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Abstract. We consider the inverse problem of determining the possible pres-

ence of an inclusion in a thin plate by boundary measurements. The plate
is made by non-homogeneous linearly elastic material belonging to a general

class of anisotropy. The inclusion is made by different elastic material. Under
some a priori assumptions on the unknown inclusion, we prove constructive

upper and lower estimates of the area of the unknown defect in terms of an

easily expressed quantity related to work, which is given in terms of measure-
ments of a couple field applied at the boundary and of the induced transversal

displacement and its normal derivative taken at the boundary of the plate.

1. Introduction. In this paper we consider an inverse problem in linear elasticity
consisting in the identification of an inclusion in a thin plate by boundary mea-
surements. Let Ω denote the middle plane of the plate and let h be its constant
thickness. The inclusion D is modelled as a plane subdomain compactly contained
in Ω. Suppose we make the following diagnostic test. We take a reference plate,

i.e. a plate without inclusion, and we deform it by applying a couple field M̂ at its
boundary. Let W0 be the work exerted in deforming the specimen. Now, we repeat
the same experiment on a possibly defective plate. The exerted work generally
changes and assumes, say, the value W . In this paper we want to find constructive
estimates, from above and from below, of the area of the unknown inclusion D in
terms of the difference |W −W0|.

From the mathematical point of view, see [10], [11] the infinitesimal deformation
of the defective plate is governed by the fourth order Neumann boundary value
problem

div (div ((χΩ\DP + χDP̃)∇2w)) = 0, in Ω, (1)
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(P∇2w)n · n = −M̂n, on ∂Ω, (2)

div (P∇2w) · n+ ((P∇2w)n · τ),s = (M̂τ ),s , on ∂Ω, (3)

where w is the transversal displacement of the plate and M̂τ , M̂n are the twisting

and bending components of the assigned couple field M̂ , respectively. In the above
equations χD denotes the characteristic function of D and n, τ are the unit outer

normal and the unit tangent vector to ∂Ω, respectively. The plate tensors P, P̃ are
given by

P =
h3

12
C, P̃ =

h3

12
C̃, (4)

where C is the elasticity tensor describing the response of the material in the ref-

erence plate Ω, whereas C̃ denotes the (unknown) corresponding tensor for the

inclusion D. The work exerted by the couple field M̂ has the expression

W = −
∫
∂Ω

M̂τ,sw + M̂nw,n . (5)

When the inclusion D is absent, the equilibrium problem (1)-(3) becomes

div (div (P∇2w0)) = 0, in Ω, (6)

(P∇2w0)n · n = −M̂n, on ∂Ω, (7)

div (P∇2w0) · n+ ((P∇2w0)n · τ),s = (M̂τ ),s , on ∂Ω, (8)

where w0 is the transversal displacement of the reference plate. The corresponding

external work exerted by M̂ is given by

W0 = −
∫
∂Ω

M̂τ,sw0 + M̂nw0,n. (9)

Our main result (see Theorem 3.1) states that if, for a given h1 > 0, the following
fatness-condition

area ({x ∈ D| dist{x, ∂D} > h1}) ≥
1

2
area(D) (10)

holds, then

C1

∣∣∣∣W −W0

W0

∣∣∣∣ ≤ area(D) ≤ C2

∣∣∣∣W −W0

W0

∣∣∣∣ , (11)

where the constants C1, C2 only depend on the a priori data. Estimates (11) are
established under some suitable ellipticity and regularity assumptions on the plate

tensor C and on the jump C̃− C.
Analogous bounds in plate theory for isotropic materials were obtained in [16]

and [17] and recently in the context of shallow shells in [9]. The reader is referred to
[13], [5], [7] for size estimates of inclusions in the context of the electrical impedance
tomography and to [12], [2], [3], [4] for corresponding problems in two and three-
dimensional linear elasticity. See also [14] for an application of the size estimates
approach in thermography. However, differently from [16] and [17], here we work
under very general assumptions on the constitutive properties of the reference plate,
which is assumed to be made by nonhomogeneous anisotropic elastic material satis-
fying the dichotomy condition (28a)–(28b) only. This choice introduces significant
difficulties in obtaining the upper bound for area(D), as we shall discuss shortly.
In fact, for isotropic materials, an upper bound of the form

area(D) ≤ C2

∣∣∣∣W −W0

W0

∣∣∣∣ 1
p

, (12)
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where p > 1 and C2 are constants only depending on the a priori data, was obtained
in [17] for general measurable inclusions. The basic tool which allows to drop the
fatness-condition (10) in the isotropic case is the validity of a doubling inequality,
which, unfortunately, is not at disposal for anisotropic materials. On the other
hand, in view of Alinhac’s results [8], it seems hopeless even that the solutions to
the plate equation can satisfy a strong unique continuation principle without any a
priori assumptions on the anisotropy of the material. Concerning this point, our di-
chotomy condition basically contains the same assumptions under which the unique
continuation property holds for a fourth order elliptic equation in two variables.

