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      1. Overview of the thesis 

 

 

Protein binding to DNA is an important event that unravels and modulates the 

information contained in the genome. DNA replication, transcription, regulation of gene 

expression, site-specific recombination, transposition, restriction and modification of DNA by 

sequence specific endonucleases and methyltransferases are all processes that rely on 

binding of proteins with DNA. Also structural features of DNA, such as compaction in 

nucleosomes in eukaryotes, for example, are due to proteins that bind DNA (DNA Binding 

Proteins). We can thus distinguish two big groups of DBP: sequence-specific DBP and non-

specific DBP according if their biological function depends on specific binding to a DNA 

sequence called target or cognate site or if it is independent from sequence. Transcription 

Factors (TFs) are a class of DNA binding proteins that regulate gene expression, that is 

activate or repress expression of specific genes when bound to their target sequence. These 

proteins, as all sequence-specific DBP, have a high affinity for their cognate sequence and a 

low affinity for non-specific DNA while non-specific proteins as, for example, histones or 

proteins involved in DNA repair have a high affinity for DNA independently on sequence. I 

focused my work on the first group, more precisely on the study of lac repressor (LacI). LacI 

is representative of a large family of bacterial transcription factors that has largely served as 

a model for transcriptional regulation and protein–DNA interactions. As the name suggests, 

this protein when specifically bound to its target sequence on DNA, represses expression of 

genes involved in the metabolism of lactose. The mechanism by which TFs find their targets 

among all combinations present in a genome with millions of base pairs is a long-standing 

question. In the 70’s Riggs and coworkers (Riggs et al., 1970)  measured the association rate 

of LacI and found it 100 times faster than the value expected from a 3D-random collision in 

the cytoplasm. From this moment, the most accredited model to explain such finding is the 

facilitated-diffusion, according to which proteins alternate between 3D diffusion and 1D 

diffusion along non-specific DNA. Nevertheless, the complete characterization of this model 

(and also the finding of Riggs), including its experimental observation still remains object of 

debate. 
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It is intuitive that to study such process, that is to track a single protein while 

searching for its target, it is necessary to use a single molecule approach. In particular, it is 

possible to detect the position of a fluorescently labeled protein using a microscope suitable 

for single molecule fluorescence detection. In this thesis a novel experimental set-up that 

combine single molecule high precision localization with a dual optical traps system, 

developed in our laboratories, is presented together with a microfluidic system used to 

assemble all components of the experiment. This apparatus allows to tether DNA between 

two optically trapped beads thus controlling and/or applying precise forces to the molecule 

which is, at the same time, kept far from the cover slip. A single fluorescently labeled lac 

repressor is imaged, when bound to DNA, through a wide-field illumination. I will discuss 

results obtained with this FIAT (Fluorescence Imaging And Trapping) apparatus. In particular, 

methodologies for protein labeling will be first introduced because, for fluorescence assays, 

it is a crucial step in that it could alter the native conformation of the protein thus leading, in 

case, to artifacts. Labeling a lac repressor mutant LacIQ231C with an organic fluorophore, 

ATTO532, did not alter the activity of the protein as shown by the measurement of 

characteristic times of association and dissociation through the FIAT set-up.  

It will be discussed the impact of exposure time and DNA tension on the accuracy of 

localization and compared the commonly used 2D-Gaussian fit with a novel rapid and 

accurate algorithm for calculation of the Radial Symmetry Centre (RCS) for localization 

measurements. The last method has some advantages as rapidity that makes it more 

suitable for analyzing data of 1D-diffusion. 

From trajectories obtained with the RSC calculation, 1D-diffusion coefficients have 

been measured of LacI diffusing on a DNA at different DNA tensions, thus exploiting the 

advantages of the FIAT apparatus for studying the target search mechanism.  
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22..  BBiioollooggyy  IInn  ssiinngguulloo  

 

 

At their most elementary stage, all biological reactions are carried out by single 

molecules. These processes have been largely explored by conventional biochemical and 

structural biology methods. However, these so-called “bulk measurements” describe the 

biological behaviour of a large ensemble of molecules by averaging the measured properties 

over the whole molecular population, leading to various limitations: can the different 

conformations, properties or even the dynamics of individual molecules be revealed by 

these methods? Generally, the answer is no. In order to be able to follow the dynamic 

changes on a molecular ensemble, the activities and the “biochemical state” of all molecules 

must be synchronized over their time trajectories, which would be impossible due to their 

intrinsic stochastic nature. Some techniques start a biochemical reaction from a population 

synchronized in a specific state, thus enabling the measurement of reaction kinetics or 

conformational dynamics of some biochemical transitions. However, even if initially 

synchronized in the same microscopic state, the population rapidly loses its initial 

“coherence” because the molecules are subjected to random fluctuations from the 

interaction with the thermal bath and, thus, exhibit stochastic dynamics (Bustamente et al., 

2008). Single-molecule methodologies instead avoid the ensemble averaging of bulk 

experiments, since the dynamics of individual biomolecules are followed in real-time as they 

undergo their reactions (Finkelstein et al., 2010; Tafvizi et al., 2010; Bustamante et al., 2008; 

Kapanidis et al., 2009;  Walter NG et al., 2008;, Huang CY et al., 2008;  Zlatanova J. et al. 

2006; Bustamante C. et al., 2005; Lu HP et al., 1998). In fact, this is one of the major and 

unique features of single-molecule approaches. Following the real-time trajectories of 

individual biomolecules undergoing their biochemical transitions affords the observation of 

entire multi-step reactions pathways and also reports on the kinetics and, possibly, the 

conformations of the intermediate steps. Rare and transient phenomena (that would be lost 

in averaging) can also be detected. In single-molecule approaches, there is no requirement 

for synchronization, since just one molecule is tracked at the time. Among other striking 
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features of single-molecule techniques is the possibility to localize biomolecules and their 

assemblies with nanometer accuracy and to directly measure the biophysical and 

mechanical properties while they undergo the biological process.  

  On the other hand, the development of single molecule methods, from its 

beginning applied to Physiology (with single-channel recordings and patch-clamp in 1976 

(Neher et al., 1976)) to the present boom of applications in biosciences like Structural 

Biology, Nanotechnology, Enzymology and Systems Biology, has encountered a wide range 

of problems.  Single-molecule techniques pose some challenges on the technical ground 

mainly due to  the weakness of the signal: the order of magnitude of the experimental signal 

raised from an ensemble of molecules is very different from the one deriving from one 

molecule (Bustamante et al, 2008). Moreover, in order to accurately determine kinetics and 

draw statistically meaningful conclusions, a large dataset of individual single-molecule 

measurements must be acquired. Other drawbacks deal with the spatial and temporal 

resolutions, accessible measurement accuracies and instrument sensitivity. 

 Two general single-molecule methodological approaches have been developed: 

single-molecule detection and manipulation methods. The former allows the observation of 

individual molecules both in thermodynamic equilibrium or non-equillibrium conditions. 

Manipulation techniques instead, rely on the application of an external perturbation to the 

system, being the behaviour of the molecule studied under an external applied force. Both 

types of methods are described separately in more detail in the next chapters. 

 This revolution in Biology and Biochemistry and the establishment of single-

molecule methodologies can be easily witnessed by the exponential growth of  the number 

of publications with single-molecule words in the title by a simple search in PubMed 

(Moerner et al., 2007) and by the proliferation on their application in a broad range of 

biological systems as protein/RNA folding (Wang et al., 2012; kellermayer et al., 2007; 

Woodside et al., 2008), molecular motor (Capitanio et al., 2012; Yildiz et al., 2003; Yildiz et 

al., 2005; Svoboda et al., 2004), nanobiomachines (Noji et al., 1997; Xiao et al., 2008), nucleic 

acid-binding proteins (Finkelstein et al., 2010; Tafvizi et al., 2010; Lee et al., 2006; 

Abbondanzieri et al., 2008), DNA and RNA direct sequencing (Braslavsky et. al., 2003; 

Ozsolak et al., 2009) , translation (Blanchard et al., 2009; Vanzi et al., 2003), viral biology 

(Brandenburg et al., 2007), among others.  
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          33..  MMoolleeccuullaarr  bbaassiiss  ooff  pprrootteeiinn--DDNNAA  iinntteerraaccttiioonn  
 
 

 
 The classic view of the Central Dogma in Molecular Biology was first formulated by 

Francis Crick, one of the co-discoverers of the structure of the DNA (Deoxyribonucleic acid), 

in 1958 (Crick et al., 1958; Watson et al., 1953) and later on popularized in a Nature paper 

published in 1970 (Crick et al., 1970). DNA is a polymer made up of two polynucleotide 

chains wrapped on each other to form a double helix (figure 3.1 a). The backbone of each 

strand is composed by sugars alternated with phosphate groups while base pairs are 

projected in the inside but are accessible through major and minor groove (figure 3.1 b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: (a) Structural model of the DNA double helix. One helix turn (3.4 nm) contains about 10.5 
base pairs. Base pairs are only available from the minor and major grooves. Adapted from 
http://www.phiengineering.com/what_is_phi.htm. (b)Chemical structure of the double-stranded 
DNA. A nucleotide (which is the elementary unit of the polymer) is composed by a phosphate moiety 
(P), linked  to the 5’ hydroxyl of a pentose sugar, whose 1’ carbon is linked to an organic base. The 
pentose sugar is a ribose in the case of RNA and a deoxyribose in DNA. There are five different 
nitrogenous bases: the purines Adenine and Guanine (containing a pair of fused rings) and the 
pyrimidines Cytosine, Thymine. The first three bases are present in both nucleic acids (RNA and 
DNA), but Thymine is present just in DNA (by convention, the bases are often abbreviated A, G, C, T). 
Due to the chemistry of the sugar structure, the ends of the two chains are referred as either 5’ or 3’. 
The bases can interact via hydrogen bonds and the standard Watson-Crick base pairs are G•C (which 
make three hydrogen bonds) and A•T (two hydrogen bonds) in DNA. Base pairing and hydrophobic 
interactions between adjacent bases in the same strand stabilize its native structure. Image 
reproduced from http://www.gene-quantification.de/mrna.ht 

http://www.phiengineering.com/what_is_phi.htm


9 
 

As shown in figure 3.1, minor and major grooves alternate each other due to the 

helical structure of the strands. Base pairs atoms are accessible for DBP from both grooves, 

but the major groove provides more chemical information. Basically, from the major groove 

there are more possible contacts available and for DBP is easier to recognize the right base 

pairs. In fact proteins usually bind at this groove (Pabo et al., 1984) (figure 3.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Points of recognition in the major (M) and minor (m) grooves of DNA for each of the four 
base pairs. a, electron acceptor; d, electron donor; me, methyl group. Hydrogen bonding in base 
pairs is indicated by dashed lines. dR in circles denotes the deoxyribose-phosphate backbone of DNA. 
Strauch, Mark A(Apr 2001) Protein–DNA Complexes: Specific. In: eLS. John Wiley & Sons Ltd, 
Chichester. http://www.els.net [doi: 10.1038/npg.els.0001357] 
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On the other hand, the structure adopted by proteins for DNA binding and 

recognition is the alpha helix which perfectly fits with the major groove (figure 3.3). 

 

 

 

 

 

 

 

 

 

 

Figure 3.3.(a). Bondings between an asparagine of an alpha helix (violet ribbon) and base pairs 
(cartoon) in the major groove. Blue is nitrogen while red is oxygen and green sphere is carbon. 
Adapted from http://www.biosino.org/mirror/swift.embl-heidelberg.de/course/DNAold/chap1.html. 
(b). Atomic details of an asparagine bonding to adenine from the major groove. Hydrogen bonds are 
denoted by dashed lines. T= timine, A=Adenine, dR= deoxyribose. Strauch, Mark A(Apr 2001) 
Protein–DNA Complexes: Specific. In: eLS. John Wiley & Sons Ltd, Chichester. http://www.els.net 
[doi: 10.1038/npg.els.0001357] 

 

The interactions and recognition between biomolecules is the basis of the central 

dogma of biology which states that each gene in the DNA molecule carries the information 

coding for one protein, the primary molecules that make up cell structures and carry out 

cellular processes. In this one-way flow of genetic information from DNA to proteins, a third 

molecule is required: the messenger RNA (Ribonucleic acid) (mRNA), that serves as the proxy 

and carries the information specifying the correct order of amino acids to be assembled into 

a protein, during protein synthesis or Translation (figure 3.4).  

 

 

 

 

             

 

Figure 3.4: Schematic representation of the central dogma in molecular biology.  

 

http://www.biosino.org/mirror/swift.embl-heidelberg.de/course/DNAold/chap1.html
http://www.answers.com/topic/gene
http://www.answers.com/topic/dna
http://www.answers.com/topic/molecule
http://www.answers.com/topic/protein


11 
 

 

This critical trio of macromolecules – DNA, RNA and proteins – is present in all living 

cells and sits at the core of the pathways controlling cellular processes and fate. The 

properties of these molecules of life and their innumerable variations present in different 

organisms have been broadly studied by modern researchers, which have employed 

concepts and experimental procedures drawn from biochemistry, genetics, molecular and 

cellular biology to also biophysics.  

Regarding the goal of this thesis, from the biophysical point of view, DNA is described 

as a semi-flexible polymer that bends locally as a result of thermal fluctuations. The binding 

of proteins to DNA (required for numerous biological processes, such as DNA replication, 

transcription, packaging, restriction, DNA repair, among others) can also deform its helical 

structure, causing local bending, twisting, looping or unwinding of the molecule.  

 

 

 

 

 

 

4. The lac Operon 
 
 
 
The lac repressor (LacI) is a bacterial protein involved in gene expression regulation in 

Escherichia Coli, where it represses the expression of genes involved in the metabolism of 

the disaccharide lactose. Like gene expression, all biological processes, are finely regulated 

by organisms. This is because living organisms have to adapt themselves to a fluctuating 

environment to survive while keeping energy expense minimal. In other words, to minimize 

energy expense, the same biological process can be activated or not according to the 

external conditions. In the case of lactose metabolism regulation, the fluctuation arises from 

the type of carbon and energy source available: glucose or lactose. Gene expression 

represents a huge energy expense for the cell because many biomolecules (RNA and 

proteins) have to be synthesized. If there is no lactose in the external environment, 
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expression of genes involved in its metabolism, would be definitively a waste of energy for 

the cell. 

At the molecular level,this waste is minimized in several ways. An operon is a group 

of genes transcribed as a single unit. In the case of Lac operon, there arethree genes: LacZ, 

LacY and LacA encoding respectively for β-galactosidase (which hydrolyses lactose into 

glucose and galactose), β-galactoside-permease (responsible for the up-take of lactose) and 

for β-glactoside transacetylase (which links an acetyl group to β-galactosides). When the 

operon is transcribed, RNA polymerase synthesizes a unique mRNA containing the 

information for all three genes and that will be eventually translated by ribosomes into the 

three proteins (Jacob & Monod 1961). It is intuitive that all the genes constituting the 

operon are under the same regulation. The first step of transcription requires the binding of 

the RNA polymerase at the promoter which is located up-stream the genes to be 

transcribed. As we can see in figure 4.1, there is another sequence superimposed to 

promoter: the Operator. This is the sequence by which LacI has high affinity for (Kd=5x10-11 

M) (Hsieh et al., 1987). This superimposition suggests that there is a competition between 

LacI and RNApol for binding at that region of DNA. When LacI is bound to operator, RNA 

polymerase is physically hindered to transcribe for sterical hindrance. This is the situation 

when lactose metabolism proteins are not required, i.e. when lactose is not present in the 

medium. The presence of lactose is sensed by the repressor itself; lactose binds to its lactose 

binding region which in turn makes the protein lose its affinity for operator. Since for 

expressing lac operon genes glucose has also to be absent, there is a molecular sensing for 

glucose too. In absence of glucose, cyclic Adenosin Mono Phosphate (cAMP) is produced and 

binds to its receptor, catabolite activator protein (CAP). This binding enhances CAP affinity 

for its target on DNA.  
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Figure 4.1. The figure represents the four combinations of external conditions, varying from 
the presence of both sugars to the situation when just one sugar is present, or when there are no 
sugars available. Lac repressor is bound to operator and physically prevent genes transcription just 
when lactose is absent; on the other hand, CAP protein is bound to its site and enhances 
transcription when glucose is absent. Image reproduced  from 
http://www.thetruthaboutgenetics.com/2011/07/lac-operon.html        

 

When bound to DNA, CAP directly interacts with RNA polymerase which facilitates its 

binding to the promoter and thus transcription. In summary: 

 When lactose is absent there is very little Lac enzymes production (LacI is bound to 

the operator). 

 When lactose is present but a preferred carbon source (like glucose) is also present, 

a small amount of enzymes is produced (Lac repressor is not bound to the operator). 

 When only glucose is absent, CAP-cAMP binds to a specific DNA-site (situated 

upstream to the promoter) and makes a direct protein-protein interaction with RNA 

polymerase which leads to an enhanced binding of RNA polymerase to the promoter 

http://www.thetruthaboutgenetics.com/2011/07/lac-operon.html
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4.1 Lac Repressor 

 

The lac repressor was isolated in 1966 by Walter Gilber and Benno Mϋller-Hill 

(Gilbert et al., 1966).The purified protein may exist in a monomeric, dimeric or tetrameric 

form. The last consists of four identical subunits, each one composed by 360 amino acids. 

When assembled into its tetrameric form, the repressor has a molecular weight of 154.52 

KDa. Figure 4.2 shows the monomeric structure of LacI (4.2a) and its tetrameric structure in 

association with DNA (4.2b). Each monomeric subunit is composed by three domains: N-

terminal domain (residues 1-62), the core protein domain (residues 63-340), and the C-

terminal domain (residues 341-357). The N-terminal domain is involved in DNA binding and 

can be subdivided into two further subdomains: the DNA-binding region (residues 1-45) and 

hinge region (residues 46-62). DNA binding region, also known as the repressor head-piece, 

contains a helix-turn-helix (HTH) motif and the hinge region links DNA-binding region to the 

core of the protein. This flexible region of the LacI allows the DNA-binding region and the 

core of the protein to move independently of each other. (Friedman et al., 1995). 

 

 

 

 

 

 

 

 

 

Figure 4.2. (a) Structure of the lac repressor monomer. Reproduced from 
http://proteopedia.org/wiki/index.php/Help:Snapshots (b) structure of the complex formed between 
the tetrameric lacIand the DNA operators. Reproduced from 
http://en.wikipedia.org/wiki/Lac_repressor (Lewis et al., 1996) 

 

It has been shown (Lamerichs et al., 1989) that the hinge region makes specific 

interactions with lac operator, orienting the head piece for DNA-binding. The hinge region is 

capable of doing so through a conformational switch of residues 50-58 from an unstructured 

coil to a defined helix in presence of operator DNA. In the absence of the operator these 

a b 

http://en.wikipedia.org/wiki/Lac_repressor
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residues are relaxed, allowing repressor head piece to freely dangle. The core repressor 

protein is also known as the inducer binding domain. The protein C-terminus is responsible 

for the molecule being a tetramer, formed when the alpha helixes of the four monomers 

associate in an antiparallel fashion (Friedman et al., 1995). Although the molecule is a homo-

tetramer, it makes sense to think about it as a dimer of dimers; though all monomers are 

oriented to the same point in the space, dimers are oriented in different planes giving rise to 

the skewed, V shape of the molecule, with the two DNA-binding regions at the upper points 

of the V (figure 4.2b) (Friedman et al., 1995). 
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4.2 DNA looping 

As described before, LacI contains two DNA binding domains so that two DNA target 

sequences can be bound simultaneously. In fact, wild type lac operon contains multiple 

operators: the “principal” operator O1 and two auxiliary operators designed O2 and O3 

(table 1), (W.S. Reznikoff et. Al., 1974). LacI can thus bind to two out of the three operators 

inducing a loop in the intervening DNA as illustrated in figure 4.3 to fully repress the 

transcription of the operon lac, according to cell needs.  

 

 

 

 

 

 

 

 

Figure 4.3. In 1996, the crystal structure of the LacI-DNA complex was reported (M. Lewis et al., 
1996) and a model for the 93bp repression loop (corresponding to the lac operon -81 to +11) was 
proposed: the ends of the loop contain operators (red sequences) to which the bound LacI tetramer 
(violet) is shown . Inserted in the loop is the CAP protein and 30bp DNA complex (blue). Grey DNA 
was created by applying a smooth curvature to B-DNA. The curvature of the modeled portion of the 
loop is about 40 Å; highlighted in green are the sites of the lac promoter. Image reproduced from (M. 
Lewis et al., 1996). 
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operator sequence Affinity for LacI 

(Kd) 

O1 AATTGTGAGCGGATA

ACAATT          

0.05nM 

O2 AAATGTGAGCGAGTA

ACAACC 

0.1nM 

O3 GGCAGTGAGCGCAAC

GCAATT 

100nM 

Table 1. List of the three operators present in lac Operon with respective sequences and 
affinities for LacI. 

 

The different sequences of operators lead to different affinities for LacI which in turn 

determine, together with the operators positions, different repression efficiencies. O2 was 

found 401 bp downstream of O1, whereas O3 was found 92bp upstream of O1. Since 

deletion of either O2 or O3 decreased repression two- or three fold, but the deletion of both 

leads to a 70-fold decrease in repression,O2 and O3 were termed auxiliary (Oehler et al., 

1994). The increase in repression by auxiliary operators due to loop formation (i.e. 

simultaneous binding to O1 and O2 or O1 and O3) was first proposed in 1977 (Kania et al., 

1997) and it is currently the most reliable hypothesis. An E. Coli cell contain ~10 copies of 

LacI molecules, so the limiting step of the repression is the search of the operator sequences 

among millions of base-pairs of non-specific DNA. This process occurs by diffusion and the 

binding probability depends on LacI concentration. If LacI stays in the proximity of the 

primary operator O1, the probability of binding to this site is much higher than a freely 

diffusing molecule in the cytoplasm. On the other hand, when the repressor is bound to one 

of the three operators, the protein remains close in space to the operon (i.e. it is physically 

confined to that area leading to an increase of the local concentrationof LacI), and 

correspondingly the repression increases.  

