograms show the

5.5 analysis of delays distributions 91

frequency of elements that occur within a certain range of values, while cu-
mulative distributions show the frequency of elements that occur less than a
certain value. A frequency distribution is the first form of summary statistical
data, because it summarizes the information contained in the set of individual
values.

5.5.1 Analysis of the real case

Before to present our analysis, we precise that it is not a traditional statistical
analysis; in Section 5.2 we performed a distribution analysis for some attributes
representing the careers of students, also by using some simple functions of
the software WEKA; we know the distributions of the time to graduate, of the
grade obtained at the final examination and for each exam, and so on. This
study began by observing the delay distribution for each exam; in particular
we observed the delays concerning 16 exams taken by 141 graduate students
enrolled between 2001-2002 and 2007-2008 academic years, that is, students
corresponding to data set 2) introduced in Section 5.4.

The analysis shown so far concerns the perspective of the student, who eval-
uates how difficult and important an exam is, in order to decide to take it
immediately at the end of the course, or delay it as much as possible. In this
section we propose the analysis of the student database from the perspective
of each course, by analyzing the distribution of students with respect to the
delay with which they take an examination, to discover common characteristics
between two or more courses.

Usually, good students try to pass early every exam, but not so good students
prefer to postpone most exams, especially if they are considered too difficult
or too technical. We are interested in studying the delay distribution of every
exam in the hypothesis that it is a good parameter for classifying students
and/or courses.

In general, delays conform to some Poisson distribution, with average (and
variance) λ and probability mass function

Pλ(k) = e−λ · λk/k!

for k > 0. The Poisson distribution is discrete and, in our case, k represents
the delay of the exam from the end of the course, measured in semesters. So, if
N is the number of students, Pλ(0) ·N is the number of those who passed the
exam within the first semester; Pλ(1) ·N are the students who passed during
the second semester, and so on. Finally, the distribution is unimodal and attains
its maximum value at k ≈ λ.

If we look at the actual distributions of students with respect to the delay with
which they took their examinations (Figures 5.23 and 5.24 show two examples,
the first about a Computer Science exam, Databases and Information Systems, the

92 the case study

Figure 5.23: Distribution of delay of exam Databases of Information Systems.

second about a Mathematics exam, Integral Calculus), we observe that most of
them are bimodal, with a sharp peak at k = 0, 1 and a second and smoother
peak at k = 5 or k = 6. It is important to observe the very different behaviors
of these two distributions; such as we will point out later, we can infer that
there are many students who delay more the Integral Calculus exam than the
Databases and Information Systems exam.

The obvious interpretation is that there are two different distributions, the
first one relative to good students and the second relative to not so good students,
who delay their exams of about two years. The two distributions are superim-
posed and generate the two peaks.

In other words, by examining the distributions for each exam, we can infer
that students are divided into two classes:

1. students who tend to take an exam as soon as a course is terminated;

2. students who delay difficult exams to the end of their career.

5.5 analysis of delays distributions 93

Figure 5.24: Distribution of delay of exam Integral Calculus.

This does not mean that we analyze whether a student taking an exam with
some delay then also takes other exams with the same delay; we now are inter-
ested in studying the beheviour of exams in terms of delays with which they are
taken by students. In order to analyze this behavior in a more formal way, we
need to find the two Poisson distributions. We consider n courses c1, c2, · · · , cn
taken by N students and a database containing, for each course ci, the num-
ber of students Dci

(k) which take the exam with delay k, for k = 0, · · · ,di,
where di is the maximum delay relative to course ci. We then use the follow-
ing algorithm to determine the average values λg and λng characterizing the
two Poisson distributions and the corresponding numbers N(λg) and N(λng)

of students. We can make the hypothesis that the λg-distribution decreases very
fast so that it reduces to k = 0, 1, 2 as meaningful values. This approach may
seem similar to the algorithm EM but, such as we will discuss in the section of
conclusions, our analysis proceeds in a different way although reaching similar
results to those obtained with EM. We observed the behaviors of distributions
of delays expressed in semester, but in the following approach we considered
the delay in years, because this type of aggregation seems appropriate to ana-
lyze this aspect of student data. In the case of exams corresponding to Figures
5.23 and 5.24, in semester we have the two sequences of delays

(74, 5, 30, 10, 16, 2, 2, 1, 1, 1, 1, 1)

94 the case study

and
(26, 5, 7, 3, 22, 4, 28, 5, 16, 3, 10, 7, 4, 0, 1),

that, in years, become the sequences

(79, 40, 18, 3, 2, 2)

and
(31, 10, 26, 33, 19, 17, 4, 1).

This means that for the exam Databases of Information Systems there are 74

students who took it without delay, 5 students who took it with delay of 1

semester, 30 students with a delay of 2 semesters, and so on. The delays in
years are obtained by adding two by two the delays in semesters.

With this assumption, our first step consists in separating the first two values
of sequences from the rest and try to approximate the λng-distribution. We
iterate this approximation process until a fixed point is obtained. This process
can modify the values for k = 0 and k = 1, so that we have to use these new
values to approximate the λg-distribution. Again, we proceed until a fixed point
is found. The algorithm stops here returning, for each course, the two desired
approximations.

