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Introduction

Studying the real world systems, it is a pretty common experience to observe

situations where a steady constant regime turns into a periodic behaviour as

a consequence of the modi�cation of a system parameter. This phenomenon

behaves as a continuous process, since at the beginning the oscillation has a

small amplitude, while it grows wider with a further variation of the param-

eter.

The interest in this kind of dynamics is due to its generality, highlighted by

the fact that it is common to a large variety of systems, such as civil engi-

neering structures, ecologic communities and economic situations. This has

produced a rich literature, starting from H. Poincaré, which was the �rst to

study the onset of a stable periodic motion from a constant stable regime.

It is interesting to observe that the same mechanism that produces such a

dynamics can be responsible of a dual situation, where an unstable periodic

motion arises from an unstable steady regime. Although the latter behaviour

can not be highlighted by the real life experience, because of its instability

property, it is present as well.

The �rst rigorous proof of the general phenomenon is due to Andronov

and Leontovich [1937], which studied the two dimensional problem. The

extension to the case of dimension n, instead, was realized by Hopf [1942]

and after these early publications a wide literature has been produced, for

example by Marsden and McCracken [1976], Arnold [1983] and Guckenheimer

and Holmes [1983], just to recall some famous authors. The phenomenon

is named as the Andronov-Leontovich-Hopf bifurcation, even though it is

commonly referred to as the Hopf bifurcation only.

One of the most interesting features of this phenomenon is that the related

limit cycle can be completely characterized analytically. Unfortunately, the

application of these results turns out to be complicated by a large amount
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of di�cult computations. Even for low dimensional systems the analytical

approach usually results unfeasible. However, when this situation does not

happen, the exact mathematical results can be exploited in several interesting

topics such as, in particular, the bifurcation control problem. To this regard,

see the papers by Fu and Abed [1993] for the classical state space approach

and by Di Marco et al. [2002] for the frequency one.

In this work, we will develop mathematically rigorous tools for the study

of the Hopf bifurcation. We will be concerned with systems represented in

the di�erential equation form. Then, exploiting the features of this class, we

will design a computationally e�cient method, which turns out to be more

suitable for the analytical approach than the classic techniques. Finally,

we will introduce some extensions to the theory to enlarge the class of the

systems, which can be studied with our tools.

In particular, Chapter 1 will be devoted to the introduction of the main

mathematical tools. Some su�cient conditions to transform di�erent models

into the di�erential equation form will be presented. Moreover, the Harmonic

Balance technique for the study of the periodic solutions will be introduced as

well. In Chapter 2 the classical state space approach to the Hopf bifurcation

will be recalled and some speci�c tools for its analysis in the di�erential

equation case will be derived. In Chapter 3 the frequency approach will

be presented with emphasis on the Harmonic Balance technique. Starting

from these results, we will develop some analytical tools, which turn out

to be e�ective in the study of the Hopf bifurcation in di�erential equation

systems. A criterion to state the nature of the bifurcation will be presented

along with a procedure to de�ne an approximation of the real limit cycle.

In Chapter 4 these mathematical tools will be employed to approach the

Hopf bifurcation control problem. Here, the main idea is suggested by the

observation that such a phenomenon is local and that it can be completely

disclosed just studying a proper truncation of the power development of the

system. Exploiting this result, we will extend our technique to every system,

that can be locally represented into the di�erential equation form. To provide

a general framework for this approach, we will exploit the controller normal

form theory developed by Kang and Krener [1992]. According to the authors,

every state space system can be locally described by its normal form. Hence,

we will check the conditions for the local transformation into the di�erential
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equation form just looking at the related normal form. In particular, we

will provide some classes of normal forms, which can be studied employing

the analytical tools, developed for the di�erential equation model. Finally,

we will extend our theory to a larger class of systems exploiting a proper

state feedback control law to improve the degrees of freedom of the local

transformation into the di�erential equation form.

Notation

R: real space;
C: complex space;

N: natural numbers set;
Z: integer numbers set;
: imaginary unit;

< [x]: real part of x ∈ C;
= [x]: imaginary part of x ∈ C;
D: derivative operator;
T : transpose operator;

adj : adjoint operator;

vec : vectorization operator;

f [k](x): homogeneous function of order k in x.



Chapter 1

The models

The development of mathematical models is a crucial step in the behaviour

analysis of real-world systems. Indeed, also the tools that we may employ for

the system analysis strictly depend on the adopted model. In the following

we will introduce some di�erent mathematical representations stressing the

relations among them and studying the conditions, which make possible the

transformation from a model into an other.

1.1 The State Equation Model

A large variety of continuous-time autonomous systems admits the following

representation:

ẋ = F (x) , (1.1)

where x ∈ Rn is the state of the system and F : Rn → Rn a possibly nonlinear

function. The form (1.1) is known as the state space equation model for a n-th

dimensional system. It is a pretty general representation and many real and

arti�cial processes may be described according to this model. Nonetheless,

the analysis of these systems is deeply a�ected by the nature of the law F

and by its complexity. In particular, for our purposes it is worth to introduce

the equivalent form

ẋ = Ax+ f(x) , (1.2)

where A ∈ Rn×n and f : Rn → Rn are respectively the linear and the pure

nonlinear component of the function F , so to highlight the di�erent degree of
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complexity of the single parts of the map F . It is worth to remark, that on

one hand the state space model is able to describe a wide range of possibly

nonlinear systems, but on the other only a small set of mathematical tools

are available for the analysis of (1.1).

1.2 The Di�erential Equation Model

Consider the equation:

y(n) +G
(
y(n−1), . . . , ẏ, y

)
= 0 , (1.3)

where y ∈ R is a scalar signal and G : Rn → R is a possibly nonlinear

function. In literature this is referred as the ordinary di�erential equation

form for a n-th dimensional system. Since in the following we will devote a

particular attention to this model, let us introduce some results which will

be extensively used in its analysis.

Let us �rst derive an equivalent form of (1.3) by separating the linear com-

ponent of the function G from the nonlinear one. Then, we derive the ex-

pression:

y(n) + a1y
(n−1) + . . .+ an−1ẏ + any + g

(
y(n−1), . . . , ẏ, y

)
= 0 , (1.4)

where ak ∈ R, k = 1, . . . , n, and g : Rn → R is a pure nonlinear map. It is

straightforward to check that the introduction of the derivative operator D
in this equation leads to(

Dn + a1Dn−1 + . . .+ an−1D + an

)
y(t) + g

(
Dn−1y, . . . ,Dy, y

)
= 0 .

(1.5)

Moreover, the de�nition of the operators

L(D)
.
=

1

Dn + a1Dn−1 + . . .+ an−1D + an

, (1.6)

N ◦ y .
= −g

(
Dn−1y, . . . ,Dy, y

)
transforms the equation (1.5) into the compact and evocative form

y(t) = L(D) (N ◦ y) (t) , (1.7)
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which is an alternate description of the original model (1.3). In particular,

observe that the nonlinearity can be rewritten as:

(N ◦ y) (t) = M(D)
(
Ñ ◦ y

)
(t) ,

where

M(D)
.
= b1Dn−1 + . . .+ bn−1D + bn

is a polynomial in D, with bi ∈ R i = 1, . . . , n, and Ñ a proper nonlinear

operator. Thus, the representation (1.7) can be manipulated so to assume

the form:

y(t) = L̃(D)
(
Ñ ◦ y

)
(t) ,

where L̃(D) is the rational function:

L̃(D) =
b1Dn−1 + . . .+ bn−1D + bn

Dn + a1Dn−1 + . . .+ an−1D + an

.

Therefore, this result shows that in general the model (1.7) admits linear

operators L(D) described by rational functions with numerators of the proper

order in D.

1.3 The Block Diagram Representation

In the previous models the description focused on the mathematical prop-

erties of the system. On the contrary, when the modeling process can take

advantage of the knowledge of the general structure of the system, the block

diagram representation turns out to be particularly e�ective. This kind of

description is especially used in the engineering �eld and it is based on the

decomposition of the system in several interconnected operators, or �blocks�,

each of them representing an input-output process.

For our purposes, let us introduce the feedback interconnection model.

The basic structure of this representation is composed of two operators, each

modeling a di�erent process, connected in a �feedback loop�, so that the input

of the one is the the output of the other. To depict the corresponding model,
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-

�NS

LS

v ∈ Rqu ∈ Rp

u = H ◦ v

Nonlinear subsystem

Linear subsystem

Figure 1.1: the general feedback scheme.

let us suppose that the �rst block is a linear model (LS) and that the sec-

ond is a nonlinear subsystem (NS), according to the following mathematical

descriptions:

LS :

{
ẋ = Ax+Bu

v = Cx ,
(1.8)

NS : u = H ◦ v ,

where A ∈ Rn×n, B ∈ Rn×p and C ∈ Rq×n are constant matrices, while

H : Rq → Rp is a general nonlinear functional operator. Observe, that the

model (1.8) can be interpreted as the feedback interconnection of Fig. 1.1

just exploiting the input-output description of LS and NS. It is worth to

observe that both the state space model and the di�erential equation form

can be suitably described as feedback systems. Indeed, consider the equation

(1.2) and de�ne:

v
.
= x ,

H ◦ v .
= f(v) , (1.9)

B
.
= I .

Then, it is straightforward to check that (1.2) boils down to (1.8). Let us

stress that the dimensions p and q depend on the nature of the function f ,

but in the general case the feedback interconnection scheme of the system
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-

�N

L(D) y ∈ R

u = N ◦ y

u ∈ R

Nonlinear subsystem

Linear subsystem

Figure 1.2: the feedback representation for a di�erential equation system.

(1.2) requires p = q = n, as it follows from the equations (1.9).

Then, consider the di�erential equation system (1.4). Making use of the

alternate form (1.7), we can derive a feedback block diagram interpretation

just choosing:

v
.
= y ,

H .
= N ,

and using the operator L(D) de�ned in (1.6) to model the linear subsystem

LS. Consequently, in this case p = q = 1, as it is stressed in the corresponding

Fig. 1.2. Therefore, while a general state space representation leads to a block

diagram with a loop made of multidimensional connections, the di�erential

equation form gives rise to a feedback scheme with only scalar signals. This

feature is particularly interesting and it can be exploited to develop simpli�ed

mathematical tools speci�c for the di�erential equation form. For instance, if

a certain procedure can be manipulated so to be applied only to the quantity

v or u, such a technique will gain an advantage when such a signal is scalar.

It is worth to observe that the block diagram representation can describe

dynamical systems, which do not admit the state space model. Indeed, it is

known that the time-delayed models and the distributed parameter systems

need an in�nite-dimensional state. However, it turns out that they can be

modeled in the feedback scheme just employing a description similar to (1.7),

where L(D) is substituted by a proper transcendental operator.
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1.4 Model transformations

The classes represented by the two models (1.1) and (1.3) are closely related

and it is known that the state space form is more general than the di�erential

equation one [Isidori, 1995; Khalil, 2002; Vidyasagar, 1993]. In particular, it

is straightforward to observe that a system described as (1.3) can be always

put in the form (1.1). To this aim, consider the equation (1.4) and chose

the so-called �phase coordinates� as the new set of variables, that is de�ne

x1
.
= y, x2

.
= ẏ, . . . , xn

.
= y(n−1). Thus, the system equation boils down to:

ẋ1 = x2

...

ẋn−1 = xn

ẋn = −anx1 − . . .− a1xn − g(x1, . . . , xn) ,

(1.10)

which is indeed a state space model. This example makes immediately clear

that the equation (1.1) de�nes a wider class of systems and illustrates a

general transformation to change the di�erential equation form into the state

space representation.

The inverse transformation from (1.1) to (1.3), instead, can not be always

performed and in general it is a formidable problem even to check if such a

transformation exists. However, making use of the di�erential geometry, a

set of necessary and su�cient conditions can be formulated [Isidori, 1995;

Nijmeijer and Mareels, 1997]. Unfortunately, their complexity is such that

these relations can be checked only numerically.

In the following, on the contrary, we will introduce some simpli�ed re-

sults about the transformation from the state space model to the di�erential

equation form. In particular, since we are interested in �nding analytical

results, we will develop some su�cient conditions, which are easy to check.

Moreover, they will turn out to be de�ned directly by the structure of the

nonlinear part of the function F in (1.1), that is by the function f of the

equation (1.2).

For a general di�erential equation system, the following statement holds.

Proposition 1. The system (1.2) can be transformed into the di�erential

equation form (1.3) if at least one of the following conditions is satis�ed:
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1)

f(x) = Φ (y) , y = CTx (1.11)

C ∈ Rn , Φ : R → Rn ;

2)

f(x) = Hφ(x) (1.12)

H ∈ Rn , φ : Rn → R .

Proof. Let us brie�y report an outline of the proof. Similarly to the

procedure followed to derive the (1.7) from the (1.4), the derivative operator

D will be used to obtain an alternate formulation of the original state space

model. Then, this representation will be manipulated till it assumes a form

equivalent to (1.5), which can be interpreted as a di�erential equation (1.4).

Consider the �rst condition (1.11) and de�ne

y
.
= CTx .

Making use of the derivative operator, the system model (1.2) can be ex-

pressed as:

Dx(t) = Ax(t) + Φ(y(t)) .

In turn, this equation can be rewritten as:

(DI − A)x(t) = Φ(y(t))

and it is straightforward to �nd that:

y(t) = CT (DI − A)−1 Φ(y(t)) =
1

det (DI − A)
CT adj (DI − A) Φ(y(t)) .

Thus, if we consider

det (DI − A) y(t) = CT adj (DI − A) Φ(y(t)) ,

we obtain exactly an expression equivalent to (1.4), where the terms ai are

the coe�cients of the characteristic polynomial of A and g is a polynomial

combination of the time derivatives of Φ up to the order (n− 1).
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Consider now the second condition (1.12). Proceeding as before, the original

system equation can be rewritten by means of the derivative operator in the

following form:

x(t) = (DI − A)−1Hφ(x(t)) =
1

det (DI − A)
adj (DI − A)Hφ(x(t)) .

(1.13)

Let us de�ne the quantity V ∈ Rn such that

V
.
=

1

‖adj (DI − A)H‖
adj (DI − A)H .

Therefore, it follows that:

y(t)
.
= V Tx(t) =

1

det (DI − A)
φ(x(t))

and so we obtain that:

φ(x(t)) = det (DI − A) y(t) . (1.14)

Hence, from (1.13) we can rewrite the relation between x and y as:

x(t) = (DI − A)−1Hφ(x(t)) = adj (DI − A)Hy(t) .

