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Abstract We analytically investigate the stability of splay states in the networks of
N globally pulse-coupled phase-like models of neurons. We develop a perturbative
technique which allows determining the Floquet exponents for a generic velocity
field and implement the method for a given pulse shape. We find that in the case of
discontinuous velocity fields, the Floquet spectrum scales as 1/N? and the stability
is determined by the sign of the jump at the discontinuity. Altogether, the form of the
spectrum depends on the pulse shape, but it is independent of the velocity field.
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1 Introduction

The first objective of (neural) network theory is the identification of asymptotic
regimes. Previous research activity led to the discovery of fully- and partially-
synchronised states, clusters and splay or asynchronous states in pulse-coupled net-
works [1-4]. It has also been made clear that ingredients such as disorder (the diver-
sity of neurons and the structure of connections) are very important in determining
the asymptotic behaviour, as well as the possible presence of delayed interactions
and plasticity [5, 6]. However, even if one restricts the analysis to identical, globally-
coupled oscillators, there are very few theoretical results and they mostly concern
fully-synchronised regime or specific types of neurons (e.g. the leaky integrate-and-
fire model) [4, 7, 8].

In this paper, we develop a perturbative analysis for the stability of splay states
(also known as antiphase states [9], ‘ponies on a merry-go-round’ [10], or rotating
waves [11]) in ensembles of N globally pulse-coupled identical neurons. In a splay
state, all the neurons follow the same periodic dynamics and their phases are evenly
shifted. Accordingly, the phase, and potential, separation is of order 1/N. Splay states
have been identified in experimental measurements performed on electronic circuits
[11] and on multimode lasers [12]. Theoretical studies have been devoted to splay
states in fully-coupled Ginzburg-Landau equations [13], Josephson arrays [14, 15],
laser models [16], traffic models [17], unidirectionally delay-coupled Stuart-Landau
oscillators [18] and pulse-coupled neuronal networks [2]. In the latter context, splay
states have been mainly investigated in leaky-integrate-and-fire (LIF) neurons [2, 3,
19-21], but some studies have been also devoted to the §-neurons [22] and to more
realistic neuronal models [23]. Finally, splay states are important in that they provide
the simplest instance of asynchronous behaviour and can be thereby used as a testing
ground for the stability of a more general class of dynamical regimes.

Our model neurons are characterised by a membrane potential u that is contin-
uously driven by the velocity field F(u) from the resetting value u = 0O toward the
threshold # = 1 (see the next section for a more precise definition). As threshold
and resetting value can be identified with one another and thereby u interpreted as a
phase, it will be customary to refer to the case F (1) # F(0) as to that of a discon-
tinuous velocity field. Additionally, we assume that the post-synaptic potential (PSP)
has a stereotyped shape, the so-called «-pulse, that is characterised by identical rise
and decay time 1/« [2]. The linear stability analysis reveals that the eigenvectors are
characterised by different spatial frequencies (when moving from the neuron with the
smallest to that one with the largest membrane potential). It is therefore convenient to
use the frequency ¢ (scaled to the average phase separation 1/N) to parametrise the
Floquet spectrum. As already discussed in [21], there exist two components, namely
short (SWs) and long (LWs) wavelengths. SWs vary on ‘microscopic’ scales, i.e. cor-
respond to finite ¢ values: they are typically marginally stable in the thermodynamic
limit (N — o0). LWs vary on scales of order O(1), i.e. correspond to vanishing fre-
quencies: they have been studied in the context of mean-field theory, i.e. by analysing
a suitable functional equation for the probability distribution of the membrane poten-
tial u [2, 24]. By developing an approach that is valid for arbitrary coupling strength
and is perturbative in the inverse system-size 1/N, here we prove that the Floquet
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spectrum scales as 1/N? and is proportional to F (1) — F(0). We are also able to de-
termine the spectral shape and find it to be independent of the structure of the velocity
field. The transition from SWs to LWs is signalled by the occurrence of a singularity
in the spectrum for the frequency ¢ — 0. In the crossover region ¢ = k/N (where k
is large but small compared to N), we show that the exponents remain finite and coin-
cide with those determined in the weak coupling limit by Abbott and Van Vreeswijk
[2] with their mean field approach. This result is non-trivial, since it is not a priori
obvious that the ‘macroscopic’ description discussed in [2] is fully contained in the
‘microscopic’ description derived in this paper, as they refer to two different levels of
description.

More specifically, we first build a suitable event-driven map and expand it in pow-
ers of 1/N (a posteriori, we have verified that it is necessary to reach the fourth or-
der). Afterwards, an expression of the splay state is determined: this task corresponds
to finding a fixed point of the event-driven map in a suitably moving reference frame
- analogously to what has previously been done in specific contexts [21, 25, 26]. In
practise this task is carried out by first taking the continuum limit for various orders
and then obtaining suitable differential equations. The solutions of such equations
show that all finite-size corrections for both the period T and the membrane potential
vanish up to the third order. Next, the stability analysis is carried out to determine the
leading term of the Floquet spectrum. This task involves the introduction of a suit-
able Ansatz to decompose each eigenvector into the linear superposition of a slow
and rapidly oscillating component. The following continuum limit shows that the
two components satisfy an ordinary and a differential equation, respectively.

Altogether, the proof of our main result requires determining all terms up to the
third order in the 1/N expansion of the splay state solution, while some third-order
terms are not necessary for the tangent space analysis. Going beyond discontinuous
fields would require extending our analysis to account for higher-order terms and this
might not even be sufficient to characterise analytic velocity fields. In fact, previ-
ous numerical simulations [25] suggest that the Floquet exponents scale with higher
powers of 1/N depends on which derivatives of F'(u) are eventually discontinuous.
Moreover, it is worth recalling that in the case of a strictly sinusoidal field, the the-
orem proved by Watanabe and Strogatz [27] implies that N — 3 Floquet exponents
(N — 2 for a splay solution) vanish exactly for any value of N.

From the analysis of the SW spectra, one can conclude that the splay state is sta-
ble in excitatory (inhibitory) networks whenever F(0) > F (1) (F(0) < F(1)). These
conditions can be extended also to the crossover region, where our results coincide
with those obtained in [2] (in the limit of a small coupling). Our analytical studies
cannot, however, predict the behaviour of the LW component that may be respon-
sible for the emergence of new collective solutions in excitatory networks [3, 28].
The overall scenario is partially reminiscent of the stability of synchronous and clus-
tered regimes that is determined by the sign of the first derivative d F/du of the
velocity-field averaged on the interval [0, 1] (the latter problem has been investigated
in excitatory pulse-coupled integrate-and-fire oscillators subject to §-pulses [1, 29]).