For example, let us consider the course Operating System having the delays
distribution, in semesters, (67, 8, 21, 10, 17, 1, 6, 3, 4, 1, 1, 2), and, in years,
(75, 31, 18, 9, 5, 3); the decreasing rate is too large for being relative to a
single Poisson distribution with the same mean λ = 0.915; in fact, this mean
corresponds to the distribution [56, 52, 24, 7, 2, 0], very far from our empirical
values. Therefore, we isolate the first two values and try to approximate the
others [0, 0, 18, 9, 5, 3] using the relative average λng = 2.8. This affects
the first two positions, giving [2, 6, 8, 8, 5, 3], the actual average of which
is λng = 2.42, a better approximation to the empirical values. We iterate the
process until we find a fixed point, that is, a distribution generating itself. After
nine iterations we find the distribution [8, 16, 18, 9, 5, 2], thus explaining the
behavior of more than 40% of the students, who prefer to delay this exam.

As observed before, these values modify the distribution of the first two po-
sitions relative to the good students. This becomes [67, 15, 0, 0, 0, 0] and an
average value of 0.18. We assume for λg this new value and, similarly to the
previous approximation, iterate the process until we find a fixed point. We stop
by finding λg = 0.20, corresponding to the distribution [67, 14, 1, 0, 0, 0] . In
this way, we have explained the behavior of good students, corresponding to the
58% of the total. Summing up the two distributions we find [75, 30, 19, 9, 5, 3],
very close to the empirical distribution [75, 31, 18, 9, 5, 3]; in fact, we com-
puted χ2 = 0.24, to be considered together with five degrees of freedom. Table
5.20 illustrates the details of this procedure, performed by using the software
Maple.

5.5 analysis of delays distributions 95

Empiric distribution [75, 31, 18, 9, 5, 3] Starting distribution [0, 0, 18, 9, 5, 3]

[0, 0, 18, 9, 5, 3], λng = 2.80

[2, 6, 18, 9, 5, 3], λng = 2.42

[4, 9, 18, 9, 5, 3], λng = 2.30

[5, 12, 18, 9, 5, 3], λng = 2.12

[6, 13, 18, 9, 5, 3], λng = 2.100

[7, 14, 18, 9, 5, 3], λng = 2.00

[8, 15, 18, 9, 5, 3], λng = 1.95

[8, 16, 18, 9, 5, 3], λng = 1.93

[8, 16, 18, 9, 5, 3],N(λng) = 59

[67, 15, 0, 0, 0, 0, 0], λg = 0.18

[67, 15, 1, 0, 0, 0, 0], λg = 0.20

[67, 14, 1, 0, 0, 0],N(λg) = 82

Theoric distribution [75, 30, 19, 9, 5, 3]

Table 5.20: Steps for the approximation of the delays distribuition of the Operating
System exam.

This example concerns a Computer Science course of the second year. It is an
important exam so we could have expected most students would prefer to give
at once, as it happens for other Computer Science exams.

We applied the algorithm (by using the software for symbolic calculus Maple

[37]) to n = 15 courses taken by N = 141 students in Computer Science at the
University of Florence. The analysis confirmed that for each course ci we have

Dci
(k) ∼ Pλgi

(k) ·N(λgi
) + Pλngi

(k) ·N(λngi
),

with a good approximation.
In particular, we found that some Computer Science exams are characterized

by
∑

k>0 Pλg
(k) ∼ 70%. Instead, Mathematics exams are delayed and often

appear as the last exams taken before the final examination.
Table 5.21 shows these results sorted by average grade (avg-grade); more than

60% of students prefer to take Computer Science immediately; instead, Mathe-
matics exams are delayed and often appear as the last exams given before the
final examination. Strangely, the exam of Physics is given immediately by the
81% of all the students. Figures 5.25 and 5.26, by representing delays aggrega-

96 the case study

tion for Computer Science exams and for Mathematics exams, show clearly this
behavior.

Exam λg %λg λng %λng χ2 avg-grade

Languages and Compilers 0.12 79 1.1 21 0.7 25.94

Numerical Calculus 1 10 2.89 90 5.15 25.92

Computer Network 0.12 90 2.47 10 0 25.9

Physics 0.15 81 2.11 19 0.64 25.9

Computer Architecture 0.13 79 3.09 21 2.59 25.85

Concurrent Programming 0 20 1.8 80 3.43 25.8

Operating System 0.22 58 1.89 42 0.24 25.48

Programming 0.16 78 2.26 22 0.47 25.39

Databases and Information Systems 0.29 60 1.4 49 0.98 25.3

Algorithms and Data Structures 0.3 77 2.38 23 1.55 25.29

Programming Methodologies 0.24 59 1.73 41 1.26 24.85

Theoretical Computer Science 0.29 41 2.29 59 1.53 24.14

Integral Calculus 0 16 2.84 84 9.55 23.74

Differential Calculus 0 38 2.57 62 9.6 22.76

Probability and Statistics 1.27 15 1.92 85 8.39 20.88

Table 5.21: Results about approximations of the delays distribution of some exams.