Resolving the derivative operator in the latter, we obtain the equivalent

expression:

x(t) = adj (DI − A)Hy(t)
.
= G̃

(
y(n−1), . . . , ẏ, y

)
, (1.15)

being G̃ a polynomial combination of y and its derivatives up to the (n− 1)

order. Then, from (1.14) we derive the representation of the original system

in the unique variable y:

det (DI − A) y(t) = φ
(
G̃(t)

)
, (1.16)

which leads to the di�erential equation form:

y(n) + a1y
(n−1) + . . .+ an−1ẏ + any − φ

(
G̃

(
y(n−1), . . . , ẏ, y

))
= 0 .

�
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Example 1. Consider the Hindmarsh-Rose neuron model [Hindmarsh and

Rose, 1984]:
ẋ1 = −ax3

1 + bx2
1 + x2 − x3 + I

ẋ2 = c− dx2
1 − x2

ẋ3 = r (k (x1 − x0)− x3) ,

(1.17)

where the parameters a, b, c, d and k are �xed according to biological consid-

erations, r and x0 depend on the fast and slow subsystems and I represents

the external current, which is supposed to be a constant input signal. It is

straightforward to note that (1.17) satis�es the condition (1.11) with:

A =

 0 1 −1

0 −1 0

rk 0 −r

 , C =

 1

0

0

 , Φ(y) =

 −ay3 + by2 + I

c− dy2

−rkx0

 ,

where the nonlinear function f include also the two constant terms c and I.

Then, according to the mainline of the proof of the Prop. 1, the system can

be represented as:(
D3 + (1 + r)D2 + r(1 + k)D + rk

)
y(t) =

=

 D2 + (1 + r)D + r

D + r

−(D + 1)


T

Φ(y(t)) .

Hence, the equivalent di�erential equation system is:
...
y + (1 + r)ÿ + r(1 + k)ẏ + rky =

=
[
D2 + (1 + r)D + r

] (
−ay3 + by2

)
+ (D + r)

(
−dy2

)
+ rI + rc+ px0 .

Example 2. Consider the famous Rossler system
ẋ1 = −x2 − x3

ẋ2 = x1 + ax2

ẋ3 = b+ x3(x1 − c) ,

where a, b and c are positive parameters [Rössler, 1976]. One can check that

the system satis�es the second su�cient condition (1.12) with:

A =

 0 −1 −1

1 a 0

0 0 −c

 , H =

 0

0

1

 , φ(x) = b+ x1x3 ,
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where φ contains also a constant term. According to (1.15) let us compute

the quantity:

adj (DI − A)Hy(t) =

 a−D
−1

D2 − aD + 1

 y(t) = G̃
(
y(n), . . . , ẏ, y

)
.

Therefore, from the relation (1.16) we derive the equivalent system in the

di�erential equation form:

...
y + (c− a)ÿ + (1− ac)ẏ + cy − b− (ay − ẏ) (ÿ − aẏ + y) = 0 .

Remark 2. When both condition (1.11) and (1.12) are satis�ed, the system

assumes the form

ẋ = Ax+Dφ
(
CTx

)
, (1.18)

which is known in the engineering �eld with the name of Lur'e system.

Proposition 3. Every system in the n-th order ordinary di�erential equation

form admits the Lur'e representation and vice versa.

Proof. The proof follows directly from the Prop. 1 and from the obser-

vation, that the state space representation with the phase coordinates (1.10)

satis�es (1.18). �

In the following we will focus our attention on the di�erential equation

system class. As observed before, this kind of description is more restrictive

that the state space representation. However, the interest for this form is jus-

ti�ed by the existence of a large variety of processes, which admit this model,

as the Lur'e systems. Moreover, the analysis of the di�erential equation form

can be performed with more e�ective mathematical tools, just exploiting the

simpli�ed internal connections which have been remarked in Fig. 1.2 with re-

spect to the general scheme of Fig. 1.1. In the following we will introduce an

important technique for the study of the limit cycles, which takes advantage

from the above reasoning.
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1.5 The Harmonic Balance technique

The Harmonic Balance (HB) technique has been developed to study the peri-

odic solutions of a system. It is a quite general method and it can be applied

to a large variety of models. However, in the following we will introduce that

theory for system represented in the di�erential equation form (1.4), because

in that case the HB technique results particularly e�ective. The starting

point of this method is the Fourier series. Hence, let us brie�y recall the

main points of this theory.

Let us consider a complex valued periodic function z : R → C and let

be T its period. Moreover, suppose that the following regularity properties,

called �Dirichlet conditions�, hold:

• z has a �nite number of discontinuities in a single period;

• z has a �nite number of maxima and minima inside a single period;

• z ∈ L1(0, T ), that is∫ T

0

|z(t)| dt <∞ .

Then, the periodic function z can be developed in the Fourier series as follows:

z(t) = a0 +
∞∑

n=1

(an cos(nωt) + bn sin(nωt)) =
+∞∑

n=−∞

cne
nωt , (1.19)

being ω
.
= 2π/T the fundamental harmonic and (nω) the higher harmonics.

The coe�cients in (1.19) are de�ned as:

an =
1

T

∫ 2T

0

z(τ) cos (nωτ) dτ , bn =
1

T

∫ 2T

0

z(τ) sin (nωτ) dτ ,

a0 =
1

2T

∫ 2T

0

z(τ)dτ , cn =
1

T

∫ 2T

0

z(τ)e−nωτdτ .

In particular, if z is a real valued function, that is z(t) ∈ R ∀t ∈ R, the
coe�cients a0, an and bn are real and the following relations hold:

a0 = c0 n = 0
1
2
(an + bn) = cn n ∈ N

1
2
(an − bn) = c−n n ∈ N ,
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In such a case c−n is the complex conjugate of cn and from (1.19) we can

write:

z(t) =
+∞∑
n=0

(
cne

nωt + c−ne
−nωt

)
=

+∞∑
n=0

2<
[
cne

nωt
]
. (1.20)

For our purposes, it is worth to recall some important features of the Fourier

series. In particular, the regularity of z a�ects the convergence properties

of the series and thus, if z is su�ciently smooth, the derivative of z can be

developed in a Fourier series as well. Moreover, let us recall that the set

{enωt}n∈Z can be interpreted as an orthonormal basis for the space L2(0, T )

of all the square-integrable periodic functions. Therefore, if z is su�ciently

smooth, it is univocally determined by the coe�cients of its Fourier series.

Now we can brie�y introduce the main outline of the HB technique.

Let us consider the di�erential equation system (1.4) and its alternative for-

mulation (1.5), based on the derivative operator D. Then, suppose that it

admits a su�ciently smooth periodic solution yp of period T , whose Fourier

series is

yp(t) =
+∞∑

n=−∞

αne
ωnt . (1.21)

The series (1.21) is still a solution of the system equation and so, it can

be substituted in (1.5). Then, consider the nonlinear part of the problem.

Because all the derivatives of yp are periodic functions, if g is a su�ciently

smooth nonlinearity, its output is periodic and in turn can be developed in

a Fourier series:

g
(
Dn−1yp, . . . ,Dyp, yp

)
=

+∞∑
n=−∞

βne
ωnt ,

where the coe�cients βn depend on yp, that is:

βn (ω, α0, α±1, α±2, . . .) .

Hence, (1.5) becomes:

(
Dn + a1Dn−1 + . . .+ an−1D + an

) +∞∑
n=−∞

αne
ωnt +

+∞∑
n=−∞

βne
ωnt = 0 .
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Under the appropriate regularity conditions, we can apply the derivative

operators and so, balancing the coe�cients of each harmonic, the original

system boils down to the equivalent representation:
((nω)n + a1(nω)n−1 + . . .+ an−1(nω) + an)αn =

= −βn (ω, α0, α±1, α±2, . . .)

n ∈ Z .

(1.22)

It is important to stress that in the real valued case, the equation related to

n = −k is the complex conjugate of the k-th one and thus the system reduces

only to the equations de�ned for n ∈ N. Hence, �nding the periodic solution
yp is equivalent to solve the in�nite set of algebraic equations (1.22).

The HB approach relies on the intuitive idea that a periodic solution

can be suitably approximated by a �nite number of harmonics and that the

system (1.4) acts as a �low-pass �lter�, as usually happens when the model

describes a physical process.

For the sake of simplicity, let us now consider the real valued problem. The

HB technique provides for yp ∈ R an approximation of the form:

yp(t) ≈ ỹp(t)
.
=

k∑
n=−k

α̃ne
ω̃nt =

k∑
n=0

<
[
α̃ne

ω̃nt
]
, (1.23)

where ω̃ and the coe�cients α̃n are the solution of the �nite-dimensional

approximation of the system (1.22). This is obtained just supposing null all

the harmonics higher than the k-th, that is:
((nω̃)n + a1(nω̃)n−1 + . . .+ an−1(nω̃) + an) α̃n =

= −βn (ω̃, α̃0, α̃1, . . . , α̃k, 0, . . .)

n = 0, 1, . . . , k ,

(1.24)

where we have exploited that α̃n and α̃−n are complex conjugate as well as

βn and β−n. Since the time origin is arbitrary, we can choose it so to set

= [α̃1] = 0. Consequently, it is straightforward to observe that (1.24) is a

system of 2k + 1 algebraic equations in the 2k + 1 unknowns ω̃, α̃0, < [α̃1],

< [α̃n], = [α̃n], for n = 2, . . . , k. Such a problem is known as the k-th order

Harmonic Balance.

Of course, (1.23) is expected to be a better approximation of yp, when higher

is the number k of the considered harmonics. In particular, rigorous argu-

ments can be exploited to state the reliability of this result and to quantify
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the approximation error. However, in general (1.24) can be solved only nu-

merically, with the remarkable exception of the �rst and second order HB

approach, where often that solution can be analytically computed. In par-

ticular, the �rst order HB problem is known in the engineering �eld as the

Describing Function Method and its empirical evidence along the years con-

�rms the signi�cant power of this approach. Moreover, it is worth to observe

that the HB tool has been widely and e�ectively exploited in several situa-

tions and we want to highlight its employment in the control problems [Tesi

et al., 1996].

As a �nal remark, we want to stress that the HB approach can be extended

also to system of the form (1.2), which allows for the graphical description of

Fig. 1.1. In such a case, however, one must consider multiple Fourier series,

nominally one for each component of x. Hence, it is clear that, balancing

the harmonics, one obtains a number of algebraic equations, which grows too

rapidly with the system dimension to be analytically handled.

1.6 The second order HB problem

In this section, we want to derive a di�erent form of the second order HB

problem, taking advantage from the feedback block diagram interpretation

of Fig. 1.1

Consider the system (1.4) and its feedback formulation (1.7), depicted in

Fig. 1.2. According to the above general theory and to the equation (1.23),

consider the following second order HB approximation of period T = 2π/ω:

ỹp(t) = A+B cos(ωt) + P cos(2ωt) +Q sin(2ωt) =

= <
[
A+Beωt + (P − Q) e2ωt

]
= (1.25)

= <[ŷp(t)] ,

where A, B, P and Q are real values and the time origin has been chosen,

without loss of generality, so to have B > 0 and no sin(ωt) component.

Therefore, consider the output of the feedback nonlinearity when the operator

N is driven by ỹp. Since that output is still a periodic function, if the original

function g is su�ciently smooth, we can assume that it can be developed in
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a Fourier series as well:

(N ◦ ỹp) (t) =
+∞∑
n=0

2<
[
β̃ne

nωt
]
. (1.26)

Then, let us introduce the following quantities:

ẑp(t) =
2∑

n=0

2β̃ne
nωt , (1.27)

∆z(t) =
+∞∑
n=3

2<
[
β̃ne

nωt
]
,

so that (1.26) can be represented equivalently as:

(N ◦ ỹp) (t) = < [ẑp(t)] + ∆z(t) .

Then, we de�ne the following functions depending on the parameters of ỹp:

N0 = N0(A,B, P,Q, ω)
.
=
β̃0

A
∈ R ,

N1 = N1(A,B, P,Q, ω)
.
=
β̃1

B
∈ C ,

N2 = N2(A,B, P,Q, ω)
.
=

1

P 2 +Q2
(P + Q) β̃2 ∈ C

and so the periodic response of the feedback nonlinearity up to the second

harmonic assumes the form:

ẑp(t) = β̃0 + β̃1e
ωt + β̃2e

2ωt = N0A+N1Be
ωt +N2 (P − Q) e2ωt .

Observe that in the Describing Function Method only N0 and N1 are em-

ployed. Therefore, balancing the harmonics up to the second and neglecting

∆z, is equivalent to set up the following equivalence:

ŷp(t) = L(D)ẑp(t) , (1.28)

since the operator L in (1.7) is linear and since the real part extractor < can

be interpreted as in (1.20). Then, balancing the single harmonics, we �nally

derive the expression of the second order HB problem:
A = L(0)N0(A,B, P,Q, ω)A

B = L(ω)N1(A,B, P,Q, ω)B

(P − Q) = L(2ω)N2(A,B, P,Q, ω)(P − Q) ,

(1.29)

which results in �ve algebraic equations, that is one real and two complex,

in the �ve unknowns A, B, P , Q and ω.



Chapter 2

The Hopf bifurcation: the state

space approach

2.1 The Hopf Theorem

In the previous chapter we have introduced some di�erent mathematical

models to describe a dynamical system. In general, we may suppose that

the adopted laws depend on a certain set of parameters, let say p ∈ Rm.

