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ABBREVIATIONS 

 

5-HETE: 5-Hydroxyeicosatetraenoic acid 

5-LOX: 5-llipoxygenase 

AA: arachidonic acid  

AAAD: aromatic L-amino acid decarboxylase 

ACTH: adrenocorticotropic hormone 

Akt: serin-threonin protein kinase  

AMF: autocrine motility factor 

AP1: activating protein 1 

APAF1: apoptotic protease activating factor 1 

AR: adrenergic receptors 

ARE: antioxidant responsive element 

ATP: adenosine triphosphate  

AVP: arginin-vasopressin protein 

BAD:  Bcl-2-associated death promoter 

Bcl2: B cells lymphoma 2 

CA: catecholamines 

cAMP: cyclic AMP 

COX-2: cyclooxygenase type 2 

CRH: corticotropic hormone 

CSF: colony stimulating factor 

DA: dopamine 

DAG: diacylglycerol  

DBH: dopamine hydroxylase 

DOPA: L-3,4-dihydroxyphenylalanin  

E: epinephrine 

ECM: extracellular matrix 

EGF: endotelial growth factor  
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EMT: epithelial-mesenchimal transition  

EPAC: exchange protein directly activated by cAMP 

EPO: erythropoietin 

ERK: extracellular-signal-regulated kinases 

FADH: flavin adenine dinucleotide 

FAK: focal adhesion protein 

FGF: fibroblasts growth factor 

FGFR: fibroblasts growth factor receptor 

FH: fumarase 

FIH: factor inhibiting HIF-1 

FSP1: fibroblast specific protein-1 

Gab 1: GRB2-associated-binding protein 1 

G-CSF: granulocyte colony stimulating factor  

GLUT1: glucose transporter 1 

GLUT3: glucose transporter 3 

GM-CSF: granulocyte-macrophage colony stimulating factor  

Grb2: growth factor receptor-bound protein 2 

GREs: glucocorticoids responsive elements 

GSH: gluthation 

GTP: guanosine triphosphate 

HDF: human dermal fibroblasts 

HGF: hepatocyte growth factor 

HIF: hypoxia inducible factor 

HPA axis: hypotalamic-pituitary-adrenal axis 

HREs: hypoxia responsive elements 

Hsp 90: heat shock protein 90 

IFN-γ: interferon-γ 

IFP: pression of interstitial fluid 

IGF: insulin-like growth factor 

IL-1b, 4, 6, 8, 10, 12, 13, 23: interleukin 1b, 4, 6, 8, 10, 12, 13, 23. 
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IPAS: inhibitory PAS domain protein 

JNK: N-terminal jun kinase 

LDH-A: lactate dehydrogenase A 

LPS: lipopolisaccharyde 

LT: leucotriens 

MAPK: mitogens-activated protein kinase 

MCT-1, MCT-4: monocarboxylate transporter type 1 and 4 

MF: myofibroblasts 

MMPs: matrix metalloproteinase 

NAC: N- acetyl cystein 

NADH: nicotinamide adenin dinucleotide 

NADPH: nicotinamide adenin dinucleotide phosphate 

NE: norepinephrine 

NF-kB: nuclear factor kB 

NO: nitric oxide 

Oct4: octamer-binding transcription factor 4 

ODDD: oxygen-dependent degradation domain 

PAF: platelet-activating factor 

PDGF: platelet-derived growth factor 

PDGFR: platelet-derived growth factor receptor 

PDK: pyruvate dehydrogenase kinase 

PGD2: prostaglandin D2 

PGH2: prostaglandin H2 

PHD: prolil-hydroxylase 

PI3K: phosphoinositide 3-kinase 

PKA: protein kinase A 

PKB/AKT: protein kinase B or AKT 

PKC: protein kinase C 

PKM2: pyruvate kinase isoform M2 

PLC: phospholipase C  
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PNMT: phenylethanolamine n-methyltransferase 

PTP: protein tyrosine phosphatase 

pVHL: von Hippel Lindau protein 

ROI: reactive oxygen intermediates 

ROS: reactive oxygen species 

RTK: tyrosine-kinase receptor 

SDF-1: stromal derived factor 1 

SDH: succinate dehydrogenase 

SIRT: sirtuin 

SOD: superoxyde dismutase 

STAT: signal transducer and activator of transcription 

TGF-β: transforming growth factor-β 

TH: tyrosine hydroxylase 

TNF-α: tumor necrosis factor α 

TPA: 12-O-tetradecanoylphorbol-13-acetate  

TRX: thyoredoxin 

U1, U2: uptake type 1 and 2  

uPA: urinary plasminogen activator 

uPAR: urinary plasminogen activator receptor  

VEGF: vascular endothelial growth factor 

VEGFR: vascular endothelial growth factor receptor 

α-SMA: α-smooth muscle actin 
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INTRODUCTION 

 

THE TUMOUR MICROENVIRONMENT 

 

Tissues contain several cell types that work synergically in order to regulate normal 

physiology. These cells have positional identity so that their location and number are 

strictly defined. Cancer cells have lost these constrictions, but they keep creating a 

complex and continuative “cross-talk” with surrounding, non-malignant cells and/or 

with the extracellular architecture made of direct cell-to-cell contacts and 

paracrine/exocrine signals. These interactions are not static, but they evolve along with 

tumour progression. The tumour microenvironment can exert an inibhitory effect on 

malignant cells aggressiveness, but a state of constant alteration of microenvironment 

itself can become in turn strongly tumour-growth promoting. In fact, during the early 

stages of cancer development, the protective constraints of the microenvironment are 

overridden by conditions such as chronic inflammation and the local tissue 

microenvironment shifts to a growth-promoting state. In this light fibroblasts represent 

the key mediators in promoting tumour progression (Joyce e Pollard, 2009).  

 

Fibroblasts  

Fibroblasts are elongated cells, characterized by extensive cellular processes, with 

fusiform and tapered shape (Tarin and Croft 1969). They can be easily isolated from 

tissues and cultured in vitro. Their fusiform morphology makes them identifiable and, 

despite the paucity of specific markers, some molecules can be related to a fibroblastic 

phenotype, although none of these is exclusive of fibroblasts and/or expressed in all 

fibroblasts. Among these markers, the fibroblasts specific protein-1 (FSP-1) seems to 

provide the best specificity for the identifications of fibroblasts in vivo, but other 

markers can be considered site-specific, like desmin, a specific marker for skin 

fibroblasts. 

A recent study has demonstrated high fibroblasts heterogeneity in mammals as they 

show completely different gene expression pattern in anatomically different tissues. 

This difference is evident from the specific secretion of extracellular matrix (ECM) 

factors, growth or differentiation factors. For example, fetal skin fibroblasts express 
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genes encoding for collagen type I and V, while those from lung tissues express 

different collagen patterns (Chang H. Y. et al. 2002).  

Fibroblasts functions include ECM deposition, regulation of epithelial differentiation, 

wound healing and inflammatory mechanisms (Tomasek et al. 2002; Parsonage et al. 

2005). According to that, fibroblasts produce several fibrillar ECM components like 

fibronectin and collagen type I, III and V (Tarin and Croft 1969; Tomasek et al. 2002). 

In particular, fibroblasts actively contribute to basal membrane formation through 

laminin and collagen type IV deposition. In addition, fibroblasts secrete proteases of the 

metalloproteinase (MMPs) family, which have a crucial role in regulating ECM 

turnover, and tissues homeostasis through growth factors production and regulation of 

epithelial cell-to-cell cross-talk (Simian et al. 2001; Chang et al. 2002).  

Healthy  fibroblasts are located within the ECM of connective tissue and constitutively 

express vimentin and FSP-1. As a result of specific environmental stimuli, fibroblasts 

may undergo an activated state, named “myofibroblastic”, which is characterized by the 

de novo expression of α-SMA protein, the actin isoform typical of smooth muscle cells, 

and the ability to synthetize large amounts of collagen and components of the ECM. 

Unlike normal fibroblasts which contains a well-developed rough endoplasmic 

reticulum, myofibroblasts are characterized by a large eucromatinic nucleus with two 

nucleoli, a prominent Golgi apparatus, and express microfilaments with dense bodies 

similar to those found in smooth muscle cells. In particular, myofibroblasts play a very 

important role in regulating tumour progression through three main mechanisms: 

 Expression of ECM specific components;  

 Activation of remodelling mechanisms in the granulose tissue and tension 

transmission to cancer cells through a Rho/Rho-kinase-dependent pathway; 

 Cytokines secretion. 

During tissutal lesion, different stimuli induce the activation of fibroblasts like growth 

factors such as the transforming-growth factor β (TGF-β), epidermal growth factor 

(EGF), platelet-derived growth factor (PDGF) and b-fibroblasts-growth factor (bFGF), 

produced by both the same damaged epithelial cells and the infiltrated mononuclear 

cells, such as monocytes and macrophages (Kalluri and Zeisberg, 2006; Orimo and 

Weinberg, 2006). This activation can also occur through direct cell-cell interaction by 

binding with leukocytes through adhesion molecules like intercellular adhesion 

molecule-1 (ICAM1) and the vascular cell adhesion molecule-1 (VCAM1), or through 

reactive oxygen species (ROS) and complement C1 factor (Clayton et al. 1998) (Fig. 1). 
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Fig. 1 Main characteristics of activated and not-activated fibroblasts. 

 

Myofibroblasts are able to secrete higher levels of proteases that degrade the ECM, such 

as MMP-2, MMP-3, MMP-9, thereby increasing the turnover and altering the 

composition of the ECM. In addition, the activated form of fibroblasts produces growth 

factors like hepatocyte growth factor (HGF), insulin-like growth factor (IGF), nerve 

growth factor (NGF), WNT1, epidermal growth factor (EGF), and FGF-2, also 

promoting adjacent epithelial cells proliferation (Bhowmick et al. 2004).  

Beside their expression in sclerotic tissue and sites of wound repair, activated 

fibroblasts act as modulators of the immune response through the secretion of cytokines, 

such as interleukin-1, and chemokines. In the case of wound repair, myofibroblasts 

return in the idle state once the stimulus is attenuated, while in fibrosis and cancer 

fibroblasts keep an activated state until the death of the surrounding tissue. In fact, 

fibroblasts isolated from a fibrotic tissue maintain their activated phenotype in vitro, as 

demonstrated by their continuous expression of ECM constituents, growth factors and 

cytokines. These observations show a self-maintaining autocrine and paracrine 

signaling that stimulates other fibroblasts. However, mechanisms underlying this 

continuous activation are not yet clearly understood (Strieter et al. 1989; Rollins et al. 

1989). 

In the early stages tumour is considered as a carcinoma in situ where tumour cells form 

a neoplastic lesion which spreads in the microenvironment of a target tissue, but 

remaining separate from the surrounding tissue as it turns out to be contained within the 

borders of basement membrane. Carcinoma in situ is associated with a stroma similar to 
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that observed during wound repair, and is therefore defined as "activated or reactive 

stroma” (Hanahan and Weinberg, 2000; Dvorak et al. 1984; Ronnov-Jessen et al., 

1996).  

There are some key differences between normal and activated stroma: the first one 

contains a minimum number of fibroblasts associated with a physiological ECM 

(Ronnov-Jessen et al., 1996), while the second is associated with an increase of 

fibroblasts, capillaries and deposition of type I collagen and fibrin. In particular, 

activated vascular endothelial growth factor (VEGF), produced mainly by fibroblasts 

and inflammatory cells, represents a key molecule for the development of the stroma 

(Brown et al. , 1999). VEGF induces microvascular permeability, thus allowing the 

extravasation of plasma proteins such as fibrin, which attracts fibroblasts, endothelial 

cells and inflammatory cells (Senger et al. 1983; Dvorak et al. 1991; Brown et al. 1999). 

These cells produce ECM that is rich in fibronectin and type I collagen, both implicated 

in the development of tumour angiogenesis (Leung et al. 1989; Brown et al . 1999; Feng 

et al. 2000).  

During tumour progression from carcinoma in situ to invasive carcinoma tumour cells 

invade the reactive stroma (Dvorak 1986; Ronnov-Jessen et al. 1996). Basement 

membrane and stroma are degraded, and myofibroblast come into direct contact with 

the tumour cells. Invasive cancer is usually associated with the expansion of tumour 

stroma and to an increase of the deposition of ECM, known as desmoplasia (Shekhar et 

al. 2003; Ronnov-Jessen et al. 1996; van Kempen et al. 2003; Schedin and Elias 2004). 

This phenomenon appears to be very similar to the changes that take place during 

fibrosis, but while fibrosis is associated with a decrease of vascularization (Brown et al. 

1989), solid tumours are more vascularized than healthy tissues (Folkman et al. 1989). 

The desmoplastic stroma contains a larger amount of fibrillar collagen, fibronectin, 

proteoglycans and tenascin C (Ronnov-Jessen et al. 1996). In particular, tenascin C is 

absent in mature mammary glands, but is highly expressed in breast tumours (Chiquet - 

Ehrismann et al. 1986; Mackie et al. 1987) and correlated with increased invasiveness 

and a worse prognosis (Ishihara et al. 1995; Brunner et al. 2004; Mackie et al. 1987; De 

Wever and Mareel 2002). 

The activated fibroblasts within the tumour stroma are called Cancer Associated 

fibroblasts (CAFs) (Barsky et al. 1984; De Wever and Mareel, 2002; Mueller and 

Fusenig, 2004) and appear as large mesenchymal cells with tapered shape and with 

similar characteristics to smooth muscle cells and fibroblasts. They were first identified 
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by immunocytochemistry using a combination of different markers such as α-SMA (α-

smooth-muscle-actin), vimentin, desmin and fibroblast activation protein (FAP), a 

serine protease located on the cell surface of tumour stromal fiboblasts (Garin-Chesa et 

al. 1990; Lazard et al. 1993; Mueller and Fusenig 2004). 

The presence of CAFs in the activated tumour stroma has been observed in various 

types of cancer like breast cancer (Chauhan et al. 2003), prostate cancer (Olumi et al. 

1999; Mueller and Fusenig 2004) and skin tumours (Skobe and Fusenig 1998). In fact, 

it has been demonstrated in vivo that the combination of prostatic epithelial cells with 

healthy CAFs leads to a limited tumour growth that resembles a prostatic intraepithelial 

neoplasia, while injecting them with prostatic epithelial non-tumourigenic immortalized 

cells results in the formation of malignant tumours (Olumi et al., 1999; Cunha et al., 

2003). CAFs induce tumourigenic alterations in epithelial cells and promote tumour 

progression through specific interactions with tumour cells, promoting their 

invasiveness if co-injected into mice models (Dimanche-Boitrel et al. 1994). CAFs are 

also able to express various growth factors and cytokines like IGF-1 and HGF that 

promote survival, migration and invasion of tumour cells (Li et al. 2003; De Wever et 

al. 2004; Lewis et al. 2004). Through expression of growth factors like VEGF or MCP-

1, CAFs contribute to tumour microenvironment formation by activating tumour stroma 

through stimulation of angiogenesis and recruitment of inflammatory cells (Orimo A. et 

al., 2005; Erez N. et al., 2010). In addition, they also produce proteases such as MMPs 

able to degrade the ECM allowing the cancer cells to overcome the boundaries of the 

tissues and therefore to exit from the primary site of the tumour (Sternlicht et al. 1999; 

Boire et al. 2005). MMPs and other proteases act directly on the motility and 

invasiveness of cancer cells. This was demonstrated for MMP-3, also known as 

stromelysin-1, a MMP highly expressed in fibroblasts that cuts the extracellular domain 

of E-cadherin, thus promoting epithelial-mesenchymal transition (EMT) and increasing 

tumour cells invasiveness (Lochter et al. 1997) (Fig. 2). 
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Fig. 2. Cross-talk between stromal fibroblasts and different types of cells of tumour 

microenvironment. 

 

Tumour cells release growth factors such as TGF-β, PDGF and bFGF that mediate the 

activation of fibroblasts (Dvorak 1986; Elenbaas and Weinberg 2001). TGF-β is 

associated with an increase of fibrotic tissue, tumour progression and fibroblasts 

recruitment (Siegel and Massague 2003). In addition, TGF-β is the most important 

factor of the tumour microenvironment promoting EMT in tumour cells and leading 

fibroblasts to a CAF phenotype in vitro (Siegel and Massague 2003). In healthy tissue, 

TGF-β impairs growth of epithelium and normal development of malignant tumours 

(Hanahan and Weinberg 2000; Siegel and Massague 2003), therefore the TGF-β 

probably has a role as tumour suppressor (Akhurst 2002). For what fibroblasts is 

concerned, TGF-β facilitates interactions with epithelial cells that suppress the onset of 

cancer (Bhowmick et al. 2004). On the contrary, in advanced stages of tumour 

progression TGF-β progressively loses its anti-proliferative effects while facilitates 

EMT programme in tumour cells, thereby increasing invasiveness and metastatization 

(Siegel and Massague 2003). The signaling pathways that are involved in TGF–β-

mediated EMT involve Smad proteins, in particular SMAD3, the phosphatidylinositol-
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3-kinase-Akt and p38 MAPK pathways (Derynck et al., 2001; Kalluri and Neilson 

2003). Also PDGF is correlated with tumour progression (Bronzert et al., 1987), 

although most of tumour cells do not express its receptor (Forsberg et al. 1993). Unlike 

TGF-β, PDGF induces fibroblasts proliferation, but not the acquisition of the activated 

phenotype associated to an excessive deposition of ECM (Shao et al. 2000). bFGF is 

another growth factor that stimulates the proliferation of fibroblasts, but not the 

expression of α-SMA (Armelin 1973; Ronnov - Jessen et al. 1996). 

Since EMT is a phenomenon whereby epithelial cells lose their cell-cell contacts 

acquiring mesenchymal properties, it promotes the onset of a more invasive phenotype 

(Hay 1995). The EMT of healthy epithelial cells adjacent to tumour cells contributes to 

the development of CAFs (Kalluri and Neilson 2003). Recent studies on lung epithelial 

cells have provided evidence of transition of these cells to fibroblasts during pulmonary 

fibrosis development, suggesting that EMT is an important source of fibroblasts (Robin 

1978). Furthermore it has been shown that exposure of cells to epithelial MMPs may 

lead to increased ROS cellular levels, which stimulate the transdifferentiation into 

myofibroblasts. These studies suggest that the increased expression of MMPs can 

stimulate fibrosis, tumourigenesis and tumour progression through induction of a 

specific EMT programme in which epithelial cells directly differentiate into activated 

myofibroblasts (Radisky et al . 2007). 

It has been observed that the level of TGF-β on fibroblasts, through a PKC-dependent 

signaling, induces a significant increase in ROS levels that appear to be key secondary 

messengers of the signaling pathway triggered by TGF-β (Cat B. et al. 2006). 

According to that, treatment with antioxidants such as NAC or selenite causes an almost 

complete regression of the TGF-β signaling pathway, thereby blocking the expression 

of α-SMA and the transdifferentiation to myofibroblasts. One of the major effects 

induced by TGF-β stimulation is a significant increase in lipid hydroperoxides. 

Blocking this stimulation there is a strong inhibition of the TGF-β-induced fibroblasts 

activation, thus suggesting that lipid hydroperoxides are the main messengers 

responsible for the redox-dependent signal transduction triggered by TGF-β . It was also 

demonstrated that following treatment with TGF-β and subsequent fibroblasts activation 

there is significant gene expression changes, including induction of α-SMA and 

cytokines such as HGF, VEGF and interleukin 6 (IL-6). These changes are typical of 

myofibroblasts as they influence tumour cells invasive capacity (Cat B. et al. 2006). 
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It should be noted that, although it is widely accepted that CAFs assume a 

myofibroblastic phenotype, the in vivo mediators are not well understood yet (Kalluri 

and Zeinberg, 2006). Only some cytokines like TGF-β released by tumour cells have 

been associated with the differentiation of fibroblasts (Kalluri and Zeisberg 2006; 

Massague J. 2008). Also recent studies conducted in our laboratory have shown that IL-

6, secreted by prostate carcinoma PC3 cells isolated from a bone metastasis of prostate 

carcinoma cells (PCa), promotes a particular phenotype named PCa-activated fibroblast 

(PCa-AF). In contrast to the TGF-β-dependent phenotype, these cells do not express α-

SMA, but their activated state is confirmed by the expression of the FAP protein and 

production of ECM. The PCa-AFs strongly activate the process of EMT and therefore 

PC3 cells invasiveness as demonstrated by the fact that interruption of IL-6-mediated 

signaling between PC3 and fibroblasts impairs the process (Giannoni et al., 2010). 

According to our observations, production of IL-6 by tumour cells has been correlated 

to higher carcinomas aggressiveness (Royuela M et al., 2004; Chung LW et al., 2005; 

YN Niu et al., 2009). 

It has been also demonstrated  that CAFs are composed by a mixed population of both 

-SMA positive fibroblasts (MF), probably activated by a TGF--dependent 

mechanism, and PCa-AF, -SMA negative fibroblasts activated by an IL-6-dependent-

mechanism, which suggests a coexistence in vivo of phenotypes reliable to both 

myofibroblasts and PCa-AFs. These data lead to the hypothesis that different 

populations of CAFs have specific roles in tumour growth. Both types of fibroblasts are 

able to induce EMT in PC3 cells and a greater ability invasive, involving different 

pathways like urinary plasminogen activator (uPA/uPAR) for the phenotype MF and the 

MMPs for the phenotype PCa-AFs (Giannoni et al., 2010). Thus endothelial cells lose 

cell-to-cell contact and acquire mesenchymal properties, thereby showing greater 

invasive and metastatic abilities (Hay 1995; Thiery 2006). 

 

Tumour microenvironment and cancer progression 

A raising number of evidences have demonstrated a strong, positive correlation between 

cancer and tissue microenvironment. Tumour progression is considered as the result of 

constant communication between cancer cells and the surrounding stroma, also called 

“tumour reactive stroma”, composed by a specific ECM and several heterotypic cells 

like, proinflammatory cells (cancer-associated macrophages, CAMs), endothelial cells 

and perycites. This interplay has a fundamental role in different aspects of tumour 
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biology. Tumour stroma composition can vary among different kind of tumours and it is 

not directly correleated to its aggressiveness. Anyway, recent studies in vivo have 

shown that tumour-derived stromal fibroblasts are crucial for breast cancer development 

(Dvorak et al., 1983; Kuperwasser et al., 2004).  

As previously stated, this “tumour reactive stroma” can also be morphologically defined 

as “a desmoplastic response”, referring to growth of dense connective tissue rich in 

fibroblasts, proinflammatory and immune cells which produce large amounts of 

collagen, fibronectin, proteoglycans and tenascin C (Ronnov-Jessen et al., 1996) (Fig. 

3). A desmoplastic microenvironment can support key cancer mechanisms like 

development of new blood and lymphatic vessels in order to favor cancer growth and 

dissemination (Folkman 2003).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Cancer development: a multi-step process which requires activation of the surrounding 

stroma. 

 

Cancer cells create an hospitable microenvironment producing stroma-modulating 

factors like bFGF, PDGF, EGF, colony-stimulating factor (CSF) and TGF-β. These 

factors activate surrounding cells like fibroblasts, smooth muscle cells and adypocites, 

both in a paracrine and autocrine way, which in turn produce new cytokines, growth 

factors and proteolytic enzymes responsable of ECM remodelling and cancer cells 

 

 

 



 

 19 

invasion (Coussens and Werb, 2002; Bergers and Benjamin, 2003; Stetler-Stevenson 

and Yu 2001; Mueller et al. 2003).  

The mechanism of ECM degradation also induces unmasking of proteins cryptic domains 

(Kalluri 2003). For example, matrix MMPs can partially degrade molecules on cells 

surface and soluble factors during ECM remodelling in order to create new activated 

factors with pro-migratory and proangiogenic abilities (Brinckerhoff and Matrisian 2002; 

McCawley and Matrisian 2001; Egeblad and Werb 2002). In particular, cancer 

aggressiveness is often positively correlated to expression levels of MMP-1 and MMP-

9. Cancer cells co-coltured with stromal cells and injected in murine models express 

larger amounts of MMP-1 and MMP-9 in comparison with benign cancer cells 

(Borchers et al. 1997; Airola e Fusenig 2001; Egeblad e Werb 2002).  

The proteolytic fragments produced by cancer cells proteases can also modulate 

proliferation, survival and migration of surrounding endothelial cells. In particular, the 

action of several types of MMPs like MMP-3, MMP-7, MMP-9, MMP-12 can generate 

angiostatin from the amino-terminal part of plasminogen. Other anti-angiogenic factors 

are endostatin, proteolytic fragment from collagen type VIII reducing VEGF-mediated 

growth and motility of endothelial cells, and tumstatin, generated from collagen IV 

digestion, which is an endothelial proapoptotic factor (Dong et al. 1997; Cornelius et al. 

1998O’Reilly et al.1997; Marneros e Olsen 2001). In conclusion, the regulation of 

proteases homeostasis by cancer cells represents a crucial step for tumour angiogenic 

ability, which results from a continuative balance between pro and antiangiogenic 

signals.   

Cancer cells also produce proinflammatory cytokines in order to recruite hematopoietic 

cells like lymphocytes, monocytes/macrophages and neutrofils nearby the tumour mass 

(Bachmeier et al. 2000; Coussens e Werb 2002). CSF-1 induces growth and 

differentiation of mononucleated cells like macrophages and is highly expressed in 

breast, ovaric and prostate cancers (Kacinski 1995). Loss of CSF-1 expression prevents 

macrophages recruitment by epithelial cancer cells and reduces tumour growth and 

metastatization. (Lin et al. 2001).  

Recent studies have demonstrated the importance of hematopoietic factors like 

granulocyte colony stimulating factor (G-CSF) and granulocyte-macrophage colony 

stimulating factor (GM-CSF) which promote mobilization of monocyte/macrophages 

and neutrofils from bloodstream and surrounding tissues. Growing proinflammatory 

signals can in turn induce recruitment of endothelial cells progenitors, thereby 
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promoting angiogenesis into the tumour burden. Neutrofils ease this process 

remodelling the ECM through secretion of MMP-9 and MMP-13. Also macrophages 

express several types of proteases like the uPA and MMPs which generate pro-

angiogenic molecules from ECM degradation like VEGF (Obermueller et al. 2004; 

Carmeliet e Jain 2000) (Fig. 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 The interplay between tumour reactive stroma and endothelial cells. 

 

In vivo studies have shown that blocking antibodies against VEGF receptor 2 

(VEGFR2) impairs angiogenesis and cancer invasive spur, inducing a regression from a 

high malignant cancer to a pre-malignant, not invasive phenotype. This process is 

strongly correlated to stabilization of the tumour stroma which turns into a normal 

connective tissue with new epithelial structures, like intact membranes basements and 

cell-to-cell junctions, and well-organised collagen fibres nearby the tumour. 

Normalization of tumour stroma is probably correlated to impairment of MMPs activity. 

As a result the reduced turnover of laminin, fiboronectin and collagen type I and IV 

promotes their accumulation and correct reorganization, thereby reducing angiogenensis 
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and almost completely reverting cancer progression. (Skobe et al 1998; Vajkoczy et al. 

2000) (Fig. 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Tumour-activated stroma normalization induces tumour regression. 

  

In the light of these experimental evidences, tumour microenvironment could be 

considered a promising therapeutic target because tumour stroma cells are genetically 

more stable than cancer cells and show less ability in developing drug resistance 

(Kerbel 1997; Sporn e Suh 2000). For example, the inhibition of cytokine production by 

inflammatory cells after administration of non-steroidal drugs impairs the risk of 

developing colon and breast cancer (Ricchi et al. 2003). In addition, MMP inhibitors are 

proving to be promising antitumour agents in the clinic. Inactivation of MMPs by 

administration of synthetic MMP inhibitors may prevent initiation of MMP activation 

cascades and excessive ECM degradation. On the other side, these small molecule 

inhibitors also exhibit unpleasant side effects due to their broad substrate specificity. 

The lack of highly specific MMP inhibitors for individual MMPs makes it difficult to 

understand the role of individual MMPs. In addition, cancer cells can also avoid 
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farmacological treatment adopting an ameboid, MMPs-independent motogenic program 

(Stetler-Stevenson e Yu 2001). 

The tumour stroma can also act on cancer cells as a mutagenic factor itself. Genomic 

instability is a commonly observed feature of tumours. Most investigations addressing 

the mechanism of tumour progression have focused on the genetic factors that may play 

a role. Growing evidence now suggests that, in addition to these endogenous factors, the 

exogenous environment within solid tumours may by itself be mutagenic and constitute 

a significant source of genetic instability. The tumour microenvironment is 

characterized by regions of fluctuating hypoxia, low pH, and nutrient deprivation. Each 

of these microenvironmental factors has been shown to cause severe disturbance in cell 

metabolism and physiology. Both in vivo and in vitro data demonstrate that exposure of 

tumour cells to adverse conditions can directly cause mutations, contributing to genetic 

instability (Yuan and Glazer 1998). 
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MELANOMA 

 

Definition 

Melanoma  is the typical malignant tumour of melanocytes, cells that secrete a dark 

pigment, melanin, which is responsible for the color of skin. They are predominantly 

located in the epidermal basal layer, but are also found in other parts of the body, like 

the bowel, the oral cavity, the inner ear, the meninges and the eyes, so melanoma can 

originate in any part of the body that contains melanocytes. Cutaneous melanoma 

represents only the 3-5% of skin cancers, but it causes the majority (75%) of deaths 

related to skin cancer because of its high invasive and metastatic ability (Boring et al., 

1991). 

 

Etiology  

The earliest stage of melanoma starts when the melanocytes begin to grow out of 

control. Melanocytes are found between the outer layer of the skin (the epidermis) and 

the next layer (the dermis). This early stage of the disease is called the radial growth 

phase, and the tumour is less than 1mm thick. Because the cancer cells have not yet 

reached the skin blood vessels, it is very unlikely that this early-stage cancer will spread 

to other parts of the body. If the melanoma is detected at this stage, then it can usually 

be completely removed with surgery. When the tumour cells start to move vertically up 

into the epidermis and into the papillary dermis, the behaviour of the cells changes 

dramatically  

The next step in the evolution is the invasive radial growth phase, when individual cells 

start to acquire invasive potential, thereby leading to cancer spreading.  

The following step in the process is the invasive melanoma called the vertical growth 

phase (VGP). The tumour attains invasive potential so it can grow into the surrounding 

tissue and can spread into distant tissues through blood or lymph vessels. The tumour 

thickness is usually more than 1 mm, and the tumour involves the deeper parts of the 

dermis (Fig. 6). 

During the VGP phase, the host elicits an immunological reaction against the tumour, 

which can be visible by the presence and activity of  tumour infiltrating 

lymphocytes (TILs). These cells sometimes completely destroy the primary tumour and 

this phase is called regression, which is the latest stage of the melanoma development. 
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In certain cases, the primary tumour is completely destroyed and only the metastatic 

tumour is discovered. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Incidence 

Many studies have reported increasing incidence rates of cutaneous melanoma during 

the last fifty years and this rapid increase in incidence has led to the concept of  

“epidemic melanoma”, thereby becoming a real sanitary emergency. The most affected 

populations are represented by Australians (40/100.000 inhabitants) and populations of 

New Zealand and Northern Europe. Also in Italy melanoma incidence has been rising 5-

7% every year, with an incidence of 9,97/100.000 for men and 8,24/100.000 for women. 

 

Mortality 

Every year almost 41.000 deaths for cancer worldwide are related to skin melanoma and 

1400 of them occur in Italy. A white male living in industialized countries has 1/100 

possibility to develop skin melanoma during his life. In addition, in the last decades 

melanoma shows higher mortality among young and middle-aged people. In particular, 

in the past five years, in Italy the number of deaths clearly related to skin melanoma 

were 3178 in males and 2807 in females, with almost a doubled mortality incidence in 

northern regions compared to southern ones.   

Fig. 6 Malignant progression of cutaneous melanoma. 
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Prevalence 

The prevalence proportion is the proportion of people found to have the condition with 

the total number of people studied and it is correlated to both frequency and prognosis 

of pathology. In italy the prevalence of skin melanoma is 48,4/100.000 inhabitants for 

women and 101,6/100.000 inhabitants for men. The discrepancy between the sexes is 

reale to the highest incidence and better survival for women. Inside the country, 

prevalence is three-fold higher in Veneto and Emilia if compared with southern regions.  

 

Risk factors 

Both endogenous and exogenous risk factors for skin melanoma have been identified. 

 

Endogenous risk factors 

1. Number of naevi: number of naevi is the most important susceptibility factor, 

independent from naevi dimension and distribution. In fact, skin melanoma 

develops from a congenital or acquired naevus in the 22-57% of all cases. In 

addition, the number of naevi is related to major risk of developing melanoma 

from healthy skin.  

2. Presence of atipical/displastic naevi: a single displastic naevus is correlated to a 

two-fold higher risk to develope melanoma, while presence of ten or more naevi 

results in a twelve-fold higher risk. 

3. Familiarity: frequence of familial malignant melanoma varies from 5 to 10% of 

total cases. Subjects with close-related parents (parents, brothers) affected by 

melanoma are at risk of developing maligannt melanoma. The risk augments 

with the rising number of related affected. 

4. Previous melanoma: almoste 11% of subjects with melanoma develope a new 

melanoma in the following five years. In addition, other melanomas can show 

up during the lifetime.  

5. Adulthood: melanoma in children and adolescents is very rare, even if its 

frequency is rising in the past decades. During adulthood the frequency rises 

rapidly. 

Other risk factors are presence of various solar lentigos, fair and red-headed people and 

individuals with blistering or peeling sunburns. Different phototypes seem to modulate 

the cancerogenic effects of ultraviolet rays (UV). 
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Exogenous risk factors 

Development of skin melanoma seem to be related to intense but intermittent sun 

exposure, specially in usually non photo-exposed cutaneous areas. In addition, exposure 

and sunburn during childhood becomes a more important risk factor. 

The UV rays are the leading cause of melanoma (Iarc 1997). It has been demonstrated 

that this type of cancer is more common in decreasing latitudes and rising altitudes. In 

particular, UV-B rays are the more carcinogenic to: 1) direct damage to DNA, 2) 

damage to mechanisms of DNA repair, 3) partial suppression of cell-mediated 

immunity. UV-A rays, once considered harmless, increase the effect of UV-B and act as 

co-carcinogenic agents. The risks arising from a history of sunburn are significant for 

both those experienced in childhood, adolescence, or any age (Elwood and Jopson 

1997). 

As for the ionizing radiation, the onset of melanoma depends on the total dose 

accumulated and time of accumulation (radiologists, airline pilots, radio-treated 

patients). 

 

Clinical aspects 

Signs and symptoms 

Early signs of melanoma are changes to the shape or color of existing moles or, in the 

case of nodular melanoma, the appearance of a new mole on the skin. At later stages, 

the mole may  ulcerate or bleed (Fiddler 1995). Early signs of melanoma are 

summarized by the mnemonic "ABCDE" staging (Friedman et al., 1985): 

 Asymmetry 

 Borders (irregular) 

 Color (variegated) 

 Diameter (greater than 6 mm) 

 Evolving over time 

These classifications do not, however, apply to the most dangerous form of melanoma, 

nodular melanoma, which has its own classifications: 

 Elevated above the skin surface 

 Firm to the touch 

 Growing 
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Metastatic melanoma may cause nonspecific paraneoplastic symptoms, including loss 

of appetite, nausea, vomiting and fatigue. Metastasis of early melanoma is possible, but 

relatively rare: less than 1/5 of early diagnosed melanomas become metastatic and brain 

metastatsis represent the most typical result of metastatic melanoma. It can also spread 

to the liver, bones, abdomen or distant lymph nodes. A recent new method of melanoma 

detection is called the "ugly duckling sign" and it is commonly used because it is a 

simple diagnostic procedure and it is highly highly effective in detecting melanoma. 

Simply, correlation of common characteristics of a person's skin lesion is made. Lesions 

which greatly deviate from the common characteristics are labeled as an "Ugly 

Duckling", and further professional exam is required (Mascaro et al., 1998) (Fig. 7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Pictures and main characteristics of normali naevi and malignant melanoma. 
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Classification  

Microscopically melanoma appears as a not-limited, asymmetrical lesion, consisting of 

proliferation of melanocytes with atypical cytological characteristics, with a tendency to 

migrate to the more superficial layers of the epidermis. Melanoma in situ, which is 

located only into the epidermis and in the epithelium of skin appendages, can be 

distinguished as follows: lentigo maligna type, superficial spreading type, acral 

lentiginous type, uveal melanoma and nodular type (James et al., 2006). 

 Lentigo maligna melanoma is a melanoma that has evolved from a lentigo 

maligna. It is usually found as a darkly pigmented raised papule, arising from a 

patch of irregularly pigmented flat brown to dark brown lesion of sun exposed 

skin of the face or arms in an elderly patient. Lentigo maligna is the non-

invasive skin growth and it is often considered as a melanoma-in-situ or a 

precursor to melanomas. Once a lentigo maligna becomes a lentigo maligna 

melanoma, it is considered and treated as if it were an invasive melanoma. 

 Superficial spreading melanoma, also known as "Superficially spreading 

melanoma (SSM)”, is usually characterized as the most common form of 

cutaneous melanoma in Caucasians (60-70% of total melanomas). The average 

age at diagnosis is in the fifth decade, and it tends to occur on sun-exposed skin, 

especially on the backs of males and lower limbs of females. This disease 

commonly evolves from a precursor lesion, usually a dysplastic nevus, but I can 

also arise from previously healthy skin. A prolonged radial growth phase, where 

the lesion remains thin, may eventually be followed by a vertical growth phase 

where the lesion becomes thick and nodular. As the risk of spread varies with 

the thickness, early SSM is more frequently cured than late nodular melanoma.  

 Acral lentiginous melanoma is a kind of lentiginous skin cancer. Acral 

lentiginous melanoma is observed on tpalms, soles, under the nails and in 

the oral mucosa.
 
Unlike the commonest forms of melanoma, acral lentiginous 

melanoma does not seem to be directly connected to sun exposure. In fact, it can 

occur on non hair-bearing surfaces of the body which may or may not be 

exposed to sunlight, but is also found on mucous membranes. It is the most 

common form of melanoma diagnosed amongst Asian and Black ethnic groups. 

The average age at diagnosis is between sixty and seventy years. However, the 

melanoma can also occur in Caucasians and in young people. Typical signs of 
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acral lentiginous melanoma include
 
longitudinal tan, black, or brown streak on a 

finger or toe nail, pigmentation of proximal nail fold and areas of dark 

pigmentation on palms of hands or soles of feet. 

 Uveal melanoma is a cancer of the eye involving iris, ciliary body, or choroid, 

collectively referred to as the uvea and tumours start from the melanocytes that 

reside in the uvea and that are responsible for the color of the eye. These 

melanocytes are distinct from the retinal pigment epithelium cells underlying 

the retina that do not form melanomas. Several clinical and pathological 

prognostic factors have been identified that are associated with higher risk of 

metastasis of uveal melanomas. These include large tumour size, ciliary body 

involvement, presence of orange pigment overlying the tumour, and older 

patient age. Several histological and cytological factors are associated with 

higher risk of metastasis, thereby including presence/extent of cells 

with epithelioid morphology, looping extracellular matrix patterns, increased 

infiltration of several types of immune cells, as well as staining with several 

immunohistochemical markers.  

 Nodular melanoma (NM) is the most aggressive form of melanoma and grows 

more rapidly in thickness than in diameter. Instead of arising from a pre-existing 

mole, it may appear in a spot where a lesion did not previously exist. Because of 

these charactyeristics the prognosis is often worse because it takes longer for a 

person to be aware of the synptomes. NM is most often darkly pigmented, even 

if some NM lesions can be light brown, multicolored or even colorless (non-

pigmented). A light-colored or non-pigmented NM lesion may escape detection 

because the appearance is not alarming, however an ulcerated and/or bleeding 

lesion is common. A particular variant of nodular melanoma, of viral origin, is 

repreented by the polypoid melanoma. The microscopic hallmarks are dome-

shaped at low power, thin or normal epidermis, dermal nodule of melanocytes 

with a 'pushing' growth pattern and no "radial growth phase". 

 

Histopathological factors and prognosis 

Features that are evaluated as affecting prognosis are tumour thickness in millimeters 

(Breslow's depth), depth related to skin structures (Clark’s levels), type of melanoma, 

presence of ulceration, presence of lymphatic/perineural invasion, presence of tumour-
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infiltrating lymphocytes, location of lesion, presence of satellite lesions, and presence of 

regional or distant metastasis (Day et al, 1981). Certain types of melanoma have worse 

prognoses, but this is explained by their thickness. Interestingly, less invasive 

melanomas, even with lymphnode metastases, carry a better prognosis than deep 

melanomas without regional metastasis at time of staging. Local recurrences tend to 

behave similarly to a primary unless they are at the site of a wide local excision, since 

these recurrences tend to indicate lymphatic invasion. When melanomas have spread to 

the lymphnodes, one of the most important factors is the number of nodes with 

malignancy. Extent of malignancy within a node is also important; micrometastases in 

which malignancy is only microscopic have a more favorable prognosis than 

macrometastases. Macrometastases in which malignancy is clinically apparent as the 

cancer completely replaces a node, have a far worse prognosis, and if nodes are matted 

or if there is extracapsular extension, the prognosis is progressively worse. When distant 

metastasis are detected, the cancer is generally considered incurable. The five year 

survival rate is less than 10% and the median survival is 6 to 12 months. Metastases to 

skin and lungs have a better prognosis, while metastases to brain, bone and liver are 

associated with a worse prognosis. 