The first step of the proof of area estimates (11) consists in proving that the
strain energy of the reference plate stored in the set D is comparable with the
difference between the works exerted by the boundary couple fields in deforming
the plate with and without the inclusion. More precisely, we have the following
double inequality

K1

∫
D

|∇2w0|2 ≤ |W −W0| ≤ K2

∫
D

|∇2w0|2, (13)

for suitable constants K1, K2 only depending on the a priori data (see Lemma
4.1). The proof of these bounds is based on variational considerations and has been
obtained in [16] (Lemma 5.1).

The lower bound for area(D) follows from the right hand side of (13) and from
regularity estimates for solutions to the fourth order elliptic equation (6) governing
the equilibrium problem in the anisotropic case.

In order to obtain the upper bound for area(D) from the left hand side of (13),
the next issue is to estimate from below

∫
D
|∇2w0|2. This task is rather technical and

involves quantitative estimates of unique continuation in the form of three spheres
inequalities for the hessian ∇2w0 of the reference solution w0 to equation (6). It
is exactly to this point that the dichotomy condition (28a)–(28b) on the tensor C
is needed. More precisely, it was shown in [19] that if C satisfies the dichotomy
condition, then the plate operator of equation (6) can be written as the sum of a
product of two second order uniformly elliptic operators with regular coefficients
and a third order operator with bounded coefficients. Then, Carleman estimates
can be developed to derive a three spheres inequality for ∇2w0 (see Theorem 6.2 of
[19]). The reader is referred to the paper [19] for the necessary background.

The paper is organized as follows. Some basic notation is introduced in Section
2. In Section 3 we state the main result, Theorem 3.1, which is proved in Section 4.
Section 5 is devoted to the proof of the Lipschitz propagation of smallness property
(see Proposition 1), which is used in the proof of Theorem 3.1.

2. Notation. We shall denote by Br(P ) the disc in R2 of radius r and center P .
When representing locally a boundary as a graph, we use the following notation.
For every x ∈ R2 we set x = (x1, x2), where x1, x2 ∈ R.

Definition 2.1. (Ck,1 regularity) Let Ω be a bounded domain in R2. Given k, with
k ∈ N, we say that a portion S of ∂Ω is of class Ck,1 with constants ρ0, M0 > 0, if,
for any P ∈ S, there exists a rigid transformation of coordinates under which we
have P = 0 and

Ω ∩Bρ0
(0) = {x = (x1, x2) ∈ Bρ0

(0) | x2 > ψ(x1)},
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where ψ is a Ck,1 function on (−ρ0, ρ0) satisfying

ψ(0) = 0,

∇ψ(0) = 0, when k ≥ 1,

‖ψ‖Ck,1(−ρ0,ρ0) ≤M0ρ0.

When k = 0, we also say that S is of Lipschitz class with constants ρ0, M0.

Remark 1. We use the convention to normalize all norms in such a way that their
terms are dimensionally homogeneous with their argument and coincide with the
standard definition when the dimensional parameter equals one. For instance, given
a function u : Ω 7→ R, where ∂Ω satisfies Definition 2.1, we denote

‖u‖C1,1(Ω) = ‖u‖L∞(Ω) + ρ0‖∇u‖L∞(Ω) + ρ0
2‖∇2u‖L∞(Ω),

and

‖u‖H2(Ω) = ρ−1
0

(∫
Ω

u2 + ρ2
0

∫
Ω

|∇u|2 + ρ4
0

∫
Ω

|∇2u|2
) 1

2

,

and so on for boundary and trace norms such as ‖ · ‖
H

1
2 (∂Ω)

, ‖ · ‖
H−

1
2 (∂Ω)

.