We want to stress that a large amount of problems in several scienti�c �elds

deals with the changes of the system dynamics as p varies. This kind of study

is referred as the bifurcation analysis. In general, such problems concern

situations where the process undergoes a deep and sudden modi�cation of

its behaviour, usually due to the appearance or the disappearance of a stable

solution [Kuznetsov, 1998]. The values of p at which this happens are referred

to as bifurcation points, because they divide the parametric space in two

or more regions related to di�erent system behaviours. Thus, since it will

be useful for the following developments, let us stress the presence of such

parameters by the introduction of a proper notation. Then, recalling (1.1)

and (1.2), let

ẋ = F (x; p) = A(p)x+ f(x; p) (2.1)

be the state space model for a parametric system, where we have also divided

the linear part of the system from the pure nonlinear one. In particular, we

are interested in the study of the system (2.1), when the parameter vector p
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varies along a one-dimensional manifold. This hypothesis boils down to:

p = p(µ) ,

where µ ∈ R is the bifurcation parameter, which determines the system be-

haviour. Thus, the equation (2.1) reduces to the form:

ẋ = F (x;µ) = A(µ)x+ f(x;µ) . (2.2)

For our purposes, let us suppose that the system has an equilibrium point,

which locally is not a�ected by the µ-parametrization of p. Without loss

of generality, we can assume the �xed point to be at the origin. Then, the

above reasoning can be stated as:

f(0n, µ) = 0n ∀µ ∈ (−µ̂, µ̂) , (2.3)

for some given µ̂ ∈ R : µ̂ > 0. Let λk(µ) ∈ R, k = 1, . . . , n, denote the

eigenvalues of A(µ) and suppose that the following conditions hold:

i) two complex conjugate eigenvalues, nominally λ1,2(µ)
.
= h(µ)± ω(µ),

with h, ω ∈ R, are purely imaginary at µ = 0, that is:

λ1,2(0) = ±ω0 ,

being ω(0) = ω0 > 0;

ii) the couple λ1,2(µ) transversely crosses the imaginary axis at µ = 0,

that is:

h′(0)
.
=

d

dµ
h(µ)

∣∣∣∣
µ=0

6= 0 ;

iii) all the other (n− 2) eigenvalues λk(µ), k = 3, . . . , n, have negative real

part in (−µ̂, µ̂), that is:

< [λk(µ)] < 0 ∀µ ∈ (−µ̂, µ̂) .

Then, we can introduce a rigorous formulation of the Hopf bifurcation theo-

rem, which states the birth of a limit cycle from an equilibrium point, as the

latter changes its stability property [Farkas, 1994; Marsden and McCracken,

1976; Hassard et al., 1981].
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Theorem 4. Consider the parametric system (2.2). Suppose that f ∈ Ck+1

jointly in x and µ, with k ≥ 4, and that it has a �xed point in the origin,

according to the condition (2.3). Moreover, suppose that the eigenvalues of

the equilibrium in the origin satisfy the conditions i), ii) and iii). Then,

there exists a ε̂ ∈ R : ε̂ > 0 and a function µ(ε) ∈ Ck−2(−ε̂, ε̂) with

µ(0) = 0, such that the system (2.2) has a periodic solution θ(t, ε) ∈ Rn

for ε ∈ (−ε̂, ε̂) whose period is T (ε) > 0. In addition, T (ε) ∈ Ck−2(−ε̂, ε̂),
T (0) = 2π/ω(0) = 2π/ω0 and it results that the amplitude of θ(t, ε) varies

proportionally to
√
|ε|, with θ(t, 0) ≡ 0n. Moreover, there is a neighborhood

of (x, µ) = (0n, 0) that does not contain any periodic solution of (2.2) but

those of the family θ(t, ε), ε ∈ (−ε̂, ε̂). Finally, if the equilibrium in the origin

is asymptotically stable (respectively unstable) for ε ∈ (−ε̂, 0) ∪ (0, ε̂), then

h′(0)µ(ε) < 0 (respectively h′(0)µ(ε) > 0) and the periodic solution θ(t, ε) is

unstable (respectively stable).

Proof. For a detailed proof of the theorem, see [Farkas, 1994]. �

Theorem 4 gives a complete characterization of the local dynamics as

the bifurcation parameter crosses zero. According to the hypothesis, there

exists a branch of values of µ such that the equilibrium is asymptotically

stable and another where it is unstable, due to a couple of complex conjugate

eigenvalues. If the nonlinearity f is su�ciently smooth, as the �xed point

changes its stability property in the transition from a branch to the other, a

locally unique periodic solution arises at the origin and it grows depending on

the variations of µ. This limit cycle exists only for one of the branches of the

bifurcation parameter. It turns out to be stable, if it is present when the �xed

point is unstable. That situation is known in literature as the supercritical

Hopf bifurcation. Conversely, the periodic solution results unstable, if it

corresponds to the asymptotically stable branch of the equilibrium. This is

the subcritical Hopf bifurcation.

2.2 The coe�cient of curvature

It is worth to observe that, according to Theorem 4, the presence of a Hopf

bifurcation can be checked by the only analysis of the linearized problem,

provided that f is su�ciently smooth. This result turns out to be particu-
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larly useful in the study of the bifurcation. Nonetheless, the theorem does

not provide any direct technique to state the super or subcritical nature of

the bifurcation. Therefore, let us introduce an e�ective method, originally

developed by Howard [1979]. To this aim, we refer to a slightly di�erent

formulation of the problem. Consider the system (2.2) and suppose that it

depends on the bifurcation parameter just for the linear part, that is:

ẋ = F (x;µ) = A(µ)x+ f(x) . (2.4)

Moreover, let us suppose that the matrix A depends on µ according to the

law:

A(µ) = A0 + µA1 . (2.5)

Recalling the conditions i), ii) and iii) on A, let r(µ) ∈ Rn×1 and l(µ) ∈ R1×n

denote a right and left eigenvector of A(µ) associated to the eigenvalue λ1(µ),

respectively, that is:{
A(µ)r(µ) = λ1(µ)r(µ)

l(µ)A(µ) = λ1(µ)l(µ) ,
(2.6)

and de�ne

l0
.
= l(0) ,

r0
.
= r(0) .

Moreover, suppose that at the bifurcation point µ = 0 the normalization

condition

l0r0 = 1 (2.7)

be satis�ed. Finally, let us introduce the notation

r′(µ)
.
=

d

dµ
r(µ) , l′(µ)

.
=

d

dµ
l(µ) , λ′1(µ)

.
=

d

dµ
λ1(µ)

for the derivative with respect to the bifurcation parameter. Then, the fol-

lowing statement holds.

Proposition 5. At the Hopf bifurcation point, the variation rate with respect

to the parameter µ of the real part of the eigenvalues λ1,2 assumes the value:

h′(0) = < [l0A1r0] . (2.8)
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Proof. Derive the �rst of the equations (2.6) with respect to µ and then

left-multiply the equation for l(µ). Hence, by (2.5) it follows that:

l(µ)A1r(µ) + l(µ)A(µ)r′(µ) = λ′1(µ)l(µ)r(µ) + λ1(µ)l(µ)r′(µ) .

Then, by using the second equation of the (2.6) we obtain:

l(µ)A1r(µ) = (h′(µ) + ω′(µ)) l(µ)r(µ) . (2.9)

Therefore, evaluating (2.9) at the bifurcation point µ = 0 and considering

the normalization hypothesis (2.7) we have the statement. �

Consider the problem formulation (2.4) along with the hypothesis (2.5)

and perform a local power development of f in a neighborhood of the origin:

ẋ = (A0 + µA1)x+ f [2](x) + f [3](x) +O (x)4 .

Since f [2] and f [3] are respectively a quadratic and a cubic function, there

exist f̂ [2] : Rn × Rn → Rn and f̂ [3] : Rn × Rn × Rn → Rn such that:

f̂ [2](x, x) ≡ f [2](x) ,

f̂ [3](x, x, x) ≡ f [3](x) .

Hence, let us refer directly to the system

ẋ = (A0 + µA1)x+ f̂ [2](x, x) + f̂ [3](x, x, x) +O (x)4 . (2.10)

According to results of Theorem 4, if we consider the relation between the

existence of the limit cycle and the bifurcation parameter, we have that the

periodic solution locally exists only for the positive or only for the nega-

tive branch of µ. Therefore, if we recall the description of the bifurcation

parameter as a function of ε, it follows that:

µ(ε) = µ2ε
2 +O

(
ε3

)
.

Moreover, let us consider the power development of the period T with respect

to ε:

T (ε) =
2π

ω0

(
1 + T1ε+ T2ε

2
)

+O
(
ε3

)
Then, we can formulate the following result.
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Proposition 6. The ε-developments of µ and T satisfy the relation:

µ2l0A1r0 + ω0T2 = −2l0f̂
[2](r0, ξ)− l0f̂

[2](r0, η)−
3

4
l0f̂

[3](r0, r0, r0) ,

(2.11)

where:

ξ = −1

2
A−1

0 f̂ [2](r0, r0) , (2.12)

η =
1

2
(2ω0I − A0)

−1f̂ [2](r0, r0) . (2.13)

Proof. For a detailed proof, see [Howard, 1979]. �

Exploiting Propositions 5 and 6, the following result can be stated.

Proposition 7. De�ne the coe�cient of curvature of the Hopf bifurcation

as the quantity

β2
.
= −2µ2<

[
λ′1,2(0)

]
= −2µ2h

′(0) . (2.14)

Then, if β2 < 0 the limit cycle is stable and consequently the Hopf bifurcation

is supercritical. On the contrary, if β2 > 0 the limit cycle is unstable and the

bifurcation subcritical.

Proof. According to the Hopf theory, the bifurcation is supercritical (sub-

critical) if and only if a stable (unstable) limit cycle arises when the equi-

librium point becomes unstable (stable). Moreover, observe that the �xed

point stability depends on λ1,2 and its relation with ε depends on the sign

of h′(0). In particular, the limit cycle exists for the positive branch of the

bifurcation parameter if µ2 > 0 and for the negative otherwise. Moreover,

the equilibrium becomes unstable by increasing µ if h′1,2(0) > 0 and stable if

h′(0) < 0. Therefore, the conditions to have the bifurcation to be supercriti-

cal (subcritical) boil down to µ2h
′(0) > 0 (respectively µ2h

′(0) < 0). �

Remark 8. According to the Howard's results [Howard, 1979], the quan-

tity (2.14) turns out to be the primal coe�cient of the ε-development of the

maximal Floquet exponent ν associated to the limit cycle, that is:

ν(ε) = β2ε
2 +O

(
ε3

)
.
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Corollary 9. The coe�cient of curvature satis�es the relation:

β2 = 2<
[
2l0f̂

[2](r0, ξ) + l0f̂
[2](r0, η) +

3

4
l0f̂

[3](r0, r0, r0)

]
, (2.15)

where ξ and η are de�ned according to (2.12) and (2.13) respectively.

Proof. The proof follows directly from the de�nition (2.14), exploiting

the (2.8) and (2.11):

β2 = −2µ2h
′(0) =

= −2µ2< [l0A1r0] = −2< [µ2l0A1r0 + ω0T2]

= 2<
[
2l0f̂

[2](r0, ξ) + l0f̂
[2](r0, η) +

3

4
lf̂

[3]
0 (r0, r0, r0)

]
.

�

2.3 The coe�cient of curvature for the di�er-

ential equation systems class

Let us apply the state space approach based on the coe�cient of curvature

to the parametric di�erential equation system

y(n) + a1(µ)y(n−1) + . . .+ an−1(µ)ẏ + an(µ)y + g
(
y(n−1), . . . , ẏ, y

)
= 0 ,

(2.16)

where only the linear part of the problem depends on the bifurcation param-

eter µ. Adopting the phase variables x1 = y, x2 = ẏ, . . . , xn = y(n−1) de�ned

in Chapter 1 (see section 1.4, page 6), the system (2.16) assumes the form

(2.4), with:

A(µ) =


0 1 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 1 0

0 . . . 0 0 1

−an(µ) . . . −a3(µ) −a2(µ) −a1(µ)


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and:

f(x)
.
= −eng(x) . (2.17)

Moreover, supposing that

ak(µ) = αk + α̃kµ , (2.18)

the condition (2.5) turns out to be satis�ed for:

A0 =


0 1 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 1 0

0 . . . 0 0 1

−αn . . . −α3 −α2 −α1

 , (2.19)

A1 =


0 0 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 0 0

0 . . . 0 0 0

−α̃n . . . −α̃3 −α̃2 −α̃1

 . (2.20)

Then, consider the power development of g

g(x) = g[2](x) + g[3](x) +O
(
‖x‖4)

and let be ĝ[2] : Rn × Rn → R and ĝ[3] : Rn × Rn × Rn → R the quadratic

and cubic extensions of g[2] and g[3], so that:

ĝ[2](x, x) ≡ g[2](x) ,

ĝ[3](x, x, x) ≡ ĝ[3](x) .

Then, the system (2.16) assumes the form (2.10) for:

f̂ [2](x, x)
.
= −enĝ

[2](x, x) , (2.21)

f̂ [3](x, x, x)
.
= −enĝ

[3](x, x, x) . (2.22)

For our purposes, we �nd useful the introduction of the matrix

B
.
=


b1 0 0 . . . 0

b2 bn+1 0 . . . 0

b3 bn+2 b2n . . . 0
...

...
...

. . .
...

bn b2n−1 b3n−3 . . . bn(n+1)/2

 ,
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such that:

ĝ[2](x, y) = xTBy =
(
yT ⊗ xT

)
vecB .

Then, if we de�ne the quantity:

b
.
=


b1
b2
...

bn(n+1)/2

 ∈ Rn(n+1)/2 ,

it is straightforward to observe that it exists a matrix V ∈ Rn×n(n+1)/2 such

that:

vecB = V b .

Thus, the vector b completely identi�es the quadratic part of the nonlinearity

g:

ĝ[2](x, y) =
(
yT ⊗ xT

)
V b . (2.23)

Similarly, we introduce the following matrices:

Ck =


cn(k−1)(n−1)/2+1 0 . . . 0

cn(k−1)(n−1)/2+2 cn(k−1)(n−1)/2+n+1 . . . 0
...

...
. . .

...

cn(k−1)(n−1)/2+n cn(k−1)(n−1)/2+2n−1 . . . cnk(n+1)/2

 ,

so that:

ĝ[3](x, y, z) =
[
xTC1y, . . . , x

TCny
]
z =

=
(
yT ⊗ xT

)
[vecC1, . . . , vecCn] z =

=
(
yT ⊗ xT

)
Hz =

=
(
zT ⊗ yT ⊗ xT

)
vecH ,

being:

H = [vecC1, . . . , vecCn] ∈ Rn(n+1)/2×n
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and:

vecCk =


cn(k−1)(n−1)/2+1

cn(k−1)(n−1)/2+2

...

ckn(n−1)/2

 ∈ Rn(n+1)/2 .

As before, the de�nition of the vector

c
.
=


c1
...

cn(n+1)/2

...

cn2(n+1)/2

 ∈ Rn2(n+1)/2

allows us to state the existence of a suitable matrix W ∈ Rn(n+1)/2×n2(n+1)/2

such that:

vecH = Wc .

Therefore, the cubic component of the nonlinearity is completely de�ned by

c:

ĝ[3](x, y, z) =
(
zT ⊗ yT ⊗ xT

)
Wc . (2.24)

With the introduction of the above notation, for the di�erential equation

systems the coe�cient β2 of Corollary 9 turns out to depend quadratically

on b and linearly on c, according to the result reported in the following

statement.