Clark's level is a related staging system, used with Breslow's depth, which describes the 

level of anatomical invasion of the melanoma in the skin (Balch et al., 2001) (Fig. 8). 

Five anatomical levels are recognized, and higher levels have worsening prognostic 

implications. These levels are: 

 Level 1 : Melanoma confined to the epidermis (melanoma in situ) 

 Level 2 : Invasion into the papillary dermis 

 Level 3 : Invasion to the junction of the papillary and reticular dermis 

 Level 4 : Invasion into the reticular dermis 

 Level 5 : Invasion into the subcutaneous fat  
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Fig. 8 Clark’s levels. 

 

Medical treatment 

Surgical treatment is the therapy of choice for the primary melanoma. The surgical 

procedure involves the removal of the primary tumour with part of surrounding healthy 

skin, reaching the muscle tissue. Currently, for patients with cutaneous melanoma 

thicker than or equal to 1 mm, in combination with surgical excision of the primary 

lesion, the sentinel limph node biopsy is performed, which is proved to be highly 

sensitive in identifying clinically occult lymph node metastases. Therapy for metastatic 

melanoma includes surgical radicalization of the lesion, use of chemotherapy or 

combined protocols, or the use of radiation therapy for head can not be reached by the 

drugs. Currently therapies are being tested with so-called "vaccines" which exploit the 

biological response of the individual appropriately stimulated to slow the progression of 

the disease. 

 

Biological and genetic aspects 

Melanoma is usually caused by DNA damage from UV light from the sun, but UV light 

from sunbedscan also contributes to the disease. 

A number of rare mutations, which often run in families, are known to greatly increase 

one’s susceptibility to melanoma. Several different genes have been identified as 

increasing the risk of developing melanoma. Some rare genes have a relatively high risk 

of causing melanoma; some more common genes, such as a gene called MC1R that 

 



 

 32 

causes red hair, have a relatively low risk.Genetic testing can be used to determine 

whether a person has one of the currently known mutations. 

One class of mutations affects gene CDKN2A. An alternative reading frame mutation in 

this gene leads to the destabilization of p53, which is involved in apoptosis and its 

mutations are detected in over the 50% of human cancers. Another mutation in the same 

gene results in a loss of function of the inhibitor of CDK4, a cyclin-dependent kinase 

that promotes cell division. Mutations that cause the skin condition xeroderma 

pigmentosum (XP) also seriously predispose one to melanoma. Scattered throughout the 

genome, these mutations reduce a cell’s ability to repair DNA. Both CDKN2A and XP 

mutations are highly penetrant, meaning that the chances of a person carrying the 

mutation to express the phenotype is very high (Golstein e Tucker, 2005). 

Familial melanoma is genetically heterogeneous,and loci for familial melanoma have 

been identified on the chromosome arms 1p, 9p and 12q. Multiple genetic events have 

been related to the pathogenesis of melanoma. The multiple tumour suppressor 1 

(CDKN2A/MTS1) gene encodes p16INK4a, low-molecular weight protein inhibitor 

of cyclin-dependent protein kinases (CDKs), which has been localised to the p21 region 

of human chromosome 9. 

Other mutations confer lower risk, but are more prevalent in the population. People with 

mutations in the melanocortin receptor 1 (MC1-R) gene, for example, are two to four 

times more likely to develop melanoma than those with two wild-type copies of the 

gene. MC1-R mutations are very common; in fact, all people with red hair have a 

mutated copy of the gene. Also mutation of the MDM-2 SNP309 gene is associated 

with increased risk of melanoma in younger women. 

Other mutations affect genes regulating cell proliferation like Neuroblastoma RAS viral 

(v-ras) oncogene homolog (N-ras), V-raf murine sarcoma viral oncogene homolog B1 

(BRAF) and Phosphatase and Tensin homolog (PTEN) genes Pathogenically N-ras and 

BRAF mutations seem to occur in early cancer development, while alterations in PTEN 

gene are related to a late-stage development (Davies et al., 2002; Curtin et al., 2005; 

Haluska et al., 2006).  
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STRESS HORMONES: EPINEPHRINE AND NOREPINEPHRINE 

 

Definition of stress 

Stress is commonly defined as the general reaction of the organism in order to respond 

to endogenous and exogenous stimuli that can alter or affect the homeostasis of the 

organism itself. The term stress has been first introduced in medicine by Hans Selye in 

1936 (Selye 1936). Selye began to study on stress while trying to isolate sex hormones 

in animals. By inoculating some toxic compounds in guinea pigs he could observe that 

in animals occurred a common, almost “syndromic” reaction characterized by i) adrenal 

hypertrophy , ii) atrophy of the thymus and lymph glands , iii) gastric ulcerations. He 

further noticed that the same biological reaction, characterized by the common state of 

hyperactivation of the hypothalamic-pituitary-adrenal (HPA) axis (see next paragraph), 

it appeared in all the experimental animals regardless of the type of stimulus, called 

"stressors". Selye defined the set of systemic reactions of the body resulting from 

prolonged exposure to stressors as "general adaptation syndrome" (GAS). During the 

following years, many and more complex research on the "new" concept of stress 

started. In 1975, Mason demonstrated through research conducted on monkeys and then 

humans that adrenocortical activation was not merely the result of exposure to the 

stressor itself, but was specifically triggered by emotional reaction to stimuli. The 

emotional arousal was characterized by the activation of the structures of the limbic 

system (SL) that, as confirmed by following studies, represents the place of 

coordination and control of stress reactions. The structures of the SL project abundantly 

to the hypothalamic-pituitary axis. Therefore, the emotional arousal that is induced by 

the stimulus is processed at the level of SL and occurs both at a biological/somatic 

level, with autonomic and endocrine changes, and at a psychological/behavioral level 

with sequences of motor behavior collectively known as the "flight or fight response" 

(Mason 1975). 

In particular Selye identified three basic phases: alarm reaction phase, resistance or 

adaptation phase, and exhaustion, which follow one another in the body during each 

stress reaction and collectively called "general adaptation syndrome" (GAS). GAS 

syndrome is therefore a defense mechanism by which the body struggles to overcome 

the difficulties to return as soon as possible to its normal operating balance. 
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The adrenal gland 

The adrenal glands are equal endocrine glands, pyramid-shaped ( about 2 × 6 × 1 cm, 

weight 4-6 g), located in the retroperitoneum superior to the kidneys, from which are 

separated by an adipose capsule and renal fascia. Each adrenal gland is composed of 

two structurally and functionally different parts, the adrenal cortex and the inner 

medulla where the latter is localized internally and is completely surrounded by the 

cortex. While the medullary part is nerve-derived, the cortex is organized in cellular 

wrapped cords (zona glomerulosa), then assume a radial course toward the medulla 

(zona fasciculata) and finally come together to form a coarse mesh (zona reticularis) 

(fig. 9).  

The outermost layer, the zona glomerulosa, is the main site for production of 

mineralocorticoids, mainly aldosterone, which is largely responsible for the long-term 

regulation of blood pressure. Aldosterone's effects are on the distal convoluted 

tubule and collecting duct of the kidney where it causes increased reabsorption of 

sodium and increased excretion of both potassium by principal cells and hydrogen ions 

by intercalated cells of the collecting duct. Sodium retention is also a response of the 

distal colon, and sweat glands to aldosterone receptor stimulation. The major stimulus 

to produce aldosterone is  represented by angiotensin II. Angiotensin II is stimulated by 

the juxtaglomerular cells when renal blood pressure drops below 90 mmHg. 

Situated between the glomerulosa and reticularis, the zona fasciculata is responsible for 

producing glucocorticoids such as 11-deoxycorticosterone, corticosterone, and cortisol. 

Cortisol is the main glucocorticoid under normal conditions and its actions include 

mobilization of fats, proteins, and carbohydrates, but it does not increase under 

starvation conditions. Additionally, cortisol enhances the activity of other hormones 

including glucagon and catecholamines. Several factors, included emotional and 

physical stressors, influence production of cortisol in response to adrenocorticotropic 

hormone (ACTH) from the anterior pituitary gland. ACTH is secreted from corticotrope 

cells expressed within the anterior lobe of the pituitary gland in response to the 

corticotropin-releasing hormone (CRH), released by the hypothalamus. ACTH acts by 

binding to cell surface ACTH receptors, which are located primarily on adrenocortical 

cells of the adrenal cortex, thereby influencing steroid hormone secretion by both rapid 

short-term mechanisms that take place within minutes and slower long-term actions.  

In order to regulate the secretion of ACTH, many substances secreted within this axis 

exhibit both slow/intermediate and fast feedback-loop activities. According to that,  
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glucocorticoids secreted from the adrenal cortex work to inhibit CRH secretion by the 

hypothalamus, which in turn decreases anterior pituitary secretion of ACTH. 

The most inner cortical layer, the zona reticularis, produces androgens, mainly 

dehydroepiandrosterone (DHEA), DEHA sulfate (DEHA-S) and androstenedione, 

which is the molecular precursor to testosterone. 

The adrenal medulla is the core of the adrenal gland, and is surrounded by the adrenal 

cortex. The chromaffin cells of the medulla, named for their characteristic brown 

staining with chromic acid salts, are the body's main source of the 

circulating catecholamines (CA). In particular, they secrete approximately 20% 

norepinephrine (NE) and 80% epinephrine (E). To carry out its part of this response, the 

adrenal medulla receives input from the sympathetic nervous 

system through preganglionic fibers originating in the thoracic spinal cord from T5–

T11.
 
Because it is innervated by preganglionic nerve fibers, the adrenal medulla can be 

considered as a specialized sympathetic ganglion.
 
Unlike other sympathetic ganglia, 

however, the adrenal medulla lacks distinct synapses and releases its secretions directly 

into the blood. Cortisol also promotes CA synthesis in the medulla. Produced in the 

cortex, cortisol reaches the adrenal medulla and, at high levels, the hormone can 

promote the upregulation of enzyme phenylethanolamine-N-methyltransferase (PNMT), 

thereby increasing CA synthesis and secretion (Bertagna 2006; Cotran et al. 1999; 

Cotran et al. 2000). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 Anatomic structure of the adrenal gland and hormones produced. 
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The periferic nervous system and the hypotalamic-pituitary-adrenal axis (HPA) 

All vertebrates keep the correct homeostasis of their physiological mechanisms by 

constant interaction between two main control systems, the endocrine and the nervous 

system. The latter is anatomically divided into the central nervous system, which 

includes the brain and the spinal cord, and the peripheral nervous system, which 

comprehends all the nerves responsible for transmitting signals between the central 

nervous system and the body’s glands, muscles and organs, collectively known as 

effector organs. 

The peripheral nervous system is organized in 43 pairs of nerves divided into 12 pairs of 

cranial nerves and 31 pairs of spinal nerves. Each nerve is formed by nerve fibres 

including the axons of efferent and/or afferent neurons. Therefore, the peripheral 

nervous system is further divided into two main parts: the efferent division, which 

coordinates signals going from the central nervous system towards effector organs, and 

the afferent division, which transmits signals from peripheric receptors towards the 

central nervous system. 

The efferent division is further organized into the somatic nervous system, which 

innervates voluntary skeleton muscles, and the autonomic nervous system, regulating 

not-voluntary smooth and cardiac muscles, glands and gastrointestinal neurons. 

Physiological and anatomical differences allow to divide the autonomic nervous system 

into three further parts: sympathetic, parasympathetic and enteric. The sympathetic 

nerve fibers originate from the central nervous system, particularly from the thoracic 

and lumbar regions of the spinal cord, while parasympathetic nerves leave the central 

nervous system in the brain and in the sacral region of the spinal cord.  

Together with the nervous system, the endocrine system acts in order to integrate and 

correctly coordinate the functions of the nervous system. Unlike the nervous system, the 

endocrine system acts, in general, more slowly, normally in a span of time ranging from 

30 minutes to three hours, and more diffusely, as all cells of the body can be reached by 

hormonal signals, and primarily transimitting to peripheric organs and tissues. 

In particular, the integration between these two systems is related to the HPA axis, 

where hypotalamus is both part of the central nervous sytem and “interface” between 

nervous system itself and the endocrine one. Subsequently, hypothalamus controls 

periferic endocrine functions through pituitary gland stimulation (Kvetnansky et al. 

2009) (fig. 10).  
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In the light of these observations, hypotalamus represents the most important gland for 

elaboration of stress responses. In particular the paraventricular nucleus (PVN) is 

considered as critical for generation of neurophysiological stress responses. The axons 

of the parvocellular neurosecretory neurons of the PVN project to the median eminence, 

a neurohemal organ at the base of the brain, where their neurosecretory nerve terminals 

release their hormones. The median eminence contains fiber terminals from many 

hypothalamic neuroendocrine neurons, secreting different neurotransmitters or 

neuropeptides, including vasopressin (VPN), CRH, thyrotropin-releasing hormone 

(TRH), gonadotropin-releasing hormone (GnRH), growth hormone-releasing hormone 

(GHRH), dopamine (DA) and somatostatin into blood vessels in the hypothalamic-

pituitary portal system. In particular, CRH and VPN act synergistically in order to 

stimulate ACTH secretion and glucocorticoids production from the adrenal cortex (Vale 

et al. 1981). Several studies have in fact demonstrated that there is a positive, biunivocal 

interaction between CRH and AVP where the secretion of one induces production of the 

other and viceversa (Lamberts et al. 1984). 

In absence of stressful conditions, both CRH and AVP are secreted every 2-3 hours into 

the bloodstream following a pulsatile, circadian rythm (Engler et al. 1989). In resting 

conditions these hormones are usually produced in early hours of the morning with 

consequent rise of ACTH and cortisol circulating levels. This pulsatile secretion can be 

disrupted during stressful events (Horrocks et al. 1990; Chrousos et al. 1998).   

During a single, momentary stress there is a massive release of CRH and VPN, thereby 

leading to a more frequent secretion of ACTH and cortisol. According to the type of 

stress, other molecules like angiotensin II and various cytokines act as signaling 

mediators inducing exponential activation of the HPA axis (Holmes et al. 1986; Phillips 

1987).  

In this light glucocorticoids represent the real final effectors of the HPA axis, thereby 

directly contributing to regulation of body homeostasis and stress sistemic response. At 

the same time they present a key role in regulating basal activity of HPA axis and in 

blocking the sistemic stress response through a negative-feedback mechanism both on 

hypotalamus and pituitary gland. According to this mechanism of action,  the 

stimulation of glucocorticoids on periferic organs is progressively reduced when the 

stressful event is no longer present (De Kloet et al. 1991). 

Glucocorticoids mediate their biological effects through activation of cytoplasmatic 

receptors ubiquitously expressed. In their inactive form these receptors are complexed 
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with heat shock proteins (HSPs) that impair their binding to DNA. Following ligand 

binding the receptor show a conformational change and dissociates from HSP. The new 

receptor-ligand complex, in an homodimeric form, thereby migrates to the nucleaus 

where it directly binds specific DNA sequences located in the target genes promoters 

and named glucocorticoids responsive elements (GREs) (Smith et al. 1993; Pratt 1990). 

The activated receptors also act through protein-protein interaction in order to regulate 

specific signling pathways like the c-jun/c-fos and NF-kB mediated ones as positive 

regulators of genes involve in activation and proliferation of immune system cells 

(Scheinman et al. 1995) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 The hypotalamic-pituitary-adrenal axis (HPA).  

 

Cortisol and other glucocorticoids hormones exert both anabolic effects in the liver and 

anabolic effects in several peripheric tissues such as muscle, connectival, lymphoid and 

adipose tissues. In particular, glucocorticoids effects are: 

 Inhibition of ACTH secretion. Cortisol inhibits ACTH secretion through a  

feedback inhibition exerted both at the hypothalamus and at the pituitary levels. 

In general all glucocorticoids inhibit ACTH secretion, and the more powerful is 

the glucocorticoid action, the greater is the degree of inhibition.  

 Metabolic effects. Glucocorticoids stimulation increases liver glycogenolysis, 

while decreasing glucose uptake in muscle, adipose and other tissues, thereby 

inducing an increase in circulating glucose free levels. These actions synergize 
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in order to promote mobilization of energy sources, like amino acids, fatty acids 

and glycerol, from some tissues to provide energy substrates, particularly 

glucose, for others, notably the brain and heart, both characterized by high 

glucose consumption rate. The metabolic effects of glucocorticoids may be 

counterbalanced by those of other hormones, particularly insulin, the secretion 

of which is in turn stimulated by the rise in glucose circulating levels.  

 Vascular reactivity. In addition to its effects on the organs and tissues directly 

involved in metabolic homeostasis, cortisol influences various other organs and 

systems. For example, cortisol maintains the responsiveness of vascular smooth 

muscle to CA and therefore participates in blood pressure regulation. In adrenal 

insufficiency, vascular smooth muscle becomes unresponsive to CA. The 

decreased responsiveness, together with the associated hypovolemia caused by 

mineralocorticoid deficiency, can result in severe hypotension (Chrousos 2007; 

Taché et al. 2007). 

 Effects on central nervous system. Cortisol can directly modulate electrical 

activity of the neurons via type I and type II glucocorticoid receptors that are 

primarily expressed in limbic system and hippocampus. The ability of cortisol to 

decrease hippocampal volume as well as memory has also been demonstrated. 

Cortisol decreases REM sleep but increases both slow-wave sleep and time 

spent awake. Excessive concentrations of cortisol in blood can cause insomnia 

and strikingly increase or decrease mood. In addition, loss of sleep seems to be 

correlated to elevated circulating levels of IL-6 despite the reduced stimulation 

of IL-6 production exerted by catecholamines. This effect is probably related to 

reduced glucocorticoids-mediated inhibition (Vgontzas et al. 1999; Vgontzas et 

al. 2003). 

 Effects on immune system and inflammatory responses. Various studies have 

demonstrated that cytokines and other umoral mediators of inflammatory 

response act as powerful activators of stress response from the central nervous 

system, thereby creating a molecular communication system between central 

nervous system and immune system. For example three of the most important 

proinflammatory cytokines, tumour necrosis factor α (TNF-α), interleukin-1b 

(IL-1b)  and interleukin-6 (IL-6) directly stimulate HPA axis activity during 

cronic inflammatory diseases, both alone and/or through synergic actions 

(Chrousos 1995; Tsigos et al. 1997). Some of these positive effects are indirectly 
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related to stimulation of central and peripheric catecholaminergic signaling 

pathways. In particular activation of nociceptive, somatosensory and visceral 

peripheric nerve fibres induce secretion of CRH and CA through spinal 

ascendent fibres (Chrousos 1995), thereby leading to a strong impairement of 

immune and inflammatory response as all cellular components are inhibited by 

glucocorticoids production. These hormones decrease differentiation and 

proliferation of local mast cells, stabilizes lysosomes and decreases production 

of platelet activating factor (PAF) and nitric oxide (NO). Glucocorticoids also 

suppress immune response by decreasing the number of circulating T-

lymphocytes and by decreasing the production of interleukins and interferon-γ 

(IFN-γ) that are critical mediators of immune response (Chrousos 1995; Elenkov 

et al 1999). In addition, cortisol and all known glucocorticoids suppress 

synthesis and decrease the release of arachnidonic acid, the key precursor for a 

number of mediators of inflammation like prostaglandins (PGDs) and 

leucotrienes (LTs).  

 Effects on stress. ACTH and cortisol secretion are increased by stressful stimuli 

including surgery, trauma, pain, infection, hypoglycemia and hemorrhage, 

thereby inducing an higher secretion of NE and E from adrenal medulla. In 

particular, locus ceruleus (LC) and other groups of cells secreting NE, 

collectively known as the LC/NE system, contribute in increasing autonomous 

and neuroendocrine stress responses through HPA axis activation. These 

observations show a biunivocal connection between CRH production and 

LC/NE system where CRH stimulate secretion of NE and viceversa (Taché 

2007). 
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Biosinthesis of catecholamines 

CA have been first characterized at the beginning of the twentieth century. CA are 

synthesized from the amino acid precursor L-tyrosine (Fig. 11). There are two primary 

sources of tyrosine, from the diet and from hydroxylation of the amino acid 

phenylalanine in the liver.  

Upon entry into an adrenal chromaffin cell, sympathetic or brain catecholaminergic 

nerve terminals, tyrosine is converted to dihydroxyphenylalanine (DOPA) by the 

soluble cytoplasmic enzyme tyrosine hydroxylase (TH). TH is an iron-containing, 

biopterin-dependent aminoacid hydroxylase. It utilizes tyrosine, tetrahydrobiopterin 

(BH4), and molecular oxygen to generate DOPA, dihydrobiopterin, and water. The 

cofactor BH4 is resynthesized from dihydropterin by the enzyme dihydropteridine 

reductase. Since BH4 is present in subsaturating levels, TH activity depends on its 

availability. In humans, several isoforms of TH can arise from alternative splicing of a 

single primary transcript. Primates exhibit only two of these isoforms, and lower 

animals have only one. The significance of these isoforms, the physiology of the 

alternative splicing, and whether it is affected by stress is not clear (Nagatsu 1991). TH 

activity is intricately regulated in the short and long term. 

In the short term, TH enzymatic activity is regulated by feedback inhibition; thus TH is 

inhibited by catecholamines secretion (DOPA, NE, DA). TH is also regulated by 

allosteric regulation and direct protein phosphorylation. TH can be phosphorylated by a 

variety of kinases at several serines (positions 8, 19, 31, and 40) in the NH2-terminal 

domain, but the role of this post-transcriptional modification has not been clarified yet.  

On the other hand, in the medium to long term, TH can be regulated by enzyme 

stability, transcriptional regulation, RNA stability, alternative RNA splicing, and 

translational activity. Change in TH gene expression is a major mechanism whereby the 

catecholaminergic system responds to stress. For example, CREB is one of the 

mediators of the transcriptional response to stress: CREB is one of the transcription 

factors of the CREB/ ATF family that then binds as dimers to the cAMP response 

element (CRE) on a variety of genes, including TH. CREB phosphorylation on serine-

133, necessary for its pro-transcriptional activation, is found elevated in the LC during 

exposure to single and repeated stressful events and this leads to increased TH 

expression (Nagatsu 1995). 

Subsequently DOPA is converted into DA by a nonspecific enzyme, aromatic L-amino 

acid decarboxylase (AAAD) whose activity strongly depends upon availability of its 
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cofactor, pyridoxal phosphate. The most high DA-producing region in the nervous 

system is represented by the corpus striatum, which receives the projections from the 

substantia nigra and has a central role in regulating motor coordination. For example, in 

Parkinson’s disease loss of dopaminergic neurons inside the substantia nigra lead to its 

peculiar motor disfunction.  

Dopamine is then taken up from the cytoplasm into storage vesicles and converted into 

NE by dopamine hydroxylase (DBH), an enzyme found in soluble and membrane-

bound forms within storage vesicles. 

Both forms are encoded by the same mRNA. DBH activity utilizes Cu
2+

, ascorbic acid, 

and O2. The NE is mainly synthesized in the adrenal medulla and the central and 

peripheral nervous system, where it is used by cells in the ganglia of the sympathetic 

nervous system, thereby showing that NE represents the main neurotransmitter in this 

section of the peripheral autonomic nervous system. It is also used in the locus 

coeruleus where it influences states of sleep and wakefulness, attention, and eating 

behavior. 

NE is then converted into E by the soluble cytoplasmic enzyme phenylethanolamine N-

methyltransferase (PNMT) that uses S-adenosyl-methionine as the cofactor and whose 

activity is inducible by glucocorticoids. PNMT is mainly localized in the adrenal 

medulla; however, sympathetically innervated organs and some brain areas are also able 

to synthesize small amounts of E. Separate populations of adrenal chromaffin cells 

contain NE and E as the final products of CA biosynthesis. PNMT gene expression was 

found also in some nonneuronal cells in the heart and skin (Ziegler et al. 1998). 
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Fig. 11 Biosinthesis of catecholamines. 

 

 

Release and action of catecholamines 

The process of CA release is similar in the adrenal medulla and the sympathetic nerve 

endings (fig. 12). Acetylcholine released from sympathetic preganglionic nerve 

terminals binds to nicotinic cholinergic receptors and leads to a depolarization of cell 

membrane, resulting in an increase in membrane permeability to sodium. This initiates a 

series of events that lead to an increase in the influx of calcium. Then, CA storage 

vescicles fuse with the chromaffin or sympathetic neuronal cell membrane and release 

via exocytosis their contents of CA, together with chromogranins, other neuropeptides, 

ATP and a fraction of the soluble DBH, via exocytosis. However, the exact mechanism 

of Ca
2+ 

evoked exocytosis is not clear (Young et al., 1998).  

Currently, more than 30 biologically active substances have been localized in adrenal 

chromaffin, sympathetic neuronal, and brain catecholaminergic cells, and a number of 
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them are released following depolarization of the cell membrane. In addition, various 

biologically active neuropeptides are colocalized with acetylcholine within sympathetic 

preganglionic nerve terminals like substance P, neuropeptide Y (NPY) and vasoactive 

intestinal polypeptide (VIP), and they all appear to act as neuromodulators or 

cotransmitters of cholinergic transmission (Young et al., 1998; De Diego et al., 2008). 

In particular, the VIP peptide has a key role in stimulating catecholamines release, while 

substance P modulates acetylcholine secretion. Finally, the neuropeptide NPY seems to 

also exert a trofic effect on sympathetic nerve terminations and has been recently 

described as the major factor responsible for stress-induced obesity (Zukovska et al., 

1998; Kuo et al., 2007; Kuo et al., 2008). Another example is represented by protein 

sinexin, also named annexin VII, which exerts a role in mediating the signaling pathway 

responsible for vescicles fusion to neuronal cell membranes, while other proteins such 

as cathestatin have an inhibitory effect on catecholamines release (Pollard et al., 1998; 

Kennedy et al., 1998). 

After release in the intersynaptic space, CA-mediated biological effects are quickly 

blocked through two main processes: 

 Conversion of CA in biologically inactive products through enzymatic action of 

monoammine oxidase (MAO) in neuronal cells and catechol-O-

methyltransferase (COMT) in non-neural cells. 

 Re-uptake of active CA and formation of new cytoplasmic storage vescicules in 

both sympathetic and effectors neural cells. 

MAO is a mitochondrial flavoprotein located in the outer membrane of presynaptic 

neurons that catalyzes deamination of amines, with production of aldehydes that are 

metabolized to carboxylic acids or alcohols. MAO-A subtype has a higher affinity for 

NE and E and is highly localized in brain neurons. MAO-B is responsible for 

degradation of DA. In sympathetic nerves, the aldehyde produced from NE and, to a 

less extent, from E by MAO-A is converted to dihydroxyphenylglycol (DHPG). 

Subsequent extraneuronal O-methylation leads to production of 3-methoxy-4-

hydroxyphenylglycol (MHPG). 

COMT is involved in the inactivation of the catecholamines through addition of a 

methyl group to the catecholamine, which is donated by S-adenosyl methionine. In 

particular, the enzyme catalyzes reactions of methylation of NE in normetanephrine and 

of E in metanephrine. COMT can also be found extracellularly, although extracellular 
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COMT plays a less significant role in the CNS than it does peripherally where is 

primarily expressed in the liver (Golan and Armen). 

The mechanisms of neural uptake act synergistically with COMT and MAO enzymatic 

activity. In particular, neuronally released CA are inactivated by “uptake 1” (U1) in 

combination with enzymatic degradation by MAO, while circulating CA are inactivated 

by “uptake 2” (U2) and COMT-mediated enzymatic degradation (Axelrod et al., 1957; 

Axelrod et al., 1959).  

Uptake 1 (U1) acts in order to recapture locally released NE or circulating NE to save it 

by intraneuronal storage for reuse. U1 requires energy and is a mechanism carrier-

mediated, where the carrier involved moves CA against large concentration gradients. 

Since U1 acts as a first-order kinetic process, U1 increases in parallel with increase NE 

release during exposure to stressors. In fact, about 90% of released NE is reuptaken to 

neurons through two main transporters, NE transporter (NET) and dopamine transporter 

(DAT), while it seems to have a less important role in circulating E inactivation 

(Eisenhofer et al., 1990; Eisenhofer et al., 1991). In particular, NE is translocated by 

NET about twofold more effectively than E. This explains why sympathetic nerves take 

up NE more efficiently than E. Dopamine is a much better substrate for DAT than NE 

or E. NET and DAT-mediate transport is Na
+
 and temperature-dependent and is 

characterized by high catecholamines affinity, but very low capacity. In brain, TH and 

DAT are considered characteristic markers for dopaminergic neurons. While DAT is 

mainly expressed in brain dopaminergic cells, neither NET nor DAT expression is 

restricted to central or peripheral noradrenergic neurons. Uptake of NE by NET also 

takes place in some extraneuronal cell types that express the same NET isoform that is 

expressed in noradrenergic neurons. Extraneuronal sites of NET expression are in the 

chromaffin cells of adrenal medulla, in lung and placental tissues, while extraneuronal 

DAT expression was found in the gastrointestinal tract, pancreas and kidney 

(Eisenhofer et al. 2001).  

Extraneuronal uptake 2 (U2) is an active process of transport into non-neuronal cells. 

The extraneuronal monoamine transporter of U2 (EMT) has little stereospecificity and 

has very low affinity and specificity for CA. In particular, unlike U1, U2 favors E over 

NE and is not a Na
+
 and Cl

- 
-dependent process. U2 is responsible for formation of CA 

metabolites in liver, kidney, and lung and is highly sensitive to inhibition by 

glucocorticoids. As a negative feedback control mechanism, U2 activity is strongly 
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impaired by CA O-methylated metabolites normetanephrine, metanephrine, and by 

corticosteroids. (Bonish 1980). 

In addition, until now at least three catecholamines transporters located in non-neural 

sites have been described and named cationic organic transporters (OCT)-1, 2 e 3, all 

carachterized by high specificity for DA transport (Eisenhofer et al. 2001).  

Subsequently reuptaken CA are stored into new cytoplasmic vescicules through action 

of the monoamin vescicular transporter (VMAT). Two isoforms of this tranporter have 

been described until now: VMAT-1, considered as the “neuroendocrine form”, and 

VMAT-2, also known as the “neuronal form”, strictly expressed in the central and 

peripheric nervous systems. As for the molecular transporters previously described, also 

VMATs transport molecules against concentration gradient thereby exploiting the 

protonic gradient created by ionic H
+
 channels (Goldstein 2001).  

In conclusion, fast enzymatic inactivation/reuptake of CA released into the synaptic 

cleft is a prerequisite for fine control over the effector system. Contrary to the usual 

depictions, vesicular stores of CA do not exist in a static state simply waiting for 

exocytotic release. Rather, they exist in a highly dynamic equilibrium with the 

surrounding cytoplasm, with passive outward leakage of CA, counterbalanced by 

inward active transport under the control of VMAT (Eisenhofer  et al. 2004).  

In spite of the fact that this process is highly activated by stress, the studies on stress-

induced changes in activity and gene expression of CA transporters located in the 

peripheral neurons are quite rare. Very few reports deal with NET transporter protein 

and gene expression during oxidative stress in PC12 cells. These results support a 

functional role of oxidative stress in mediating the neuronal NE uptake associated with 

reductions in NE uptake binding sites and NET protein production, without changes in 

NET gene expression. The effect of oxidative stress on NET is a post-transcriptional 

event (Mao et al., 2004; Mao et al., 2005).  
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Fig. 12 Mechanisms of secretion, action and re-uptake of catecholamines in central and periferic 

neuronal cells. 

 

 

The adrenergic receptors 

In order to mediate their biological effects, CA bind to specific receptors named 

adrenergic receptors, all included in the superfamily of transmembrane seven domains 

receptors coupled to G proteins. In 1948 Ahlquist first identified and classified these 

receptors in two main types, alpha (α) and beta (β), according to their responsiveness to 

in vitro stimulation with different classes of molecular agonists and antagonists 

(Ahlquist 1948). Almost fifteen years later α receptors have been further divided into 

two classes according to their anatomic location, thereby defining as α1 post-synaptic 

receptors and as α2 the pre-synaptic ones (Langer 1974). Further biological and 

pharmacological studies have led to the final classification of adrenergic receptors in 

distinct subtypes. In particular, α1 receptors have been divided in α1a, α1b and α1d, while 

α2 receptors have been classified in α2a, α2b and α2c adrenoceptors. 
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β receptors are also heterogenous and were initially subdivided into β1 and β2 

adrenoceptors on the basis of functional and ligand affinity studies. Subsequently the β 

receptors have been classified using functional studies, receptor binding and genetic 

techniques. The β adrenoreceptor family is now divided into three disctinct subtypes, 

the β1, β2 and the atypical β3 receptor. There is an additional β-adrenoceptor subtype 

which has been recently identified in cardiac tissue and is a putative, atipical subtype 

named β4 adrenoceptor (Lands et al. 1967; Strosberg e Pietri-Rouxel 1996; Kauman 

1997) (fig. 13).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. α and β receptors classification. 

 

 

 α1: these receptors are located in the central and periferic nervous system. In 

particular, in the central nervous system they are highly expressed post-

synaptically where they mediate an excitatory role. On the other side, peripheral 

α1 receptors are predominantly located intrasinaptically on both vascular and 

non-vascular smooth muscle where receptors activation results on muscle 

contraction and increase of blood pressure. They are also located on the cardiac 

muscle where they mediate a positive inotropic effect and on the liver, activating 

glycogen phosphorylation. (Bylund 1992; Aboud et al. 1993). 

All these receptors are coupled to phospholipase C and their activation induces 

production of second messengers like inositole 3-phosphate (IP3) and 

diacylglycerol (DAG). This signalling pathwat leads to activation of ionic 

channels voltage-dependent and stimulation of protein kinase C (PKC) and 

phospholipase A2, thereby regulating ciclic AMP (cAMP) and arachidonic acid 

(AA) production (Harrison et al. 1991; Berridge e Irvine 1989).   
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 α2: the heterogenous family of these receptors has been characterized studying 

their different binding affinity eterogenic, thereby allowing the identification of 

different receptors subtypes even within the same tissue. These receptors are 

now divided in α2a, α2b, α2c e α2d receptors (MacKinnon et al. 1994). In 

particular, the α2d receptor shows an unique pharamcological profile, but it is 

still considered a splicing variant or receptor α2a for its high sequence homology 

with this receptor (fig. 9) (Simonneaux et al. 1991).  

α2 receptors are expressed both at a pre and post-synaptical level where they 

mediate inibitory effects on the central and periferic nervous system (French 

1991). In the central nervous system they regulate neurotransmitter release 

through autoreceptors located on noradrenergic nerve terminals and 

heteroreceptors located on other neurotransmitter signals. In particular, their 

sedative properties, mediated by somatodendritic autoreceptors on the locus 

coeruleus, have led to the development of α2-agonists as sedatives and 

anesthetics. Other central effects of α2 adrenoceptors include the regulation of 

blood pressure, pupil diameter and body temperature. Peripheral activities 

include contraction of vascular smooth muscle and inhibition of lypolyisis 

through activation of the receptors expressed by fat cells.  

The activity of α2 receptors is mediated by the activation of different G proteins 

including Gi/Go proteins. All the receptor subtypes are negatively coupled to 

adinilate cyclase, thereby mediating an inhibitory effect on cAMP production 

(fig. 14). In addition, it has been recently characterized a role of these receptors 

in activating several types of ionic channels like K
+
 and Na

+
/H

+
 transporters 

(Bylund et al. 1995).  

 β1: β1 receptors are located in high density in the striatum and a selective 

decrease in the expression of these receptors is related to Huntington’s Corea 

development  (Waeber et al. 1991). β1 receptors are also expressed in kidneys, 

cardiac muscle, airway muscle and fat cells and they show similar affinity for 

both NE and E binding. It is an excitatory receptor and its activation leads to 

positive cardiac inotropic and chronotropic effects, while in kidneys it stimulates 

renin secretion from iuxtaglomerular cells.  

β1, β2 and β3 receptors positively regulates adenilate cyclase through activation 

of small Gs protein, thereby stimulating voltage-dependent Ca
2+

 ionic channels 

(fig. 14) (Bylund et al. 1994). 
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 β2: it is an inhibitory receptor and shows higher affinity for NE binding in 

comparison with E. This receptor is mainly expressed on gastrointestinal and 

airway smooth muscle cells and its activation results in bronchodilation and 

general muscle relaxation. It is also located on blood vessels and coronaric 

arterie, increasing organs perfusion. 

 β3: is an excitatory receptor and it is located mainly in adipose tissue, both white 

and brown, where it is involved in the regulation of lipolysis and thermogenesis 

by NE through activation of the enzyme lipase. For this reason β3 agonists are 

good candidates for obesity treatment (Kauman 1997). Some other β3 agonists 

have also demonstrated antistress effects in animal studies, suggesting it also has 

a role in the central nervous system. β3 receptors are found in the gallbladder and 

in urinary bladder. Their role in gallbladder physiology is unknown, but they are 

thought to play a role in lipolysis and thermogenesis in brown fat. In the urinary 

bladder it is thought to cause relaxation of the bladder and prevention of 

urination.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14 α and β adrenergic receptors and their signalling pathways. 
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Catecholamines and cancer 

Over the past 25 years, epidemiological and clinical studies have linked psychological 

factors such as stress, chronic depression, and lack of social support to the incidence 

and progression of cancer. In particular, several molecular and animal studies have 

begun to identify specific signaling pathways that could explain the impact of 

neuroendocrine effects on all stages of tumour growth and metastasis, from proliferation 

and growth of the primary tumour to metastatization of distant tissues (fig. 15) (Reiche 

et al., 2004; Sood and Thaker, 2008). 

 

Adhesion to ECM 

The tumour cell ability to adhere to ECM represents a key event leading to 

metastatization of distant organs. In particular, integrins receptors expressed on cells 

membrane are key mediators for ECM-cell interaction, and recent studies have started 

focusing on the role of CA in regulating cancer cells adhesion. Despite this mechanism 

have not been fully elucidated yet, it is well known that cAMP has the ability to regulate 

activity of the adhesion-mediating small GTPases RhoA and Rac through the activation 

of protein kinase A (Mercurio and Rabinovitz, 2001). Recent studies also showed that 

the exchange factor directly activated by cAMP (Epac) is also involved in integrin–

mediated cell adhesion and cell-cell junction formation. According to these 

observations, recent data show that the β-agonist isoproterenol promotes ovarian cancer 

cell spreading and adhesion to laminin-5 in an Epac-dependent way and promotes 

adhesion to a fibronectin matrix in a cAMP mediated Epac-Rap1 pathway. Thus, stress 

hormones may promote cancer cell-matrix attachments and this mechanism represent a 

promising therapeutic target in order to avoid cancer cells migration from the primary 

tumour to distant peritoneal sites (Bos, 2006).  

 

Proliferation and growth of primary tumour and metastasis 

At both primary and metastatic sites, activation of autocrine, paracrine and/or endocrine 

pathways can promote tumour cell proliferation by disrupting the balance between 

positive, pro-proliferative and inhibitory signals (Langley and Fidler, 2007). Until now, 

data about the role of CA on cancer cells proliferation seem to be quite controversial 

and closely related to the studied cell type. In fact, some observation suggest that 

catecholamines repress normal cell proliferation, such as slowing keratinocyte growth, 

resulting in reduced wound healing in the context of stress (Flaxman and Harper, 1975). 
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On the other hand, other studies show that β-adrenergic inhibition with β2 adrenergic 

receptor agonist pirbuterol reduces human tumour cell growth in xenograft models 

through inactivation of the Raf-1/Mek-1/Erk1/2 pathway (Carie and Sebti, 2007) and, in 

breast cancer, some studies have directly related β2-adrenergic receptor activation to 

increased tumour growth and progression. In other tumour models, CA inhibition on 

cancer cells proliferation have been related to dopamine and α-adrenoceptors signaling. 

For example, studies focused on a neuroblastoma model showed that NE inhibited 

cancer cell growth in cells expressing the dopamine transporter, where treatment with 

NE induced an increased ratio of cells undergoing G0/G1 phase (Pifl et al., 2001).  

β2-adrenergic receptors may also act synergistically with other stimuli on cancer cells 

proliferation. A recent study showed that in a gastric cancer model these receptors 

contributeto nicotine-induced activation of the protein kinase C/Erk1/2/cyclooxygenase-

2 (COX-2) pathway, leading to enhanced tumour cells proliferation (Shin et al., 2007). 

Another factor regulated by adrenergic signaling is represented by the transcriptional 

factor cAMP responsive element binding (CREB) protein, which can be activated in 

response to external stimuli such as stress hormones. It has been clearly demonstrated 

that CREB plays an important role in tumour cell proliferation, migration, angiogenesis, 

and apoptosis inhibition (Jean and Bar-Eli, 2000). Thus, β-adrenergic receptor signaling 

might interact with other CREB activators in order to modulate molecular processes 

involved in tumour progression, like viral infections. Infective events are key co-factors 

in the initiation of approximately 20% of human tumours, and all major human tumour-

associated viruses have been found to be activated by either β-adrenergic or 

glucocorticoid-mediated signaling pathways (Antoni et al., 2006). For example, human 

herpesvirus 8, responsible for Kaposi’s sarcoma, activates a cAMP response element in 

the promoter of a key viral transcription factor, thus β-adrenergic stimulation of the 

viral host cell induces CREB-mediated expression of viral oncogenes and growth 

factors that promote viral infection spreading and progressively lead to cancer initiation. 