 

 

 

 

 



18 
 

                     55..  MMeecchhaanniissmm  ooff  Target search on DNA 
 
 

Once discussed the mechanism through which Lac repressor regulates genes 

expression when associated to its target sequence on DNA, let us consider now the kinetics 

aspects of the association to the operator which represents the limiting step of the 

repression process. How fast the cell represses lactose metabolism genes in response to 

fluctuation of external source of carbon corresponds definitely to the association rate of 

lactose repressor to operator. This consideration is valid for all Transcription Factors (TFs) 

who must find their target on DNA among an extremely high number of base pairs. For 

lactose repressor we have to think that there are only 5-10 copies of the molecule per cell 

(Gilbert et al., 1966) and operator is 24 base pairs sequence (M. Lewis, 1996) in a genome 

which contains 4.6 million base pairs (F.R. Blattner, 1997) and genome is also in a coiled 

conformation (figure 5.1). What one would expect from this numbers is that the target 

search is effectively limiting. Nevertheless, once lac repressor occupies the operator for the 

first time, it will stay tightly bound for a long time (Kd=0.05nM), whereas it remains unbound 

only a short fraction of time. In  this fraction of time, another molecule of repressor will bind 

because, even if there are few molecules in the cell, their concentration (10 molecules in 

1μm3 corresponding to 10-8M) and this value is three order of magnitude higher than the Kd 

meaning that there should be always a lactose repressor bound to the operator. This 

consideration implies that the limiting step is actually only the first event of operator 

occupancy by a lac repressor molecule. 
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Figure 5.1. This picture shows an E. coli bacterium with its genomic DNA extruded onto an electron 
microscope slide. E. coli is about 1-2 microns long. Its circular genome is about 1000 times longer 
than the bacterium itself. When extruded from the cell, it looks like this. The mass in the center is 
what's left of the E. coli bacterium after lysis. Image from http://www.pitt.edu/~mcs2/ecoli.html. 

 

At the beginning of 70s, Riggs and coworkers measured the association rate of 

lactose repressor to a 50 kbp long DNA containing the operator (Riggs et al., 1970) and found 

it surprisingly fast, following second-order kinetics with a rate constant for protein 

association to DNA, ka=7x109 M-1s-1. The interest for the target search mechanism which is 

still active today, arises from the mismatch of the measured value from a theoretical value 

obtained considering (as one would expect) protein finding a DNA target sequence of length 

lseq stochastically by random 3D diffusion. This theoretical value is obtained using 

Smoluchowski’s equation (M. von Smoluchowski 1917, R.A. Alberty etal., 1958) for the 

association rate by 3D- diffusion: 

                                                                  Ka(3D) = 4πD3lseq                                                                                 (1) 

Where D3=KBT/3πηa=9x10
-7 cm2/s is the 3D diffusion coefficient of the protein in 

solution, where KB is the Boltzmann constant, T the temperature, η the viscosity of the 

solvent and a≈5nm is the typical diameter of the protein. According to equation 1, the 

association rate of a protein to a DNA sequence length, lseq , of 3 base pairs (1nm) should be 

theoretically equal to 108M-1s-1, two orders of magnitude slower than that found by Riggs 

and coworkers. 

In 1981, in order to explain the measured association rate that appeared 100 fold 

faster than the diffusion limit, Berg, Winter and von Hippel introduced the facilitated 

diffusion model (Berg et al., 1981). The major feature of the facilitated diffusion model is 

http://www.pitt.edu/~mcs2/ecoli.html
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that two different kinds of exploration alternate during target search (Halford et al., 2004, L. 

Mirny et al., 2009). The fist way of exploration is three-dimensional free diffusion in the 

cytoplasm, unbound from DNA. The second kind of exploration is given by a non-specific 

DNA-bound state where proteins are assumed to non-specifically bind and slide along DNA, 

in the so-called 1D-diffusion. Sliding events can be seen as a scans of the base pairs 

composition by DNA proteins to find the right base pair sequence, i.e. their target cognate 

DNA. Such a mechanism is also defined “intermitted search” (figure 5.3a) and, for 1D search 

limited to few tens of base pairs and with appropriate 3D-1D transition kinetics, it is 

supposed to act increasing the effective protein concentration near the DNA and thus 

accelerating the target localization rate (Berg et al., 1981). This facilitated-diffusion modified 

protein-target association rate ka per protein concentration has been derived by Halford and 

Marko (Halford et al., 2004): 

 

                        
 

    
 

    

  
 
  

       
    

  
 

  

  
         

  

         (2)                                                  

Where D1 is the 1D diffusion coefficient of the nonspecifically bound protein along 

the DNA, L is the total length of the DNA molecule, ld is the maximum contour distance 

covered by the protein before dissociation, c is the concentration of the target, and 

 
    

  
 

  

  
         

  

is the acceleration factor to ka3D=4πD3lseq.  Wang and coworkers 

(Wang et al., 2006) tried to measure the accelerator factor by measuring D1 and ld of lac 

repressor. They used a GFP fusion of lac repressor (which could not tetramerize and thus 

being only in the dimeric or monomeric aggregation state) and the DNA was anchored to the 

cover slip stretched to few pN; single molecule imaging was achieved using a TIRF (Total 

Internal Reflection Fluorescence) microscope with a mean exposure time of 10ms (figure 

5.2). 
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Figure 5.2. A kymogram of a diffusing protein (top) with its relative position during time before 
photobleaching (bottom) Adapted from Wang et al., 2006. 

Figure 5.2 shows the kymogram of a protein trajectory  and the relative displacement 

of the protein vs time curve. Kymograms are obtained by a 90° rotation of all frames (and, if 

desired, the cropping of the region of interest) followed by juxtaposition of all frames. In the 

resulting montage, the x axis, parallel to DNA, will be oriented vertically while the horizontal 

axis will be the time. The 1D diffusion coefficient was obtained from the Mean Square 

Displacemt (MSD) of all trajectories (Wang et al., 2006) 

         
          

    
   

   
           

  (3)                           

           

 

where N is the total number of positions measured, n is the measurements index 

going from 1 to N, Δt is the time interval between two consecutive position measurements, 

and σs is the localization uncertainty associated with each xi. In this way they obtained a 

mean diffusion length ld of 500nm (probably a lower bound of the true value due to 

photobleaching) and a mean 1D- diffusion coefficient D1 of 2.1x10-10 cm2s-1 . Using these 

values, with L=15.5µm and D3=4x10-7 cm2s-1 , they calculated the accelerator factor in 

equation 2, which corresponded to 93±20 which seems to solve the discrepancy between 

theoretical and experimental data for the association rate. 

According to the facilitated diffusion model, proteins can slide along DNA keeping a 

continuous contact with DNA until they detach and undergo a 3D diffusion (figure 5.3a) or 

through very fast (with respect to the experimental temporal resolution) sequence of 
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unbinding and binding events. This behavior is thus called “hopping”. When, after unbinding, 

a protein binds far from the previous location, this is called “jumping”. Proteins with two 

DNA binding domains (like lac repressor) can bind to two sites on DNA (even not adjacent) 

inducing a loop; if the protein first binds on a site A, then binds to a site B with the other 

DNA binding domain making the loop and then unbinds from site A staying bound with only 

one binding domain to site B, the result is a transfer from a segment to another of DNA. This 

is in fact called “intersegmental transfer” (Figure 5.3b)1.  

 

 

 

  

 

 

Figure 5.3. A a schematic representation of facilitated diffusion mechanism which implies an 
alternation between 3D-diffusion in the cytoplasm an 1D-diffusion bound to DNA. B Different 
modalities of target search. Image adapted from (Normanno et al., 2012) 

 

 

 

 

 

 

                                                 
1
 This is also the same mechanism monkeys use (brachiation) to move in a very fast fashion from a tree to another without passing from the soil. If 

monkeys should descend from one tree and then climb to another the speed of the food search would be definitively lower. Also for proteins, 
staying always bound to DNA, that is increasing their local concentration is the way to accelerate the target search. 
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6. Search vs recognition: the two-state model 
 
 
For understanding why it is possible for a protein to move along DNA, one has to 

consider the energetics of the system. If the affinity of the protein for non-cognate DNA is 

high the protein would stay bound nonspecifically for long time. It has been estimated that a 

binding energy barrier landscape ≥ 2KBT would extremely slow down diffusion, with the 

protein unable to diffuse more than a few base pairs. Experimentally observed and 

biologically relevant rates of search can be reached only when one-dimensional sliding 

proceeds through a fairly smooth landscape with a roughness of the order of KBT. On the 

other hand, the stability of the protein-DNA complex at the target site requires a roughness 

of the binding energy landscape considerably larger than KBT and diffusion at such a 

roughness is impossible. Slutcky and Mirny in 2004 (Slutcky et al., 2004) proposed a two-

state model to resolve this apparently contradictory energetic considerations. The paradox 

can be resolved if the DNA-binding protein has two distinct (conformational) states in which 

it exhibits two modes of binding.  

In the first mode which has weaker binding and smoother landscape, protein 

searches for the cognate site. In the second (recognition) mode, which has larger roughness 

of the binding landscape, the protein tightly binds DNA. They also suggested that this 

transition is a conformational transition or at least a partial folding. The standard deviation σ 

of the energy profile is used to quantify the roughness of the landscape and is about 1.0-2.0 

KBT for the search mode and greater than 5.0 KBT for the recognition mode. A protein in 

nonspecific binding mode is “unaware” of the DNA sequence it is bound to. Thus, it should 

permanently alternate between the binding modes, probing the underlying sites for 

specificity. If the TF is to probe every site for specificity in this fashion, it would take hours to 

locate the cognate site resulting in a waste of time. The proposed model suggests that only 

sites whose binding energy is correlated with the actual specific binding energy (σ~5-6 KBT) 

are probed. These sites, which represent sites similar in sequence and thus also in the 

relative binding energies, constitute a very small fraction of the total number of sites 

implying that transitions between modes are rare and so not limiting the target search rate. 

The coupling between the conformational change and association at a site with low 

energy (“trap”) is likely to take place through time conditioning. This means that the 
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transition occurs if the protein spends some minimal amount of time bound to a certain site. 

This statement is basically equivalent to saying that the free energy barrier that the protein 

must overcome to transform to the final state must be comparable to the characteristic 

energy difference that controls hopping to the neighboring sites. Once the transition is 

occurred, the new structure offers additional contact points for new protein-DNA 

interactions. At the cognate site, these interactions further stabilize the recognition mode 

and the protein stays specifically bound for a very long time. If these new interactions are 

unfavorable, the search conformation is restored and diffusion proceeds as before. The 

folding of partially disordered protein loops of helices can provide the required free energy 

difference between the two modes. 

Alternatively, the cognate site can lower the barrier by stabilizing the transition state, 

whereby it acts as a catalyst of partial folding (Abkevich et al., 1994, Mirny and Shakhnovich, 

2001). 
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       7. Fluorescence Microscopy 

 

To study the dynamics of biomolecules at the single molecule level, the first step is to 

visualize them. Due to their nanometric dimensions, individual biomolecules must be tagged 

with probes to be detected, like organic fluorophores (as cyanine and rhodamine families) or 

alternatively with fluorescent protein probes, as Green Fluorescent Protein2 (GFP) (Tsien et 

al., 1998) or its variants. Fluorescent molecules are characterized by emitting light at longer 

wavelengths than the excitation light; this phenomenon of fluorescence was first observed 

by the Irish Sir George Gabriel Stokes (Figure 7.1).  

Figure 7.1: (a) A Jablonski diagram shows a number of possible routes for the relaxation 
mechanism of excited molecules. An incoming photon causes an electron to move from a stable 
singlet ground state (S0) to a higher vibrational energy, unstable excited level (either S1, S2 or S3). The 
excited electron can decay to the ground state, emitting a photon of light (fluorescence). There is 
always some energy lost to heat in the process, so the emitted photon has less energy than the 
original photon. Molecules in the S1 state can also undergo a spin conversion to the first triplet state, 
in a process called intersystem crossing. Emission from T1 is termed phosphorescence and is 
generally shifted to longer wavelengths. (b) Absorption and fluorescence emission spectra of quinine 
sulphate. In the case of quinine, the emission spectrum is not perfectly a “mirror image” of the 
absorption spectrum, as generally occurs with fluorophores. That is because the shorter wavelength 
absorption peak comes from the excitation to the second excited state (S2), which relaxes 
immediately to the lowest singlet state S1, so emission from S2 energy level is not observed on 
emission spectrum of quinine. Note the stokes shift between the two spectra.   

 

As depicted on the Jablonski diagram in Figure 7.1a, the spin of an electron on the 

excited singlet state of the fluorophore can invert producing a triplet. The triplet state is 

relatively long-lived with respect to the singlet, allowing thus excited molecules a much 

longer timeframe to undergo chemical reactions with components in the environment. 

                                                 
2
 GFP is a naturally fluorescent protein present in the specie of jellyfish Aequorea Victoria , discovered in 1961 by 

Shimomura and coworkers. He was awarded together with M. Chalfie and R. Y. Tsien the 2008 Nobel prize in Chemistry 
for the discovery and experimental development of GFP. 

 a b Stokes shift  b 
 

a 
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When such interactions produce irreversible covalent modifications, the fluorophore 

permanently loses the ability to fluoresce. This phenomenon is called photobleaching and 

it’s due to photon-induced chemical damage and covalent modification.  

In conventional epifluorescence microscopy the specimen is illuminated in wide-field 

by a collimated beam of light (figure 7.2.a); the fluorescence image is the sum of sharp 

image details from the in-focus-region combined with blurry signal from all the out-of-focus 

regions, leading to a decrease in the contrast of the in-focus image. Confocal microscopy 

overcomes this problem by spatial filtering (i.e. introducing a pinhole in front of the light 

source and/or in front of the detector) (figure 7.2.b) to eliminate out-of-focus contributions 

in specimens that are thicker than the focal plane. This feature allows a significant reduction 

of the background noise. To obtain an image with the confocal microscope, the focused spot 

of light is scanned across the specimen, producing optical sections of the specimen that can 

be reconstructed into a three-dimensional image. Another illumination geometry that allows 

a significant reduction of the background noise is Total internal reflection fluorescence (TIRF) 

microscopy (figure 7.2.a). TIRFM uses an induced evanescent wave to excite fluorophores in 

a limited region of the specimen, immediately adjacent to the interface between two media 

having different refractive indices (figure 7.2.c). The excitation laser hits the slide with an 

angle higher than the total internal reflection critical angle. The evanescent wave generated 

on the slide decays within typically 100 nm in the sample. This plays the role of spatial 

selection (comparable with the pinhole used for confocal microscopy, but with much higher 

background rejection) because only the molecules located in near proximity of the interface 

can be excited. 
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Figure 7.2: (a) Schematic drawing of three different fluorescence imaging geometries [32]. 

See text for further details.   (b) Confocal microscopy. Due to the presence of a pinhole aperture, only 
the light from the focal plane of the objective (yellow) reaches the detector. Blue and red rays 
represent the contributions from above and below the focal plane, respectively.  Adapted from 
http://www.rudbeck.uu.se/en/node48. (c) TIRF microscopy uses the evanescent wave from light that 
is totally internally reflected at an interface to selectively excite fluorophores that are in very close 
proximity to that interface. Figure adapted from http://atomoptic.iota.u-
psud.fr/research/biophysics/biophysics.html 
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      7.1 High Precision Single Molecule Detection 

 

 

A point light source, like a single fluorophore or nanocrystal, appears as a diffraction 

limited image (Point Spread Function) whose width is ≈ ʎ/2 N.A. where ʎ is the wavelength 

of the excitation light and N.A. the numerical aperture of the collecting lens (“Abbe’s law” or 

“Rayleigh’s resolution limit”). Considering that for a microscope the practical maximum N.A. 

is < 1.65, this width, which represents the resolution limit, is ≈250nm for visible light. In 

these conditions, two point sources can be resolved as two separate entities, only if their 

distance is larger than 250 nm in the focal (x-y) plane. 

Nevertheless, the centre of the PSF, which under proper conditions corresponds to 

the position of the light source, can be localized with an arbitrary high precision if a 

sufficiently high number of photons are collected. In order to determine the centre of the 

image, Cheezum and co-workers published in 2001 (Cheezum et. El., 2001) a work where 

they demonstrated that the best function to fit the intensity distribution of point image (also 

called Point Spread Function, PSF) is a 2D Gaussian curve:  

 

                                       
   

 

 
    

     
   

 
 
      

     
   

 
 
     

                            (4) 

 

where x0 and y0 are the coordinates of the centre, A is the amplitude, σx and σy are 

the widths along the two axes and b the background. From this fit is thus possible to obtain 

the coordinates of the centre of the distribution. Fit is performed in MATLAB using χ2 

minimization. 

Any image acquired by a camera is affected by different contributions of noise (shot 

noise for photons collection statistics, fluorescence background, camera readout and 

pixelization effects). Thompson et al derived a theoretical expression for the error of 

localization in an article in 2002 (Thompson et. Al., 2002) considering all these contributions 

along one direction: 
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Where the index i refers to the direction x or y. N is the number of detected photons, 

a pixel dimension in nanometers and b the standard deviation of background photons. The 

first term represents the uncertainty due to diffraction limit; the second represents the 

contribution due to the finite pixel size of the camera and the last term represents the 

contribution of background. When the pixel size is properly chosen and the fluorescence 

background can be reduced, the most influent contribution is the first, the diffraction limit. 

Nevertheless, each of the three terms decreases with an increasing number of collected 

photons. In principle, a localization measurement is thus obtained with an arbitrary high 

precision if a high number of photons are collected. 

But there are also some external factors that could further decrease the localization 

precision, such as thermal fluctuations or mechanical vibrations. These factors are not taken 

into account in the Thompson’s analysis. 
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        8. Single-molecule Force Spectroscopy  
 
8.1 Forces at the Single-molecule level 
 
 
 
 Force has a fundamental role in a wide array of biological processes. For example, it 

modulates enzymatic activity, induces structural changes in proteins and nucleic acids, alters 

kinetics of molecular bonds (Cecconi et al., 2005; Marshall et al., 2003), regulates motion of 

molecular motors (Rief et l., 2000; Reconditi et al., 2004) and has a role in mechanical 

transduction and sensory functions (Laakso et al., 2008). At the molecular level, these 

processes are ultimately related to the capacity of force to modulate lifetimes of molecular 

interactions and transition rates in biochemical reaction cycles that involve motion (Howard 

et al., 2001). Single molecule force spectroscopy approaches, such as Optical and Magnetic 

tweezers and Atomic Force Microscopy (AFM), which allow to apply and to measure forces at 

the molecular level, are crucial to study these mechanisms.  

The application of forces to probe motion of single molecules perturbs the natural 

energy landscapes owing to the mechanical work required to move against the load. 

Consequently an external force changes the heights of energy minima and maxima and so 

the kinetics of motion, as illustrated on figure 8.1. 

  

 

 
 
 
 
 
 
 
 
Figure 8.1: The application of a constant external force to single biomolecules perturbs their 

natural energy landscape. This perturbation alters the height of the energy barrier ∆E, by Fδ 
(Greenleaf et al., 2007). 
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The maximum practical force that can be applied to a single molecule is dictated by 

the force at which the molecule breaks, i. e. the rupture force of a covalent bond that is 

about 1.6 nN (Grandbois et al., 1999). This value is obtained by dividing the energy of a 

covalent bound (1 eV) by its length (typically 1Å). Below 1.6 nN, the chemical bonds in the 

molecule are extended, and the molecule behaves, in a first approximation, as a spring 

(enthalpic elasticity regime). In the low force regime, the elastic properties of the molecule 

are dominated by entropy. Regarding the lower limit of a measurable force, it is set by the 

thermal motion of the force probe: the force that arises from the collisions between an 

object and the solvent molecules. This force is usually called Thermal or Langevin force and it 

is the origin of Brownian motion. Since the time scale of molecules collisions is very short, in 

a first approximation, the spectrum of the Langevin force is flat as in the case of white noise 

(Neuman et al., 2007). Therefore, the amplitude of the Langevin force depends on the 

measurement bandwidth ( B ) according to: 

 

2/1)4( TBkF BL                                                                                                 (6) 

 

where LF  is the Langevin force,   the drag coefficient (which depends on the size 

and shape of the object, its proximity to the walls or surfaces and the viscosity of the fluid) 

and TkB the thermal energy. Considering a measurement bandwidth of 1 Hz, a sphere of 1 

µm in water at room temperature experiences a force of ~10-14 N.  

Beyond revealing the forces that impel biological motion, single-molecule force 

experiments have been also used to assess the folding kinetics of nucleic acids and proteins, 

by disrupting molecular bonds, or to measure the elasticity (through force-extension 

relationships) of individual polymers, as described in the next chapters.  

Just as the attachment of fluorophores to the molecule of interest allows its 

detection by fluorescence microscopy, so also the molecules under study need to be 

attached to a probe through which force is applied by single-molecule manipulation 

techniques. The kind of probe used depends on the technique: an optically trapped bead, a 

magnetic bead or an AFM tip. Ideally, the probe should be attached strongly enough to 

support the applied loads and, at the same time, it should not affect the mechanical or 

biological properties of the molecule under investigation. The attachment can be obtained 

by specific covalent bonds (based on amine, thiol or carboxyl chemistries), by specific non-
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covalent bonds (for example biotin-avidin, antigenes and antibodies or even metals and 

chelators) or through nonspecific interactions (as charge-mediated adsorption). The last 

allows strong loads, but usually involves an unknown orientation of the molecule and of the 

mechanism of attachment, limiting in some cases its use in force experiments. Covalent 

attachments can support large forces (on the order of 1 nN), but frequently imply harsh 

chemical treatments that alter the properties of the biological sample. Covalent attachments 

by ligand-receptor pairs are commonly used because they afford specific and relatively tight 

binding to the probe (from ~10 to 300 pN).  Other precautions regard the prevention of 

nonspecific interactions with surfaces like the experimental chamber, since it can introduce 

artifacts and uncertainty in the collected data; these nonspecific interactions can be 

prevented for example with inert proteins as casein or bovine serum albumin. In the next 

subsections Optical tweezers are briefly described.  