Theorem 10. Consider the di�erential equation system (2.16) and its state

space form (2.4) obtained by using the phase coordinates, along with the hy-

pothesis (2.18). Hence, the linear part is de�ned by (2.19), while the nonlin-

earity satis�es (2.17) and its power development (2.21) and (2.22). More-

over, let be b and c the parameters, which de�ne the quadratic and cubic part

of g according to the equation (2.23) and (2.24). Finally, suppose that the

system satis�es the Hopf bifurcation conditions of the Theorem 4. Then, there

exist M2 ∈ Rn(n+1)/2×n(n+1)/2 and M3 ∈ R1×n2(n+1)/2 such that the coe�cient

of curvature β2 assumes the form:

β2 = bTM2b−M3c . (2.25)
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Proof. To prove the statement we �rst need to introduce some preliminary

result.

Lemma 11. Consider the matrix A0 as de�ned in the equation (2.19) and

suppose that it has a couple of pure imaginary eigenvalues ±ω0, ω0 > 0.

Then, the vectors

r0 =


1

ω0

...

(ω0)
n−1

 ,

l0 = γ0


αn

1
ω0

(αn + αn−1(ω0))
...

1
(ω0)n−2 (αn + αn−1(ω0) + . . .+ α2(ω0)

n−2)

−ω0



T

are respectively a right and a left eigenvector of ω0, for every γ0 ∈ C. More-

over, if

γ0 =
1

nαn + αn−1(n− 1)(ω0) + . . .+ α1(ω0)n−1
,

r0 and l0 satisfy the normalization condition (2.7).

Proof. Consider the equation:

A0x = ω0x . (2.26)

Due to the companion form of the matrix A0, (2.26) is equivalent to the n-th

dimensional algebraic system:

x2 = ω0x1

x3 = ω0x2 = (ω0)
2x1

. . .

xn = ω0xn−1 = (ω0)
n−1x1

ω0xn = −αnx1 − αn−1x2 − . . .− α1xn =

= −αnx1 − αn−1(ω0)x1 − . . .− α1(ω0)
n−1x1 =

= − (α1(ω0)
n−1 + . . .+ αn−1(ω0) + αn)x1 .

(2.27)
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Exploiting the previous equations, the latter assumes the form:

(ω0)
nx1 = −

(
α1(ω0)

n−1 + . . .+ αn−1(ω0) + αn

)
x1 ,

which turns out to be an identity, since ω0 is an eigenvalue of A0, whose

characteristic polynomial indeed is:

λn + α1λ
n−1 + . . .+ αn−1λ+ αn = 0 .

Hence, by direct substitution it is straightforward to check that r0 satis�es

the algebraic equations system (2.27). Then, consider the equation

xTA0 = ω0x
T , (2.28)

that is equivalent to
−αnxn = ω0x1

x1 − αn−1xn = ω0x2

. . .

xn−1 − α1xn = ω0xn .

Exploiting the hypothesis ω0 > 0, it is clear that this system can be formu-

lated as:
x1 = − αn

ω0
xn

x2 = − 1
(ω0)2

(αn + ω0αn−1)xn

. . .

xn = − 1
(ω0)n (αn + ω0αn−1 + . . .+ (ω0)

n−1α1)xn ,

(2.29)

where the latter equation is an identity, since it boils down to:

(ω0)
nxn = −(αn + ω0αn−1 + . . .+ (ω0)

n−1α1)xn .

Therefore, the direct substitution of l0 in the (2.29) leads immediately to the

statement. Finally, let us consider the normalization condition (2.7):

l0r0 = γ0

(
αn + (αn + αn−1(ω0)) . . .+

(
αn + αn−1(ω0) + . . .+ α1(ω0)

n−1
))

=

= γ0

(
nαn + αn−1(n− 1)(ω0) + . . .+ α1(ω0)

n−1
)

= 1 .

Then, it is straightforward to check that it is satis�ed if the hypothesis on

γ0 holds. �
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Lemma 12. Consider the matrix A0 as de�ned in the equation (2.19) and

suppose that it has a couple of pure imaginary eigenvalues ±ω0, ω0 > 0, while

all the others have strict negative real part. Then, the following equations

hold:

A−1
0 en =

1

αn


1

0

0
...

0

 =
1

αn

e1 (2.30)

and:

(2ω0I − A0)
−1 en = γ1z1 , (2.31)

being:

γ1 =
1

(2ω0)
n + α1 (2ω0)

n−1 + . . .+ αn−1 (2ω0) + αn

,

z1 =


1

2ω0

(2ω0)
2

...

(2ω0)
n−1

 .

Proof. Consider the following identity:

(λI − A0) (λI − A0)
−1 en = en (2.32)

and de�ne:

x̃
.
= (λI − A0)

−1 en ,

so that (2.32) becomes:

(λI − A0) x̃ = en .

Then, the explicit form of the latter equation turns out to be:
λx̃1 − x̃2 = 0

λx̃2 − x̃3 = 0

. . .

αnx̃1 + αn−1x̃2 + . . .+ α1x̃n + λx̃n = 1 .
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It is straightforward to observe that the k-th algebraic equation of this system

can be developed by the recursive application of the previous (k − 1) ones,

so to obtain:
x̃2 = λx̃1

x̃3 = λ2x̃1

. . .

αnx̃1 + αn−1λx̃1 + . . .+ α1λ
n−1x̃1 + λnx̃1 = 1 ,

which can be formulated as:
x̃2 = λx̃1

x̃3 = λ2x̃1

. . .

x̃1 = 1
λn+α1λn−1+...+αn−1λ+αn

,

if λ is not an eigenvalue of A0. Therefore, the following equation:

(λI − A0)
−1 en =

1

λn + α1λn−1 + . . .+ αn−1λ+ αn


1

λ

λ2

...

λn−1

 (2.33)

holds for each λ that does not belong to the spectrum of A0. Then, the state-

ment follows directly from (2.33) along with the choices λ = 0 and λ = 2ω0,

which according to the hypothesis are not eigenvalues of A0. �

Then, according to Proposition 6 let us compute the vectors ξ and η

exploiting the equations (2.23), (2.24), (2.30), (2.31) and the the previous

Lemmas:

ξ = −1

2
A−1

0 enĝ
[2](r0, r0)

= − 1

2αn

(
rT
0 ⊗ rT

0

)
V be1 ,

η =
1

2
(2ω0I − A0)

−1enĝ
[2](r0, r0) =

=
1

2
γ1

(
rT
0 ⊗ rT

0

)
V bz1 .
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Moreover, consider the quantities:

l0f̂
[2](r0, ξ) = l0enĝ

[2](r0, ξ) =

= −ω0γ0

(
rT
0 ⊗ ξT

)
V b =

=
1

2an

ω0γ0

(
rT
0 ⊗ rT

0

)
V b

(
rT
0 ⊗ eT

1

)
V b =

=
1

2an

ω0γ0b
TV T (r0 ⊗ r0)

(
rT
0 ⊗ eT

1

)
V b ,

l0f̂
[2](r0, η) = l0enĝ

[2](r0, η) =

= −ω0γ0

(
rT
0 ⊗ ηT

)
V b =

= −1

2
ω0γ0γ1

(
rT
0 ⊗ rT

0

)
V b

(
rT
0 ⊗ zT

1

)
V b =

= −1

2
ω0γ0γ1b

TV T (r0 ⊗ r0)
(
rT
0 ⊗ zT

1

)
V b ,

l0f̂
[3](r0, r0, r0) = l0enĝ

[3](r0, r0, r0) =

= −ω0γ0

(
rT
0 ⊗ rT

0 ⊗ rT
0

)
Wc .

Therefore, from the Corollary 9 we obtain that:

β2 = 2<
[
2l0f̂

[2](r0, ξ) + l0f̂
[2](r0, η) +

3

4
l0f̂

[3](r0, r0, r0)

]
=

= 2<

[
2

1

2an

ω0γ0b
TV T (r0 ⊗ r0)

(
rT
0 ⊗ eT

1

)
V b+

− 1

2
ω0γ0γ1b

TV T (r0 ⊗ r0)
(
rT
0 ⊗ zT

1

)
V b− ω0γ0

(
rT
0 ⊗ rT

0 ⊗ rT
0

)
Wc

]
=

= bT<
[
ω0γ0V

T

(
2

an

(r0 ⊗ r0)
(
rT
0 ⊗ eT

1

)
− γ1 (r0 ⊗ r0)

(
rT
0 ⊗ zT

1

))
V

]
b+

−<
[
2ω0γ0

(
rT
0 ⊗ rT

0 ⊗ rT
0

)
W

]
c

= bTM2b−M3c .

�

Corollary 13. The matrix M2 and the vector M3 in the expression (2.25)

of the coe�cient of curvature satisfy:

M2 = <
[
ω0γ0V

T

(
2

an

(r0 ⊗ r0)
(
rT
0 ⊗ eT

1

)
− γ1 (r0 ⊗ r0)

(
rT
0 ⊗ zT

1

))
V

]
,

M3 = <
[
2ω0γ0

(
rT
0 ⊗ rT

0 ⊗ rT
0

)
W

]
,
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where V is as in (2.23), W as in (2.24), r0, l0 and γ0 as in Lemma 11 and

�nally z1 and γ1 as in Lemma 12.

Proof. See the proof of Theorem 10. �



Chapter 3

The Hopf bifurcation: the

frequency approach

The state space approach to the Hopf bifurcation turns out to be a powerful

theoretical method to state its existence, but it does not provide easy to use

analytical tools either to compute the limit cycle or to check its nature. Also,

the restriction to the di�erential equation systems, based on the Howard's

procedure, leads to results which are quite hard to handle, because of the

many Kronecker products.

In the following, exploiting the Harmonic Balance method, we will develop an

approach that provides an e�ective analytical tool to study Hopf bifurcations

of systems in the di�erential equation form. The theoretical background of

our results is the frequency approach originally introduced by Allwrigth and

Mees [Allwright, 1977; Mees, 1981; Moiola and Chen, 1996].

3.1 The existence of the second order HB solu-

tion

Consider the parametric di�erential equation system:

y(n) +G
(
y(n−1), . . . , ẏ, y;µ

)
= 0
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and let us divide the linear from the pure nonlinear part as follows:

y(n) + a1(µ)y(n−1) + . . .+ an−1(µ)ẏ + an(µ)y+ (3.1)

+ g
(
y(n−1), . . . , ẏ, y;µ

)
= 0 .

Let be

y(n−1) = 0 , . . . , ẏ = 0 , y = ye(µ)

an equilibrium point of (3.1) and, without loss of generality, assume that it

satis�es:

ye(0) = 0 . (3.2)

We are interested in studying the Hopf bifurcation of (3.1) related to the

�xed point (3.2) when the bifurcation parameter crosses zero. Then, for the

sake of simplicity, let us say that (3.1) undergoes a Hopf bifurcation at the

origin when µ = 0, if the state space representation obtained through the

phase coordinates satis�es the Hopf bifurcation conditions of Theorem 4.

Therefore, assume that (3.1) as a Hopf bifurcation in the origin at µ = 0.

According to the previous theory, a limit cycle of (3.1) locally exists only for

one branch of the values of the bifurcation parameter, that is just for µ > 0

or vice versa. In particular, let us denote this periodic solution through its

Fourier series:

yp(t;µ) =
∞∑

k=1

<
[
αk(µ)ekω(µ)t

]
=

= <
[
α0(µ) + α1(µ)eω(µ)t + α2(µ)e2ω(µ)t

]
+

+
+∞∑
k=3

<
[
αk(µ)ekω(µ)t

]
=

= < [σ2(t;µ)] + ∆yp(t;µ) , (3.3)

being

σ2(t;µ)
.
= α0(µ) + α1(µ)eω(µ)t + α2(µ)e2ω(µ)t (3.4)

the complex second harmonic truncation of yp(t;µ). Observe that, according

to the Theorem 4 and since the origin of the time scale is arbitrary, without
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loss of generality we can always assume that:{
α1 ∈ R : α1 > 0

ω > 0 .
(3.5)

The following statement describes the relevance of the lower harmonics of

the real limit cycle in the study of the Hopf bifurcation.

Proposition 14. For a su�ciently small |µ|, the real limit cycle yp(t;µ) de-

�ned as in (3.3)-(3.5) can be approximated only by its second order component

< [σ2(t;µ)] with a negligible error due to ∆yp(t;µ).

Outline of the proof. This result can be found as a part of the Mees theory

[Mees, 1981] and it is based on the contraction mapping method originally

developed by Allwrigth [Allwright, 1977]. He proves that ∆yp(t;µ) can be

described as a unique function of σ2(t;µ), when the latter is su�ciently small.

Observe that according to the Hopf bifurcation theorem, this situation is met

when the system is approaching the bifurcation, that is if |µ| is su�ciently

small. In particular, it turns out that ∆yp(t;µ) is O (|σ2(t;µ)|3). Therefore,
while |µ| → 0 the contribution of the harmonics higher than the second be-

come a negligible error and, in turn, the real limit cycle yp(t;µ) is essentially

identi�ed only by its second order harmonic truncation. �

For the following developments, it is important to compare (3.3), and in

particular σ2(t;µ), to the solution of the second order HB problem. Then, let

us recall the results introduced in Paragraph 1.6, emphasizing the dependence

from µ. De�ning the parametric operators

L(D;µ)
.
=

1

Dn + a1(µ)Dn−1 + . . .+ an−1(µ)D + an(µ)
,

Nµ ◦ y
.
= −g

(
y(n−1), . . . , ẏ, y;µ

)
and following the same procedure developed in Paragraph 1.6, we achieve

the parametric feedback form of the system (3.1):

y(t;µ) = L(D;µ) (Nµ ◦ y) (t;µ) . (3.6)
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Then, according to the HB problem formulation, let us denote

ỹp(t;µ) = A+B cos(ωt) + P cos(2ωt) +Q sin(2ωt) , (3.7)

ŷp(t;µ) = A+Beωt + (P − Q)e2ωt , (3.8)

ẑp(t;µ) = (Nµ ◦ ŷp) (t;µ) = N0A+N1Be
ωt +N2(P − Q)e2ωt (3.9)

respectively the prototype second order periodic solution, its complex repre-

sentation and the complex second order harmonic development of the related

nonlinearity response, as de�ned in the equations (1.25) and (1.27). Observe

that, in accordance with the conditions (3.5), we can look for B ∈ R : B > 0

and ω > 0, without any loss of generality. We will always assume these

conditions, but for the sake of simplicity, in the following we will explicitly

report them only when they turn out to be necessary for the comprehension

of the result. Due to the presence of the bifurcation parameter, the quantities

which de�ne the amplitudes of the harmonics in the latter equations result

functions of µ, that is:

A = A(µ) ∈ R , B = B(µ) ∈ R ,

P = P (µ) ∈ R , Q = Q(µ) ∈ R ,

ω = ω(µ) ∈ R ,

N0 = N0 (A,B, P,Q, ω;µ) ∈ R ,

N1 = N1 (A,B, P,Q, ω;µ) ∈ C ,

N2 = N2 (A,B, P,Q, ω;µ) ∈ C ,

Then, substituting the prototypes (3.8) and (3.9) in the equation (3.6) and

balancing the harmonics, the second order HB problem assumes the form:
A(µ) = L(0;µ)N0 (A(µ), B(µ), P (µ), Q(µ), ω(µ);µ)A(µ)

B(µ) = L(ω;µ)N1 (A(µ), B(µ), P (µ), Q(µ), ω(µ);µ)B(µ)

(P (µ)− Q(µ)) =

= L(2ω;µ)N2 (A(µ), B(µ), P (µ), Q(µ), ω(µ);µ) (P (µ)− Q(µ)) .