Also Epstein-Barr virus and high-risk variants of the human papilloma virus are 

similarly activated by glucocorticoids action (Antoni et al., 2006).  

Finally, in a prostate carcinoma model, treatment with cAMP agonists resulted in 

epithelial prostate cancer cells acquiring neuroendocrine characteristics (Cox et al., 

1999). These characteristics were represented by dense core granules in the cytoplasm, 

the formation of neuron-like processes, loss of mitogenic activity, and new expression 

of neuroendocrine markers. The presence of these neuroendocrine-like cells has been 
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linked to poor prognosis in prostate cancer patients as they have minimal proliferative 

ability, but promote proliferation of surrounding cells through paracrine stimulation 

(Cohen et al., 1991). 

 

Angiogenesis 

Recently, it has been found that stress hormones may promote angiogenic mechanisms 

in human tumours, thereby leading to increased growth both of the primary tumour and 

metastasis. In adipose tissues, nasopharyngeal cancer cells and in two ovarian cancer 

cell lines, VEGF has been shown to be upregulated by NE through activation of β-

adrenergic receptor signaling pathway cAMP/protein kinase A (PKA)-dependent, 

(Lutgendorf et al., 2003; Yang et al., 2006). The effect of NE on VEGF stimulation was 

completely reverted after treatment with non selective β-blocker propanolol and 

mimicked by agonists of β-adrenergic receptors (Thaker et al., 2006). Furthermore, NE 

modulates the expression of VEGF through activation of β2-adrenergic receptor in non-

solid tumours, such as multiple myeloma (Yang et al., 2008). Observations about the 

effects of stress hormones on tumour angiogenesis have been confirmed both in vivo 

and in vitro cancer models. In an ovarian cancer orthotopic model, chronic stress 

induced by daily restraint resulted in higher levels of circulating and tissutal CA, 

increased tumour burden, increased number of microvessels, and a more invasive 

phenotype. Moreover, these same samples showed increased VEGF levels. According 

to that, clinical data have demonstrated that there is an association between higher levels 

of social support and lower serum VEGF levels in ovarian cancer patients (Lutgendorf 

et al., 2002). Continuous infusion of a non-selective β-blocker partially abrogated the 

effects of stress on tumour growth and progression, suggesting that β-adrenergic 

receptors play an important role in stress-mediated tumour growth (Thaker et al., 2006).  

Interleukin 6 (IL-6) is another key cytokine that plays a key role in tumour progression 

and angiogenesis and, according to this observation, it is related to increasing 

microvessel density and poorer cancer outcomes (Kiecolt-Glaser et al., 2003; Nilsson et 

al., 2005). Lowering stressful conditions exerts a protective effect and correlation 

between IL-6 with biobehavioral factors acts both at the primary tumour level and 

distant organism sites (Costanzo et al., 2005). These clinical data have been confirmed 

in vitro in an ovarian cancer model, showing that NE significantly increased IL-6 

expression and that this increase was due to CA-mediated transcriptional regulation of 

IL-6. Additionally, NE induced IL-6 production in ovarian carcinoma cells was 
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regulated by a β-adrenergic receptor/Src tyrosine kinase pathway (Nilsson et al., 2007). 

The signal transducer and activator of transcription factor-3 (STAT-3) is activated by 

growth factors and cytokines, such as IL-6 and VEGF and has been found to promote 

angiogenesis and suppress apoptosis (Antoni et al., 2006). It is known that cytokines 

such as IL-6 can contribute to tumour growth and progression through the activation of 

STAT-3. Recent studies in an ovarian cancer model have determined that both NE and 

E activate STAT-3, promoting its translocation to the nucleus and binding to DNA. 

These effects on STAT-3 were mediated by β-adrenergic receptors and PKA signaling 

and were independent of IL-6, thereby suggesting that stress-mediated tumour 

progression may result, in part, through STAT-3 activation of downstream effector 

pathways (Landen et al., 2007). 

 

Migration/invasion 

There are now several lines of evidence suggesting that stress hormones can promote 

tumour cell movement and invasion in order to reach blood or lymphatic vessels that 

facilitate tumour spreading. For example, in a breast cancer model, NE induced not only 

a chemotactic response, but also promoted chemokinetic migration (Drell et al., 2003). 

NE can also promote migration in a phospholipase Cγ and protein kinase Cα dependent 

manner. In fact it has been demonstrated the role of CA and glucocorticoids on the 

invasive potential of ovarian cancer cells, and MMPs that are important for tumour cell 

penetration of extracellular matrix (Sood et al., 2006). NE concentrations similar to 

those found in the bloodstream in stress conditions significantly increased the in vitro 

invasiveness of ovarian cancer cells. E also promoted the invasive potential of ovarian 

cancer cells and these effects were blocked by a β-adrenergic receptor antagonist. 

Additionally, NE increased the in vitro production of MMP-2 and MMP-9 by tumour 

cells, and pharmacologic inhibition of MMPs blocked NE mediated increase in tumour 

cell invasion. Similar findings have been demonstrated in a nasopharyngeal carcinoma 

model where catecholamines increased the invasive potential by increasing MMP-2 and 

MMP-9 levels as well (Yang et al., 2006).  

 

 

Resistance to apoptosis/anoikis 

The continuation of the metastatic process depends on the ability of the tumour cell to 

avoid apoptosis and anoikis (Langley and Fidler, 2007). It has been shown that 
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dopamine and NE can promote cellular apoptosis through a G protein-mediated 

signaling in neuroblastoma cells (Chan et al., 2007). In addition, both acute and chronic 

stress reduced the sensitivity of prostate and breast cancer cells to apoptosis through a 

PKA-dependent BAD phosphorylation that was mediated by E interaction with β-

adrenergic receptors (Sastry et al., 2007). These in vitro data have been confirmed by 

clinical trials showing a more positive outcome for patients suffering of prostate cancer 

under daily treatment with β-blockers (Perron et al., 2004).  

Furthermore, CA may also act together with glucocorticoids to promote cancer growth. 

For example, cortisol increased the isoproterenol-induced cAMP and β-adrenergic 

receptor accumulation on the cellular membrane and substantially increased the effects 

of IL-1α, IL-1β, and TNF-α in lung carcinoma cells (Nakane et al., 1990). In addition, 

synergistic action of CA together with glucocorticoids can counteract chemotherapy- 

related cytotoxic effects in cervical and lung carcinoma cells through reduced 

expression of pro-apoptotic factors involved in intrinsic apoptothic pathway (Herr et al., 

2003). According to these observations, breast cancer cell lines pre-treatment with 

dexametasone impaired chemotherapy effects through glucocorticoid receptors 

activation. In particular, glucocorticoids promote mitogen-activated protein kinase 

phosphatase-1 (MKP-1) and glucocorticoid-inducible protein kinase-1 (SGK-1)-

mediated pathways. Glucocorticoids-mediated anti-apoptotic effects could be reversed 

through MKP-1 and SGK-1 gene silencing (Wu et al., 2004). 

Finally, anoikis is a cell process by which normal cells enter apoptosis when separated 

from the extracellular matrix and neighboring cells. Recently, it has been demonstrated 

that CA can protect ovarian cancer cells from anoikis. These effects are mediated by 

focal adhesion kinase (FAK) phosphorylation through ADRB2-dependent activation of 

Src kinase. Parallel results were observed in ovarian carcinoma patients, linking 

increased levels of stress/depression to increased FAK activation and demonstrating 

accelerated cancer progression in patients with high levels of FAK activity (Sood et al., 

2010). 
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Fig. 15 Effect of stress and related factors on cancer cells and tumour microenvironment. 
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HYPOXIA AND HYPOXIA INDUCIBLE FACTORS (HIFs) 

 

Tumour microenvironmeent alterations like hypoxia, resulting from lack of correct 

vascularization and/or excessive oxygen consumption (O2), can directly influence 

cancer growth and progression through disruption of structrures and functional tissue 

responses. All these evenbts contribute to resistance to pharmacological therapy and bad 

prognosis. Major causes implicated in creation of hypoxic microenvironment are mostly 

structural/functional alteration of tumour vessels and a growing distance between blood 

vessels and cancer cells which strongly impairs O2 diffusion and delivery (Fig. 16).                                                           

 

 

 

 

 

 

 

 

 

 

 

Fig. 16 Tumoural hypoxia. Violet sreas represent hypoxic areas, while the grey ones represent the 

necrotic areas. 

 

Solid malignant tumours are usually characterized by elevated number of hypoxic 

tissutal areas, with an O2 pression ≤ 2.5 mmHg, eterougenously located inside the 

tumour burden. These regions may be located adjacent to regions with normal O2 partial 

pressures (pO2) but, in contrast to normal tissue, neoplastic tissue can no longer fulfill 

physiologic functions (Vaupel et al. 2001). 

Hypoxia can be related to various factors dependent from perfusion, diffusion or anemic 

conditions (Vaupel et al., 2001; Vaupel et al., 2002). Perfusion-correlated hypoxia is 

caused by inadequate blood influx towards tissues. Tumoural microvessels often show 

both structural and functional abnormalities like disorganized microcirculation, 

perivascular detachment, vessels dilatation, irregular shape, loss of 

physiological/pharmacological receptor and complete absence of blood flux regulation. 

So new tumoural blood vessel formation is a relatively fragile process, subject to 
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disruptive interference at several levels and leads to frequent, but transient, ischemic 

events. 

Diffusion-related hypoxia is characterized by a progressively growing distance between 

cancer cells and tumour microcirculation as a result of tumour mass growth. The final 

effect is a continuosly reduced O2 delivery towards cells >70µm distant from blood 

vessels, thereby leading to a condition of cronic hypoxia. Cronic hypoxia is also 

correlated to changements in the “geometry” of O2 diffusion like modifications of blood 

flux paths inside cancer vessels. 

Finally, reduced ability of red blood cells to delivery O2 following anemic conditions 

related either to therapy or tumour itself causes anemic hypoxia. 

In conclusion hypoxia acts a continuative selective pressure by promoting growth and 

proliferation of genetically alterated tumoural clones with diminished apoptotic 

potential, thereby promoting cancer aggressiveness. The increasing inability of tumour 

cells to activate apoptotic pathways can explain many of the clinical consequences of 

malignant progression, such as locoregional and distant tumour propagation and 

resistance to nonsurgical therapy. Survival and proliferation of occult perifocal tumour 

cells with diminished apoptotic potential, located in hypoxic surgical scars, appear to be 

major pathogenetic events in the formation of local recurrences (Graeberg et al. 1996; 

Soengas et al. 1999). 

Hypoxia is also responsible for accumulation of genomic mutations by cancer cells, 

thereby increasing genomic instability favouring tumour progression and aggressiveness 

(Bindra e Glazer. 2005; Bindra e Glazer 2007; Huang et al. 2007; Koshiji et al. 2005). 

Hypoxic stress, both in vivo and in vitro, can generate DNA damage and mutations 

(Møller et al. 2001). Hypoxia-induced DNA damage has been detected throughout the 

bodies of individuals exercising at high altitude and has been attributed to ROS 

produced upon reoxygenation (Risom et al. 2007) or to stress-induced leakage of ROS 

from mitochondria (Møller et al. 2001). Also, severely hypoxic conditions and the 

subsequent reoxygenation progressively decreases the activity of DNA repair 

mechanisms (Bindra e Glazer. 2005). All these evidences have been confirmed through 

in vitro and in vivo studies where esposition of cancer cells to hypoxia have been 

demonstrated to actively promote their invasive and metastatic potential (Young et al. 

1988; Young e Hill 1990; Cairns et al. 2001; Postovit et al. 2002; Rofstad et al. 2002). 

Recent studies also suggest that sustained or intermittent hypoxic stress like cancer cells 

exposition for 6-8 hours at pO2 ≤7 mmHg induces genetic alterations through both post-
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transcriptional and post-translational modifications that modify cancer cells proteomic 

profile (Vaupel et al 2001; Vaupel et al 2002; Höckel e Vaupel 2001). These 

modifications include blockage of cell growth or damages to mechanisnìms of cell cycle 

arrest, differentiation, apoptosis and necrosis (Moudler e Rockwell S. 1987; Durand 

1991; Giacca 1996; Riva et al. 1998; Haroon et al. 2000). Physiologically hypoxia-

induced cell cycle arrest at G1/S checkpoint is related to hypoxia inducible factor-1α 

(HIF-1α) which activates inhibitors of cycline-dependent kinases p21 e p27 (Goda et al. 

2003). This mechanism of regulation seems to be p53-independent despite its 

accumulation during hypoxic conditions (Koumenis et al. 2001). In fact, hypoxia-

induced apoptosis has been shown to be dependent on p53, Apaf 1, caspase 9, and 

caspase 3, indicating that the mitochondrial apoptosis pathway plays a significant role in 

this form of death, but hypoxia is also able to activate p53-indipendent apoptosis 

through a Bcl-2-dependent mechanism (Soengas et al. 1999). 

Alternatively, hypoxia-induced proteomic changes induce cancer dissemination 

promoting cancer cells ability to adapt to nutrients deprivation or facilitating 

proliferation, local invasion and/or metastatization in order to escape from a hostile 

microenvironment.  

As extensively debated in the next paragraph, cancer cells have developed elaborated 

mechanisms in order to detect pO2 alteration and promote adaptation to hypoxia. The 

master regulator of this complex system is represented by transcription factor HIF-1, 

first identified by Semenza and collegues as a protein directly binding EPO promoter 

DNA sequence (Wang et al. 1995). Its accumulation in response to low O2 level induces 

activation of more than 100 genes involved in O2 delivery like erythropoietin, 

angiogenesis (VEGF), anaerobic metabolism (glucose transporters and glycolitic 

enzymes) and other key mechanisms involving survival and cancer diffusion (Vaupel et 

al 2002; Höckel e Vaupel 2001).  
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HIF-1α (Hypoxia-Inducible Factor-1α) 

HIF-1 is an hheterodimeric complex characterized by an α subunit of 120 kDa O2-

dependent (HIF-1α), and a β subunit of 91-94 kDa constitutively expressed (HIF-1β) 

also known as aryl hydrocarbon nuclear translocator (ARNT), as it has been first 

identified inside the hheterodimeric complex with the aryl hydrocarbon receptor (AHR) 

(Reyes et al., 1992). Both subunits belong to the protein superfamily of basic helix-

loop-helix-Per/ARNT/Sim domains (bHLH-PAS) proteins (Wang et al., 1995) 

containing a N-terminal bHLH domain and two PAS domains (PAS-A e PAS-B) in 

order to specifically bind to DNA sequences called hypoxia responsive elements 

(HREs) located in target genes promoters and to form the hheterodimeric complex HIF-

1α-HIF-1β, respectively (Crews 1998) (Fig. 15). At the C-terminus HIF-1α shows two 

transactivation domains named N-terminal transactivation domain (N-TAD), between 

aminoacids 531-575, and  C-terminal transactivation domain (C-TAD), between 

aminoacids 786-826 (Ruas et al., 2002). In particular, the latter interacts with specific 

co-activators i order to activate genic transcription (Lando et al., 2002). In addition, 

stability and degradation of HIF-1α subunit at different O2 tensions is regulated through 

modifications of an O2–dependent degradation domain (ODDD) (Fig. 15).  

Finally, nuclear localization sequences (NLS) have been identified both at the N-

terminal, between aminoacids 17-74, and at the C-terminal, between aminoacids 718-

721. These sequences are crucial for HIF-1α translocation into the nucleus independent 

from dimerization with β subunit (Kallio et al. 1998).  

Other proteins of the HIF family are HIF-2α, also known as endothelial PAS protein 1 

(EPAS-1), HIF-like factor (HLF), HIF-related factor (HRF) and member of the PAS 

superfamily 2 (MOP2) alternatively, (Ema et al., 1997; Flamme et al., 1997; Hogenesch 

et al., 1997; Tian et al., 1997) and the HIF-3α factor (Fig. 17).  
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HIF-2α (Hypoxia-Inducible Factor-2α) 

Subunit HIF-2, first named Endotelial PAS domain protein 1 (EPAS1) for its elevated 

expression in endothelial cells and highly vascolarized tissues, has been first identified 

through cDNA library screening in ovaric carcinoma HeLa cells. HIF-2 shows a 48% 

sequence homology with HIF-1 and high conservation level of protein domains. As its 

isoform 1, this protein belongs to the family of bHLH-PAS proteins. In the light of these 

observations it was hypothesized that HIF-2 had similar, redundant biological roles to 

HIF-1 (Kim et al. 2007). Both proteins share similar transactivation mechanisms O2–

dependent that involve both C-TAD and ODD domains. In particular, as in the case of  

HIF-1, its O2–dependent regulation is related to ODD domain hydroxilation on Pro405 

and Pro 531, which in turn drives HIF-1 to degradation via proteasome.  

 

 
 

 

Fig. 17 HIF-1α, HIF-2α, HIF-3α1, IPAS e HIF-1β structures and functional domains. 
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Anyway HIF-1 and HIF-2 exert different biological roles according to their tissutal 

expression and to N-TAD domain, which gives specificity for target genes. In fact while 

HIF-1 is ubiquitously expressedd, HIF-2 expression is strictly related to lungs 

endothelium and pneumocytes type II, cardiomyocites, duodenal epithelial cells and 

interstitial cells in the kidneys (Gordan et al. 2007).  

HIF-2 is complexed with subunit ARNT/HIF-2 in order to form the functionally 

active hheterodimeric complex HIF-2/. In the nucleus HIF-2 binds to the same 

DNA HRE sequence (5’-RCGTG-3’) as HIF-1. 

 

Biological functions 

As previously stated, HIF-1 and HIF-2 show different genic activation patterns. For 

example, it has been observed that genes coding proteins related to cell metabolism are 

almost all activated by HIF-1, while other genes like EPO are preferential targets for 

HIF-2. In particular, HIF-2 activates renal and epathic production of EPO according 

to hypoxic conditions in order to promote erithropoyesis. 

In addition HIF-2α regulates iron homeostasis. An adjustment of iron metabolism is 

needed to satisfy increased iron demand in the bone marrow. Cytochrome b (DcytB) 

reduces ferric iron (Fe
3+

) to its ferrous form (Fe
2+

), which is then transported into the 

cytosol of enterocytes by divalent metal transporter-1 (DMT1). DcytB and DMT1 are 

both hypoxia inducible and HIF-2α regulated. Absorbed iron is released into the 

circulation by ferroportin (FPN) and is then transported in complex with transferrin to 

liver, reticuloendothelial cells, bone marrow, and other organs. Transferrin (Tf) is HIF 

regulated, and hypoxia increases its serum levels. When intracellular iron levels are low, 

iron regulatory protein (IRP) inhibits HIF-2α translation and diminishes hypoxia-

induced erythropoiesis (Haase 2010).  

Several studies have also pointed out the role of HIF-2α in vascular tissues adaptation to 

hypoxia for its higher transactivation ability on the promoter of  the VEGF receptor 

(VEGF-R) gene (Tian et al., 1997). Other genes regulated only by HIF-2α are for 

example genes coding for embrional transcription factor Oct-4, cyclin D1, Twist1 and 

TGF- (Patel e Simon 2008).  

HIF-2 controls cellular proliferation is through modulation of c-Myc activity. C-Myc 

promotes cellular proliferation by regulating the expression of genes involved in cell 

cycle control including cyclins like cyclin D2 and cyclin kinase inhibitors like p21 and 

p27.
 
Unlike HIF-1α, HIF-2α promotes C-Myc-dependent activation of cyclin D2 and 
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repression of p27 in renal carcinoma cells. In particular, HIF-1α specifically disrupts c-

Myc/Max and c-Myc/Sp1 complexes, allowing more Mad/Max interaction and DNA 

binding and causing cell cycle arrest in G1/S phase. On the other hand, HIF-2α 

stabilizes c-Myc/Max complexes, in turn promoting c-Myc DNA binding at both E 

boxes and Inrs. HIF-2 may also drive cell cycle progression through the activation of 

cyclin D1.
 
Cyclin D1 is a well-characterized cell cycle regulatory protein that is 

upregulated in many cancers. Recent studies have shown a correlation between HIF-2-

mediated cyclin D1 expression and tumour growth in renal cancer cells (Loboda et al. 

2010). 

In addition HIF-2, but not HIF-1, is able to promote tumour growth in in vivo renal 

cancer models. Stable overexpression of HIF-2 in renal cancer cells 786-O expressing 

pVHL promote xenografts growth similar to 786-O deleted for pVHL, while stable  

HIF-1 overexpression has the opposit effect on cancer cells growth. Additional studies 

from the same research group also showed that only HIF-2 positively correlates with 

the grade of displasia in pre-neoplastic lesions (Maranchie et al., 2002; Raval et al., 

2005).  

The role of HIF-2 in promoting general tumourigenic mechanisms has also been 

confirmed by Covello et al., who demonstrated that subcutaneous teratomas generated 

from embrional stem cells (ESCs) ‘‘knocked in’’ for HIF-2 gene in the HIF-1 locus 

show a fourfold higher xenograft growth in comparison to wild type cells (Covello et 

al., 2005). This event is not only related to loss of HIF-1 expression as several studies 

have pointed out that teratomas generated from ESCs HIF-1
-/-  

do not show the same 

proliferative ability (Carmeliet et al., 1998). Finally, recent studies on human 

neuroblastoma models have demonstrated HIF-2 stabilization in a condition of mild, 

but prolonged, hypoxia, thereby suggesting that HIF-2 expression is able to promote 

tumourigenesis even in tumours exposed to hypoxic stress of lesser extent (Holmquist-

Mengelbier et al., 2006). 
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HIF-3α (Hypoxia-Inducible Factor-3α) 

HIF3α gene codificates for protein HIF-3, formed by 662 aminoacids with a 73 kDa 

molecular weight. HIF-3α mRNA can be detected in a variety of tissues, including the 

thymus, lung, brain, heart, kidney, liver, eye, and brain.  

N-terminal bHLH-PAS domain shows homolgy sequence with HIF-1 e HIF-2 

proteins of the 57% and the 53%, respectively, while HIF-3 C-terminal ODD domain 

shows a sequence of 36 aminoacids with a 61% identity with HIF-1 ODD. In vitro 

studies show that HIF-3 dimerizes with protein ARNT/HIF-3 similar to HIF-1 and 

HIF-2  subunits. The resulting hheterodimeric complex HIF-3/ binds to HRE 

sequence 5’-RCGTG-3’ thereby leading to activation of gene target expression.  

In addition, there is a particular HIF-3 isoform which generates from alternative 

splicing of the same mRNA as original HIF-3, first identified in murine models and 

named inhibitory PAS domain protein (IPAS).  

 

Biological functions 

Biological functions of HIF-3 are still unclear, while there are evidences about IPAS 

protein inhibitory role. IPAS do not show a C-TAD domain and does directly regulates 

genic, but it semms to act as a direct negative dominant of HIF-1 and HIF-2, as it 

binds to HIF-1α and HIF-2 N-terminal regions and prevent their binding to DNA 

(Makino et al. 2001). In addition, alternative splicing IPAS-specific is hypoxia-

inducible in murine lung and cardiac tissues, thereby showing another O2-dipendent 

post-translational modification of HIF- subunits. IPAS expression in normoxia has 

been observed just in Purkinje neural cells and in epithelial corneal cells. In the latter, 

IPAS seems to negatively regulate VEGF and angiogenic mechanisms (Makino et al. 

2002).  
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Regulation of HIFs expression 

Regulation of gene expression is similar for all proteins of the HIFs family. As for every 

protein, HIFs expression is related to a balance between expression and degradation 

mechanisms: in the case of HIF-1α, transcriptional and synthesis seem to be 

constitutional mechanisms, while degradation is O2–dependent.  

In normoxic conditions HIF-1α shows a very short half-life of about 1/2 ~ 5 minutes 

and is rapidly degradated via ubiquitin-proteasome system (Salceda et al., 1997). When 

cells are exposed to low O2 tensions, HIF-1α half-life is of about 30 minutes, the protein 

is stabilized and traslocates to the nucleus, where it binds to subunit HIF-1β forming the 

transcriptionally active HIF complex. The resulting heterodimer binds to HRE sequence of 

target genes and binds to transcriptional coactivators, thereby promoting gene expression 

(Lando et al., 2002). 

HIF-1α stability and transactivation ability are principally regulated by post-

translational modifications on HIF-1α domains, like hydroxylation, ubiquitination, 

acetylation and phosphorilation (Brahimi-Horn C et al., 2005).  

This complex regulation mechanism allows cells to quickly adapt to variations of O2 

concentration accrding to its availability. HIF-1α degradation in normoxic conditions is 

mainly mediated by ODD domain hydroxilation and the reaction is catalyzed by 

specific enzymes called prolyl hydroxylases-domain proteins (PHDs) (Huang et al., 

1998). 

 

The prolyl hydroxylase-domain proteins (PHDs)  

In normoxic conditions, newly sintetized HIF-1α is quickly hydroxylated on Pro 402 

and 564 located in the ODD domain. This reaction is catalyzed by three enzymes known 

as prolyl hydroxylase-domain protein (PHDs) 1-3. Pro 402 and 564 are highly 

conserved in HIF-2α (Pro405 e Pro530) and HIF-3α proteins and they are located inside 

a highly conserved consensus sequence, LXXLAP. Only HIF-3α shows a different 

aminoacidic sequence, LXXLHP (Bruick et al., 2001; Masson et al., 2001).  

PHDs are dioxygenases 2-oxoglutarate-dependent which use O2 and α-ketoglutarate as 

substrates and Fe
2+

 and ascorbate as cofactors. The hydroxilation mechanism is 

characterized by scission of molecular O2 and one atom is transferred on a Pro residue, 

while the other one reacts with α-ketoglutarate, thereby creating succinate and CO2 

(Bruick RK et al., 2001). In physiologic conditions O2 is a limiting substrate and this 

mediates HIF-1α O2-dependent regulation (Jiang et al., 1996).  
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All three PHD isoforms hydroxylate HIF-α in vitro, but PHD2 shows higher activity 

(attività relativa PHD2>>PHD3>PHD1) and it has been demonstrated as the master 

regulator of HIF-1α turnover in vivo (Huang et al. 2002). According to these data, 

PHD2 gene silencing induces HIF-1α stabilization in normoxia, while PHD1 e PHD3 

inhibition does not show same effect (Berra et al. 2003). In addition, hypoxia induces 

both PHD2 and PHD3 expression, but it does not seem to have effects on PHD1 

(Epstein et al. 2001). This could represent a mechanism of regulation of HIF-1α activity 

induced by HIF-1α itself. According to this hypothesis, PHD2 is mainly located in the 

cytoplasm, while PHD1 is mainly expressed in the nucleus and PHD3 in both 

compartments. Anyway, PHD2 is able to translocate to the nucleus, thereby 

contributing to HIF-1α degradation in both nucleus and cytoplasm (Metzen et al. 2003).  

Pro-402 and Pro-564 hydroxylation is a key event for HIF-1α degradation because it 

allows the interaction between oncosuppressor von-Hippen-Lindau (pVHL) protein and 

hydroxylated HIF-1α ODD domain (Ivan et al. 2001). pVHL is a component of the E3 

ubiquitin-ligase complex which drives protein digestion via proteasome (Cockman et 

al., 2000). In fact pharmacological inhibitors of proteasome activity and/or mutations of 

E1 enzyme stabylize HIF-1α, showing the importance of ubiquitination and proteasome 

in normoxic HIF-1α degradation (Huang et al. 1998; Salceda et al. 1997). After 

hydroxylation and binding to pVHL protein, the complex associates to proteins elongin 

C, elongin B cullin-2 and Rbx-1, forming the complex VCB-Cul2 E3 ligase.  HIF-1α 

interaction with this multiproteic complex induces HIF-1α poliubiquitination, leading to 

HIF-1α proteosomic digestion (Kamura et al. 2000).  

pVHL is an oncosuppressor protein whose mutations are involved in development of 

several types of cancer (Iliopoulos et al., 1998; Schoenfeld et al., 1998). This protein 

was first characterized in the von Hippen-Lindau syndrome, hereditary disease with 

development of multiple tumours in several body tissues. Cells with mutated pVHL 

show more stable and active HIF-1α e HIF-2α in normoxic conditions, thereby causing 

an overexpression of hypoxia-induced genes and promoting cancer progression 

(Iliopoulos et al. 1996). The complex pVHL- E3 ligase is ubiquitary expressedd  in 

different tissues and it is preferentially located in the cytoplasm, but like PHD2 is able 

to translocate to the nucleus, promoting HIF-1α degradation in both compartments in 

normoxia (Berra et al. 2001). On the contrary, low O2 tension directly inhibits PHDs 

activity because the consequent alteration of the mitochondrial chain transport leads to 

an excess of reactive oxygen species (ROS). ROS in turn change the oxidation state of 
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iron inside PHDs active site from Fe
2+

to Fe
3+

. Subsequently ferric iron is no longer 

active (Epstein et al. 2001; Simon 2006). In this condition, HIF-1α is no longer 

hydroxylated and led to degradation, but stabilized and accumulated (Fig. 18). In 

addition, PHD activity can be regulated by intracellular Ca
2+

 concentration (Berchner-

Pfannschmidt et al. 2004) and E3 ubiquitin-ligase Siah1 e Siah2 enzymes, whose 

trascription is hypoxia-induced (Nakayama e Ronai 2004). 

Inside the HIF-1α ODD domain, Lys 532 can be acetylated by an acetyl-transferase 

enzyme named arrest-defective 1 (ARD1) (Jeong et al. 2002). Lys532 acetylation 

promotes HIF-1α-pVHL interaction, thereby destabilizing HIF-1α. According to the 

importance of this post-translatinal modification, Lys 532 mutation in Arg 532 induces 

HIF-1α stabilization (Tanimoto et al. 2000). In addition, when cells accumulate butirric 

acid, general inhibitor of deacetylases, there is an increase in HIF-1α acetylated state 

leading to significative reduction of expression (Kim et al., 2001). As acetyl transferases 

is not influenced by O2 tension, ARD1 can be active and acetylate HIF-1α in an O2-

independent manner, even if same studies have shown that ARD1 mRNA is less 

expressed in hypoxia, thereby leading to a reduction of HIF-1α acetylation in 

comparison with normoxic condition (Jeong et al. 2002). 

 

Factor inhibiting HIF (FIH) 

Despite post-translational modifications, HIF-1α stabilization alone is not enough to 

guarantee its activity as transcriptional activator. 

Another key mechanism for HIF-1α activity regulation is modulation of transactivation 

domains N-TAD and  C-TAD. These two domains are separated from each other by an 

inhibition domain (ID) located between aminoacids 576-785, which downregulates their 

function in presence of high O2 tension (Jiang et al., 1997-b).  

Regulation of transcriptional activity is mediated by a molecular mechanism different, 

but correlated to the one that influences HIF-α stability in hypoxia. In normoxic 

condition, hydroxylation of Asn803 in HIF-1α and Asn851 in HIF-2α induces a steric 

inhibition of interaction between HIF-1α and its coactivator CBP/p300, impairing its 

recruitment that is necessary for HIF-1α activity (Sang et al., 2002). In hypoxic 

condition there is not Asn hydroxylation, so HIF-1α can associate to CBP/p300 

throucgh C-TAD domain in order to activate target genes transcription (Lando D et al., 

2002).  
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This molecular regulation is mediated by an asparagyl-hydroxylase enzyme named 

factor inhibiting HIF-1 (FIH-1) (Mahon et al., 2001). As PHDs, also FIH-1 is a 

dyoxygenase 2-oxogluarate-dependent and has Fe
2+

 and ascorbate as cofactors and O2 

as a substrate, making this enzyme a proper oxygen levels sensor. FIH-1 is primarily 

located in the cytoplasm, but there is also a little nuclear fraction whose transcription is 

O2-dependent and that regulates HIF-1α activity rather than its stability (Metzen et al., 

2003). According to this, structural analysis have demonstrated that, when HIF-1α is 

complexed to CBP/p300, Asn 803 is buried inside the proteic complex in order to 

prevent its hydroxylation. In fact, mutation of Asn 803 with Ala 803 allows interaction 

between HIF-1α and its coactivators even in presence of high O2 tension (Dames et al., 

2002; Freedman et al., 2002; Lando et al., 2002). Although interaction of FIH-1 with 

pVHL is not required for its activity, it has been demonstrated that pVHL binds to FIH-

1, forming a complex with HIF-1α (Mahon et al., 2001). This allows hystone 

deacytilases recruited by pVHL to interfere with the transcriptional process, thereby 

promoting FIH-1 inhibitory acivity on HIF-1α (Hewitson et al., 2002; Sang et al., 2002) 

(Fig. 18). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18 Regulation of HIFs expression in normoxia and hypoxia. 
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In the same way as PHD, FIH-1 activity depends not only upon O2 and 2-oxoglutarate 

availability, but also requires cofactors Fe
2+

 and ascorbate, while its transcription is O2-

independent (Lando et al., 2002; Metzen et al., 2003). FIH-1 structural analysis have 

pointed out that FIH-1 requires formation o fan omodimeric complex in order to bind its 

substrates and to perform its catalytical activity. As O2 availability is a limiting factor 

for FIH-1 activity, it has been hypothesized that this enzyme has a role in sensing 

extracellular O2. 

In conclusion, O2-dependent HIF-1α functional regulational depends on “two steps” 

model: i) O2-dependent prolyl-hydroxylation in the ODDD domain in order to prevent 

association with the multiproteic complex E3 ubiquitin ligase and subsequent 

proteasomal degradation; ii) O2-dependent inhibition of Asn hydoxylation in the C-

TAD domain to allow interaction with coactivator with CBP/p300 and functionally 

active complex formation (Fig. 18). 

 

Sirtuins (SIRTs) 

Sirtuins are a family of hystone-deacetylases enzymes NAD
+
-dependent wich have 

several roles in regulating genic transcription, DNA repair and cell metabolism. These 

enzymes respond to variations of the NAD
+
 oxidized/ NADH reduced ratioand 

represent important redox intracellular sensors (Denu, 2003). In mammalians there are 

seven homologous of yeast Sir2 protein: SirT1, 6 e 7 proteins are located in the nucleus, 

SirT2 is expressed in the cytoplasm, while SirT3, 4 e 5 are strictly located in the 

mitochondria (Haigis e Guarente 2006).  

SirT1 has been recently described as a negative regulator of HIF-1α activity through its 

direct acetylation. This regulation is independent from intracellular levels of NAD
+
 e 

NADH, as when hypoxia increases NADH level, HIF-1α deacetylation SirT1-mediated 

is downregulated (Lim et al. 2010). 

SirT1 also regulates HIF-2α transcriptional activity through deacetylation. In particular, 

it has been demonstrated that SirT1 directly binds to HIF2α, but not to HIF1α, and 

deacetylates specific lysin residues. For example, Sirt1 co-localizes with HIF2α at the 

Epo gene promoter, thereby stimulationg HIF2α pro-transcriptional activity and 

promoting epathic and renal EPO production both in in vitro and in vivo models. These 

data demonstrate that EPO production is dependent from both O2 availabilty and 

cellular redox state (Dioum et al. 2009) (Fig. 19). 
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Fig. 19 HIF-2α stabilization by SirT1 activity. 

 

 

Recently it has been demonstrated that also SirT6 can inhibit HIF-1α-mediated genic 

transcription through direct binding to HREs sequences and subsequent hystone 

deacetylation in promoters of genes related to cell metabolism. According to that cells 

Sirt6−/− show incresed expression of glycolitic enzymes and increased glucose 

consumption, both in vitro and in vivo models (Zhong et al. 2010). 

In the last years also SirT3 has been subject of numerous studies. In particular, Kim and 

collegues have demonstrated that this protein acts as a mitochondrial oncosuppressor 

gene. In a model of embrional murine fibroblasts ingegnerized to express oncogenes 

RAS and Myc, total deletion of SirT3 is sufficient to promote neoplastic transformation 

and tumour development in murine models. In addition, transformed cells show a 

glycolitic metabolic behaviour, with increased glycolisis and oxidative stress and 

oxidative phosphorilation inhibition. According to that, excess ROS production due to 

loss of SirT3 expression promotes DNA damage process and thus accelerates cancer 

progression (Kim et al. 2010). 

The role of SirT3 as oncosuppressor gene has been confirmed by Bell and collegues 

colleghi who have pointed out that  loss of SirT3 promotes murine embrional fibroblasts 

proliferation in hypoxic condition. Cells Sirt3
−/− 

show
 
higher ROS levels compared to 

control cells, thereby favouring HIF-1α stabilization throught inhibition of PHDs 
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activity. These data have been then confirmed reverting HIF-1α stabilization following 

both antioxidants administration like N-acetyl-cysteyn (NAC) and SirT3 (Bell et al. 

2011) (fig. 20).  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20 Regulation of  HIF-1α stabilization by SirT3. 

 

 

Phosphorilation, nitrosation and sumoilation of HIF-α 

An other molecular mechanism that regulates HIF-1 stability in a PHDs independent 

manne ris represented by molecular chaperon Hsp90, which acts independently from 

pVHL expression and O2 tension (Isaacs et al., 2002).  

In addition, it has been described a HIF-1α regulation through direct phosphorilation by 

mytogen-activated protein kinases (MAPK), where both Erk1/2 and p38 phosphorilates 

both HIF-1α and HIF-2α, as observed in in vitro and in vivo models (Richard et al., 

1999). This post-translational modification does not affect HIF-1α stability or its DNA 

binding ability, but positively regulates its transcriptional activity. The most accepted 

explanation for this event is that HIF-1β subunit preferentially binds to phosphorilated 

HIF-1α subunit, thereby leading to increased HIF-1α activation and target genes 

transcription like VEGF and EPO (Richard et al., 1999).  

Other described post-translational modifications regulating HIF-1α are S-nitrosation on 

Cys800, which promotes direct interaction with coactivator CBP/p300, thus promoting 

HIF-1α transcriptional ability, and SUMOilation, which affects both degradation and 

protein stability of  HIF-1α (Yasinska et al., 2003).  
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In particular, hypoxia promotes expression of the small ubiquitin-like modifier-1 

(SUMO) protein, thereby favouring HIF-1α sumoilation (Shao et al., 2004). At the 

beginning it was hypothesized that this modification could improve protein stability, 

while recent observations have demonstrated that this molecular mechanism promotes 

HIF-1α degradation by promoting HIF-1α binding to pVHL-E3 ligase complex. This 

regulatory mechanism is completely independent from PHDs hydroxylation state.  

In hypoxic condition, HIF-1α degradation SUMO-mediated is inhibited by expression 

of SUMO1/sentrin specific peptidase 1 (SENP1), a nuclear protease that removes the 

SUMO protein from HIF-1α. As a demonstration of the importance of this mechanism 

for HIF-1α stabilization, cell lines knock-out for SENP1 gene show reduced HIF-1α 

expression. According to these observations,  SENP1
-/-

 murine fetus showed a severe 

fetale anemia caused by failing regulation of  EPO expression, thereby showing  SENP1 

physiological role in regulating HIF-1α (Cheng et al., 2007). 

 

Regulation of HIF activity and expression by growth factors 

HIF-1α expression induced by growth factors stimulation differ from HIF-1α hypoxia-

induced expression because it is not associated to a decreased degradation, but to an 

increased production through activation of phosphatydil-inositol-3-kinase (PI3K) and 

MAPK pathways (Fukuda et al., 2002; Fukuda et al., 2003; Laughner et al., 2001; 

Zhong et al., 2000). According to that, cell stimulation with molecules like the 

epidermal growth factor (EGF), fibroblast growth factor 2 (FGF-2), insulin and insulin-

like growth factors 1 and 2 (IGF-1-2) and IL-1β promote HIF-1α expression, DNA 

binding and target genes activation even in normoxic condition (Feldser et al 1999; 

Hellwig-Burgell et al 1999; Laughner et al 2001; Zelzer et al 1998). Binding of these 

factors to their tyrosine-kinase receptors activates several molecular pathways like te 

MAPK and PI3K ones.  

MAPK pathway leads to activation of both ERK1-2, also named p42/p44 MAPK, and 

p38 MAPK, following previous activation of  Ras/Raf-1/MEK-1/ERK1-2. It has been 

demonstrated that HIF-1α is phosphorilated by p42, p44, p38α and p38γ in vitro, but 

aminoacids involved in this modifications have not been discovered yet (Richard et al 

1999; Sodhi et al 2000).  

PI3K pathway directly activates Akt kinase (protein kinase B), which is related to 

several cellular mechanisms like apoptosis, cell cycle regulation and proteic translation 

(Vivanco e Sawyers 2002). One of Akt target proteins is FRAP, protein associated to 
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rapamicyn FKBP12 (mTOR) which activates ribosomal protein p70
S6 

kinase (p70
s6k

) 

and promotes mRNA translation with polipyrimidinic sequences at 5' end (Brown et al 

1995; Zhong et al 2000). In addition, Akt also phosphorilates 4E-binding protein (4E-

BP), known transcriptional regulator, its hyperphosphorilation leading to an increased 

proteic translation. This molecular pathway is negatively regulated by tumour 

suppressor phospatase end tensin homologue (PTEN) coding for a phosphatase that, 

dephosphorilating  PI3K substrates, downregulates all PI3K-AKT-FRAP pathway (Fig. 

21). Differing from hypoxia which upregulates HIF-1α expression in all cell types, 

growth factors stimulation induces HIF-1α expression just in certain cell lines. 