  

 

88..22  OOppttiiccaall  ttwweeeezzeerrss  

 

Single-beam optical traps, known as optical tweezers, were introduced by Arthur 

Ashkin, Steven Chu and their co-workers (Ashkin et al., 1986) at AT&T Bell Laboratories. 

Optical tweezers exploit the fact that light carries both linear and angular momentum and 

hence exert forces and torques on matter. Optical tweezers are formed by tightly focusing a 

laser beam to a diffraction-limited spot with a high numerical aperture lens, such as a 

microscope objective. Dielectric particles, for example uniform beads or bacterial cells, can 

thus be stably trapped in the focal region due to the intense light gradient and the transfer 

of momentum from the scattering of incident photons. In the geometry of a tight focus of a 

laser beam, the high light intensity gradient leads to a three-dimensional “potential well”, 

keeping the trapped bead in place. The resulting optical force can be divided in two 

components: scattering forces, proportional to light intensity, pushing the object along the 

direction of propagation of the light beam, and gradient forces pulling the object in the 

direction of the spatial gradient of light intensity (i.e. towards the focal region) (figure 8.2). 

For stable three dimensional trapping, axial gradient forces must overcome the radiation 

pressure or scattering forces, thus the requirement for tightly focusing the laser beam. This 
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condition of axial equilibrium position of a trapped particle is located slightly beyond the 

focal point (Neuman et al., 2004). 

The application of an external force disturbs the position equilibrium of the trapped 

bead by displacing it away from the trap center, with a linear dependence of displacement 

on force. An optical trap acts on a microsphere effectively placing it in a potential well (as 

depicted in figure 8.3). As a first approximation and within a certain range of displacements 

of the bead from the center of the trap ( x ), the potential can be regarded as parabolic and 

the optical trap behaves as a Hookean spring, with the restoring force F  exerted by the trap 

on the bead determined by xkF  . The trap stiffness k depends linearly on the 

polarizability of the trapped particle (and therefore, on its index of refraction) and the 

intensity of the trapping laser beam. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.2: A strongly focused beam of light or optical tweezers can trap objects, such as a 

colloidal particle. Intensity gradients in the converging beam draw the particle towards the focus, 
though radiation pressure of the beam tends to push it away from that region. The particle is stable 
trapped in all three dimensions under conditions in which the gradient axial force dominates. 
Adapted from (Grier et al., 2003).  

 

 

 
 
 
 
 
 
 
 
Figure 8.3: Potential well of the focused laser beam and parabolic fit of experimental data. 

Figure adapted from (Capitanio et al., 2002). 
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The displacements of the trapped bead from the trap center can be detected by 

Back-focal-plane interferometry (Gittes et al., 1998). This model describes the intensity shifts 

in the back focal plane of the condenser lens that is collimating the outgoing laser light. The 

image in the back focal plane is an interference pattern between the trapping laser light and 

scattered light from the trapped bead. This light distribution can be imaged onto a sensitive 

position detector, as Quadrant Photodiodes (QPD: a light sensitive diode which is divided 

into four equal segments) (figure 8.4). For small displacements of the trapped bead, the 

response of the detector is linear and the displacements of the trapped bead can be 

measured (see figure 11.3). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.4: Back-focal-plane interferometry. The back focal plane of the condenser (of focal 
length f) is imaged onto a quadrant photodiode. Reading out the differential signals (I2+I4)-(I1+I3) and 
(I1+I2)-(I3+I4) (both normalized by the total intensity), displacement signal for both x and y directions 
are obtained, respectively.  

 

To minimize sample damage from the intense light of the optical traps, usually the 

wavelengths used for trapping are chosen to be in the near infrared, in the region of near-

transparency for most biological materials. 

Optical tweezers can trap objects ranging in size from 5nm (Svoboda et al., 1994) to 

several micrometers. These include single cells (Neuman et al., 1999), organelles inside cells 

(Sacconi et al., 2007) or even lipid vesicles (Cherney et al., 2004). Nevertheless, most part of 

macromolecules and macromolecular assemblies are insufficiently refractive to be trapped 

     I1     I2 
      

     I3    I4 
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alone. This drawback is overcome by attaching them specifically to refractive spheres or 

“beads” and using these as handles (for example silica or polystyrene beads).   

Typically, the stiffness of optical traps is in the range of 0.01-1pN.nm-1 and, 

consequently, the forces that can be applied are in the picoNewton and sub-picoNewton 

range (0.1-100pN) (Ghislain et al., 1994), making this technique being now best suited for 

the measurements of events occurring at the molecular scale (nm) and with energies of 

biological systems ( TkB = 4.11 pN•nm). In fact, optical tweezers are routinely applied to the 

study of classical molecular motors at single molecule level as kinesin (Svoboda et al., 1994), 

myosin (Finer et al., 1994) and dynein (Toba et al., 2006), as well as processive nucleic acid 

enzymes and macromolecular assemblies as helicases and exonucleases (Dumont et al., 

2006; Dumont et al., 2003), DNA and RNA polymerases (Wuite et al., 2000; Galburt et al., 

2009; Abbondanzieri et al., 2005) , viral DNA packaging motor (Smith et al., 2001), ribosome 

(Wen et al., 2008; Vanzi et al., 2003) among others.  Due to the forces (~15pN) and 

displacements (~nm) associated with nucleic acid folding, optical tweezers are well suited to 

measure the kinetics  of unfolding and refolding of single DNA (Wang et al., 1997; 

Bustamante et al., 2003) and RNA molecules (Liphardt et al., 2001), whereas larger forces 

are required in the case of proteins, giving way to AFM-based force spectroscopy.  Besides 

their applicability in biological systems, optical traps have been also applied to the study of 

the physics of colloids and mesoscopic systems (Grier et al., 2003; Hough et al., 2002). 

Figure 8.5 highlights different geometries commonly used for optical tweezers pulling 

assays.  
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Figure 8.5: Comparison of different optical tweezers-based assays. (a) Interaction assay. Low 
concentrations of polystyrene microspheres are diffusing in the sample chamber, sparsely coated by 
kinesin. One bead is captured by the optical trap and is then brought in proximity of a microtubule 
attached to the glass surface. The force and displacement produced by the individual molecular 
motor as it walks along the microtubule are resolved by determining the displacement of the bead 
from the center of the trap (Block et al., 1990) (b) Dumbbell assay. An actin filament is suspended in 
between two optically trapped beads and it is approximated to a third bead, stuck on the slide 
surface, which is sparsely coated with Myosin (Finer et al., 1994; Capitanio et al., 2006). (c) Tethered 
assay. A single RNA polymerase is attached to the slide surface and the free end of the DNA template 
is attached to an optically trapped bead. As the DNA is transcribed, the RNAp pulls the bead along 
the DNA template (Yin et al., 1995). In the lower panels the ordinate is the distance moved by the 
trapped bead. Adapted from (Simmons et al., 1996).  

 
Besides the high versatility and precision afforded by optical tweezers, there are also 

some limitations and drawbacks that must be carefully considered, such as the lack of 

selectivity and exclusivity. Basically, any dielectric particle near the focus of the trapping 

beam will be trapped, and the number of particles that can be simultaneously trapped can 

be large. This has some implications: the freely-diffusing objects to be trapped must be in 

low concentrations to prevent trapping of additional undesired objects. Moreover, the 

cleanness of all the objects and components of the sample cell is crucial for a good trapping 

and position control, since trapped impurities can distort or mask the position signal.  

Another drawback of optical tweezers is local heating, due to the high intensity of the 

trapping laser at the focus (typically 105-108 W cm-2). Local heating can influence enzymatic 

activity and change the local viscosity of the medium. 
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88..33  BBrriieeff  tthheeoorryy  ooff  OOppttiiccaall  ttwweeeezzeerrss  

  

 
As described above (paragraph 8.2), the overall net force acting on a trapped 

dielectric particle result from a balance between scattering and gradient forces. Scattering 

forces are proportional to the light intensity and act in the direction of the propagation of 

the incident beam. This force is a consequence of the momentum delivered by the scattered 

photons. Gradient forces, on the other hand, as indicated by their name, arise from the 

spatial gradient in light intensity and act in the direction of the gradient (i.e. towards the 

center of the beam). Trapping beams focused by a high numerical aperture lens, have a 

Gaussian intensity profile to achieve the smallest focal spot and produce the largest optical 

gradient. 

In developing a theoretical description of optical trapping, one must consider the size 

of the trapped object. When the object’s dimension (d) is much larger than the wavelength 

of the trapping light (d >>λ) the “ray-optics” regime applies. In this case, diffraction effects 

can be neglected and the trapping forces of the light can be understood in terms of 

geometric or ray optics.  When the trapped object is much smaller than the wavelength of 

the trapping laser, i.e d<< λ, the conditions of Rayleigh scattering are satisfied; in this case, 

the optical forces can be calculated by treating the trapped particle as a point dipole, since 

the electromagnetic field is constant on the scale of the particle. When the dimensions of 

the trapped particle are comparable to the wavelength of the trapping laser (d ~λ), the 

regimes pointed above are not valid and it’s possible to get a numerical approach with the 

Mie regime. A complete theoretical treatment of the Mie regime has been derived 

(Rohrbach et al., 2002). For illustration purposes, the simpler cases of Ray-optics and 

Rayleigh regimes are described below.  
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  ““RRaayy--ooppttiiccss””  rreeggiimmee  ((dd  >>>>λλ))  

 

We can get a qualitative picture of the trapping using simple ray optics by 

decomposing a light beam into individual rays, each one with appropriate intensity, direction 

and state of polarization, which propagate in straight lines in media of uniform refractive 

index (Ashkin et al., 1992). These rays can change their direction when they refract at 

boundaries of media with different refraction indexes (in this case the trapped sphere and 

the surrounding medium). Figure 8.6 points out the action of the optical trap on a dielectric 

sphere in terms of the total force due to a typical pair of rays a and b of the converging 

beam, under the simplifying assumption of zero surface reflection. The picture shows that, 

for a generic displacement of the particle centre from the bead focus, a net restoring force 

counteract that displacement, pulling the particle to the centre of the beam, as described by 

the potential well on chapter 8.2.    

 

 

 

 

 

 

 

 

 

 

 

Figure 8.6: Qualitative description of the scattering forces acting on a dielectric 
sphere in the ray-optics regime. The incident trap beam is represented by two rays (a and b) 
that converge at the focal point f of the objective. Refraction at the water/beam interface 
gives rise to the scattering forces Fa and Fb. The sum of these forces, F, is the trapping 
restoring force and always pulls the center of the bead (o) towards the trap focus, when the 
bead is displaced along the optical axis (a and b) or laterally c). Note that the scattering 
component due to the reflection by the particle is not indicated. (Ashkin et al., 1992)  

  

Note that in this regime, the focus of the incident beam is considered a dimensionless 

point, because its actual finite size of λ/2NA is negligible for spheres much larger than λ. 

a b c 
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The force acting on the sphere is due to the change in the momentum carried by the 

light, at the sphere/water interface owing to refraction (figure 8.7). By Newton’s third law, 

an equal and opposite momentum change is imparted to the sphere; the force on the sphere 

(Fsphere) is given by the rate of the momentum change ( q


 ): 

   
dt

dq
F sphere                                  (7) 

When the refraction index of the trapped particle is higher than that of the 

surrounding medium, the optical force arising from refraction is in the direction of the 

intensity gradient. Nevertheless, for a lower index, the force is in the opposite direction of 

the intensity gradient and the refractive forces become repulsive.  

 

 

 

 

 

                                                                                

Figure 8.7: Representation of the force acting on a trapped dielectric microsphere (d 
>>λ), due to the refraction of a single light beam (reflection phenomena are not considered).  

 

RRaayylleeiigghh  rreeggiimmee  ((dd  <<<<λλ))  

 

In the Rayleigh regime, objects can be represented as induced dipoles and point 

scatterers so that the electromagnetic field can be regarded as uniform across the dielectric 

particle. Nonetheless, the focus cannot be represented as a dimensionless spot or a point, 

but as a diffraction-limited region with diameter close to λ. The scattering force acting on a 

sphere with radius r is given by  

c

nI
F m

s

0                                                                   (8) 

where 

2

2

2

4

65

2

1

3

128














m

mr




                   (9) 

outq


inq


q




inq


outq


sphereF




40 
 

is related to the scattering cross section and to the scattering function (van der Hulst 

et al., 1957), 0I  is the intensity of the incident light, c  is the speed of light in vacuum,   the 

wavelength of the trapping laser, mn  is the index of refraction of the medium and m  is the 

relative refractive index (the ratio of the index of refraction of the particle to the index of the 

medium (
pn / mn ). Therefore, the scattering force is due to absorption and reradiation of 

light by the dipole; it is in the direction of propagation of the incident light and is 

proportional to the intensity. 

Gradient force is due to the interaction of the induced dipole and the 

electromagnetic field. It is given by: 

)(
2

1 2EFg 


                                                  (10) 

where E  is the electric field and   is the polarizability of the particle given by 
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m

m
rnm                                              (11) 

From equation 10 the gradient force is proportional and parallel to the intensity 

gradient and points up the gradient when m >1, i.e. when 
pn > mn . Stable trapping requires a 

gradient force greater than the scattering force along in Ẑ direction. To achieve this, a tight 

focus is required, with a significant fraction of the incident light coming in from large angles. 

The maximum incident angle is determined by the NA of the microscope objective used to 

focus the trapping laser: 

maxsinmnNA                                                                                                (12) 

where mn  is the medium refractive index and max  is half aperture angle (maximum 

incidence angle), as shown in Figure 8.8. Note that to obtain a stable trap, the incoming laser 

beam must overfill the back aperture of the objective, so that sufficient convergent, high-

angle rays are supplied to counteract the scattering force.  
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Figure 8.8: Objective numerical aperture and laser beam overfilling. (a) Incident beam does not 

overfill the back aperture of the objective. The highest-angle rays ( ) are smaller than max  (b) 

Expanded trapping beam that exploits completely the objective high NA. In this case, the scattering 
force is more efficiently counteracted.  

 

 

 

 

 

 

9. Single DNA molecule manipulation: DNA mechanical 

properties and the application of double optical tweezers 

  
9.1 DNA Elasticity 

  

  

The elastic properties of DNA are unique among other natural or synthetic polymers. 

DNA characteristic base stacking and braided architecture lead to an unusual intrinsic 

stiffness, making the molecule resistant to sharp bending. For this reason DNA is commonly 

described as a semi-flexible polymer. DNA elasticity influences a large variety of cellular 

processes, especially protein-induced bending, looping or twisting.  RNA polymerases and 

helicases (enzymes that move along DNA duplex using the energy released by ATP hydrolysis 

to unwind the two strands, required during replication and transcription of DNA) have 

evolved as motors to translocate along torsionally constrained DNA molecules. 

Topoisomerases control the number and topology of supercoils and release torsional strains 

in DNA by breaking and rejoining its strands. The biological relevance of DNA bends has also 

been demonstrated by the enhancement of DNA recombination and gene transcription 

observed when specific target sites for activators are replaced by intrinsically bent DNA 

sequences (Krogh et al., 1991; Muller et al., 1994). DNA, as a polymer with small bending 
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rigidity, can adopt a more compact “coiled-coil” conformation resulting in an average end-

to-end distance much shorter than its contour length. Pulling the molecule into a more 

extended chain is entropically unfavourable because reduces the number of possible 

conformations but tension of at least 0.1pN are needed to significantly extend DNA (a force 

of about 6pN is needed to extend DNA to 95%of its contour length, Lc). The elastic 

properties of DNA (from which all biological process involving protein-DNA interaction 

depend) have been widely investigated by single molecule pulling experiments, which 

represent the strictest test to date of DNA elastic behaviour.  

The first single-molecule DNA stretching experiment was performed in Bustamante’s 

laboratory in 1992 (Smith et al., 1992). When DNA is pulled from both ends, its elastic 

behaviour goes through different phases, as evidenced experimentally by measuring a force-

extension curve (FEC), as shown in figure 9.1.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.1: Typical force-extension curve of DNA. Elastic behaviour of double-stranded DNA 
undergoes distinct phases as the molecule is pulled to larger extensions. Entropic and enthalpic 
regimes can be fitted by the extensible worm-like chain model (gray curve) (see text for further 
details). Adapted from van Mameren et al., 2009. 

 
 
DNA in solution is slack and its ends are much closer than the DNA contour length3. In 

the absence of an external force, the semi-flexible polymer adopts and end-to-end distance 

                                                 
3 The contour length of a polymer represents the length measured following its profile, whereas the end-to-end distance 
simply measures the direct separation between the two extremities. The contour length of dsDNA is obtained by 
multiplying its length in base pairs (bp) by 0.34nm (the size of a nucleotide pair).  

Entropic 
regime 

Enthalpic  regime 

Overstretching  regime 
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(L) allowing the highest number of polymer conformations (i.e. maximizing the entropy of 

the system). Theoretically this corresponds to L=0. Extending the molecule lowers the 

number of allowed conformations: this reduction of entropy requires the application of an 

external force, proportional to the extension to be impelled to the molecule, determining 

the so-called entropic elasticity. At higher forces, when DNA is almost pulled taut (L~Lc), one 

starts to stretch the DNA backbone; the chemical structure of the molecule is altered and 

the elastic response is no longer exclusively entropic. This is the enthalpic regime, where the 

end-to-end distance of DNA becomes longer than its actual contour length; the molecule 

behaves as a stretchable solid and this stretching occurs linearly with extension, as for a 

Hookean spring.  

 The entropic regime can be mathematically described by the worm-like chain model 

(WLC) (Bustamante et al., 1994): 
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                                                                     (13) 

where F is the force, L the end-to-end extension of the DNA molecule with a contour 

length Lc. TkB  represents the thermal energy, the parameter 
pL is the DNA persistence 

length, a temperature-dependent measure of the bending rigidity of a polymer (50nm for 

dsDNA at physiological ionic conditions, i.e. 150mM Na+). Later on, to include also the 

enthalpic regime, a further parameter was considered, the DNA stretch modulus (S)4 (Wang 

et al., 1997; Marko et al., 1995), to get what is called the extensible WLC model: 
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that equals approximately to 1000pN [100]. Figure 5.3 shows a fit of the DNA FEC 

data to the extensible WLC model (equation 16).  

 When the DNA molecule is subject to forces ~ 65pN, it stretches up to ~ 70% 

beyond its contour length without the requirement for increasing force. In this so-called 

overstretching regime, there’s a characteristic phase transition in which DNA changes from 

its B-form - the canonical form of DNA in solution - to its S-form, i.e. an overstretched DNA 

form with exposed bases (figure 9.2). This remarkable feature is reversible and it was first 

reported in 1996 (Smith et al., 1996; Cluzel et al., 1996). Above the narrow range of forces in 

                                                 
4
 The stretch modulus S of a simple elastic rod of radius r is related to its intrinsic persistence length, Lp , as: Lp= Sr2/4kBT.   
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the overstretching plateau, S-DNA melts into single strands, exhibiting the characteristic 

force-extension behaviour of single stranded DNA (ssDNA). 

 

 

 

 

  

  

  

  

Figure 9.2: B- and S-form of DNA. Figure adapted from 
http://www.nanoscience.ch/nccr/information/media/sni_newsletter/nanonews_04/cover_s
tory/optical_tweezers. 

  

  

  

  

  

9.2 Advantages of Tethering one DNA molecule between two 

optically trapped beads: the “dumbbell assay”  

  

The dumbbell configuration consists in anchoring the target DNA molecule between 

two optically trapped beads (figure 9.4) (a variation of this geometry has been commonly 

used by substituting one of the two optical tweezers by a micropipette (Wuite et al., 2000)). 

This design has been conceived to overcome problems due to the use of flow to extend DNA 

and due to the proximity of the DNA molecule to a glass surface used in other experimental 

configurations. Such configurations provide DNA tethering by the attachment of one of its 

ends to a surface and the application of a shear flow to overcome the entropic forces that 

otherwise would keep DNA in a relative compact random coil. This configuration has many 

disadvantages: The drag force acting on the DNA molecule stretched on this way decreases 

along its length (van Mameren et al., 2008), towards the direction of the free end, making an 

exact calculation of the applied force difficult; the parabolic Poiseuille velocity profile of the 
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flow in a thin flow chamber, with zero velocity at the surface (van Mameren et al., 2008). 

Furthermore, it’s well known that the proximity with a surface, mainly when it is not 

properly passivated, can lead to undesired DNA and proteins interactions. Greene and co-

workers (Fazio et al., 2008) have improved this methodology (schematized on figure 9.3) for 

imaging simultaneously of hundreds of individual DNA molecules.  

 

 

 

 

 

 

 
 

Figure 9.3: Schematic representation of the DNA curtains assay. DNA molecules are tethered to a 
lipid bilayer and therefore can move in x and y directions. A diffusion barrier is manually etched into 
the surface of the flow cell, oriented perpendicularly to the direction of buffer flow. Upper and 
middle panels represent views from the side and top, respectively. When the flow is applied, DNA 
molecules are dragged through the bilayer until they encounter the diffusion barrier, at which point 
they align and form a “curtain” of DNA molecules. Lower panels are images of YOYO1-stained λ-DNA 
obtained by TIRF microscopy. Arrows indicate the position of diffusing barriers. Adapted from (Fazio 
et al., 2008). 

 

The “dumbbell assay” implies some evident advantage over flow stretching. First, the 

mechanical properties of DNA are better controlled (since the molecule is manipulated from 

both ends with optical tweezers) and the precise end-to-end distance of the molecule (which 

allows a fine adjustment of the tension and stretching induced to DNA) is accurately 

measured. This is due to the fact that one or both optical traps (i.e. the infrared trapping 

beams) can be moved with Acusto Optic Modulators (AOM) or Acusto Optic Deflectors 

(AOD) which allow a fine tuning of the displacement which in turn allows a fine tuning of the 

tension applied (generally up to hundreds of pN with an accuracy of tenths of pN accuracy) 

to the molecule suspended between the beads, in this case DNA. At the same time, if the 

molecule is changing extension, for example is shortening due to bending or looping caused 

by interaction with a protein, beads start being pulled and their distance decreases with 

respect to the equilibrium distance (distance between the traps). The displacement of the 

beads from the optical traps will thus be proportional to the tension the molecule (this time) 
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is applying. By measuring the bead position and the stiffness of the trap, it will be possible to 

accurately measure the force.  