(3.10)

For a �xed value of µ, the solution of (3.10) with respect to A, B, P , Q

and ω leads to ŷp(t;µ), that is to ỹp(t;µ). The following result states the
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relation between the second order HB solution (3.8) and the second harmonic

truncation (3.4) of the power development (3.3) of the real limit cycle arising

from the Hopf bifurcation.

Proposition 15. For a su�ciently small |µ|, the second harmonic truncation

σ2(t;µ) of the real limit cycle yp(t;µ), de�ned as in (3.3)-(3.5), is equivalent

to a second order HB non constant solution ŷp(t;µ), de�ned as in (3.8).

Outline of the proof. The proof is based on the results reported by Mees

in [Mees, 1981]. Consider the real limit cycle yp(t;µ) de�ned in (3.3), which

can be seen as the solution of the in�nite dimensional HB problem. From the

proof of the Proposition 14, it turns out that ∆yp(t;µ) is univocally de�ned

as a function O (|σ2(t;µ)|3), provided that |µ| is su�ciently small. Then, the

substitution of this development of yp(t;µ) in the general HB problem leads

it to assume the form of a second order HB problem to be solved in σ2(t;µ),

being the neglecting error O (|σ2(t;µ)|4). Mees shows that this problem is

the same as the second HB problem associated to the system. Moreover, he

proves that σ2(t;µ) satis�es such a problem with the same neglecting error

of a second order HB solution ŷp(t;µ) collapsing to zero as |µ| → 0. Thus,

for a su�ciently small |µ|, σ2(t;µ) is essentially close to a second order HB

solution ŷp(t;µ), de�ned as in (3.8), which in turn results non constant. �

The following result deals with the solvability of the second order HB

problem.

Proposition 16. For su�ciently small values of |µ|, the second order HB

problem (3.10) has a locally unique non constant solution ŷp(t;µ), de�ned

as in (3.8), which exists for just one of the branches of the values of µ and

collapses to zero as |µ| → 0.

Outline of the proof. This important statement can be derived as a par-

tial result from the approach to the Hopf bifurcation developed by Allwrigth

and Mees. Consider the real limit cycle yp(t;µ) de�ned in (3.3). According

to the proof of the Proposition 15, if |µ| is su�ciently small, the in�nite

dimensional HB problem related to yp(t;µ) can be developed in a reduced

second order HB problem to be solved in σ2(t;µ) only. This problem turns

out to be identical to the second order HB problem of the system and σ2(t;µ)
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is equivalent to a solution ŷp(t;µ), de�ned as in (3.8). On the other hand,

consider a second order HB solution ŷp(t;µ) and suppose that it collapses to

the equilibrium in the origin when |µ| → 0. Mees shows that it solves also

the reduced second order HB problem related to yp(t;µ), that is it de�nes a

suitable σ2(t;µ), which in turn identi�es a real limit cycle. Thus, for su�-

ciently small values of |µ|, the second order HB problem is equivalent to the

in�nite dimensional one and the related ŷp(t;µ) corresponds to the real pe-

riodic solution yp(t;µ). Then, according to the Hopf bifurcation theorem, it

follows that the second order HB problem has a locally unique non constant

solution de�ned for just one branch of the values of µ. �

The previous results can be collected in the following theorem.

Theorem 17. For a su�ciently small |µ|, the second order HB problem

(3.10) has a locally unique non constant solution ỹp(t;µ) as in (3.7), which

is de�ned for only one branch of the values of the bifurcation parameter and

which is essentially close to the real limit cycle arising from the Hopf bifur-

cation.

Proof. This result directly follows from the Propositions 14-16 and their

proofs. �

3.2 The relation between the second order HB

solution and the Hopf bifurcation nature

According to the Theorem 17, the limit cycle can be located just solving the

second order HB problem. Thus, checking the values of µ, which make (3.10)

solvable, allows us to state the super or subcritical nature of the bifurcation.

Indeed, for the Hopf theory, it is su�cient to compare the range of existence

of ỹp(t;µ) and the stability property of the equilibrium point, which is known

from the computation of its eigenvalues. Moreover, the non constant solution

of (3.10) gives us a local approximation of the real limit cycle. Hence, in

the following we will develop a general analytical procedure to check the

solvability of the second order HB problem and to compute an approximation

of its solution.
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Consider the �ve unknowns of the algebraic problem (3.10). Since locally

B(µ) > 0 due to Proposition 16, without loss of generality, we �nd useful

to consider B2(µ) rather than the �rst harmonic amplitude. Then, let us

introduce

S(µ)
.
=


A(µ)

B2(µ)

C(µ)

ω(µ)

 , (3.11)

where we have de�ned

C(µ)
.
= P (µ) + Q(µ) .

Moreover, let us introduce the polynomials:

Γ(kω;µ)
.
= L−1(kω;µ) . (3.12)

Then, it is straightforward to observe that the computation of the second

order HB solution ỹp(t;µ) is equivalent to �nd S(µ) such that:

i) it is a locally unique solution of the algebraic system
(N0 (S(µ);µ)− Γ(0;µ))A(µ) = 0

(N1 (S(µ);µ)− Γ(ω;µ))B2(µ) = 0

(N2 (S(µ);µ)− Γ(2ω;µ))C(µ) = 0 ,

(3.13)

ii) at the Hopf bifurcation point it satis�es

S(0)
.
= S0 =


0

0

0

ω0

 , (3.14)

where λ1,2(0)
.
= ±ω0, with ω0 > 0, are the eigenvalues of the equilib-

rium at the origin crossing the imaginary axis at µ = 0, according to

Theorem 4;

iii) it locally satis�es the constraints
A(µ) ∈ R
B2(µ) ∈ R : B2(µ) > 0

C(µ) ∈ C
ω(µ) ∈ R : ω(µ) > 0

(3.15)
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on just one side of the Hopf bifurcation, i.e. for a single branch of the

values of µ.

The computation of such a S(µ) allows one to state the super or subcritical

nature of the Hopf bifurcation, as explained in the following theorem.

Theorem 18. Consider the parametric system (3.6) and suppose that it has

a Hopf bifurcation in the origin when µ = 0. Moreover, de�ne χ ∈ {−1,+1}
so that χµ > 0 if the equilibrium is stable and χµ < 0 otherwise. Let be

S(µ) such that it satis�es the above conditions i), ii) and iii) and consider

its µ-development:

S(µ) = S0 + S1µ+O
(
µ2

)
, (3.16)

where:

S1
.
=

[
ξ1 ξ2 ξ3 ξ4

]T

, (3.17)

Then, ξ2 ∈ R and the Hopf bifurcation is supercritical if χξ2 < 0 and subcrit-

ical if χξ2 > 0.

Proof. Consider the truncated power development of S(µ):

Ŝ(µ)
.
= S0 + S1µ . (3.18)

Since S(µ) satis�es iii), for a su�ciently small |µ|, Ŝ(µ) must satisfy the same

condition. It is straightforward to observe that this is possible only if:
ξ1 ∈ R
ξ2 ∈ R
ξ3 ∈ C
ξ4 ∈ R : ξ4 > 0 .

Moreover, the constraints (3.15) are ful�lled on just one side of the bifurca-

tion according to the sign of ξ2. Indeed, the condition iii) is satis�ed for the

positive branch of µ if ξ2 > 0, while for the negative one if ξ2 < 0. Therefore,

the second order HB solution and so the real limit cycle (locally) exist either

for µ > 0, if ξ2 > 0, or for µ < 0, if ξ2 < 0. Then, consider the coe�cient

χ. According to the de�nition, its sign states the stability property of the

equilibrium in the origin. Since the nature of the Hopf bifurcation depends
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on the relation between the existence of the limit cycle and the stability of

the �xed point, it is straightforward to check that the supercritical case cor-

responds to χξ2 < 0 and the subcritical to χξ2 > 0. �

3.3 The local approximation of the second or-

der HB solution

According to Theorem 18, the behaviour of the system at the Hopf bifur-

cation is completely disclosed by the knowledge of just an approximation

of S(µ). Therefore, in the following we will provide a method to e�ciently

compute (3.18).

For the sake of simplicity we will only study the case of asymmetric oscil-

lations around the origin, that is equivalent to assume A(µ) 6≡ 0 in (3.13).

However, we want to stress that analogous results can be developed for the

symmetric limit cycles, as well. Indeed, the second order HB problem re-

lated to this kind of solutions corresponds to the four equations subsystem

obtained from (3.10) by placing A(µ) ≡ 0. Therefore, to illustrate the fol-

lowing method we �nd useful to consider only the asymmetric oscillations,

which require the solution of the complete equations system.

Moreover, it is worth to recall that a system of the form (3.1) may exhibit

symmetric oscillations only if its nonlinearity is odd. Hence, in all the other

cases we can assume A(µ) 6≡ 0 without loss of generality.

Then, let us de�ne the quantities:

M(S0)
.
=

 ∆NT
0 −∆ΓT

0

∆NT
1 −∆ΓT

1

∆NT
2 −∆ΓT

2

 , W (S0)
.
=

 Γ̃0 − Ñ0

Γ̃0 − Ñ0

Γ̃0 − Ñ0

 ,

where:

∆ΓT
k
.
=

[
0 0 0 ∂Γ

∂ω
(kω0; 0)

]
, Γ̃k

.
=
∂Γ

∂µ
(kω0; 0) ,

∆NT
k
.
=

[
∂Nk

∂A
(S0; 0)

∂Nk

∂B2 (S0; 0)
∂Nk

∂C
(S0; 0)

∂Nk

∂ω
(S0; 0)

]
,

Ñk
.
=
∂Nk

∂µ
(S0; 0) .
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Theorem 19. Consider the parametric system (3.6) and suppose that it

undergoes a Hopf bifurcation in the origin at µ = 0. Assume that S(µ) is an

asymmetric oscillation, which satis�es the conditions i), ii) and iii), and let

be (3.18) its truncated power development. Then, if detM(S0) 6= 0, it turns

out that:

S1 = M−1(S0)W (S0) . (3.19)

Proof. Consider the power development of S(µ) along with the de�nition

(3.17) and let us de�ne its second order term as:

S2
.
=

[
ζ1 ζ2 ζ3 ζ4

]T

.

Moreover, let

Γ(kω;µ) = Γ(kω0; 0) +
∂Γ

∂ω
(kω0; 0)(ω − ω0)+

+
∂Γ

∂µ
(kω0; 0)µ+O[2](ω, µ) =

= Γ(kω0; 0) +
∂Γ

∂ω
(kω0; 0)ξ4µ+

∂Γ

∂µ
(kω0; 0)µ+O(µ2) =

= Γ(kω0; 0) +
(
∆ΓT

k S1 + Γ̃k

)
µ+O(µ2)

and

Nk(S(µ);µ) = Nk(S0; 0) +
∂Nk

∂A
(S0; 0)A(µ) +

∂Nk

∂B2
(S0; 0)B

2(µ)+

+
∂Nk

∂C
(S0; 0)C(µ) +

∂Nk

∂ω
(S0; 0)(ω(µ)− ω0)+

+
∂Nk

∂µ
(S0; 0)µ+O[2]

(
A,B2, C, ω, µ

)
=

= Nk(S0; 0) +
∂Nk

∂A
ξ1µ+

∂Nk

∂B2
ξ2µ+

∂Nk

∂C
ξ3µ+

+
∂Nk

∂ω
ξ4µ+

∂Nk

∂µ
µ+O

(
µ2

)
=

= Nk(S0; 0) +
(
∆NT

k S1 + Ñk

)
µ+O

(
µ2

)
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be the µ-developments of Γ(kω;µ) and Nk(S(µ);µ). Thus, the algebraic

equations system (3.13) assumes the form:

(N0(S(µ);µ)− Γ(0;µ))A(µ) = (N0(S0; 0)− Γ(0; 0)) ξ1µ+

+
[(
Ñ0 − Γ̃0

)
+

(
∆NT

0 −∆ΓT
0

)
S1

]
ξ1µ

2+

+ (N0(S0; 0)− Γ(0; 0)) ζ1µ
2 +O (µ3) = 0

(N1(S(µ);µ)− Γ(ω;µ))B2(µ) = (N1(S0; 0)− Γ(ω0; 0)) ξ2µ+

+
[(

∆NT
1 −∆ΓT

1

)
S1 +

(
Ñ1 − Γ̃1

)]
ξ2µ

2+

+ (N1(S0; 0)− Γ(ω0; 0)) ζ2µ
2 +O (µ3) = 0

(N2(S(µ);µ)− Γ(2ω;µ))C(µ) = (N2(S0; 0)− Γ(2ω0; 0)) ξ3µ+

+
[(

∆NT
2 −∆ΓT

2

)
S1 +

(
Ñ2 − Γ̃2

)]
ξ3µ

2+

+ (N2(S0; 0)− Γ(2ω0; 0)) ζ3µ
2 +O (µ3) = 0 .