For any r > 0 we denote

Ωr = {x ∈ Ω | dist(x, ∂Ω) > r}. (14)

Given a bounded domain Ω in R2 such that ∂Ω is of class Ck,1, with k ≥ 1, we
consider as positive the orientation of the boundary induced by the outer unit
normal n in the following sense. Given a point P ∈ ∂Ω, let us denote by τ = τ(P )
the unit tangent at the boundary in P obtained by applying to n a counterclockwise
rotation of angle π

2 , that is

τ = e3 × n, (15)

where × denotes the vector product in R3 and {e1, e2, e3} is the canonical basis in
R3.

Given any connected component C of ∂Ω and fixed a point P0 ∈ C, let us define
as positive the orientation of C associated to an arclength parameterization ϕ(s) =
(x1(s), x2(s)), s ∈ [0, l(C)], such that ϕ(0) = P0 and ϕ′(s) = τ(ϕ(s)). Here l(C)
denotes the length of C.

Throughout the paper, we denote by w,i, w,s, and w,n the derivatives of a
function w with respect to the xi variable, to the arclength s and to the normal
direction n, respectively, and similarly for higher order derivatives.

We denote by M2 the space of 2 × 2 real valued matrices and by L(X,Y ) the
space of bounded linear operators between Banach spaces X and Y .

For every pair of real 2-vectors a and b, we denote by a · b the scalar product of
a and b. For every 2 × 2 matrices A, B and for every L ∈ L(M2,M2), we use the
following notation:

(LA)ij = LijklAkl, A ·B = AijBij , |A| = (A ·A)
1
2 , (16)

Asym =
1

2

(
A+AT

)
, (17)

where, here and in the sequel, summation over repeated indexes is implied.
Moreover we say that

L̃ ≤ L, (18)
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if and only if, for every 2× 2 symmetric matrix A,

L̃A ·A ≤ LA ·A. (19)

3. The main result. Let us consider a thin plate Ω× [−h2 ,
h
2 ] with middle surface

represented by a bounded domain Ω in R2 and having uniform thickness h, h <<
diam(Ω). We assume that ∂Ω is of class C1,1 with constants ρ0, M0 and that, for
a given positive number M1, satisfies

area(Ω) ≡ |Ω| ≤M1ρ
2
0. (20)

We shall assume throughout that the elasticity tensor C of the reference plate is
known and has cartesian components Cijkl which satisfy the following symmetry
conditions

Cijkl(x) = Cklij(x) = Clkij(x), i, j, k, l = 1, 2, a.e. in Ω. (21)

On the elasticity tensor C let us make the following assumptions:

i) Ellipticity (strong convexity)
There exists a positive constant γ such that

CA ·A ≥ γ|A|2, a.e. in Ω, (22)

for every 2× 2 symmetric matrix A.
ii) C1,1 regularity

There exists M > 0 such that

2∑
i,j,k,l=1

2∑
m=0

ρm0 ‖∇mCijkl‖L∞(R2) ≤M. (23)

Condition (21) implies that instead of 16 coefficients we actually deal with
6 coefficients and we denote

C1111 = A0, C1122 = C2211 = B0,

C1112 = C1121 = C1211 = C2111 = C0,

C2212 = C2221 = C1222 = C2122 = D0,

C1212 = C1221 = C2112 = C2121 = E0,

C2222 = F0,
(24)

with

a0 = A0, a1 = 4C0, a2 = 2B0 + 4E0, a3 = 4D0, a4 = F0. (25)

Let S(x) be the following 7× 7 matrix

S(x) =



a0 a1 a2 a3 a4 0 0
0 a0 a1 a2 a3 a4 0
0 0 a0 a1 a2 a3 a4

4a0 3a1 2a2 a3 0 0 0
0 4a0 3a1 2a2 a3 0 0
0 0 4a0 3a1 2a2 a3 0
0 0 0 4a0 3a1 2a2 a3


, (26)

and

D(x) =
1

a0
|detS(x)|. (27)

On the elasticity tensor C we make the following additional assumption:
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iii) Dichotomy condition

either D(x) > 0, for every x ∈ R2, (28a)

or D(x) = 0, for every x ∈ R2, (28b)

where D(x) is defined by (27).

Remark 2. Whenever (28a) holds we denote

µ = min
R2
D. (29)

We emphasize that, in all the following statements, whenever a constant is said to
depend on µ (among other quantities) it is understood that such dependence occurs
only when (28a) holds.