Section 2 is devoted to the introduction of the model and to a brief presentation of
the main results, including an expression for the leading correction to the period for
the LIF model, to provide evidence that it is typically of the fourth order. A general

@ Springer



Page 4 of 28 Olmi et al.

perturbative expression for the map is derived in Section 3, while Section 4 is devoted
to deriving the splay state solution up to the third order in 1/N. The main result of
the paper is discussed in Section 5, where the Floquet spectra are finally obtained.
Section 6 contains some general remarks and a discussion of open problems. The
technical details of some lengthy calculations have been confined in the appendices:
Appendix A is devoted to the derivation of the splay state solution; Appendix B con-
tains the derivation of the leading term (of order four) of the period T for the LIF
model; Appendix C is concerned with the linear stability analysis.

2 Model and main results

We consider a network of N identical neurons (rotators) coupled via a mean-field
term. The dynamics of the ith neuron writes as

uit)y=Fu;)+gEt)=F;t), i=1,...,N, (1)

where u; (¢) represents the membrane potential, E (¢) is the forcing field and g is the
coupling constant. When the membrane potential reaches the threshold value u; () =
um = 1, a spike is sent to all neurons (see below for the relationship between the
single spikes and the global forcing field E(¢)) and it is reset to u;(t) = ur = 0.
The resetting procedure is an approximate way to describe the discharge mechanism
operating in real neurons. The function F represents a velocity field for the isolated
neuron and it is assumed to be everywhere positive (thus ensuring that the neurons
repetitively fire, since they are supra-threshold), while F; is the velocity field seen
by the neuron i in the presence of a coupling with other neurons. While we consider
both excitatory (g > 0) and inhibitory networks (g < 0), it is easy to show that F
remains always positive to ensure the existence of splay states. For the simple choice

F)=a—u, 2

the model reduces to the well-known case of LIF neurons. The evolution of a mem-
brane potential for a LIF suprathreshold neuron (a > 1) is reported in Figure 1(a).

The field E is the linear superposition of the pulses emitted in the past when
the membrane potential of each single neuron had reached the threshold value. By
following Ref. [2], we assume that the shape of a pulse emitted at time r = 0 is given
by Es(t) = %e“’” , where 1/« is the pulse-width. This is equivalent to saying that
the total field evolves according to the equation

a2

E(t) +2¢E@t) + «2E(t) = v Z 8t —ty), 3)

nlt, <t

where the sum in the rhs represents the source term due to the spikes emitted at times
t, <t.

It is convenient to transform the continuous-time model into a discrete-time map-
ping. We do so by integrating the equations of motion from time ¢, to time #,1
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Fig. 1 (a) Temporal course of the membrane potential for a suprathreshold LIF neuron in the absence of
synaptic stimuli. The pulses E are exactly collocated in correspondence of the firing times. uR represents
the reset value and uy, the threshold value. (b) ‘Raster plot’ for a splay state in a network of N = 100
neurons: neuron indices are reported as a function of firing times. The dots correspond to the times when
the neurons emit an action potential. Indices are ordered according to the (first) time the neurons have
reached the threshold.

(where 1, is the time immediately after the nth pulse has been emitted). The resulting
map for the field variables reads

Ey1=[E,+t Pn]eiat"y

2 4
Ppy1= Ppe™ ™ + ﬁ,

where 1, = 1,41 — t, is the interspike time interval and, for the sake of simplicity, we
have introduced the new variable P := «E + E.

In this paper we focus on a specific solution of the network dynamics, namely on
splay states, which are asynchronous states, where all neurons fire periodically with
the period T and two successive spike emissions occur at regular intervals t, = T/N.
A typical ‘raster plot® for this state is reported in Figure 1(b).

In the large-N limit, it is natural to consider 1/N as a smallness parameter and
thereby to expand the evolution equations in powers of 1/N. In order to perform
this expansion, the unique condition to require is the differentiability of the velocity
field F(u) in the definition interval ]0, I[. The only exception is represented by the
boundaries of the interval where discontinuity is allowed.

The first result of this paper is that under the assumption that the velocity field
F(u) is differentiable at least four times, the dependence of the period T onto the size
N is of order o(1/N?). In the specific case of LIF neurons, we show in Appendix B
that the leading correction 87 to the infinite size result is indeed of order O (1/N )
and, more precisely,

_ K@) -6 [a(l—eT)—1] 7>

§T —>
720 ge T+a(T+1—eT)—1N*

&)

where K () encodes the information on the pulse dynamics (see Eq. (71)). We did not
dare to estimate the quartic contribution for generic velocity fields, not only because
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the algebra would be utterly complicated, but also since our main motivation is to
determine the leading contributions in the stability analysis, and it turns out that it is
sufficient to determine the splay state up to the third order.

The study of the stability requires determining the Floquet spectrum, i.e. the com-
plex eigenvalues of a given periodic orbit of the period 7. With reference to a system
of size N and by following [21], the Floquet multipliers can be written as

i = e PeMHOTm g —dpk /N k=1,...,N —1,
(6)

(ANFHion)T, (AN+1FH ON+1)Th
9 9

UN =¢€ UN+1=¢€

where ¢y represents a zeroth-order phase, while A and wy are the real and imaginary
parts of the Floquet exponents, respectively.

Notice that since the total number of exponents is N + 1 (the zero exponent has
been removed by taking the Poincaré section), we are going to miss one of them.
Furthermore, as shown in [21], the Nth and (N + 1)th exponents are associated to
the field evolution and they will be not considered in our analysis.

In the following we prove that the leading term of the spectrum is

L 8 F(l)—F<0>< 6 1) 1
T 12 F(DFO) \1—cos¢p N2

k=1,...,N—1, @)

i.e. for discontinuous velocity fields, the real part of the spectrum scales as 1/N2,
while the imaginary part is of even higher order.

For continuous fields, it has been numerically observed that the scaling of the spec-
trum is at least O (1/N*) [25]. In other words, the shape of the spectrum is universal,
apart from a multiplicative factor that vanishes if and only if F (1) = F(0), i.e. for
true phase rotators where u = 0 coincides with u = 1.

In the limit ¢ — 0, Eq. (7) is singular and A seems to diverge. However, one
should recall that ¢y = 2wk/N, i.e. it is a discrete variable in a finite system. By
expanding for k < N, one finds that

_ ga? F(1)—F(0)
T An2k2 F(OHF©)

This expression, which holds in the limit of (1 < k < N), can be compared with the
results obtained in [2], in the small-coupling limit (|g| < 1), for sufficiently large k.
The equivalence of the methods has two implications: (i) the crossover component
is ‘universal’ as it is valid also for large coupling constants; (ii) the ‘macroscopic’
stability is fully contained in our ‘microscopic’ analysis. In fact, numerical studies
reveal a perfect correspondence also for the LW component that is not amenable to
an analytic treatment [25, 30].

