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Abstract

The Cognitive Radio paradigm is aimed to optimize the utilization of li-
censed spectrum bands thanks to coexistence within the same network of
licensed (primary) and cognitive (secondary) users. In this context, one of
the most important key aspects is represented by an efficient resource alloca-
tion between secondary and primary users. Modeling it as an optimization
problem, this paper provides a modified version of the well-known Iter-
ated Water-Filling algorithm and a novel approach based on a game theory
framework to solve this issue in a distributed and fair way. In particular, the
proposed game is formulated as an S-Modular Game, since it provides useful
tools for the definition of multi objective distributed algorithms in the context
of radio communications. This paper provides also a performance comparison
among the proposed solutions and the Simulated Annealing algorithm, that
represents one of the most frequently used technique in this context.
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1 Introduction

The radio spectrum efficiency represents nowadays a significant problem, due
to the fast development of a large number of radio technologies in the last
decade. Recent spectrum analysis points out that a large number of assigned
spectrum bands are underutilized in either time domain or spatial domain [1].
In this context, Cognitive Radio (CR) [2] offers a smart paradigm aimed
to optimize the utilization of the radio resource, allowing cognitive users to
share the spectrum bands with licensed users. One of the most relevant open
issues is represented by the identification of efficient methods to distribute
and manage radio resources. In particular, taking into account the power
consumption problem, the definition of energy efficient power allocation
strategies could represent a key feature in designing cognitive networks.

In order to increase frequency utilization efficiency, in a cognitive radio
network a dynamic spectrum access (DSA) [3] has been used. In particu-
lar, the term DSA covers several approaches to spectrum access that can
be distinguished in three different models, on the basis of the categorization
made by DYSPAN group in [4]: dynamic exclusive use model, open sharing
model, hierarchical access model. In our approach we adopt a hierarchical
spectrum access structure, identifying two kind of users: primary and sec-
ondary users. The licensed spectrum is assigned to the primary users (owners
of the spectrum rights), while secondary (unlicensed) users can access spec-
trum following the underlay approach, transmitting below the noise floor of
primary users. Thus, a transmitting secondary user represent an interference
source both for primary and the other secondary users.

On the basis of the underlay approach, we refer to a cognitive radio
network wherein secondary users are cognitive users, since they are intel-
ligent and interact with selfish network users. Contrary to secondary users,
primary users may be unaware of the presence of secondary users, even
though they coexist within the same network and sharing the same frequency
bands. Due to the necessity of frequent spectrum sensing and transmissions,
secondary users may have strictly energy constraints, especially if they are
battery powered in order to satisfy mobility requirements. A feasible strategy
to reduce energy consumption is represented by the implementation of energy
efficient techniques of power allocation.

In this scenario, a game theoretic framework allows us to study, model
and analyze cognitive radio networks in a distributed way. Such an attractive
feature allows us to achieve the flexibility and the efficient adaptation to the
operative environment that were previously mentioned.
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The paper is organized as follows: in Section 2 an overview on the
application of game-theoretic approaches to spectrum sharing scenarios is
illustrated, while in Section 3 the proposed system model and applicative
scenario are presented. The game description and the Nash Equilibrium ex-
istence and uniqueness is discussed in Section 5, while in Section 4 the
Water-Filling algorithm and a energy efficient modified version is reported.
In Section 6 the results from computer simulation are commented. Finally
some conclusions are expressed in Section 7.

2 Game Theory for Cognitive Radio

Due to the players’ behavior, non-cooperative game theory is closely con-
nected to mini/max optimization and typically results in the study of various
equilibria, most notably the Nash equilibrium [5]. Developed cognitive radio
strategy has been formulated according the mathematical discipline of Game
Theory, with particular reference to S-Modular Games [6].

Non-cooperative games have been proposed for spectrum sharing in [7],
which reports a detailed survey on game theoretic approaches for dynamic
spectrum sharing in cognitive radio networks, by in-depth theoretic analysis
and an overview of the most recent practical implementations. In [8], the au-
thors investigate the issue about the spectrum sharing between a decentralized
cognitive network and a primary system, comparing a suboptimal distributed
non-cooperative game with the optimal solution power control algorithm
and the method proposed in [9]. Apart from in the above-mentioned pa-
pers, the power control problem in spectrum sharing model is also discussed
in [10,11].