 

 

  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 21 Molecular pathway of HIF-1α  

expression growth factors-induced. 
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It is now well understood how inflammation represents one of the key events of cancer 

development. Recent studies have thus suggested the role of HIF-1α in regulating 

inflammatory mechanisms, showing that IL-1β positively regulates normoxic HIF-1α 

expression and promotes the HIF-1α-dependent VEGF production through activation of 

the nuclear factor-κB (NF-κB) molecular pathway (Jung et al. 2003). Anyway, IL-1β 

also mediates HIF-1α expression through a post-translational mechanism that blocks the 

pVHL-dependent HIF-1α degradation, thereby leading to HIF-1α stabilization (Jung et 

al. 2003). According to that, HIF-1α is activated in normoxia through genetic alterations 

of O2-related signaling pathways and pVHL has a central role in regulating HIF-1α  

transcriptional activity (Rankin and Giaccia 2008).  

Cicloxygenase-2 (COX-2)-dependent NF-κB expression mediated by IL-1β is one of 

the HIF-1α positive effectors genes. In fact, it has been demonstrated that IL-1β 

positively regulates HIF-1α through activation of the classical inflammatory pathway 

NF-κB and COX-2-mediated that leads to VEGF activation, tumour and metastasis 

growth (Yung et al. 2003). Despite reduction of IL-1-mediated HIF-1α induction after 

administration of COX-2 inhibitors, prostaglandin E2 (PGE2), pysiological product of  

COX-2 activity, promotes  HIF-1α expression in a dose-dependent manner.  

In conclusion, in hypoxic condition, PHDs and FIH are inactive and HIF-1α can 

positively modulate expression of its target genes.  

 

Reactive oxygen species (ROS) 

Reactive oxygen species (ROS) are O2 partially reduced metabolites, showing higher 

reactivity than O2 itself. Major ROS produced within the cell are superoxide anion 

(O2
־
·), hydroxyl radical (OH·), nitrogen monoxide (NO) and oxygen peroxide (H2O2). 

Thanks to their higher reactivity, excessive amounts of these molecules can severly 

impair cell functions. Physiologically, high ROS production is first related to cells 

involved in immunitary defense, as transient ROS production promotes expression of 

chemokines, cytokines and endothelial/leukocytic adhesion molecules, thereby 

activating anti-inflammatory response like elimination of bacterial/viral exogen 

pathogenic agents (Remick and Villarete 1996). As production of ROS can be highly 

toxic for cells and neighboring tissues, their production must be severly regulated 

through various molecular mechanisms. 

Several studies have then showed that ROS can have an important role also in cells not 

related to immunitary system. In particular, it has been hypothesized that ROS can act 
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as second messengers in almost all cellular pathways like genic expression, 

celldifferentiation, apoptosis, proliferation and cell adhesion (Poli et al 2004; Aslan and 

Ozben 2003; Chiarugi 2005; Chiarugi 2001; Giannoni et al 2005). On the other hand, 

aberrant signaling ROS-dependent leads to pathologic events like cell cycle 

disregulation (Boonstra and Post 2004), apoptosis and senescence (Gourlay and 

Ayscough 2005; Johan et al 2005), ischemic/reperfusion events (Otani 2004) and 

diabetis-related complications (Niedowiez and  Daleke 2005).  

Cellular energetic metabolism is based upon ATP production through the activity of the 

mitochondrial electron tran sport wich leads to complete O2 reduction into H2O by 

accepting electrons and H
+ 

ions. During oxidative phosphorilation in the mitochondrial 

inner membrane, electrons are transferred from molecular carriers like nicotinammide 

adenin dinucleotide (NADH) or flavinadenin dinucleotide FADH2 to the electron 

transport chain, compsed by three enzymatic transmembrane complexes which 

contribute to produce a transmembrane proton electrochemical gradient. If protons flow 

back through the membrane, they enable mechanical work, such as rotating 

bacterial flagella. ATP synthase, an enzyme highly conserved among all domains of 

life, converts this mechanical work into chemical energy by producing ATP from ADP 

and Pi (inorganic phosphate) (fig. 22).  

During these complex series of redox reactions, a single electron can be directly 

transferred to O2, thereby producing O2
־
· in the complex I (NADH/ubiquinone 

oxidorecuctase) and complex III (ubiquinol/cytocrome c oxidoreductase) (fig. 16).  The 

electrons chain transport is a highly efficient mechanism and usually consume the 

majority of O2 available. Anyway, it has been clearly demonstrated that almost 1-2% of 

all transported electrons are lost by transmembrane complexes, thereby generating O2
־
· 

through reactions catalyzed by Q coenzyme and ubiquinone and related complexes 

(Forman and Boveris 1982). According to their role in aerobic cellular respiration, 

mitochondria are major ROS producers in vivo (Boveris e Chance 1973).  

Another electron chain transport is located on the endoplasmic reticulum, where O2
־
· is 

produced from nicotin amide adenin dinucleotide-3-phosphate (NADPH) cytocrome 

P450 oxidoreductase (Cross e James 1991). Anyway, O2
־
· can be generated also from 

ipoxantine/xantine oxidase, NADPH oxidase, lipoxigenase (5-LOX) and COX enzymes. 

Also radiant energy absorption can generate ROS as the ionizing radiations like UV and 

γ rays are able to hydrolyze H2O into OH· and radicalic hydrogen (H·) (fig. 22). 
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HIF-α proteins can be stabilized in a ROS-dependent manner. Several evidences have 

showed that inhibition of mitochondrial ROS productions strongly impairs HIF-α 

stabilization in hypoxic condition (Chandel et al 1998; Weinberg and Chandel 2009). In 

agreement with these observations, molecules used in therapy can promote O2 

redistribuction in the cytoplasm, outside the miotchondria, thereby leading to increased 

PHDs activity even in conditions of mild hypoxia (Hagen et al 2003; Vaux et al 2001). 

In addition, genetic studies demonstrate that complex III disruption, cytocrome C and 

Rieske Fe-Cu protein block HIF hypoxic stabilization (Mansfield et al 2005; Guzy et al 

2005), while disruption of complex IV do not has the same result (Brunelle et al 2005). 

These results suggest that cellular respiration is not required for HIF stabilization, while 

ROS generated from the electron transport chain play a fundamental role in this event. 

ROS-dependent HIF-1α stabilization is mainly related to modulation of PHDs activity, 

as they need oxygen, oxoglutarate and Fe
2+

 in order to fully sustain their activity. In 

fact, it has been demonstrated that PHDs regulation Fe-dependent is mediated by ROS 

in a model of junD
 -/-

 cells, characterized by a condition of chronic oxidative stress 

(Gerald et al., 2004). According to this model, ROS production interferes with Fe
2+ 

availability in the prolyl-hydroxilasic cathalitic site, thereby impairing PHDs activity in 

normoxic conditions. In fact, high H2O2 levels promote Fe
2+

 oxidation to Fe
3+

, with a 

consequent increase of Fe
3+

,
 
inactive intracellular PHDs percentage. Subsequently, 

Fig. 22 Molecular pathways of ROS production.  
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exogenous addicition of Fe
2+

 in junD
-/-

 cells strongly reduces HIF-1α levels. The same 

effect is obtained after admnistration of reducing agents like cysteine or gluthatione, or 

antioxidants molecules like ascorbate, whose physiological concentrations increase 

PHDs activity and thus HIF-1α degradation, reverting the oxidation state of the atom of 

Fe in PHDs catalytic site (Knowles et al., 2003).  

Like PHDs, also FIH activity is highly O2, oxoglutarate and Fe
2+ 

-dependent, thus also 

FIH is highly sensitive to ROS-induced Fe
3+

 oxidation state, thereby promoting HIF-1α 

accumulation. In addition it has been showed that some glucose metabolites like the 2-

oxiacids can directly interact with PHDs oxoglutarate-binding domain, impairing their 

enzymatic activity. In addition, these molecules also change the catalytic Fe oxidation 

state, as this inhibitory effect 2-oxiacids-mediated is fully reversed after exogenous 

administration of Fe
2+

,ascorbate and/or reducing agents (Lu et al., 2005) (Fig. 23). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 23 HIF-1α stabilization thorugh ROS-mediated PHDs inactivation. 

 

 

Anyway, molecular mechanism by which hypoxia causes an increase in ROS 

production has not been clearly understood yet. From a thermodynamic point of view it 
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seems unlikely redudec substrate concentration would cause an increase in the rate of 

the electron transport chain, thus it has been hypothesized that other factors may interact 

with these mechanism.  

According to the ‘vectoral transport’ hypothesis, ROS lacking from complex III can be 

released to either the matrix side of the membrane or towards the intermembrane space 

(Muller et al. 2004). Thus O2 dissolved in the lipid bilayer might affect the ROS 

balance, thereby leading to higher oxidants release to the intermembrane space direction 

than to the matrix side. Although the specific mechanism responsible for this shift has 

not been elucidated yet, an oxygen-dependent change in the direction of ROS release 

could explain oxidant stress increases in the cytosol during hypoxic conditions. 

Interestingly, such a shift could theoretically rely on an increase in cytosolic ROS 

signalling even if overall ROS production were decreased. 

The ‘semiquinone lifetime’ hypothesis proposes that O2 interaction with protein or 

lipids at complex III could regulate the lifetime of ubisemiquinone at the Qo or Qi sites. 

Reduced electron removal from ubisemiquinone by the b cytochromes during hypoxia 

could subsequently promote superoxide production even under lower O2 concentrations. 

Any small molecule or drug that alters the kinetics of electron removal from the 

semiquinone to the b cytochromes can potentially affect superoxide generation (Guzy e 

Schumacker 2006). 

Finally, the ‘oxygen access’ hypothesis suggests that hypoxia might increase the access 

of O2 to the semiquinone moiety at complex III. According to this hypothesis, if the 

molecular structure of one or more proteins in complex III were affected by the level of 

oxygen in the membrane, the ability of O2 to attack the semiquinone were improved 

under low oxygen conditions and this could lead to an increase in ROS production, even 

under decreased O2 availability. 

Anyway, all these models require a modification of lipid–protein structure mediated by 

molecular oxygen, or a change in the concentration of oxygen, thereby increasing the 

transfer of an electron from ubisemiquinone to O2 despite the lowered concentration of 

oxygen itself (Guzy e Schumacker 2006). 
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HIFs target genes 

As stated in previous paragraphs, HIF-1α is the master regulator of processes related to 

cellular hypoxic response like erythropoiesis, angiogenesis and glycolitic metabolism. 

In hypoxic conditions, complex HIF-1α/β interacts in the nucleus with its coactivators 

like  p300 or CBP (Ruas et al., 2005) and regulates genes transcription after binding to 

HREs DNA sequences (Kasper et al., 2005; Kasper et al., 2006).  

Given the role of HIF-1α in mediating also cancer-related pathological processes, the 

study of genes and molecular pathways activated by HIF is becoming more and more 

important in order to find always new therapeutic anti-cancer therapies (Fig. 24).  

 

 

 

 
 

 

Fig. 24 HIF-1 target genes: a complex network. 
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Angiogenesis 

Angiogenesis is a key process for tumour growth and dissemination and is characterized 

by recruitment and proliferation of endothelial cells from the stroma to the tumour 

microenvironement. The ability of cancer cells to metastatize distant tissues is 

positively correlated to tumour angiogenic potential, thereby leading to formation of 

new vessels in order to promote cancer cells dissemination in the bloodstream (Hill 

1990; Weidner 1993; Weidner et al 1991). At the same time tumours also exploit 

lymphoangiogenesis to favour tumour growth also through lymphatic vessels. In 

addition, new vessels can originate from endothelial and tumour cells or from tumoural, 

non-endothelial cells through a process known as “vascular mimicry”. 

VEGF is the most powerful and selective endothelial mitogenic agent. It induces a 

quick and complete angiogenic response through interactions with its receptors, 

VEGFR-1/Flt-1 e VGFR-2/Flk-1/KDR, expressedd on pre-existent endothelial cells, 

thereby leading to cells proliferation and migration (Leung et al 1989). High VEGF 

levels are present in several types of solid tumours and are positively correlated to 

increased cancer vascularization, metastatic ability, resi stance to terapie and bad 

prognosis (Toi et al 1996; Takahashi et al 1995; Toi et al 1994).  

As already stated, hypoxia induces VEGF production through several molecular 

mechanisms like increased protein and mRNA stability. According to that, HREs have 

been identified in both 3' and 5' regions flanking the VEGF human gene (Michenko et al 

1994; Forsythe et al 1996; Levy et al 1996; Mizukami et al   2004), and its expression 

induced by hypoxia involves both HIF-dependent (Forsythe et al 1996; Shinojima et al 

2007) and HIF-independent (Mizukami et al. 2004) molecular pathways. Anyway, 

VEGF expression and tumour vessels density in vivo are primarly correlated to a HIF-

dependent mechanism wich can be highly influenced by several factors like genic 

mutations and the peculiar characteristics of tumour microenvironment (Carmeliet al 

1998).  

Several studies have pointed out how several genes correlated to different phases of 

angiogenesis are more expressedd under low O2 tension and thus are controlled by HIF-

1α expression (Levy et al., 1995; Bunn e Poyton, 1996; Forsythe et al., 1996; Berra et 

al., 2000; Giordano e Johnson, 2001; Semenza, 2002). In fact HIF-1α  can regulate 

expression of both pro-angiogenic cytokines/growth factors and of their respective 

receptors. Among them the most important are stromal-derived factor-1 (SDF-1) and its 

receptor CXCR4 (Staller et al., 2003), placentar growth factor (PLGF), angiopoietin 1 
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and 2, platelet-drived growth factor-B (PDGF-B), VEGF and its receptor VEGF-R1 also 

known as Flt-1 (Fms-like tyrosine kinase-1), which binds both PLGF and VEGF 

(Gerber et al., 1997; Okuyama et al., 2006). Those ligands directly interact with their 

receptor expressed on the membrane of endothelial cells and endothelial progenitors, 

smooth muscle cells, mesenchimal stem cells and other cells bone marrow-derived 

(Bosch-Marce et al., 2007; Ceradini et al., 2004; Forsythe et al., 1996; Kelly et al., 

2003; Simon MP et al., 2008), thereby promoting their recruitment and 

proliferation/vessels organization in the avascularized tumour areas (Neufeld et al., 

1999; Jośko et al., 2000; Conway et al., 2001).  

Expression of VEGF and other pro-angiogenic factors induces increased vascular 

density, facilitating O2 and nutrients diffusion in all cancer areas. In addition, HIF-1α 

activates genes related to control of vessels muscolar tone like nitric oxyde syntase-2 

(NOS-2) (Melillo et al., 1995), heme-oxygenase 1 (Lee et al., 1997), endothelin 1 (ET1) 

(Hu et al., 1998), adrenomedulin (ADM) (Nguyen e Claycomb, 1999) and α1B 

adrenergic receptor (Eckhart et al., 1997). Finally, in hypoxic condition, there is also a 

general upregulation of all proteins involved in ECM degradation and vascular 

maturation like MMPs (Ben-Yosef et al., 2002), plasminogen activator, its receptors and 

its molecular inhibitors (PAIs) (Kietzmann et al., 1999). 

 

Invasion and cell motility 

After acquiring a metastatic phenotype, neoplastic cells are still physically separated 

from neighbouring tissues by basal membrane and ECM. In order to avoid this barrier, 

cells need to digest matrix proteins through the expression of protelytic enzymes like 

the MMPs family proteins. These enzymes degrade all the main components of 

interstitial matrix and basal membrane, thereby allowing cancer cells penetration and 

diffusion in distant tissues (Brinckerhoff e Matrisian 2002).  

MMPs are zinc-dependent endopeptidases ubiquitously expressed in human tissues and 

associated to cancer metastatic ability. They are divided into five groups according to 

their substrate: matrilysines, collagenases, stromalysins, gelatinases and membranes 

MMPs. These enzymes are also classified according to their structures in eight groups, 

five of them are secreted and three are bound to the cell membrane.  

MMPs are sintethyzed as pre-pro-peptides containing both zinc and calcium ions. Their 

structures contain an amino-terminal pre-peptide, or signal peptide, of 17-29 aminoacids 

which directs the protein to the endoplasmic reticulum; a catalytic domain of 170 
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aminoacids with a zinc binding domain; a pro-peptide of 77-87 aminoacids containing a 

thiolic group (SH) which interacts with zinc and keeps the enzyme into an inactive 

form. In the majority of the MMPs, the cysteine residue is in the conserved 

sequence PRCGxPD. Some MMPs have a prohormone convertase cleavage site Furin-

like as part of this domain, which, when cleaved, activates the enzyme.  

Recent studies have demonstrated that the role of MMPs in cancer development is way 

more complex than the simple degradation of matrix proteins (Hojilla et al 2003). 

According to that MMPs act on several types of substrates including growth factors 

receptors, adhesion molecules, chemokines, cytokines, apoptotic ligands and angiogenic 

factors, thereby influencing most of the cancer progression phases.  

MMP-2 and MMP-9, also named gelatinase A and B respectively, are the major MMPs 

implicated in tumour progression as key enzymes for collagen IV digestion, wich is the 

main compnent of ECM (Stamenkovic 2003). Sperimental evidences suggest that there 

is a strong correlation between MMPs increased expression and tumour cells invasive 

ability (Vihinen e Kahari 2002) and studies conducted on a pulmonar epithelial cells  

revealed that they are upregulated in hypoxia in a HIF-dependent manner (Leufgen et al 

2005). 

ECM digestion also requires activity of uPA/uPAR complex where uPA is activated 

after interaction with its receptor uPAR. Active uPA turns plasminogen in plasmin 

through proteolytic cut. Plasmin is directly involved in ECM proteins degradation and 

activation of several growth factors and MMPs which in turn contribute to further 

degrade ECM. In addicition, uPAR can regulate other memebrane proteins like 

integrins, growth factor receptors and receptors coupled with G protins in order to 

promote cell migration (Yebra et al 1996). For example, uPAR acts as receptor for 

vitronectin to promote cell adhesion to ECM (Waltz e Chapman 1994), while 

interaction between uPAR and β1 and β2 integrins impairs cell adhesion (Wei et al 

1996). In hypoxic condition increased uPAR mRNA expression results from an 

increased mRNA stability and higher activity of its gene promoter (Maity et al 2000). In 

addition, experimental evidences have pointed out a positive correlation between HIF 

and uPAR expression as HREs are located in the upper domain of uPAR promoter 

sequence (Graham et al 1998) and both uPAR expression and in vitro invasive ability of 

colon carcinoma cells are increased by HIF-1α overexpression and thus impaired by its 

gene silencing (Krishnamachary et al 2003).  
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Anyway, there are also several pathways HIF-independent involving inhibition of NO 

production, activation of soluble guanilate cyclase and protein kinase G cGMP-

dependent (PKG) (Postovit et al. 2002) or activation of MAPK like ERK1/2 and p38 

(Yoon et al 2006). In order to escape from a hostile hypoxic microenvironment, cancer 

cells exploit migrating strategies in order to move toward higher availabilty of oxygen 

and nutrients. For exemple, HIF-1α activation correlates with metastatization through 

direct regulation of key factors governing tumor cell metastatic potential, including 

Snail-dependent downregulation of E-cadherin expression and loss of cell-to-cell 

contact, lysyl oxidase (LOX) activation, and upregulation of both stromal-derived factor 

1 (SDF-1) and its receptor CXCR4, thereby directly regulating metastatic cancer cells 

directional migration (Rankin and Giaccia, 2008). In addition, some factors like HGF 

play a mandatory role in mediating HIF-1α-dependent cancer cells invasiveness. 

HGF is a cytokine secreted from stromal cells which binds to its high specific receptor, 

coded by the oncogene MET, which expression is induced in hypoxia in several types of 

cencers. Several studies have demonstrated that hypoxia has a major role in promoting 

MET expression, leading to higher metastatization in vivo and higher invasivity in vitro. 

Hypoxic upregulation of MET promoter, its expression and phosphorilation have been 

observed in both cell lines derived from hypoxic and normal tissues, even if its 

expression and HGF production is increased by interaction between cancer cells and 

hypoxic tissues-derived fibroblasts (Ide et al 2006). In addition, it has been 

demonstrated that hypoxic MET expression is related to HIF-1 binding to two sites 

located at the 5' terminus of the non coding region of MET promoter Met (Pennacchietti 

et al 2006). According to that, the synergic effect between hypoxia and HGF production 

on cancer cells invasive ability is impaired after HIF-1 gene silencing  (Hara et al 2006). 

A positive feedback regulatory mechanism contributes in sustaining and amplifing MET 

overexpression in solid tumours, as MET molecular pathways induce both HIF-1α and 

MET itself activity (Boccaccio et al 1994; Tacchini et al  2001; Tacchini et al 2003). 

Met is a tyrosine kinase receptor first expressedd as a single chain precursor, which is 

then cleaved at a furine site thereby forming an extracellular, highly glycosilated α 

subunit, and a  β subunit with an extracellular portion, that interacts with the ligand, a 

transmembrane domain and an intracellular portion, containing a catalytic site. The 

subunits are linked by a disolfure bond. 

Met extracellular domain contains an homology region with the semaphorin, called 

Sema domain, that includes α subunit and the N-terminus of the β chain, an affine-Met 
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sequence rich in cysteines (MRS) followed by a motif made by repetition of prolyn-

glycin (G-P) and four structures immunoglobulin-like (Birchmeier et al 2003).  

The intracellular domain contains three regions:  

- a iuxtamembrane sequence with a Ser 985 that can be phosphorilated by 

PKC or Ca
2+

-calmoduline-dependent kinases in order to regulate receptor 

activity (Gandino et al 1994)  

- Tyr 1003 that can be bound by ubiquitin ligase Cbl, leading to 

poliubiquitination, endocytosis and degradation of the receptor (Peschard 

et al 2003).  

- Tyrosine kinasic activity domain wich, following receptor activation, is 

transphosphorilated on Tyr 1234 and 1235 and a C-terminal region that 

contains Tyr 1349 e 1356 which are inserted into the multisubstrate 

docking site, capable of recruiting downstream adapter proteins with Src 

homology-2 (SH-2). These two Tyr are necessary and sufficient to 

activate signal transduction both in vitro (Ponzetto et al.,1994) and in 

vivo (Zanetti et al 1998).   

Met ligand is HGF, or scatter factor (SF), secreted by fibroblasts in vitro or secreted by 

platelets, as a potent epathic mitogenic agent, of patients suffering from acute epathic 

insufficiency (Nakamura et al 1989; Zarnegar e Michaloppoulos 1989). Met expression 

is usually related to epithelial cells, while HGF expression is restricted to mesenchymal 

cells. Following stimulation with HGF, Met activation mediates several biologic effects 

both in vivo and in vitro collectively known as “invasive growth”. In vivo invasive 

growth HGF-induced involves cellular spreding, loss of cell-to-cell contact, acquisition 

of a motile phenotype, also named scatter, that promotes cell migration towards a 

different microenvironment. During this process cells lose their adherent junctions that 

preserve their monolayer organization, change their polarization after cytoscheleton 

rearrangements, digest ECM through proteases and dinamically remodel their adhesion 

contacts to ECM. Finally, when cells reach the tissue, they proliferate and avoid 

apoptotic mechanisms, eventually forming new vascular structures (Comoglio 2002).  

After its activation, MET receptor autophsphorilates and binds to signal transducers and 

adapting molecules involved in several molecular pathways that induce activation of 

MAPK, PI3K, and Jak/STAT (Trusolino e Comoglio 2002). MET molecular pathway 

alters expression and activity of cadherins, integrins and MMPs. These arrangements 

cause loss of cell-to-cell contact, basal membrane disruption and alterates interaction 
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among components of the ECM, promoting tumour invasion across the stroma 

(Trusolino e Comoglio 2002). Anyway HGF-dependent integrins regulation also allow 

cancer cells to avoid anoikis (Longati et al 1996; Amicone et al 1997).  

HGF-induced cell migration is related to increased expression/activity of SNAIL, 

MAPK-EGR-1-mediated, with subsequent downregulation of E-cadherin expression, 

while SNAIL expression alone in absence of HGF is not sufficient to induce a 

migratory phenotype (Grotegut et al 2006). HGF-mediated signaling promotes 

integrinic aggregation and recruitment of adhesive contacts and motile structures, 

thereby leading to an increase in the percentage of integrins bound to actin cytoskeleton 

inorder to form actin-rich cells protrusions (Trusolino et al 2000).  

Met promoter positively responds to several stimuli growth factors and HGF-induced. 

In addition, it has been demonstrated that several oncogenes like Ras and Ret induce its 

overexpression (Engelman et al 2007; Ivan et al 1997). Met promoter analysis reveals 

presence of four ETS sites, transcriptional factors that control genes involved inthe 

invasive growth (Shirasaki et al 1999). For example, Ets1 promotes Met trancription in 

vitro and is activated by Met itself through the MAPK pathway, suggesting a positive 

feedback mechanisms that sustains invasive growth (Gambarotta et al 1996). 

Another Met transcriptional regulator is tissutal O2 tension. In fact hypoxia upregulates 

Met expression through HIF-1 binding to Met promoter, leading to amplification of 

HGF signaling and invasive spur induction (Pennacchietti et al 2003).  

 

Metastatic ability 

Metastatization is promoted by tumour hypoxia and is related to a complex network of 

events where chemokines direct cells migration, adhesion molecules mediate 

colonization of distant organs and proteases digest/alterates ECM. Several proteins 

involved in these processes include vimentin, fibronectin, keratins 14, 18, 19, MMPs, 

cathepsin D, uPA/uPAr system are HIF-induced (Semenza 2003) (figura 24). Studies on 

models of breast and renal cancer show that expression of chemokine receptor CXCR4, 

major metastatic mediator, MMP-2 and 9 are all upregulated by HIF-1 (Leufgen et al 

2005; Staller et al 2003).  

Another key mediator of the metastatic process is the lysil oxidase enzyme, an HIF-1 

target closely related to hypoxia and bad prognosis in several types of cancer. Lysil 

oxidase modifies ECM components like elastyin and collagens and it has been observed 

that its inhibition impairs in vitro migration and metastatization in vivo following 
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subcutaneous transplants and intravenous injection (Erler et al 2006). In addition, it has 

been demonstrated that this family of enzymes promotes conformational changings in 

nuclear factor SNAIL structure, promoting its resistence to degradation and repression 

of E-cadherin expression, leading to EMT process (Pouyssegur et al 2006; Perinando et 

al 2005).  

According to the role of hypoxia in cancer cells survival, several studies show that HIF-

1α has an anti-apoptotic. In fact, HIF-1α downregulation promotes hypoxia-induced 

apoptosis through caspases activation and inactivation of  Bcl-XL, while HIF-1α 

positively correlates with resistance to apoptosis in pancreatic cancer cells and hepatic 

cancer cells HepG2 (Akakura et al 2001). In addition, a direct action by HIF-1α has 

been hypothesized in pro-apoptotic Bid downregulation, as its promoter sequence 

contains an HRE sequence (Earler et al 2004). 

Genes transcription HIF-induced have a key role in tumour biology. For example Oct 4, 

HIF-2α target, is a master regulator of both adult and embrional stem cells behavior (Tai 

et al 2005). The mechanism through which Oct4 could modulate tumour growth has not 

been elucidated yet, but it has been hypothesized that Oct-4 can promote cancer stem 

cells development and growth, thereby promoting cancer self-renewal and resistence to 

chemiotherapy. 

HIFs also directly regulates transcription factors like c-Myc and Notch. In fact, HIF-1α 

interacts with Notch-1 intracellular domain, thereby increasing its half-life and 

transcriptional activity (Gustafsson et al 2005). The effect of this interaction in vivo has 

not been cleared yet but could be important for tumour biology given the role of Notch 

in mediating cell-cell communication, which involves gene regulation mechanisms that 

control multiple cell differentiation processes during embryonic and adult life (Wilson e 

Radtke 2006).  

On the other hand, HIF-1α exerts an inhibitory effect on c-Myc. This inhibition 

deregulates p21 and p27 (Koshiji M. et all 2004) and c-Myc target genes involved in 

DNA “mismatch repair”, thereby suggesting a role of HIF in promoting hypoxia-

induced genetic instability (Koshiji et all 2005), while HIF-2α promotes c-Myc 

transcriptional activity, promoting cancer progression (Gordan et al 2007). 

 

miRNAs 

It has been observed that HIF-1 not only regulates gene expression, but also activates 

trascription of microRNAs (Fig. 25), a family of small, non coding, mRNAs made of 
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19-24 nucleotides, that influence stanility and translation of mRNAs (Kent e Mendell, 

2006), thereby promoting cell surivival in the tumour microenvironment (Kulshreshtha 

et al., 2007; Hebert et al., 2007). 

In particular, HIF-1 induces expression of miRNA-210 (Kulshreshtha et al., 2007; 

Camps et al., 2008; Fasanaro P et al., 2008), an ubiquitary hypoxia-responsive factor. In 

several tumours miRNA-210 expression is increased in hypoxic areas rather than in 

non-transformed tissues (Volinia et al., 2006; Iorio et al., 2005; Yanaihara et al., 2006; 

Camps et al., 2008). In humans it has been pointed out that miRNA-210 is able to 

regulate expression of genes involved in proliferation, DNA damage repairing systems, 

chromatin remodelling, metabolism and cell migration (Kulshreshtha et al., 2007-a; 

Camps et al., 2008; Fasanaro et al., 2008; Kulshreshtha et al., 2008; Kulshreshtha et al., 

2007-b).  

 

Cellular metabolism 

Aerobic energetic metabolism is dependent from oxidative phosphorilation and low O2  

level severly impairs ATP production and cell survival. Whene there is lower O2 

 
 

Fig. 25 Proposed model implicating select microRNAs in the hypoxia response. 
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availability, cells need to adapt reprogramming their metabolic behaviour. As 

extensively described later, tumour cells undergo a “glycolitic switch” that allows them 

to change their metabolism into an an anaerobic one, thereby keeping themselves 

metabolically active even under lower O2 availabilty. 

Physiologically non-neoplastic cells metabolize glucose into pyruvate, which is in turn 

moved in the mitochondria, thereby entering the Krebs cycle and undergoing oxidative 

phosphorilation. This metabolic pathway produces high ATP levels (38 molecules for 

each glucose molecule), but needs O2 for mitochondrial respiration. On the other hand, 

hypoxic cancer cells maintain high glycolitic activity but, in absence of oxygen, they 

convert pyruvate into lactate, as high intracellular pyruvate concentration can severely 

impair cell survival itself. Anyway, this metabolic changment alone is not sufficient in 

order to satisfy cells metabolic needs as glycolisis leads to production of only two ATP 

molecules, thuis cancer cells need other adaptive mechanisms. 

Glycolisis metabolic products, mainly secreted lactic acid, induce a strong acidification 

of the extracellular milieu, thereby lowering external pH level till 6.2-6.8 against 

physiological values of 7.2-7.4 in normal tissues. This microenvironmental acidification 

is direct consequence of increased glucose uptake and consumption, in order to sustain 

cell vitality (Gatenby RA., Gillies RJ. 2004). In 1920 Otto Warburg first demonstrated 

that cancer cells preferentially undergo glycolisis even in normoxic conditions. This 

mechanism, thus named “Warburg effect”, allows cancer cells to take advantage on the 

other not-transformed cell clones in hypoxic condition (see next chapter). 

At the same time, cancer cells release pro-angiogenic factors that stimulates new vessels 

formation in order to promote O2, glucose and other nutrients delivery to sustain 

metabolic needs of highly proliferative cells. Also in this case hypoxia exerts a selective 

pressure on cells unable to promote their angiogenic ability (Jiang et al 1997; Maxwell 

et al 1997). In addition, hypoxia favours O2 delivery by erithrocytes promoting 

expression og genes involved in erythropoiesis and Fe metabolism. There is an 

increased EPO production, that stimulates red blood cells formation, thereby increasing 

the number of circulating red blood cells (Semenza et al., 1991). In addition, in order to 

ensure correct hemoglobin synthesis, as heme production is related to Fe availability, 

there i san upregulation of genes involved in Fe metabolism. Hypoxia upregulates 

expression of transferrin (Tf), that delivers Fe
3+

 in the bloodstream, of its receptor (Tfr), 

which promotes Fe uptake, and of ceruloplasmin, which oxidizes ferrous Fe
2+

 to ferric  

Fe
3+

 (Rolfs A et al., 1997; Bianchi L et al., 1999; Mukhopadhyay CK et al., 2000). 
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THE METABOLISM OF CANCER CELLS 

 

Glycolisis 

Glucose, a 6-carbons-aldheydic monosaccharide, is the primary source of energy for 

plants, animals and most microorganisms. Its total oxidation in CO2 and H2O leads to a 

free energy production of almost -2840 kJ/mole. Glicolisis is the key metabolic pathway 

for glucose catabolism in most cells of the organism and it does not require O2 to carry 

on its reactions.  

The overall reaction of glycolysis is: a molecule of glucose (C6H12O6) reacts with 2 

NAD
+ 

molecules, 2 ADP molecules and 2 Pi molecules in order to produce 2 molecules 

of NADH, 2 molecules of pyruvate (CH3COCOOH), 2 ATP molecules and 2 molecules 

of H2O and 2 H
+
 ions. 

 

1 glucose + 2 ADP + 2 Pi           2 pyruvates + 2 NADH + 2 ATP + 2 H2O + 2 H
+
 

The overall molecular pathway is divided in ten reactions, The first five steps are 

regarded as the preparatory phase, since they consume energy to convert the glucose 

into two three-carbon sugar phosphates, while the second half of glycolysis is known as 

the pay-off phase, characterised by a net gain of the energy-rich molecules ATP and 

NADH (fig. 26).  

During the preparatpry phase, each glucose molecule undergoes two phosphorilations 

through consumation of two ATP molecules and is then divided into two molecules of 

glyceraldehyde 3-phosphate. For every reaction there is a variation of standard free 

energy G
’0 

(Gibbs energy)
 
, defined as G

’0
 = -RT lnK’eq where R is the gas constant 

(R = 8,315 J/mole * K), T is the absolute temperature and K’eq is the equilibrium 

constant. ∆G is the chemical potential that is minimized when a system reaches 

equilibrium at constant pressure and temperature. Its derivative with respect to the 

reaction coordinate of the system vanishes at the equilibrium point. As such, it is a 

convenient criterion of spontaneity for processes with constant pressure and 

temperature. Hence, out of this general natural tendency, a quantitative measure as to 

how near or far a potential reaction is from this minimum is when the calculated 

energetics of the process indicate that the change in Gibbs free energy ΔG is negative. 

In essence, this means that such a reaction will be favoured and will release energy. The 

energy released equals the maximum amount of work that can be performed as a result 

of the chemical reaction. In contrast, if conditions indicated a positive ΔG, then 
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energy—in the form of work—would have to be added to the reacting system to make 

the reaction go.  

 

PREPARATORY PHASE REACTIONS : 

1. Glucose + ATP  Glucose 6-phosphate + ADP                                                                                

                                                                                                             G
’0 

=-17,7 kJ/mole 

The first step in glycolysis is phosphorylation of glucose on the C-6 by a family of 

enzymes called hexokinases to form glucose 6-phosphate (G6P). This enzyme uses 

Mg
2+ 

ions as cofactors
 
and consumes ATP, but it acts in order to keep the glucose 

concentration low, promoting continuous transport of glucose into the cell through the 

plasma membrane transporters. In addition, it blocks the glucose from leaking out as the 

cell lacks transporters for G6P, and free diffusion out of the cell is prevented due to the 

charged nature of G6P. In addition, the disruption of the phosphoanidridic bound 

between ATP phosphate groups generates high free energy variation which is partially 

conserved in the formation of the phosphoesteric bound of G6P. finally, the interaction 

between a phosphoric group and an enzymatic catalytic site contributes in lowering 

activation energy, thereby promoting catalysis. 

In animals, an isozyme of hexokinase called glucokinase is also used in the liver, which 

has a much lower affinity for glucose (Km in the vicinity of normal glycemia), and 

differs in regulatory properties. The different substrate affinity and alternate regulation 

of this enzyme are a reflection of the role of the liver in maintaining blood sugar levels. 

 

2. Glucose 6-phosphate  Fructose 6-phosphate                                                                                      

                                                                                                             G
’0

= - 1,7 kJ/mole 

G6P is then rearranged into fructose 6-phosphate (F6P) by glucose phosphate 

isomerase, which uses Mg
2+

 ions as cofactors. Fructose can also enter the glycolytic 

pathway by phosphorylation at this point. 

The change in structure is an isomerization, in which the G6P has been converted to 

F6P. The reaction requires an enzyme, phosphohexose isomerase, to proceed. This 

reaction is freely reversible under normal cell conditions. However, it is often driven 

forward because of a low concentration of F6P, which is constantly consumed during 
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the next step of glycolysis. Under conditions of high F6P concentration, this reaction 

readily runs in reverse. 

 

3. Fructose 6-phosphate + ATP  Fructose 1,6-biphosphate + ADP                                                                                                        

                                                                                                            G
’0 

= -14,2 kJ/mole 

Phosphofructokinase 1 (PFK-1) catalyzes the transfer of ATP phosphoric group to the 

oxydrilic group of F6P. The reaction catalyzed by PFK-1, which requires Mg
2+

 ions as 

cofactors,  is coupled to the hydrolysis of ATP, an energetically favorable step, which 

makes the reaction irreversible, and a different pathway must be used to do the reverse 

conversion during gluconeogenesis. This makes the reaction a key regulatory point as 

PFK-1 is positively regulated by AMP, ADP and fructose 2,6 biphosphate, catalytic 

product of PFK-2 enzyme, concentrations, while it is negatively rergulated by high 

concentrations of ATP and citrate, intermediate of the Krebs cycle. 

Furthermore, the second phosphorylation event is necessary to allow the formation of 

two charged groups in the subsequent step of glycolysis, ensuring the prevention of free 

diffusion of substrates out of the cell. 

The same reaction can also be catalyzed by pyrophosphate-dependent 

phosphofructokinase (PPi-PFK), which is found in most plants, some bacteria, archea, 

and protists, but not in animals. This enzyme uses pyrophosphate (PPi) as a phosphate 

donor instead of ATP. It is a reversible reaction, increasing the flexibility of glycolytic 

metabolism. A rarer ADP-dependent PFK enzyme variant has been identified in 

archaean species. 

 

4. Fructose 1,6-biphosphate  Dihydroxyacetone phosphate + glyceraldehyde 3-

phosphate 

                                                                                                             G
’0 

= 23,8 kJ/mole 

Destabilizing the molecule in the previous reaction allows the hexose ring to be split 

by aldolase into two triose sugars, dihydroxyacetone phosphate, a ketone, 

and glyceraldehyde 3-phosphate, an aldehyde. There are two classes of aldolases: class I 

aldolases, present in animals and plants, and class II aldolases, present in fungi and 

bacteria which use different mechanisms in cleaving the ketose ring. 
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Electrons delocalized in the carbon-carbon bond cleavage associate with the alcohol 

group. The resulting carbanion is stabilized by the structure of the carbanion itself via 

resonance charge distribution and by the presence of a charged ion prosthetic group. 

The enzyme aldolase catalyzes an aldholic condensation that, despite the positive free 

energy variation, can be reversible given the high intracellular concentrations of the two 

reagents. 

 

5. Dihydroxyacetone phosphate  glyceraldehyde 3-phosphate 

                                                                                                               G
’0 

= 7,5 kJ/mole 

Triosephosphate isomerase rapidly reversibly interconverts dihydroxyacetone phosphate 

with glyceraldehyde 3-phosphate that proceeds further into glycolysis. This is 

advantageous, as it directs dihydroxyacetone phosphate down the same pathway as 

glyceraldehyde 3-phosphate, simplifying regulation.  

 

PAY-OFF PHASE REACTIONS:  

 

Since glucose leads to two triose sugars in the preparatory phase, each reaction in the 

pay-off phase occurs twice per glucose molecule. This yields 2 NADH molecules and 4 

ATP molecules, leading to a net gain of 2 NADH molecules and 2 ATP molecules from 

the glycolytic pathway per glucose. 

 

6. glyceraldehyde 3-phosphate + Pi + NAD
+
  1,3-bisphosphoglycerate + NADH 

+ H
+
    

                                                                                                              G
’0 

= 6,3 kJ/mole 

The triose sugars are dehydrogenated and inorganic phosphate is added to them, 

forming 1,3-bisphosphoglycerate. 

The hydrogen is used to reduce two molecules of NAD
+
, a hydrogen carrier, to give 

NADH + H
+
 for each triose. 

Hydrogen atom balance and charge balance are both maintained because the phosphate 

(Pi) group actually exists in the form of a hydrogen phosphate anion (HPO4
2-

),
 
which 

dissociates to contribute the extra H
+
 ion and gives a net charge of -3 on both sides. 
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7. 1,3-bisphosphoglycerate + ADP  3-phosphoglycerate + ATP                                                            

                                                                                                           G
’0 

= -18,5 kJ/mole 

This step is the enzymatic transfer of a phosphate group from 1,3-

bisphosphoglycerate to ADP byphosphoglycerate kinase, forming ATP and 3-

phosphoglycerate. At this step, glycolysis has reached the break-even point: 2 molecules 

of ATP were consumed, and 2 new molecules have now been synthesized. This step, 

one of the two substrate-level phosphorylation steps, requires ADP; thus, when the cell 

has plenty of ATP and little ADP, this reaction does not occur. Because ATP decays 

relatively quickly when it is not metabolized, this is an important regulatory point in the 

glycolytic pathway. Reactions 6 and 7 represent an energetic coupling where 1,3-BPG 

is the common intermediate. Total reaction is favoured as the G
’0

 positive value of 

reaction 6 is balanced by G
’0

 negative value of reaction 7. 