From Egs. (7) and (8), it follows that the stability of the splay state can be in-
ferred, for arbitrary coupling strength, from the sign of F (1) — F(0): in excitatory
(inhibitory) networks, the state is stable whenever F(0) > F(1) (F(0) < F(1)). The
same result was previously reported in the weak coupling limit in [2].! It is, however,

®

Ak

IPlease notice that while Eq. (5.4) in [2] is consistent with our results and applies to both inhibitory and
excitatory coupling, inequality (5.5) holds only for positive coupling.
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necessary to point out that such condition(s) do not account for instabilities that can
arise in the LW component. This is, e.g., the case of the onset of partial synchronisa-
tion via a supercritical Hopf bifurcation [3, 28].

3 Event-driven map

By following Ref. [25, 31], it is convenient to pass from a continuous to a discrete
time evolution rule by introducing the event-driven map which connects the net-
work configuration at subsequent spike emissions occurring at time #, and t,41. The
membrane-potential value u; (f,+1) just before the emission of the (n + 1)st spike
can be obtained by formally integrating Eq. (1),

1 tht1
Mi_(tn—i-l) —Up,i(ty) = / th(”i([)) + g/ dt[En + - tn)Pn]e_a(t_ln)
1, 1,

n n

= A1(u;) + Ar(E,, Pn), ©)

where the minus superscript means that the map construction has not yet been com-
pleted. This task is accomplished by ordering the membrane potentials from the
largest (j = 1) to the smallest (j = N) value and by passing to a comoving frame
that advances with the firing neuron, i.e. by shifting the neuron index by one unit
Upyl,j—1 = M;(tn+]), where the first subscript indicates that the variable is deter-
mined at time 7,1. As a result, the evolution is described by an event-driven map
that is composed of Eq. (4) together with the following recursive relation:

Un+1,j-1 =un,j+-/41(ujs 70) + A2 (Ey, Py, Tn), (10)

where 1, = t,4+1 — t,. The time at which the (n 4 1)st spike is emitted can be de-
termined implicitly from Eq. (10) by setting j = 1 since, by definition of the model,
un,0 = 1. In this reference frame the splay state corresponds to a fixed point of the
map.

Now we perform a perturbative expansion of both terms .4 and .A; (see Eq. (9)) in
powers of 6t =t —t,,. This is justified by the smallness of 6¢ whichis O(1/N). More
precisely, the first integral appearing on the rhs of Eq. (9) is solved perturbatively by
introducing a polynomial expansion of u; () around ¢ = 1,,,

, 1., 1. 4 A
uj(t)zun,j+un,j8t+§un,j8t +gun,j8t +0(8t ) (1

Explicit expressions for the time derivates of u ; can be obtained from Eq. (1) and its
time derivatives,

ﬁn,j = F/(un,j)ﬂn,j +gEna
ﬁn,j = F//(un,j)ai,j + F/(Mn,j)iin,j + gEna

where one can further eliminate En with the help of Eq. (3).
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By inserting the expansion (11) into the expression of .41, expanding the function

F (1) around u,, ; and performing the trivial integrations, one obtains
’ T;% " 12 - / ‘L’,?
Av = Fojtn+ Fy  Fa o AALF P + Fii) g + 8 EnFy b

+ {F,i’fj]-",f’j +4F .F/ -]-'Zj + F,;?jf,,,j

n,j - n,jvn,

4
VE, —aF) P} 2+ 0(x)),  (12)

+g[(3Fri/,j‘7:”’j —I—Ffj —aF, 24

n,j

where we have introduced the short-hand notation F;, ; for F (u,, ;) (and analogously
for F).

In the case of Ay, it is possible to obtain an exact expression for the integral, which
can be then expanded in powers of 1,, as follows:

8 - 8 - 8 _
Az:aEn(l—e ar")—apnfne atn‘i‘;Pn(l—e 0(‘[,,)

. 12 . 73 2 4
=gEy1, +gEn7n_g05(En+Pn)€+g“ (En‘i‘zpn)ﬁ

+0(cd). (13)

By finally assembling Egs. (10), (12), (13), we obtain a perturbative expression for
the evolution rule of the membrane potential,

\] |:ﬁN

Up+1,j—1 = Up,j +-7:n,jfn +[8En +Fyi’jfn,j]

[@) |=H\,)

+{Fy [Fp i Fuj + gE, ]+ F,;{jf?j — ga[Py + E,)

n

- 2
+{—ga(En+ P)F, ; +4F, jF/Fy

+ F,;?jy-‘n,j +8[(3F) j Fuj + F,fj)En +a?(Ey+2P,)]

4
+ F:;I,/jflf,j};_z + O(I,f). (14)

4 Splay state solution

The splay state is a fixed point of the event-driven mapping with a constant interspike
interval T = T/ N. Since the fixed-point solutions do not depend on the index »n, they
are denoted as

E,=E, P,=P, Un j =i (15)
Substituting Eq. (15) into Eq. (4), one obtains

o : gl F (16)
~ N (1 —e@T/Ny’ © N (eT/N — 1)
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By introducing Eq. (16) in Eq. (10) and eliminating the n dependence, we obtain a
recursive equation for the variable i ;. The fixed-point solution corresponds to the
‘trajectory’ that, starting from iy = 0, ends in 9 = 1 and can be found by tuning
the ‘parameter’ 7/N. The existence of one or more solutions is related to the de-
pendence on T. Simple calculations reveal that Ay = g/N, i.e. it is independent of
T'; moreover, since A is the integral from time O to time 7/N of a positive defined
function (F > 0), it is a monotonically increasing function of 7 which vanishes in
zero. Accordingly, for any function F, the minimal value of ug is g (obtained for
T = 0), while the maximal value is unbounded from above. Therefore, there exists
one and only one solution provided that g < 1.

The variables E and P depend explicitly on N, and it is natural to expect that
the period T itself varies with N. By replacing the expansion of T in powers of the
smallness parameter 1/N,

4
T=ZT—+o(i>, (17)

in Eq. (16) we obtain perturbative expressions for P, E and E, namely Egs. (60),
(61), (62) reported in Appendix A. As for the membrane potential, it is necessary to
introduce the formal expansion

1
ajzzNLjLo(ﬁ). (18)

Substituting the expansions of T', it ;, E and P into Eq. (14) (after having dropped

the n dependence and expanded the ‘F’ functions), one obtains an equation for 125.}’)
and 7™, namely
4 ~(h ~(h) 4
u.’ ., —u. (h) 1
j—1 j o _ Q
> = S o5 a9)
h=0 h=1

where the Q variables are defined in Appendix A. Notice the dependence on T
variables is hidden in Q terms.