In [12, 13] the authors proposed different game-theoretic approaches to
maximize energy efficiency of the users within wireless networks, making the
utility functions being inversely proportional to the transmit power. Extending
the above described results, this paper provides a distributed game-theoretic
approach to obtain an energy efficient power allocation method that maximize
the Signal to Interference-plus-Noise Ratio (SINR) level received by each
user, taking into account throughput fairness among secondary users.

3 System Model

The proposed power allocation techniques refer to a cognitive radio context
where a primary system (owner of the spectrum rights) coexisting with one
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Figure 1 Example of coexistence between primary and secondary users.

or more secondary systems and sharing the same frequency band, as shown
in Figure 1. Note that, considering a primary system in the network, the pro-
posed scheme includes the possibility of existence of more than one primary
user. Each secondary user is characterized by a dedicated sender and receiver,
since each communicating couple consists of a transmitter site 7X; and a
receiver site RX;. Within each secondary transmission couple, we denote
a transmitter and a receiver in order to identify the transmission course,
however both the transmitter and receiver are assumed having a complete
radio-frequency front-end and, therefore, both transmitter and receiver are
able to transmit and receive data.

The system model uses a discrete-time model, based on iterations (which
we ahead refer as ¢). Indeed, for every single iteration, all users act only
once and until the next iteration they cannot do anything else. Each iteration
represents a status update of the system; the real-time span modeled by each
iteration will depend on the definition of the MAC layer.

By definition, primary users should not undergo a degradation of the re-
quired Quality of Service (QoS) due to the sharing of the same frequency
band with secondary users. For this reason, a constraint on maximum trans-
mission power level for secondary users must exist. This limitation can be
obtained introducing the “Interference Cap” [14]; this parameter represents
the total interference that the primary system willing to tolerate in order
to not undergo a degradation of the required QoS. In case of cooperation
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existence between primary and secondary users, the Interference Cap can be
send directly from primary users to secondary users on a shared channel.
Otherwise, when primary users may be unaware of the presence of secondary
users, in the proposed system there cannot be a cooperation among primary
and secondary users; thus the Interference Cap will be fixed a priori, i.e. equal
to noise floor of primary user. The presence of a chosen interference cap
represents an upper bound of the total transmit power of the secondary users
on the shared channel.

Each secondary user will choose the more suitable transmission power
in order to achieve the best transmission quality, ensuring low interference
to other secondary users. For simplicity of exposition, we will consider a
fixed primary interference cap and therefore a fixed maximum transmission
power for the secondary users; this assumption can be made without altering
the validity of the system, since variations of this value are relatively slow
compared with the time of convergence of the algorithm. In case of wireless
networks with high primary mobility and/or more strict delay needs, a delay
efficient approach should be followed, see [15].

4 Energy Efficient Iterative Water-Filling Algorithm

Among power allocation methods, actually Water-Filling [16] is one of the
most frequently used algorithm. This algorithm bases on the idea that a vase
can be filled by a quantity of water equal to the empty volume of the vase. It
is well-known in the literature that a channel can be filled by an amount of
power depending on the existing noise level. In order to maximize data-rate,
power allocation in a multiuser scenario can follow the water filling principle.
Due to the frequency band sharing, the increase of number of secondary users
in the network equals to an increase of interference. Indeed for increasing
number of users, secondary users experience higher levels of interference.

The Iterative Water Filling (IWF) algorithm is obtained basing on the
above previous considerations; iteratively, each user calculates its transmis-
sion power level P/ following the water-filling principle until an equilibrium
is reached. The equilibrium state is reached when the algorithm returns the
same power allocation set for n consecutive times. The transmission power
level is calculated as follows:

Pg;

() ’
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PO =max {0, [ Pnax” —

i=1,...,N (1
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where Pi(') is the power level assigned at the user i in the iteration #, Py
is maximum power that can be transmitted in the channel (the water level)
and g;; is the channel gain between transmitter 7 X; and receiver RX;. The
factors yi(t) is the SINR at the receiver side at step ¢ and it is calculated as
follows:
_p®
0 _ 8ii L'
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where o2 is the power level of noise. If

Vi 2
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the interference plus noise value is higher than maximum power that can be
transmitted in the channel, then Pl.(t) = 0 is assigned to the user i.