At the same time, tethering DNA by both ends, not only overcomes fluctuations of 

the molecule due to the presence of the flow, but also greatly reduces thermal fluctuation 

especially in the direction of the DNA axis. This aspect, as will be discussed in a more critical 

aspect in the next chapter, is a very important advantage when the single molecule 

manipulation is coupled in the same experimental set-up with single molecule detection. It is 

intuitive that the precise localization of a fluorescently tagged protein on DNA will suffer 

from DNA fluctuation. 

Another advantage arises from the position of the traps within the chamber. All the 

assay components are suspended in a solution-like configuration because the traps can be 

positioned at a chosen distance (generally some microns) far from the glass surface of the 

cover slip. This is achieved moving in z direction the stage where the sample is located (or 

the traps, depending on the configuration of the microscope). Electrostatic effects of the 

glass surface are thereby overcome. The only limitation is that only one molecule a time can 

be manipulated, making data accumulation time consuming 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.4. A single DNA molecule is tethered between two optically trapped beads in a 
dumbbell configuration. The attachment of DNA to beads is achieved through the exploitation of the 
high affinity of streptavidin (on beads) to biotin (on both DNA ends). 
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        10. FIONA and trapping: the FIAT assay    

  

 

As referred in the preceding chapters, recent advances in single-molecule 

methodologies are directed towards the combination of both manipulation and detection 

methods into the same experimental apparatus (van Mameren et al., 2008). This is still 

challenging since it is not always straightforward to combine different single-molecule 

approaches with the desired temporal and spatial resolutions, as well as concomitantly 

getting a good adaptation of the biological system to single-molecule methodologies and a 

suitable attachment of the chemical labels and/or mechanical handles to the sample (making 

sure that its functionality is preserved) (Moffitt et al., 2008). 

Most part of the works reporting hybrid single-molecule techniques have combined 

dual optical tweezers with fluorescence but by imaging multiple fluorophores, for example 

intercalant DNA dyes which label all the double-stranded chain (Quake et al., 1997) or the 

coating of DNA molecule with various fluorescent DNA-binding proteins, as Human 

recombinase protein RAD51 (van Mameren et al., 2006), among others.  

The first tour de force hybrid single-molecule fluorescence detection and optical 

tweezers experiment was accomplished by Yanagida and coworkers: they imaged single 

myosin molecules with total internal reflection fluorescence excitation and simultaneously 

they tethered a single actin filament between two optically-trapped beads (Ishijima et al., 

1998) or RNAp on a single tethered λ-phage DNA molecule (Harada et al., 1999). The use of 

the evanescent wave of total internal reflection to excite molecule implies the dumbbell to 

stay in the proximity of the coverslide surface for the molecules bound to DNA (or actin) to 

be excited. Even if this illumination reduces fluorescence background, adds the disadvantage 

of being obliged to put biomolecules in the proximity of the glass surface. 

TIRF excitation can be also characterized by inherent intensity fluctuations due to 

movement of DNA with respect to the surface.  

Wide-field epi-illuminated fluorescence microscopy does not suffer from such 

intensity fluctuations and allows the excitation of fluorophores in the solution, making 

possible to maintain the dumbbell far from the coverslide glass surface (even if the 

excitation of all fluorophores in the solution enhances fluorescence background which in 
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turn lowers accuracy of localization, Thompson et al., 2002). In the current thesis I will 

present an innovative hybrid approach given by the combination of single molecule super 

colocalization with epi-fluorescence excitation, while the DNA template is suspended and 

manipulated with dual-tweezers (Chapter 8.2), as schematized in figure 10.1. The proof–of-

principle of our method  of combining Fluorescence Imaging And Trapping (FIAT assay) was 

done previously by localizing with FIONA a single fluorescence probe (a Quantum dot) bound 

to an actin filament extended between double optical tweezers (Capitanio et al., 2007), and 

it is illustrated in figure 10.2. The relatively high rigidity of the actin polymer compared to a 

more flexible polymer (such as DNA) enables a much easier assembly of dumbbells, since 

extension of the polymer via flow is not required.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.1: FIAT assay applied to a single RNAp transcribing a DNA molecule suspended between 
two optically trapped beads. The localization of the RNAp is obtained with FIONA technique, 
represented by the PSF shown in the lower panel. 

 

 

 

 

 

 

Figure 10.2: Schematic representation of FIAT assay, with an actin filament suspended between two 
optical tweezers. A fluorescent probe, Quantum dot, is attached to filament and it’s position is 
detected with nanometer accuracy by FIONA (drawings not in scale). 
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The advantages of combining single molecule localization and manipulation with a 

double optical trap system can be summarized as follows: 

 Electrostatic effects of the glass surface could interfere not only with DNA but also 

with DNA-protein interactions. 

 Forces which could generate from protein-DNA interactions, as for example from 

protein-mediated DNA looping or bending, can be measured. 

 It is possible to appreciate the effects of forces applied on DNA, on protein-DNA 

interactions and their dynamics. 

 Stretching DNA dramatically reduces its thermal fluctuations, especially in the 

direction of its axis. DNA fluctuations negatively affect the localization accuracy of a 

molecule bound to DNA which not only depends on diffraction limit, pixel size and 

fluorescence background (Thompson et al., 2002) but also from the mechanical oscillations 

of the system. 
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Figure 11.1: Mechanical structure that 
constitutes the optical microscope. 

      11. Experimental FIAT Setup 

 

 

Combining nanometer-stable double-optical trapping and high-resolution single-

molecule fluorescence detection is technically challenging (Dijk MA et al., 2004, Brau RR et 

al., 2006). The position detection of optically trapped objects and single fluorescent probes 

at nanometer level is affected by various sources of mechanical and acoustic noise and by 

thermal drifts. The high stability required for nanometer-precision localization and trapping 

critically depends on a good isolation from these sources of noise. Our custom-built setup 

was first described in Capitanio at al. 2005 and later on modified for FIAT experiments 

(Capitanio et al., 2007) and it was specifically designed to obtain high mechanical stability 

and makes use of optics suited for both double-optical tweezers and fluorescence detection.  

The microscope mechanical structure and optics pathway were mounted on an 

optical table equipped with active isolators (Melles-Griot), which limits the mechanical 

vibrations. The mechanical structure, illustrated in figure 11.1, is made of ERGAL (Erbium, 

Gallium, Aluminium) and it is mounted on four elastomeric isolators (newdamp, Newport) 

that significantly reduce mechanical resonances, as well as acoustical and mechanical noise.    
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The structure is composed by three 250 × 250 × 30 mm bored platforms held by four 

stainless steel columns: the center of the platforms coincides with the optical axis of the 

microscope and the lower platform serves as a basis for the whole microscope. On the 

middle platform, two manual translators (M-014 Physik Instrumente) allow gross 

movements of the sample in the xy plane (25 mm of excursion in each direction), while a x-y 

piezoelectric translator (P-527.2CL Physik Instrumente), mechanically coupled to the manual 

ones by means of a ERGAL platform, allows fine movements (200 μm of excursion, 1 nm 

minimum displacement). The objective (Nikon Plan-Apochromatic 60X, NA 1.2, W.D. 0.2 mm, 

water immersion5) sits over a piezoelectric translator for z movements (P-721.20 Physik 

Instrumente, 100 μm of excursion, 1 nm minimum displacement). The higher platform 

serves as a basis for the position-detection system and the support structure for the 

condenser (Olympus U-AAC, Aplanat, Achromat, 1.4 NA, oil immersion) . 

Figure 11.2 represents a schematic drawing of the experimental apparatus, which is 

equipped with two CCD cameras for brightfield microscopy, with 200x (Hamamatsu XC-

SC70CE) and 2000x magnification (Ganz ZC-F11C3) and a EMCCD camera (electron-multiplied 

CCD, photometrics cascade II) for high-sensitivity wide-field fluorescence microscopy (200x 

magnification). The use of a high quantum efficiency and electron-multiplied CCD is essential 

to reach the high signal-to-noise ratio required for nanometer-precision localization of 

biomolecules. Illumination for fluorescence microscopy is supplied by a frequency-doubled 

Nd:YAG laser (Coherent, Verdi V-10, 532 nm wavelength) through a polarization-maintaining 

optical fibre, whereas illumination for brightfield  microscopy is supplied by a halogen lamp 

(Schott KL1500LCD, 150W). A motorized mirror placed on the emission path directs the 

image alternatively to the CCD or to EMCCD cascade II cameras when brightfield or 

fluorescence microscopy is desired, respectively.  

Double optical-tweezers are obtained by splitting a single beam from a Nd:YAG laser 

(Spectra-Physics Millennia IR, 1064 nm wavelength) into two beams with orthogonal 

polarizations. An optical isolator (OI) is placed in the laser path, close to the source, to 

                                                 
5
 High numerical aperture objective lenses are essential for optical trapping as explained in chapter 4.4; even if 

maximum NA can be achieved with oil-immersion objectives (up to 1.4), the refractive index mismatch 
between the immersion oil (ƞ= 1.512) and the aqueous sample, i.e. the trapping medium (ƞ~1.32) leads to 
significant spherical aberrations that would deteriorate the performance of the trap, when the distance of the 
focus to the sample surface increases. To allow good trapping deeper into solution and equally stable at any 
distance from the surface, water-immersion objectives are required, at the expense of a lower NA (typically 
equal to 1.2 for water-immersion objectives). 
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(nearly) abolish random amplitude fluctuations in the trapping laser, due to optical feedback 

phenomena from back-reflections of the beam. The two traps can be finely and 

independently moved within the sample along the x direction with two acousto-optic 

modulators (AOM, A&A DTS-XY 250) placed on the path of the beams, conjugated to the 

back focal plane of the objective. By controlling the frequency of the acoustic wave in the 

AOMs crystals through Direct Digital Synthesizers and a computer-controlled board, beams 

can be tilted in the AOM crystal and in the conjugated point in the back focal plane of the 

objective. This corresponds to translation of the beams (along the x direction) in the sample 

plane. The position of the trapped object is detected with nanometer resolution with two 

quadrant detector photodiodes (QDPs, UDT DLS-20) placed in the back focal plane of the 

condenser. The choice of well-separated wavelengths for trapping and fluorescence 

excitation is essential for an efficient separation of the two laser beams through dichroic 

mirrors and filters. To further reduce mechanical and acoustic noise, the apparatus is 

enclosed in a chamber of plastic panels which are able to slide in order to make the setup 

accessible during operation and sample assembly and to be completely closed during 

measurements. Moreover, the optical path is enclosed into boxes to minimize air 

turbulences, which critically affect the point stability of the trapping laser.  
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Figure 12.2 .Schematic representation of the experimental setup for combining fluorescence 

imaging and trapping (FIAT). Illumination for wide-field fluorescence microscopy is supplied by a 
Nd:YAG duplicated laser (532nm wavelength) and double optical tweezers are obtained by splitting 
the beam from a Nd:YAG (1064nm wavelength) into two beams with orthogonal polarization. OI: 
Optical Isolator, PBS: Polarizing Beam-Splitter Cube, AOM. Acousto-Optic Modulator, ʎ/2 and ʎ/4: 
half and quarter waveplate, O: Objective, S: Sample, C: Condenser, x-y and z: piezo translators, QDP: 
Quadrant Detector Photodiodes, F1 and F2 interferential filters at 1064nm, F3 emission filter. 
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1111..11  OOppttiiccaall  ttwweeeezzeerrss  ffoorrccee  ccaalliibbrraattiioonn  aanndd  ddeetteeccttiioonn  

  

 

As explained in chapter 8.2, an accurate position calibration of the trapped bead is 

crucial to compute the external forces acting upon the trapped object. Since it is often hard 

or even impossible to predict those forces with the current theory available, one must 

determine them experimentally.  

To calibrate the laser trap, two parameters must be taken into account: k, the 

tweezers spring constant and  , the position detector calibration factor (Capitanio et al., 

2002) (since the detector reads the displacements of the bead as voltage rather than 

nanometers). For small displacements of the bead from its equilibrium position in the trap 

(±400nm), the force exerted by the trap is harmonic ( kxF  ) and the position detector 

response is linear (Figure 11.3). Therefore, one can write 

Vx                   (15) 

where x is the bead displacement and V the voltage output of the position detector.   

 

 

 

 

 

 

 

 
 
 
 
Figure 11.3: Position detector output (V) versus displacement in x direction from the center of the 
trap of 1µm diameter polystyrene bead (black curve). For small displacements (±400nm), the 
detector response is approximately linear (red fit curve).  

 

Several methods to calibrate the optical trap and determine k and   have been 

described (Capitanio et al., 2002; Svoboda et al., 1994; Gittes et al., 1998). The method we 

have used is based on the confined Brownian diffusion of the trapped particle.  A bead held 
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in optical tweezers, rather than being perfectly steady, shows some fluctuations due to 

forces acting on the bead itself upon the constant random collisions of the surrounding 

solvent molecules. Considering the theory of confined Brownian diffusion of a particle in a 

harmonic potential (Wang et al., 1945), these position recordings can be used to measure 

the parameters   and k, since the amplitude and frequencies of the bead oscillations about 

the equilibrium point are related to the trap stiffness. Considering a bead of radius R into a 

fluid with a viscous coefficient   at temperature T and held in an optical trap with stiffness 

k, the power spectrum of the thermal fluctuations )( fSx  along the spatial coordinate x is 

described by (Gittes et al., 1998): 
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Tk
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

                                                     (16) 

where Bk  is the Boltzmann constant,   is the viscous drag coefficient of the bead, 

calculated using Stokes’ law: 

R 6                                    (17) 

and 

2

k
f

C
                                    (18) 

is the characteristic corner frequency.  

Equation 16 represents a Lorentzian function; its behaviour at low and high 

frequencies is given by: 
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At low frequencies ( Cff  ), the power spectrum is roughly constant, while at high 

frequencies ( Cff  ) it falls off like 2/1 f ; this means that on short time scales the particle 

does not “experience” the confinement of the trap, showing a behaviour characteristic of 

free diffusion. 

Nevertheless, as already mentioned, in practice the detector reads “uncalibrated” 

displacements fluctuations x(t) as voltage rather than displacements in nanometers. The two 
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parameters are matched in equation 15 and the power spectrum of the signal V(t)6 has a 

Lorentzian shape (figure 11.4): 
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The V subscript indicates that it is the power spectrum of a voltage signal and it is 

equivalent to (16) but with the multiplicative factor 1/ 2 .  

Figure 11.4 shows a typical power spectrum of the position signal from a trapped 

bead, acquired at 200 kHz for 8 seconds. Power spectrum is fitted with equation 20 to get k 

and β. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11.4: Calibration of trap stiffness and force-detector sensitivity using thermal 

fluctuations of a trapped bead. (a) Raw recordings of the signal in Volt of a 1,87 µm diameter bead at 
thermal equilibrium in the optical trap, using the voltage output from the quadrant photodetector. 
(b) Power spectrum of the trace in (a). The red curve is the Lorentzian fit.  

 

Note the importance of   for this method of optical tweezers calibration. In the case 

of surface proximity as, for example the glass coverslide or a second bead,   can vary 

significantly from Stokes’ law (equation 17). However, measurements and calibrations in this 

thesis have been carried out at different distances between the two trapped beads (while 

pulling the DNA molecule) and between beads and the coverslide surface, and this must be 

taken into account to get a correct trap calibration. 

                                                 
6
 The power spectrum of the bead displacement )( fSv (Figure 12.4.b) is calculated as square of the modulus of the 

Fourier transform of the thermal fluctuation data in Volt recorded in the time domain (figure 12.4.a) and it contains the 
contribution of motions to the thermal force with different frequencies.  
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In order to understand which are the smallest distances from the glass surface for the 

Stokes’ law (equation 17) to be valid, we measured k and   values obtained from fitting of 

power spectra for different distances h between the glass surface and the center of the bead 

(figure 11.5). We used 935 nm radius beads (Spherotech, Inc). Values of k and   obtained 

for distances h greater than 7 m do not vary more than 3.3% and 1.04%, respectively. From 

theory, first-order approximation of   near an infinitely extended surface is given by 

(Happel et al., 1983): 











h

R
R

16

9
16                 (23) 

The correction to the   coefficient predicted by equation 18 is about 7.5% at a 

distance of 7 m and about 2.5% at a distance of 20 m. We chose to performed trap 

calibration farther than 20 m from the coverslide surface to avoid significant errors in the 

  value. When this was not possible, we corrected   values using equation 23. 

 

 

 

 

 

 

 

 

 

 
 
Figure 11.5: k (a) and   (b) behaviour versus trap height (i.e distance between the center of the trap 

and the coverslide surface). 

 

 

We also measured k and   values for different distances d between the centre of the 

beads (935 nm radius) (figure 11.6). Optical traps are displaced through the AOMs (along x 

direction) by setting the frequency of the acoustic waves in the AOMs crystals between 60 

and 90 MHz. As explained below, there is a linear relationship between the acoustic wave 

frequency and trap displacement, with a conversion factor 1.06 m/MHz. Values of k and 

a b 
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  obtained for distances between beads d greater than 1.7 MHz do not vary more than 

3.0% and 1.4%, respectively. Therefore, we always performed trap calibrations with distance 

between the two traps greater than 1.7 MHz to avoid significant errors in the   value. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.6: k (a) and   (b) behaviour versus distance between the center of the two trapped beads. 

 

 

  

1111..22  AAOOMMss  eeffffiicciieennccyy  aanndd  ffoorrccee  mmeeaassuurreemmeennttss  

  

In the previous paragraphs we discussed the methods and cautions adopted for 

optical tweezers calibration. In a DNA-pulling experiment, traps are moved away from each 

other through AOMs. Since AOMs efficiency (i.e. laser power of the diffracted laser beam) is 

not constant with the acoustic wave frequency and depends non-linearly on the acoustic 

wave amplitude, this must be taken into account when measuring forces exerted on the 

DNA molecule. 

Optical tweezers calibration was done before each experiment using the power 

spectrum method by acquiring the position signal of the trapped beads with both QDPs for 

different frequencies of the acoustic wave of the AOMs, corresponding to the different trap 

positions along the x direction, required for DNA pulling experiments. Calibration was 

completely automated through a custom written Labview program. The distance between 



59 
 

 

75 76 77 78 79 80 81 
0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 
x 10 - 5 

AOM Frequency (MHz) 

S
tif

fn
e

ss
 (

N
/m

) 

ch0            
ch1            
Polynomial fit 

350

300

250

200

150

100

50

St
if

fn
e

ss
 (

p
N

/n
m

)

 

75 76 77 78 79 80 81 
0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

x 10 - 8 

AOM Frequency (MHz) 


(

m
/V

) 

ch0 
ch1 
Polynomial fit 

9

90

80

70

60

50

40

30

20

10

β
(n

m
/V

)

75                     76                  77                   78                   79                   80                 81

AOM Frequency (MHz)

the traps during the calibration measurements is 1.85 MHz (1.96µm), far enough to avoid 

significant deviations of   from Stokes’ law due to the vicinity of the beads The software 

varies AOM frequencies between 75 MHz and 80 MHz, with steps of 0.2 MHz.. The signal of 

the trapped beads is acquired with both QPD for 8 seconds at the rate of 20 kHz for each 

frequency of the AOM acoustic wave. For each signal, an average between 32 power spectra 

is calculated and fitted with a custom-written Matlab routine, by minimizing 2 to obtain k 

and β. Bead radius and the distance between the centre of the beads and the surface of the 

slide is also taken into account, according to equation 20, in cases in which the distance 

could not be greater than 20 µm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11.7: Plot of k (a) and β (b) values for both traps (ch#0 and ch#1) versus acoustic wave 
frequencies of the AOMs.  
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Figure 11.7 shows k and β for both traps obtained from such calibration. β is almost 

independent of the traps position (when the optics are well aligned), whereas k depends on 

the AOM diffraction efficiency. AOM efficiency was assessed by measuring the laser power 

at the entrance and exiting from the AOM, as a function of the frequency of the acoustic 

wave. We have aligned the optics in order to obtain a highest and most constant AOM 

efficiency in the range of AOM acoustic wave frequency of interest (75 - 80 MHz), as shown 

in figure 11.8. 

 

Figure 11.8: AOM first order diffraction efficiency, obtained from the ratio between the laser power 
exiting and entering the AOM, in function of the acoustic wave frequency.  

 

The power of the diffracted beam varies with the amplitude of the acoustic wave in 

the AOM crystal (figure 11.9). This can be varied through a 12-bit control of the DDS signal 

amplitude. The efficiency values have a linear dependence just for the “central” amplitude 

values of the acoustic wave; the non-linear behaviour was taken into account and 

approximated by a 3rd degree polynomial curve (figure 11.7). 

Labview and Matlab programs automate the experimental procedure, from traps 

calibration to DNA-pulling and FIAT experiments. After calibration, the curves k and β versus 

AOM wave frequency are fitted with 6th-degree polynomials. Coefficients of these 

polynomials are then loaded into the Labview program that automates traps control. In this 
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way, for each value of laser power, AOM wave frequency and amplitude, the stiffness of the 

traps is known and the force applied on the DNA molecule can be calculated.    

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 11.9: Behaviour of the power of the trapping laser versus the amplitude of the acoustic wave 
generated by the AOM. The red curve shows a 3rd –degree polynomial. 

 

  

  

1111..33  LLaasseerr  ppooiinnttiinngg  ssttaabbiilliittyy  

  

In order to maximize the position stability of the suspended DNA and allow precise 

localization of DNA-binding proteins, the optical tweezers must provide a firm support for 

the dumbbell onto which the fluorescent probes are anchored. To this end, as described in 

section 11.2, many cautions were taken to minimize mechanical and acoustic noise, as well 

as air turbulence that could affect pointing stability of the trapping laser beams. The pointing 

stability of our optical tweezers was measured by focusing the laser on a 1.1 µm polystyrene 

bead (Spherotech, Inc.) stuck to the microscope coverslide surface (Capitanio et al., 2007). 