For details, the delay distributions of some exams shown in Table 5.21 are
presented in Appendix B, with Figures 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7 and 8.8,
beyond those of the examples given in this section.

In the next chapter we present some conclusion of our analysis; for what
concerns the analysis of delays distribution, we can anticipate that the analyzed
students are really divided in two groups. The first group of students who take
exams (in particular, Computer Science exams) as soon as the corresponding
course is terminated; the second group of students who delay difficult exams
(in particular, Mathematics exams) to the end of their career.

5.5 analysis of delays distributions 97

Figure 5.25: Distribution of delays of Computer Science exams.

98 the case study

Figure 5.26: Distribution of delays of Mathematics exams.

6
C O N C L U S I O N S A N D F U T U R E A N A LY S I S

In this thesis we proposed a data mining methodology to study the behavior
of university students in terms of their careers, by analyzing the correspond-
ing database, and, as a matter of fact, we found many interesting relationships
among data. By introducing the concept of ideal career, that is, the career of
the ideal student who takes each exams at the end of the corresponding course,
without delay, we defined the distance between the career of a student and
the ideal career. We defined the career of a student in different ways, by con-
sidering the temporal information or not, according to the method of analysis
used; for traditional clustering analysis we introduced an ideal career that was
a sequence of exams, without the temporal information. In our case study, illus-
trated in Chapter 5, we showed that the results obtained with one or the other
representation of the ideal career are similar. For the frequent patterns analy-
sis we represented a career as a sequence with temporal information, as this
technique requires. We combined some data mining techniques to analyze stu-
dents data and used also the classification technique, based on decision trees,
to deepen the clustering analysis.

By applying clustering techniques on the student database of the Computer
Science degree program at the University of Florence, we obtained significant
results showing that students can be divided into two groups according to their
distance (for example the Bubblesort distance defined in 4.1), from the ideal
career: students who graduated relatively quickly and with high grades and
students who obtained worse results. Luckily, we observed that students in the
first group are characterized by small values of Bubblesort distance while stu-
dents in the second group have large values. We point out that it is theoretically
possible to be close to the ideal career and to have a large delay. In our case
study this does not happen; however, if this happened, that is, if many good
students had large distances from the ideal career, we could make other consid-
erations, such as that the degree program probabily needs to be reorganized.
The obtained results confirm that the more students follow the order taken by
the ideal path, the more they obtain good performance in terms of graduation
time and final grade. As an important consequence of this, we can conclude
that the degree program in the period under examination was well structured.
Also the results obtained with classification techniques, with different choices
of attributes and class, confirmed the previous results: for example, classifying
students with respect to small (6 100) and large (> 100) values of Bubblesort

distance, we obtained that students with small distance have better career than
students with large distance, in term of final grade and time to complete their

99

100 conclusions and future analysis

studies. We do not forget that the opposite conclusions could be true, that is,
only the good students could complete the program as intended. This does not
seem to be in our case study. We intend to deepen this aspect by using a ran-
dom ideal career, that is, by performing different tests with different randomly
generated careers. However we expect that the choise of the ideal career is con-
ditioned by the data set being analyzed, that is, by the degree program under
analysis.

By using the frequent pattern technique we investigated issues for mining
sequential patterns in a database of university students. As far as we know and
as we referred in Section 4.2, this is one of the first attempts to use the sequen-
tial pattern technique in the context of education. In particular, we proposed a
methodology that consists in the following main steps:

i) the generation of the frequent patterns by using the SPAM, or CloSpan,
algorithm;

ii) the selection of the most interesting patterns and, finally

iii) the cluster analysis based on the results of the previous step.

For what concerns the first step, we considered two possible types of temporal
information: the semester in which students take exams and the delay with which
exams are taken. A critical step concerns the selection of patterns and in Sec-
tion 4.2.2 we give some hints to find the most interesting ones; however during
this phase it is necessary a deep knowledge of the context under examination.
For example, by searching frequent patterns for the database under analysis,
we found the frequent pattern 〈{4} {8} {16, 17} {12}〉 with the support 0.5, (that is,
verified by the 50% of students) that allow us to understand which exams, or
typology of exams, are considered difficult by students. In fact, by referring to
Table 5.5, that contains the exam names corresponding to the codes involved
in this pattern, where the ideal career corresponds to the exam codes sorted
in ascending order, we can see that Mathematics exams tend to be considered
more difficult than Computer Science exams (this explains why the exam with
code 12 follows the exams with codes 16 and 17 in the pattern). In order to find
if there is a relation between the curriculum of students and the patterns, we
decided to use them as binary attributes of our database and tried to cluster
students by using the K-means algorithm. We can wonder whether information
such as the sex, the place of birth, the grade obtained at the high school level
and the year of enrollment at the university have a correlation with the frequent
pattern analysis. For example, in the case study examined in this thesis, the pat-
terns P1 and P2 (defined in Section 5.4.1 and corresponding to the semester
and to the delay as temporal information) divide students into good and not so

good, according to the final grade and the length of studies. Pattern P1 is a sub-
sequence of the ideal career while P2 corresponds to a 5-sequence of computer

conclusions and future analysis 101

science exams taken without delay. In other words, also by performing the fre-
quent patterns analysis, we obtained that the good students have taken most
exams according to the order planned by the degree program, and this can
mean that it was well structured. Moreover, they have taken several Computer
Science exams without delay, which did not happen for Mathematics exams.