Let D × [−h2 ,
h
2 ] be a possible unknown inclusion in the plate, where D is a mea-

surable, possibly disconnected subset of Ω satisfying

dist(D, ∂Ω) ≥ d0ρ0, (30)

for some positive constant d0.
Concerning the material forming the inclusion, we assume that the correspond-

ing elasticity tensor C̃ = C̃(x) belongs to L∞(Ω,L(M2,M2)) and has Cartesian
components which satisfy the symmetry conditions

C̃ijkl(x) = C̃klij(x) = C̃lkij(x), i, j, k, l = 1, 2, a.e. in Ω. (31)

Moreover, we assume the following jump conditions on C̃: either there exist η0 > 0
and η1 > 1 such that

η0C ≤ C̃− C ≤ (η1 − 1)C, a.e. in Ω, (32)

or there exist η0 > 0 and 0 < η1 < 1 such that

− (1− η1)C ≤ C̃− C ≤ −η0C, a.e. in Ω. (33)

Let us assume that the body forces inside the plate are absent and that a couple

field M̂ is acting on the boundary of Ω. We shall assume:

M̂ ∈ L2(∂Ω,R2), (34)

supp(M̂) ⊂ Γ, (35)

where Γ is an open subarc of ∂Ω, such that

|Γ| ≤ (1− δ0)|∂Ω|, (36)

for some positive constant δ0. Moreover, we obviously assume the compatibility

conditions on the boundary couple field M̂∫
∂Ω

M̂α = 0, α = 1, 2, (37)

and that, for a given constant F > 0,

‖M̂‖L2(∂Ω,R2)

‖M̂‖
H−

1
2 (∂Ω,R2)

≤ F. (38)

Let us notice that, following a standard convention in the theory of plates, we

represent the boundary couple field M̂ in cartesian coordinates as

M̂ = M̂2e1 + M̂1e2, on ∂Ω. (39)
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The equilibrium problem of the plate with and without inclusion is described by the
Neumann problem (1)-(3) and (6)-(8), respectively. Under the above assumptions,
the problems (1)-(3) and (6)-(8) have solutions w ∈ H2(Ω), w0 ∈ H2(Ω), respec-
tively. These solutions are uniquely determined by imposing the normalization
conditions ∫

Ω

w = 0,

∫
Ω

w,α = 0, α = 1, 2, (40)∫
Ω

w0 = 0,

∫
Ω

w0,α = 0, α = 1, 2. (41)

We recall that the quantities W , W0 defined by (5), (9) represent the work exerted

by the boundary value couple field M̂ when the inclusion D is present or absent,
respectively. By the weak formulation of problems (1)–(3) and (6)–(8), the works
W and W0 coincide with the strain energies stored in the plate, namely

W =

∫
Ω

(χΩ\DP + χDP̃)∇2w · ∇2w, (42)

W0 =

∫
Ω

P∇2w0 · ∇2w0. (43)

We are now in position to state the main result of this paper.

Theorem 3.1. Let Ω be a bounded domain in R2, such that ∂Ω is of class C2,1 with
constants ρ0,M0 and satisfying (20). Let D be a measurable subset of Ω satisfying
(30) and

|Dh1ρ0 | ≥
1

2
|D| , (44)

for a given positive constant h1. Let P given by (4) satisfy (21), (22), (23) and

the dichotomy condition (28a)–(28b). Let P̃ ∈ L∞(Ω,L(M2,M2)), defined by (4),

satisfy (31). Let M̂ ∈ L2(∂Ω,R2) satisfy (35)–(38). If (32) holds, then we have

1

η1 − 1
C+

1 ρ
2
0

W0 −W
W0

≤ |D| ≤ η1

η0
C+

2 ρ
2
0

W0 −W
W0

. (45)

If, conversely, (33) holds, then we have

η1

1− η1
C−1 ρ

2
0

W −W0

W0
≤ |D| ≤ 1

η0
C−2 ρ

2
0

W −W0

W0
, (46)

where C+
1 , C−1 only depend on h, M0, M1, d0, γ, µ, M , whereas C+

2 , C−2 only
depend on the same quantities and also on δ0, h1 and F .

4. Proof of Theorem 3.1. The proof of Theorem 3.1 is mainly based on the
following key ingredients: energy estimates for the equilibrium problems (1)–(3)
and (6)–(8) (Lemma 4.1) and an estimate of continuation from the interior for
solutions to the Neumann problem (6)–(8) (Proposition 1).