Figure 11.10 shows the position fluctuations of the trapped bead measured with the QDPs.   
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In these measurements, in order to compensate thermal drifts of the sample, the 

feedback system (Capitanio et al., 2005) used is based on a high-magnification image of the 

same 1.1 μm diameter polystyrene bead stuck to the microscope coverslide surface. The 

image of the bead (from the 2000x CCD camera) was first acquired by the digitalization 

board on the PC. Then, the bead position along x, y and z directions was calculated by 

centroid analysis of the inverted and threshold-processed image. Subsequently, the 

feedback system drives the piezoelectric translators to compensate for drifts (with a 

bandwidth of 25 Hz, limited by video acquisition rate). The feedback system stabilizes the 

microscope stage within 1nm. 

 
 
 

 
Figure 11.10: Configuration used to quantify the pointing stability of the optical tweezers. In the 
center: a schematic drawing of the experimental procedure. On the right: image of a bead stuck on 
the coverslide surface, acquired with the 2000X CCD, inverted and thresholded. The image is used by 
the feedback system to correct thermal drifts of the sample by moving the piezo translators (x-y and 
z). On the left: one minute recording of the trap position, acquired with the QDP.  

 

The measurement of the laser pointing stability gave an rms noise very similar to the 

stage noise (~1nm over the bandwidth of interest, 0.1-25 Hz), demonstrating that the laser 

pointing stability is of the order of ~1 nm. We have seen no significant drifts with respect to 

the sample image during the 100 s measurement (the left panel of figure 12.10 shows the 

first 60 seconds). This measurement demonstrates that the suspended dumbbell 

configuration not only avoids interaction of the sample with the surface, but it also provides 

a drift-free assay for fluorescence localization with nanometre accuracy. 
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            1111..44  DDNNAA  ffoorrccee  ––  eexxtteennssiioonn  ccuurrvvee  ccaalliibbrraattiioonn       

 

 

As explained in chapter 9.1, as soon as a dumbbell7 is formed, the DNA is pulled from 

its ends (in length steps of 50 nm) and the DNA extension versus applied force is monitored 

to check the presence of a single molecule and its integrity. The forces are measured as 

explained above, and two different methods were tested to precisely measure the DNA 

extension. In case the distance between the center of the two trapped beads (D) and the 

beads radius (R1 and R2) are known, we can easily calculate the DNA extension L as L=D-

(R1+R2) (see figure 11.11). The information on beads radius is provided by the manufacturer 

(Spherotech, Inc): 935  46 nm. Therefore, we only need to measure the distance D between 

the centers of the two trapped beads. 

The first method relies on the fact that we know the position of the traps center (x10 

and x20, set by the AOMs frequencies), and that we can measure the displacements of both 

beads from the traps center (x1 and x2) using the traps calibrations described previously. 

Referring to figure 11.11, we can write: 

D = (x20+x2)–(x10+x1)                                    (24) 

  The relation between AOM frequency and trap displacement is linear in the range 

of frequencies considered. The nm/MHz conversion factor (1061.06 nm/MHz) allows the 

conversion of the distance x20-x10 between the center of the two traps (figure 11.11) from 

MHz to nm . The displacements x1 and x2 of the beads from the center of the traps are 

measured through the QDPs signals and equation 15. From equation 26 we obtain the 

precise value in nm of the distance between the trapped beads. 

 

 

 

 

 

 

 

                                                 
7
 DNA dumbbell assembly protocol is described in detail on chapter 13.  
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Figure 11.11 : Schematic representation of the DNA extension (distance L between the two trapped 
beads) calculation. See text for further details.  

 

The second method is based on video microscopy. A snapshot of the position of the 

trapped beads is taken using brightfield illumination and the 200x CCD in each cycle of signal 

acquisition, corresponding to different DNA extensions with 50 nm increments. The image is 

then inverted and threshold-filtered to remove background noise and the distance D 

between the two beads is directly measured through centroid analysis. The scale factor 

nm/pixel of the CCD 200x camera for brightfield microscopy is 56,8 nm/pixel and it was 

obtained by a similar method used for the fluorescence EMCCD cascade II camera calibration 

(Chapter 11.4).  
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1111..55  EEMMCCCCDD  ccaassccaaddee  IIII  ccaammeerraa  ccaalliibbrraattiioonn  aanndd  ddeetteeccttiioonn  ooff  tthhee  

fflluuoorreesscceenntt  pprroobbee  ppoossiittiioonn  

  

In order to measure displacements of single chromophores or fluorescent probes, the 

first step is to get an accurate calibration of the pixel size of the EMCCD cascade II camera. 

The nm/pixel calibration factor was assessed by attaching fluorescent polystyrene beads 

(0.05 µm, Bangs Laboratories) to the microscope coverslide. The choice of fluorescent beads 

for the calibration procedure was based not only on their high signal-to-noise ratio, but also 

on the fact that these probes do not suffer from photobleaching or blinking phenomena, 

making them a better choice with respect to single fluorophores or quantum dots. A 

translation of 20 µm of the sample was then effectuated through the piezoelectric stage. The 

position of a single fluorescent bead was measured before and after the displacement by 

fitting its point spread function (PSF) with a 2D Gaussian function (as explained in detail 

below), it was possible to calculate the distance in pixel corresponding to 20 µm. We 

obtained a value of 230,76 pixel, corresponding to a scale factor of 86,67 nm/pixel.  
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    12. Sample preparation 

 

12.1 DNA labeling 

 

For attaching DNA to beads and form the dumbbell, both beads and DNA have to be 

functionalized with complementary moieties. Typically, the couple antigen/antibody or 

streptavidin/biotin are exploited due to their high affinity (Ka= 1015 M-1 for 

streptavidin/biotin; one of the highest found in nature), functionalizing one moiety on the 

bead and the other on the DNA. Generally, beads are coated with an antibody (anti-

digoxigenin, for example) or streptavidin, while antigen (digoxigenin) or biotin is covalently 

linked to both extremities of a linear DNA.  

I used a plasmidic (circular) DNA, pFastBac containing the target operator sequences 

and, for this reason, the first step of DNA labeling is the linearization. Circular DNA is 

linearized by simple digestion with a restriction enzyme. Figure 12.1 shows the map of the 

plasmid used. This plasmid contains two identical operator sequences O1 at a distance of 

300bp (100nm) and many restriction sites at different positions. When deciding which site to 

use, one has to consider where the operators will be localized in DNA with respect to the 

dumbbell. If operators must be in the centre of the dumbbell, digestion shall occur at a site 

diametrically opposed to operators. Cutting closer to operators will result in operator 

position shifted towards one of the two beads.  

I digested DNA with different restriction enzymes whose sites are in different 

positions in the plasmid and labeled the resulting linearized DNA with different strategies. 

These labeling methodologies don’t rely on the direct attachment of the label molecule on 

DNA nucleotides because this would lead to labeling not only at the extremities but along 

the whole molecule. To achieve selective labeling at extremities, labeled nucleotides are 

incorporated at extremities through enzymatic polymerization. 
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Figure 12.1. Map of sites in the plasmid used, pFastBac containing two operators sequence LacO 
(blue arrows). In green, orange and yellow are highlighted restriction sites used for linearization of 
the plasmid. 

 

 

 

           12.1.1 LABELING WITH KLENOW EXO- DNA POLYMERASE I 

FRAGMENT 

 

 

Restriction enzymes used to linearize plasmid DNA, or in general to digest DNA, cut 

both strands of DNA. If the hydrolysis on the two strands occurs exactly on opposite 

positions, the resulting DNA ends will be ‘blunt’. If the hydrolysis occurs at shifted positions, 

the resulting ends will be single strand and are called 5’ or 3’ overhang (depending on 

whether the last nucleotide of the single strand has a 5’ or a 3’ free); they are also called 

sticky ends because can form hydrogen bonds with another complementary overhang DNA 

extremity (on the same molecule or on another molecule) (figure 12.2). 
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Figure 12.2. The two different possibilities for enzymes to cut (indicated by green arrows) are shown; 
on opposite sites (top) or on shifted positions (bottom). On the right the products of the two 
different ways of digestion are presented; when the two strands have the same lengths are called 
‘blunt ends’, while when one strand (overhang) is longer is called ‘sticky end’. 

 

 

The Klenow fragment (Invitrogen, #18012-021) is a proteolytic product of E. coli DNA 

Polymerase I which retains both the 5′3′ polymerase and the 3’5' exonuclease activities, 

but not the 5’3' exonuclease activity of the intact holoenzyme.  Therefore, the Klenow 

fragment retains the polymerization fidelity of the DNA polymerase holoenzyme without 

degrading 5' termini. Its main applications in molecular biology include the ability to 

synthesize dsDNA from ssDNA templates thus filling-in 5’ overhangs (i.e. 5’-protruding ends) 

on the DNA. The fact that the 5’3' exonuclease activity is abolished means that the Klenow 

fragment does not have any capacity for proofreading. Consequently, addition of labelled 

nucleotides in the polymerization reaction will result in their incorporation in the new DNA 

strand without being subsequently removed by proofreading. DNA extremities will therefore 

be labeled.  

In order to have the operators in the centre of the linear DNA, two restriction sites 

close to each other and diametrically opposed to the operator region have been chosen, in 

particular restriction sites for SalI (NEB, #R0138M) and BSSHII (NEB, #R0199M) (highlighted 

in green in figure 12.1). A first double digestion step generates a linear DNA with sticky ends. 

This product is then treated with klenow exo- polymerase in the presence of a mix of 

deoxynucleotide triphosphates (dNTPs) with the addition of dCTP labeled with biotin 

(Invitrogen, #19518-018). Since the overhangs generated by the digestion of SalI and BssHII 

contain the nucleotide dG (see chapter 3.1 for complementarity between base pairs), then a 

labeled dC will be incorporated. Figure 12.3 shows all the steps of labeling with exo- 

polymerase and highlights the sequences recognized by the enzymes. This strategy only 
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allows labeling DNA with biotin because the only commercially available digoxigenin labeled 

nucleotide is dUTP (Roche, #11209256910). This is a nucleotide typically found in RNA 

instead of thymine and, as thymine, is complementary to adenine. In order to label DNA with 

digoxigenin through Klenow fragment, restriction sites with one or more A have to be 

chosen. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12.3. BSSHII and PauI digest DNA at their restriction sites between nucleotides indicated by 
arrows (pink for SalI and light-blue for BSSHII). These sites are diametrically opposed to operators 
sequences so that once digested and linearized the DNA, operators will be in the centre of the 
sequence. Digested DNA will have sticky ends which will be filled by exo-DNA polymerase 
polymerization in the presence of a labeled dCTP (linked to biotin). The new blunt DNA extremities 
will be, in turn, labeled with biotin. 

 

  

        12.1.2 Labeling with Terminal deoxynucleotidyl Transferase (TdT) 

 

 

Terminal deoxynucleotidyl  Transferase (TdT, Fermentas, #F-203L) is an enzyme able 

to link up to 130 deoxynucleotides in tandem to DNA extremities, creating a tail of 

deoxynucleotides. Differently from Exo- which requires 5’-overhang DNA extremities as a 

substrate, TdT tails 3’-OH of preferably 3’-overhang or, with minor efficiency, blunt ends and 

doesn’t need a template DNA so each kind of nucleotide can be added and that’s why it is 

suitable for labeling (in this case tailing) DNA with digoxigenin-dUTP. For labeling with TdT, 
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the only prerequisite is that DNA has to be digested with e restriction enzyme which 

generates 3’- overhang or blunt ends. In the map of the plasmid used, among all restriction 

sites, there is the site recognized by ApaI, an enzyme generating 3’-overhang or SnaBI which 

generate blunt ends. ApaI site, (as highlighted in orange in figure 12.1) is not opposed to 

operators so after digestion operators will be localized closer to one extremity of the 

linearized DNA while SnaBI is diametrically opposed. Figure 13.4 shows the steps of labeling 

with TdT; after the first passage of digestion, TdT tailing occurs in presence of a labeled 

deoxynucleotides. The final product will carry at 3’- a single stranded tail of labeled 

deoxynucleotides (figure 12.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12.4. (a) Plasmid DNA is digested with ApaI, a 3’-overhang generating restriction enzyme. 
Terminal deoxynucleotidyl Transferase efficiently links up to 130 labeled nucleotides in tandem to 
the 3’-OH terminus of the DNA molecule independently of the type of nucleotides and label. (b) After 
digestion with SnaBI, DNA blunt ends are generated and operators will be localized the centre of 
DNA. 3’ of the blunt ends will be tailed by TdT but lower efficiency than 3’-overhang.  

a 

b 
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12.2 Operators relative positions to determine specificity of binding 

 

 

Esperimentally, localizing a single molecule means determining the coordinates of 

the center of the Point-Spread-Function (PSF) arising from the imaging of the fluorescent 

label tagging the molecule itself. When the fluorescently labeled LacI molecule is bound on 

DNA containing operators, it is fundamental to know if the protein is specifically bound to an 

operator sequence or if it is non-specifically bound to non-cognate. The simplest way to have 

this kind of information, is to measure the ratio between the measured distance between 

the spot and a DNA extremity (left or right) and the measured total length of the DNA. In the 

case of specific binding to operator, this ratio must is constrained by the position of the 

operator relative to the DNA ends, as determined by the restriction site used to linearize 

DNA. Absolute sequence positions are known from the map of the plasmid. Figure 12.5 

reports all the ratios of both operators for all the ways of labeling used. This approach allows 

not only to distinguish between specific and non specific binding, but also to discriminate on 

which of the two operators present in the DNA, the protein is bound (since the two 

operators have significantly different relative positions). 

 

 

 

 

 

 

 

 

  

 

Figure 12.5. (a) Simplified map of the plasmid used with absolute positions of operators (blue bars) 
and restriction sites used for digest DNA (ApaI, red bar; SalI, pink bar; BssHII light bluebar; SnaBI 
orange bar). (b) Schematic representation of relative positions of the two operators within the DNA 
linearized with the different enzymes. L= DNA length and is equal to 10174 base pairs. When 
digesting with SnaBI, the two operators have relative positions of 0.49L-0.51L and 0.48L-0.52L 
respectively; when double digesting with SalI and BssHII 0.46L-0.54L and 0.49L-0.51L; when digesting 
with ApaI 0.30L-0.70L and 0.33L-0.67L 

a b 
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a   
       b 
    

       12.3 Protein labeling 

 

        12.3.1 Labeling with Quantum Dots 

 

The choice of Quantum dots (Qdots)8 as the fluorescent probe for FIAT experiments 

was based on a previous study performed in our laboratory (Capitanio et al., 2007). Qdots 

(figure 12.6) are inorganic nanoparticles that are very photostable and excitable over a 

broad range of wavelengths in the UV, with narrow emission bands, centered at a 

wavelength that depends on the Qdot size (figure 12.6b). In comparison with single organic 

fluorophores, Qdots are significantly brighter because of their high quantum yield, providing 

a very high signal-to-noise ratio, which is essential to achieve high localization accuracy 

(Chapter 7.1). Additionally, Qdots allow extended visualization, since they do not suffer from 

photobleaching as conventional dyes. However, Qdots exhibit a fluorescence intermittency 

phenomenon (blinking) in which they undergo transitions between fluorescent and non-

fluorescent states. Obviously Qdots blinking can be a limitation when the goal is to measure 

the localization of the probe with continuity over time and with a high time resolution. On 

the other hand, blinking can be useful as the signature of a single Qdot with respect to 

multiple Qdots or aggregates that would not display blinking.  

 

 

 

 

 

 

Figure 12.6. Quantum dots nanocrystals. (a) Schematic representation of the core-shell structure of 
Qdots. (b) Qdots can be "confined" in their emission by varying their size. Five different nanocrystal 
solutions are shown excited with the same wavelength UV lamp. (c) Absorption (blue) and emission 
(red) spectra for QDot655. Figures adapted from Invitrogen website 
(http://www.invitrogen.com/site/us/en/home/brands/Molecular-Probes/Key-Molecular-Probes-
Products/Qdot/Technology-Overview.html#size). 

                                                 
8
 Quantum dots nanocrystals have a “core-shell” structure; the core is made of a semiconductor material (cadmium mixed 

with selenium or tellurium) which has been coated with an additional semiconductor shell (zinc sulfide) to improve optical 
properties. Other shell layers are made by organic materials that allow the conjugation of Quantum dots to the target 
biomaterials, without altering their unique optical properties .Qdots are zero-dimensional structures and their electronic 
states are fully quantized; therefore, their charge carriers and excitations are confined in all three dimensions. 

a b c 

http://en.wikipedia.org/wiki/Quantum_yield
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Quantum Dots used for labelling LacI are QDot655 characterized by a broad 

absorption band and a narrow emission band centred on 655nm (figure 12.6,c) from QDot 

corporation. Having an emission wavelength (655nm) well separated from the used 

excitation wavelength (532nm) allows to minimize fluorescence background. The QDot655 

used for this work is coated with streptavidin (Invitrogen, #Q10121MP). A bandpass filter 

(D655/40 nm, Chroma) is mounted in front of EMCCD to collect only photons within the 

emission band. 

The superficial functionalization with streptavidin is useful for conjugating the 

nanocrytal to the protein of interest if the protein is functionalized with biotin, thus 

exploiting the high affinity of the streptavidin/biotin pair for labeling the protein. QDots are 

commercially available in the streptavidin functionalized form, while to couple biotin with 

the protein a specific sequence, called biotag (with the aminoacid sequence: 

GLNDIFEAQKIEWHE), musts be added to the protein native sequence through protein 

engineering; this sequence is then recognized by an enzyme which covalently links biotin to 

the tag. Briefly, I prepared a plasmid containing gene encoding for LacI followed by the DNA 

sequence encoding for the biotag. Once bacterial cells are transformed with this plasmid, 

they over-express LacI protein fused with the biotag.  

This target is introduced at the C-terminus of the protein not to interfere with the 

DNA binding activity of the DNA binding domain which is located at the N-terminus. The 

subsequent biotinylation can be performed either in vivo or in vitro. The in vivo approach is 

generally based on the expression of the protein in a bacteria strain overexpressing biotin 

ligase to obtain a high level of biotinylation. In other words protein is purified already 

biotinylated. If wild type strains are used, the physiological pathway of biotinylation is 

exploited and proteins will be biotinylated but with low efficiency, due to the low 

concentration of the enzyme in the bacterial cell. In vitro biotinylation is performed after 

protein purification. The biotinylation reaction proceeds through a first step of activation of 

biotin with AMP and the subsequent covalent link of the activated biotin to the lysine of the 

biotag (figure 12.7). 
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Figure 12.7. Steps of the biotinylation reaction catalyzed by biotin ligase. The first step is activation of 
biotin through the linking of a molecule of AMP. Once active, biotin is transferred on a lysine of the 
biotag sequence 
 

As described in chapter 4.1, lac repressor is a homotetramer obtained by the self-

assembly of the same monomeric structure encoded by a unique gene. Fusing the biotag 

sequence to this gene will lead to four biotag sequences per tetramer. LacI could be labelled 

in principle with up to four biotins and eventually with four quantum dots. Since the 

dimension of a quantum dot is bigger than that of a protein (15nm diameter for quantum 

dot and 5nm diameter for protein, typically), an overlabeling could alter the physiological 

and physical properties of the protein (for example, parameters studied like diffusion of the 

protein which depends on the mass, could be altered from the physiological values). For this 

specific case, I decided to perform a low efficiency labelling in vivo in LacI- bacteria (BLIM) 

not over-expressing biotin ligase. LacI is thus supposed to carry less than four biotins per 

tetramer.  
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12.3.1.1 Preliminary results with Quantum Dots 

 

 

In order to exploit the high quantum yield of quantum dots, very suitable to get high 

precision single molecule localization), and for overcoming the problem of photobleaching 

which limits the acquisition time to some seconds typically, I did the first attempt of protein 

labelling with quantum dots. As described in the previous chapter, Quantum Dots are linked 

to LacI through the streptavidin-biotin pair (on the QDots and on the protein respectively). 

The pair of tags for linking DNA to the beads musts be different to avoid cross-reactions; the 

two labelling strategies (for conjugating the protein with the fluorescent probe or DNA to 

the beads) must be bio-orthogonal (not cross-reactive). That’s why when conjugating LacI 

with QDots, digoxigenin-labeled DNA and antidig-beads are used. The first type of 

experiments to do before studying the dynamics of LacI/DNA interactions (binding and 

unbinding events with specific and non-specific DNA sequences), are preliminary 

characterizations by single molecule localization of the conjugated protein in its specifically 

bound state. This is for determining if the conjugate retains the capability to bind its cognate 

site and to determine the accuracy of such localization measurements. Basically, a 

specifically bound LacI is localized and the localization accuracy is measured. From the 

relative position with respect to DNA it is possible to determine on which of the two 

operators the protein is bound. At this level of studying specificity is important to avoid non 

specific binding; this is achieved through a high concentration of salts (200mM KCl) in the 

buffer. This high ionic strength avoids the electrostatic interaction between negative charges 

on DNA backbone and positive charges on DNA binding domain of LacI, thus resulting in a 

ionic exchange effect. If one writes the reaction of exchange:  

 

DNA/LacI   + K+                    DNA/K + LacI                                                           (25) 

 

It is evident that when increasing the salt (in this case KCl) concentration, the 

equilibrium is shifted to the right, i.e. toward protein detachment. 200mM is sufficiently high 

for non-specific binding to be negligible (Barkley 1981). In these preliminary experiments, 

the complex DNA-LacIQDot was formed in a tube, by incubation of the three components 

(DNA, LacI and QDots), before introduction of the sample in the flow chamber,. In this way, 
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when a dumbbell is formed, there will also be the bound labelled protein. If LacI is first 

incubated with QDot to form the conjugate LacI/QDot and then with DNA, no dumbbell 

formed presented labelled protein bound. Surprisingly, if LacI was incubated with DNA first 

and QDots were added subsequently, all dumbbell presented labelled protein bound (figure 

12.14). Fluorescence videos were acquired with a 10ms exposure time, 532nm laser power 

on sample of ~20µW and a DNA tension of 1pN. Figure 13.15 shows a typical trace of the 

position (determined through the MATLAB custom written 2D-Gaussian fit algorithm during 

time). From the standard deviation of positions it is possible to obtain the accuracy of the 

localization measurements. Figure 12.14 represents an average image of a video (797 

frames); LacI is bound to the centre of the DNA, because that DNA was in fact double 

digested with SnaBI (and labelled with digoxigenin-dUTP tail by TdT), resulting in an operator 

position at the centre of the DNA. From a qualitative point of view, one can suppose that this 

binding is effectively specific. To confirm such specificity the relative distance from DNA 

extremities were measured and compared to the values expected on the basis of the DNA 

sequences. The example reported in figure 12.14 shows a relative distance from one end of 

0.49L the measured total length of DNA (L) and 0.51L to the other end of DNA, thus 

matching one of the two operators sequence position, present on DNA. It was confirmed 

that LacI was bound to the specific cognate site.  