We proposed also an analysis technique to study the data of university stu-
dents by the prospective of courses. We presented in Section 5.5 an idea to ap-
proximate the distributions of exams delays, by starting from the observation
that students are divided into two groups: good students who pass early each
exam, not so good students which postpone most exams, especially if they are
considered too difficult or technical. We illustrated the model and the algorithm
by using a mixture of two Poisson distributions to determine the approxima-
tions of good students and not so good students, obtaining results, in terms of
delays’ medium values and their frequencies, showing that about 70% of stu-
dents take Computer Science exams early, but Mathematics exams are delayed
and often appear as the last exams taken before the final examination. Our ap-
proach is similar to that of the Expectation Maximization (EM) algorithm, which
however is based on a different argument: given a guess for the parameter val-
ues, the EM algorithm calculates the probability that each point belongs to each
distributons and then uses these probabilities to compute a new estimate for
the parameters, which are the ones that maximize the likelihood. We find an
implementation of this algorithm in WEKA; for a short tutorial of it we refer to
[13], while for a complete discuss about it we refer to [12]. We are conscious
that we have adopted some simplifications for what concerns the correct statis-
tical approach. In fact we know that using the Poisson distribution implicates
several hypothesis, such as having a large number of students with the same ca-
reer in term of time (on the contrary our students graduated in different times),
or having a large number of delays (in semester). We intend to deepen the de-
lays distribution analysis by using the Poisson Lognormal Distribution [16], that
seems to describe well this phenomenon. This distribution is characterized by a
λ following a lognormal distribution and this feature allows to extend the char-
acterization of students to various ranges of students (respect to good and not
so good students) and to assign to each student a value of λ that characterizes
him/her.

We deepened our students analysis by investigating the correlation indexes of
clusters obtained by applying the clustering model, such as we did in Section
5.3; we evaluated clustering by using the Pearson’s correlation and the cosine

similarity applied to the linear representations of the proximity matrix and of
the incidence matrix, but we can deep the evaluation step by considering other
measures, such as it is discussed in [92]. In the same direction, we intend to
analyze the student databases also using the EM algorithm.

We wish to point out that, although we tested our models on a small database,
the results presented in this thesis are intended to illustrate a methodology

102 conclusions and future analysis

which can be applied to databases of any dimension containing various curricu-
lum data of students and corresponding to different degree program programs.

6.1 the evolution of the computer science degree at the univer-
sity of florence

In Chapter 5 we presented the case study concerning the data analysis of grad-
uate students in Computer Science at the University of Florence (Italy) enrolled
during 2001-2002 and 2007-2008 academic years, according to Ministerial De-
cree n. 509/1999. We considered the laurea triennale, that is, the academic degree
under analysis is structured in three years. After the period under examination
the Computer Science degree is always organized in three years, but its schedul-
ing has been modified and we had in this last year the first graduate students,
that is, we have too few students and few data to perform a significant analy-
sis. As we illustrated in Section 5.1, in the period under analysis the Computer
Science degree had different organizations: during the academic years from
2001-2002 to 2003-2004 there were five curricula, in the other period students
could choose between two curricula. This change was done because students
enrolled in 2001-2003 mostly chose the first two curricula, that were merged
in the first curriculum of the enrollment period 2004-2007. Our study analyzed
data corresponding to different points of view, considering several subsets cor-
responding to a particular curriculum, students enrolled in different periods
and choosing different curricula, besides analyzing all students, by considering
only common exams. In every of these cases, we obtained the same important
result: the more students follow the order of exams provided from the degree
program scheduling, the more they obtain good performance in terms of gradu-
ation time and final grade. This fact could mean that the degree program is well
structured. On the other hand, by analyzing the delays distributions of exams,
we obtained that the Mathematics exams are delayed from a large part of stu-
dents: perhaps the scheduling of these exams may be changed, or it is necessary
that students come to the University with a better knowledge of Mathematics.
We point out that in the analysis models proposed in this thesis, the results ob-
tained by students at the highschool level are considered, such as, for example,
in the clustering model, where we tried to use also the attribute corresponding
to the grade obtained to highschool, and in the classification model, where we
used the information about the type of highschool. We observe that, for a good
university career, the type of highschool seems to be more important than the
grade obtained at the highschool level; this also emerged from the correlation
analysis illustrated in Section 5.3, that put in evidence low values of correla-
tion between the attributes HighGrade and Time, and between HighGrade and
FinalGrade.