Running IWF algorithm for low interference environments and/or limited
number of users, we obtain good performance in terms of SINR received by
secondary users. However for increasing values of interference, the algorithm
get worst; indeed, users experiencing the best channel conditions will trans-
mit at high power levels, while users experiencing bad channel conditions
will receive high interference values and then they will be inactivated (i.e.
when a receiver is close to another transmitter). For this reason, IWF can be
considered to be unfair.

As itis, IWF is an energy inefficient algorithm, since it bases on the max-
imization of the total transmission power of each user in order to obtain the
best SINR level. However, for a fixed target data-rate, we can identify a min-
imum target value for the SINR. In Figure 2 the SINR trends are reported for
increasing values of the maximum transmission power for a different number
of users. Taking into account such SINR trends, we propose the following
energy efficient modified version of the algorithm, called Energy Efficient
Iterative Water-Filling (EEIWF). It allows us to maintain the fixed data-rate,
using the lowest total transmission power level. Each user updates Pp,x every
iteration as follows:

> Pmax

(1—1)
Pmr/:x . y® > D

PU=D 0 < =D

PO —

max (3)
where k > 1 represents the reduction factor and it controls the convergence
speed of the algorithm. Note that for k = 2 the algorithm becomes the
bisection method.
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Figure 2 SINR trends for increasing values of maximum transmission power for different
number of users.

The criterion expressed in (3) is enforced by observing that, running IWF,
the SINR trend for increasing values of Py, is in the best case a monotonous
increasing function and in the worst case a function with a maximum. The
case of a monotonous decreasing function is not admitted by IWF. A con-
tinuous decreasing SINR when P, increases means that an user experiments
bad channel conditions: in this case user is inactivated.

EEIWF achieves the same SINR levels of IWF algorithm, allocating to
secondary users an average transmission power level that is half of the one
allocated by IWF; in Figure 3 are reported the average transmission power
levels per user allocated by the two algorithm.

5 The Energy Efficient Fair Game

5.1 Game description

In this paper we propose a non-cooperative game with N secondary users,
namely the players of the game, operating on one radio resource. This game
can be easily extended considering a larger number of radio resources M (i.e.
subcarriers of the same multi-carrier channel or different channels) following
the approach proposed in [17], where subcarrier allocation is based on the
normalized channel gain. Formally, the proposed non-cooperative game can
be modeled as follows:
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Figure 3 Average transmission power per user (Montecarlo simulation)

e Players: N={1,2,3,..., N} where i € N is the i-th secondary user.

e Strategies: S = { Puin, - - - » Pmax}-

e Utility Function: u; (p) where i € Nis the i-th secondary userand p € S
is the complete set of strategies.

We take into account the energy efficiency problem at the physical layer,
considering an utility function expressed in bit/Joule as performance measure
of the model [12, 18]. During the game each player tries to maximize the
following utility function:

Rif(yi)

ui (p(0), p(t = 1)) = WW —Qi(p@®), pt = D)pi(r) 4
where p is the complete set of strategies of all secondary users, W is the
ratio between the number of information bits per packet and the number of
bits per packet, R; is the transmission rate of the ith user in bits/s, f(3;) is the
efficiency function (depending on the considered modulation), that represents
a stochastic modeling of the number of bits that are successfully received
for each unit of energy drained from the battery for the transmission, y; is
the instantaneous SINR. Since the SINR depends on the path gains, each
secondary user need to know them. In order to solve this problem that could
have a strong impact on the signaling process, we assume that each receiver
periodically send out a beacon, thanks to which transmitters can measure path
gains. This procedure is feasible since both the transmitter and receiver are
able to transmit and receive data, as presented before in Section 3. The period
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Figure 4 Trend of utility function (on z-axis) depending on transmission power levels (on x
and y axes) for a two-player game; for each user in every single iteration the utility function
have a maximum.

of beacon transmission should be chosen on the base of the coherence time
of the channel.