Accuracy determined by the standard deviation of the position resulted to be 

9.8±0.6nm (mean±standard error, N=6). This value is far from the expected nanometer level. 

That’s because these first experiments were done with a Y shaped flow-cell (detailed 

description of the flow-system will presented in the next chapter) allowing to introduce in 

the flow cell just two solutions; one must always be beads and the other, in this case, was 

represented by the complex DNA, protein and QDots; video are thus acquired in this channel 

(and not in a buffer only channel) where diffusing probes determine a high level of 

fluorescence background which, in turn, decreases localization accuracy. 
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Figure 12.14. Average image (797 frames) of QDot labelled LacI specifically bound to DNA.  In this 
example, DNA was double digested with SalI and BssHII resulting in an operator position in the centre 
of DNA. Namely, LacI was bound at the centre of DNA molecule, as expected. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
Figure 12.15. A typical trace of position vs time of LacI specifically bound to operator. Position was 
obtained from a 2D-Gaussian fit of the bright spot, with an exposure time of 10ms. As described 
previously, a single QDot particle alternates states of emission with states of non-emission, the 
‘blinking’ phenomenon (stars). A trace of QDot will thus show gaps in correspondence of non-
emission states. 

 

Despite QDot conjugation to LacI/DNA complex does not alter the stability of the 

complex, it is not clear if the QDot/LacI conjugate retains the capability to bind DNA. In fact, 

when mixing QDot and protein first and then DNA (before introduction of samples in the 

chamber) no dumbbell presented labelled proteins bound. It can be supposed that the 

binding of QDot to free LacI  could affect the capability of binding DNA. On the other hand, 

when QDot is mixed after DNA/protein binding has occurred, the protein remains bound but 

* * * * * 

*=blinking 
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when dissociates (thus resulting in a free, unbound state), likely loses its ability to bind again. 

The observed bound states obtained mixing components in the order: DNA, protein, QDots 

could be attributed to a stabilization of the native structure of the protein by DNA which 

prevents destabilization by QDots when DNA/protein complex is preformed. Also waiting for 

up to one, no binding event of the LacI/QDots complex was detected. Also when mixing DNA 

and LacI first and then QDot but with a lower concentration to reduce fluorescence 

background (and thus to increase localization accuracy), no labelled protein was detected 

bound to DNA.  

These findings led to the necessity of evaluating another type of fluorescent probe, 

for example an organic fluorophore. These kinds of dyes are very small compared to the size 

of a protein so they are less likely to affect the protein activity. Unfortunately, these dyes are 

also less bright and photobleach  on a short time scale (typically on the order of seconds) at 

the excitation power typically used for single molecule detection. I decided to use an Atto 

dye which is, among all the organic dye, one of the brightest and most photostable. Also a 

new, multichannel flow-cell has been realized and discussed in next chapters. 

 

 

 

12.3.2 Labeling LacI with ATTOdye 

 

 

 

 

 

 

 

Figure 12.8. (a) Picture of a solution of Atto532. (b) Absorption and emission spectra (blue and red 
respectively). Absorption has a maximum at 532nm while fluorescence at 553nm. (c) Molecular 
structure of Atto532. Images from https://www.atto-
tec.com/attotecshop/product_info.php?info=p102_ATTO-
532.html&XTCsid=sbkv0esqfmuqt4306bukcga597. 

 

ATTO532 is a fluorescent label related to the well-known dye Rhodamine 6G. 

Characteristic features of the label are strong absorption, high fluorescence quantum yield, 

a b c 

https://www.atto-tec.com/attotecshop/product_info.php?info=p102_ATTO-532.html&XTCsid=sbkv0esqfmuqt4306bukcga597
https://www.atto-tec.com/attotecshop/product_info.php?info=p102_ATTO-532.html&XTCsid=sbkv0esqfmuqt4306bukcga597
https://www.atto-tec.com/attotecshop/product_info.php?info=p102_ATTO-532.html&XTCsid=sbkv0esqfmuqt4306bukcga597
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high photostability, and excellent water solubility. Figure 12.8 shows absorption and 

emission spectra and the molecular structure of the dye. The fluorescence is excited most 

efficiently in the range 515 - 545 nm. The molecule is available with different reactive groups 

in order to covalently link it to specific functional groups in the protein, in particular protein 

amino- or sulfhydryl groups. 

 The most commonly used amine-reactive ATTO derivatives are N-

hydroxysuccinimidyl(NHS)-esters (SIGMA, #88793-1MG-F). NHS-esters readily react with 

amine-modified oligonucleotides or amino groups of proteins, i.e. the ε-amino groups of 

lysines or the amine terminus, forming a chemically stable amide bond between the dye and 

the protein (figure 12.9, a).  

For labeling thiol groups the most popular and commonly used dye derivatives are 

maleimides. ATTO-maleimides (SIGMA, #68499-1MG) react with thiol groups of proteins to 

form a stable thio-ether bond (figure 12.9, b). 

 

 

 

 

 

 

 

 

 

 

Figure 12.9. (a) General scheme of the reaction of coupling of LacI amino groups with Atto532 
through the formation of an amide bond with the NHS-ester moiety of the dye. (b) General scheme 
for the formation of a stable –C-S- covalent bond between a sulfhydryl group on the protein and the 
maleimide moiety of the dye. 

 

For coupling of amino groups, wild type LacI was used while for coupling sulfhydryl 

group, a mutant of LacI, LacIQ231C (figure 12.10), was used. All cysteines (C) present in the 

wild type have been removed in this mutant protein, while a single cysteine per monomer 

was introduced at position 231 instead of a glutamine (Q). LacIQ231C has been used 

previously in looping measurements (Rutkauskas et al., 2009) and it is known that chemical 

modification at position 231 does not interfere with the DNA binding activity 

http://www.atto-tec.com/fileadmin/user_upload/Photostabilitaeten/PS532_CY3.jpg
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Figure 12.10. Structure of tetrameric LacIQ231C (ribbons).Each monomer is represented with a 
different colour while the cysteine residues introduced at position 231 are represented with a yellow 
ball. Grey spacefilling models are two DNA fragments bound simultaneously by the two DNA binding 
domain of the protein (Lewis et al., 1996). 

 

 

 

 

       13. The flow system 

 

 

To achieve precise control of buffer exchanges and dumbbell assembly during FIAT 

experiments, a microfluidic system was custom-built. The system is composed of a pressure 

reservoir (figure 13.2), a pressure control system and a microfluidic flow chamber (figure 

13.1).  The flow chamber is a sandwich between: a microscope slide with five 1mm-diameter 

holes (four inlets and one outlet) connected to appropriate tubing by the attachment of 

NanoPorts Assemblies (#N-333, Upchurch Scientific Inc); parafilm which is manually cut to 

obtain the desired path of flows and in such a way that the four merged channels perfectly 

match with the holes in the microscope slide (see Fig. 13.1a), and the slide. The sandwich is 

heated at 130°C for 30 minutes while being pressed with a weight (see Fig. 13.1b) to make 

the parafilm melt and attach the two slides. Due to the presence of the NanoPorts glued to 

the slide, the flow cell is not flat. To overcome this drawback, and in order to apply constant 

pressure all over the flow cell during the heating process, we have designed and realised a 

Cysteine residues at 

position 231 
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holder in the mechanical workshop at LENS in which the flow cell fits perfectly upside-down, 

as shown in figure 13.1b.  

 

 

 

 

 

 

 

 

 

 

Figure 13.1. (a) All components of microfluidic flow cell are represented, in the order they are 
assembled to obtain the “sandwich”. (b) Sandwich is heated at 130°C in a metallic holder to make 
parafilm melt and thus stick the slides. 

 

 

 

 

 

The Plexiglas® pressure reservoir has six independent solution containers (5 x2.5 mL 

and 1x6 mL capacity) (figure 13.2). The buffer containers consist of sterile and disposable 

luer lock-tip syringes (2,5 and 6 mL) (Terumo®), with the plungers removed. The connections 

between the syringe barrels and the flow chamber were made with PEEKTM tubing and 

flangeless fittings (Upchurch Scientific, Inc.). The fact that syringe containers and Plexiglas® 

pressure reservoir are transparent helps considerably the flow cell handling, buffer volume 

control and the monitoring of the possible presence of air-bubbles in the system. Solutions 

were perfused through the flow cell by pressurizing the Plexiglas® reservoir. Fine control of 

the flow speed was obtained by adjusting the air pressure with two computer-controlled 

solenoid valves (ET-2-H-M5, Clippard, Cincinnati, OH, USA): one connected to a +0.5 atm 

a b 
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pressure source and the second to atmospheric pressure. The pressure exerted on the 

pressure reservoir, and therefore on the solutions, was monitored by a pressure transducer 

(PTX 1400, Druck LTD) and controlled with custom-written software. The pressure- or 

atmospheric- solenoid valves were opened for approximately 7 ms to increase or decrease 

the pressure in the line until the desired value was reached. This approach was adapted 

from Carlos Bustamante (Wuite GJ et al., 2000), and it yields a smoother flow than using a 

stepping motor syringe pump (Brewer LR et al., 2008). Moreover, the total volume of fluids 

in the buffers containers was small compared with the air volume inside the pressure 

reservoir, which permitted a smooth and stable flow. Typical working pressures were on the 

order of 20 mBar.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.2. Pressure reservoir endowed with a six syringes system. 

 

The first (upper) channel of the flow chamber was used for the polystyrene beads 

(Streptavidin-coated, 1.87 µm diameter, #SVP-15-5, Spherotech), the second for DNA, the 

third for protein solution and the last for imaging buffer. Beads and DNA are always 

dissolved in simple Lactose repressor Binding Buffer (LBB) while LacI is dissolved in Imaging 

Buffer, consisting of LBB with the addition of oxygen scavenging system (catalase, glucose 

oxydase, glucose and DTT) in order to the reduce photobleaching which affects all organic 
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fluorophores and which is reduced in the absence of oxygen. While the pressure system is 

on, two beads are trapped first; then, moving the stage perpendicularly to the flow, all 

components are added; DNA is extended by the flow and can bind to both streptavidin-

coated beads with its biotin-labelled extremities; finally, the dumbbell is moved into the LacI 

solution to make protein bind and then either start the acquisition for dynamics experiments 

or move into the imaging buffer for high precision colocalization measurements (figure 

13.3).The hydrodynamic flow was just required to extend DNA molecules and achieve a 

rapid and efficient attachment to the two optically-trapped polystyrene beads. Once in the 

final channel, pressure was turned off through Shut-off valves (#P-732, Upchurch Scientific 

Inc) prior to starting acquisition. In this way, no drag force was applied to the molecule 

during the subsequent measurements.  

Noise reducing practices included filtering buffers with 0.2 µm syringe filters 

(Nalgene®, #190-2520) and washing microspheres by buffer exchange via centrifugation at 

maximum velocity (14.000 rpm) for 2min. These cleaning procedures enabled a drastic 

reduction of submicroscopic particle contaminants that could potentially fall into the trap, 

thus modulating the level of scattered light and altering the apparent bead position. It was 

also observed that not all beads were perfectly spherical, and therefore irregularly shaped 

beads that may be caught with the traps were immediately discarded, and new perfectly 

round beads were chosen before moving into the DNA channel.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13.3. (a) Photo of the 
home-built flow-cell with four 
independent inlets (on the 
left) and one outlet (on the 
right). Four different solutions 
are pushed in the cell by 
pressure. Once converged in 
the same channel, they form 
four laminar flows without 
mixing. (b) Two beads (grey) 
are trapped with the double 
optical tweezers (red). Moving 
the stage to the DNA channel, 
dumbbell formation is 
achieved by flow extension. 
With a further displacement 
dumbbell is moved into the 
labeled protein channel 
(green). Flow is now turned 
off and the acquisition 
started. 

a 

b 
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Each flow cell was used for one day of experiments. After that, parafilm and 

coverslide were detached using acetone or ethanol, and the slide with glued NanoPorts was 

reused to make a new flow cell. Tubings are instead washed with 30% ethanol and used 

again. 

 

 

 

 

 

 

       14. Characterization of ATTO532 dye 

 

 

As mentioned above, Atto is an organic dye and thus presents the problem of 

photobleaching which limits the duration of acquisition to the duration of the dye lifetime. 

The other limit of organic fluorophores is that they are not very bright; in order to collect a 

sufficiently high number of photons to get enough signal for single molecule detection, one 

can increase the excitation laser power or the exposure time. In principle to have a high 

signal to noise ratio, it would be better to increase the exposure time, because increasing 

laser power enhances background and photobleaching. When investigating biological 

processes, and in particular the dynamics of single biomolecules, it is fundamental to have a 

high spatial and temporal resolution to resolve the spatio-temporal details of the dynamics 

investigated. It is intuitive that the exposure time is a very critical parameter to set for 

localization of single biomolecules, since it determines the temporal resolution of the 

measurement. For example, if a protein is moving within the exposure, in that frame there 

will be a unique, deformed spot centred on a position which will be the average of positions 

travelled by the particle during exposure time. On the other hand, since laser power reduces 

fluorophores photobleaching time, a compromise between exposure time and laser power 

has to be found in order to have a signal to noise ratio which allows a high accuracy of 

localization with a useful temporal resolution.  

Nevertheless, a commonly used trick to slow down the photobleaching rate is to 

reduce the amount of oxygen dissolved in the imaging buffer. As described in chapter 7, dye 
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molecules may cross from a singlet excited state S* to the long-lived triplet excited state T*, 

a process that permits these molecules to interact with their environment for a much longer 

time. Interaction between O2 and dye triplets may generate singlet oxygen according to T* + 

3O2 S + 1O2. Singlet oxygen has a longer lifetime than the excited triplet states of the dyes. 

Moreover, several types of damaging oxygen free radicals can be generated when it decays. 

These reactive, long-lived species can react and oxidize exposed chemical groups and the 

dye itself. Oxidized dyes are no longer fluorescent and protecting them from reacting with 

environmental molecular oxygen thus lowers the observed rate of photobleaching (Bernas et 

al., 2004). 

The system used in this thesis to reduce the dissolved oxygen concentration is 

commonly used (Blanchard et al., 2004; Munro et al., 2007; Joo et al., 2007; Harada et al., 

1990) and is based on enzymatic reactions in the presence of glucose. The two enzymes 

employed are glucose oxidase (which uses molecular oxygen to oxidise glucose) and catalase 

(which convert hydrogen peroxide produced from the oxidase reaction into molecular 

oxygen and water). Since catalase converts two molecules of hydrogen peroxide into one 

molecule of oxygen, two glucose molecules and thus oxygen have to be consumed by 

oxidase.  In summary, the number of oxygen molecules is halved each round of reactions 

(figure 14.1).  

 

 

 

 

 

 

Figure 14.1. Scheme of oxygen scavenging by glucose oxidase (GOx) and catalase 

(CAT).  
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To measure photobleaching rate at a given laser intensity, a microscope slide is 

prepared with the dyes attached on the surface. Then a video is acquired and for each spot 

the intensity profile is obtained. For a single dye molecule, the measured intensity drops 

down to background in a single step upon photobleaching (figure 14.2). The experimental 

conditions evaluated were: an integration time of 100ms and 532nm laser intensity on 

sample of 200W/cm2 and the band pass filter used is Chroma D600/100. In these conditions, 

signal to noise ratio was equal to 10. The distribution of the time before bleaching, 

measured on many spots (N=22) (figure 14.3), shows an exponential decay; fitting these data 

allows determining the characteristic time for photobleaching, that was found to be equal to 

5.7±0.6 s. 

 

Figure 14.2. Intensity trace of a single dye attached on microscope slide. The dye emits, on average, 
270 photons per frame (100ms) before bleaching after 11.3 seconds. The total number of emitted 
photons results to be equal to 30510 photons. 
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Figure 14.3. Distribution of Atto dye photobleaching times (N=22) at a 532nm laser intensity on 
sample of 200W/cm2 shows an exponential decay with a time constant of 5.7±0.6s.  

 

As mentioned in the previous chapter, I tried to link Atto532 to LacI amino groups 

through a NHS ester functionalized dye and to link Atto532 to a LacI Q231C mutant. In order 

to test, from a qualitative point of view, if these labelling strategies altered the capability of 

the proteins to specifically bind to DNA, ATTOLacI (both types of conjugates) are pre-mixed 

with DNA prior to introduction in the flow cell in order to obtain, if possible, an already 

labelled protein bound to the dumbbell. This was the case for the mutant LacI but not for the 

wild type labelled to the amino groups. From the intensity traces of labelled LacIQ231C, in 

particular from the number of photobleaching steps, it is possible to measure the number of 

dye molecules bound. Since the protein carries four cysteines, the number of dyes bound 

should be at maximum four (or less according to the efficiency of the reaction of labelling). 

Figure 14.4 reports an example of an intensity trace of LacI Q231C bound to operator. 
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Figure 14.4. Intensity trace of a LacIQ231C labeled with Atto532 through covalent bonds with 
cysteines sulphydryl groups. The trace shows three distinct photobleaching steps, indicative of the 
number of dyes bound to the protein. 

 

 

 

  

        15. Single molecule kinetic constants measurement 

 

 

As mentioned above, the step of labeling is a crucial step in that it could alter the 

structure, and thus the activity, of the protein. It is important to know if the protein retains, 

after labeling, its native activity. I decided to measure, with the single molecule techniques, 

kinetic constants for binding and unbinding and compared them to the known values for 

LacI. One can write the reaction of association between LacI and operator O1 as: 

 

 

                                                                                                                         (28) 

 

 

The association reaction is commonly called on reaction (from left to right in the 

equation), while dissociation is commonly called off reaction. The rate of the association 

von=kon[LacI][O1] depends on the molar concentration of O1 and LacI and on the kinetic 

constant kon. The dissociation rate voff=koff[LacIO1], on the opposite depends on the molar 

concentration of the complex LacIO1 and on the kinetic constant koff. The dissociation 

 

LacI + O1                      LacIO1                                                   (26)                    

1
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constant Kd=[LacI][O1]/[LacIO1] is equal to the ratio between the off and the on kinetic 

constants koff/kon. These parameters can be expressed as their reciprocals τoff and τon[LacI] 

respectively. τoff and τon are the characteristic times for dissociation and association, 

respectively, and correspond to the time the protein spends bound (also called residence 

time) and to the time the protein spends unbound. These times can also be seen as the time 

the protein needs to unbind and the time protein needs to bind (that is to encounter) the 

operator. With the FIAT set-up, it is possible to determine these characteristic times, 

measuring the time operator is occupied by a LacI molecule and the time operator is 

unoccupied. For such measurement just three channels of the flow-cell are used: beads, 

DNA and protein. That’s because for measurements of the dynamic interaction (associations 

and dissociations) the dumbbell must stay in the channel containing protein and not in the 

buffer without protein. The procedures for these experiments consist of trapping two beads, 

moving the stage to bring the beads in the DNA channel, form the dumbbell and then move 

the stage to bring the dumbbell in the protein solution where data acquisition in started. As 

mentioned in the previous chapter, at a laser intensity on sample of 200W/cm2, in presence 

of the oxygen scavenging system, Atto dye shows a characteristic time of photobleaching of 

5.7 ± 0.6 s, thus limiting the possibility of measuring the characteristic times for binding and 

unbinding that are on the order of minutes. To overcome this limitation, I illuminated the 

sample at discrete time intervals rather than continuously. In particular, I decided to 

illuminate the sample for 100ms (synchronized with the EMCCD exposure) once a minute 

(figure 15.1). This gated illumination reduces the illumination of the sample to 1 minute for 

an acquisition of 10 minutes. 

 

 

 

 

 

 

 

 

Figure 15.1. Scheme of the acquisition (grey) and excitation (green). EMCCD is synchronized with the 
excitation laser in order to illuminate and acquire for 100ms (exposure time) once a minute. 

EMCCD 
acquisition 
 
 
532nm laser 
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During the acquisition a number of frames with LacI bound (figure 15.2,a) and other 

with LacI unbound (figure 15.2,b) will alternate. An easy way to represent and to visualize all 

the video in one picture is to transform it into a kymogram. If the frames represented in 

figure 15.2a-b are rotated by 90° and attached, the resulting image is a kymogram (figure 

15.2,c). The kymogram is a representation of x coordinate (DNA axis) vs time.  This operation 

is done for all the frames of a video so to visualize them simultaneously (figure 15.3). 

  

 

 

 

 

 

 

 

 

 

 

 

  

Figure 15.2. Two frames of a track in which bound states (a) alternate with unbound state (b). A 90° 
rotation of the frames and their juxtaposition gives place to the kymogram representation of the 
video. 
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Figure 15.3. Kymogram of a track. (a) single frame of a track from which a region including 
operator has been cropped. All the cropped frames have been juxtaposed to form the 
relative kymogram (b). (c) Intensity trace of the kymogram. (d) Positions of LacI in the frames 
represented in the kymogram. These values are distributed around two averages values 
separated by a distance of 91±14nm which is consistent with the distance between the two 
operators. The cartoon on the right is a scheme of DNA (light blue) tethered between the 
two optically trapped beads (grey) with the operators (blue) shifted from the centre of DNA. 
In this example DNA was digested with ApaI restriction enzyme. 
 