6.1 the evolution of the c. s. degree at the university of florence 103

We considered students careers with many degrees of freedom because in
the period under analysis the degree program of Computer Science at the Uni-
versity of Florence did not have formal constraints between exams, but only a
curriculm highly recommended. It would be interesting to apply our models
to a degree program having some more constraints between exams to know
if it possible to come up with similar results also when the ideal career has
more constraints (for example, the Computer Science program degree in the
last years, when some constraints are been fixed).

In order to deepen the analysis and the discussion about the university stu-
dents performances, we have already began to perform other types of analysis
on students data; in particular we intend to study the performance of students
in Computer Science compared with the results of the entrance tests, and the
performance of same students compared with the results of the evaluation of
courses done by students. We expect that the Data Mining techinques can give
interesting results also for these studies.

7
A P P E N D I X A

The following three figures show results with K-means algorithm by using the
clustering attributes Area distance, Time and FinalGrade on students of Cur-
riculum 1.

Figure 7.1: Students of Curriculum 1 with respect to FinalGrade and Time.

Figures 7.4 and 7.5 show results with K-means algorithm by using the cluster-
ing attributes Area distance, Time and FinalGrade on all students.

Figures from 7.6 to 7.11 show results with K-means algorithm by using the
clustering attributes BubblesortSem distance, Time and FinalGrade on stu-
dents of Curriculum 1 and 2.

For what concerns the results obtained with the J48 algorithm, Figures 5.17

and 5.18 show the decision trees obtained on students data of Curriculum 1, by
choosing Bubblesort and Time class respectively.

105

106 appendix a

Figure 7.2: Students of Curriculum 1 with respect to FinalGrade and Area distance.

Figure 7.3: Students of Curriculum 1 with respect to Area distance and Time.

appendix a 107

Figure 7.4: Students with respect to FinalGrade and Area distance.

Figure 7.5: Students with respect to Area distance and Time.

108 appendix a

Figure 7.6: Students of Curriculum 1 with respect to FinalGrade and Time by using
BubblesortSem distance.

Figure 7.7: Students of Curriculum 1 with respect to FinalGrade and BubblesortSem

distance.

appendix a 109

Figure 7.8: Students of Curriculum 1 with respect to BubblesortSem distance and Time.

Figure 7.9: Students of Curriculum 2 with respect to FinalGrade and Time by using
BubblesortSem distance.

110 appendix a

Figure 7.10: Students of Curriculum 2 with respect to FinalGrade and BubblesortSem

distance.

Figure 7.11: Students of Curriculum 2 with respect to BubblesortSem distance and
Time.

8
A P P E N D I X B

This appendix collects figures showing the graphical representation of the de-
lays distribution of some exams analyzed in Section 5.5.

Figure 8.1: Delays distribution of exam Algorithms and Data Structures.

111

112 appendix b

Figure 8.2: Delays distribution of exam Computer Architecture.

Figure 8.3: Delays distribution of exam Computer Networks.

appendix b 113

Figure 8.4: Delays distribution of exam Languages and Compilers.

Figure 8.5: Delays distribution of exam Concurrent Programming.

114 appendix b

Figure 8.6: Delays distribution of exam Operating Sysyems.

Figure 8.7: Delays distribution of exam Physics.

appendix b 115

Figure 8.8: Delays distribution of exam Differential Calculus.

B I B L I O G R A P H Y

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining associations between sets
of items in massive databases. In The ACM-SIGMOD 1993 International

Conference on Management of Data, pages 207–216, Washington, 1993.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining association rules.
In Technical Report RJ9839, IBM, IBM Research Report RJ9839, 1993.

[3] R. Agrawal and R. Srikant. Mining sequential patterns. In Proceedings of

the Eleventh International Conference on Data Engineering, pages 3–14, 1995.

[4] R. Agrawal and R. Srikant. Privacy-preserving data mining. In Proc. of 2000

ACM-SIGMOD Intl. Conf. on Management of Data, pages 439–450, Dallas,
Texas, 2000. ACM Press.

[5] M. R. Anderberg. Cluster Analysis for Applications. Academic Press, New
York, 1973.

[6] M. Ankerst, M. M. Breunig, H. P. Kriegel, and J. Sander. OPTICS: Ordering
points to identify the clustering structure. In Proc. of 1999 ACM-SIGMOD

Intl. Conf. on Management of Data, pages 49–60, Philadelphia, Pennsylvania,
1999. ACM Press.

[7] J. Ayres, J. Gehrke, T. Yiu, and J. Flannick. Sequential pattern mining
using a bitmap representation. In Proceedings of the Eighth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pages 429–
435, 2002.

[8] R. Baker. Data mining for education. In International Encyclopedia of Educa-

tion, Oxford, U.K., 2010. Elsevier.

[9] R. S. J. D. Baker and K. Yacef. The state of educational data mining in 2009:
a review and future visions. Journal of educational Data Mining, 1(1):3–17,
2009.

[10] P. Berkhin. Survey of clustering data mining techniques. In Technical report,
San Jose, CA. Accrue software.