ADP actually exists as ADPMg
-
, and ATP as ATPMg

2-
, balancing the charges at -5 both 

sides. 

 

8. 3-phosphoglycerate  2-phosphoglycerate                                                                                               

                                                                                                              G
’0 

= 4,4 kJ/mole 

Phosphoglycerate mutase, which uses  Mg
2+ 

ions as cofactors,
 

now forms 2-

phosphoglycerate through placement of the phosphoric group from C-3 to C-2 of 

glycerate. This is a two-phases reaction with generation of the intermediate of 2,3-

biphosphoglycerate. 

 

9. 2-phosphoglycerate  Phosphoenolpyruvate + H2O                                                                              

                                                                                                              G
’0 

= 7,5 kJ/mole 

This reaction is catalyzed by enzyme enolase, which catalyzes the reversibile removal 

of an H2O molecule from 2-phospholycerate thereby forming phosphoenolpyruvate 

(PEP). Despite the little free energy variation, free energy derived from hydrolysis of 

the phosphoric group increases.  
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10.  Phosphoenolpyruvate  +  ADP    Pyruvate  +  ATP                                                                          

                                                                                                            G
’0 

= -31,4 kJ/mole 

This substrate-level phosphorylation  is catalyzed by enzyme pyruvate kinase, which 

requires K
+
 or Mg

2+
 or Mn

2+
 ions as cofactors. The reaction product is first in its enolic 

form as enolpyruvate and then quickly tautomerizes in the chetonic form as pyruvate, 

which is the commonest form at pH 7. 

In aerobic conditions the NADH molecules are completely reoxydized by mitochondrial 

complex I of the electron transport chain. The final electron acceptor is O2 which is then 

reduced to H2O. in presence of O2, pyruvate is converted into acetyl-CoA by pyruvate 

dehydrogenase complex, thereby entering the Krebs cycle.  

Under low O2 tension, the pyruvate is reduced by lactate dehydrogenase to L-lactate in a 

process called lactic acid fermentation, which is necessary for NAD
+
 regeneration, as in 

hypoxic conditions NADH cannot be reoxydized. Loss of generation of NAD
+
 can be 

harmful for cells because is the electrons acceptor required for oxydation of G3P and its 

absence can block the glycolisis. 

 

Pyruvate + NADH + H
+
    L-lactate + NAD

+ 
                                G

’0 
= -25,1 kJ/mole 

 

Lactate, produced for example in muscles undergoing high physical efforts, can be then 

delivered to the liver and converted into glucose through gluconeogenesis. After that 

glucose can be delivered again to muscles and catabolyzed through glycolisis. This 

shunt between liver and muscles is also named Cori Cycle. 
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Fig. 26 Reactions of glycolisis. 
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The ” Warburg Effect” 

In 1924 Otto Warburg first observed that cancer cells metabolyze higher amounts of 

glucose in comparison with cells from normal tissues, producing high levels of lactate. 

In addition, he showed that cancer cells preferentially have a glycolitic behaviour, even 

in presence of high O2 tension (Warburg 1927). This peculiar characteristic was called 

“aerobic glycolisis” or “Warburg Effect”. Further studies by Warburg itself 

hypothesized that the Warburg effect was mainly related to a mitochondrial deficiency 

developed by tumour cells, for example, through genetic mutations, thereby leading to a 

low energy delivery from mitochondrial respiration. Finally, aerobic glycolisis had to be 

the only possible metabolic mechanism that allowed cells to survive (Warburg 1956).  

Anyway, subsequent studies demonstrated that mitochondrial deficiency was a rare 

condition even in cancer cells (Weinhouse 1956). Today it has been clarified that 

several factors, including tumour microenvironment and trascription factors, are needed 

in order to sustain cancer progression. 

In the case of metabolism, the choice by cancer cells to prefer a glycolitic behaviour 

seems almost paradoxal because glycolisis is less efficient than mitochondrial 

respiration in providing ATP. In fact, fermentative metabolism of a molecule of glucose 

generates only 2 ATP molecules, while mitochondrial repiration leads to 36-38 ATP 

molecules/glucose molecule.  

The advantages coming from an aerobic glycolitic metabolism are still under 

investigation. In multicellular organisms there are two main types of metabolism, the 

one characteristic for highly proliferating and tumoural cells, and the quiescent 

metabolism, typical of already differentiated cells. In order to divide quickly and 

efficiently, highly proliferating cells need to replicate their genome, produce proteins, 

lipids and all cellular components that are needed in order to form other cells. These 

activities require an efficient delivery of nutrients from the extracellular space and their 

conversion in biosinthetic products.  

On the other hand, differentiated cells enter a quiescence phase (G0 phase) characterized 

by high energetic demand in order to sustain cell vital. Thus cells convert glucose into 

ATP and CO2 with the mitochondrial respiration in presence of high O2 tension, while 

they catabolyze glucose into lactate just in hypoxic conditions.  

An example of a proliferative cell energetic demand is the synthesis of palmytate, the 

major component of cell membranes. Its production requires 7 ATP molecules, 16 

atoms of carbon from 8 acetyl-CoA molecules and 28 electrons from 14 NADPH 
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molecules. Similarly, aminoacids and nucleotides synthesis requires more carbon atoms 

and NADPH than ATP. A glucose molecule can generate 36 ATP molecules, or 30 ATP 

molecules and 2 NADPH molecules if metabolyzed through the pentose phosphate 

pathway. The same glucose molecule can also generate 6 atoms of carbon for the 

synthesis of macromolecules but, in order to form a 16-atoms carbonic chain, 

mitochondrial respiration needs 7 glucose molecules to produce the required amount of 

NADPH. This high intermediates demand is just partially compensated by catabolism of 

3 glucose molecules. In conclusion, it is clear that a highly proliferative cell, like the 

tumoural one, can not use glucose just in order to produce ATP, otherwise the increased 

ATP/ADP ratio would lower the glycolitic intermediate flux, thereby reducing acetyl-

CoA and NADPH production, required for macromolecules synthesis. A part of the 

uptaken glucose must be delivered to production of macromolecules precursors like 

acetyl-CoA for fatty acids, glycolitic intermediates for non essential aminoacids and 

ribose for nucleotides. According to these observations, Increased ROS was 

documented to modify a critical sulfhydryl group of pyruvate kinase M2 (PKM2), 

rendering it inactive and resulting in the shunting of glucose away from glycolysis 

toward the PPP (Anastasiou et al. 2011). The PPP generates NADPH, which reduces 

glutathione into an active antioxidant that protects the cell. In this manner, the shunting 

of glucose away from glycolysis toward the PPP is an essential element of redox 

homeostasis. 

In addition to oxidation of PKM2, increased ROS can stabilize HIF-1. HIF-1, in turn, 

activates target genes such as PDK1, which diverts pyruvate away from mitochondrial 

oxidation, and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-4 (PFKFB4), 

which degrades 2,6-fructose bisphosphate (2,6-FBP) (Keith et al. 2012; Semenza 2012). 

2,6-FBP is a powerful allosteric activator of phosphofructose kinase 1 (PFK1), which 

converts fructose-1-phosphate to fructose-1,6-bisphosphate (1,6-FBP) at a rate-limiting 

step in glycolysis (Yalcin et al. 2009). Hence, increased PFKFB4, as observed in 

prostate cancer cell lines, would diminish PFK1 activity and divert glucose into the PPP 

shunt, elevating NAPDH to titrate ROS (Ros et al. 2012). It is notable, however, that 

hypoxia also elevates PFKFB3, which drives glycolysis and can oppose PFKFB4; as 

such, the balance between PFKFB3 and PFKFB4 activities is critical for shunting 

glucose into glycolysis versus the PPP. 

In addition, hypoxia adapting mechanisms involve coordinated expression of genes 

coding for glucose transporters (GLUT1, GLUT3), glycolitic enzymes 
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(phosphogycerate kinase 1, pyruvate kinase M2, esokinase II), VEGF, EPO and heme-

oxygenase-1 (OH-1) (Semenza 2003). In addition, there is induction of pyruvate 

dehydrogenase 1 (PDH-1) and lactate dehydrogenase (LDH) that reduce pyruvate 

availability, thus increasing its convertion to lactate and inhibiting Krebs cycle 

(Brahimi-Horn et al., 2007).  

As a consequence, lowering of extracellular pH following lactic acid secretion acts as a 

selective agent upon those cells unable to survive under acidic conditions. On the other 

hand cells bearing low pH are able to produce ATP and alterate tumour 

microenvironment, thereby directly harming the cells they compete with (Gatenby e 

Gillies 2004). To this end HIF-1α upregulates expression of the monocarboxylate 

transporter 4 (MTC4) that mediates lactic acid extrusion, and of the carbonic anidrase 

IX (CA-IX), transmembrane enzyme that catalyzes convertion of extracellular CO2 into 

carbonic acid (H2CO3). This mechanism further promotes extracellular acidification 

through H
+ 

ions release, while  HCO3
- 
intake allows cancer cells to avoid intracellular 

acidification that could be highly disvital.  

Finally, these data could at least partially explain the selective advantages of Warburg 

metabolism.  
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Molecular pathways involved in cell metabolic regulation 

 

PI3K. PI3K enzyme catalyzes conversion of phosphoinositides into phosphoinositides-

3,4,5-triphosphate (PIP3) (Cantley 2002). PI3K activity is physiologically regulated by 

PTEN in non proliferative cells, but PTEN mutations can lead to a contistutive 

activation of the PI3K pathway. According to that, there is a deregulated cell growth 

and a continuative trasduction of survival signals that also affect cell metabolism. One 

of the main PI3K effectors is Akt kinase and PIP3 binding to Akt pleckstrin homolgy 

domain (PH domain) induces Akt translocation to the cell membrane, where it is 

phosphorilated by PI3K-dependent kinase 1 and thereby activated (Bahskar et al. 2007). 

Akt stimulates glycolisis and modulates ATP production through several mechanisms, 

thereby allowing cancer cells to receive adequate bioenergetic supply. Akt induces a 

glycolitic phenotype inducing GLUT expression on cell membrane. 

In addition, Akt activates the glycolitic enzyme PFK-1. Akt phosphorilates and activates 

PFK2 that in turn produces fructose 2,6-biphosphate, major PFK-1 allosteric activator 

(Deprez et al. 1997). Finally, Akt can promote activation of complex 1 of the rapamycin 

mammal target (mTOR). mTOR induces HIF-1 expression, leading to an 

overexpression of almost all genes involved in cell glycolitic metabolism (Brugarolas 

2003). 

 

HIFs and MYC. As already described, hypoxia is a common features of solid tumours 

and complexes HIF-1α, HIF-2α and HIF-3α are the master regulators of cell response to 

hypoxia. In particular, HIF-1α regulates genes involved in cell metabolism (Hockel et 

al. 2001).  

HIF-1α can be activated in cancer cells in normoxic conditions. For example, mutations 

that leads to PI3K costitutive activation also activates in an aberrant manner mTOR 

pathway. In turn, mTOR phosphorilates ribosomal protein S6 kinase and binding 

protein eIF-4E 1. Both these proteins induce an increased HIF-1 mRNA translation 

(Semenza et al. 2001). 

Recent studies have demonstrated that in models of hereditary paraganglioma, 

glyoblastomas and renal carcinoma several oncosuppressor genes codificate for 

enzymes of the Krebs cycle like succinate dehydrogenase (SDH), fumarate hydratase 

(FH) and isocytrate dehydrogenase (IDH). SDH and FH loss of function leads to 

accumulation of succinate and fumarate, respectively. Both these metabolites inhibits 
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PHD2 activity compiting with -ketoglutarate for binding its catalytic site. Thus PHD2 

inhibition reduces hydroxylation, ubiquitination and proteasomal degradation of  HIF-

1 (Selak et al. 2005; Isaacs et al. 2005; Koivunen et al. 2007; Hewitson et al. 2007). 

Once activated, HIF-1α promotes gene transcription of SLC2A1 and SLC2A3, genes 

coding for GLUT1, mainly expressed in erytrocytes, and GLUT3, mainly located in 

neurons. Assocciation of these proteins create san hydrophilic channel for glucose 

facilitated diffusion.   

For what amplification of glycolitic pathway is concerned, HIF-1 induces expression of 

esokinase 1 and 2 (HK1 e HK2), PFK1, aldolase A and C, glyceraldheyde-3-phosphate 

dehydrogenase, phosphoglycerate kinase 1, enolase 1, pyruvate kinase and lactate 

dehydrogenase A (LDHA).  

In addition, recent studies on murine embrional fibroblasts (MEFs) have demonstrated 

that gene coding for pyruvate dehydrogenase kinase 1 (PDK1) is a direct target of HIF-

1. This enzyme phosphorilates and inhibits the pyruvate dehydrogenase (PDH) 

enzymatic complex, thereby blocking pyruvate entry into the Krebs cycle. These studies 

suggest that suppressing Krebs cycle and mitochondrial respiration, PDK1 could act as 

a survival factor for cells in condition of hypoxia (Kim JW et al. 2006).  

c-Myc is a trtascription factor overexpressed in almost the 40% of human cancers. This 

protein is a leucine-zipper HLH protein that dimerizes with the partner protein c-Myc-

associated protein X (MAX). c-Myc/MAX complex binds to DNA specific sequences 

named E-boxes in order to activate or repress gene target transcription. The complex 

target genes seems to be dependent from the cellular type, but there is a common group 

of genes regulated by c-Myc like the ones involved in ribosomal biogenesis and glucose 

metabolism (Dang et al. 2008). It has been observed that c-Myc activates LDHA 

expression, thereby increasing lactate production in a model of lung carcinoma (Dang et 

al. 1997), while further studies suggest that also aldolase A, enolase, esokinase 2, 

GAPDH, GPI, HK2 PFK1, PGK, PGM e TPI are upregolated by c-Myc activation 

(Osthus et al. 2000). 

AMPK. Protein kinase activated by AMP (AMPK) is the main sensor of intracellular 

energetic state and has a central role in metabolic stress response. AMPK is activated 

through phosphorilation from protein kinase LKB1. In a condition of metabolic stress 

AMPK is activated by an increased AMP/ATP ratio. AMPK acts on glycolisis 

phosphorilating and activating the PFK2 inducible isoform (PFKFB3) (Marsin et al. 

2000). PFK2 reaction product, fructose 2,6-biphosphate, is a PFK1 activator. 
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Observations from in vivo models lacking LKB1 and AMPK show a costitutive 

activation of the mTOR pathway. In the same conditions it has been observed an 

upregulation of HIF-1 and its target genes in normoxic condition (Shackelford et al. 

2009). These data show a strong dependence between LKB1/AMPK loss and HIF-1 

expression through an mTOR-dependent pathway. 

p53 and OCT1. p53 is a transcription factor and oncosuppressor gene that has a major 

role in cell response to conditions of stress. It has been observed that p53 induces 

exokinase 2 expression through direct binding to the promoter, thereby stimulationg 

glucose 6-phosphate production (Mathupala et al. 1997).  

p53 regulates cellular glucose metabolism through activation of two effectors: TIGAR 

and SCO2. TIGAR is a p53-inducible gene and has a high functional affinity for PFK2 

phosphatasic domain (Bensaad et al. 2006). PFK2 is a bifunctional enzyme 

characterized by a kinasic domain with high affinity for fructose 6-phosphate, and a 

phosphatasic domain with high affinity for fructose 2, 6 biphosphate. Thus TIGAR 

expression induces fructose 6-phosphate production in the glycolitic pathway and its 

conversion to glucose 6-phosphate, according  to the law of mass action. Finally, 

glucose 6 phosphate can enter the pentose phosphate pathway in order to produce  

NADPH and ribose-5-phosphate (R5P) for nucelic acids sinthesis.  

Second effector gene SCO2 is directly activated after binding to p53 as shown in 

models of colon cancer (Matoba et al. 2006). Together with SCO1, SCO2 encodes for 

two subunits of cytocrome c oxydase (COX), which catalyzes translocation of reducing 

equivalents from cytocrome c to O2, pumping protons through the inner mitochondrial 

membrane.  

Finally, it has been demonstrated that the promoter sequence of the gene coding PTEN 

contains a p53 binding region, through which p53 induces PTEN mRNA expression and 

thereby PI3K pathway inactivation (Stambolic et al. 2000).  

OCT1 is a transcription factor from the POU domain family (Pit-1, Oct1/2, Unc-86). 

Studies on MEFs and adenocarcinoma epithelial cells have showed that OCT1 loss of 

function induces a metabolic changment that suppresses tumour progression. In 

particular, OCT1
-/-

 cells show a decreased of glucose and lactate accumulation and an 

increased concentration of Krebs ciycle intermediates like malate, succinate and 

isocytrate. These results demonstrate an increased mitochondrial activity and a 

decreased glycolitic flux due to OCT1 loss (Shakya et al. 2009).  
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Fig. 27 Regulation of metabolic pathways by HIF-1, MYC, Oct-1 and p53. 

 

Pyruvate Kinase M2 (PKM2). Pyruvate kinase (PK) catalyzes conversion of PEP to 

pyruvate with substrate-level phosphorilation of ADP to ATP.  

There are several PK isoforms that are expressed according to specific metabolic needs 

of the tissue. PK L is expressed in tissues with high gluconeogenic activity like liver 

and kidenys, while isoform R is mainly expressed in erithrocytes and PK-M1 is located 

in tissue with high ATP demand like heart and brain. Isoform M2 (PKM2) is mainly 

expressed in lungs and, in general, by cells with high nucleic acids syntethic activity 

like embrional cells, adult stem cells and cancer cells. PK L and R are coded from the 

same gene, PKLR, but are under control of two different promoters. Isoenzymes PKM1 

and PKM2 are different splicing products from the same mRNA of gene PKM2 and 

differ for 21 aminoacids (Reinacher et al 1981; Eigenbrodt et al. 1985; Eigenbrodt et al. 

1992; Eigenbrodt et al. 1986; Steinberg et al. 1999). PKM2 transcription is activated by 

transcription factor Sp1, while transcription factor Sp3 acts in hypoxic conditions 

repressing its transcription after physical dissociation from the promoter.  

Immunohystochemistry studies of PKM2 have demonstrated that this protein can 

associate in a quaternari structure in a different manner in lung and cancer cells (fig. 

28). In lungs and healthy proliferative cells PKM2 is expressed in a tetrameric form 

with four identical subunits, while in cancer cells, is always expressed in a dimeric 

form, and this particular PKM2 structure is also named “tumoural PKM2”. Tetrameric 

form PKM2 shows higher affinity for PEP, while dimeric form is caharacterized by 
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lower activity. In presence of PEP physiological concentrations, tetrameric PKM2 is 

highly active, while dimeric form is almost totally inactive. This catalytical difference is 

amplified when tetrameric form associates with glycolitic enzymes like HK, G3PDH, 

PGK, PGM, enolase and LDH-A and other enzymes like nucleotide diphosphate kinase, 

adenilate cyclase, glucose-6-phosphate dehydrogenase and proteins of the 

RAF/MEK/ERK pathway. On the other hand, dimeric PKM2 do not associates to 

glycolitic enzymes. This complex has two main functions: compartimentalization of 

metabolic reactions into the cytosol and increasing glycolisis efficiency through binding 

to enxymes involved  (Eigenbrodt et al. 2005). Transition from tetrameric to dimeric 

form is induced after direct interaction between PKM2 and several oncogenes 

(Eigenbrodt et al. 1988).  

 

 

 

 

 

 

 

 

 

Fig. 28 PKM2 molecular structure. 

 

Recent studies have clarified the molecular mechanism of M1- o M2- splicing of PKM2 

mRNA. In particular, it has been demonstrated that heterogenous ribonuclear proteins  

(hnRNP) I, A1 and A2 bind to RNA sequence on exon 9 inhibiting M1-specific splicing 

and c-Myc activates transcription of hnRNPI, hnRNPA1 and hnRNPA2. Thus it is clear 

that tumour cells with constitutive c-Myc expression have higher PKM2 basal 

expression levels (Chen et al. 2010; Clower et al. 2010).  

PK inactive isoform expression could represent an advantage for proliferating and 

tumour cells as, blocking glycolisis, carbonic flux stops at PEP formation. For the law 

of mass action, accumulation of this metabolite reverts the reaction flux, thereby leading 

glycolitic intermediates to biosintethic pathways, like the pentose phosphate pathway. 

These reactions are necessary to cancer cells as they provide both ribose-5-phosphate 
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for nucleotides synthesis and reducing power with NADPH, thereby avoiding axcess of 

ROS and conditions of potentially harmful oxidative stress. 

According to that, several mechanisms of PKM2 enzymatic activity inhibition have 

been described, like oxidation, phosphorilation and acetylation. Lv and collegues have 

demonstrated in a prostatic carcinoma model that PKM2 acetylation on K305, induced 

by high glucose concentration, impairs its catalytical activity. In fact, acetylation 

favours PKM2 interaction with chaperon HSC70 and susequent association with 

lysosomes, thereby leading to a mechanism of chaperone-mediated autophagy (CMA). 

Thus cancer cells accumulates glyoclitic intermediates, thereby activating anabolic 

pathways and promoting proliferation and tumour growth in in vivo models (Lv et al. 

2011). In addition, it has been recently showed in several cancer models, like breast and 

lung carcinomas, that PKM2 is phosphorilated on Tyr Y105 by FGFR1. This post-

translational modification promotes dissociation of PKM2 tetrameric complex from its 

cofactor fructose 1, 6 biphosphate, impairing its activity (Hitosugi et al. 2010).  

Finally, also ROS seem to have a key role in regulating PKM2. In a model of lung 

carcinoma it has been demonstrated that acute increase of intracellular ROS oxydizes 

the Cys358 of PKM2 catalytic site, modifying its structure and reducing catalysis. This 

event is strictly related to glucose catabolism through the pentose phosphate pathway, 

thereby leading NADPH synthesis in order to buffer excess of ROS. Cys358 oxidation 

is crucial because its mutation in a Ser358 blocks this event, thereby leading cells to 

higher sensitivity to oxidative stress and reducing their survival and tumour growth in 

vivo (Anastasiou et al. 2011). According to this data, Anastasiou and collegues have 

recently demonstrated that both PKM1 overexpression and stimulation with 

pharmacological small-molecule PKM2 activators inhibits the growth of xenograft 

tumours. These small-molecule activators bind PKM2 and promote a constitutively 

active enzyme state that is resistant to inhibition by tyrosine-phosphorylated proteins, 

thereby leading to direct interference with anabolic metabolism (Anastasiou et al. 2012). 

In addition, PKM2 has a role as direct coactivator of HIF-1α in target genes 

transcription (fig. 29). 

As previously stated, PHD2 has a central role in hydroxilating and then promoting HIF-

1α degradation. For what concerns PHD3, recent studies have demonstrated that PHD3 

hydroxilates prolines residues inside a highly conserved motif  LRRLAP on the target 

protein (Xie et al. 2009). LRRLAP has been identified in an internal sequence of exon 

10 of PKM2 gene. In particular, Pro403 and Pro408 hydroxylation on PKM2 by PHD3 
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positively correlates with expression of HIF-1α main target genes and probably 

promotes PKM2 transition from tetrameric to dimeric form (Chen et al. 2011). PKM2 

dimeric form migrates in the nucleus, interacts with HIF-1α through direct binding to 

HREs sequences on promoters of target genes and recruiting HIF coactivator p300. On 

the other hand, PKM1 do not associates to HIF-1α (Semenza et al 2011). According to 

that, there is an increased transcription of HIF target genes like PKM2 and EGLN3, 

encoding forr PKM2 and PHD3, respectively (Pescador et al. 2005). These observations 

suggest a positive feedback mechanism of HIF-1α activation in order to promote 

metabolic reprogramming of cancer cells (Semenza et al. 2011). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 29 Role of PKM2 as HIF-1α direct coactivator. 
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Models of metabolic symbiosis  

Nutrients and O2 delivery to tumour mass is mediated by angiogenesis, but new 

vascularization is often made by arterious vessels not connected to venous circulation 

(Fukumura et al. 2010). In addition, tumour burden is characterized by impaired 

perfusion if compared to healthy tissues, thereby leading to formation of hypoxic areas 

inside the tumour, with subsequent HIF-1α stabilization (Le et al. 2010). 

This event leads cells to exploit different metabolic mechanisms inside the same tumour 

mass: normoxic regions, close to blood vessels, preferentially exploit mitochondrial 

respiration and phosphorilative oxidation, while hypoxic cells undergo glycolisis. 

According to that, it has been demonstrated that lactate, glycolisis end product, is the 

key mediator of a “metabolic symbiosis” model where both glycolitic and respiring 

cells reciprocally regulate nutrients availability through the transporter MCT-1. In fact, 

its inhibition shows antitunoral effects (Sonveaux et al. 2008).  

According to this model, normoxic subpopulation of cancer cells exploit extracellular 

lactate to fuel oxidative phosphorilation, thereby avoiding extracellular glucose 

depletivo, as glucose is metabolyzed through glycolisis by hypoxic cancer cells. Lactate 

used for mitochondrial metabolism gives several advantages to cancer cells:  

 pyruvate oxidation to lactate by lactate dehydrogenase leads to production of 

reducing power that prevents harmful intracellular oxidative stress, thereby 

favouring cells survival (Lee et al. 2003; Pelicano et al. 2006); 

 lactate oxidation do not requires ATP consumption; 

 each molecule of lactate generates 18 ATP molecules, thereby allowing cells to 

save energy for glycolitic enzymes activity.  

Lactate delivery between hypoxic and normoxic tumour areas is similar to the 

physiologic mechanism of muscles (Halestrap et al. 2004; Halestrap et al. 1999). During 

intende physical efforts, white mucle fibres produce and release lactic acid 

(Dubouchaud et al. 2000). Extracellular lactate is then uptaken by red muscle fibres in 

order to promote oxidative metabolism (Baker et al. 1998; Bonen et al. 1998; 

Dubouchaud et al. 2000) and thuis process is mediated by both MCT-1 and MCT-4 

transporters (Halestrap et al. 2004; Halestrap et al. 1999). MCT-4 has low affinity for 

lactate (Km=22 mM) and is consequently expressed by glycolitic cells in order to 

release the metabolite. MCT-4 expression is  HIF-1α-dependent (Dimmer et al. 2000; 

Ullah et al. 2006).  
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On the other hand, MCT-1 has high affinity for lactate (Km=3,5-10 mM), thereby 

promoting its uptake in respiring cells (Halestrap et al. 1999; Dubouchaud et al. 2000; 

Ullah et al. 2006). It has been demonstrated that MCT-1 is the main canne for lactate 

intake by cancer cells (Sonveaux et al. 2008), while MCT-4 is responsible for protons 

extrusion from glycolitic cancer cells (Wahl et al. 2002). According to that, MCT-1 

gene silencing is sufficient to impair oxidative phosphorilation lactate-dependent and 

cancer cells survival (Sonveaux et al. 2008). Despite being a pharmacological target to 

kill cancer cells close to blood vessels, MCT-1 inhibition undirectly promotes necrosis 

in hypoxic cancer cells usually resistent to conventional teraphies and causing cancer 

recidival (Brown et al. 2004) (fig. 30). Finally, cancer cells death for lack of glucose is 

caused by metabolic modifications of respiring cells. In fact, oxidative cells modify 

their metabolic behavior to a glycolitic one, caused by inhibition of cellular respiration 

(Crabtree effect) (Crabtree 1929). 

The lactate/MCT-1 pathway represents the key event of metabolic symbiosis in cancer 

and its discovery leads to new interpretations of data and relations previously observed  

(Sonveaux et al. 2008). For example, high energetic nature of lactate explains its 

autocrine activity as growth factor (Pike et al. 1991) and its bidirectional delivery 

among different cell types (Spencer et al.1976; Cheeti et al. 2006; Wang et al. 2007). In 

addition, seveal studies relate to neoplastic cells a mechanism described just for stromal 

cells in order to exploit cancer cells metabolic products (Sonveaux et al. 2008). 

Inhibition of MCT-1 impairs normoxic cancer cells ability to uptake lactate for their 

oxidative phosphorilation. Subsequently this cancer cells subpopulation exploits 

extracellular glucose for its metabolic needs, thereby depleting glucose from hypoxic 

cells that are unable to survive.  

A second effect of MCT-1 inhibition, at least in vitro, is the lethal intracellular 

acidification (Wahl et al. 2002; Belt et al. 1979; Coss et al. 2003; Fang et al. 2006; 

Mathupala et al. 2004). In fact, it has been observed that MCT-1 expression is increased 

also in cancer cells that metabolyze butirrate, as this tranporter promotes its intake 

(Serpa et al. 2011). Butirrate is used by cancer cells to fuel β-oxidation, as demonstrated 

by their overexpression of acyl-dehydrogenase enzyme. Thus cancer cells able to 

metabolize butirrate are positively selected by tumour microenvrionment (Serpa et al. 

2010). These cells show a mesenchymal phenotype, with E-cadherin downregulation, 

increased expression of MMP-2 and 9 e and expression of α2 and α3 integrins. 
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Fig. 30 Model of metabolic symbiosis between hypoxic and respiring cells.  

 

In addition, recent studies suggest that tumour microenvironment, primarily cancer-

associated fibroblast (CAFs), has a role in cancer metabolism. These observations lead 

to models according to which CAFs fuel neoplastic cells with aminoacids and 

nucleotides through autophagy, thereby promoting cancer progression and 

metastatization (Pavlides et al. 2010). In particular, several studies have focused on 

expression analysis of protein caveolin-1 1 (Cav-1) on CAFs. Cav-1 belongs to the 

caveolins transmembrane proteins family, main components of membrane 

microdomains called caveolae and involved in mechanisms of endocytosis receptor-

independent. Cav-1 is mainly expressed on endothelial cells, adipose and stromal cells.  

In aprticular, Lisanti and collegues have demonstrated that low Cav-1 expression on 

CAFs extracellular membrane is correlated to a highly proliferative and metastatic 

phenotype in a model of breast cancer (Migneco et al. 2010). Compairing this model to 

the relation between hypoxic and normoxic cancer cells, supported by an O2 perfusion 

gradient inside the tumour, the metabolic relation between cancer cells and CAFs is 

mainly driven by a condition of high oxidative stress. According to that, correlation 

between oxidative stress and Cav-1 loss shows a biunivocal feature: Cav-1 degradation 

induces an increase in ROS accumulation and, in turn, oxidative stress induced by 
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neighbouring cancer cells further promotes Cav-1 degradation. Cav-1 has a role as 

negative regulator NO production through inhibition of NO syntase.  Loss of Cav-1 

thereby promotes increase in NO production, which can inhibit mitochondrial functions 

acting a san inhibitor of ferrous protein of the electron chain transport. This inhibition of 

oxidative phosphorilation NO-mediated induces higher mitochondrial ROS production  

in addition, studies on coc-colture models between fibroblasto and MCF-7 breast cancer 

cells showed that oxidative stress cancer cells-induced leads to Cav-1 digestion by 

fibroblasts and this effect is highly reduced after administration of antioxidant 

molecules like N-acetyl cystein (NAC) (Bonuccelli et al. 2010). Other studies 

hypothesized that ROS act on PHDs, inactivating them and promoting HIF-1α 

stabolization.  

It has been clearly demonstrated that phosphorilation or other post-tradutional 

modifications ROS-dependent on PHDs induce modifications on their catalytic activity 

(Klimova et al. 2008). Subsequently fibroblasts exposed to oxidative stress undergo a 

metabolic shift towards glycolisis ROS and HIF-1α dependent and produce and estrude 

high amounts of lactate through MCT-4. Excreted lactate is then taken up by cancer 

cells through MCT-1 in order to enter the Krebs cycle. This new metabolic model is 

also named “reverse Warburg effect” (Martinez-Outschoorn et al. 2010). 

This metabolic model has been recently confirmed also in a prostatic carcinoma model. 

Studies conducted by our research group have demonstrated that, analyzing expression 

patterns of metabolic genes from both fibroblasts from benign hyperplasias and CAFs, 

the latter are characterized by a metabolic reprogramming to a Warburg phenotype and 

by a condition of mitochondrial oxidative stress. This event is caused by interaction 

with prostatic cancer cells that promotes fibroblasto activation, GLUT-1 expression, 

lactate production and extrusion after de novo expression of MCT-4. These metabolic 

modifications are HIF-1α-dependent, expressedd in normoxic condition following 

reduction of SIRT-3 expression. SIRT-3 is a NAD-dependent protein that, buffe ring 

excess of ROS, promotes PHDs activity and HIF1α downregulation. Subsequently, lack 

of this protein expression leads to accumulation of ROS, impaired PHDs activity and 

HIF-1α increased expression.  

At the same time, cancer cells respond to CAFs contact modifying their metabolism to a 

respiring metabolism, reducing GLUT-1 expression and thereby increasing lactate 

intake through de novo expression of MCT-1. Thus cancer cells progressively become 

independent from glucose consumption, thereby developing high dependance from 
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extracellular lactate intake in order to promote anabolic reactions. According to these 

observations, MCT-1 pharmacological inhibition with 4-cyanohydroxycinnamide 

(CHC), blocking lactate influx, strongly reduces cancer cells survival and growth. 

In conclusion, taking advantage from modyfing the surrounding microenvironment, 

cancer cells create a strong symbiotic interrelationship with CAFs, thereby surviving in 

presence of low glucose availability (Fiaschi et al. 2012) (fig. 31). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 31 Model of metabolic symbiosis between cancer cells and cancer-associated fibroblasts 

(CAFs). 
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MATERIALS AND METHODS 

 

MATERIALS 

 

 Unless specified, all reagents used for cell cultures were purchased from 

Euroclone Group, except DMEM 1x (no glucose) from Invitrogen, pyruvate and 

lactate from Sigma-Aldrich. 

 Noradrenaline, adrenaline and propanolol were from Sigma-Aldrich. 

 Cytokines used for cell stimulation were purchased from Peprotech. 

 The metalloproteinase farmacological inhibitor Ilomastat was purchased from 

Chemicon International. 

 The HIF-1α farmacological inhibitor Topotecan was purchased from Sigma-

Aldrich. 

 Transwells for invasion assays were from Euroclone Group. 

 The Diff-Quik staining kit was purchased from BIOMAP SNC. 

 Matrigel was purchased from BD Biosciences. 

 Proteases and phosphateses inhibitors were from Sigma-Aldrich. 

 Bradford reagent for protein dosage and all materials for SDS-PAGE were from 

Biorad. 

 PVDF membrane (Polyvinylidene fluoride) used for western blotting was from 

Millipore. 

 All the antibodies used were purchased from Santa Cruz Biotechnology except 

antibodies against α-SMA (Sigma-Aldrich), HIF-1α (BD Biosciences), 

p38/phospho-p38 and p42-p44 MAPK/phospho-p42-p44 MAPK (Cell 

Signaling). 
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 The secondary antibodies enzyme horseradish peroxidase –coniugated HRP) 

were from GE Health Care. 

 Chemiluminescence revelation kit is from GE Health Care. 

 The photographic plates were from Kodak. 

 The metalloproteinase catalytic activity evaluation kit Amplite
TM 

Universal 

Fluorimetric MMP Activity Assay Kit - Red Fluorescence was purchased from 

AAT Bioquest. 

 The cytofluorimetric apoptosis staining kit Annexin V-IP Fluos Staining Kit was 

from Roche. 

 

Common use solutions 

 SDS−PAGE 1X Sample Buffer. For 100 ml: 0.01 g of Bromophenol Blue, 1.52 

g Tris Base, 20 ml glycerol, 2 g di SDS, 20 ml di 2-mercaptoethanol. 

 SDS-PAGE 1X running buffer. For 1 litre: 25 mM Tris, 192 mM glycin, 0.1% 

(W/V) SDS, pH 8.3. 

 SDS-PAGE 1X blotting buffer. For 1 litre: 25 mM Tris, 192 mM glycin, pH 8.3, 

10% methanol. 

 RIPA lysis buffer (50 mM Tris.HCl, pH 7.5, 150 mM NaCl, 1% Nonidet P-40, 2 

mM EGTA, 1mM sodium ortovanadate, 100 mM NaF). 

 Washing solution: tween 0.1 % in PBS. 

 Blocking solution: non-fat dry milk 2 %, tween 0.05 % in PBS. 

 Stripping solution: 62.5 mM Tris Hcl pH 6.8, 2 % SDS, 100 mM β-

mercaptoethanol. 

 PBS (Phosphate buffered saline). For 1 litre: 0.2 g di KH2PO4, 0.2 g KCl, 0.8 g 

NaCl , NaH2PO4 pH 7.4. 
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METHODS 

 

Cell cultures and treatments 

Human dermal fibroblasts (HDFs), human A375 cells isolated from amelanocytic 

melanoma and human Hs29-4T cells isolated from human melanoma lymphonodal 

metastasis were all cultivated in DMEM high glucose (4,5 g/L) (Dulbecco’s Modified 

Essential Medium), supplemented with 10% bovine fetal serum (FCS), glutammine 2 

mM, penicillin (100 U/ml) and streptomicin (100 μg/ml), at 37°C in a 5% CO2 

humidified atmosphere. Cells are usually stored in liquid nitrogen in a freezing solution 

containing 90% FCS and 10% dimethyl sulfoxide (DMSO) and then plated in Petri 

capsules.  

All experiments were performed with 70%-80% confluent cultures, following 18-h 

incubation in serum-free culture medium. Cells were then stimulated with NE or E, at 

1µM concentration. Where needed, cells were pre-treated with unselective β-AR 

antagonist propranolol (Sigma-Aldrich) (1 µM). After 1h, medium was removed and 

cells were stimulated with NE 1 µM with or without propranolol 1 µM.  

For metabolism experiments, 70%-80% confluent A375 cells were incubated in 

normoxic condition for 18 h in serum-free and nutrient-free culture medium DMEM 1X 

w/o glucose/pyruvate/HEPES. Cells were than cultured for 24 h in presence of glucose 

(4,5 g/L), pyruvate (10 mM) and lactate (10 mM), in presence or absence of serum.  

 

 

Isolation of human dermal fibroblasts 

Human dermal fibroblasts (HDFs) were isolated from a surgical explantation taken from 

healthy patients. A small slice of the tissue piece was minced with sterile scalpels and 

pieces of <1 mm in size were plated in Petri plates and covered with covering glasses, 

favouring pieces compression and fragmentation. After having been digested overnight 

in 1 mg/mL collagenase I at 37 C°, fragments were spun down, re-suspended and plated 

in complete DMEM supplemented with 20% FCS, glutammine 2 mM, penicillin (100 

U/ml) and streptomicin (100 μg/ml), Kanamicyn and AMFO (Amphotericyn B) 100 

mg/lt.  

After 3-4 days culture medium was removed and fresh medium was then added. Days 

required for epithelial and fibroblast cells exit from bioptic fragments is highly variable 
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and depends on the type of bioptic tissue and the number of fibroblasts composing it. 

Usually it takes 20-30 days and, after this period, tissutal fragments were removed with 

steril tweezers and trypsinyzed, thereby promoting fibroblasts isolation as epithelial 

cells are not able to re-adhere to plate surface. Obtained fibroblasts were then 

maintained in culture with complete DMEM supplemented with 10% FCS, glutammine 

2 mM, penicillin (100 U/ml) and streptomicin (100 μg/ml). We also excluded 

contamination by skin stem cells of HDFs by evaluation of CD34 and cytokeratin-15, 

acknowledged as skin stem cell markers. 

 

 

Preparation of conditioned media 

For preparation of conditioned media, A375 cells were grown to 70% confluence in 

complete medium for 24 h. Then medium was removed and, after washing in PBS 

solution, cells were serum starved overnight in order to promote cells entry into a 

quiescent G0 phase, thereby better evaluating cells responsiveness to exogenous 

treatments. After this period cells were treated for 24 h with the indicated cytokines: 

TGF-β 10 ng/ml, NE 1 µM, VEGF (20 µg/ml) and IL-6 (50 µg/ml) added to serum-free 

culture medium. 

Fresh serum-free medium was added for an additional 24 h before collection of 

conditioned medium (CM), in order to obtain CM free from cytokines (but conditioned 

by their earlier administration). CM were then harvested, clarified by centrifugation, and 

used freshly on HDFs cells that were then incubated with the obtained CM for 24 h and 

used for Western blot analyses. 

 

 

Cell lysis and protein quantification  

In order to identify proteins of interest, cell lysates were then separated through SDS-

PAGE (polyacrylammide gel elettrophoresis) and revealed with Western Blotting 

analysis.  

After stimulations, cells were washed once with PBS solution and then lysated with 

RIPA lysis buffer. Obtained protein lysates were collected, always kept in ice and 

centrifugated at 13000 rpm for 15 minutes. After centrifugation, supernatant was 

collected and total proteins were quantified with Bradford assay. 
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Total protein quantification, espresse in g/ml, is evaluated with Coomassie Brilliant 

Blue, which binds to basics and aromatics aminoacidic residues (specially arginins), 

leading to maximum absorption at 595 nm wavelegth. Thus, Coomassie Brilliant Blue 

intensity is positively correlated to protein concentration.  

For the standard curve bovine serum albumine was used (BSA), diluting BSA 2 mg/ml 

concentrated in deionized water and then obtaining rising BSA concentrations from 2 

g/ml to 15 g/ml.  