Lemma 4.1. Let the fourth-order tensor fields P, P̃ ∈ L∞(Ω,L(M2,M2)) given

by (4), satisfy the symmetry conditions (21) and (31), respectively. Let M̂ ∈
H−

1
2 (∂Ω,R2) satisfy (37). Let ξ0, ξ1, 0 < ξ0 < ξ1, be such that

ξ0|A|2 ≤ P(x)A ·A ≤ ξ1|A|2, for a.e. x ∈ Ω, (47)

for every symmetric matrix A ∈ M2, and let the jump (P̃(x) − P(x)) satisfy either
(32) or (33). Let w, w0 ∈ H2(Ω) be the weak solutions to the problems (1)–(3),
(6)–(8) respectively.
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If (32) holds, then we have

η0ξ0
η1

∫
D

|∇2w0|2 ≤W0 −W ≤ (η1 − 1)ξ1

∫
D

|∇2w0|2. (48)

If, instead, (33) holds, then we have

η0ξ0

∫
D

|∇2w0|2 ≤W −W0 ≤
1− η1

η1
ξ1

∫
D

|∇2w0|2. (49)

The proof of the above lemma is given in [16], Lemma 5.1.

Proposition 1 (Lipschitz propagation of smallness). Let Ω be a bounded do-
main in R2, such that ∂Ω is of class C2,1 with constants ρ0,M0 and satisfying (20).
Let the fourth order tensor P be defined by (4) and satisfying (21), (22), (23) and
the dichotomy condition (28a)–(28b). Let w0 ∈ H2(Ω) be the unique weak solution

of the problem (6)–(8) satisfying (41), with M̂ ∈ L2(∂Ω,R2) satisfying (35)–(38).
There exists s > 1, only depending on γ, M , µ, M0 and δ0, such that for every
ρ > 0 and every x̄ ∈ Ωsρ, we have∫

Bρ(x̄)

|∇2w0|2 ≥
C

exp

[
A
(
ρ0

ρ

)B] ∫
Ω

|∇2w0|2, (50)

where A > 0, B > 0 and C > 0 only depend on h, M0, M1, γ, µ, M , δ0 and F .

Remark 3. i) In the above estimate we compute precisely the dependence on
the radius ρ of the constant on the right hand side. It is worth to notice that
the exponential character of this dependence is essentially optimal, in view of the
character of the unique continuation property described in [19, Corollary 5.4].

ii) The main idea underlying the proof of the above proposition is to propagate
smallness from the disc Bρ(x̄), by an iterated application of the three spheres in-
equality over chains of discs. However, since the estimate deteriorates as the number
of iterations increases, in order to limit the number of discs in the chains, instead
of choosing discs with uniform radius, we take advantage of the regularity of the
boundary, by choosing discs with varying radii, tangent to suitable cones near the
boundary.

Proof of Theorem 3.1. By the hypotheses made on P, the inequality (47) is satisfied

with ξ0 = γ h
3

12 , ξ1 = h3

6 M , so that Lemma 4.1 can be applied.
By standard interior regularity estimates (see, for instance, Theorem 8.3 in [16])

and by the Sobolev embedding theorem, we have

‖∇2w0‖L∞(D) ≤
C

ρ2
0

‖w0‖H2(Ω), (51)

with C only depending on γ, h, M and d0.
From (51), Poincaré inequality, (47), (43), we have

‖∇2w0‖L∞(D) ≤
C

ρ0
W

1
2

0 , (52)

where the constant C only depends on γ, h, M , d0, M0 and M1.
The lower bound for |D| in (45), (46) follows from the right hand side of (48),

(49) and from (52).
Next, let us prove the upper bound for |D| in (45), (46).
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Let ε = min{ 2d0

s ,
h1√

2
}, where s is as in Proposition 1. Let us cover Dh1ρ0 with

internally non overlapping closed squares Ql of side ερ0, for l = 1, ..., L. By the

choice of ε the squares Ql are contained in D. Let l̄ be such that
∫
Ql̄
|∇2w0|

2
=

minl
∫
Ql
|∇2w0|

2
. Noticing that |Dh1ρ0

| ≤ Lε2ρ2
0, we have∫

D

|∇2w0|
2 ≥

∫
⋃L
l=1 Ql

|∇2w0|
2 ≥ L

∫
Ql̄

|∇2w0|
2 ≥ |Dh1ρ0

|
ρ2

0ε
2

∫
Ql̄

|∇2w0|
2
. (53)