In the large-N limit, one can introduce the continuous spatial coordinate x = j/N.
In practise, this is tantamount to write

UM =j/Ny= lim i, h=o0,... 4. (20)
N—oo /

It is important to stress that the event-driven neuronal evolution in the comov-
ing frame implies that U(0) = 1, i.e. the first neuron will fire at the next step, and
U(1) =0, i.e. the membrane potential of the last neuron has been just reset to zero.
This implies that U© (0) =1 and U© (1) = 0, while U™ (0) = U™ (1) = 0 for any
h>0.
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Furthermore, by expanding U ") (x) around x = j/N, one obtains

L1 =1\ am 1
My _ —uy® (== (h) —
UMx—1/Ny=U (x)+mZ:1 m!( ~ ) U0+ 0<N5). Q1)
By inserting this expansion into Eq. (19), we obtain an equation that can be effec-
tively split into terms of different order that will be analysed separately. Notice that
by retaining terms of order 4, it is possible to determine the original variables at order
h—1.

4.1 Zeroth-order approximation

By assembling first-order terms, we obtain the evolution equation for the zeroth-order
membrane potential, namely

au©
=8 TOFU). (22)
X

This equation is equal to the evolution equation of the membrane potential for a
constant field £, with x playing the role of (inverse) time. Please notice that up to the
first order, E =1/T© (see Eq. (61)). An implicit and formal solution of Eq. (22) is

©)
v dv

1—x= _
fo g+ TOF(v)
where we have imposed the condition U ©) (1) = 0. However, there is the second

condition to impose, namely U (0) = 1. This second condition transforms itself
in the equation defining the interspike time interval 7, when N — oo (i.e. in the

thermodynamic limit)
1 (0)
du
1= f —_— . (24)
o §+TOFUO)

This result is, so far, quite standard and could have been easily obtained by
just assuming a constant field £ in Eq. (1). If we introduce the formal relation

F'IUOx)] = ‘“;(—U(O)) in Eq. (22), we obtain

(23)

Q)
dF(U) T 0)
T TOFUO) = —F'[U”(x)]dx, (25)
which can be easily integrated
FUOW)  grwu© 1
/ % - _/ F'[U9x)]dx, (26)
Fwo©y 8+TOFWUO®) 0

giving the following relation (already derived in [28], by following a different ap-
proach)

_70 _70
e~ TVH©O) e~ T H

FU©) ~ FU@)’

27)
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where, for later convenience, we have introduced
X
H(x) = / F'[U©)]dy. (28)
0

and where, for the sake of simplicity, the prime denotes derivative with respect to the
variable U® and the dependence of F and F’ on U® has been dropped.

4.2 First-order approximation

By collecting the terms of order 1/N?, one obtains

dud
dx

8

1
_FTO _ E(T<0>)2F’F -5TOF. (29

14200
=_—T17Opy® 4 -
+ 2 dx?

An explicit expression for the second derivative of U© (x) appearing in Eq. (29)
can be computed by deriving Eq. (22) with respect to x. This allows rewriting Eq. (29)
in a simplified form, namely

@
M — OO _ 7MW E (30)
dx
By imposing UV (1) = 0, one obtains the general solution of Eq. (30),
1
UV )= f duTVF[UQ )] exp[TO (H(x) — Hw)], 31
X

where H (x) is defined by Eq. (28). The further condition to be satisfied, U M) =0,
implies 7" = 0 and thereby we have U (x) = 0, i.e. first-order corrections vanish
both for the period and the membrane potential.

4.3 Second-order approximation

Second-order corrections can be estimated by assembling terms of order 1/N3 and
by imposing the previously determined conditions 7" =0 and UV (x) =0,

2 377(0) 2
dU7 _ _ poppo _Ld&UT e & ropr
dx 6 dx 6
T(O) 3
_ %(T(O))Z[ZFFN + F/Z] _ %[F//FZ + F/ZF]

Once evaluated d>U© /dx3 from Eq. (22), the above ODE reduces to

dUu®@
dx

which has the same structure as Eq. (30). Since one has also to impose the same
boundary conditions as for the first order, namely U® (0) = U® (1) =0, we can
conclude that 7® =0 and, consequently, U @) (x) = 0. Therefore, second-order cor-
rections are absent too.

=—UPTOF _T@F, (32)
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4.4 Third-order approximation

By assembling terms of order 1/N*, once imposed that first- and second-order cor-
rections vanish, one obtains

dU® 1 d*u©
P _T(O)F’U(3) + — FT(3)

dx 24 dx*

3 2
—E O & (r )2 prpr
24 6

2
_%(T(O))ZFF///_%(T(O))3[F/3_|_8FF/F//+3gF2F///]

(T Oy
24

FF'[F?+4FF' + F’F"]. (33)

By replacing d*U© /dx* with its expression derived from Eq. (22), Eq. (33) takes
the same form as in the two previous examined cases, namely

du®

——= —UPTOF _TOF (34)

Therefore, we can safely conclude that third-order terms vanish too.

The LIF model can be solved exactly for any value of N, starting from the asymp-
totic value (N — 00). As shown in Appendix B, it turns out that the leading correc-
tions are of the fourth order for both the period 7" and the membrane potential.

5 Linear stability analysis

The fixed-point analysis has revealed that the finite-size corrections to the stationary
solutions are of order o(1/N 3). Since such deviations do not affect the leading terms
of the linear stability analysis (as it can be verified a posteriori) they will be simply
neglected. Therefore, for the sake of simplicity, from now on 7© and 125.0) will be
simply referred to as T and ;.

The evolution rule in the tangent space is obtained by differentiating Eq. (4) and
then by expanding in powers of t (this is equivalent to expanding in powers of 1/N,
as the dependence of T on N would only generate higher-order terms),

8Py = ZVsP, + PZPs1,, (35)
8Epi1 = ZVSE, + 298P, + [P2Y —aEZW]s7,, (36)

where the Z variables are polynomials of 7 defined in Appendix C.1.
By further differentiating Eq. (14) around the fixed-point solution, one obtains

Suns1,j—1 = WWsu, ; + WHSE, + WOSE, + WHs1,. (37)
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Finally, 87, can be determined by differentiating Eq. (14) for j =1

81T, = _8En e _ OFn e _ O
Fi Fi Fi

)
Mww)’ (38)

where the auxiliary W variables are defined in Appendix C.1.
As usual, the eigenvalue problem can be solved by introducing the Ansatz,

Sup, j = pugdu;j, 8P, = pupdP, SE, = ujsE, 81, = i dr, (39)

where puy labels the eigenvalues, which must also be expanded as

' ' ) r® 1
[y = &P UHHOOTIN _ i (H‘ZNh +0(N4>> (40)

h=1

where '™ is, in principle, a complex number and, for the sake of simplicity, we
have dropped its dependence on k. Finally, as already shown at the zeroth order, the
eigenvalues correspond to a pure rotation (specified by ¢;) with no expansion or
contraction, i.e. ro—o.