 
 
 

Given the absolute position of LacI bound to DNA, specificity has to be confirmed 

from the relative position within the dumbbell. For each position the distance from DNA 

extremities have been measured (15.4,a) and from the ratio with respect to the total length 

of DNA (15.4,b), it has been demonstrated the specific binding to operator; also which of the 

two operators was occupied could be determined (15.4,c). 
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Figure 15.4. (a) Distance of the spot from the right (upper panel) and left (lower panel) extremity of 
DNA. In the first distribution of position the relative distances are 0.33L and 0.67L while in the second 
distribution relative distances are 0.30L and 0.70L (b). This distances match with the position of the 
two operators in a DNA prepared with ApaI (c); the first position occupied was the blue operator of 
the cartoon and the second position was the red operator of the cartoon. 

 

The precision of the localization, determined from the standard deviation of the 

positions measured within the same bound state, gave a value of 13 nm (33 frames). The 

two distributions of times spent bound and freely 3D-diffusing show an exponential decay 

with characteristic times τoff and τon respectively of 12±1min and 3.3±0.4min (figure 15.5). 

Considering that DNA construct used contained two Operator sequences, the effective τon 

to take into account is the double of the value obtained by fitting data, that is 6.6±0.8min. 
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Figure 15.5. Distributions of the durations of states unbound (upper panel) and bound (lower panel). 
Characteristic times for the exponential decay are respectively 3.3±0.4 min (6.6±0.8 min considering 
the association to one operator) and 12±1min. 

 

As mentioned above, these times reflect the affinity of LacI for operator. In particular 

the dissociation constant Kd=τon[LacI]/τoff and given a work concentration of LacI equal to 

350pM Kd=396s*350*10-12M/720s=(20±4)*10-11M. This value is in good agreement with 

value present in the literature (Hsieh et al., 1987), thus confirming that LacIQ231C, retains its 

normal activity after labelling with Atto532 dye. 
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16. Effects of exposure time, DNA tension and methodologies used to 

determine the centre of the PSF on the localization accuracy of an 

ATTO532LacI specifically bound on DNA 

 

 

As described in chapter 7.1, the localization of a fluorescently tagged protein is 

achieved when the centre of its emission pattern (that is the PSF) is determined and the 

precision associated to this measurement is proportional to the number of collected photons 

according to Thompson equation (Thompson et al, 2002). Apart from the three terms of 

Thompson equation (diffraction limit, pixel size and background) there could also be other 

external factors affecting the localization accuracy as, for example, mechanical vibrations, 

thermal fluctuations or displacements of the molecule like protein 1D-diffusion on DNA. In 

this chapter, I show the effects of exposure time, DNA tension and fitting algorithm for 

determining the centre of PSF on localization accuracy, emphasizing also the relevance of 

these factors in the determination of biological parameters. The exposure time, as 

mentioned above, increases the number of collected photons but also lowers the temporal 

resolution of the measurement. The choice of the exposure time must represent a good 

compromise between collecting a sufficiently high number of photons and a temporal 

resolution adequate on a biologically relevant time scale. Three different exposure times 

were evaluated: 50ms, 100ms and 500ms (figure 16.1).  

These measurements were done on ATTO532LacI specifically bound on the operator 

in the dumbbell configuration. It is intuitive that fluctuations of the DNA molecule (on which 

the protein is bound) will result in a reduction of the accuracy. As previously demonstrated 

(Candelli et al., 2011), the highest localization accuracy is achieved for DNA tensions above 

1pN, while at forces below 1pN the accuracy of localization is dramatically reduced. This is 

due to substantial thermal fluctuations of DNA below 1pN which in turn blur and defocuses 

the image leading to a decreased accuracy; for forces above 1pN, there is not a significant 

difference in accuracy. In these measurements I used two sets of forces: 1 and 10pN (figure 

16.1).  

 

 



95 
 

 

 

 

 

 

 

 

 

 

 

Figure 16.1. Maximum Intensity projections from 100 frames representing LacI specifically bound on 
DNA. Videos were acquired in imaging buffer (containing oxygen scavenging system enzymes) at 50, 
100 and 500 ms exposure time with either 1 pN or 10 pN force applied on DNA. 

 

 

Regarding the algorithm used for determining the centre of the PSF, even if the most 

accredited and commonly used is the fitting with a 2D-Gaussian curve, it has some 

limitations. First, it is slow and requires numerical iterations to determine optimal 

parameters, and can be prohibitively time consuming for large data sets. Second, the true 

particle intensity distribution is, in general, not a Gaussian but rather the convolution of the 

object shape with the Point Spread Function of the imaging system which may not be 

precisely known. Third, a Gaussian fit has many parameters and, if the only parameter 

desired is the location of the particle centre, other parameters such as the amplitude and 

width of the function could represent a superfluous computational cost. Some other 

methods, like centroid calculation, are fast and do not assume any particular functional form 

for the PSF but are not so accurate as 2D-Gaussian fit. Recently a new, rapid and accurate 

method (Ma H. et al., 2012; Raghuveer 2012) has been conceived. This method is based on 

the concept that the intensity of an imaged particle is radially symmetric about its centre. 

The localization of the particle centre is thus achieved through an algorithm which 

determines the point of maximal radial symmetry. The rapidity of the calculation is 100 

times faster than Gaussian fit because it provides an analytical expression for the optimal 

particle centre location, with no iterative fitting steps but with the same accuracy level 

(figure 16.2). 



96 
 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 16.2. The image of a single fluorophore, whose position is indicated by the red ‘x’ appears as a 
matrix of pixels with different intensity levels represented as grey scale (a). To localize the single 
fluorophore with high accuracy, the experimental data which represent the PSF (green) are generally 
fitted with a 2D Gaussian curve (Cheezum et al., 2001) (b). (c) The gradient of the intensity of (a) 
(orange arrows) is calculated from the pixel centers represented by the circles. Yellow lines are 
drawn through each midpoint, parallel to the gradient. The analytically calculable estimate of the 
centre is represented by the point of minimal distance to yellow lines. Adapted from (Raghuveer 
2012). 

 

 

From the experimental point of view, biotinylated-DNA containing operator sequence 

is pre-incubated with ATTO532LacI; the complex, streptevidin-beads and imaging buffer 

containing oxygen scavenging system enzymes are then flushed into the flow cell thus 

creating only three channels. Once all components are into the flow cell, two beads are 

trapped and the stage is moved to the complex channel were the dumbbell is formed; DNA 

is tensioned to a precise value of force (1 or 10pN) measured from beads displacement; to 

reduce fluorescence background, the dumbbell is finally moved into the imaging buffer 

channel where data are acquired until the fluorophore photobleaches. For both values of 

force, video were acquired at three different exposure times: 50, 100 and 500ms.  

a 

b c 
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For each video, the position of the bright spot in all frames before photobleaching 

was determined with the two different methods presented: 2D-Gaussian fit and the 

calculation of the Radial Symmetry Centers. For both methods of localization, the 

measurement uncertainty σ has been evaluated from the standard deviation of the positions 

within a video (obtained at a given exposure time, DNA tension and method of localization). 

Figure 16.3 shows the values of localization uncertainty for the x coordinate9, σx. Although  

2D-Gaussian fit gives slightly lower localization error, the  Radial Symmetry Centre 

calculation provide similar values of uncertainty (as expected from the description of the RSC 

methods, Ma H. et al., 2012; Raghuveer 2012). For both methods of localization, at a given 

exposure time, there is a slightly lower error for measurements done at a DNA tension of 

10pN with respect to those made at 1pN. The exposure time, increasing the number of 

collected photons and averaging the fluctuations that blur the image, lowers the error. The 

best accuracy level is thus achieved for both methods at 500ms exposure time and a DNA 

tension of 10pN reaching an error of (9.5±1.4) nm for the 2D Gaussian fit and (12.6±2.7) nm 

for the Radial Symmetry Centre calcula on. Nevertheless, the localiza on accuracy just 

improves of a factor    2 ranging from an exposure time of 50ms to 500ms (for example, at 

1pN, from (23.1±2.4) nm to (12.9±2.6) nm for 2DGaussian fit and from (25.3±2.7) nm to 

(14.5±1.3) nm for RSC) at the expense of the temporal resolution which worsens by a factor 

ten. It is thus crucial to decide, according to the biological aspect to be investigated, whether 

it is more important having a localization accuracy of 10nm rather than 20nm (in the range 

of exposure times investigated in this work) or a better time resolution. 

 

 

 

 

 

 

 

 

 

 

                                                 
9
 The x axis is the axis parallel to DNA in the dumbbell configuration. 
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Figure 16.3. The panels show the values of localization uncertainty at three different exposure times 
(50, 100 and 500ms) and two values of DNA tension (1 and 10pN). Localization has been achieved 
with two different approaches: fitting the PSF with a bidimensional Gaussian (2DGauss) or calculating 
the Radial Symmetry Centre (RSC) and the error has been estimated from the standard deviation of 
the positions during a video. For each combination of force and exposure time, three videos have 
been acquired and the relative accuracy is thus represented as the average between the three 
standard deviations of the positions ± standard error of the mean. The upper and lower panel 
represent the uncertainty along the x and y axis, respectively. 
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In the y direction (perpendicular to the DNA axis) the localization error σy, as shown 

in figure 16.3 lower panel, is generally higher with respect to the error in the x direction. This 

is because DNA is tethered along its axis and forces are applied in this direction making DNA 

more stiff (undergoing less fluctuations) in the x direction with respect to the y direction. 

The reduced stiffness in y direction is thus reflected in wider oscillations, that is a lower 

standard deviation of the position (the localization error). In this case there is a substantial 

difference in localization uncertainty for measurements done at 1 and 10pN, with a lower 

error at 10pN because of an increase of the stiffness of the DNA which reduces oscillations. 

This difference is reduced increasing the exposure time and at 500ms is almost negligible 

because of oscillations averaging during the exposure.  

Thermal fluctuations in the middle of the dumbbell, where the protein is bound, can 

be theoretically estimated from the equipartition theorem. In fact, considering movements 

along x axis, we can write Tkxk Bx
2

1

2

1 2   and thus
x

B

k

Tk
x 2 , where xk  is the 

combined stiffness of the two traps and of the DNA molecule along the x axis (as depicted in 

figure 16.4), and <x2> is the variance of the x position. However, in our measurements, we 

collected images with a finite integration time so that the fluorescent spot image is averaged 

during the integration time. This means that, for example considering a 50ms integration 

time, the bandwidth is limited to about 20 Hz, and the variance of x position is smaller than 

the one calculated using the equipartition theorem. We can estimate the measured x 

variance from the integral of the x power spectrum (equation 16), limited to 20Hz: 

 

 


Hz

cx

B df
ff

Tk
x

20

0

222

2

)(
              (27) 

where
x

xk
fc

2
 , xk  and x  are the total stiffness and drag coefficient along x 

direction, respectively (i.e. the combined k and   of the DNA molecule and the two traps, as 

illustrated in figure 13.28). Increasing the DNA tension from 1 to 10 pN corresponds to a 

longitudinal DNA stiffness of ~0.004 pN/nm and ~0.14 pN/nm, respectively. As a 

consequence, thermal fluctuations decrease from ~8 nm to ~1 nm, with a bandwidth of 20 

Hz (50 ms integration time). Higher acquisition times result in a decreased bandwidth and 
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noise. In any case, as shown in figure 12.27, there is no significant difference between the 

measured accuracies at 1 and 10 pN, indicating that thermal fluctuations are not limiting the 

localization accuracy. 

 

 

 

 

 

 

Figure 16.4. Model used to find the spring constant and drag coefficient of the DNA molecule. DNA is 

modelled as a sphere with a drag coefficient DNA  (
,DNA II 

9106.7  Ns/m; 9

, 103.17 

 DNA

Ns/m) and two springs in series, each of stiffness 2kDNA, giving an overall spring constant of kDNA 
(Meiners et al., 2000). 
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       17. LacI 1D-Diffusion at different DNA tensions 

 

 

In the last decades, following the discovery (Riggs et al. in 1970) that the 

experimental association kinetic constant of lac repressor is two orders of magnitude higher 

than the theoretical diffusion-limited value, several models have been proposed. Among 

these, particularly credited is 1D-diffusion along non-specific DNA, proposed by Berg et al. 

(1981) and observed by Wang et al. (2006). Briefly, Transcription Factors generally have a 

high affinity for their cognate sequence and a low affinity for non-cognate DNA; since 

cognate sequence is just a very small fraction of the whole genome, it is likely that the 

protein frequently encounters and weakly binds non-cognate DNA before encountering the 

specific sequence. While non-specifically bound, protein undergoes a 1D-diffusion along 

DNA. The target search process that could, in principle, enhance association rate to specific 

target sequence, is given by the alternation of free, 3D-diffusion and 1D-diffusion when non-

specifically bound to DNA (see chapter 5 for details).  

Nevertheless, there are still some questions that remain unsolved about the 

mechanism through which non-specific DNA sequences enhance the specific association rate 

(Halford S.E. 2009). First of all, it has to be taken into account that all experiments until now 

have always used a salt concentration lower than the physiological one (145mM KCl) and 

this factor itself enhances association rate (for electrostatic interaction between proteins 

and DNA); in fact, salt concentration dramatically reduces non-specific interactions, so that 

non-specific interaction events may not be detectable. Since also the salt concentration used 

by Riggs et al. (50mM) was lower than the physiological one, it is uncertain if the effective 

acceleration factor is 100, so it remains still under debate how and how much non-specific 

DNA sequences act on the acceleration of target search. There are also other controversies 

around the 1D diffusion model. First is the length of DNA explored in a single sliding event: 

the longer the sliding length the higher the probability to scan always the same DNA region. 

Another aspect is that no experiment until now has been done with DNA constructs 

containing the three natural operators O1, O2 and O3 at specific distances from each other 

(chapter 4.2).  
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The aim of the experiments described in this session is to further investigate the 1D 

diffusion of lac repressor exploiting the advantages of the FIAT experimental set-up: DNA is 

suspended in solution in the flow chamber, far from the glass surface; since DNA is tethered 

by the optically trapped beads, there is no need to make experiments in the presence of 

flow (which is only used to introduce samples into the chamber); the use of a dual optical 

trap system also allows not only to control the mechanical property of DNA but also to apply 

forces (that is to stretch the molecule) and to study the effect of force on the biological 

processes, in this case 1D diffusion.  

For such studies, I prepared and used a DNA construct containing the wild type 

operators. Briefly, a 1125bp DNA fragment containing the three natural operators O1, O2 

and O3 was amplified directly from the E. Coli genome and inserted in the previously used 

plasmid, between the restriction sites for AatII and AvrII thus replacing the fragment 

containing the two identical copies of operator O1 (See materials and methods for details of 

the procedure). A map of the plasmid produced is shown in figure 17.1(a); the highest 

affinity operator O1 is separated by the other high affinity operator O2, on the right, by 402 

bp (~137 nm), while only 92 bp (~ 31nm) separate O1 from O3, at its left. Also for this 

plasmid are reported the relative distances of operators according to the restriction enzymes 

used. This information is useful to determine on which operator the protein is specifically 

bound. 
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AmpR 787...1446

358 PsiI (1)
M13 origin 2...457

F1 ori 19...325
127 NaeI (1)
127 NgoMIV (1)

3879 SnaBI (1)
3882 BstZ17I (1)

4038 RsrII (1)
4047 BssHII (1)
4054 EcoRI (1)
4070 SalI (1)
4082 SpeI (1)

4474 PflMI (1)

7290 KpnI (1)

6528 SmaI (1)
6528 XmaI (1)

6204 AgeI (1)
5658 ApaI (1)

5658 Bsp120I (1)
5369 AflII (1)

5245 PshAI (1)
5230 BstEII (1)

7835 XhoI (1)

8653 AatII (1)
8906 BbeI (1)
8906 KasI (1)
8906 NarI (1)
8906 SfoI (1)

O3 8992...9012
LacO 9082...9104

M13-rev 9110...9130
M13-fwd 9159...9142

LacZ alpha 9230...9298
9424 OliI (1)

O2 9485...9505
9778 AvrII (1)

New DNA
10138 bp

ColE1 origin 1544...2226

2765 SacII (1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17.1 (a) Map of the plasmid containing three natural operators O1, O2 and O3 indicated by 
blue, purple and red arrow, respectively. In the map all restriction sites present in the plasmid are 
also highlighted. (b) Schematic representation of the plasmid highlighting the positions of operators 
and restriction site used to linearize the plasmid. (c) Depending on which enzymes are used to digest 
plasmid, operators will be localized in a different position in the resulting linear DNA, characterized 
by different relative distances, represented as the ratio between the distance to one extremity and 
the total length of the molecule, L.  

 

 

On the other hand, since fluorescence experiments are limited in the time resolution 

by the bandwidth and since at physiological salt conditions 1D-diffusion is probably too fast 

to be detected, I used the same buffer (TBE 0.5x (TrisBorateEDTA) pH8.8), with no salt, 

previously used  to detect LacI 1D-diffusion in a different experimental condition (Wang et 

al., 2006) . In this kind of measurements only three channels are used, for introducing beads, 

a b 

c 
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DNA and the protein. Detecting binding events followed by 1D-sliding, in fact, requires 

staying in a channel containing the protein; so, the fourth channel, commonly used for 

imaging buffer is now not needed. Since data are acquired in the protein channel, protein 

has to be diluted in imaging buffer (TBE 0.5x containing oxygen scavenging system). 

Basically, once dumbbell is formed, it is moved to the protein channel, flow is switched off 

and DNA is pre-tensioned to the desired value of force; finally, acquisition is started.  

Diffusing LacI is then tracked using the Radial Symmetry Centre calculation and from 

the trajectories the Mean Square Displacement (MSD) is calculated at different time 

intervals. MSD is calculated as <(x(t)-x0)2> and is related to the diffusion coefficient of the 

particle (D) according to MSD=2nDt where n is the dimensionality which is equal to 1 for 

monodimensional diffusion, t is the time interval. Figure 17.2 shows an example of a trace in 

which a LacI molecule is undergoing 1D-diffusion along non-specific DNA while another is 

(still) specifically bound. The relative distance of the still molecule, 0.50L (figure 17.2,c) 

demonstrate that the molecule is bound to primary operator O1. 
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Figure 17.2. (a) kymogram representation of a LacI molecule sliding while another molecule is 
specifically bound to the operator O1 as demonstrated by the relative distance (0.50L)in (b). Average 
image (37 frames) of the sliding event in presence of a specifically-bound LacI. (c) Position trace of 
both diffusing (blue trace) and specifically bound molecule (red trace) which is characterized by a 
standard deviation of the position of 30nm. This example trace is acquired with a 532nm laser, power 
on sample of 20µW, 100ms exposure time and a tension on DNA of 20pN. 

  

Figure 17.3 shows the plot of MSD versus time relative to the example reported in 

figure 17.2. The curve is fitted with a linear function whose slope is equal to 2D, thus giving a 

value of D=(173124±18525)nm2s-1. Trajectories of diffusing LacI have been collected at 

different forces applied on DNA in order to detect possible effects of the structural 

rearrangement that occurs when DNA is stretched on 1D-diffusion coefficients. In particular 

four levels of force have been applied: 1, 10, 20 and 30pN. In addition to the diffusion 

coefficient, also other parameters that characterize sliding were measured: the sliding length 

which is the contour distance traveled by the protein during sliding, and the residence time, 

that is the time the protein spends (non-specifically) bound to DNA during sliding. At a given 

a 
b 

c 
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force, diffusion coefficient, sliding length and residence time are expressed as mean ± 

standard error. Increasing the DNA tension leads to a decrease of diffusion coefficients and 

sliding lengths to a minimum value at a force of 20pN. Unexpectedly, both diffusion 

coefficient and sliding length rise again at 30pN, showing a similar behavior with respect to 

DNA tension (figure 17.4). This is probably a consequence of the structural rearrangement of 

the DNA molecule at higher forces. Instead, residence time linearly decreases with DNA 

tension thus indicating a reduction of lac repressor affinity for (stretched) non-specific DNA 

(figure 17.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17.3. MSD vs time plot. The slope of the curve corresponds to 2D thus resulting in a value of D 
equal to =(173124±18525)nm2s-1. 
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Figure 17.4. LacI diffusion coefficient (black squares) as a function of DNA tension.  Dependence of 
sliding length (green circles) on DNA tension. All measurements are expressed as mean ± standard 
error (1pN, N=12, 10pN, N=16, 20pN, N=13, 30pN, N=4). 
 
 

 

 

 

 

 

 

 

Figure 17.5. Dependence of residence time on DNA tension. All measurements are expressed as 
mean ± standard error (1pN, N=12, 10pN, N=16, 20pN, N=13, 30pN, N=4). 
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       18. Discussion and future perspectives  

 

 

In this work of thesis, an experimental set-up that combines single molecule 

detection and manipulation has been described and results of the application of FIAT assay 

to the study of protein DNA interaction and preliminary results with the novel ultrafast 

force-clamp spectroscopy have been presented. To detect and localize a single protein, it 

occurs to label that is to attach a fluorescent probe. This preparative step is crucial because 

it musts be taken into account that the object studied is no longer the protein as it is but the 

protein plus the dye and it is not foregone that, in the conjugated form, protein retains its 

native structure and activity. I started trying to label lac repressor with Quantum Dots 

because these fluorescent nanocrystals are very bright and don’t photobleach. Conjugate 

was formed just mixing together streptavidin coated QDot and biotin tagged LacI. Addition 

of such conjugate to DNA didn’t give place to binding, as shown by FIAT assay were no bright 

spot was detected on dumbbell. A change in the order of mixing, in particular mixing first 

DNA with the protein and subsequently, after the DNA/protein complex formation, addition 

of the fluorescent probe resulted in a labeled protein bound to DNA. This result suggests a 

distortion of the protein structure and thus of its DNA binding activity and such distortion is 

prevented by DNA binding which stabilizes the native structure.  This distortion can be 

attributed to several reasons; QDot has a diameter of 10-15 nm while a typical protein 

diameter is about 5 nm so the conjugated studied has a mass bigger from that of the 

protein. LacI is a tetramer and biotinylation can, in principle, lead to four biotins per 

tetramer and QDot, on the other hand, is coated by about 10 streptavidin molecules leading 

to the possibility to generate multiple complexes and to distort the protein structure. 