Then Bradford reagent is prepared diluting 1/5 of starting solution with Coomassie 

Brilliant Blue in 4/5 of deionized water. 

To run the assay, 50 l of each sample, opportunely diluted in water in labelled 

eppendorfs, must be added to 950 l of the working solution for each sample, 

resuspending well. After a 5 minutes incubation, the absorbance of each sample is 

evaluated at a wavelength of 595 nm, subtracting the blank value. From values obtained 

from the standard curve it is possible to create a curve of absorbance in function of its 

concentration, thus, interpolating absorbances values to the standard curve, it is possible 

to calculate final protein concentration. 

Correlation between absorbance and concentration is expressed by Lambert-Beer law: A 

= dc, where  represents the extinction coefficient, d the path length and c represents 

sample concentration. 

For each Western Blotting experiment usually 20-25 g of total proteins are loaded on 

SDS-PAGE for each sample. 

 

 

SDS-PAGE analysis 

Sodium dodecyl sulfate polyacrylammide gel electrophoresis (SDS-PAGE) is a 

technique for separating proteins based on their ability to move within an electrical 

current, which is a function of the length of their polypeptide chains or of their 

molecular weight. This is achieved by adding SDS detergent to remove secondary and 

tertiary protein structures and to maintain the proteins as polypeptide chains. The 

anionic SDS coats the proteins (almost one SDS molecule binds every two aminoacidic 

residues of the polipeptidic chain), mostly proportional to their molecular weight, and 

confers the same negative electrical charge across all proteins in the sample.  

SDS-PAGE samples are boiled for 5 minutes in a sample buffer containing SDS and  -

mercaptoethanol, which leads to disolfuric bonds reduction and destabilization of 
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eventual protein tertiary structure. In addition, sample buffer is supplemented with 

bromophenol blue, ionizing coloured-tracking solution for the electrophoretic run, and 

glycerol, which increases sample density and promotes its stratification ate the bottom 

of the loading well.  

Once finished samples loading in the stacking gel, an electric field is applied across the 

gel, causing the negatively-charged proteins to migrate across the gel towards the 

positive electrode (anode). Stacking gel, characterized by very low acrilamide 

concentration (4%), is required to better stratificate the samples before entering the 

separating gel. According to that, different ionic force and pH of running buffer and 

stacking gel are required: this technique is called istachophoresis. In isotachophoresis 

the sample is introduced between a fast leading electrolyte and a slow terminating 

electrolyte. After application of an electric potential a low electrical field is created in 

the leading electrolyte and a high electrical field in the terminating electrolyte. The pH 

at sample level is determined by the counter-ion of the leading electrolyte that migrates 

in the opposite direction. In the first stage the sample constituents migrate at different 

speeds and start to separate from each other. The faster constituents will create a lower 

electrical field in the leading part of the sample zone and viceversa. Finally the 

constituents will completely separate from each other and concentrate at an equilibrium 

concentration, surrounded by sharp electrical field differences. Specific spacer or 

marker molecules are added to the sample to physically separate the sample constituents 

one is interested in. 

Separation of SDS-proteins complexes is achieved according to separating gel 

acrylamide concentration. Lower percentage gels are better for resolving very high 

molecular weight proteins, while much higher percentages are needed to resolve smaller 

proteins, while bromophenol blue is a very small molecule which is not affected by 

fricitional forces, thereby representing the migration front. Proteins relative molecular 

mass is evaluated by comparison with protein ladder standard molecular weights, 

separated in the same gel. Running is carried on at 200 Volts for almost 1 h. 

 

 

Western Blotting 

After run, polyacrylamide gel is maintained for 5 minutes at room temperature in slow 

agitatation in the transfer blot. In order to make the proteins accessible to antibody 

detection they are moved from within the gel onto a membrane made of  polyvinylidene 
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difluoride (PVDF). The method for transferring the proteins is called electroblotting and 

uses an electric current to pull proteins from the gel into the PVDF membrane. The 

proteins move from within the gel onto the membrane while maintaining the 

organization they had within the gel. Proteins transfer is carried out at 100 Volts for 1 h. 

PVDF membrane must be previously activated through treatment with methanol for 15 

seconds and left at drying for at least 15 minutes at room temperature.  

After electroblotting the PVDF membrane is incubated 1 h in slow agitation at room 

temperature with specific primary antibodies in a blocking solution containing non-fat 

dry milk 2% and Tween 0.05%. After incubation, the membrane is washed three times 

with a washing solution containing PBS 1X and Tween 0.1% and, in order to reveal the 

specific protein, the membrane is incubated with horseradish peroxidase conjugated 

secondary antibody for 30 minutes and then washed again for three times.  In the 

chemiluminescence reaction horseradish peroxidase catalyzes the oxidation of luminol 

into a reagent which emits light when it decays. Since the oxidation of luminol is 

catalyzed by horseradish peroxidase, and the HRP is complexed with the protein of 

interest on the membrane, the amount and location of light that HRP catalyzes the 

emission of, is directly correlated with the location and amount of protein on the 

membrane. Chemiluminescent protein revelation is carried out with ECL-Amersham 

Pharmacia kit reagents and developing of blots is carried out in the developing room 

placing imaging films on top of the membrane. Exposure is repeated, varying the time 

as needed for optimal detection.  

 

 

Crystal violet proliferation assay 

Crystal violet (CV) is a triphenylmethane dye (4-[(4-dimethylaminophenyl)-phenyl-

methyl]-N,N-dimethyl-aniline) also known as Gentian violet (or hexamethyl 

pararosaniline chloride). The crystal violet assay is useful for obtaining quantitative 

information about the relative density of cells adhering to multi-well cluster dishes 

thanks to its ability to bind to cells DNA.  

For our experiments 2x10
4
 cells have been plated in 24w multiwells and stimulated as 

previously described. Then cells have been washed with PBS and incubate with crystal 

violet solution for 5 minutes at 37 C°. The crystal violet solution contains 0,5% crystal 

violet in deionized water and methanol 20%. After incubation crystal violet was 

removed thorugh aspiration and three washings in PBS solution. 
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Finally, crystal violet uptaken by cells was solubilized after incubation in slow agitation  

for 1 h at 37 C° with a solution containing sodium citrate 0,1 M, pH 4,2. After 

incubation, solution containing solubilized crystal violet was collected and its 

absorbance was evaluated at a 595 nm wavelenght. Each measurement was made in 

triplicate for each point of the curve of growth. Absorbance is positively correlated to 

crystal violet amount bound to cells DNA content.   

 

 

Annexin V/Iodidium Propide cytofluorimetric staining 

20x10
4
 cells were plated in 60 mm Petri plates (p60) and treated with the different 

nutrients as previously described. 

Cells were then washed in PBS solution and detached from plates with Accutase 

solution. The advantages of Accutase over the traditional Trypsin/EDTA treatment are 

that it is less damaging to cells. In this case cells treatment with Accutase carries lower 

risk to disrupt Annexin V antigens, expressed on the outer side of cell membranes 

during apoptotic events.   

After cells removal from the plastes, they have been respuspended in PBS solution and 

centrifugated at 1000 rpm for 3 minutes. Finally, pelletted cells were resuspended in  

100 µl containing 1 µl of annexin V, 1 µl of iodidium propide and 98 µl of buffer 

solution, all provided by the kit. After 15 minutes of incubation at room temperature, 

cells were evaluated by flow citometry for Annexin V/iodidium propide staining. 

 

 

Intracellular ROS evaluation 

For the evaluation of intracellular ROS amount, staining with 2',7'-

dichlorodihydrofluorescein diacetate (H2DCFDA) probe was performed. H2DCFDA is a 

chloromethyl derivative of H2DCFDA. H2DCFDA passively diffuses into cells, where 

its acetate groups are cleaved by intracellular esterases and its thiol-reactive 

chloromethyl group reacts with intracellular glutathione and other thiols. H2DCF-DA is 

solubilized in DMSO at moment of usage and avoided from light exposure.  

For our experiments, 1,5x10
4
 cells were plated on 6 cm plates and stimulated as 

previously described, then stimulation culture medium was removed and fresh serum-

free DMEM was added. Then H2DCF-DA (5 g/ml) probe was added and incubated for 

3 minutes at 37°C. After the incubation time, cells are blocked through PBS washing, 
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quickly lisated in RIPA lysis buffer supplemented with proteases inhibitors and kept for 

1 minute at 4°C. Lysates were then collected and centrifugated for 1 minute at 13000 

rpm. For each sample 100 µl  were transferred on a 96 wells multiwell and analyzed and 

fluorimetric quantification was performed at an excitation wavelength of 488 nm, while 

the emission wavelegth read was set at 510 nm. Obtained values were finally 

normalized on protein content of each sample.  

 

 

Cell transfection with lipofectamine 

Cells plated at a 90% confluence were transiently transfected using lipofectamine. 

Before transfection, DMEM cultur medium is removed and replaced with Optimem 

medium, lacking serum and antibiotics that could interfere with liposomes formation. 

Acoording to Petri plates diameter (60 or 100 mm), 4 g or 12 g of siRNA are diluted 

in 0.5 ml or 1.5 ml of Optimem medium and 10 g or 30 g of lipofectamine in 0.5 ml 

or in 1.5 ml of Optimem medium. SiRNAs are used at a final concentration of 200 nM 

for 10 µg di lipofectamine. After a 5 minutes incubation, solution containing siRNA is 

added to solution with lipofectamine and incubated at room temperature for 20 minutes, 

in order to promote liposomes formation, then equal amounts of final solution are added 

to each plate. Optimem medium was removed after 4-6 h from transfection, as 

lipofectamine could be slightly toxic for cells. Finally, cells were maintained in 

complete medium for 48 h and transfection efficiency was evaluated through 

immunoblotting assays using specific antibodies for the silenced protein.  

 

 

Invasion assay 

Transwell system, equipped with 8-μm pore polyvinylpirrolidone-free polycarbonate 

filters, was used. Cells (2 × 10
4
 in 200 μl) stimulated as previously described were 

loaded into the upper compartment in serum-free growth medium, with or without 50 

μmol/L ilomastat. The upper sides of the porous polycarbonate filters were coated with 

50 μg/cm
2
 of reconstituted Matrigel basement membrane in order to mimic an ECM and 

placed into six-well culture dishes containing 1 ml of complete growth medium. After 

24 h of incubation at 37°C, noninvading cells and the Matrigel layer were mechanically 

removed using cotton swabs, and the microporous membrane was fixed in 96% 

methanol and stained with Diff-Quick solution. Chemotaxis was evaluated by counting 



 

 120 

the cells that migrated to the lower surface of the polycarbonate filters (six randomly 

chosen fields, mean ± SD). 

 

 

Real-Time PCR 

Total RNA was extracted from Hs29-4T and A375 derived from our experimental 

conditions using the RNeasy Minikit kit. Total RNA (1 μg) was reverse-transcribed 

using the Quantitect Reverse Transcription Kit. Reverse transcription was performed in 

a final volume of 20 µl containing reverse transcriptase, real-time buffer 1x and real-

time primer mix. The amplification was carried out at 42°C for 2 minutes, then 42 C° 

for 15 minutes and 95°C for 3 minutes. Measurement of gene expression was performed 

by quantitative real-time PCR (7500 Fast Real-Time PCR System, Applied 

Biosystems), using the Qiagen Quantifast SYBR Green PCR kit. For each sample, 1 µg 

of cDNA was added to 25 µl of PCR mix. The samples were then subjected to 40 cycles 

of amplification at 95°C for 10 s and 60°C for 30 s. RNeasy Minikit, Quantitect Reverse 

Transcription Kit, all primer/probe mixes, and Qiagen Quantifast SYBR Green PCR Kit 

were from Qiagen, except the following primers:  

 

ADRB1 FW: 5’-CAGGTGAACTCGAAGCCCAC-3’ 

ADRB1 REV: 5’-CTCCCATCCCTTCCCAAACT-3’ 

ADRB2 FW: 5’-ACGCAGTGCGCTCACCTGCCAGACT-3’ 

ADRB2 REV: 5’-GCTCGAACTTGGCAATGGCTGTGA-3’ 

VEGF FW: 5’-TACCTCCACCATGCCAAGTG-3’ 

VEGF REV: 5’ ATGATTCTCCCTCCTCCTTC-3’ 

IL-8 FW: 5’-CTGGCCGTGGCTCTCTTG-3’ 

IL-8 REV: 5’-TTAGCACTCCTTGGCAAAACTG-3’ 

MMP-2 FW: 5’-ACGACCGCGACAAGAAGTTAT-3’  

MMP-2 REV: 5’-ATTTGTTGCCCAGGAAAGTG-5’  

MMP-9 FW: 5’-GACAAGCTCTTCGGCTTCTG-3’   
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MMP-9 REV: 5’-TCGCTGGTACAGGTCGAGTA-5’ 

IL-6 FW: 5’-AGTTCCTGCAGTCCAGCC-3’ 

IL-6 REV: 5’-TCAAACTGCATAGCCACTTTC-3’ 

 

Quantitative MMPs activity assay 

Matrix metalloproteinases (MMPs) activity was measured with Amplite
TM

 Universal 

Fluorimetric MMP Activity Assay Kit according to the manifacturer’s instructions. 

Briefly, serum-free medium from confluent monolayer of cells was collected and 5 µl 

were added to 4-aminophenylmercuric acetate (AMPA; 1 nmol/L) at 37 °C for 1 hour to 

detect MMP-2 activity and at 37 °C for 2 hours to detect MMP-9 activity. A 50 µl 

portion of the mixture was then added to 50 µl of MMP Red substrate solution. After 60 

minutes of incubation the signal was read by fluorescence microplate reader with 

excitation (Ex)/ emission (Em) = 540 nm/590 nm. 

 

Statistical Analysis 

In vitro data are presented as means ± SD from at least three experiments. Results were 

normalized versus control expression levels. Statistical analysis of  the  data  were  

performed  by  Student’s  t test.  p≤0.05  was  considered statistically significant. 
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AIM OF THE STUDY I 

 

Stress is commonly defined as the general reaction of the organism in order to respond 

to endogenous and exogenous stimuli that can affect the homeostasis of the organism 

itself. The emotional arousal induced by the stimulus is processed in the CNS and 

occurs both at a biological/somatic level, with autonomic and endocrine changes, and at 

a psychological/behavioral level with sequences of motor behavior collectively known 

as the "flight or fight response". This response is usually time-limited and is 

progressively reduced when the stressful event is no longer present, but when stressors 

keep sustaining secretion of stress mediators, we have a condition of chronic stress-

related disorder that constantly affects homeostatic mechanisms. 

In the light of these observations, several epidemiological and clinical studies over the 

years have demonstrated the close interrelationship between chronic stress, depression 

and social isolation and cancer initiation and progression in several tumour models, 

pointing out the role exerted by CA through adrenergic receptors activation in almost all 

phases of cancer progression. 

In particular, studies sight β-adrenergic receptor (AR) antagonists as novel therapeutic 

agents for melanoma, as they may reduce disease progression. Here within, preliminary 

studies have evaluated the expression of β-ARs in a series of human cutaneous 

melanocytic lesions, and we therefore studied the effect of their endogenous agonists, 

norepinephrine (NE) and epinephrine (E), on primary and metastatic human melanoma 

cell lines. Using immunohistochemistry, it has been demonstrated that both β1- and β2-

ARs are expressed in tissues from benign melanocytic naevi, atypical naevi and 

malignant melanomas and that expression was significantly higher in malignant 

tumours.  

Melanoma cell lines (human A375 primary melanoma cell line and human Hs29-4T 

metastatic melanoma cell lines) also expressed β1 - and β2-ARs by measuring transcripts 

and proteins. NE or E increased metalloprotease-dependent motility, released 

interleukin-6 and 8 (IL-6, IL-8) and vascular endothelial growth factor (VEGF). These 

effects of catecholamines were inhibited  by the unselective β-AR antagonist 

propranolol. The role of soluble factors elicited by catecholamines seemed pleiotropic 

as VEGF synergized with NE increased melanoma invasiveness through 3D barriers, 

while IL-6 participated in stromal fibroblast activation towards a myofibroblastic 

phenotype. Our results indicate that NE and E produce in vitro via -ARs activation a 
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number of biological responses that may exert a pro-tumourigenic effect in melanoma 

cell lines. The observation that -ARs are up-regulated in malignant melanoma tissues 

support the hypothesis that circulating catecholamines NE and E, by activating their 

receptors, favour melanoma progression in vivo. 
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RESULTS I 

 

Preliminary results: expression of β-ARs in tissue sample 

Melanoma represents the most aggressive type of skin cancer, with an increasing 

incidence found especially in young adults. Surgery continues to provide a cure for 

localized and regional disease. Despite increasing improvement in early diagnosis, a 

significant reduction in mortality has not been observed yet, as metastatic melanoma is 

still characterized by high resistance to drug therapies and radiation (MacKie et al., 

2009; Rughani et al., 2013). Therefore, at present there is no therapeuthic approach for 

the complete cure of metastatic melanoma and the only effective treatment for the 

eradication of the disease is represented by early phase surgery (Atallah et al., 2005). 

Hence, in the last decade several studies have contributed to a better understanding of 

the biological pathways underlying the process of melanoma dissemination and 

metastasis in order to identify new therapeutic targets. 

There is growing evidence that some stress neurotransmitters, such as norepinephrine 

(NE) and epinephrine (E), directly contribute to promote tumour cell growth and 

invasion, at least in part through -AR activation, thereby suggesting an important 

neuro-oncological link in tumour progression (Sood et al., 2006; Yang et al., 2006; 

Shang et al., 2009). This interrelationship among psychosocial stress, tumor growth and 

β-adrenergic activation has also been confirmed in vivo in mice under controlled stress 

conditions (Hasegawa and Saiki, 2002). Moreover, it has been shown that various 

human solid tumours, such as breast, colon, prostatic, ovary, nasopharyngeal and oral 

cancer, express β2-adrenoceptor (β2-AR), raising the possibility that such receptors may 

affect proliferation, invasion and dissemination processes (Sood et al., 2006; Palm et al., 

2004; Drell et al., 2003). Interactions between tumour cells and soluble factors 

originated from the nervous system has recently been proposed to favour metastasis 

formation (Voss et al., 2010). Improved survival rates have been demonstrated in mice 

with metastatic tumour by combined administration of -AR antagonists (Glasner et al., 

2010). In addition, recent evidence suggests a dramatic role of -AR blockers in 

reducing metastases, tumour recurrence and specific mortality in breast cancer patients 

(Powe et al., 2011). More recently, the use of β-blockers for concomitant disease was 

associated with a reduced risk of progression of thick melanoma and with an increased 

survival time of melanoma patients,
 
suggesting that the interaction of catecholamines 

with β-ARs could be a useful target in this disease (De Giorgi et al., 2011; Lemeshow et 
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al., 2011). However, no detailed information regarding -ARs expression in human 

cutaneous benign and malignant melanocytic lesions or catecholamine influence on 

melanoma cell migration has been provided so far.  

According to these observation, studies conducted in collaboration between the Section 

of Clinical, Preventive and Oncologic Dermatology and the Division of Pathological 

Anatomy in the Department of Critical Care Medicine and Surgery of Florence by prof. 

Silvia Moretti and prof. Daniela Massi evaluated the expression levels of both β1 and β2-

AR in order to point out a possible correlation between adrenergic receptors expression 

and melanoma progression. To this aim, the study series included 5 common 

melanocytic naevi (CN) (2 females, 3 males, age 28-54 yrs, mean 35.8 yrs); 5 atypical 

(so-called dysplastic) melanocytic naevi (AN) (2 females, 3 males, age 30-47 yrs, mean 

40.4 yrs); 5 in situ primary melanoma (PM) (2 females, 3 males, age 37-55 yrs, mean 

44.2 yrs; site: 3 trunk,  1 lower extremity); 9 superficial spreading (SS) PM (7 females, 

2 males, age 41-82 yrs, mean 58.4 yrs; site: 4 trunk, 3 leg, 2 arm; thickness 0.30-1.90 

mm, mean 0.82 mm; 5 level II, 3 level III); 6 nodular (N) PM (3 females, 3 males, age 

53-76 yrs, mean 61.5 yrs; site: 3 trunk, 1 leg, 2 arm; thickness 1.40-17 mm, mean 5.2 

mm; 2 level III, 3 level IV, 1 level V), 10 metastatic melanoma (MM), 5 cutaneous and 

5 lymph-nodal (1 female, 9 males, age 59-87 yrs, mean 77.1 yrs).  

The presence of β-ARs was demonstrated in all melanocytic lesions examined. The 

specimens were obtained by surgical resection in all cases and  fixed in 10% formalin 

before being processed in paraffin. Haematoxylin-eosin stained sections from each 

histological specimen were reviewed to confirm the histological diagnosis. The 

percentage of positive cells per lesion was scored according to semi-quantitative 

criteria. Since the percentage of positive naevus melanocytes/melanoma cells was 

always higher than 50%, semi-quantitative results were expressed as score 1 (50-80% 

positive naevus melanocytes/ melanoma cells), score 2 (81-90% naevus 

melanocytes/melanoma cell staining ), and score 3 (91-100% melanoma cell staining). 

The cell staining intensity was scored on a scale as weak, moderate, strong, very strong. 

In particular, the staining for 1-AR was confined to the cell cytoplasm in naevus 

melanocytes and melanoma cells; the reaction for 2-AR was also confined to the cell 

cytoplasm in all cases, with an additional peripheral membrane pattern in some AN 

melanocytes and malignant cells. The cell staining intensity was always weak with 

regard to the reaction for β1-AR, whereas the immunostaining for β2-AR appeared to be 

weak in CN, moderate (except one very strong reaction), in AN; moderate or strong in 
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in situ PM; from weak to moderate or strong in SSPM, and from strong to very strong in 

NPM and MM, with no difference between cutaneous and nodal metastasis.  

In regards to β1-AR expression, score 1 was evaluated in both CN and AN, score 2 was 

found in a minority (3 in situ and 2 SS) of PM, whereas in the other PM and MM score 

3 was detected. β1-AR expression was significantly higher in malignant than in benign 

lesions (p0.0001) and in PM or MM than in naevi (p0.0001 and p0.0001). No 

difference was observed between CN and AN, or between in situ/SSPM compared to  

NPM/MM.   

With regards to β2-AR expression, score 1 was observed in CN, score 2 in AN and score 

3 was detected in all PM and MM but one (SSPM), which exhibited score 2. β2-AR 

reactivity was significantly higher in malignant lesions than in naevi (p0.0001), and in 

PM or MM respectively, than in naevi (p0.0001 and p0.0001). AN exhibited a 

significantly higher reactivity compared to CN (p0.003), and no difference was 

observed between in situ/SSPM and  NPM/MM. In addition, no significant difference 

was detected between PM and MM for both receptors.       

Epidermal keratinocytes were lightly coloured for β2-AR.  In fact, it has been previously 

described that  human keratinocytes primarily express β2-AR (Sivamani et al., 2007). 

Endothelial and stromal cells exhibited heavy reactivity for 2-AR in malignant lesions, 

and to some extent, in AN.  

Taken together, these preliminary data showed that β1- and β2-ARs were variably 

expressed in human melanocytic lesions with a significant up-regulation in PM and 

MM, and, at least for β2-AR, a significant up-regulation was also observed in AN versus 

CN.   
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β-AR expression analysis and responsiveness of melanoma cell lines after 

catecholamines stimulation  

In order to confirm the correlation between sensitivity to catecholamines and 

progression towards a malignant phenotype of melanoma cells hypothesized after the in 

vivo preliminary analysis, we performed our in vitro experiments on two different 

melanoma cell lines, namely Hs29-4T cells, selected from a lymph nodal metastatic 

lesion, and A375 cells, derived from human primary melanoma.  

First we evaluated expression levels of both β1 and β2-AR on both cell lines, performing 

Western Blot analysis and evaluation of mRNAs through Real Time PCR analysis. We 

observed that both cell lines express low and comparable levels of β1-AR, as shown in 

Figure 1, while they both express higher amounts of β2-AR (Figure 2A and 2B), with 

the primary A375 melanoma cell line exhibiting a significantly higher expression of β2-

AR compared to the metastatic Hs29-4T cell line.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Expression of β1-AR in melanoma cell lines. (A) Analysis of  β1-AR expression by immunoblot in 

primary (A375) and metastatic (Hs29-4T) melanoma cell lines. (B) Amount of ADRB1 mRNA by real-

time PCR. The amount of target, normalized to the endogenous reference (18S RNA), was given by the 2
-

ΔΔct
 calculation and was reported as 2

-ΔΔct
. Both immunoblots and real-time PCR are the mean of three 

independent assays.  
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Fig. 2. Expression of β2-AR in melanoma cell lines. (A) Analysis of β2-AR expression by immunoblot in 

primary (A375) and metastatic (Hs29-4T)  melanoma cell lines. (B) Amount of β2-AR mRNA by real-

time PCR. The amount of target was given by the 2
-ΔΔct

 calculation and was reported as 2
-ΔΔct

. 

Immunoblot and Real-Time PCR are the mean of three different experiments.  

 

The second messenger cyclic AMP (cAMP) mediates several cellular responses to 

external signals such as proliferation, ion transport, regulation of metabolism and gene 

transcription by activation of the cAMP-dependent protein kinase (cAPK or PKA). 

Activation of PKA occurs when two molecules of cAMP binds to the two regulatory 

subunits of the tetrameric PKA holoenzyme, leading to release of active catalytic 

subunits. Activation of transcription upon elevation of cAMP levels results from 

translocation of PKA to the nucleus where it phosphorylates serine or threonine residues 

on target proteins that bear PKA responsive motif R-R-X-(S/T)-Y like the transcription 

factor CREB, which in turn leads to TFIIB binding to TATA-box-binding protein 

TBP1, thus linking phosphorilated CREB to the Pol II transcription initiation complex 

(Taylor et al., 1990). 

As already known, NE secretion leads β adrenergic receptors stimulation, resulting in 

Gαs-mediated activation of adenylyl cyclase and subsequent conversion of ATP into 

cAMP. Transient flux of intracellular cAMP activates PKA to phosphorylate multiple 

target proteins, including transcription factors of the CREB/ATF and GATA families, as 

well as β adrenergic receptor kinase (BARK). BARK recruitment of β-arrestin inhibits β 

adrenergic receptor signaling and activates Src kinase, resulting in activation of 

transcription factors such as STAT3 and metastasis-associated genes involved in 
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inflammation, angiogenesis, tissue invasion, and epithelial–mesenchymal transition 

(EMT), and in downregulation of genes promoting antitumour immune responses (Cole 

and Sood, 2012).  

According to these observation, we performed a Western Blot analysis of activated 

PKA level in order to assess melanoma cell lines responsiveness to NE stimulation. The 

doses of NE and E used for our study were selected to reflect the physiological 

conditions of this hormone at the level of the tumour. Although circulating plasma 

levels of NE are only 10 to 1000 pM in a normal individual, they may reach as high as 

100 nM in conditions of stress (Schmidt et al., 1996). Studies suggest that within the 

tumour microenvironment, concentrations may reach as high as 10μM (Lara et al., 

2002). In our case, pilot experiment show best responsiveness of both cell lines at a 

catecholamines concentration of 1 µM. As shown in figure 3A and 3B, both cell lines 

are able to respond to catecholamine stimulation with PKA activation in a range of time 

between 5 and 20 minutes of stimulation, while at 30 minutes the signal starts 

decreasing, according to a progressive receptor signaling downregulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 (A, B). Activation of PKA. Melanoma cell lines were serum-deprived overnight and then 

stimulated with NE (1 µM) for the indicated period and an immunoblot analysis for the detection of the 

phosphorylation level of  p-PKA was shown. Actin immunoblot was used for normalization. The bar 

graph below represents the phosphorylation level of PKA in four different experiments. *p<0.005. 
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To further elucidate the role of catecholamines in melanoma signaling, we evaluated the 

actiovation of the mitogen-activated protein kinase (MAPK) pathways. Several studies 

have in fact related β adrenergic-dependent MAPK signaling to increased growth and 

aggressiveness of breast (Cakir et al., 2002), pulmonary (Schuller and Cekanova, 2005) 

and pancreatic carcinoma (Weddle et al., 2001; Askari et al., 2005), but few studies 

until now have investigated the effects of β-adrenergic signaling on these molecular 

pathways in melanoma models. Thus we performed a Western Blot analysis in order to 

evaluate phosphorylated levels of both p42-p44 and p38 MAPK. In particular, we 

analysed phosphorilation of Thr202 and Tyr404, key aminoacidic residues for MAPK 

activation.  

Our data demonstrate that A375 cells show a progressive activation of p42/p44 MAPK 

that reaches its maximal level at 30 minutes of stimulation with both E and NE (figure 

4A and 4B). On the other hand, Hs29-4T cells respond to E stimulation within 15 

minutes of stimulation, while after 20 minutes p42/p44 phosphorilated levels start 

decreasing. On the contrary, they show a similar activation pattern to A375 cells after 

NE stimulation, where p42/p44 reach maximal activation after 30 minutes (figure 4A 

and 4B).   

For what concerns p38, also in this case both NE and E are able to elicit its activation in 

both cell lines, although with different kinetics (fig. 4A and 4B).  
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Figure 4. Analysis of activation of p42/p44 and p38 MAPK. Melanoma cell lines were serum-deprived 

overnight and then stimulated with E (A) or NE (1 µM) (B) for the indicated period and an immunoblot 

analysis for the detection of the phosphorylation level of  MAPKs were shown. Total p42/p44 and p38 

MAPK immunoblot were used for normalization. The bar graphs below represent the phosphorylation 

level of MAPKs in four different experiments. *p<0.005. 

 

Taken together, our data further confirm that both primary and metastatic cell lines 

respond to catecholamines promoting activation of both PKA and p42/p44 and p38 

MAPK pathway, acknowledged to play mandatory roles in regulating cancer cells 

growth, survival and invasive ability.  
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Catecholamines increase melanoma cells invasive ability 

Activation of autocrine, paracrine and/or endocrine pathways At both primary and 

metastatic tumour sites can promote tumour cell proliferation by disrupting the balance 

between positive, pro-proliferative and pro-invasive, and inhibitory signals (Langley 

and Fidler, 2007). As already stated, several studies have demonstrated the close 

interrelationship between psychosocial factors and cancer progression. In particular, 

chronic stress and related continuative production of stress hormones are able to affect 

key tumour cells mechanisms like invasive/metastatic ability and angiogenesis in order 

to promote tumour spreading in distant sites. For example, it has been demonstrated in 

models of ovarian and nasopharyngeal carcinomas that NE increases cells motility and 

invasive ability through upregulation of MMPs secretion (Yang et al., 2006; Sood et al., 

2006). In addition, the β blocker propanolol showed to have effect in impairing cancer 

cells invasion through inhibition of MMPs and VEGF secretion in an in vitro model of 

pancreatic carcinoma (Guo et al., 2009). 

According to these observation, we therefore analysed the motility of melanoma cells 

upon catecholamine stimulation. The invasion assay was carried out by Boyden 

chambers placed in a well of a 24 multiwell. Cells were seeded on the upper part of the 

filter, while a chemoattractant stimulus, in this case culture medium supplemented with 

serum, was placed in the bottom of the well. In order to mimick the basal layer 

structure, the Boyden filter was covered with Matrigel, syntethic  mixture of different 

structural proteins like laminin, entactin, proteoglycans and collagen, thereby creating a 

three-dimensional layer. After 24 h of stimulation with catecholamines, filters were 

subjected to haematoxylin-eosin staining in order to evaluate the number of cells 

migrated to the lower side of the Boyden filter. We selected adequate time point by 

means of pilot experiments showing 24 h as the best to obtain motility increase. 

As showed in bar graphs in figure 5A and 5B, both NE and E are able to elicit invasive 

behaviour in both metastatic and primary melanoma cells. In particular, both NE and E 

appear to be more effective in primary melanoma cells with respect to metastatic 

melanoma cells, thereby according to an increase in cancer aggressive behaviour. In 

addition, E is the most efficient catecholamine in eliciting invasiveness of the metastatic 

Hs29-4T cell line. In order to further confirm the involvement of β subtypes of 

adrenergic receptors activation in modulating melanoma cells invasion, A375 and Hs29-

4T cells were pre-treated with β blocker propanolol before performing stimulation with 

catecholamines, and seeded in the upper side of the Boyden chamber. As shown in 
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figure 5A and 5B, propanolol impairs invasive ability of both primary and metastatic 

melanoma cells, thereby reducing the number of invaded cells to control levels. 

Given their ability to degrade the ECM, MMPs act directly on the motility and 

invasiveness of cancer cells, allowing them to overcome the boundaries of the tissues 

and therefore to exit from the tumour primary site and reach blood and lymphatic 

vessels in order to metastatize in distant tissues (Sternlicht et al. 1999; Boire et al. 

2005). To further confirm the role of MMPs in mediationg catecholamines-dependent 

cells motility, we performed Boyden assays incubating both cells lines with ilomastat, a 

broad range pharmacological inhibitor of MMPs activity. As demonstrated by both 

pictures and bar graphs in figure 5A and 5B, the pro-invasive effect of both NE and E is 

strongly sensitive to ilomastat, that reduces the number of invaded cells to control 

levels. 
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Figure 5A. Melanoma cell lines were 

serum-deprived overnight and then seeded 

in the upper Boyden chamber for assay 

their invasion. NE (1 µM), in presence or 

absence of ilomastat (50 μmol/L) or 

propranolol (1µM), was added in the upper 

Boyden chamber. Bar graphs represent the 

mean of migrated cells counted in six 

different fields for each experiment. 

*p<0.005 versus untreated. 
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Taken together, our data demonstrate that catecholamines stimulation promotes 

melanoma cells invasion through activation of a β-adrenergic-dependent pathway that 

involves MMPs secretion, thereby confirming the involvement of a proteolytic 

degradation of the matrigel barrier during invasion. 

We therefore analysed by Real Time PCR the expression of MMP-2 and MMP-9, the 

main proteolytc enzymes expressed by Hs29-4T and A375 cell lines. Melanoma cell 
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Figure 5B. Melanoma cell lines were 

serum-deprived overnight and then 

seeded in the upper Boyden chamber 

for assay their invasion. E (1 µM), in 

presence or absence of ilomastat (50 

μmol/L) or propranolol (1µM), were 

added in the upper Boyden chamber. 

Bar graphs represent the mean of 

migrated cells counted in six different 

fields for each experiment. *p<0.005 

versus untreated. 
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lines were serum-deprived overnight and then stimulated with E or NE 1µM for 24 h. 

At the end of the stimulation, RNA was extracted and analysed in order to maintain the 

same analysis time point as the one used for motility assays. Figure 5C and 5D reveal 

that, while NE and E do not influence MMP-9 production, the expression of MMP-2 is 

increased by NE in A375 primary melanoma cells and by E in metastatic Hs29-4T.  

 

 

 

 

 

 

 

 

 

 

Figure 5C and 5D. Expression of MMP-2 (C) and MMP-9 (D) mRNA by real-time PCR. Melanoma cell 

lines were serum-deprived overnight and then stimulated with E or NE (1µM) for 24 h. The amount of 

target, normalized to the GAPDH mRNA amounts, was given by the 2
-ΔΔ

CT calculation and was reported 

as arbitrary units (a.u.). The graphs reports data as the mean of three independent assays. 

 

In order to further elucidate this data apparently in contrast with several studies in 

literature, we analysed enzymatic activity of MMP-2 and MMP-9 with a fluorimetric 

kit. This MMP activity assay kit uses a Tide Fluor™ 3 (TF3)/Tide Quencher™ 3 (TQ3) 

fluorescence resonance energy transfer (FRET) peptide as a MMP substrate. In the 

intact FRET peptide, the fluorescence of TF3 is quenched by TQ3. Upon cleavage into 

two separate fragments by activated MMPs, the fluorescence of TF3 is recovered and its 

signal can be easily read by a fluorescence microplate reader at Ex/Em = 540/590 nm. 

Our data demonstrate that both NE and E are able to maintain a high activation state of 

secreted MMP-2 and MMP-9 following catecholamines stimulation for 24h on both cell 

lines (figure 5E and 5F).  
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Figure 5E and 5F. MMP-2 and MMP-9 activity assay. Melanoma cell lines were serum-deprived 

overnight and then stimulated with NE (A) or E (1 µM) (B) for 24h. The media obtained were then tested 

for MMPs activity with a fluorimetric kit, following the manifacturer’s instructions. Data are presented as 

RFU versus concentration of test compounds. The graphs reports data as the mean of four independent 

experiments. *p<0.005. 

 

In conclusion, data obtained so far give new insights about the role of catecholamines in 

influencing MMPs activity both at a transcriptional and post-translational level. Indeed, 

we observed a prolonged and sustained activation of both MMP-2 and MMP-9 by 

catecholamines in melanoma cells, while analysis of RNA revealed a control of 

expression, mainly focused on MMP-2. 
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Effects of catecholamines on cytokine production and tumour microenvironment 

Cytokines are key molecules secreted by the immune system and play important roles in 

the cross-talk between different immunologically active cells and tissues, but cytokines 

are secreted also by non immune-related cells like endothelial and epithelial cells, thus 

mediating systemic responses to physiological or pathological stimuli.  

In the light of these observation, it has been demonstrated that cancer cells secrete many 

cytokines, chemokines and growth factors that can affect their own aggressiveness, in 

terms of proliferation, invasion or survival, as well the reactivity of the surrounding 

stroma. For example, cancer cells production of IL-8 promotes proliferation and 

survival of cancer cells through autocrine signaling pathways. In addition, tumour-

derived IL-8 activates endothelial cells in the tumour vasculature to promote 

angiogenesis and induce a chemotactic infiltration of neutrophils into the tumour site 

(Wilson and Waugh, 2008). Also IL-6 plays an important role both in regulating 

proliferation, invasiveness/scattering and resistance to apoptosis of tumor cells. IL-6 has 

also been shown to enhance endothelial cell migration, a key step in angiogenesis, and 

dissemination of solid tumors, also through a synergistic action with VEGF, main 

promoter of cancer angiogenic sprouting. Thus increased expression of these cytokines, 

either in the circulation or in tumour tissue, is correlated with worse prognosis in several 

cancers (Dankbar et al., 2000; Ara et al., 2010; Otrock et al., 2011). 

To address the role of catecholamine stimulation in these features we first analysed the 

expression of a panel of cytokines/growth factors by quantifying mRNA levels thorugh 

real time PCR analysis after stimulating cells for 24 hours with NE or E. We found that 

catecholamine stimulation leads to an increase in the expression of VEGF, IL-6 and IL-

8 in both cell lines (Figure 6A, 6B, 6C). Interestingly, the two catecholamines used 

show differential effects for VEGF, IL-6 and IL-8 in Hs29-4T and A375 cells. As 

shown in the bar graphs, A375 primary melanoma cells respond to both NE or E 

eliciting an almost twenty-fold higher expression of IL-6 and an almost five-fold greater 

expression of VEGF and IL-8. Conversely, the Hs29-4T metastatic cell line senses NE 

to increase expression of IL-6 and IL-8, while E seems to play a more important role in 

promoting VEGF expression. 
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Figure 6. Expression of VEGF, IL-6 and IL-8 in E- and NE-treated melanoma cell lines. Melanoma cell 

lines were serum-deprived overnight and then stimulated with E or NE (1µM). Total RNA was used for 

the amplification of mRNA of IL-6 (A), VEGF (B) and IL-8 (C), using as housekeeping gene GAPDH 

mRNA. The amount of target, normalized to the GAPDH mRNA amounts, was given by the 2
-ΔΔCT

 

calculation and was reported as arbitrary units (a.u.). The graphs reports data as mean of three 

independent assays.  *p<0.005. 
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migration and invasion of tumour cells (Li et al. 2003; De Wever et al. 2004; Lewis et 

al. 2004).  

In order to evaluate a possible synergy between catecholamines stimulation and 

cytokines in promoting primary melanoma aggressiveness, we performed invasion 

assays where A375 primary melanoma cells were seeded in the upper Boyden chamber 

and stimulated with NE (1 µM) alone or in combination with IL-6 (50 ng/µl) or VEGF 

(20 ng/µl). We observed that, while VEGF and IL-6 alone do not affect cancer cells 

invasion, stimulation with VEGF increases the invasive spur induced by NE in A375 

primary melanoma cells. On the contrary, combined A375 cells stimulation with NE 

and IL-6 does not seem to play a significant role (Figure 7A).  

 

  

  

 

  

    

 

 

 

 

 

 

 

 

 

Figure 7A. Synergy among NE, cytokines and tumour microenvironment. (A) A375 primary melanoma 

cells were serum-deprived overnight and then seeded in the upper Boyden chamber for assaying their 

invasion. NE (1 µM), IL-6 (50 ng/µl), VEGF (20 ng/µl), in combination with NE or alone, were added in 

the upper Boyden chamber. Bar graph represents the mean of migrated cells counted in six different fields 

for each experiment. *p<0.005 versus untreated. 

 

  A 

untre
ate

d
NE

VEG
F

IL
6

NE +
 V

EG
F

NE +
 IL

-6

0

100

200

300

400

500

600

700

n 
ce

lls
 m

ig
ra

te
d 

th
ro

ug
h 

m
at

rig
el

 



 

 141 

As a result of specific environmental stimuli produced by neighboring cancer cells, 

healthy fibroblasts may undergo an activated state, named “myofibroblastic”, which is 

characterized by the de novo expression of α-smooth muscle actin (α-SMA) protein, the 

actin isoform typical of smooth muscle cells. Among molecules produced by tumour 

cells, IL-6 has been described as a key molecule in activating surrounding stromal 

and/or inflammatory cells infiltrating the tumour burden (Ara et al., 2010).  