By inserting the above Ansitze in the map expression (35), (36), (37), (38), one
obtains, after eliminating § P, § E and 47, a closed equation for du,

r°Y r®» rd
(1+ N +W+F>(Suj_1

— T T? T3
={1+FjN [F/F;+F ]2N +[F} ]—" +4F,F,F; +F; ]6N3}5u,

——==2 —2
F.F. F._
[ JoJ + J «7:]'

— =T
— 4 F.F.—
(777 L4 [

g 2e2i¢k + 10e% 4+ 1 ?j ) T2
T 12(¢i% — 1) \ F, N2
-/ . . —
/ F got2 2%k — 3% (F;
FF]-’Z ff = ___— (L
[ T3 6 7T T@n -1 \F
X 4 106/ + 1 Fj — -
+ 202 . I -TF))
T 12(ei% —1)2  F,
5¢i% +1 [, F; —
n ga? Se'P41 F,=L _F
T 12(i% —1)2\"'F, J
1Pk (elPk 41 F\]T3)8
Ll dnE@ ) ( FN]T b @1
T (el —1)3 Fi)IN3 | F

that is the object of our investigation. The overline means that the function is evalu-
ated in u( ) , corresponding to the infinite N limit.

@ Springer



Page 14 of 28 Olmi et al.

5.1 Continuum limit

Similarly to the splay state estimation, it is convenient to take the continuum limit.
However, at variance with the previous case, now one should take into account also
the presence of fast scales associated to the ‘spatial’ dependence of ¢.

Therefore, the correct Ansatz is slightly more complicated, and we have to sepa-
rate slowly and rapidly oscillating terms,

Suj=m;+ 0% (42)

where the complex exponential term accounts for the fast oscillations of the eigen-
vectors, while

3
=" o L) e = oL 3)
J NI N4 J T N4

are slowly varying variables. On the one hand, the existence of the slow component
7 j follows from the analogy with the real-space evolution. On the other hand, the
presence of the rapidly oscillating terms ¢/%%/, first noticed in Ref. [2] in the uncou-
pled limit, suggests the presence of the second slow field, namely ;. Anyway, the
correctness and uniqueness of Ansatz (42) is ensured a posteriori by the consistency
of the equations that are obtained for the various perturbation orders.

Next, we can finally introduce the continuous variable x = j/N, as previously
done in a real space (see Eq. (20)),

. _J\__m A (T _
Hj (x—N)—nj , Oj (x—N>—z9j , 44)
where & =0, ..., 3. This allows expanding du; 1 =m;_1 + ﬂj,lei"bk(j_l) around

x = j/N, similarly to what has been done in Eq. (21). At variance with the compu-
tation of the fixed point, now there are also terms like U (1/N) and U (1/N), whose
computation requires a similar expansion, but around x = 0. By incorporating all the
expansion terms within Eq. (41), we have finally an equation, where terms of different
orders are naturally separated from one another. The calculations are summarised in
Appendix C, and the final equation is (86). By separately treating the different orders,
we obtain differential and ordinary equations for the ® and IT variables. It turns out
that it is necessary to consider in parallel different orders in the fast and slow terms to
obtain ® and IT to the same order. As a consequence, we will see that it is sufficient
to expand U (1/N) up to order O(1/N3).

5.2 Zeroth-order approximation

By assembling terms of order O(1/N) in Eq. (86), multiplied by the fast oscillating
factor ¢/%4/ we obtain a first-order linear differential equation for @@, namely

de®
dx

=-0O(TF (Ux)-TV), (45)
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where I'D is the first-order correction to the Floquet exponent which should be de-
termined. It is important to remind that the prime denotes derivative with respect to
the variable U?), which has been simply redefined U, as previously mentioned. The
solution is

0V x) = K@ exp[TVx — TH(x)], (46)

where we made use of the definition (28) and K is a suitable integration constant.
By assembling now the slow terms of the zeroth order and reminding the definition
of F(U (x)), we find the following algebraic equation:

FUx))

MO (" — 1) = —[e 0 0) + 1?(0)] FUO)

(47)

With the help of Eq. (46), we obtain

n©® 0) = _@(0)(0) — _K(O)E—TH(O)’

—TH(0) FUx))

nOx) =-Kke .
FW )

We can now impose the boundary condition §U Ox=1)=091)+10a)=0.
This implies that

_ ) _
o~ TH(+T oe—THO)

FU®)  FUWO)

(43)

From Eq. (27), we can conclude that I'D =2xim, for0 <m < N (values outside
this range give identical solutions). Since the vector du; was assumed to be charac-
terised by the phase j¢; (see Eq. (42)), the phase factor I'D = 27im would imply
(through Eq. (46)) that ¢ has to be shifted by some amount, contrary to the ini-
tial assumption. Accordingly, the only solution consistent with the original Ansatz is
m=0,ie I'D =0, and from Eq. (46),

OO (x) =KV THW), (49)

i.e. the eigenvectors are independent of the phase ¢ and equal to one another. In
other words, the degeneracy has not been lifted.

5.3 First-order approximation

By assembling the fast terms of order 1/N? and by setting ') = 0, we find that @)
satisfies the following first order differential equation:

dem

=1 —eWTF (UW), (50)
X

whose solution is

O (x) = (TPKPx + kD) THO, (51)
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where K is an integration constant associated with the solution of the previous
equation.

By collecting the slow terms of order 1/N in Eq. (86), one obtains the algebraic
equation
F(U(x))

0 (o e — 1) = —[e 0 0) + 1V O] L,

(52)

whose solution is
H(l)(o) — _@(1)(0) — _K(l)e*TH(O),

(1)67TH(()) FUx))

nYx) =-k )
FU©))

By imposing the boundary condition sSUDx =1 =001 +10Da) =0, it is
possible to evaluate F(z),
oV +n® )

. o FUD)
— K(O)l"(z) K(l) TH(1) _ K(l) T H(0) =0. 33
( +KD)e ¢ FUo) 43

Again from Eq. (27) and using the same argument as in the previous section, we
find that T® =0 and thereby (from Eq. (51))

O () =kWe THW, (54)

Altogether, we can conclude that the second-order correction to the Floquet exponent
vanishes as well, and one cannot lift the degeneracy among the eigenvectors.