In order to make the Nash Equilibrium of the game as efficient as possible
(moving it closer to the Pareto Optimum), we consider the adaptive pricing
function €2;(p; —;) that generates pricing values basing on the interference
generated by network users. Thus, the greater is the interference generated by
a user transmitting at high power level, the greater will the value of pricing it
will be pay, due to the fact that 2(p) is strictly increasing with p.

The pricing function is written as follows [18]:

N
pi(t — I)Zizl ki 8k.i
Qi(pt—1) =B—dexp| —u—:7: : (5
I} (p-i(t = 1), P)
where p is the complete set of strategies of all secondary users, P is the
power transmitted by the primary user and g;; is the channel gain between
transmitter 7' X; and receiver RX;. The term I/ (p_;(t — 1), P) represents the
total interference received by the ith user and it can be wrote as

I(poi(t =1, P) =" geipelt — 1) + 0% + g2 P 6)
ki

Moreover, the pricing function bases on:
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SINR

Figure 5 SINR convergence in a 15-user simulation with § = 10%.

e > 1 is the maximum pricing value,
e § > 1 is the price weight of the generated interference,
e 1 > 0 1is the sensitivity of the users to interference.

These three parameters represent an useful tool to adapt the pricing function
to the considered wireless network requirements, i.e. decreasing the value of
d the algorithm converges faster; we can force all secondary users to transmit
at lower power levels increasing their sensitivity to the interference [18].

Thanks to the definition of the utility function as given in (4) and taking
into account the pricing function given in (5), for each user in every single
iteration the utility function have a maximum, depending on the transmission
power levels of all the players in the game, as shown in Figure 4 for a two-
player simulated game.

Simulation results show that the proposed algorithm has a fast conver-
gence, also for large numbers of secondary users in the networks, as shown
in Figure 5, where the SINR levels measured by each of the 15 users of the
simulation are reported.

5.2 Existence and Uniqueness of the Nash Equilibrium

Under certain conditions, a Nash Equilibrium [19] offers a stable outcome
and it can be guaranteed to exist, but does not necessarily mean the best
payoff for all the players involved, especially in presence of pricing tech-
niques. In the literature there are lots of mathematical methods to demonstrate
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the existence and uniqueness of Nash Equilibrium, like graphical [18, 20],
quasi-concavity curve [21] and super-modularity [12].

Supermodular Games represent an interesting class of games since there
are several compelling reasons like existence of pure strategy Nash Equilib-
rium, dominance resolvability, identical bounds on joint strategy space etc.
that make them a strong candidate for resource allocation modeling. Super-
modular games are based on the “supermodularity” concept, which is used in
the social sciences to analyze how one agent’s decision affects the incentives
of others.

S-Games are normal form games I' = (N, S, { f;}) where N is the set of
users, S the strategy space, f; the set of utility functions and Vi € N these
conditions are satisfied:

1. the strategy space S; of user i is a complete lattice.
2. f; is supermodular in s;.
3. f; presents increasing differences in s.

The proposed utility function in (4) can be easily demonstrated to be
supermodular, since:

1. the strategy space P is a complete lattice;
2.
0u;
u (P) >0 (7)
dpidp;
forall p € Pandi # j.
3. the utility function has the increasing difference property.

For details of the proofs we refer to [12], under the proposed conditions.
Uniqueness of the Nash Equilibrium can be also demonstrated following the
same approach, since we use a Best Response rule. Even if our proposed pri-
cing function is more complicated, in comparison with the above-cited work,
the demonstration procedure does not change. Indeed, the pricing function
Q (p(t — 1)) can be considered linear in p(t — 1), since the coefficient of
p(t — 1) at time ¢ is a constant.