We therefore analyzed the ability of IL-6, in association with NE, to induce an activated 

state in healthy dermal fibroblasts. To this aim we performed a Western Blot analysis in 

order to evaluate the protein level of α-SMA in human dermal fibroblasts (HDFs) 

treated with conditioned media (CM) A375 cells. To obtain CM from melanoma cells, 

A375 cells were stimulated in starvation medium with NE, IL-6 or VEGF. After 24 

hours of stimulation, the media was removed and replaced with fresh serum-free culture 

medium in order to obtain CM free from NE, IL-6 or VEGF, but conditioned by their 

previous administration. HDFs were then incubated with the obtained CM for 24 h and 

then used for Western blot analysis. We observed that IL-6 is able to activate dermal 

fibroblasts, as demonstrated by their ability to elicit α-SMA expression in comparison 

with the untreated condition. In addition, in dermal fibroblasts, the conditioned medium 

of NE-treated A375 cells induce an activation state very similar with respect to 

treatment with IL-6 alone. Conversely, VEGF treatment is almost ineffective in eliciting 

a reactivity of fibroblasts (Figure 7B). 

 

 

 

 

 

 

 

 

Figure 7B. Analysis of human dermal fibroblasts (HDFs) activation state through evaluation of α-SMA 

expression. A375 cells were grown to sub-confluence and treated for 24 h with 1 µM NE, IL-6 (50 ng/µl) 

or VEGF (20 ng/µl). Fresh serum-free medium was added for additional 24 h before collection of 

conditioned medium (CM) free from NE, IL-6 or VEGF, but conditioned by their earlier administration. 

HDFs were then incubated with the obtained CM for 24 h and then used for Western blot analysis of α-

SMA expression. The blot is representative of three different experiments. 
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Taken together, these data suggest that in vitro the treatment of human melanoma cells 

with catecholamines dramatically affects their aggressiveness, inducing expression of 

MMP-2, VEGF, IL-6 and IL-8. These factors orchestrate a feed-forward loop leading to 

increase of proteolytic invasiveness of tumour cells, as well as activating surrounding 

fibroblasts. 
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DISCUSSION I 

 

The mediators of stress norepinephrine (NE) and epinephrine (E) exert stimulant effects 

on the invasion process of a number of neoplastic cells, and this effect seems to be due, 

at least in part, to the interaction with β-adrenoceptors (AR), which are expressed by 

various malignant tumours. In particular, the expression of  β-AR has been studied in 

various human solid tumours, such as breast, colon, prostatic, ovary, nasopharyngeal 

and oral cancer, raising the possibility that such receptors could affect invasion and 

dissemination processes.  

My study therefore aimed to evaluate the expression of β-AR and the influence of NE 

and E on the malignant behaviour of melanoma cell lines. Preliminary results assessed 

by immunohistochemistry on a series of human benign and malignant melanocytic 

lesions showed that both β1 and β2-AR were expressed in melanocytic tumours, 

according to the fact that both benign and malignant lesions can theoretically be 

affected by catecholamines in vivo. Anyway, both β1 and β2-AR showed  significantly 

higher expression in malignant than benign lesions, and, for what β2-AR is concerned, 

its expression is primarily related to atypical than common naevi. These findings 

suggest that malignant lesions can be more deeply influenced by catecholamines than 

benign counterparts, as the staining intensity for β2-AR progressively increased from 

CN toward AN and to PM and MM, whereas the reaction intensity for β1-AR was 

weaker in all groups of lesions. Such a difference can rely on a lower expression of β1-

AR than β2-AR on naevus melanocytes and melanoma cells. This hypothesis was 

thereby supported by in vitro data, as both real time PCR and western blot analysis of 

primary and metastatic melanoma cell lines demonstrated a lower expression of β1-AR 

versus β2-AR.  

We also demonstrated that A375 primary and Hs29-4T metastatic melanoma cell lines 

respond to catecholamine stimulation enhancing motility and invasion and producing 

molecules closely related to neoplastic progression. In keeping, we show that NE and E 

are able to elicit activation of p42/p44 and p38 MAPKs, acknowledged to play 

mandatory roles for cell growth, survival and invasive ability, in both primary and 

metastatic cell lines. These data could be of striking interest in order to find new 

strategies for melanoma treatment. In fact, Meier et al. showed that combined targeting 

of the p42/p44 and Akt signaling pathways significantly inhibited growth and enhanced 

apoptosis in melanoma cell cultures (Meier et al., 2007).  
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Moreover, the two cell lines tested show differential responsiveness to NE and E. 

Concerning the invasion assay, the primary cell line responded to NE and, to a lesser 

degree, to E, while the metastatic cell line showed a clear reaction only to E. The 

inhibition induced by ilomastat strongly suggests a proteolytic degradation of matrigel 

and the probable intervention of MMPs in both cell line invasive process. In fact, real 

time PCR analysis demonstrates that MMP-2, rather than MMP-9, is produced at a 

significantly higher level compared to baseline, by A375 cells under NE stimulus and 

by Hs29-4T cells under E stimulation. Furthermore, our data show that both NE and E 

are able to elicit sustained activation of MMP-2 and MMP-9 both in primary and 

metastatic cell lines. Thus, increased motility of melanoma cells seems to be due to a 

proteolytic invasive capacity, typical of a mesenchymal phenotype (Hoffmann et al., 

2000; Parri et al., 2009), and catecholamines seem able to influence MMPs activity both 

at a transcriptional and at a post-translational level. This disparity could be explained by 

the fact that activation of pro-MMP-2 and pro-MMP-9 is closely related, as it has been 

demonstrated that active MMP-2 can convert pro-MMP-9 to its active form through 

direct proteolytic action. In the light of these findings, MMP-9 activation could be a 

downstream effect of MMP-2 direct regulation by catecholamines (Bauvois, 2012). The 

migration of neoplastic cells appears to be increased through activation of β-ARs, 

because it is completely abolished by β-ARs antagonist propanolol. As stimulation of 

both cell lines with NE and E induces activation of the protein kinase PKA, we can 

speculate that catecholamines exert their functions on melanoma cell lines primarily 

through a PKA-dependent pathway. 

Also for what the production of cytokines is concerned, NE and E show differential 

effects on melanoma cell lines. In fact, primary A375 cells significantly increase  levels 

of IL-6 and VEGF under NE and E challenge, whereas metastatic Hs29-4T cells 

increase IL-6 expression under NE stimulus, and produce significant amounts of VEGF, 

especially under E activation. Concerning the expression of IL-8, the primary cell line 

responded to both NE and E  at a significantly higher degree compared to the metastatic 

one, and both cell lines reacted more intensely to NE. This result is in agreement with 

the angiogenic role of IL-8, since de novo angiogenesis is particularly useful for primary 

tumours to escape the hostile microenvironment and disseminate metastasis (Singh and 

Varney, 2000). In addition, the catecholamine-induced IL-8 enhancement is in 

agreement with the described IL-8 stimulation produced by NE in prostate cancer (Voss 

et al., 2010).  
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We do not know exactly why such a discrepancy exists between primary and metastatic 

cell line response, but it is possible that at least in part this difference is due to a higher 

expression of β2-ARs, assessed as protein and transcript, on the primary melanoma cell 

line. Another possibility is that IL-6 and IL-8, whose expression was associated with 

early malignancy of melanoma in vivo are actually secreted more efficiently by a cell 

line derived from a primary melanoma, thereby leading to enhanced aggressiveness 

towards a more metastatic phenotype (Moretti et al., 1999).  

In vitro experiments clearly show that catecholamines can increase the malignant 

behaviour of melanoma cells affecting both invasion capacity and cytokine production.  

Preliminary data in melanoma tissue sections also showed a strong reactivity for β2-AR 

in most endothelial and stromal cells, including macrophages, suggesting the possible 

influence of catecholamines on cells of the tumour microenvironment. In keeping, 

recent studies showed that phagocytic cells like neutrophils and macrophages are direct 

sources of catecholamines and that stimulation with both NE and E can enhance 

macrophagic release of proinflammatory cytokines as TNF-α, IL-1β and IL-6 through a 

NF-kB-dependent pathway (Flierl et al., 2009). These data could support the hypothesis 

of potential feed-forward biologic loops capable of affecting metastatic behaviour of 

neoplastic cells. 

Our in vitro experiments could further confirm that some pro-metastatic loops could 

work in in vivo melanoma model too. In fact, we demonstrate that IL-6 and NE in 

melanoma cells can activate dermal fibroblasts toward a myofibroblastic phenotype, as 

demonstrated by upregulated -SMA expression (Kalluri et al., 2006). It is well known 

that stromal fibroblasts within tumours undergo a process, commonly called 

mesenchymal-mesenchymal transition (MMT) to myofibroblasts, leading them to a 

more contractile phenotype and allowing a cross talk with tumour cells dramatically 

affecting their aggressiveness (De Wever and Mareel, 2003; Dvorak et al., 2011). In 

turn, activated fibroblasts can secrete other pro-metastatic cytokines, such as VEGF, 

capable of inducing further tumour angiogenesis. In keeping with these observations, in 

our experiments, VEGF can increase melanoma cell migration and invasion ability, 

particularly when associated with NE (Dong et al., 2004).  

Previous data support the hypothesis that various types of stress, such as surgical 

procedure or neuroendocrine stress due to psycho-social factors, can stimulate tumour 

progression both in animals and humans (Voss et al., 2010). This seems to be true also 

for melanoma at least in in vivo models (Azpiroz et al., 2008; Vegas et al., 2006). 
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Our work provides evidence that stress hormones like NE and E can significantly 

stimulate the malignancy of melanoma cells at various levels and that β-ARs, likely 

involved in this response, are largely expressed in melanoma cell lines and cutaneous 

melanomas. It is the first time, to our knowledge, that β-ARs are demonstrated in a large 

series of human cutaneous melanocytic lesions, and even in melanocytic naevi, 

suggesting a potential influence of catecholamines also in benign counterparts. 

Moreover, the detection of β2-AR also in the stromal cells of melanoma 

microenvironment implies further possible effects of catecholamines on melanoma 

progression. Consequently, it is possible that the interaction catecholamines-β-ARs 

could play a dramatic role during the clinical course of melanoma patients. The efforts 

to understand molecular events underlying such an interaction could therefore be very 

useful for indicating new targets in therapy. 
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CONCLUDING REMARKS I 

 

On the basis of the results obtained we can speculate that in aggressive melanoma, the 

action exerted by catecholamines both on the tumour cells and their microenvironment 

could be related at least in part to the preservation of a tumour stem niche, which may in 

turn contribute to resistance to conventional pharmacological therapies. At this purpose, 

it has been recently reported that melanoma stem cells isolated from patients showed 

higher expression of multiple ABC transporters and IL-8, suggested to be related with 

increased chemoresistance of melanoma cells (Luo et al., 2012). Also VEGF directly 

acts on the cancer stem niche through blood vessel formation via its primary function on 

endothelial cells, and thus increasing the area of the niche required for preservation of 

stem cell-like properties. In addition, VEGF can act on melanoma stem cells in an 

autocrine way, promoting their self-renewal, through its receptor VEGFR-2 (Takakura, 

2012). We can therefore hypothesize that catecholamines could promote melanoma 

aggressiveness both enhancing angiogenesis and motile ability of cancer cells and also 

providing a possible protective mechanism for melanoma stem cells from drugs 

delivery, likely in an IL-8 and VEGF-dependent way. This fascinating hypothesis could 

be strengthened by our recent observation that melanoma cells treated with NE and β3-

AR selective antagonist SR59230A show diminished percentage of cells positive to 

stem marker CD133, thereby suggesting a role of β3-AR in controlling stem-like 

properties of a small population of melanoma cells (Calvani M., unpublished data). In 

the light of this hypothesis, also the action exerted by catecholamines on the tumour 

microenvironment could be related to protection and prevention of premature 

exhaustion of the stem cell niche with cancer cells characterized by stem cell-like 

properties. To this purpose, it has been reported that myofibroblasts and endothelial 

cells are key components of the tumour stem niche and support in vivo tumour initiation 

from a small number of cancer stem cells (Vermeulen et al., 2010; Calabrese et al., 

2007). Our experiments showed that IL-6 and NA in melanoma cells can activate 

dermal fibroblasts toward a myofibroblast phenotype, allowing a cross-talk with tumour 

cells, thereby dramatically increasing their aggressiveness. In turn, activated fibroblasts 

can secrete other pro-metastatic cytokines, such as VEGF and SDF-1, capable of further 

inducing tumour angiogenesis and recruitment of distant cells, thus activating further 

pro-metastatic circuits (De Wever 2003; Dvorak 2011; Dong 2004). This could be 

confirmed in our model by recent observations that melanoma cells stimulated with NE 
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recruit CAFs, macrophages, adult endothelial cells and endothelial precursor cells 

(EPCs) (Calvani M., unpublished data). Of note, both macrophages and endothelial cells 

have been recently described as sources of catecholamines (Flierl et al., 2009; Sorriento 

et al., 2012). Hence, both systemic and tumour-neighbouring sources of catecholamines 

could promote recruitment and differentiation of CAFs and EPCs, inducing a triple 

cross-talk among populations, maybe creating a specific microenvironment to control 

self-renewal and undifferentiated state of melanoma stem cells and thereby fostering 

melanoma aggressive potential and treatment failure. Future study combining β-

blockers with common therapies should therefore have important implications for 

treatment of malignant melanoma and its total eradication, counteracting at multiple 

stages this complex and continuative, catecholamines-mediated interplay between 

cancer cells and their microenvironment. 
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AIM OF THE STUDY II 

 

In 1926 Otto Warburg demonstrated that cancer cells undergo a glicolytic metabolism 

even in presence of oxygen, thereby metabolizing high amounts of glucose into lactate 

(Warburg effect), but just recently metabolic reprogramming towards a Warburg 

metabolism has been considered as a real hallmark of cancer. Indeed, several studies 

have now established that this metabolic shift is crucial for proliferating cells that 

require, in addition to ATP, macromolecules in order to sustain cancer progression. In 

addition, it has been recently proposed a new metabolic model where cancer cells 

induce the Warburg effect in stromal fibroblasts, which undergo a myofibroblastic 

differentiation, and secrete lactate and pyruvate in the extracellular space through the 

monocarboxylate transporter 4 (MCT-4). Cancer cells then take up these metabolites 

through the monocarboxylate transporter-1 (MCT-1) and use them in the mitochondrial 

TCA cycle, promoting energy generation via oxidative phosphorylation.  

In particular, the aim of this study is to start focusing on the ability of nutrients to 

regulate transcription factors involved in cancer cells metabolism. One of these factors 

is represented by hypoxia inducible factor-1α (HIF-1α). It is well established that, under 

hypoxic condition, HIF-1α activates target genes whose protein products mediate a 

switch from oxidative to glycolytic metabolism (ex. GLUT-1, LDH-A), while it is not 

well established yet the role of HIF-1α in regulating these complex pathways under 

normoxic condition. To this purpose, A375 primary melanoma cell line was cultured in 

normoxic condition in presence/absence of nutrients like glucose, pyruvate and lactate 

in order to understand how different nutrients can activate key pathways for cancer 

progression. Cytofluorimetric analysis demonstrate that A375 show strong dependance 

on glucose content of media in order to sustain survival, thereby according to a Warburg 

metabolic phenotype, and that nutrients alone are able to induce the expression of HIF-

1α and of its target gene carbonic anidrase-IX (CA-IX), probably thorugh an increased 

reactive oxygen species (ROS) production. In order to further understand the role of 

nutrients-induced HIF-1α, we therefore performed migration and invasion assays with 

Boyden chambers, respectively in absence or presence of Matrigel mimicking the 

extracellular matrix. Nutrients alone are also able to elicit a pro-invasive response of 

A375 and this effect is reverted after both treatment with Topotecan, a HIF-1α 

farmacological inhibitor, and HIF-1α gene silencing. Finally, data obtained so far allow 
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us to hypothesize a novel important role of nutrients-induced HIF-1α normoxic 

stabilization in order to sustain cancer progression.  
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RESULTS II 

 

Role of nutrients in regulating melanoma cells proliferation and survival 

Today, metabolism reprogram is universally accepted as one of the hallmarks of cancer. 

In fact, cancer cells are able to completely modify their metabolic behaviour in order to 

sustain cancer progression. Rising evidence have now established that cancer cells 

undergo a specific metabolic reprogramming, leading cancer cells to gain several 

advantages that are not only related to mere ATP production.  

Non-neoplastic cells usually metabolize glucose into pyruvate, which is in turn moved 

in the mitochondria, thereby entering the Krebs cycle and undergoing oxidative 

phosphorilation. This metabolic pathway produces high ATP levels, quantified in 38 

molecules for each glucose molecule, but needs O2 to support mitochondrial respiration.  

On the other hand, Otto Warburg demonstrated that cancer cells undergo a glicolytic 

metabolism, named “Warburg Effect”, even in presence of oxygen, thereby 

metabolizing higher amounts of glucose into lactate, which is then extruded in the 

extracellular space through monocarboxylate transporter-1 (MCT-1) (Vander Heiden et 

al., 2009). Glucose fermentation does not require oxygen, but it is far less efficient than 

the TCA cycle coupled to oxidative phosphorylation in generating ATP. Despite 

decreased efficiency in ATP production, fast-growing cells rely primarily on glucose 

fermentation during proliferation regardless of oxygen availability. Indeed, several 

studies have now established that the Warburg effect, coupled with increased glucose 

uptake due to incomplete glucose oxidation, promotes in cancer, high-proliferating cells 

the efficient anabolism of macromolecules from glicolytic intermediates, providing the 

key carbon precursors needed for the synthesis of nucleic acids, phospholipids, fatty 

acids, cholesterol and porphyrins, needed to sustain uncontrolled and continuative 

cellular mitosis (Lunt and Vander Heiden, 2011; Pedersen, 2007). 

Since the metastatic ability of cancer cells is strongly related to microenvironmental 

conditions like nutrients availability, stromal cells and vascularization, their cellular 

metabolic fluxes and nutrient demand may show considerable differences. Moreover, 

their stage-dependent metastatic ability may further create metabolic alterations 

depending on its microenvironment. Although recent studies have aimed to elucidate 

cancer cell metabolism in different cancer models, in most of the cases the nutrient 

demand and metabolic activity of tumour cells still remains poorly understood due to 

their high heterogeneity.  
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For what the melanoma is concerned, the glycolytic phenotype of some melanoma cell 

lines has been only recently identified by metabolic profiling using isotopically labeled 

nutrients (Scott et al., 2011). 

In order to further elucidate the metabolic behavior of melanoma cells, we started 

performing crystal violet assay on A375 primary melanoma cell line cultured in 

normoxic condition for 24, 48 and 72 hours in total absence (black line) or presence of 

nutrients like glucose (red line), pyruvate (green line) and lactate (light blue line). As 

culture control condition we cultured melanoma cells in presence of both serum and 

glucose (violet line). This assay is useful in order to obtain quantitative information 

about the number of cells adhering to multi-well cluster dishes. The dye in this assay, 

crystal violet, stains DNA. Upon solubilization, the amount of dye taken up by cultured 

cells can be quantitated in a spectrophotometer at 595 nm wavelength. The graph in 

Figure 1 shows normalized data as ratio between crystal violet absorbance (nm) and 

protein content, thereby allowing us to correlate with the nuclear DNA content and thus 

with cell number.  

Data obtained demonstrate that nutrients alone are not able to sustain cancer cells 

proliferative ability. In fact, A375 cells proliferation rate in presence of glucose, 

pyruvate or lactate alone does not show significant modifications if compared with cells 

maintained for 24 hours in absence of nutrients while, as expected, the optimal culture 

condition represented by both serum and glucose induced a four-fold increase in cells 

proliferation rate (Figure 1). 

 
Figure 1. Crystal violet assay on A375 melanoma cells treated for 24, 48 and 72 h with glucose (4,5 g/L), 

pyruvate (10 mM) or lactate (10 mM). Culture condition in presence of glucose and serum was 

considered as standard control condition. Data are represented as crystal violet Abs (nm)/protein content 

ratio and each measurement was made in triplicate for each point of the curve of growth. Experiment was 

repeated at least 3 times. p value < 0,005. 
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To further elucidate the effect of the different nutrients in cancer cells survival, we 

therefore performed an Annexin V-iodidium propide staining assay in order to evaluate 

apoptotic cells percentage. Annexin-V is a Ca
2+

 dependent phospholipid-binding protein 

that has high affinity for phosphatidylserine, which itself is translocated from the inner 

to the outer leaflet of the plasma membrane during the early phase of the apoptotic 

process. Apoptotic cells were identified by flow cytometry using Annexin-V conjugated 

to fluorescein isothiocyanate (FITC), in conjunction with propidium iodide (PI) to 

distinguish apoptotic cells (Annexin-V-FITC positive, PI negative) from necrotic cells 

(Annexin-V-FITC positive, PI positive). 

Using this method as a marker of apoptosis, exposure of melanoma cells to 4,5 g/L 

glucose, alone or in combination with serum, under serum-free conditions for 24 h led 

to a significant decrease (17.4% compared to 6.4%) in the number of cells in early and 

late apoptosis as compared to cells cultured in total nutrients absence for the same time.  

In contrast, addition of pyruvate or lactate alone induced melanoma cells apoptosis to 

levels comparable to that related to nutrients withdrawal, while only combination of 

both nutrients with serum was able to significantly reduce apoptotic cells percentage 

(Figure 2).  
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Figure 2. Annexin V/Iodidium Propide cytofluorimetric staining on A375 melanoma cells treated for 24h 

with glucose (4,5 g/L), pyruvate (10 mM) or lactate (10 mM), alone or in combination with serum.  Cells 

were then pelletted and labeled with annexin V and iodidium propide. Finally cells were evaluated by 

flow citometry. Data are represented as total percentage of cells positive to annexin V staining alone 

(early apoptosis) and together with PI (late apoptosis). Experiment was repeated at least 3 times. p value 

< 0,005. 

 

 

To further elucidate the molecular mechanisms underlying nutrients-based cell survival, 

we therefore evaluated the possible role of nutrients in directly influencing Akt 

activation. Akt is a central player in processes downstream of activated growth factor 

receptor signaling like the insulin receptor, EGF-R and HGF-R regulating cells 

proliferation and survival. After ligand binding and subsequent receptor activation, Akt 

recruitment to the plasma membrane is mediated mainly through phosphatidylinositol 3-

kinase (PI3K), which phosphorylates phosphoinositides to generate  

phosphatidylinositol (3,4,5)-trisphosphate (PIP3). Akt amino terminal pleckstrin 

homology (PH) domain binds PIP3, thereby promoting the translocation of Akt to the 

plasma membrane where it is phosphorylated and activated. The tumor suppressor 

PTEN acts as a regulator of Akt activity by dephosphorylating PIP3, although it is 

frequently downregulated or lost during tumor progression, contributing to deregulation 

of the pathway in cancer cells. After activation, Akt is able to translocate to the nucleus 

where it affects both directly or indirectly cellular proliferation and survival. Among 

Akt substrates there are transcriptional regulators like CREB, E2F, NF-κB, the FOXO 
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transcription factors and murine double minute 2 protein (MDM2), master regulator of 

p53 activity. In addition, Akt is able to target a number of other molecules to affect the 

survival state of the cell including the pro-apoptotic molecule Bcl-2-associated death 

promoter (BAD) and caspase 9 (Altomare and Khaled, 2012). 

In order to evaluate Akt activation, melanoma A375 cells were serum-deprived 

overnight and then cultured for 24 h in presence of glucose (4,5 g/L) or pyruvate (10 

mM), alone or in combination with serum. As demonstrated by the western blot 

represented in figure 3, melanoma cells cultured for 24h in presence of nutrients alone 

do not show activation of the Akt-mediated pathway, while the combination of nutrients 

and serum in the culture medium induced a strong increase in the level of 

phosphorylated protein (Figure 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Activation of AKT. Melanoma A375 cells were serum-deprived overnight and then cultured for 

24 h in presence of glucose (4,5 g/L) or pyruvate (10 mM), alone or in combination with serum. An 

immunoblot analysis for the detection of the phosphorylation level of  p-AKT was shown. Total AKT 

immunoblot was used for normalization. The western blot is representative of three independent 

experiments. 

 

Taken together, these data demonstrate that nutrients alone do not affect significantly 

A375 melanoma cells proliferative ability, as confirmed by lacking of Akt activation in 

conditions of serum withdrawal. On the other hand, according to a Warburg-like 

metabolic phenotype, Annexin V-IP staining assay showed a high dependence of 

p-AKT 

 

AKT 

Serum             -        +       -       +       -        +           -       +    

Glucose           -        -       +        +       -        -           -        -  

Pyruvate        -         -      -         -         +        +           -        - 

Lactate           -         -      -         -         -         -         +       + 

 

Glucose 

 



 

 157 

melanoma cells from glucose in order to sustain their survival, likely through an Akt-

independent pathway. 
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Nutrients promote normoxic HIF-1α and CA-IX expression and affect ROS 

production  

Hypoxia is a common features of solid tumours and complexes HIF-1α, HIF-2α and 

HIF-3α are the master regulators of cell response to hypoxia. In particular, HIF-1 is an 

heterodimeric complex characterized by an α subunit of 120 kDa O2-dependent (HIF-

1α), and a β subunit of 91-94 kDa constitutively expressed (HIF-1β) also known as aryl 

hydrocarbon nuclear translocator (ARNT), as it has been first identified inside the 

heterodimeric complex with the aryl hydrocarbon receptor (AHR) (Reyes et al., 1992). 

In normoxic conditions HIF-1α shows a very short half-life of about 1/2 ~ 5 minutes 

and is rapidly degradated via ubiquitin-proteasome system (Salceda et al., 1997). When 

cells are exposed to low O2 tensions, HIF-1α half-life is of about 30 minutes, the protein 

is stabilized and traslocates to the nucleus, where it binds to subunit HIF-1β forming the 

transcriptionally active HIF complex. The resulting heterodimer binds to HRE sequence 

of target genes and binds to transcriptional coactivators, thereby promoting gene 

expression (Lando et al., 2002). As already stated, HIF-1α directly regulates several 

genes coding for enzymes involved in cells metabolism, in particular glycolytic 

metabolism, including glucose transporters and glycolytic enzymes like hexokinase 1 

and 2 (HK1 e HK2), PFK1, aldolase A and C, glyceraldheyde-3-phosphate 

dehydrogenase, phosphoglycerate kinase 1, enolase 1, pyruvate kinase and lactate 

dehydrogenase A (LDHA).  

We therefore analyzed if melanoma cells exposure to different nutrients can regulate 

transcription factors involved in cancer cells metabolism. We focused on the expression 

of HIF-1α as it is well established that, under hypoxic condition, HIF-1α is a master 

regulator of anaerobic metabolism, while it is not well established yet the role of HIF-1α 

in regulating these complex pathways under normoxic conditions.  

To this purpose, A375 primary melanoma cell line was nutrients-starved overnight and 

then cultured in normoxic condition for 24h in presence/absence of nutrients like 

glucose, pyruvate and lactate. Cells were then lysed and a western blot analysis of HIF-

1α expression was performer  in order to understand how different nutrients can activate 

key pathways for cancer progression. As a control condition cells were cultured for 24h 

also in presence of glucose, pyruvate and lactate in combination with serum. In fact, 

HIF-1α expression induced by growth factors stimulation is associated to an increased 

production through activation of phosphatydil-inositol-3-kinase (PI3K) and MAPK 

pathways (Fukuda et al., 2002; Fukuda et al., 2003; Laughner et al., 2001; Zhong et al., 
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2000). According to that, it has been demonstrated that MAPK pathway leads to 

activation of both p42/p44 MAPK and p38 MAPK, following previous activation of 

proteins Ras/Raf-1/MEK-1. It has been demonstrated that HIF-1α is phosphorilated by 

p42, p44, p38α and p38γ in vitro (Richard et al 1999; Sodhi et al 2000).  

As shown in figure 4, all nutrients alone are able to promote normoxic HIF-1α 

stabilization at levels comparable to HIF-1α expression in melanoma cells cultured in 

presence of nutrients in combination with serum. In particular, glucose shows higher 

effectiveness in inducing HIF-1α expression. 

We therefore evaluated the expression of HIF-1α main target gene, carbonic anidrase IX 

(CA-IX). Again, western blot analysis shows that nutrients alone, and in particular 

glucose, are able to promote also normoxic CA-IX expression (figure 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Evaluation of HIF-1α and CA-IX expression. Melanoma A375 cells were serum-deprived 

overnight and then cultured for 24 h in presence of glucose (4,5 g/L), pyruvate (10 mM) or lactate (10 

mM), alone or in combination with serum. An immunoblot analysis for the detection of HIF-1α and CA-

IX was shown. Actin immunoblot was used for normalization.  

 

In the light of these data, we next analyzed the level of ROS produced by melanoma 

cells in presence of different metabolites in order to rely their role to normoxic 

nutrients-mediated HIF-1α expression. In fact, it has been already demonstrated that 

ROS can act as second messengers in several signaling pathways regulating cancer 

progression, like epithelial-mesenchymal transition (EMT), migration/invasion and 

angiogenesis. In particular, hypoxia is directly related to higher mitochondrial ROS 
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production, thereby promoting HIF-1α stabilization through inhibition of PHDs activity 

(Klimova 2008; Wheng-sheng Wu 2006). 

To evaluate the amount of ROS produced, staining with 2',7'-

dichlorodihydrofluorescein diacetate (H2DCFDA) probe was performed. H2DCFDA is a 

chloromethyl derivative of H2DCFDA. H2DCFDA passively diffuses into cells, where 

its acetate groups are cleaved by intracellular esterases and its thiol-reactive 

chloromethyl group reacts with intracellular glutathione and other thiols. The assay was 

performed on A375 cells serum-starved overnight and then cultured in normoxic 

conditions for additional 24 hours in presence of glucose, pyruvate and lactate, alone or 

in combination with serum.  Analysis of H2DCFDA absorbance revealed that melanoma 

cells show significantly higher production of ROS after culture in presence of 

metabolites alone, which is in agreement with the nutrients-induced HIF-1α 

stabilization. Again, culture of melanoma cells with glucose alone induced the highest 

spike of ROS production, according to its role in promoting highest HIF-1α protein 

expression (figure 5). 

 

 
 

Figure 5. Intracellular ROS amount evaluation using fluorimetric probe H2DCFDA. A375 melanoma 

cells were serum-deprived overnight and then treated for 24 h with glucose (4,5 g/L), pyruvate (10 mM) 

or lactate (10 mM), alone or in combination with serum. Then H2DCF-DA (5 g/ml) probe was added 

and incubated for 3 minutes at 37°C. After the incubation time, cells were quickly lisated in RIPA lysis 

buffer and lysates were then collected, centrifugated, transferred on a 96 wells multiwell and analyzed. 

Data are represented as absorbance / protein quantification ratio. Experiment was repeated at least 3 

times. p value < 0,005. 
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Taken together, these data demonstrate that nutrients alone are able to directly regulate 

expression of HIF-1α and CA-IX in the human melanoma model. In addition, glucose, 

pyruvate and lactate induce high ROS production, thereby allowing us to speculate that 

nutrients promote normoxic HIF-1α stabilization in a redox-dependent manner. 
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Nutrients promote CA-IX expression in a HIF-1α-dependent manner  

Carbonic anhydrase IX (CA-IX) is a highly active, tumor-associated transmembrane 

carbonic anhydrase isoform composed by an extracellular catalytic domain, whose 

activity is hypoxia-dependent. In fact, CA-IX expression pattern is strictly related to 

HIF-1α-mediated transcriptional activation of CA9 gene, as CA9 promoter region 

contains several HRE elements that induce CA-IX expression in response to hypoxia 

(Kaluz et al., 2002). 

The most important CA-IX role is represented by hydration of pericellular CO2. This 

reaction generates an extracellular proton, which contributes to generating an 

increasingly acidic extracellular pH, facilitating tumor cell invasiveness, and 

bicarbonate ion, which is delivered to cytoplasm through the bicarbonate exchangers 

directly interacting with CA-IX in order to maintain an alkyline intracellular pH 

favorable for tumor growth (Svastova et al., 2004). In addition to its role in the 

regulation of tumoral pH and tumor cell survival, there is evidence that CA-IX 

contributes to cell processes such as adhesion and migration, both of which are crucial 

for metastatic progression in human cancer (McDonald et al., 2012). 

To further confirm the involvement of HIF-1α in the normoxic, nutrients-based 

induction of CA-IX expression, we performed specific experiments of inhibition of 

HIF-1α expression. We first examined HIF-1α expression levels in melanoma cells 

stimulated with glucose, pyruvate and lactate for 24 h, alone or in combination with the 

camptothecin analogue Topotecan, a topoisomerase I pharmacological poison which has 

been already demonstrated as an HIF-1α protein accumulation blocking agent 

(Rapisarda et a., 2004). 

Western blot analysis shown in figure 6 clearly demonstrates that melanoma cells 

treatment for 24 h with Topotecan impairs normoxic nutrients-induced HIF-1α 

expression. Consistent with this finding, Topotecan significantly reduced CA-IX 

accumulation as well (figure 6). 
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Figure 6. Evaluation of HIF-1α and CA-IX expression in absence or presence of Topotecan 250 nM. 

Melanoma A375 cells were serum-deprived overnight and then cultured in presence of glucose (4,5 g/L), 

pyruvate (10 mM) or lactate (10 mM) and stimulated or not with Topotecan for 24 h. An immunoblot 

analysis for the detection of HIF-1α and CA-IX was shown. Actin immunoblot was used for 

normalization.  

 

To further confirm the results obtained so far we then used a specific siRNA targeting 

HIF-1α mRNA for knockdown of gene expression. Again, HIF-1α knockdown cells 

resulted in almost total abrogation of HIF-1α and CA-IX protein accumulation, 

according to siRNA highest efficiency in downregulating protein expression if 

compared to pharmacological treatment (figure 7). 
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Figure 7. Evaluation of HIF-1α and CA-IX expression after HIF-1α gene silencing. Melanoma A375 

cells were silenced for HIF-1α as previously described and then cultured in presence of glucose (4,5 g/L), 

pyruvate (10 mM) or lactate (10 mM) for 24 h. An immunoblot analysis for the detection of HIF-1α and 

CA-IX was shown. Actin immunoblot was used for normalization. p < 0,05. 
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Nutrients-induced HIF-1α expression promotes melanoma cells invasiveness 

We therefore evaluated the role of nutrients-induced HIF-1α expression in regulating 

cancer cells invasive ability. In fact HIF-1α activation correlates with metastasis in 

multiple tumors and can promote metastasis through the regulation of key factors 

regulating tumor cell metastatic potential, including E-cadherin, lysyl oxidase (LOX), 

CXCR4, and stromal-derived factor 1 (SDF-1) (Rankin and Giaccia, 2008). 

To this aim we performed in vitro Boyden assays. The Boyden chamber is composed by 

un upper and a lower compartment separated by a microporous membrane with pores of 

8 μm of diameter. In order to evaluate cancer cells ability to degrade and invade through 

an organic matrix, the Boyden chamber microporous membranes were covered with 

Matrigel, a syntethic preparation rich in laminin, collagen IV and entactin and heparan 

sulfate proteoglycan (perlecan). This matrix acts as a reconstituted basement membrane 

in vitro, occluding the pores of the membrane and blocking non-invasive cells from 

migrating through the membrane, while invasive cells can secrete proteases that 

enzymatically degrade the Matrigel matrix and enable invasion through the membrane 

pores. 

For our experiments, A375 were plated in the upper chamber in 200 μl of serum-free 

medium in absence or presence of serum, glucose, pyruvate or lactate, while the lower 

compartment was filled with 500 culture μl of medium with 10% FBS as a standard 

chemotactic agent. Cells were then allowed to migrate through the pores to the other 

side of the membrane and, after a 24h incubation time in normoxic conditions, they 

were stained with haematoxylin-eosin staining. Finally, the number of cells that had 

migrated to the lower side of the membrane was determined by image capture of cells 

attached through a microscope and then counting the number of cells invaded to the 

lower membrane surface.  

As shown in both figures 8 and 9, all nutrients increase the invasive spur of melanoma 

cells, with glucose greatly increasing A375 cells invasive ability. In addition, the pro-

invasive effect of all nutrients is strongly sensitive to both Topotecan treatment (figure 

8) and HIF-1α gene silencing (figure 9). Again, melanoma cells treatment with 

Topotecan resulted in high impairement of A375 motility, while HIF-1α knockdown 

cells showed almost total abrogation of invasive ability, in keeping with the results 

obtained from western blot analysis (figures 6 and 7).  
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Figure 8. Evaluation of A375 invasive ability through Boyden chamber assay. Melanoma A375 cells 

were treated as previously described and then loaded into the upper compartment of the Boyden chamber 

in serum-free growth medium, with or without 250 mM Topotecan.  After 24 h of incubation at 37°C, the 

microporous membrane was fixed in 96% methanol and stained with Diff-Quick solution. The bar graph 

shows the number of migrated cells to the lower surface of the polycarbonate filters from three 

independent experiments. P value < 0,05. 
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Figure 9. Evaluation of A375 invasive ability through Boyden chamber assay. Melanoma A375 cells 

were silenced for HIF-1α as previously described and then loaded into the upper compartment of the 

Boyden chamber. After 24 h of incubation at 37°C, the microporous membrane was fixed in 96% 

methanol and stained with Diff-Quick solution. The bar graph shows the number of invaded cells to the 

lower surface of the polycarbonate filters from three independent experiments. P value < 0,05. 
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In conclusion, data obtained so far indicate that nutrients are able to directly regulate 

HIF-1α and CA-IX expression in normoxic conditions, and it is likely that this 

stabilization is redox-dependent. In addition, experiments performed using siRNA 

targeting HIF-1α and Topotecan treatment demonstrate that melanoma cells exploit 

nutrients by increasing invasiveness through a HIF-1α-dependent mechanism. 
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DISCUSSION II 

 

The urgent need of always new antineoplastic drugs is at present a real challenge for 

molecular oncologists. In particular, the recently renewed interest for the metabolic 

deregulation of tumors has led to new pharmacological strategies targeting metabolic 

pathways to impair cancer cells survival. In fact, approximately 60% to 90% of cancers 

display a Warburg-like metabolic profile that is, the capacity of non-hypoxic tumor cells 

to entirely rely on glycolysis without exploiting oxidative phosphorylation in order to 

support the high biosynthetic and energy demands of actively proliferating cells. 

Therefore, tumours characterized by aerobic glycolysis and/or high glucose dependence 

could be more sensitive than other tumours to agents targeting metabolic-related key 

cancer pathways.  

Metastatic melanoma represents a very aggressive tumour, which relays to more than 

the 80% of total deaths caused by skin cancers, thanks to its intrinsic resistance to 

common pharmacological therapies (Helmback et al., 2001). Just recently a report by 

Scott and collegues characterized the metabolic profile of several melanoma cell lines, 

showing that cancer cells all exhibited a Warburg metabolism with higher glucose 

consumption rate and lactate production compared to healthy melanocytes (Scott et al., 

2011).  

According to these observations, our data indicate that metastatic melanoma cells A375 

display a high dependence from glucose, as the Annexin V/IP staining assay 

demonstrated that only glucose administration was able to significantly reduce the 

percentage of apoptotic cells. As a further confirmation, pyruvate alone was not able to 

sustain melanoma cells survival, thereby allowing us to hypothesize reduced TCA cycle 

and oxidative phosphorylation activity in favor of a Warburg metabolism. On the other 

hand, we observed that glucose, pyruvate and lactate are not able to elicit melanoma 

cells proliferation, as confirmed also by the western blot analysis on Akt 

phosphorylation levels.  

Additionally, we report that increased aggressiveness of human metastatic melanoma 

A375 cells is tightly correlated to a normoxic, nutrients-induced HIF-1α stabilization. 

Our finding of HIF-1α acting as a nutrients-responsive transcription factor unravels a 

pathway independent from the O2 extracellular concentration which may connect tumor 

cell metabolism and cancer cells motility. These data are proposed to further support the 

importance of Warburg metabolism for aggressive tumour cells. According to that, as 
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many genes coding for glycolytic enzymes, glucose transporters, and glucose regulatory 

hormones are induced by hypoxia (Dang and Semenza, 1999; Feldser et al., 1999), the 

Warburg effect may represent a feed-forward mechanism to maintain a high 

intracellular concentration of metabolites and intermediates in order to foster the 

expression of HIF-1α-related genes even in normoxic condition. In addition, in our 

experimental model all nutrients promoted high normoxic ROS accumulation. Previous 

studies by Lu and colleagues reported that several TCA cycle intermediates can stabilize 

HIF-1α through inhibition of PHD enzymes (Lu et al., 2002; Lu et al., 2005). Therefore, 

it is highly conceivable that in our experimental model nutrients-based ROS delivery 

during normoxia could play an important role in promoting HIF-1α expression through 

inactivation of PHDs activity. 