5.4 Second-order approximation

By assembling fast terms of order 1/N3 appearing in Eq. (86) and by setting I'") =
I'® =0, the following first-order differential equation for ®® can be derived:

dO® 300 L @7 g
——=rvev+e TF'(U(x)), (55)
X
whose solution is
0@ (x) = (FPKVx + K@) TH, (56)

where K® is an integration constant associated with the solution of the previous
differential equation.

Furthermore, by collecting the slow terms of order 1/N?2, we obtain the algebraic
equation

2% 4+ 10/% + 1 F(U(0)) — F(U (x))
12(ei%c — 1) [F(U0))]?

FUx))

FWU ()

N® @) (% — 1) = g 7O (0)
_ [ei¢k o1 0) + o® (0)]
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By imposing that the above equation is satisfied for x = 0, it reduces to

1'1(2)(0) — _@(2)(0) — —K(z)efTH(O),

Zidk 410 + 1 F(U(0)) — F(U (x))
12(ei%c — 1)2 [F(U0)]?

FU(x))

FWU ()

n®(x) = ga2TO© (0) <

—e®@ (0)

Finally, by imposing the boundary condition U (x = 1) = @@ (1) + 1P (1) =
0, it is possible to determine I'®,

2
F@):gTF(U(O»—F(U(l))( 6 _1>‘ 57

12 FWUO)FWUM) \1—cosei

Accordingly, I'® is real and depends on the difference between F(U(x = 1)) =
F(0) and F(U(x =0)) = F(1), confirming the numerical findings in [25]. Therefore,
the imaginary terms wy, are smaller than 1/N2.

In the specific example of a leaky integrate-and-fire neuron, the expression for
I'® reduces to

2 6
r® =8 ro_e" e T)(—— 1), (58)
12 1 — cos ¢k

since, by using the equations that characterise LIF neurons, the following relation
holds:
FUM)-FU©O) 1 1

= = — (T —T_2. 59
FWM)FWU(©)) (a+%)26—7" (ﬁ)ze—T (e +e ) (59)

Allin all, Eq. (57) generalises the expression found for the LIF model Eq. (58) [25].2

6 Conclusions

We have derived analytically the short-wavelength component of the Floquet
spectrum of the splay solution in a fully-coupled network composed of generic
suprathreshold pulse-coupled phase-like neurons in the large-N limit. Our analysis
has revealed that, for discontinuous velocity fields, the spectrum scales as 1/N? and
the stability is controlled by the sign of the difference between the velocity at reset
and at threshold. The shape of the spectrum is otherwise independent of the velocity
field. It would be interesting to investigate the role of the pulse shape as well. As
long it follows from a linear evolution equation, such as Eq. (3), it is indeed possible
to replicate the analysis carried out in this paper. Numerical studies suggest that the

2Compa.ring with [25], one should pay attention to the different normalisation used here to define j; in
Eq. (40)
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scaling behaviour is truly universal, while the shape of the Floquet spectrum depends
on the pulse shape [30]. It would be interesting to discover whether and which pulse
shapes may give rise to SW instabilities.

Networks of LIF neurons coupled via é-like pulses are characterised by a finite
(in)stability of the whole spectrum [21]. The difference with the case of «-pulse is
so strong that it cannot be reconciled even by taking the limit « — oo (zero pulse-
width), indicating that the limits N — oo and zero pulse-width do not commute [21].
This reveals that even the development of general stability theory of the simple splay
states requires some further progress.

Finally, notice that although our analytical approach is able to cover the entire SW
component and the crossover region, it does not cover the truly long wavelengths
which require going beyond a perturbative approach.

Appendix A: Fixed-point expansion (general case)

The 1/N expansion of the exact expressions (16) for P and E leads to

~ o o T(l) o OlzT(O) T(z) T(l)2 o
5 « _ “
7ot [z T<o>2} N [ 2 7o? T(O)Z} N2

+ [“2T(1) e +2T(1)T(2) - T(I)S}i + 0<L> (60)
12 T2 T3 T4 N3 N4 )’
N 1 7 2TO  T@ 7127
E=ro~ TO2N + [_ 2 7o’ T(Oﬁ]ﬁ
+ [_OﬁT“) Y T(lﬁ}i + 0(i> (61)
12 702 T3 T4 | N3 N4 )
s a2 ?TO Q37T 1
EZEJFW"LWJrO(W)’ (62)

where we have reported also the expansion of E that is necessary to pass from ex-
pression (14) to (19). Please notice that while the membrane potentials and the pe-
riod are expanded up to O(1/N 4), as in (18) and (17), here we limit the expansion
to O(1/N?3) terms, since the field variables appearing in the event-driven map are
integrated over an interspike-interval (see (9)).

To proceed further, we need also to introduce the expansions of the velocity field
and of its derivatives,

i 5@ i®
F(ij)=F;+F;— N +F1W+F1 3
1 ~l 2

PTage Pt I

//[ J +F// ] J +F

P |
O\ =1 |
I T2N? N3 6N3 + <N4>

+F;
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~(1> p1e) [0 |
// j —//! ]
F(u,)—F +F N +F; == e +F1W+O<_)’
P

F" _F FW] 0
(uj) + N+ N2

where the overline means that the function is computed in U (x = j/N), which cor-
responds to the infinite N limit.

By replacing the membrane potentials, the period, the self-consistent fields and
the velocity field with their expansions, the event-driven map (14) can be formally
rewritten for the splay state as (19) with the introduction of the following auxiliary

variables:
oW =g+ 17OF;, (63)
Q@ =1WF, +[ I S+ 2’ T(O)}F 7O, (64)

-/ —//

F; F
G _ | F ;@4 D7 iz, 8
Q —|:/]+2[uj]+g2uj+6Fl

) _A\TO
+(Z2FF+Fral + FFa) + EF7) -
3 3 2
2 TO'F,
L
#1454 FrO [T 1 1O, (65)

8

2
@ _ |7 3 ~() 8\ 7~
0o =[ap + (50 + )

L3 &2, &~ , & \= ]
# (G ST+ S S |7

J JhtJ J
~() )
—m ” 8 —r—=r 8 = —=m (0)2
+g(2FF;+FF}) % 3 +€Fij+§F,-Fj}T
M M NF2F"” T©?
+ [(g+4a; )F; + (8¢ + 16d'VFFF | + (3g + 4\ FF ] —— o
i, TO?
+[F/F} +4FFF + FF ] — -

@ Springer



Page 20 of 28 Olmi et al.