[11] M. J. A. Berry and G. Linoff. Data Mining Techniques: For Marketing, Sales,

and Customer Relationship Management. 2004.

117

118 Bibliography

[12] J. Bilmes. A gentle tutorial of the em algorithm and its application to pa-
rameter estimation for gaussian mixture and hidden markov models. Un-
published paper available at http://lasa.epfl.ch/teaching/lectures/ML-
Phd/Notes/GP-GMM.pdf.

[13] S. Borman. The expectation maximization algorithm: A short tutorial. Un-
published paper available at http://www.seanborman.com/publications,
2004.

[14] L. Breiman, J. H. Friedman, R. Olshen, and C. J. Stone. Classification and

Regression Trees. Chapman & Hall, New York, 1984.

[15] S. Brin, R. Motwani, and C. Silverstein. Beyound market baskets: Gener-
alizing association rules to correlations. In Proc.ACM SIGMOD Intl. Conf.

Management of Data, pages 265–276, Tucson, AZ, 1997.

[16] M. G. Bulmer. On fitting the poisson lognormal distribution to species-
abundance data. Biometrics, 30(1):101–110, 1974.

[17] W. Buntine. Learning classification trees. In Artificial Intelligence Frontiers

in Statistics, pages 182–201, London, 1993. Chapman & Hall.

[18] D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: A maximal frequent
itemset algorithm for transactional databases. In Proc. 2001 Int. Conf. Data

Engineering (ICDE’01), pages 443–452, Heidelberg, Germany, 2001.

[19] T. Calders. Ten-years award talk: Non-derivable frequent itemsets. In Proc.

The European Conference on Machine Learning and Principles and Practice of

Knowledge Discovery in Databases - ECML-PKDD 2012, 2012.

[20] T. Calders and B. Goethals. Mining all non-derivable frequent itemsets. In
PKDD 2002 Proceedings, pages 74–85, Helsinki, 2002.

[21] T. Calders and M. Pechenizkiy. Introduction to the special section on edu-
cational data mining. In SIGKDD Explorations 13(2), pages 3–6, 2011.

[22] R. Campagni, D. Merlini, and R. Sprugnoli. Analyzing paths in a student
database. In The 5th International Conference on Educational Data Mining,
Chania, Greece, 2012.

[23] R. Campagni, D. Merlini, and R. Sprugnoli. Data mining for a student
database. In ICTCS 2012, 13th Italian Conference on Theoretical Computer

Science, Varese, Italy, 2012.

[24] R. Campagni, D. Merlini, and R. Sprugnoli. Sequential patterns analysis
in a student database. In ECML-PKDD Workshop: Mining and exploiting

interpretable local patterns (IPat 2012), Bristol, UK, 2012.

Bibliography 119

[25] F. Castro, A. Vellido, A. Nebot, and F. Mugica. Applying data mining
techniques to e-learning problems. In Evolution of Teaching and Learn-

ing Paradigms in Intelligent Environment, pages 183–221, New York, 2007.
Springer-Verlag.

[26] S. Chakrabarti. Mining the Web: Discovery Knowledge from Hypertext Data.
Morgan Kaufmann, San Francisco, CA, 2003.

[27] CLOSPAN. http://www.cs.ucsb.edu/~xyan/software/Clospan.htm.

[28] K. Daimi and R. Miller. Analyzing student retention with data mining. In
Proceedings of the 2009 International Conference on Data Mining, pages 55–60,
2009.

[29] R. Damaševičius. Analysis of academic results for informatics course im-
provement using association rule mining. In Information Systems Develop-

ment, pages 357–363. Springer, 2010.

[30] N. Delavari, M. R. A. Shirazi, and M. R. Beikzadeh. A new model for us-
ing data mining technology in higher educational systems. In Proceedings

of the Fifth International Conference on Information Technology Based Higher

Education and Training, 2004.

[31] N. Delavari, P. A. Somnuk, and M. R. Beikzadeh. Data mining application
in higher learning institutions. Informatics in Education, 7(1):31–54, 2008.

[32] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John Wiley
& Son, Inc., 2nd edition, New York, 2001.

[33] B. Dunkel and N. Soparkar. Data organization and access for efficient data
mining. In Proc. of the 15th Intl. Conf. on Data Engineering, pages 522–529,
Sydney, Australia, 1999.

[34] M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In Proc. of

the 2nd Intl. Conf. on Knowledge Discovery and Data Mining, pages 226–231,
Portland, Oregon, 1996. AAAI Press.

[35] U. Fayyad, G. P.-Shapiro, and P. Smyth. From data mining to knowledge
discovery in databases. AI Magazine, (17(3)):37–54, 1996.

[36] D. Fisher. Iterative optimization and simplification of hierarchical cluster-
ing. In Journal of Artificial Intelligence Research, 4, pages 147–179, 1996.

[37] F. Garvan. The Maple Book. Chapman & Hall, London, 2002.

[38] F. Giannotti and D. Pedreschi. Mobility, Data Mining and Privacy - Geo-

graphic Knowledge Discovery. Springer, 2008.