Then, balancing the �rst and the second power of µ and considering only the

asymmetric oscillations (A(µ) 6≡ 0) along with the constraints of condition

iii), we �nd the two following equation systems:
(N0(S0; 0)− Γ(0; 0)) = 0

(N1(S0; 0)− Γ(ω0; 0)) = 0

(N2(S0; 0)− Γ(2ω0; 0)) = 0 ,

(3.20)

M(S0)S1 = W (S0) , (3.21)

in the only unknown S1, since S0 is already de�ned by condition ii). Observe

that it exists at least one couple (S0, S1), that solves both (3.20) and (3.21),

because the Proposition 16 states the existence of the second order HB solu-

tion ỹp(t;µ) and then of a related S(µ) satisfying i), ii) and iii). Therefore,

if detM(S0) 6= 0, the system (3.21) admits only one solution S1, which nec-

essarily turns out to be the �rst order component of the desired S(µ). Such

a solution can be directly computed as in (3.19). �

It is worth to observe that A(µ) 6≡ 0 does not necessary mean ξ1 6= 0.

Indeed, let us consider the proof of Theorem 19 and let be τ > 1 the order

of the �rst term of the power development of A(µ), which is not null. Then,

it is straightforward to check that the �rst equations of system (3.20) and

(3.21) are obtained by balancing the power terms of order τ and (τ + 1) in

the �rst equation of the HB problem.
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Corollary 20. Under the hypothesis of the Theorem 19, the Ŝ(µ) de�ned in

(3.18) along with the condition (3.19) provides the following local approxima-

tion of the real periodic solution yp(t;µ):

yapp(t;µ) = ξ1µ+
√
ξ2µ cos(ω0 + ξ4µ)t+

+ < [ξ3]µ cos 2(ω0 + ξ4µ)t+ < [ξ3]µ sin 2(ω0 + ξ4µ)t .

Proof. It su�cient to observe that Ŝ(µ) is a local approximation of S(µ),

which identi�es ỹp(t;µ), being the latter essentially close to yp(t;µ) as stated

in the Theorem 17. �

Remark 21. Since S(µ) is a locally unique solution for a su�ciently small

|µ|, it is straightforward to note that the coe�cients of its power development

(3.16) have to be univocally de�ned as well. This observation means that,

�xed the proper S0, there is just one S1 solving the system (3.21). Therefore,

the condition detM(S0) 6= 0 of Theorem 19 is always satis�ed in the case of

asymmetric oscillations. Then, in particular, such a result turns out to be

true for every system whose nonlinearity is not odd.

The above Theorem 19 provides an e�ective tool for the study of the

nature of the Hopf bifurcation. Its main idea is that one can check the

solvability of the second order HB problem through a local approximation.

Hence, with an analogous approach, one can think to locally approximate

the whole system (3.6). Then, according to this reasoning, it turns out to

be su�cient to consider a proper truncation of the power development of the

nonlinearity g:

g
(
y(n−1), . . . , ẏ, y

)
=

∞∑
i=2

g[i]
(
y(n−1), . . . , ẏ, y

)
. (3.22)

The crucial point of this approach is the number of terms that one has to

pick up to properly approximate the system behaviour at the bifurcation.

This problem is studied in the following result.

Proposition 22. If the nonlinearity power development (3.22) is such that

g[2] is di�erent from the null function, then the bifurcation can be studied just

employing the following nonlinear truncation:

ĝ
(
y(n−1), . . . , ẏ, y

)
= g[2]

(
y(n−1), . . . , ẏ, y

)
+ g[3]

(
y(n−1), . . . , ẏ, y

)
.
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Proof. This results can be derived from the theory of Allwrigth and

Mees [Allwright, 1977; Mees, 1981]. Indeed, their procedure, which puts the

second order HB problem into correspondence with the general one, outlines

the degree of the negligible error and it is set up for exactly the above case.

�



Chapter 4

The Hopf bifurcation in control

systems

In the previous chapters we have developed some analytical tools to e�ec-

tively study the nature of the Hopf bifurcation at the origin in autonomous

di�erential equation systems of the form (2.16) and (3.1). Starting from the

Howard's state space approach, we have extended that result to the di�eren-

tial equation class, obtaining a direct correspondence between the coe�cient

of curvature and the parameters which (locally) describe the system. It is

worth to underline that the complexity of this method quickly grows up de-

pending on the system dimension n, because of the many Kronecker products

needed to compute β2.

Besides this result, we have also developed an original and e�ective method

based on the second order HB problem. Observe that this procedure turns

out to be more suitable for the analitycal approach, since it has a minor

computational demand. Indeed, the inverse matrix M−1(S0) in (3.19) is not

a�ected by the dimension n. However, the higher the system dimension is,

the more complex the Ni, i = 0, 1, 2, are. Nonetheless, if we consider the

local development introduced in Proposition 22, the computation of such

functions can be systematically tackled, since they depends on quadratic

and cubic powers of the periodic function and its derivatives. Moreover, it is

worth to recall that the HB approach not only gives information about the

bifurcation's nature, but also it provides a local approximation of the real

limit cycle, thus resulting more appropriate when the features of the arising
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periodic solution turn out to be important.

In this chapter we are interested in the application of the above results to

the control systems, so to provide e�ective tools to induce and control the

Hopf bifurcation.

4.1 The problem set up

The methods presented in the previous chapters refer to autonomous models,

which do not have any kind of exogenous input. It is known that a control

system can be transformed into such a form just choosing as the input a

proper feedback, that in general can be a generic function of the internal

signals of the system.

Moreover, the techniques developed in Chapters 2 and 3 can be applied

only to systems in the di�erential equation form, and then in particular

to the state space models, which satisfy the su�cient conditions presented

in Proposition 1. Hence, since the feedback can play an important role

in satisfying such constraints, in the following we will focus our attention

into the state space systems, which are feedback connected with a possibly

nonlinear operator of their state and which admit the di�erential equation

form.

A further enlargement of the systems class, that can be studied with our

techniques, can be achieved by observing that the Hopf bifurcation is a local

phenomenon and that its features can be completely disclosed via a local

analysis. To this regard, refer to the problem formulation (2.10) and to

Proposition 22. In other words, our approaches can be employed not only

to the di�erential equation systems, but also to all the state space models

which can be locally transformed into the di�erential equation form, being

the latter operation in�uenced by the nature of the feedback input. We

want to stress this point, since the state space systems class does not have

any tools, which turn out to be so e�ective as the method developed in the

previous chapters.

In the following, to provide a comprehensive description of this approach

without bothering the reader with too many computations, we will only refer
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to the third order state space systems with scalar input:{
ẋ = F (x, u) = Ax+Bu+ f̂(x, u)

u = H(x) = Cx+ h(x) ,
(4.1)

where: x ∈ Rn is the state of the system, u ∈ R is the feedback input,

A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n, F : Rn × R → Rn the state function,

H : Rn → R the feedback operator and f̂ : Rn → Rn and h : Rn → R are

pure nonlinear functions. According to the above reasoning, the functions f̂

and h will be approximated by their local power developments, so to have

only quadratic and cubic nonlinear terms in (4.1).

Since here the interest is in the development of the main line of the approach,

we will consider only linearly controllable systems. For this class the eigen-

values of the matrix (A+BC) of the linearization at the origin can be freely

set, focusing the attention on the nature of the Hopf bifurcation rather than

on its birth.

4.2 The control normal forms

The �rst normal forms theory was due to the Poincaré studies on the equiva-

lent representations of a system, obtained by the application of homogeneous

transformations. The Poincaré's results have been employed successfully in

the nonlinear vector �elds area and many di�erent normal forms have been

developed in several frameworks [Arnold, 1983; Baider, 1989; Kuznetsov,

1998; Wiggins, 2003]. In the control system �eld the Brunovsky form turns

out to be particularly useful in the realization of nonlinear control actions

[Brunovsky, 1970; Kailath, 1980]:

ẋ = Ax+Bu , (4.2)

being:

A =


0 1 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 1 0

0 . . . 0 0 1

0 . . . 0 0 0

 , B =


0
...

0

0

1

 . (4.3)
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If a nonlinear control system can be put into the form (4.2)-(4.3) through a

change of coordinates and input, the design of the controller becomes partic-

ularly easy.

Unfortunately, only few systems admit this normal form. However, the linear

part of every linearly controllable system (4.1) can always assume the form

(4.3) by mean of a linear transformation. Therefore, in the following we will

suppose that the linearized system is already in the Brunovsky form.

Since the form (4.2)-(4.3) turns out to be too restrictive, in [Kang and Krener,

1992] the authors developed a quadratic normal form that results an �exten-

sion� of the Brunovsky form and that can be locally assumed by every linearly

controllable system (4.1) a�ne in the control, i.e. such that:

f̂(x, u) = f(x) + g(x)u . (4.4)

In [Kang, 1994] Kang improved that result, introducing extended controller

normal forms of arbitrary degree.

Proposition 23. Consider a linearly controllable system (4.1) satisfying

(4.3) and (4.4). Moreover, let be f ∈ Cd+1 and g ∈ Cd. Then, the sys-

tem can be (locally) transformed into the extended controller normal form of

order d:

ż = Az +Bv +
d∑

k=2

f̃ [k](z) +O (z, v)d+1 , (4.5)

where

f̃
[k]
i (z)

.
=

{ ∑n
j=i+2 p

[k−2]
ij (z1, . . . , zj)z

2
j , 1 ≤ i ≤ n− 2

0 , i = n− 1, n ,
(4.6)

being p
[k−2]
ij (z1, . . . , zj) : Rj → R an homogeneous polynomial of degree (k−2).

Proof. For a detailed proof see Kang [1994]. �

Remark 24. The normal form (4.5) derives from the initial control system

through the application of proper homogeneous transformations of order k ≥
2: {

x = z + ξ[k](z)

u = v + µ[k](z, v) .
(4.7)
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Each transformation (4.7) can change only the terms strictly greater than

k − 1, leaving the others unchanged.

Observe that the extended controller normal form theory perfectly �ts

our approach. Indeed, it performs a local analysis of the linearly controllable

systems and provides a suitable power development which can be always

satis�ed. Therefore, the normal forms turns out to be a powerful tool that we

can employ to settle our approach in a general and comprehensive framework.

In such a way, we can apply all the mathematics developed in the previous

chapters to speci�c system equations without any loss of generality, since

every system can be locally represented as a normal form.

Before proceeding, it is worth to introduce a further result in the theory

of the extended controller normal forms, which allows one to consider a wider

class of dynamical systems, just relaxing condition (4.4) on the scalar input.

Proposition 25. Consider a linearly controllable system (4.1) satisfying

(4.3). Moreover, suppose that f̂ ∈ Cd+1 jointly on its arguments. Then,

by suitable changes of coordinates and input of the type (4.7), the system can

be locally transformed into the following normal form of degree d:

ż = Az +Bv +
d∑

k=2

f̃ [k](z) +O (z, v)d+1 , (4.8)

where we have de�ned

zn+1
.
= v (4.9)

and

f̃
[k]
i (z)

.
=

{ ∑n+1
j=i+2 p

[k−2]
ij (z1, . . . , zj)z

2
j , 1 ≤ i ≤ n− 1

0 , i = n ,
(4.10)

being p
[k−2]
ij (z1, . . . , zj) : Rj → R an homogeneous polynomial of degree (k−2).

Proof. For a detailed proof see Kang and Krener [2005]. �
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4.3 The Hopf bifurcation in the normal form

systems

In this section we want to introduce the study of the Hopf bifurcation in

controller normal form systems by the application of the mathematical tools

previously developed. As already anticipated, we will describe the overall

procedure for the third order linearly controllable systems class, being this

choice suitable to illustrate the method without having to handle singular

cases and plenty of computations.

Then, consider the result of Proposition 22. Although here introduced for

systems in the di�erential equation form, the original theory by Allwrigth

and Mees [Allwright, 1977; Mees, 1981] is formulated in the more general

state space case. Hence, if we assume the non restrictive hypothesis that in

the system local power development at least one between the quadratic and

the cubic part is present, we can study the Hopf bifurcation just through the

analysis of the terms up to the cubic one.

Then, consider the third order cubic normal form a�ne in the control
ż1 = z2 + b1z

2
3 + (c1z1 + c2z2 + c3z3)z

2
3

ż2 = z3

ż3 = v .

(4.11)

Our aim is to build up a state feedback control input such that the system

can be transformed into the di�erential equation form. In particular, we are

interested in �nding a direct correspondence between the parameters of the

model (4.11) and the second order approximation of its limit cycle arising at

the Hopf bifurcation. Moreover, we want to study the degrees of freedom of

such a control input. Observe that in our framework the normal forms are

used as local representations, thus, since they are reached by means of the

homogeneous transformation (4.7), in general we can assume that:

v(z) = v[1](z) + v[2](z) + v[3](z) . (4.12)

Then, the following result holds.

Proposition 26. Consider the normal form (4.11) and choose the state feed-

back control input

v(z) = −a3z1 − a2z2 − a1z3 + γb1z
2
3 + γ(c1z1 + c2z2 + c3z3)z

2
3 , (4.13)
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being γ ∈ R and ai ∈ R, i = 1, 2, 3. Then, the feedback system (4.11) and

(4.13) admits the the di�erential equation form

...
y + a1ÿ + a2ẏ + a3y = (4.14)

= (γÿ − a3ẏ)
2 (
b1 + (γc1 + a2c1 − a3c2)y+

+ (γc2 + a1c1 − a3c3)ẏ + (γc3 + c1)ÿ
)
.

Proof. It is straightforward to check that the system satis�es the second

su�cient transformation condition (1.12) of Paragraph 1.4, where:

A =

 0 1 0

0 0 1

−a3 −a2 −a1

 , H =

 1

0

γ

 ,

φ(z) = b1z
2
3 + (c1z1 + c2z2 + c3z3)z

2
3 .

Thus, according to (1.15):

(
G̃ ◦ y

)
(t) = adj (DI − A)Hy(t) =

 D2 + a1D + γ + a2

γD − a3

γD2 − a3D

 y(t) .
Finally, from the (1.16) (1.16) it follows

det(DI − A)y(t) =
...
y + a1ÿ + a2ẏ + a3y = φ

(
(G̃ ◦ y)(t)

)
,

that is equivalent to (4.14). �

Remark 27. According to the Proposition 26, the cubic normal form (4.11)

of a third order system a�ne in the control can be always transformed into

the di�erential equation form just exploiting a control input with one degree

of freedom. Observe that some speci�c normal forms of this class may be

transformed by means of inputs with more degrees of freedom, but in general

it always exists a non restrictive control (i.e. with at least one degree of

freedom), which realizes the transformation.
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It is worth to recall that the parameters of the normal form are the invari-

ants of the system under the homogeneous transformations (4.7) (see Kang

[1994]). Therefore, the computation of the limit cycle features with respect

to these coe�cients gives a direct connection between the periodic solution

and the original system.