- —//
— 2
=) Jr~(1)72 i~ 8 F |+
+|:Fju‘ +7[” ] +87Mj +€Fj:|T

28—n—  — —— —
——FﬂFj+F¢ﬁ?*+ﬁ#Fﬁ@’+§pf]T©TU)

F, -
+ { <ﬁ§” + §>T<2> + 7’[T<1)2 +27107@] }F’J +F,T9. (66)

Appendix B: Fixed-point expansion (LIF model)

In the case of the LIF neuron (see Eq. (2)), the fixed point of the event-driven map
reads
uj_1=e ‘uj+x, (67)

where

Its solution is

| — o~ NT+jt

=y — 69

Uj =X o= (69)

By expanding Eq. (69) for j = 0 and for a generic j, one can derive perturbative

expressions for the period 7' and the membrane potential, respectively. Let us start

by substituting the expressions (17), (60), (61), (62) in Eq. (68). This leads to the
expansion

2 3 4 5 5
g T T T T gT 4
=(a+S)|t-Z+ T - |+a+ S k@ +0(1/NY., (70
X (a+T>|:t -+ 24:|+a120+T720 (@) +O0(1/N*), (70)

where

36008 — 7220 +363a* + Sa® — 12a 46
(—1)?
accounts for the dependence on the field dynamics. Now, with the help of Egs. (17),

(70) and expanding the exponential terms up to the fourth order, we obtain a closed
equation for the interspike interval,

K(a) =

) (71)

7
up=1= <a + %)(1 - e_T(O)) + TE(T(O))

1
+ m[T<2)§(T<°>) +TOW?]
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+ % [T@(TO) + TOWD 4 TOWI]

1
+ m[7"(4)‘;;_-(7"(0)) +§(T(0)) + T(l)Wl(4) + T(Z)W2(4) + T(3)W3(4)], (72)

where

O _ _(1_ —T<°> 70 K(“))
(1) = (1= ™) 5511~
g

0 _7© )
€)= (a+m> ' T«))Z(l_e o)

while W identifies a term of order 1/N" that is multiplied by T®). Since, while
proceeding from lower- to higher-order terms, we find that 7®) = 0 (for k < 4), it
is not necessary to give the explicit expression of the W,gh) functions as they do not
contribute at all.

One can equivalently expand u

J0 e 6@

(0)
uj= ~’+N+N2+F+N4

g O (d_ M
= (a + m)(l — eT (v 1)) + Tg(T(O))
1 1
n W[T(Z)g(ﬂ())) L TWE®] 4 m[T<3>g(T<0)) L TWE® 4 7 20
1
+ F[g(T(O))T(“) +o(TO) 4+ 7Vz® 4 7@2zP 4 7O 2P, (73)

where

S-(T(O)) (a‘i‘m) T(W(X}l)(%_l) _%[l_eT(O)(%,l)]’
7©)
Oy _ & (1 _ 1O ,03( K
o(T )_120(1 eI T (6 1),

while we do not provide explicit expressions for Z,Eh) as they turn out to be irrelevant.
Now we are in the position to analyse the different orders.

B.1 Zeroth order
By assembling the terms of order one in Eq. (72), we obtain
_7Oy
(a+m>(l—e )=1. (74)
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This is an implicit definition of the asymptotic interspike time 7 (¥

7)
7O _1p _arm+g . (75)
TO@-1)+¢g

Analogously, we can find an explicit equation for the membrane potential by assem-
bling the terms of order one in Eq. (73)

o _ 8 _ TO -1
u; —(a—i—T(O))[l el =] (76)
In the thermodynamic limit, the solution for uﬁo) becomes
O (x) = g _ TV
UOx) = <a+ T(O))[l e ], (77)

which coincides with Eq. (23) with F =a — U@,
B.2 From first to third order

By separately assembling the terms of order 1/N” (for h = 1,2,3) in Eq. (72), we
obtain

TWg(T®) =0, (78)

which implies that 7" = 0 since & # 0. Moreover, by assembling the terms of order
1/N" in Eq. (73), we obtain

uj.h) =s(TNT®, j=1,...,N, (79)

which thereby implies that first-, second- and third-order corrections vanish also for
the membrane potential.

B.3 Fourth order

The order which reveals a different scenario is the fourth one. By assembling the
terms of order 1/N* in Eq. (72), we obtain

4) _ _§(T(O))
= E(TO)’

(80)

whose explicit expression is reported in Eq. (5). By analogously assembling the terms
of order 1/N* in Eq. (73), we obtain

u =g(TO)TD +0(1), (81)

which becomes, in the thermodynamic limit,

T ©
U@ (x) = — 8 \p@ 706D _ 1y _ | — 00D
(%) a+ 70 e x—1 gT(())Z[ e ]
g T(O)(x—l) (0)3 K(O[)
—(1- T — 1.
Tl ) 6
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Appendix C: Expansion in tangent space around the fixed point
C.1 Introduction

The auxiliary variables required to complete the definition of the tangent-space evo-
lution rule (35), (36), (37), (38) are as follows:

2 3 4
o o o

Z = — S S ),

1( at—i—zr 6‘L’+24>

3 4 2 3
Zy = ( o +o t—azr2+a—t3>, Zg:(t—at2+a—r3—a—r4>,

W1={1+F’jr+T (F;Fj+F))
‘L’3 —I1—==2
+€[Fj]-']+F(4F.7-" +gE)+FF]
2 3

. 2
W4={7f,-+[f;?,-+g1§] [F}'—i-( )f+gFE ga(E—l—P)]

3
H(F)V T 447 7 4 F) 7 + gaa - )P |

| pp— I =, g[ <; 15)
WZ T — —F+Ol +:ET + — o E+—
5 {g 8[2( 1 ) ]__lg } 7 g )

il (a —5FL—F .7-'1—1—205F)+}1 (F) 7:1+gE)} }

Wo= 55 - 50 e+ F) ”
at

—n 3 gz
——tE—f-r 8% E+Py+ —(F,Fi +gE —F/——_—FE}
[2}-1 ( 1 g) 1 27 1

F

1 1 21— -
- t3|:—ga(a +F )P + _—2gaE(—F/1]-'1 +gP)
3F F 2

1 2;3 1 2;2 — 2 2
+—=¢E +—=¢°E (a+F1)—§gF1E:|},
1 1
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where the dependence of T on n has been dropped, since we are considering a lin-
earisation around the splay state.