120 Bibliography

[39] M. Golfarelli and S. Rizzi. Data Warehouse Design: Modern Principles and

Methodologies. Mc Graw Hill, 2009.

[40] M. S. Granovetter. The strenght of weak ties. pages 1360–1380. America
Journal of Sociology, Vol. 78, 1973.

[41] F. H. Gaohua Gu and H. Liu. Sampling and its application in data mining:
A survey. In Technical Report TRA6/00, Singapore. National University of
Singapore.

[42] H. Guruler, A. Istanbullu, and M. Karahasan. A new student perfor-
mance analysing system using knowledge discovery in higher educational
databases. Computers & Education, 5(1):247–254, 2010.

[43] W. Hämäläinen, T. H. Laine, and E. Sutinen. Data mining in personalizing
distance education courses. In C. Romero and S. Ventura, editors, Data

Mining in E-learning, pages 157–171. WitPress, Southampton, UK, 2006.

[44] E. H. Han, G. Karipis, and V. Kumar. Min-Apriori: An algorithm for find-
ing association rules in data with continuos attributes. http://www.cs.umn.
edu/han/.

[45] J. Han and Y. Fu. Mining Multiple-level association rules in large databases.
In IEEE Trans. on Knowledge and Data Engineering, 11(5), pages 798–804,
1999.

[46] D. J. Hand. Data Mining: Statistics and More? The American Statistician,
1998.

[47] W. Härdle. Smoothing Techniques with implementation in S. Springer, 1991.

[48] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical

Learning: Data Mining, Inference, Prediction. Springer, New York, 2001.

[49] W. H. Inmon. Building the data warehouse. Wiley, 2005.

[50] A. K. Jain and R. C.Dubes. Algorithms for Clustering Data. Prentice Hall
Advanced Reference Series. Prentice Hall, 1988.

[51] A. K. Jain, M. N. Murty, and P. J. Flynn. Data Clustering: a review. Data

Mining Techniques. ACM Computing Surveys, 31.

[52] N. Jardine and R. Sibson. Mathematical Taxonomy. Wiley, New York, 1971.

[53] N. Jindal and B. Liu. Identifying comparative sentences in text documents.
SIGIR-06, 2006.

[54] N. Jindal and B. Liu. Mining comparative sentences and relations. Ameri-
can Association for Artificial Intelligence, 2006.

Bibliography 121

[55] M. Kantardzic. Data Mining: Concepts, Models, Methods, and Algorithms.
Wiley-IEEE Press, Piscataway, 2003.

[56] G. Karpis, E. H. Han, and V. Kumar. Multilevel Refinement for Hierarchi-

cal Clustering. Technical Report TR 99-020, University of Minnesota, Min-
neapolis, MN, 1999.

[57] K. Koedinger, K. Cunningham ad A. Skogsholm, and B. Leber. An open
repository and analysis tools for fine-grained, longitudinal learner data.
In Proc. 1st Int. Conf. Educ. Data Mining, pages 157–166, Montreal, Canada,
2008.

[58] B. Liu. Web Data Mining - Exploring hyperlinks, contents and usage data.
A forthcoming book, 2006/2007.

[59] J. Luan. Data mining and its applications in higher education. New Direc-

tions For Institutional Research, Spring 2002.

[60] J. MacQueen. Some methods for classifications and analysis of multivariate
observations. In Proc. of the 5th Berkeley Symp. on Mathematical Statistics and

Probability, pages 281–297. University of California Press, 1967.

[61] H. W. Martin. Transformations between tree permutations and inversion
tables. In Proceeding CSC ’90 Proceedings of the 1990 ACM annual conference

on Cooperation, pages 140–146, USA, 1990.

[62] A. Merceron and K. Yacef. Educational data mining: a case study. In
The 12th Conference on Artificial Intelligence in Education, Amsterdam, The
Netherlands, 2005.

[63] S. Milgram. The small word poblem. pages 62–67. Psycology Today 1,
1967.

[64] A. Monreale, R. Trasarti, C. Renso, D. Pedreschi, and V. Bogorny. Preserv-
ing privacy in semantic-rich trajectories of human mobility. SPRINGL ’10,
2010.

[65] B. M . E. Moret. Decion trees and diagrams. In Computing Surveys, 14(4),
pages 593–623, 1982.

[66] J. Mostow and J. Beck. Some useful tactics to modify, map and mine data from

intelligent tutors. J. Nat. Lang. Eng. vol.12, no.2, 2006.

[67] S. K . Murthy. Automatic construction of decision trees from data: A multi-
disciplinary survey. In Data Mining and Knowledge Discovery, 2(4), pages
345–389, 1998.

122 Bibliography

[68] M. E. J. Newman. The structure and function of complex networks. pages
167–256. SIAM Review, Vol. 45, 2003.

[69] F. Olken and D. Rotem. Random sampling from databases - a survey. In
Statistics & Computing, 5(1), pages 25–42, 1995.

[70] J. S. Park, M. S. Chen, and P. S. Yu. An effective has-based algorithm for mining

association rules. SIGMOD Record, 1995.