In the following, we will provide an example to illustrate how the invari-

ants can be related to the limit cycle just exploiting the mathematical tools

developed in the previous chapters.

Example 3. Consider the normal form (4.11) and the control input (4.13).

For the sake of simplicity, let us assume that γ = 0. Thus, the equivalent

di�erential equation form (4.14) becomes:

...
y + a1ÿ + a2ẏ + a3y =

= (−a3ẏ)
2 (b1 + (a2c1 − a3c2)y + (a1c1 − a3c3)ẏ + c1ÿ) =

= b1a
2
3ẏ

2 + a2
3(a2c1 − a3c2)ẏ

2y + a2
3(a1c1 − a3c3)ẏ

3 + c1a
2
3ÿẏ

2 .

Observe that in such a situation the control input can only �activate� the Hopf

bifurcation by setting the coe�cients ai, i = 1, 2, 3, of the linear part. This

is equivalent to determine the eigenvalues of the equilibrium at the origin.

Then, let us suppose the following dependences on the bifurcation parameter

µ: 

b1 = b10

ci = ci0 , i = 1, 2, 3

a3 = a20a10

a2 = a20 − µ , a20 > 0

a1 = a10 > 0 .

(4.15)

We want to highlight that the (4.15) describe the transversal passage of a

complex pair of conjugate eigenvalues of the origin through the imaginary

axis at µ = 0. We neglect to report this computation, since it is not our

primary aim. Moreover, it is straightforward to check that the equilibrium in

the origin is stable for µ < 0 and unstable for µ > 0. Hence, it follows from

Theorem 18 that χ = −1.

Then, let us compute the second order HB problem (3.10). The �rst equation
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is pure real and it assumes the form:

a3A = a3b1a3

(
1

2
B2 + 2P 2 + 2Q2

)
ω2+

−
(
a2

3c2a3 − a2
3c1a2

) (
1

2
AB2 +

3

4
B2P + 2AP 2 + 2AQ2

)
ω2+

+
3

2

(
a2

3c3a3 − a2
3c1a1

)
B2Qω3 . (4.16)

The second one, instead, is complex and it can be separated into two scalar

equations:

−a1ω
2 + a3 = 2a3b1a3Pω

2 − (a2
3c2a3 − a2

3c1a2) ·
·
(

1
4
B2 + 2AP + 2P 2 + 2Q2

)
ω2+

−a2
3c1

(
1
4
B2 + 2P 2 + 2Q2

)
ω4

ω3 − a2ω = 2a3b1a3Qω
2 − 2 (a2

3c2a3 − a2
3c1a2)AQω

2+

+ (a2
3c3a3 − a2

3c1a1)
(

3
4
B2 + 6P 2 + 6Q2

)
ω3 .

(4.17)

Finally, the third one is complex too and it can be divided into the two scalar

equations:

−8ω3Q− 4a1ω
2P + 2a2ωQ+ a3P =

= −1
2
a3b1a3B

2ω2 − (a2
3c2a3 − a2

3c1a2) ·
·
(
−1

2
AB2 + 1

2
B2P + P 3 + PQ2

)
ω2+

− (a2
3c3a3 − a2

3c1a1) (3B2Q+ 6P 2Q+ 6Q3)ω3+

+a2
3c1 (2B2P − 4P 3 − 4PQ2)ω4

8ω3P − 4a1ω
2Q− 2a2ωP + a3Q =

= − (a2
3c2a3 − a2

3c1a2)
(

1
2
B2Q+ P 2Q+Q3

)
ω2+

+ (a2
3c3a3 − a2

3c1a1) (3B2P + 6P 3 + 6PQ2)ω3+

+a2
3c1 (2B2Q− 4P 2Q− 4Q3)ω4 .

(4.18)

Exploiting the relations (4.15) between the parametric set and µ, we can

compute the matrixM(S0) and the vectorW (S0) of Theorem 19 of Paragraph

3.3:
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M(S0) =


a20a10 −1

2
b01a

3
20a

2
10 0 0 0

0 1
4
c20a

3
20a

2
10 −2b01a

3
20a

2
10 0 −2a10

√
a20

0 −3
4
a3

20a
2
10(c30a20a10 − c10a10)

√
a20 0 −2b01a

3
20a

2
10 2a20

0 1
2
b01a

3
20a

2
10 −3a20a10 −6a20

√
a20 0

0 0 6a20
√
a20 −3a20a10 0

 ,

W (S0) =


0

0

−√a20

0

0

 .

Therefore, when

detM(S0) =

= 9a5
20a

2
10

[ (
2a20 +

1

2
a2

10

) (
a3

20a
2
10c20 + 3a2

20a
3
10c10 − 3a3

20a
3
10c30

)
+

− 2b201a
4
20a

4
10

]
6= 0

the condition of Theorem 19 is satis�ed and we can compute the vector S1

de�ned in Theorem 18, which provides the information for a local description

of the limit cycle:

S1 = M−1(S0)W (S0) =
[
ξ1 ξ2 ξ3 ξ4

]T

=

=
3a4

20a
2
10

detM(S0)


−3a2

20a10b10 (4a20 + a2
10)

−6 (4a20 + a2
10)

−a2
20a

3
10b10

−2a2
20a

2
10b10

√
a20

a20
√
a20

(
3a3

20a
2
10c20 − 3

4
a2

10 + a3
20a

4
10b

2
10

)

 .

According to Theorem 18, we can state the nature of the Hopf bifurcation by

studying the sign of χξ2:

χξ2 =
1

detM(S0)
18a4

20a
2
10

(
4a20 + a2

10

)
.
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Then, the bifurcation turns out to be supercritical if χξ2 < 0, i.e. when

a20c20 + 3a10c10 − 3a20a10c30 <
2b201a

2
20a

2
10

2a20 + 1
2
a2

10

,

and subcritical if χξ2 > 0, i.e. when

a20c20 + 3a10c10 − 3a20a10c30 >
2b201a

2
20a

2
10

2a20 + 1
2
a2

10

.

Proposition 26 refers to the normal forms a�ne in the control, that is sat-

isfying the condition (4.4). In the following we want to extend this approach

to the general case. Therefore, let us consider the generic third order cubic

normal form:
ż1 = z2 + p13(z)z

2
3 + p14(z, v)v

2

ż2 = z3 + p24(z, v)v
2

ż3 = v ,

(4.19)

where:

p13(z)
.
= b1 + c1z1 + c2z2 + c3z3 ,

p14(z, v)
.
= b2 + c4z1 + c5z2 + c6z3 + c7v , (4.20)

p24(z, v)
.
= b3 + c8z1 + c9z2 + c10z3 + c11v ,

Then, the following statement holds.

Proposition 28. Consider the controller normal form (4.19)-(4.20) and the

homogeneous state feedback control input (4.12). Then, the system locally

satis�es the transformation condition (1.11) or (1.12), during any possible

bifurcation process of the equilibrium in the origin, only if it belongs to at

least one of the following classes:

i) 
ż1 = z2 + h1ϕ(z, v)v2

ż2 = z3 + h2ϕ(z, v)v2

ż3 = v ,

v(z) = v[1](z) + h3ϕ
(
z, v[1](z)

) (
v[1](z)

)2
+

+ 2h2
3

(
ϕ[0](z, v(z))

)2 (
v[1](z)

)3
,

ϕ(z, v) = ϕ[0](z, v) + ϕ[1](z, v) ;
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ii) 
ż1 = z2 + h1ψ(z)z2

3 + h1ϕ(z, v)v2

ż2 = z3

ż3 = v ,

v(z) = v[1](z) + h3ψ(z)z2
3 + h3ϕ

(
z, v[1](z)

) (
v[1](z)

)2
+

+ 2h2
3ϕ

[0]
(
z, v[1](z)

)
v[1](z) ,

(
ψ[0](z)z2

3 + ϕ[0]
(
z, v[1](z)

) (
v[1](z)

)2
)

ψ(z) = ψ[0](z) + ψ[1](z) ,

ϕ(z) = ϕ[0](z, v) + ϕ[1](z, v) ;

iii) 
ż1 = z2 + ϕ(v)v2

ż2 = z3 + ψ(v)v2

ż3 = v ,

v(z) = v[1](z) + γ2

(
v[1](z)

)2
+ γ3

(
v[1](z)

)3
,

ϕ(v) = ϕ[0](v) + ϕ[1](v) ,

ψ1(v) = ψ[0](v) + ψ[1](v) .

Proof. First, observe that the transformation conditions must be satis�ed

for any possible choice of v[1](z). Indeed, the eigenvalues of the equilibrium

depend directly on v[1](z). Thus, the system must be transformable for any

possible value of the linear component of the feedback control.

Consider the �rst su�cient condition (1.11).

Then, the quadratic part of the system (4.19) driven by the feedback control

input (4.12) must satisfy
h1φ

[2](z) = p
[0]
13(z)z

2
3 +p

[0]
14(z, v(z))

(
v[1](z)

)2

h2φ
[2](z) = p

[0]
24(z, v(z))

(
v[1](z)

)2

h3φ
[2](z) = v[2](z)

for any possible v[1](z). The following scenarios may happen.

1) Let p
[0]
13(z) = 0. In such a case from the �rst two equations it follows

that:

p
[0]
14(z, v) = h1ϕ

[0](z, v) ,

p
[0]
24(z, v) = h2ϕ

[0](z, v) ,
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being:

φ[2](z) = ϕ[0](z, v(z))
(
v[1](z)

)2
,

If h1 = h2 = 0, then the third equation does not provide any constraint

on the choice of v[2](z), otherwise:

v[2](z) = h3ϕ
[0](z, v(z))

(
v[1](z)

)2
.

2) Let p
[0]
13(z) 6= 0, p

[0]
14(z, v) 6= 0 and p

[0]
24(z, v) = 0 and de�ne:

p
[0]
13(z) = h1ψ

[0](z) ,

p
[0]
14(z, v) = h1ϕ

[0](z, v) .

From the second equation, neglecting the case φ(z) ≡ 0, that corre-

sponds to the trivial case where the system is linear, it follows h2 = 0.

Thus, we have

φ[2](z) = ψ[0](z)z2
3 + ϕ[0](z, v(z))

(
v[1](z)

)2

and the input turns out to be constrained to the form:

v[2](z) = h3ψ
[0](z)z2

3 + h3ϕ
[0](z, v(z))

(
v[1](z)

)2

3) Let p
[0]
13(z) 6= 0, p

[0]
14(z, v(z)) 6= 0 and p

[0]
24(z, v(z)) 6= 0. Then, the condi-

tions can be satis�ed only for some speci�c choice of v[1](z). Therefore,

such a case can not be considered valid.

Then, consider the cubic part of the system. It must satisfy the conditions:
h1φ

[3](z) = p
[1]
13(z)z

2
3 +2p

[0]
14(z, v(z))v

[1](z)v[2](z) + p
[1]
14

(
z, v[1](z)

) (
v[1](z)

)2

h2φ
[3](z) = 2p

[0]
24(z, v(z))v

[1](z)v[2](z) + p
[1]
24

(
z, v[1](z)

) (
v[1](z)

)2

h3φ
[3](z) = v[3](z) .

Let us check any possible situation deriving from the cases highlighted before.

1) There are some subcases.
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1.a) Consider the special case of h1 = h2 = 0. Then, the equations

assume the form:
0 = p

[1]
13(z)z

2
3 + p

[1]
14

(
z, v[1](z)

) (
v[1](z)

)2

0 = p
[1]
24

(
z, v[1](z)

) (
v[1](z)

)2

h3φ
[3](z) = v[3](z) .

Since these conditions must be satis�ed for any v[1](z), it follows

that the only solution is

p
[1]
13(z) ≡ p

[1]
14(z, v) ≡ p

[1]
24(z, v) ≡ 0 .

Summing up all the constraints, it is straightforward to check that

the starting system turns out to be linear.

1.b) If at least one between h1 and h2 is not null, then the constraints

assume the form:

h1φ
[3](z) = p

[1]
13(z)z

2
3 +

(
2h1h3

(
ϕ[0](z, v(z))

)2
v[1](z)+

+p
[1]
14

(
z, v[1](z)

) ) (
v[1](z)

)2

h2φ
[3](z) =

(
2h2h3

(
ϕ[0](z, v(z))

)2
v[1](z)+

+p
[1]
24

(
z, v[1](z)

) ) (
v[1](z)

)2

h3φ
[3](z) = v[3](z) .

There are some di�erent subcases to study.

1.b.1) Let p
[1]
13(z) be the constantly null polynomial. Then, the con-

ditions are satis�ed for each v[1](z) only if

p
[1]
14(z, v)

p
[1]
24(z, v)

=
h1

h2

,

that is:

p
[1]
14(z, v) = h1ϕ

[1](z, v) ,

p
[1]
24(z, v) = h2ϕ

[1](z, v) ,

for some polynomial ϕ[1](z, v). In such a case

φ[3](z) =
(
2h3

(
ϕ[0](z, v(z))

)2
v[1](z)+

+ ϕ[1]
(
z, v[1](z)

) ) (
v[1](z)

)2
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and the related input turns out to be:

v[3](z) = h3

(
2h3

(
ϕ[0](z, v(z))

)2
v[1](z)+

+ ϕ[1]
(
z, v[1](z)

) ) (
v[1](z)

)2
.

The solution corresponds to the class i).

1.b.2) Let p
[1]
13(z) be di�erent from the constantly null polynomial.

Then, the second equation must be null, because the trans-

formation has to be independent from the choice of v[1](z).

Since we neglect the trivial case φ[3](z) ≡ 0, this situation can

happen only if h2 = 0. Then it follows that:

p
[1]
24(z, v) ≡ 0 .

Hence, de�ning

p
[1]
13(z) = h1ψ

[1](z) ,

p
[1]
14(z, v) = h1ϕ

[1](z, v) ,

we have

φ[3](z) = ψ[1](z)z2
3 +

(
2h3

(
ϕ[0](z, v(z))

)2
v[1](z)+

+ ϕ[1]
(
z, v[1](z)

) ) (
v[1](z)

)2

and the related input assumes the form:

v[3](z) = h3ψ
[1](z)z2

3 + h3

(
2h3

(
ϕ[0](z, v(z))

)2
v[1](z)+

+ ϕ[1]
(
z, v[1](z)

) ) (
v[1](z)

)2
.

Thus, the solution belongs to the class ii), along with the

condition ψ[0](z) = 0.