In order to find the Floquet eigenvalue w;, one should substitute the Ansitze (39)
into Egs. (35), (36). This allows to find explicit expressions for § P and §E as a
function of g, T and §t, namely

2 1 3.3 1 §
sp=—_—2 [1_ﬂ“k+ oty - EF M"‘;}l (82)

mr—1 2 pup—1 2 (=1 T

1 3a373 s
SE = ——2 [E (i + 1) — 20272 My — i Mk(ﬂk+3)i|_f, (83)

k=112 pr—1 2 (-1 T

where we have introduced the shorthand notation
2
wy +10pg +1

p= (84)

12(ue —1D?

By substituting § P and § E, as given by (82) and (83), into Eq. (38), we can express
8t directly in terms of §u

0t = —

2 217
{— g _%[ﬂ (ux +5) (Mk+1)j| ktg}&u (85)

Fi+ S Myt? o —>
T 12 (e =12 (e —1)3 i

where we exploited the equahty .7" = F/ + %, which follows from the fact that in
the thermodynamic limit E = T.

By inserting the expressions in Egs. (82), (83), (85) into Eq. (37), we find a single
equation for the eigenvalues and eigenvectors,

Sujr = 1+ F o 4 [FIF, 4+ FAS 4 [F P 4T F T + 7)1 o,
wduj—1 =1+ F;T+[F;Fj+ j]?‘*‘[ R ]g uj
F// 7/2 2 ?
—{j_fj+f’j?jr+[ 7+ 7:,+&Mk(?—’—1>]r2
/3 ="

F:_ 2 —n— i =3
J J
+[ 5 fj+§Fijf§+ 6 i

2 T 3 T
5 1 Fi— = 1 F.
+&L(:1F; _F/_)+&M<l_%)
1

T 12(u — 1)2 J T (ux—1)3
) —
ga” Fj — ] }8u1
+—: F _F M pr———
T 7:1( i~ FMe Fi

By now substituting the w; expansion (40) and retaining the leading terms, we obtain
Eq. (41).

@ Springer



Journal of Mathematical Neuroscience (2012) 2:12 Page 25 of 28

C.2 N — oo limit

Once the continuous variables (44) have been introduced, it is necessary to estimate
U(/N) and §U(1/N) by expanding such variables around zero. By inserting the
resulting expansion for U(1/N) into the expressions for F and F1, we obtain, re-
spectively,

1\ F'(U(0)) dU
r(v()) = roon+ SR

0
F'(U(0)) d*U

F'(U0) ( 1du

J

2N?  dx? |, 2 N dx
F'(U(0) dU | d*U F/”(U(O))(ld_U )3
2N3  dx |ydx? |, 6 N dx |,
F'(U(0) d*U 1
%W 7t 0(@)’
1 1 1 1 TF'(U(0))

FUL)  FUL)+ £ FUO) "N FUWO)

1 [TF'Uuon> 1 _, P
e Fwoy el O

T3
+ e [F/”(U(O))f(U(O)) —2F'(UO)F"(U(0))

’ 2 / 3 /
_i(F(U(O))> _S[F on +6F(U(0))}+O<L).
T2\ F(U(0)) F(U0)) F(U)) N*
An analogous procedure for §U (1/N) leads to

SU(1/N) = ol Pk |:®(0)<l> . @(1)(%) i @(2)(%)}

N N N2
1 n(l)(i) H(Z)(L) 1
+nO( =)+ Mt —F 10—
N N N N
_ oo ch @ of !
O TN T UM )

where C(©, ¢V, C® are defined according to the following equations:

cO — it g© 0) + oo (0),

0 [dO© an®
C(1)=e’¢k|:—d +®<“<0>}+— +1D0),
X o 0
o [1d20© deW 14O an®
C@ — pitx| 02 - 1 (0).
e | T ar |, O e e | PO
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We now expand 6U (1/N) up to the order 0(%), thus neglecting higher orders be-
cause they contribute to the definition of IT variable and we need terms at least of
order O (%) (one order lower than needed to define ®). By inserting the Ansatz (42)
and the previous expansions in Eq. (41), we finally obtain a closed equation for the
eigenvalues and eigenvectors,

ei¢k{n<0> +[O® - n® 4 H<0>r<1>]ﬁ

H(o)//
+| T

H(l)//
+[5

1

—_ W @ _ qo'r® M Or® L
I +1II HF+I—IF+I—IF:|N2

H(O)///
— T —_ H(z)/ + H(3) +

oo

—aOr@ 4 gro | 1‘1“”1“”} %}
N

— O [ +1—[<0>A(1>]% _[® 4 1O A® +H(1>A<1)]$

1
B L IO A L D AQ 4 @AM
- [m® +0®a® 4+ nVA® + n®a ]F

+COBO 4 [cOBD 4 C(I)B(O)]%

1 B

+[COBO £ cOBM L cOBO)__ 4 >

— i ][00 _ OO0 L g0 1]
{ Iy
o0 _ 07 W' L @O _ g _ gOp®
+[(004Y - —— )+ +e¥TV -elr? —e®r

1 -
(M 4
o]

+ @(2)/ —

NZ N3
1

4

)// (O) "

®
+ @<1>A<2>) + (—

2

(1)
O I L o' _ @10 4 0@

_er® _gOr® 4 ®<2)A<1>} %}

+ @(O)A(3)>

'O 4§ @

(86)

where we have introduced the shorthand notation 5 in order to characterise a term
of order 0(%), whose explicit expression is not necessary, since it turns out to con-
tribute to the definition of the IT variable, and it is, therefore, one order beyond what
we need. Moreover, notice that the terms appearing within round brackets in the rhs
of the above equation can be shown to be zero due to exact algebraic cancellations
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that emerge from the solution of the equation order by order. Finally,

AU @) =TF (UW)),

AP (U @) = %Z{F//(U(x))]-"(U(x)) +[F(U)]),

3

T
AV W) = = (F"(U@)[FU@)]
+4F' (U)F"(Ux)F(Ux)) + [F’(U(x))]3},
FUx))
0) _ 2V
BRUW) = F g0y
FU
BO(UW) =[TF(UW)+ TF’(U(O))]%,
2i¢ i _
B(2)(U(x)):T2{_§aze 1;+i;k0e k2+1 F(U(0)) F(c;(x»
(el — 1) [F(U(0))]
F"(U(x)) [FU@)I? n [F'(U(x))P? f(U(x))}
2 FWU(0)) 2 FWU )
, ) [TF'(UO)]* | F(U(x))
+ {TF (U))TF'(U©0) + 5 }F(U(O))

T2
- S F'(UO)F(U@).
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