Another possibility is QDot non-specifically binding to LacI DNA binding domain (when 

protein is not bound to DNA) because of their negative charge. I then decided to try labeling 

with a florescent dye, ATTO532, which is a little organic molecule and thus thought to give a 

negligible mass increase. Parallel, realized a new four channel flow-cell that allow to have 

components of the experiment is separated laminar flows and to move from one channel to 

another and to have a channel for buffer, useful to discard fluorescence background deriving 

from other labeled proteins diffusing in solution. In fact, for example, preliminary results 
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with QDots were done in a two channels, Y shaped flow cell, where the first chanel was used 

for beads and in the second all remaining components together: DNA, protein and the 

probe, although the brightness of QDots, localization accuracy was about 10nm for the high 

background.  

Upon characterization of the new dye, I tried to label LacI amino groups, cysteines of 

wild type la repressor and of a single cysteine mutant (LacIQ231C) and only the last was 

successful. In order to determine activity of the labeled protein, I measured characteristic 

times of association and dissociation through FIAT assay and the measured value of Kd was 

consistent with the value present in the literature obtained with bulk experiments. 

As all organic dye, ATTO532 shows photobleaching after a time that depends on the 

power of the excitation light; increasing the power reduces dye lifetime. In order to get a 

high signal to noise ratio, that is a high localization accuracy, exposure time can be increased 

at expense of temporal resolution. For detecting fast events, it is would be preferable to 

decrease the exposure time (while lowering the localization accuracy). Also other factor, 

such as DNA tension can affect localization accuracy acting reducing DNA thermal 

fluctuations. I measured the effect of such parameters on DNA accuracy, exploring three 

different exposure times: 50, 100 and 500ms and two DNA tension: 1 and 10pN. Passing 

from an exposure of 50ms to 500ms there is just a two fold increase in accuracy while 

temporal resolution is reduced ten times. In the direction parallel to DNA, x, there isn’t a 

substantial difference between measurements done at 1and at 10pN while this difference is 

more pronounced in the perpendicular direction, y that generally shows a worse accuracy 

due to thermal fluctuation of the molecule. Since forces are applied in the same direction of 

DNA, thermal fluctuations in this direction are reduced. At an exposure time of 500ms 

fluctuations are averaged thus eliminating difference in accuracy level between the two axes 

and between measurements made at 1 and 10pN. Nevertheless, calculation of longitudinal 

stiffness of the system showed a small thermal fluctuation compared to the measured value 

and a significant difference between 1 and 10 pN (8 and 1nm respectively with an exposure 

time of 50ms, compared to 23.1±2.4 nm and 22.2±0.6 nm obtained with the 2D Gaussian fit). 

This comparison clearly indicates that the system is stable from a mechanical point of view 

and that localization measurements are not limited by its fluctuations. 

In these experiments a novel, rapid and accurate algorithm that determines the 

centre of the spot calculating Radial Symmetry Centre has been evaluated parallel to the 
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commonly used 2D Gaussian fit. Localization accuracy determined with this new algorithm 

effectively resulted near to accuracy determined with 2DGaussian fit and also the 

dependence on exposure time and DNA tension showed the same behavior.  

To address target search mechanism, I made experiments with a salt free buffer not 

to avoid non-specific interactions with DNA. I measured diffusion coefficient, sliding length 

and residence time of LacI diffusing on a DNA molecule containing the three natural 

operator sequences and saw the effect of stretching DNA on these parameters that 

characterize target search. Force values taken into account are: 1, 10, 20 and 30pN.  

As suggested by Wang and colleagues (Wang et al., 2006) diffusion coefficients 

distribution can present a big variance due to the variability in the local (non-specific) DNA 

sequences. In fact they reported a large distribution of the diffusion coefficient of LacI on a 

lambda DNA stretched to few picoNewtons, ranging from 0.002 µm2s-1   to 0.1 µm2s-1 and 

with a mean value of 0.02 µm2s-1. Diffusion coefficient at 1pN obtained with my experiments 

is different from that reported value and equal to (0.4±0.1)µm2s-1  (mean ± st. error); this 

difference can be justified by the fact that I used a different DNA construct thus presenting 

different non-specific sequences. Moreover LacI used in my measurements is in the native 

tetrameric oligomerization state while Wang and colleagues used dimeric and monomeric 

forms of the protein. Finally, the presence of a double optical tweezers allows to keep DNA 

far from the cover slip (avoiding possible effects due the glass surface) and to precisely tune 

the tension to be applied on DNA. 

Diffusion coefficients and sliding lengths show a similar trend with respect to DNA 

tension; increasing DNA tension leads to a decrease in both parameters that reach a 

minimum at a tension of 20pN and surprisingly arise again at 30pN. This funding can be 

attributed to structural rearrangement DNA molecule undergoes as consequence of 

mechanical stress. Residence time always decreases increasing DNA tension as a direct 

consequence of a reduction of affinity for non-specific DNA. 
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              18.1 Ultrafast Force-clamp spectroscopy 
 

 

To overcome the temporal limitation imposed by the exposure time in fluorescence 

detection, a novel approach is being developed in our laboratories: the ultrafast force-clamp 

spectroscopy (Capitanio et al., 2012). This technique uses the same FIAT experimental set-up 

but does not rely on fluorescence. The flow system described in chapter 13., and used for 

FIAT experiments can also be used in ultrafast force-clamp spectroscopy measurements. The 

main difference in the experimental configuration is the presence of a third bead made of 

silica on which lac repressor is anchored. This bead is embedded into a nitrocellulose matrix 

which coats the cover slide surface. The first component to be introduced in the flow-cell is 

the protein. Subsequently, the firsts two (upper) channels are used to introduce beads and 

DNA (and thus enabling to form the dumbbell) while the last two are simply used to 

introduced buffer.  Once dumbbell is assembled, DNA is first stretched and brought in close 

proximity of the third bead, where LacI is present. In this configuration, equal and opposite 

forces are applied to left and right beads (FL = −F and FR = +F) and the net force (Ftot) applied 

to DNA is zero. Second, the force applied by each trap is clamped to two different values, FL 

= −F and FR = +F + ΔF, so that the net force applied to the dumbbell becomes Ftot = +ΔF. The 

forces acting on the two beads are clamped independently by a double-feedback system 

that moves the traps using acousto-optic deflectors (AODs) to keep the forces constant. 

Because a force, Ftot, is applied to the dumbbell, when molecules DNA and the protein are 

not bound, the dumbbell moves against viscous drag at constant velocity, v = Ftot/γ (γ is the 

viscous drag coefficient of the dumbbell). When the displacement of the dumbbell exceeds a 

preset value (typically 100–200 nm in our experiments), the force applied by the traps is 

reversed (Ftot = −ΔF), to maintain the two molecules in proximity of each other. The 

dumbbell, thus, moves in the opposite direction until it reaches the initial position, and the 

force is switched again to Ftot = +ΔF (figure 18.1,a). Therefore, when the two molecules are 

not bound, position of the traps over time is a triangular wave. When the molecular bond is 

formed, Ftot is transferred to the protein; as the system is designed to maintain a constant 

force, the dumbbell suddenly stops. Therefore, the position signal of the traps becomes a 

flat line (figure 18.1,b). The trace of the position represented in figure 18.1 (b)left (which has 

a time scale too large to clearly make the triangular wave visible) shows two sets of binding 
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events between lac repressor and DNA whose position distributions are separated by a 

distance of 96nm (figure 18.1,(b) right), consistent with the distance between operators (305 

bp) 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 18.1 (a) Schematic of operational principle of our method illustrating constant Ftot = 
ΔF applied to molecule DNA through two feedback systems clamping the force on the left 
and right bead to −F and F + ΔF, respectively. The force is measured using quadrant detector 
photodiodes (QDPs) and kept constant by moving the traps through AODs. (b) Typical record 
of a LacI molecule interacting with a DNA molecule (Ftot = 5 pN, ± 200 μm confined dumbbell 
oscillation; left). The triangular wave is too fast to be visible on the time scale displayed here. 
Distribution of bound positions (right) shows peaks separated by the distance (~96 nm) 
between the two LacI operators (red) in the DNA molecule. Drawings are not to scale.  

 
 
Figure 18.2 displays the clustering of long events at two specific positions along the 

DNA, separated by 96 nm. Nevertheless, beyond these long interactions, there is another, 

kinetically well-distinct, population of short interactions with non-operator DNA (which 

allow rapid scanning of DNA during the target search) even if buffer contained 200mM KCl. 

This method is thus suitable to map the interaction kinetics along all the DNA sequence; 

a 

b 
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moreover, the method has a very large dynamic range on the measurable interaction 

durations (from 10 μs to tens/hundreds of seconds).  

Next steps will thus include the use of this ultrafast spectroscopy technique 

performing experiments with a physiological salt concentration buffer (145mM KCl, high 

enough to avoid detection of non-specific interactions by fluorescence) thus trying to 

disentangle some contradictions on target search kinetics arisen recently (Halford 2009) 

contesting the fact that experiments present in literature always used a low salt buffer (that 

itself enhances association rate); also the effect of a wide range of forces on the interaction 

will be determined. 

 

 

 

 

 

  

 

 

 

 

  
 

 
Figure 18.2 The figure shows the durations of the interactions measured on one DNA dumbbell (total 
recording time 100 s) as a function of position along the DNA molecule. The force applied in this 
recording was 5 pN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



114 
 

      19. Materials and Methods  
 
Lactose repressor expression and purification 
 
LacI minus cells BLIM are transformed with a plasmid containing gene encoding for 

LacI; 50µl competent BLIM cells are thawed on ice and then 1µl of plasmid DNA is added and 

let incubate for 30 minutes. Cells are heat shocked 45 seconds in 42°C water bath and put in 

ice again for 2 minutes. 400µl LB is added to cells and incubated at 37°C for 1 hour with 

shaking. 10 and 100µl of transformed cells are plated on two Amp50 plates and incubated at 

37°C overnight. 

The day after, one colony is picked and inoculated into 50ml LB with 50µg/ml Amp 

and grown all the day at 37°C with shaking. On evening four two liters flaks are filled with 

one liter of LB with 50µg/ml Amp and each of them is inoculated with 1ml of the 50ml 

growth and let grow overnight at 37°C overnight. The growth is centrifuged at 3000 rpm for 

30 min into centrifuges bottles. Pellet is resuspended in 30ml cold breaking buffer. Lysozyme 

is added to a final concentration of 40mg/ml and frozen at -20°C. 

Cells are thawed on ice; once lysed they look like a jelly. 10mg/ml DNAse is added 

and saturated solution of MgCl2 (to a final concentration of 10mM) until the cells are runny 

and have lost their jelly-like consistency. They are then centrifuged at 8000rpm for 50 

minutes. Supernatant containing our protein is saved. Supernatant is transferred on stir 

plate and ammonium sulfate is added slowly (23.1g (NH4)2SO4 per 100g of supernatant). 

Once fully dissolved, suspension is let stand for 1 hour. Then it is centrifuged for 40 min 

8000rpm. Pellet is then gently resuspended in 10ml 0.09M KP. 

Dialysis tubing is washed with ddH2O and soaked in 0.09 M KP. Then one end is 

clamped and protein solution is transferred inside the tubing, and then also the other end is 

clamped. Tubing is put in a beaker containing 0.09M KP and let stir for 1hour, then buffer is 

changed with fresh one and left stir another hour. Buffer is changed again and left stir 

overnight. 

The day after dialysis buffer is changed and let dialyze for 1 hour. Dialysate is 

centrifuged for 30 min 8000 rpm. 

In the meanwhile P-cell column is equilibrated with 0.09M KP until the conductivity 

of the out going buffer reaches a stable value. Supernatant containing the protein is thus 

loaded into the equilibrated P-cell column. 0.09M KP is used to elute flow-through. 
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Absorbance at 280nm is read by an UV detector connected to the column output. Elution 

with 0.09M KP lasts until UV A280 reaches the baseline again. Then the column is washed 

with 0.12M KP until there is no protein detected in the flow through. Then a gradient of ionic 

strength is applied generated with equal volumes of 0.12M KP and 0.3M KP. LacI elutes 

around 0.18M KP (figure 19.1). 

 

 

 

 

 

 

 

 

 

 

 
Figure 19.1. Flow chart representing output solution conductivity (red) and Absorbance at 280nm 
(blue). The first step is elution of all proteins with 0.09 KP. After a gradient of ionic strength is applied 
and LacI is eluted at a value of conductivity corresponding at about 0.18 KP. 

 

Fractions of eluted LacI are controlled with an SDS-PAGE in order not to include 

impure fractions in the next step of concentration to smaller volume (figure 19.2). 
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SDS-PAGE  

 

Resolving gel (10 ml): acrylamide solution 30% (4 ml), H2O (3.35 ml), resolving gel 

buffer (Tris/HCl 1.5 M, pH 8.8) (2.50 ml), SDS solution 10% (100 µl), TEMED (10 µl), APS 10% ( 

100 µl). 

Resolving gel is put between two glass plates in a gel caster. Then water saturated 2-

butanol is added in order to create and parallel to the ground surface of the gel. Solution is 

left polymerize for 20 minutes. 2-butanol is removed with absorbing paper and water is 

added and removed to fully remove alcohol traces. 

Stacking gel (5 ml): acrylamide solution 30% (0.67 ml), H2O ( 3.05 ml), stacking gel 

buffer ( Tris/HCl, pH 6.8) (1.25 ml), SDS solution 10% (50 µl), TEMED (10 µl), APS 10% (50 µl). 

Stacking gel solution is added on resolving gel with a comb on the top to create 

samples wells and left polymerize for 20 minutes and the is possible to remove the comb. 

Plates are placed into the electrophoresis tank which is filled with running buffer 

(3.03g Tris base, 14.4g glycyne, 1g SDS in 1l ddH2O). 

Samples are diluted in sample buffer and boiled for 5 minutes before loading the gel. 

Molecular weight markers and samples are then loaded into the wells and let run for 1 hour 

with a potential of 200mV. After run, gel is carefully removed from plates and let stain in 

staining solution for one hour on a rocket. Gel is the let destain in destaining solution 

overnight to remove excess of stain. 

 

Figure 19.2. SDS-PAGE of fractions corresponding to A280 peak of eluted LacI. On the left there is the 
molecular weight marker, while spots correspond to sample fractions. Spot molecular weight 
corresponds to the molecular weight of LacI in the monomeric form (38.5KDa), resulting from 
denaturation of the native tetramer thus confirming that sample analyzed contain Lac repressor. 
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Protein labelling with ATTO532 (jena bioscience, #FP-220-532) 

 

100µl of protein (10mg/ml) are mixed with 3µl Tris-(2-carboxyethyl)phosphine 

hydrochloride (TCEP) (0.1mg/µl) and vortexed carefully. Then 33µl of Atto532 (10mg/ml in 

DMF) are added. Reaction mixture is vortexed carefully, centrifuged briefly and let incubate 

2 hours in a shaker at 20°C protected from light. Reaction is then stopped by addition of 3µl 

GSH (0.1mg/µl). The conjugate is purified by spin concentration (Amikon Ultra 10K). 

 

 

 

 

DNA labelling with biotin 

 

Terminal Deoxynucleotidyl Transferase (TdT) labelling 

Plasmid DNA is first digested with ApaI (Fermentas, #ER1411) for 1 hour 30°C in 

buffer B (10 mM Tris-HCl pH 7.5 at 37°C 10 mM MgCl2 0.1 mg/ml BSA), 50µl reaction volume. 

Alternatively, DNA is digested with SnaBI (Fermentas, # ER0401) for 1 hour 37°C 1X Buffer 

Tango: 33 mM Tris-acetate (pH 7.9 at 37°C), 10 mM Mg-acetate, 66 mM K-acetate, and 0.1 

mg/mL BSA, 50µl reaction volume. Reactions are stopped by thermal inactivation at 65°C for 

20 minutes. Digested DNA is purified with PureLink® PCR purification Kit (Invitrogen, #K3100-

01) and then labelled according to the following protocol: 
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Reagents Amount 

5X buffer 4µl 

DNA 3’ ends 1-pmol 

Biotynilated 

nucleotides 

biodATP, biodTTP  or 

biodCTP, biodGTP 

 

130pmol or 

60pmol 

TdT (fermentas, 

#EP0161) 

1.5µl 

ddH2O to 20µl 

 

37°C for 15 minutes and 70°C for 10 minutes for thermal inactivation. Labelled DNA is 

further purified prior to use. 

 

 

Exo- Klenow fragment labelling 

 

DNA is first double-digested with two restriction enzymes, PauI (Fermentas, #ER1092) 

and SalI (Fermentas, #ER0642) in buffer O (50 mM Tris-HCl, pH 7.5, 10 mM MgCl2, 100 mM 

NaCl and 0.1 mg/ml BSA), 50µl reaction volume, and incubating for 1 hour 37°C. Reaction is 

stopped by heat inactivation at 80°C for 20 minutes. 

After purification of digestion, DNA is labelled through incorporation of biotinylated 

nucleotides by Klenow exo- (Fermentas, #EP0421) with the following protocol: 
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Reagents Amount 

PauI/SalI digested 

DNA 

6µg 

dGTP (Invitrogen, 

#10218014) 1:10 

0.5µl 

dTTP (Invitrogen, 

#10219012) 1:10 

0.5µl 

Biotin-14-dCTP 

(Invitrogen, #19524-016) 

8µl 

Biotin-14-dATP 

(Invitrogen, #19518-018) 

8µl 

Klenow DNA 

polymerase exo- 

0.5µl 

10x reaction buffer 
for Klenow exo- 

 

5 µl 

ddH2O To 50µl 

 

37°C for 30 minutes and 70°C for 15 minutes for inactivation. Labelled DNA is purified 

prior to use. 

 

 

 

 

 

 

Preparation of plasmid containing three natural operators 

 

DNA sequence containing three native operators is amplified from E. Coli through 

PCR with following primers:  
 

 

O1O2O3AatII_F       aga gag gac gtc tgg gat acg acg ata ccg aag 
O1O2O3AvrII_R       aga gag cct agg aat cat cat taa agc gag tgg c 
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                           And following thermal cycle: 

Temperature (°C) Duration  Number of cycles 

94 6’ 1 

94 

50 

72 

45’’ 

30’’ 

1’30’’ 

35 

72 5’ 1 

 

 

 

 

 

Amplified sequence and plasmid DNA are both double digested with AatII (NEB, 

#R0117S) and AvrII (NEB, #R0174S) in buffer 4 (20 mM Tris-acetate pH 7.9, 50 mM K-acetate, 

10 mM Mg-acetate, 1mM Dithithreitol), for 1 hour at 37°C. Reaction is stopped by thermal 

inactivation at 80°C for 20 minutes. 

Amplified sequence is then treated with antarctic phosphatase (NEB, #M0289S) in 

1X Antarctic Phosphatase Reaction Buffer (50 mM Bis-Tris-Propane-HCl, 1 mM MgCl2, 

reagents Volume (µl) 

Buffer 10X 5 

dNTPs 

(Invitrogen, #4303441) 

1 

Primer Forward 

(100µM) 

0.25 

Primer Reverse 

(100µM) 

0.25 

Taq polymerase 

(Invitrogen, #11708013) 

0.4 

H20 38.6 
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0.1 mM ZnCl2, pH 6.0) for 30 minutes, 37°C. Reaction is stopped by thermal inactivation at 

65°C for 5 minutes. 

Ligation of plasmid DNA with amplified sequence is performed by Quick Ligation kit 

(NEB,#M2200S) according to the following protocol: 

 

 

 

 

 

 

 

 

 

 

 

The products of ligation are then amplified used to transform cell.50µl competent 

DH5α cells are thawed on ice and then 1µl of plasmid DNA is added and let incubate for 30 

minutes. Cells are heat shocked 45 seconds in 42°C water bath and put in ice again for 2 

minutes. 400µl LB is added to cells and incubated at 37°C for 1 hour with shaking. 10 and 

100µl of transformed cells are plated on two Amp50 plates and incubated at 37°C overnight. 

50µg/ml Amp and grown overnight at 37°C with shaking. The day after minicolture is 

centrifuged in 1.5ml tubes at 12000g to collect pellet. Plasmid is purified from pellets by 

mini-prep purification kit (Invitrogen, PureLink™ Quick miniprep kit, #K2100-10). All samples 

are then analyzed by sequencing with the following prmer: 

                                              5’-AACGGCATTAAGAAAGTCCTCAAGAA-3’ 

 

              

 

 

 

 

 

Reagent  Amount  

vector 50ng 

insert 3fold molar excess 

respect to vector 

Quick 

ligation buffer 

10µl 

Quick T4 

DNA ligase 

1µl 

ddH2O To 20µl 
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                 BUFFERS 

 

Lac repressor Binding Buffer (LBB) (50ml): 121.1mg Trizma base (10mM), 1.491g KCl 

(200mM), 10µl of 0.5M EDTA (0.1mM final concentration), pH 7.4 

 

TBE 0.5 x (1 liter): 5.4g Tris, 2.75g Boric acid, 2ml 0.5M EDTA pH 8.0, and distilled 

water up to 1 liter, pH 8.3. 

 

Imaging Buffer (1ml): 878µl buffer (LBB or TBE), 12 µl of 250mg/ml glucose, 20 µl 1M 

DTT, 40 µl 5mg/ml Glucose Oxydase, 50 µl 1mg/ml Catalase. 

 

Luria Broth (LB) (1L): 10g Trypton, 5g yeast exract, 10g NaCl, distilled water up to 1 

liter. pH 7.4 

 

Breaking Buffer: 0.2M Tris-HCl, pH 7.6, 0.2M KCl, 0.01 M Mg acetate, 5% (w/v) 

glucose, 0.1mM DTT (Glucose and DTT have to be added fresh). 

 

Potassium phosphate (KP) 0.5 M, stock: two solutions of potassium phosphate 

monobasic and dibasic are prepared separately, both at a concentration of 0.5M. About 2/3 

of dibasic and 1/3 of monobasic are mixed until pH reach 7.5 
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