[71] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent
closed itemsets for association rules. In Proc. 7th Int. Conf. Database Theory

(ICDT’99), pages 398–416, Jerusalem, Israel, 1999.

[72] M. Pechenizkiy, N. Trcka, P. De Bra, and P. Toledo. Currim: Curriculum
mining. In The 5th International Conference on Educational Data Mining, Cha-
nia, Greece, 2012.

[73] J. Pei, J. Han, and R. Mao. CLOSET: An efficient algorithm for mining
frequent closed itemsets. In Proc. 2000 ACM-SIGMOD Int. Workshop Data

Mining and Knowledge Discovery (DMKD’00), pages 11–20, Dallas, TX, 2000.

[74] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dalay, and M.C.
Hsu. Prefixspan: Mining sequential patterns efficiently by prefix-projected
pattern growth. In ICDE ’01 Proceedings of the 17th International Conference

of Data Engineering, pages 215–223, USA, 2001.

[75] MIT Total Data Quality Management Program. http://we.mit.edu/tdqm/
www/index.shtml.

[76] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan-Kaufmann
Publisher, San Mateo, CA, 1993.

[77] C. Romero, J. R. Romero, J. M. Luna, and S. Ventura. Mining rare asso-
ciation rules from e-learning data. In The 3rd International Conference on

Educational Data Mining, pages 171–180, 2010.

[78] C. Romero and S. Ventura. Educational Data Mining: A Review of the State
of the Art. IEEE Transactions on systems, man and cybernetics, 40(6):601–618,
2010.

[79] C. Romero, S. Ventura, and P. De Bra. Knowledge discovery with genetic

programming for providing feedback to courseware author. User Model. User-
Adapted Interaction: J. Personalization Res., vol. 14, no. 5, 2004.

[80] C. Romero, S. Ventura, and E. García. Data mining in course management
systems: Moodle case study and tutorial. Computers & Education, 51(1):368–
384, 2008.

Bibliography 123

[81] S. R . Safavian and D. Landgrebe. A survey of decision tree classifier
methodology. In IEEE Trans. System, Man and Cybernetics, 22, pages 660–
674, 1998.

[82] J. Sander, M. Ester, H. P. Kriegel, and X. Xu. Density based clustering in
spatial databases: The algorithm GDBSCAN and its applications. In Data

Mining and Knowledge Discovery, 2(29, 1998.

[83] A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for
mining association rules in large database. In Proc. of the 21th Int. Conf. on

Very Large Databases (VLDB’95), pages 432–444, Zurich, Switzerland, 1995.

[84] A. Savasere, E. Omiecinski, and S. Navathe. Mining for strong negative
associations in a large database of customer transactions. In Proc. of the

14th Intl. Conf. on Data Engineering, pages 494–502, Orlando, Florida, 1998.

[85] D. W. Scott. Multivariate Density Estimation. Wiley, 1992.

[86] R. Sedgewick and P. Flajolet. An Introduction to the Analysis of Algorithms.
Addison-Wesley, Reading, MA, 1996.

[87] SPAM. http://himalaya-tools.sourceforge.net/Spam/.

[88] M. Spiliopoulou. Stream mining in education? Dealing with evolution.
In Proceeding EDM 2012 - 5th International Conference on Educational Data

Mining, Chania, Greece, 2012.

[89] R. Srikant and R. Agrawal. Mining generalized association rules. In Proc.

of the 21st VLDB Conf., pages 407–419, Zurich, Switzerland, 1995.

[90] S. S. Stevens. Measurement. in g.m. maranell, editor. In Scaling: A Source-

book for Behavioral Scientists, Chicago. Aldine Publishing Co.

[91] P. N. Tan, V. Kumar, and J. Srivastava. Indirect association: Mining higer or-
der dependencies in data. In Proc. of the 4th European Conf. of Principles and

Practice of Knowledge Discovery in Databases, pages 632–637, Lyon, France,
2000.

[92] P. N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining.
Addison-Wesley, 2006.

[93] R. Y. Wang, M. Ziad, Y. W. Lee, and Y. R. Wang. Data quality. In The Kluwer

International Series on Advances in Database Systems, Volume 23. Kluwer Aca-
demic Publisher, 2001.

[94] I. H. Witten, E. Frank, and M. A. Hall. Data Mining: Practical Machine

Learning Tools and Techniques, Third Edition. Morgan Kaufmann, 2011.

124 Bibliography

[95] X. Yan, J. Han, and R. Afshar. Clospan: Mining closed sequential patterns
in large databases. In SDM 2003, San Francisco, 2003.

[96] C. T. Zahn. Graph-Theoretical Methods for Detecting and Describing Gestalt

Cluster. IEEE Transaction on Computers, C-20, 1971.

[97] M. J. Zaki and C. J. Hsiao. CHARM: An efficient algorithm for closed
itemset mining. In Proc. 2002 SIAM Int. Conf. Data Mining, pages 457–473,
Arlington, VA, 2002.