6 Simulation Results and Performance Comparison

In order to evaluate the performance of a cognitive network based on the
our proposed methods, we run Montecarlo simulations; in this paragraph we
show the obtained results. The operating context is a terrain square area of
1 km edge, with a suburban path-loss profile. Primary transmitter and re-
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ceiver positions are fixed; secondary transmitters are independently located
in the area, while the secondary receivers positions are placed randomly in
a 200 m diameter circle around the respective transmitters. Each secondary

user transmits isotropically with p; < Py., where Ppn,x = 20 dBm on
the base of a fixed interference cap. Moreover, we consider a noise power
02> = —100 dBm, frequency f = 1GHz, W = 4/5, a common rate

R; = 10 kbit/s, 8 = 10*, § = 10* and u = 1072; the values of the pricing
parameters are chosen in order to obtain a fast convergence of the algorithm
(depending on 8 — §) and to set a low sensitivity of the users toward inter-
ference (depending on w). In order to obtain a qualitative evaluation of the
proposed power allocation methods, we decide to compare their performance
with an optimal centralized heuristic power allocation system, like Simulated
Annealing (SA) [22]. The mean value of the SINR received by secondary
users has been chosen as the performance index for the three optimization
methods. We run Montecarlo simulations for increasing number of secondary
users, while all the other parameters of the system remain the same of the
previous mentioned operating context.

Simulation results illustrated in Figure 6 show clearly that the SA and the
proposed game have similar performance: the curves have the same trend, but
the game’s one is on average 1.5 dB below. On the other hand, Water-Filling
obtains lower mean SINR levels and performance worsens for increasing
number of users in the network, as highlighted previously.

In addition to the SINR, the energy efficiency of the three considered
methods is an another important key feature that we need to investigate. If
the SINR performance are quite the same for the proposed game and the
SA, on the contrary we can observe a great difference in terms of power
allocations. Indeed, Figure 7 shows an example of mean transmission power
levels allocated by the three investigated methods at the end of a simulation
with 15 users; in this figure we can observe that SA allocation uses more
power than game allocation to obtain similar SINR performance, as shown in
Figure 6. For what concern the EEIWF, while some users are switched off,
the others transmit at highest levels, compared with the other two proposed
allocations. In Figure 7 the power allocation of the proposed game is shown
in purple, in yellow is reported the additional power allocated by SA (with
respect to game) and in blue the excess additional power allocated by EEIWF
(with respect to SA).

Looking at the results from a general network view, we can easily observe
that the power allocation obtained by the proposed game is the most fair,
since all the users are able to transmit, even if they are experiencing very bad
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Figure 6 Trends of SINR mean values for increasing number of secondary users in the
network.

Users Power Allocation

| Game
[ SA
m EEIWF

Figure 7 Example of mean values of power allocation for a 15 users network obtained thanks
to Monte-Carlo method.
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Figure 8 Trend of Q for increasing number of users.

channel condition. In order to obtain a qualitative estimation that takes into
account at the same time SINR performance and energy efficiency of the three
considered methods, in Figure 8 is reported the trend Q, that represents the
mean value of the ratio between the SINR level received and allocated power
of the transmitter, calculated for each user and obtained thanks to Monte-
Carlo method.

7 Concluding Remarks

In this paper we provide two different power allocation methods, a modified
version of the Iterated Water-Filling, called EEIWF, and a game theoretic
framework based on S-Modular game. Both these methods take into account
energy efficiency in a cognitive network, wherein primary and secondary
users coexist. Transmission power of secondary users is limited by the pres-
ence of an interference cap, defined as the total interference that primary
users willing to tolerate, without loosing their required QoS. Moreover, in
the proposed game secondary users are discouraged to transmit at high power
levels, since they are charged on the base of the interference they generate,
thanks to the introduction of a pricing function inside of the utility function.
Simulation results show a fast convergence of the proposed game also for
a large number of users in the cognitive network. Moreover, the EEIWF is
demonstrated to achieve the same SINR levels of IWF algorithm, allocating
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to secondary users an average transmission power level that is half of the one
allocated by IWF.

A performance comparison among the proposed game, an optimal cent-
ralized resource allocation method (Simulated Annealing) and the EEIWF
is also included. Simulation results show clearly that the proposed game
converges to the same SINR values obtained from the heuristic optimization
method and, in general, game theory obtains better performance than EEIWF.
Moreover, the proposed game results to be the most energy efficient, also for
a large number of considered users. Further investigations will be made in
order to quantify and analyze the signaling process among secondary users.
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