In addition, our data also indicate HIF-1α  as the driver of a nutrient-dependent pathway 

mediating melanoma motility. This conclusion was supported by experiments 

performed using both Topotecan, a known HIF-1α pharmacological inhibitor, and a 

specific siRNA targeting HIF-1α, which almost completely blocked nutrients-induced 

cancer cells invasiveness. Our data are in agreement with a recent report by Goetze and 

collegues who observed that both pyruvate and lactate have been shown to increase the 

migration of head and neck cancer cells (Goetze et al., 2011). However, to our 

knowledge, our study is the first to show that nutrients have the potential to increase the 

invasive ability and metastatic potential of aggressive melanoma cells through an HIF-

1α-dependent pathway also in normoxic condition. HIF-1α  has already been proposed 

as a key player of cancer cells invasiveness, and mechanisms proposed are mainly 

correlated to its ability to regulate key factors governing tumor cell metastatic potential, 

including E-cadherin, lysyl oxidase (LOX), CXCR4, and stromal-derived factor 1 

(SDF-1) (Rankin and Giaccia, 2008). We also recently reported that aggressive 

melanoma cells respond to hypoxia upregulating their motile/invasive abilities, based on 

redox stabilization of HIF-1α and activation of the Met protoncogene, allowing a 

proteolytic motility enhancing metastatic dissemination to lungs (Comito et al., 2011). It 

is then conceivable that lack of proliferation in presence of nutrients alone could be seen 

as a strategy leading to protection against a condition of metabolic stress, thereby 

favouring cancer cells motogen escaping strategy. Furthermore, also HIF-1α has been 

recently described as a negative regulator of cancer cells proliferation through activation 

of different mechanisms. For example, it has been reported that HIF-1α promotes cell 

cycle arrest through induction of p27 overexpression regardless of hypoxic conditions 
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(Hackenbeck et al., 2009), and Kaidi and collegues demonstrated that HIF-1α induces 

overexpression of the main  cyclin-dependent kinase (CDK) inhibitors p21 and 

p27 by antagonizing c-Myc transcriptional activity, thereby leading to cell cycle arrest 

into G1 phase (Kaidi et al., 2007). 

In the light of these observations, we can speculate that also nutrients-dependent 

carbonic anidrase IX (CA-IX) expression could contribute to enhanced melanoma 

aggressiveness. CA-IX overexpression has been demonstrated in several cancer models 

as a master regulator of pH homeostasis, which is crucial for cancer cells in order to 

avoid potentially harmful effects of an highly glycolytic and therefore pro-acidic 

metabolism (Robertson et al., 2004; Neri and Supuran 2011). For this reason, several 

studies have started clarifying the role of CA-IX in eliciting cells motility. Initially 

Parkila and collegues demonstrated that acetazolamide, a potent specific CA inhibitor, 

reduced renal cancer cells invasive ability in vitro (Parkkila et al., 2000). More recently, 

in colorectal cancer cells it has been proved that COX-2-dependent expression of CA-

IX correlates with tumour stage and increases cancer cells invasiveness (Sansone et al., 

2008). Additionally, Svastova et collegues pointed out the ability of CA-IX to modulate 

E-cadherin-dependent cell adhesion through direct colocalization with β-catenin and to 

promote loss of cell-cell contact, the key initial step of cancer invasion (Svastova et al., 

2003). Therefore, gene silencing experiments will be crucial to completely elucidate the 

ability of nutrients to possibly regulate melanoma cells invasiveness through a CA-IX-

dependent mechanism. 

In conclusion, our data propose the normoxic, nutrients-and redox-induced HIF-1α as a 

mandatory player in melanoma aggressiveness, acting as a promoter of melanoma cells 

invasiveness. In this light, future studies aimed on targeting specific metabolic pathways 

could therefore have important implications for treatment of malignant melanoma.  
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CONCLUDING REMARKS II 

 

On the basis of the results obtained we can speculate that also protein kinase M2 

(PKM2) expression could be directly affected by nutrients, thereby suggesting a 

positive feedback mechanism of HIF-1α activation in order to further promote a 

Warburg-like metabolic behavior in aggressive melanoma cells. In particular, Pro403 

and Pro408 hydroxylation on PKM2 by prolyl hydroxylase-3 (PHD-3) promotes PKM2 

transition from tetrameric to dimeric form, which migrates in the nucleus and acts as 

HIF-1α direct coactivator. In turn, there is an increased transcription of HIF target genes 

like PKM2 and EGLN3, encoding for PKM2 and PHD3, respectively, thereby engaging 

a feed-forward loop leading to amplified HIF-1α activity (Semenza et al., 2011).  

Another fascinating hypothesis is that metabolites in the diffusion-limited tumor 

microenvironment could be acting as paracrine signaling molecules. For example, it has 

been recently demonstrated that tumour-secreted lactate can act as a paracrine molecule 

able to favour motility in vitro of human mesenchymal stem cells (hMSC) (Rattigan et 

al., 2011). We can therefore speculate that nutrients could have a dramatic effect on 

tumour progression acting both on cancer cells, promoting HIF-1α-dependent 

invasiveness, and on the surrounding stroma, maybe favouring recruitment of 

neighbouring stromal cells like cancer-associated fibroblasts (CAFs), thus activating 

further pro-metastatic cross-talks. In particular, as we report that glucose, pyruvate and 

lactate induce normoxic HIF-1α stabilization, likely through a redox-dependent 

mechanism, it is conceivable that nutrients delivered to microenvironment by growing 

tumour vasculature could directly modulate stromal cells metabolism, promoting 

Warburg metabolism through normoxic stabilization of HIF-1α and favouring metabolic 

reprogramming of melanoma cells towards a reverse Warburg phenotype in conditions 

of low glucose concentration. At this purpose, we recently demonstrated a metabolic 

cross-talk in which PCa cells elicit an HIF-1α and redox-dependent Warburg 

metabolism in CAFs, which produce and extrude lactate in turn uploaded by PCa cells 

in order to foster their own anabolic pathways and ensure cancer cell proliferation 

(Fiaschi et al., 2012). This adaptative mechanism engaged by cancer cells demonstrates 

their high metabolic plasticity, as these cells can either use Warburg metabolism in high 

glucose environment, but are able to quickly change their metabolic behaviour to a 

reverse Warburg programme after CAFs contact during glucose starvation. Finally, 

according to this observation, we can speculate that this hypothetical nutrients-driven 
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metabolic liaison between cancer cells and CAFs could involve recruitment and 

activation of other key components of tumour reactive stroma, like macrophages and 

endothelial cells. Accordingly, lactate has been described to directly modulate cell 

signaling networks in endothelial cells upon uptake through the monocarboxylate 

transporter-1 (MCT-1), stimulating an autocrine NF-kB/IL-8 pathway driving cell 

migration and new vessels formation (Vegran et al., 2011). Moreover, lactate has also a 

role in directly promoting macrophage activation and production of proinflammatory 

molecules such as IL-6 (Samuvel et al., 2009). It is therefore conceivable that nutrients 

can directly modulate metabolic-related intracellular signaling pathways of different 

stromal cells in order to foster this complex metabolites-mediated interplay, offering a 

both structural and metabolic support essential for tumour survival/growth and 

resistance to common therapeutic agents.  
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b-adrenoceptors are upregulated in human melanoma
and their activation releases pro-tumorigenic cytokines
and metalloproteases in melanoma cell lines
Silvia Moretti1, Daniela Massi2, Valentina Farini3, Gianna Baroni2, Matteo Parri3, Stefania Innocenti4,
Roberto Cecchi5 and Paola Chiarugi3

Recent studies sight b-adrenergic receptor (AR) antagonists as novel therapeutic agents for melanoma, as they may
reduce disease progression. Here within, we evaluated the expression of b-ARs in a series of human cutaneous mela-
nocytic lesions, and studied the effect of their endogenous agonists, norepinephrine (NE) and epinephrine (E), on primary
and metastatic human melanoma cell lines. Using immunohistochemistry, we found that both b1- and b2-ARs are
expressed in tissues from benign melanocytic naevi, atypical naevi and malignant melanomas and that expression was
significantly higher in malignant tumours. Melanoma cell lines (human A375 primary melanoma cell line and human
Hs29-4T metastatic melanoma cell lines) also expressed b1- and b2-ARs by measuring transcripts and proteins. NE or E
increased metalloprotease-dependent motility, released interleukin-6 and 8 (IL-6, IL-8) and vascular endothelial growth
factor (VEGF). These effects of catecholamines were inhibited by the unselective b-AR antagonist propranolol. The role of
soluble factors elicited by catecholamines seemed pleiotropic as VEGF synergized with NE increased melanoma inva-
siveness through 3D barriers, while IL-6 participated in stromal fibroblast activation towards a myofibroblastic phenotype.
Our results indicate that NE and E produce in vitro via b-ARs activation a number of biological responses that may exert a
pro-tumorigenic effect in melanoma cell lines. The observation that b-ARs are upregulated in malignant melanoma
tissues support the hypothesis that circulating catecholamines NE and E, by activating their receptors, favour melanoma
progression in vivo.
Laboratory Investigation (2013) 0, 000–000. doi:10.1038/labinvest.2012.175

KEYWORDS: b-adrenoceptors; immunohistochemistry; melanoma; melanoma progression; norepinephrine/epinephrine

Melanoma represents the most aggressive type of skin cancer,
with an increasing incidence found especially in young
adults. A significant reduction in mortality has been not
observed, despite a noteworthy improvement in early diag-
nosis achieved in recent years.1 At present, no medical option
can cure metastatic melanoma (MM) and the only effective
treatment for the eradication of the disease is early-phase
surgery.2 Hence, increased knowledge of the biological
pathways underlying the process of melanoma
dissemination and metastasis is crucial in order to identify
new therapeutic targets.

Previous studies have shown that various human solid tu-
mours, such as breast, colon, prostatic, ovary, nasopharyngeal

and oral cancer, express b2-adrenoceptor (b2-AR), raising the
possibility that such receptors may affect invasion and dis-
semination processes.3–8 Moreover, some stress
neurotransmitters, such as norepinephrine (NE) and
epinephrine (E), have been demonstrated to contribute to
the regulation of tumour cell invasion, at least in part through
b-AR activation.6,7,9 Interactions between tumour cells and
soluble factors originated from the nervous system has
recently been proposed to favour metastasis formation.10

Improved survival rates have been demonstrated in mice
with metastatic tumour by combined administration of b-AR
antagonists.11 In addition, recent evidence suggests a dramatic
role of b-AR blockers in reducing metastases, tumour
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recurrence and specific mortality in breast cancer patients.12

More recently, the use of b-blockers for concomitant disease
was associated with a reduced risk of progression of thick
melanoma13 and with an increased survival time of melanoma
patients,14 suggesting that the interaction of catecholamines
with b-ARs could be a useful target in this disease.

Expression of b-ARs has been found in melanoma cell lines
and in human melanoma biopsies and NE was demonstrated
to enhance cytokine production from melanoma cells.15

However, no detailed information regarding b-ARs
expression in human cutaneous benign and malignant
melanocytic lesions or catecholamine influence on
melanoma cell migration has been provided so far. Our
aim was to evaluate the expression of b-ARs on a series of
human cutaneous melanocytic naevi and malignant
melanoma, and assess the potential influence of NE and E
on the malignant behaviour of human melanoma cell lines.
We could demonstrate a significant upregulation of b-ARs
expression in melanoma in vivo and the activation of pro-
tumorigenic biological responses induced by NE and E
in vitro.

MATERIALS AND METHODS
Histologic Samples
Forty human cutaneous melanocytic lesions from 40 differ-
ent patients were evaluated. Tissue samples were retrieved
from the archives of the Division of Pathological Anatomy,
Department of Critical Care Medicine and Surgery, Uni-
versity of Florence, Florence, and from the Division of Pa-
thology, Pistoia Hospital, Pistoia, Italy.

The study series included five common melanocytic naevi
(CN) (two females, three males, age 28–54 years, mean 35.8
years); five atypical (so-called dysplastic) melanocytic naevi
(AN) (two females, three males, age 30–47 years, mean 40.4
years); five in situ primary melanoma (PM) (two females,
three males, age 37–55 years, mean 44.2 years; site: three
trunk, one lower extremity); nine superficial spreading (SS)
PM (seven females, two males, age 41–82 years, mean 58.4
years; site: four trunk, three leg, two arm; thickness 0.30–
1.90 mm, mean 0.82 mm; five level II, three level III); six
nodular (N) PM (three females, three males, age 53–76 years,
mean 61.5 years; site: three trunk, one leg, two arm; thickness
1.40–17 mm, mean 5.2 mm; two level III, three level IV, one
level V), ten MM, five cutaneous and five lymph-nodal (one
female, nine males, age 59–87 years, mean 77.1 years).

Materials
Rabbit polyclonal anti-b1- or anti-b2-AR were obtained from
Santa Cruz Biotechnology (Santa Cruz, CA, USA) or Che-
micon (Temecula, CA, USA), strepatdvidin-biotin peroxidase
complex from Ultravision (LabVision, Fremont, CA, USA),
DAKO EnVision System HRP from Dako (Carpenteria, CA,
USA). For in vitro experiments, unless specified all
reagents were obtained from Sigma (St Louis, MO) except
PVDF membrane (Millipore, Bedford, MA); Matrigel

(BD Biosciences, Bedford, MA); Diff-Quik staining kit
(Medion Diagnostics, Miami, FL); Transwell (Corning In-
corporated, Corning, NY); ilomastat (Chemicon Interna-
tional, Bedford, MA); p38 MAPK (mitogen-activated protein
kinase), phospho-p38 MAPK (Thr180/Tyr182), p44/p42
MAPK and phospho-p44/p42 (T202/Y204) monoclonal an-
tibodies (Cell Signalling, Danvers, MA). The Amplite TM
Universal Fluorimetric matrix metalloproteinase (MMP)
Activity Assay Kit-Red Fluorescence was supplied by AAT
Bioquest, Sunnyvale, CA.

Immunohistochemistry
The specimens were obtained by surgical resection in all cases
and fixed in 10% formalin before being processed in paraffin.
Haematoxylin-eosin stained sections from each histological
specimen were reviewed to confirm the histological diag-
nosis. The protocol was approved by the Institutional Review
Board for use of human tissues.

For immunohistochemical analyses, a representative sec-
tion of 3 mm for each lesion was selected. All sections were
deparaffined in Bio-Clear (Bio-Optica, Mi, Italy) and hy-
drated with grade ethanol concentrations until distilled wa-
ter. Antigen retrieval was performed by calibrated water bath
capable of maintaining the Epitope Retrieval Solution EDTA
(pH 9.0) at 97 1C for 15 min. The sections were then allowed
to cool down to room temperature (RT) for 20 min. To block
endogenous peroxidase activity, slides were treated with 3.0%
hydrogen peroxidase in distilled water for 10 min and sub-
sequently washed two or three times with PBS. Then poly-
clonal antibodies anti-b1- or anti-b2-AR were incubated for
1 h at RT at 1:100 dilution or at 1:30 dilution, respectively.
Immunohistochemical analysis was performed using the
streptavidin-biotin peroxidase complex for b2-AR, or DAKO
EnVision System HRP for b1-AR. Finally, aminoethilcarba-
zole (LabVision) was applied for 5 min as chromogen.

Normal eccrine sweat glands intensely express b2-AR, and
this parameter was used as a positive internal control.16

Negative control was performed by substituting the primary
antibody with a non-immune serum at the same
concentration. The control sections were treated in parallel
with the samples. The sections were lightly counterstained
with Mayer’s haematoxylin.

Immunostaining was independently assessed by two ob-
servers (DM, SM). Discrepancies in the reading were resolved
by a second parallel reading of the slides. The percentage
of positive cells per lesion was scored according to semi-
quantitative criteria. As the percentage of positive naevus
melanocytes/melanoma cells was always higher than 50%,
semi-quantitative results were expressed as score 1 (50–80%
positive naevus melanocytes/melanoma cells), score 2
(81–90% naevus melanocytes/melanoma cell staining) and
score 3 (91–100% melanoma cell staining). The cell staining
intensity was scored on a scale as weak, moderate, strong,
very strong.
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For statistical analysis, non-parametric tests were used to
determine significant differences between groups. The dis-
tribution of the scored values of positive lesions after im-
munological staining in each group was the unit of analysis.
Groups were: naevi, PM, MM. Statistical evaluation was
performed also comparing CN vs AN, naevi vs malignant
lesions, and in situ PM plus SSPM vs NPM and MM. Dif-
ferences were assessed using the non-parametric Mann–
Whitney U-test for independent samples and were considered
significant at Pr0.05.

Cell Lines and Culture Conditions
Human dermal fibroblasts (HDFs) isolated from a surgical
explantation taken from healthy patients, human A375 PM
cell line and human Hs29-4T MM cell line were cultivated in
DMEM supplemented with 10% FCS at 37 1C in a 5% CO2

humidified atmosphere. All experiments were performed
with 70–80% confluent cultures, following 18-h incubation
in serum-free culture medium. Cells were then stimulated
with NE or E, at 1 mM concentration. Where needed, cells
were pre-treated with unselective b-AR antagonist propra-
nolol (Sigma-Aldrich) (1 mM). After 1 h, medium was re-
moved and cells were stimulated with NE 1 mM with or
without propranolol 1 mM. For fibroblast activation, cells
were grown to sub-confluence and treated for 24 h with the
indicated cytokines. Fresh serum-free medium was added for
an additional 24 h before collection of conditioned medium
(CM), in order to obtain CM free from cytokines (but
conditioned by their earlier administration). HDFs cells were
then incubated with the obtained CM for 24 h and then used
for western blot analyses.

Western Blot Analysis
Cells were lysed for 20 min on ice in 500 ml of complete RIPA
lysis buffer (50 mmol/l Tris-HCl (pH 7.5), 150 mmol/l NaCl,
1% NP40, 2 mmol/l EGTA, 1 mmol/l sodium orthovanadate,
1 mmol/l phenylmethylsulfonyl fluoride, 10 mg/ml aprotinin,
10 mg/ml leupeptin). Lysates were clarified by centrifuging,
separated by SDS-PAGE and transferred onto nitrocellulose.
The immunoblots were incubated in 3% bovine serum al-
bumin, 10 mmol/l Tris-HCl (pH 7.5), 1 mmol/l EDTA and
0.1% Tween 20 for 1 h at RT and were probed first with
specific antibodies and then with secondary antibodies. For
chemiluminescence detection, we used Gel Logic 2002 Kodak
Imaging System, equipped with a charge-coupled device
camera, which guarantees high linearity. Quantity One soft-
ware (Bio-Rad) was used to obtain quantitative analyses.

Invasion Assay
Transwell system, equipped with 8-mm pore poly-
vinylpirrolidone-free polycarbonate filters, was used. Cells
(5� 104 in 300 ml) were loaded into the upper compartment
in serum-free growth medium with or without 50 mmol/l
ilomastat. The upper sides of the porous polycarbonate filters
were coated with 50 mg/cm2 of reconstituted Matrigel

basement membrane and placed into six-well culture dishes
containing 1 ml of complete growth medium. After 24 h of
incubation at 37 1C, noninvading cells and the Matrigel layer
were mechanically removed using cotton swabs, and the
microporous membrane was fixed in 96% methanol and
stained with Diff-Quick solution. Chemotaxis was evaluated
by counting the cells that migrated to the lower surface of the
polycarbonate filters (six randomly chosen fields,
mean±s.d.).

Real-Time PCR
Total RNA was extracted from Hs29-4T and A375 derived
from our experimental conditions using the RNeasy Minikit
kit. Total RNA (1 mg) was reverse-transcribed using the
Quantitect Reverse Transcription Kit. Reverse transcription
was performed in a final volume of 20 ml containing reverse
transcriptase, real-time buffer 1� and real-time primer mix.
The amplification was carried out at 42 1C for 2 min, then
42 1C for 15 min and 95 1C for 3 min. Measurement of gene
expression was performed by quantitative real-time PCR
(7500 Fast Real-Time PCR System, Applied Biosystems),
using the Qiagen Quantifast SYBR Green PCR kit. For each
sample, 1mg of cDNA was added to 25 ml of PCR mix. The
samples were then subjected to 40 cycles of amplification at
95 1C for 10 s and 60 1C for 30 s. RNeasy Minikit, Quantitect
Reverse Transcription Kit, all primer/probe mixes and Qiagen
Quantifast SYBR Green PCR Kit were from Qiagen, except
the following primers:

ADRB1 FW: 50-CAGGTGAACTCGAAGCCCAC-30

ADRB1 REV: 50-CTCCCATCCCTTCCCAAACT-30

ADRB2 FW: 50-ACGCAGTGCGCTCACCTGCCAGACT-30

ADRB2 REV: 50-GCTCGAACTTGGCAATGGCTGTGA-30

VEGF FW: 50-TACCTCCACCATGCCAAGTG-30

VEGF REV: 50-ATGATTCTCCCTCCTCCTTC-30

IL-8 FW: 50-CTGGCCGTGGCTCTCTTG-30

IL-8 REV: 50-TTAGCACTCCTTGGCAAAACTG-30

MMP-2 FW: 50-ACGACCGCGACAAGAAGTTAT-30

MMP-2 REV: 50-ATTTGTTGCCCAGGAAAGTG-50

(NM_00453; Digestive and liver disease 37 (2005) 584–592)
MMP-9 FW: 50-GACAAGCTCTTCGGCTTCTG-30

MMP-9 REV: 50-TCGCTGGTACAGGTCGAGTA-50

IL-6 FW: 50-AGTTCCTGCAGTCCAGCC-30

IL-6 REV: 50-TCAAACTGCATAGCCACTTTC-30

Quantitative MMP Activity Assay
MMPs activity was measured with Amplite TM Universal
Fluorimetric MMP Activity Assay Kit according to the
manufacturer’s instructions. Briefly, serum-free medium
from confluent monolayer of cells was collected and 5 ml were
added to 4-aminophenylmercuric acetate (AMPA; 1 nmol/l)
at 37 1C for 1 h to detect MMP-2 activity and at 37 1C for 2 h
to detect MMP-9 activity. A 50 ml portion of the mixture was
then added to 50 ml of MMP Red substrate solution. After
60 min of incubation the signal was read by fluorescence
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microplate reader with excitation (Ex)/emission (Em)¼ 540
nm/590 nm.

Statistical Analysis
In vitro data are presented as means±s.d. from at least three
experiments. Results were normalized vs control expression
levels. Statistical analysis of the data were performed by
Student’s t-test. Pr0.05 was considered statistically sig-
nificant.

RESULTS
Expression of b-ARs in Tissue Samples
The presence of b-ARs was demonstrated in all melanocytic
lesions examined. The staining for b1-AR was confined to the
cell cytoplasm in naevus melanocytes and melanoma cells;
the reaction for b2-AR was also confined to the cell cyto-
plasm in all cases, with an additional peripheral membrane
pattern in some AN melanocytes and malignant cells. The cell
staining intensity was always weak with regard to the reaction
for b1-AR, whereas the immunostaining for b2-AR appeared
to be weak in CN, moderate (except one very-strong reac-
tion), in AN; moderate or strong in in situ PM; from weak to
moderate or strong in SSPM, and from strong to very strong
in NPM and MM, with no difference between cutaneous and
nodal metastasis.

The immunostaining of each lesion taking into account
both reaction intensity and percentage of positive cells is
shown in Figure 1. In regards to b1-AR expression
(Figure 1a), score 1 was evaluated in both CN and AN, score
2 was found in a minority (3 in situ and 2 SS) of PM, whereas

in the other PM and MM score 3 was detected. b1-AR
expression was significantly higher in malignant than in be-
nign lesions (Pr0.0001) and in PM or MM than in naevi
(Pr0.0001 and Pr0.0001). No difference was observed be-
tween CN and AN, or between in situ/SSPM compared with
NPM/MM.

With regards to b2-AR expression (Figure 1b), score 1 was
observed in CN, score 2 in AN and score 3 was detected in
all PM and MM but one (SSPM), which exhibited score 2.
b2-AR reactivity was significantly higher in malignant lesions
than in naevi (Pr0.0001), and in PM or MM, respectively,
than in naevi (Pr0.0001 and Pr0.0001). AN exhibited a
significantly higher reactivity compared with CN (Pr0.003),
and no difference was observed between in situ/SSPM and
NPM/MM.

In addition, no significant difference was detected between
PM and MM for both receptors.

Examples of reactions of melanocytic lesions for b1- and
b2-AR are shown in Figure 2. Epidermal keratinocytes were
lightly coloured for b2-AR, as previously described.17

Endothelial and stromal cells exhibited heavy reactivity for
b2-AR in malignant lesions, and to some extent, in AN.

Taken together, our data showed that b1- and b2-ARs were
variably expressed in human melanocytic lesions with a sig-
nificant upregulation in PM and MM, and, at least for b2-AR,
a significant upregulation was also observed in AN vs CN.

Effects of Catecholamines on Cancer Cell Motility
In order to confirm the correlation between sensitivity to
catecholamines and progression towards a malignant phe-

Figure 1 Immunohistochemical expression of b1-AR (a) and b2-AR (b) in cutaneous human melanocytic lesions: percentage of positivity and staining

intensity in each lesion. Each circle represents the percentage of stained cells for one lesion. A quarter-black circle indicates positive weak staining; a

half-black circle indicates positive moderate staining; a three-quarter-black circle indicates positive strong staining; a solid-black circle indicates very-

strong staining.
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notype of melanoma cells, we treated with NE or E two
human melanoma cell lines, namely Hs29-4T cells, selected
from a metastatic lesion, and A375 cells, derived from PM.
We observed that both cell lines express low and comparable
levels of b1-AR, as shown in Figure 3, while they both express
higher amounts of b2-AR (Figures 4a and b), with the pri-
mary A375 melanoma cell line exhibiting a significantly
higher expression of b2-AR compared with the metastatic

Hs29-4T cell line. Both cell lines are able to respond to ca-
techolamine stimulation with protein kinase A (PKA)
phosphorylation, a known trait of b-AR stimulation (Figures
4c and d). In addition, we evaluated the effects of both ca-
techolamines on the MAPK pathways, as few studies until
now have investigated the effects of b-adrenergic signalling
on these molecular pathways in melanoma models. As shown
in Figure 5, both NE and E are able to induce activation,

Figure 2 Expression of b1-AR and b2-AR in human cutaneous melanocytic lesions. b1-AR immunostaining in CN (a), AN (b), in situ PM (c), SSPM (d),

NPM (e), nodal MM (f): all lesions show a low reaction intensity, confined to the cell cytoplasm. b2-AR immunoreactivity in CN (g), AN (h), in situ PM (i),

SSPM (j), NPM (k), nodal MM (l): except the weak staining intensity observed in CN, a moderate to strong or very-strong reactivity intensity is detected

in all the other lesions. While CN cells show only cytoplasmic staining for b2-AR, AN and melanoma cells show cytoplasmic and membranous positivity;

stromal cells show some reactivity in malignant lesions and AN (Scale bar, 50 mm).
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although with different kinetics, of p42-p44 and p38 MAPK
in both cell lines (Figures 5a and b).

We then analysed the 3D motility of these cells upon ca-
techolamine stimulation. The invasion assay, carried out by
Boyden chambers covered with Matrigel to mimic a 3D
barrier, revealed that both NE and E are able to elicit invasive
behaviour in both metastatic or PM cells. Both NE and E
appear to be more effective in PM cells with respect to MM
cells. In addition, E is the most efficient catecholamine in
eliciting invasiveness of the metastatic Hs29-4T cell line
(Figures 6a and b). In both cells lines the increase in 3D
invasiveness is sensible to treatment with ilomastat, a broad
range inhibitor of MMPs (Figures 6a and b). The pro-
invasive effect of both NE and E is strongly sensitive to
propranolol, thereby confirming the involvement of b sub-
types of AR. The last finding suggests the involvement of a
proteolytic degradation of the Matrigel barrier during inva-
sion. We, therefore, analysed by Real-Time PCR the expres-
sion of MMP-2 and MMP-9, the main proteolytc enzymes
expressed by Hs29-4T and A375 cell lines, during stimulation
with catecholamines. Figures 6c and d reveal that, while NE
and E do not influence MMP-9 production, the expression of
MMP-2 is increased by NE in A375 PM cells and by E in
metastatic Hs29-4T. More importantly, both NE and E are
able to maintain a high activation state of secreted MMP-2
and MMP-9 following catecholamines stimulation for 24 h
on both cell lines (Figures 6e and f).

Effects of Catecholamines on Cytokine Production and
Tumour Microenvironment
Cancer cells secrete many cytokines, chemokines and growth
factors that can affect their own aggressiveness, in terms of

proliferation, invasion or survival, as well the reactivity of the
surrounding stroma. To address the role of catecholamine
stimulation in these features we first analysed the expression
of a panel of cytokines/growth factors by real-time PCR. We
found that catecholamine stimulation leads to an increase in
the expression of VEGF, IL-6 and IL-8 (Figures 7a–c). In-
terestingly the two catecholamines used show differential
effects for VEGF, IL-6 and IL-8 in Hs29-4T and A375 cells. In
A375 PM cells both NE or E are able to elicit expression of
VEGF, IL-6 and IL-8. Conversely, the Hs29-4T metastatic cell
line senses NE to increase expression of IL-6 and IL-8, and E
to express VEGF.

The role of VEGF, IL-6 and IL-8 in tumour progression
varies from increase in invasiveness/scattering and growth of
angiogenic sprouting for VEGF and IL-8, to activation of
stromal and/or inflammatory cells for IL-6.18–20 We observed
that VEGF stimulation increases the invasive spur induced by
NE in A375 PM cells, while IL-6 does not have a role
(Figure 8a). On the other side, we analysed the ability of IL-6,
in association with NE, to activate dermal fibroblasts. We
observed that IL-6 is able to activate dermal fibroblasts, as
demonstrated by their ability to express a-smooth muscle
actin (a-SMA), an acknowledged marker of myofibro-
blasts.21,22 In addition, in dermal fibroblasts, the CM of NE-
treated A375 cells elicits an activation state very similar with
respect to treatment with IL-6 alone. Conversely, VEGF
treatment is almost ineffective in eliciting a reactivity of
fibroblasts (Figure 8b).

Taken together, these data suggest that in vitro the treat-
ment of human melanoma cells with catecholamines dra-
matically affects their aggressiveness, inducing expression of
MMP-2, VEGF, IL-6 and IL-8. These factors orchestrate a
feed-forward loop leading to increase of proteolytic inva-
siveness of tumour cells, as well as activating surrounding
fibroblasts.

Discussion
The present study shows that the immunohistochemical ex-
pression of b-1 and b-2 ARs is significantly upregulated in
melanoma tissues. Interestingly, all tested melanocytic lesions
exhibited some immunoreactivity, suggesting that both be-
nign and malignant lesions can theoretically be affected by
catecholamines in vivo. However, since b-ARs staining sig-
nificantly increases in PM and MM compared with mela-
nocytic naevi, it appears that malignant lesions can be more
deeply influenced by catecholamines than benign counter-
parts. The staining intensity for b2-AR progressively in-
creased from CN, towards AN, to PM and MM, whereas the
reaction intensity for b1-AR was weaker, in all groups of
lesions. Such a difference can rely on a different reactivity of
the used antibodies, but it is likely that b1-AR is expressed on
naevus melanocytes and melanoma cells of sections at a
lower level than b2-AR. This hypothesis was supported by
PCR and western blot analysis of primary and MM cell lines,

Figure 3 Expression of b1-AR in melanoma cell lines. (a) Analysis of b1-AR

expression by immunoblot in primary (A375) and metastatic (Hs29-4T)

melanoma cell lines. (b) Amount of ADRB1 mRNA by real-time PCR. The

amount of target, normalized to the endogenous reference (18S RNA), was

given by the 2�DDct calculation and was reported as 2�DDct. Both

immunoblots and real-time PCR are the mean of three independent assays.
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both of which exhibited a lower expression of b1-AR vs
b2-AR.

In melanoma tissue sections a strong reactivity for b2-AR
was also observed in most endothelial and stromal cells, in-
cluding macrophages, suggesting the possible influence of
catecholamines on cells of the tumour microenvironment
and the chance of further potential biologic loops capable of
affecting metastatic behaviour of neoplastic cells.

We also demonstrated that A375 primary and Hs29-4T
MM cell lines respond to catecholamine stimulation enhan-
cing motility and invasion, and producing molecules closely
related to neoplastic progression. In keeping, we show that
NE and E are able to elicit activation of p42/p44 and p38
MAPKs, acknowledged to have mandatory roles for cell
growth, survival and invasive ability, in both primary and
metastatic cell lines. This observation is in agreement with
the findings of Pak et al.,23 also indicating the Ras-MAPKs

pathway as a target of b-adrenoceptors. These data could be
of striking interest in order to find new strategies for
melanoma treatment. In fact, Meier et al.24 showed that
combined targeting of the p42/p44 and Akt signalling
pathways significantly inhibited growth and enhanced
apoptosis in melanoma cell cultures.

Moreover, NE and E exhibited a diverse stimulation ca-
pacity on the two cell lines. Concerning the invasion assay,
the primary cell line responded to NE (and, at a lesser degree,
to E), while the metastatic cell line showed a clear reaction
only to E. The inhibition induced by ilomastat strongly
suggests a proteolytic degradation of Matrigel and the
probable intervention of MMPs. In fact, we demonstrate that
MMP-2, rather than MMP-9, is produced at a significantly
higher level compared with baseline, by A375 cells under NE
stimulus and by Hs29-4T cells under E stimulation. Fur-
thermore, our data show that both NE and E are able to elicit

Figure 4 Expression of b2-AR in melanoma cell lines and analysis of the signalling pathway activated by NE stimulation. (a) Analysis of b2-AR

expression by immunoblot in primary (A375) and metastatic (Hs29-4T) melanoma cell lines. (b) Amount of ADRB2 mRNA by real-time PCR. The amount

of target was given by the 2�DDct calculation and was reported as 2�DDct. Immunoblot and real-time PCR are the mean of three different experiments.

(c, d) Analysis of activation of PKA. Melanoma cell lines were serum-deprived overnight and then stimulated with NE (1 mM) for the indicated period

and an immunoblot analysis for the detection of the phosphorylation level of p-PKA was shown. Actin immunoblot was used for normalization. The bar

graph below represents the phosphorylation level of PKA in four different experiments. *Po0.005.
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sustained activation of MMP-2 and MMP-9 both in primary
and metastatic cell lines. Thus, increased motility of mela-
noma cells seems to be due to a proteolytic invasive capacity,
typical of a mesenchymal phenotype,25,26 and catecholamines

seem able to influence MMPs activity both at a transcrip-
tional and at a post-translational level. The migration of
neoplastic cells appears to be increased through activation of
b-ARs, because it is completely abolished by propranolol.

Figure 5 Analysis of activation of p42/p44 and p38 MAPK. Melanoma cell lines were serum-deprived overnight and then stimulated with E (a) or NE

(1 mM) (b) for the indicated period and an immunoblot analysis for the detection of the phosphorylation level of MAPKs were shown. Total p42/p44

and p38 MAPK immunoblot were used for normalization. The bar graphs below represent the phosphorylation level of MAPKs in four different

experiments. *Po0.005.
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With regard to the production of cytokine transcripts,
A375 cells significantly increase levels of IL-6 and VEGF
under NE and E challenge, whereas Hs29-4T cells increase
IL-6 expression under NE stimulus, and produce significant
amounts of VEGF, especially under E activation. Concerning
the expression of IL-8, the primary cell line responded to

both NE and E at a significantly higher degree compared with
the metastatic one, and both cell lines reacted more intensely
to NE. This result is in agreement with the angiogenic role of
IL-8, as de novo angiogenesis is particularly useful for primary
tumours to escape the hostile microenvironment and dis-
seminate metastasis.27 In addition, the catecholamine-induced

Figure 6 Effects of E and NE stimulation on melanoma cell lines invasion. Melanoma cell lines were serum-deprived overnight and then seeded in the

upper Boyden chamber for assay their invasion. (a, b) NE (a) or E (b) (1mM), in the presence or absence of ilomastat (50 mmol/l) or propranolol (1mM),

were added in the upper Boyden chamber. Bar graphs represent the mean of migrated cells counted in six different fields for each experiment.

*Po0.005 vs untreated. (c, d). Expression of MMP-2 (c) and MMP-9 (d) mRNA by real-time PCR. Melanoma cell lines were serum-deprived overnight and

then stimulated with E or NE (1mM) for 24 h. The amount of target, normalized to the GAPDH mRNA amounts, was given by the 2�DDCT calculation

and was reported as arbitrary units (a.u.). The graphs report data as the mean of three independent assays. (e, f) MMP-2 and MMP-9 activity assay.

Melanoma cell lines were serum-deprived overnight and then stimulated with NE or E (1 mM) for 24 h. The media obtained were then tested for MMPs

activity with a fluorimetric kit, following the manufacturer’s instructions (see Materials and Methods). Data are presented as RFU vs concentration of

test compounds. The graphs report data as the mean of four independent experiments. *Po0.005.
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IL-8 enhancement is in agreement with the described IL-8
stimulation produced by NE in prostate cancer.10

We do not know exactly why such a discrepancy exists
between primary and metastatic cell line response, but it is
possible that at least in part this difference is due to a higher
expression of b2-ARs, assessed as protein and transcript, on
the PM cell line. Another possibility is that IL-6 and IL-8,
whose expression was associated with early malignancy of
melanoma in vivo28 are actually secreted more efficiently by a
cell line derived from a PM.

In vitro experiments clearly show that catecholamines can
augment the malignant behaviour of melanoma cells affect-
ing both invasion capacity and cytokine production.

Our in vitro experiments suggest that some pro-metastatic
loops could work in melanoma in vivo too. We demonstrated
that IL-6 and NE in melanoma cells can activate dermal fi-
broblasts towards a myofibroblastic phenotype, identified by
a-SMA expression.21 It is well known that stromal fibroblasts
within tumours undergo a process, commonly called
mesenchymal–mesenchymal transition to myofibroblasts,
leading them to achieve a more contractile phenotype and
allowing a cross talk with tumour cells dramatically in-
creasing their aggressiveness.29,30 In turn, activated fibroblasts
can secrete other pro-metastatic cytokines, such as VEGF,31

capable of inducing further tumour angiogenesis. In
addition, in our experiments, VEGF can increase,
particularly when associated with NE, melanoma cell
migration and hence invasion capacity.

Previous data support the hypothesis that various types of
stress, such as surgical procedure and the immediate post
operative period, or neuroendocrine stress due to psycho-
social factors, can stimulate tumour progression both in
animals and humans.10 This seems to be true also for
melanoma at least in in vivo models.32,33

Our work provides evidence that stress hormones like NE
and E can significantly stimulate the malignancy of mela-
noma cells at various levels and that b-ARs, likely involved in
this response, are largely expressed in melanoma cell lines
and cutaneous melanomas. It is the first time, to our
knowledge, that b-ARs are demonstrated in a large series of
human cutaneous melanocytic lesions, and even in melano-
cytic naevi, suggesting a potential influence of catechola-
mines also in benign counterparts. Moreover, the detection of
b2-AR also in the stromal cells of melanoma microenviron-
ment implies further possible effects of catecholamines on
melanoma progression. Consequently, it is possible that the
interaction catecholamines-b-ARs could have a dramatic role
during the clinical course of melanoma patients. The efforts

Figure 7 Expression of VEGF, IL-6 and IL-8 in E- and NE-treated melanoma cell lines. Melanoma cell lines were serum-deprived overnight and then

stimulated with E or NE (1 mM). Total RNA was used for the amplification of mRNA of IL-6 (a), VEGF (b) and IL-8 (c), using as housekeeping gene GAPDH

mRNA. The amount of target, normalized to the GAPDH mRNA amounts, was given by the 2�DDCT calculation and was reported as arbitrary units (a.u.).

The graphs report data as mean of three independent assays. *Po0.005.
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to understand molecular events underlying such an interac-
tion can be very useful for indicating new targets in therapy.
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 1

Quando ti metterai in viaggio per Itaca  

devi augurarti che la strada sia lunga,  

fertile in avventure e in esperienze.  

I Lestrigoni e i Ciclopi  

o la furia di Nettuno non temere,  

non sarà questo il genere di incontri  

se il pensiero resta alto e un sentimento  

fermo guida il tuo spirito e il tuo corpo.  

In Ciclopi e Lestrigoni, no certo,  

nè nell’irato Nettuno incapperai  

se non li porti dentro  

se l’anima non te li mette contro. 

 

Devi augurarti che la strada sia lunga.  

Che i mattini d’estate siano tanti  

quando nei porti - finalmente e con che gioia -  

toccherai terra tu per la prima volta:  

negli empori fenici indugia e acquista  

madreperle coralli ebano e ambre  

tutta merce fina, anche profumi  

penetranti d’ogni sorta; più profumi inebrianti che puoi,  

va in molte città egizie  

impara una quantità di cose dai dotti. 

 

Sempre devi avere in mente Itaca -  

raggiungerla sia il pensiero costante.  

Soprattutto, non affrettare il viaggio;  

fa che duri a lungo, per anni, e che da vecchio  

metta piede sull’isola, tu, ricco  

dei tesori accumulati per strada  

senza aspettarti ricchezze da Itaca.  



 

 2

Itaca ti ha dato il bel viaggio,  

senza di lei mai ti saresti messo  

sulla strada: che cos’altro ti aspetti? 

 

E se la trovi povera, non per questo Itaca ti avrà deluso.  

Fatto ormai savio, con tutta la tua esperienza addosso  

già tu avrai capito ciò che Itaca vuole significare. 

 

(Itaca – Konstantinos  Kavafis) 

 