2) From the condition on the quadratic part of the problem, it follows

that: 
h1φ

[3](z) =
(
p

[1]
13(z) + 2h1h3ψ

[0](z)ϕ[0](z, v(z))v[1](z)
)
z2
3+

+
(
2h1h3

(
ϕ[0](z, v(z))

)2
v[1](z) + p

[1]
14

(
z, v[1](z)

)) (
v[1](z)

)2

0 = p
[1]
24

(
z, v[1](z)

) (
v[1](z)

)2

h3φ
[3](z) = v[3](z) .
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Therefore, the system can be solved for each choice of v[1](z) only if

p
[1]
24(z, v) ≡ 0 .

Then, the solution assumes the form:

p
[1]
13(z) = h1ψ

[1](z) ,

p
[1]
14(z, v) = h1ϕ

[1](z, v) ,

for two generic polynomial ψ[1](z) and ϕ[1](z, v). Consequently,

φ[3](z) =
(
ψ[1](z) + 2h3ψ

[0](z)ϕ[0](z, v(z))v[1](z)
)
z2
3+

+
(
2h3

(
ϕ[0](z, v(z))

)2
v[1](z) + ϕ[1](z, v)

) (
v[1](z)

)2

and the related input turns out to be:

v[3](z) = h3

(
ψ[1](z) + 2h3ψ

[0](z)ϕ[0](z, v(z))v[1](z)
)
z2
3+

+ h3

(
2h3

(
ϕ[0](z, v(z))

)2
v[1](z) + ϕ[1](z, v)

) (
v[1](z)

)2
,

The solution identi�es the class ii).

Consider now the second su�cient condition.

Then, let us �rst highlight that we are looking for a pure nonlinearity of the

form:

Φ
(
CT z

)
= Φ[2]

(
CT z

)
+ Φ[3]

(
CT z

)
+O(z)4 =

= K2 ·
(
ϕ[1](z)

)2
+K3 ·

(
ϕ[1](z)

)3
+O(z)4 ,

being K2,3 ∈ R3×1 and ϕ[1](z)
.
= CT z. Then, the quadratic part of the

problem assumes the form:
k21

(
ϕ[1](z)

)2
= p

[0]
13(z)z

2
3 +p

[0]
14(z, v(z))

(
v[1](z)

)2

k22

(
ϕ[1](z)

)2
= p

[0]
24(z, v(z))

(
v[1](z)

)2

k23

(
ϕ[1](z)

)2
= v[2](z) .

Therefore, since the latter condition must be satis�ed for each choice of

v[1](z), we have the following necessary condition:

p
[0]
13(z) = 0 .
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Thus, the solution assumes the form:

p
[0]
14(z, v) = k21 ,

p
[0]
24(z, v) = k22 ,

being:

ϕ[2](z) =
(
v[1](z)

)2
.

The related input is

v[2](z) = k23

(
v[1](z)

)2
.

Let us consider the cubic part along with the constraints de�ned above:
k31

(
ϕ[1](z)

)3
= p

[1]
13(z)z

2
3 +2k21k23

(
v[1](z)

)3
+ p

[1]
14

(
z, v[1](z)

) (
v[1](z)

)2

k32

(
ϕ[1](z)

)3
= 2k22k23

(
v[1](z)

)3
+ p

[1]
24

(
z, v[1](z)

) (
v[1](z)

)2

k33

(
ϕ[1](z)

)3
= v[3](z) .

Because of the independence from the choice of v[1](z), it turns out the fol-

lowing necessary condition:

p
[1]
13(z) ≡ 0 .

Then, the solution assumes the form:

p
[1]
14(z, v) = k14v ,

p
[1]
24(z, v) = k24v .

Consequently,(
ϕ[1](z)

)3
=

2k22k23 + k24

k32

(
v[1](z)

)3
=

2k21k23 + k14

k31

(
v[1](z)

)3
.

The related input turns out to be:

v[3](z) = k33
2k22k23 + k24

k32

(
v[1](z)

)3
= k33

2k21k23 + k14

k31

(
v[1](z)

)3
.

This structure corresponds to the class iii). �
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4.4 Nonlinear homogeneous transformations

In the previous sections we have highlighted that the Hopf bifurcation is a

local phenomenon and that it can be analytically investigated just employing

a truncation of the power development of the system. In particular, under the

conditions of the Proposition 22, the quadratic and cubic parts of the problem

turn out to be su�cient to detect the nature of the limit cycle. Moreover,

we have noticed that the mathematical tools for the study of the di�erential

equation systems are more e�ective than the methods related to the state

space models. Therefore, instead of looking for a global transformation into

the di�erential equation form, we can limit our study to the systems which

only locally admit this representation. In such a framework, the controller

normal form theory turns out to be an e�ective approach, once we have

supposed that they are driven by a state feedback control input. Indeed,

the controller normal forms allow us to treat the systems in a uniform and

general way, since every state space equation locally admits this model.

On this basis, we have identi�ed a set of normal form systems, which can

be studied employing the di�erential equation form tools, developed in the

previous chapters. Moreover, we have highlighted the nature of the state

feedback input, that makes possible the transformation, and its degrees of

freedom.

It is worth to observe that the conditions (1.11) and (1.12) are only suf-

�cient to grant the transformation into the di�erential equation form. This

implies that, given two equivalent systems with di�erent state space models,

one could satisfy the transformation conditions while the other could do not.

Consequently, it could happen that a controller normal form, that does not

satisfy (1.11) and (1.12), could be transformed into an equivalent local rep-

resentation, which in turn can be put in the di�erential equation form with

our procedure. Therefore, we can extend our approach just focusing on the

transformation into equivalent forms.

The main idea is to use the homogeneous transformations (4.7) of the

state and the input. Indeed, we are looking for a local power development

of the system and it is known that a transformation (4.7) of order k can

change only the k-th term and the higher ones. Then, consider the system

(4.1) and suppose that it is linearly controllable and that A and B are in the

Brunovsky form. Moreover, let the local development of the system satisfy
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a su�cient transformation condition up to the order (k − 1), being û(x) the

pure nonlinear part of the state feedback control input, that makes possible

the transformation:{
ẋ = Ãx+ f(x) +O(x)k

u(x) =
∑k−1

i=1 u
[i](z) = u[1](z) + û(z) ,

where

f(x)
.
= Bû(x) + f̂ [2](x, û(x)) + . . .+ f̂ [k−1](x, û(x)) =


∑k−1

i=2 Φ[i]
(
CTx

)
H

∑k−1
i=2 φ

[i](x)

,

Ãz = Az +Bv[1](z) .

Then, apply the homogeneous transformation of order k:

ẋ = ż +
∂ξ[k]

∂z
ż =

(
I +

∂ξ[k]

∂z

)
ż .

It is straightforward to derive that the local representation of the transformed

system satis�es:

ż =

(
I +

∂ξ[k]

∂z

)−1

ẋ =

(
I − ∂ξ[k]

∂z
+ . . .

) (
Ax+Bu+ f̂(x, u)

)
=

=

(
I − ∂ξ[k]

∂z
+ . . .

) (
Az +Bv + Aξ[k](z) +Bµ[k](z, v) + f̃(z, v)

)
=

=
(
Az +Bv + f̂ [2](z, v) + . . .+ f̂ [k−1](z, v)

)
+ (4.21)

+

(
Aξ[k](z) +Bµ[k](z, v)− ∂ξ[k]

∂z
Az − ∂ξ[k]

∂z
Bv + f̂ [k](z, v)

)
+O(z, v)k+1 .

Indeed, the �rst k terms of the function

f̃(z, v)
.
= f̂

(
z + ξ[k](z), v + µ[k](z, v)

)
are equal to those of f̂(x, u). Thus, the terms up to (k−1) are left unchanged.

In the normal form theory, no other elements play a role in the transfor-

mation. On the contrary, since we want to deal with autonomous systems, we

can spend the hypothesis on the state feedback control input to improve the
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situation. Therefore, since we want to preserve the transformation condition

for the lower terms, we must choose an input of the form:

v(z)
.
= u[1](z) + û(z) + v[k](z) ,

that performs a change only in the k-th term and on the higher ones. Hence,

the equation (4.21) becomes:

ż =
(
Ãz + f(z)

)
+ +

(
Aξ[k](z) +Bv[k](z) +Bµ[k]

(
z, u[1](z)

)
+

− ∂ξ[k]

∂z
Az − ∂ξ[k]

∂z
Bu[1](z) + g[k](z)

)
+O(z)k+1 ,

where g[k](z) is de�ned according to the development:

k∑
i=1

f̂ [i] (z, v(z)) =
k−1∑
i=1

g[i](z) + g[k](z) +O(z)k+1 .

Therefore, to extend up the order k the local transformation into the di�er-

ential equation form, the following condition must be satis�ed:

Aξ[k](z) +Bµ[k]
(
z, u[1](z)

)
+ (4.22)

− ∂ξ[k]

∂z
Az − ∂ξ[k]

∂z
Bu[1](z) + g[k](z) =


Φ[k]

(
CT z

)
Hφ[k](z)

.

For example, if we consider the second su�cient condition, the problem (4.22)

assumes the form:
h1φ

[k](z) = ξ
[k]
2 (z)− ∂ξ

[k]
1

∂z
z2 + g

[k]
1 (z)

. . .

hn−1φ
[k](z) = ξ

[k]
n (z)− ∂ξ

[k]
n−1

∂z
zn + g

[k]
n−1(z)

hnφ
[k](z) = v[k](z) + µ[k]

(
z, u[1](z)

)
− ∂ξ

[k]
n

∂z
u[1](z) + g

[k]
n (z) .

When we are looking for the systems which admit the di�erential equation

form, we have to study the constraint on g[k](z), that makes the problem

(4.22) solvable. Indeed, the function g[k](z) contains the information on the

original f [k](z, v) and a condition on the �rst corresponds to a constraint on

the second.

Instead, if we want to check the possibility of the transformation, we must

determine the existence of ξ[k](z), µ[k](z, v), φ[k](z) and v[k](z) solving the

problem.



Conclusions

The manuscript dealt with the Andronov-Leontovich-Hopf bifurcation. This

is a pretty common phenomenon, that has been widely studied in literature,

since the early work of H. Poincaré. The proof by Andronov and Leontovich

[1937] solved the second order problem, while the general n-dimensional case

was �rst proved by Hopf some years later [Hopf, 1942]. The classic rigorous

approach in the state space has been developed by several authors [Mars-

den and McCracken, 1976; Arnold, 1983; Guckenheimer and Holmes, 1983;

Farkas, 1994], while the frequency method is essentially due to the works of

Allwrigth and Mees [Allwright, 1977; Mees, 1981; Moiola and Chen, 1996].

The results related to the study of the Hopf bifurcation lead to exact

mathematical tools, but unfortunately they turn out to be extremely com-

plex even in the low dimensional case and usually their application to real life

systems can be performed only numerically. Indeed, the standard state space

approach is based on the Center Manifold Theorem [Kuznetsov, 1998; Wig-

gins, 2003] and it requires the computation of the related tangent eigenspace

and the identi�cation of its local dynamics. In turn, the graphical tools of

the frequency approach are not feasible to �nd a direct relation between the

parametric set of the system and the properties of its bifurcation, which is a

central point to study an entire class of models.

Therefore, our aim has been the de�nition of exact mathematical tools,

which could be analytically applied to real life systems.

We have followed the frequency approach, that is based on the Harmonic

Balance method. In particular, we have derived a local second order HB

problem, such that its solvability is directly connected to the existence of the

real limit cycle. Then, the super or subcritical nature of the bifurcation can

be determined as well. Moreover, the second HB solution turns out to be

a local approximation of the periodic regime arising at the Hopf bifurcation
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and, thus, it provides useful information about the features of the real limit

cycle. Since the HB method is particularly e�ective in the study of the

di�erential equation systems, this class has been considered and the related

second HB problem has been locally solved. To compare these results with

the classic methods, we have derived the form of one of the most e�ective

state space technique [Howard, 1979] for the di�erential equation systems

class, obtaining the explicit relation between the coe�cient of curvature of

the bifurcation and the system parameters. In this case, it turns out that

the computational burden grows rapidly with the system dimension and the

analytical approach becomes unfeasible even for low dimensional models. In

turn, our method results in the solution of a linear problem of �ve equations

in �ve unknowns, independently from the dimension of the original system.

However, when the latter grows, the coe�cients of such a linear problem

become more complex, but their computation can be systematically tackled,

since they derive from powers of the periodic solution and its derivatives.

Our method turned out to be suitable to solve a control problem, since it

can be employed to state both the bifurcation nature and the second order

harmonic approximation of the real limit cycle. Therefore, we focused our

attention in the transformations from the general state space model to the

di�erential equation form, because our tools are speci�cally designed for this

class. Unfortunately, the necessary and su�cient constraints, based on dif-

ferential geometry, turn out to be unfeasible in the analytical approach and

their application can be performed only numerically. Thus, we employed

only su�cient conditions, which in turn can be analytically handled. This

choice limits the number of state space systems which can be studied with

our method, but this class can be extended observing that the Hopf bifur-

cation is a local phenomenon and that it can be completely disclosed just

analyzing a local description of the original process.

Thus, we have been concerned with the problem of the local transforma-

tions. In particular, to develop our results in a uniform and general frame-

work, we have resorted to the extended controller normal forms [Kang and

Krener, 1992; Kang, 1994; Kang and Krener, 2005]. Indeed, according to

such a theory, every control system with a scalar input can be represented in

the controller normal form of order k with an error of order (k + 1). There-

fore, we have focused our attention on the su�cient conditions under which
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a �quadratic plus cubic� normal form can be transformed into the di�erential

equation model. Moreover, this local approach has been developed further,

since the normal form theory does not spend any hypothesis on the nature

of the control input. Hence, we have exploited the state feedback control law

to perform an improvement of the degrees of freedom of the transformation

process.

In conclusion, we have developed a rigorous theory for the local analysis

and control of the Hopf bifurcation by means of exact mathematical tools,

introducing some original ideas oriented to the analytical approach. These

results may �nd useful application in the standard Hopf bifurcation control

problems. For example, they could be employed to design controllers for

the suppression of vibrations in mechanical systems or in bodies moving into

�uids. Also in the biological �eld it exists the need to control the nature

of the Hopf bifurcation. In such a case, the e�ort is usually in avoiding the

subcritical case, so to preserve the system survival. In the telecommunica-

tion �eld, instead, the attention is focused on time delayed processes. Our

approach is not originally designed to handle this kind of systems, but the

feedback block diagram representation suggests the chance to extend some

of our original ideas to this situation.
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