Let x̄ be the center of Ql̄. From (47), (53), estimate (50) with ρ = ε
2ρ0, from (43)

and by our hypothesis (44) we have∫
D

|∇2w0|
2 ≥ K|D|

ρ2
0

W0, (54)

where K is a positive constant only depending on γ, h, M , M0, M1, d0, δ0, h1 and
F . The upper bound for |D| in (45), (46) follows from the left hand side of (48),(49)
and from (54).

5. Proof of Proposition 1. Let us premise the following Lemmas.

Proposition 2 (Three Spheres Inequality). Let Ω be a domain in R2, and let the
plate tensor P given by (4) satisfies (21), (22), (23) and the dichotomy condition
(28a)–(28b). Let u ∈ H2(Ω) be a weak solution to the equation

div(div(P∇2u)) = 0, in Ω. (55)

For every r1, r2, r3, r, 0 < r1 < r2 < r3 ≤ r, and for every x ∈ Ωr we have∫
Br2 (x)

|∇2u|2 ≤ C

(∫
Br1 (x)

|∇2u|2
)δ (∫

Br3 (x)

|∇2u|2
)1−δ

, (56)

where C > 0 and δ, 0 < δ < 1, only depend on γ, M , µ, r3
r2

and r3
r1

.

A proof of the above proposition can be easily obtained by Theorem 6.5 in [19].
In order to prove Proposition 1, we need the estimate stated in the following

Lemma (for the proof see [16], Lemma 7.1).

Lemma 5.1. Let Ω be a bounded domain in R2, such that ∂Ω is of class C2,1 with
constants ρ0,M0. Let the fourth order tensor P be defined by (4) and satisfying
(21), (22) and (23). Let w0 ∈ H2(Ω) be the unique weak solution of the problem

(6)–(8) satisfying (41), with M̂ ∈ H− 1
2 (∂Ω,R2) satisfying (35)–(37). We have

‖M̂‖
H−

1
2 (∂Ω,R2)

≤ C‖∇2w0‖L2(Ω), (57)

where C is a positive constant only depending on M0, M1, δ0 and M .

Lemma 5.2. Let the hypotheses of Proposition 1 be satisfied. There exists ρ̃ > 0,
only depending on M0, M1, δ0, γ, M , µ and F , such that for every r ≤ ρ̃ we have∫

Ωr
|∇2w0|2∫

Ω
|∇2w0|2

≥ 1

2
. (58)

Proof. Let us set ∫
Ωr
|∇2w0|2∫

Ω
|∇2w0|2

= 1−

∫
Ω\Ωr |∇

2w0|2∫
Ω
|∇2w0|2

. (59)
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By Hölder inequality

‖∇2w0‖2L2(Ω\Ωr) ≤ |Ω \ Ωr|
1
2 ‖∇2w0‖2L4(Ω\Ωr), (60)

and by Sobolev inequality [1]

‖∇2w0‖2L4(Ω) ≤ C‖∇
2w0‖2

H
1
2 (Ω)

, (61)

we have

‖∇2w0‖2L2(Ω\Ωr) ≤
C

ρ4
0

|Ω \ Ωr|
1
2 ‖w0‖2

H
5
2 (Ω)

, (62)

where C only depends on M0, M1. We recall that, by the variational formulation
of the problem (6)–(8), the function w0 satisfies

‖w0‖H2(Ω) ≤ Cρ2
0‖M̂‖H− 1

2 (∂Ω,R2)
, (63)

where C > 0 only depends on h, M0, M1 and γ. Now, by using the following
regularity estimate (see [18] for a proof)

‖w0‖H3(Ω) ≤ Cρ2
0‖M̂‖H 1

2 (∂Ω,R2)
, (64)

where C > 0 only depends on h, M0, M1, γ and M . By interpolating (63) and (64),
we get

‖w0‖
H

5
2 (Ω)

≤ Cρ2
0‖M̂‖L2(∂Ω,R2), (65)

where C only depends on h, M0, M1, γ and M .
Moreover

|Ω \ Ωr| ≤ Cr, (66)

with C only depending on M0 and M1, see for details (A.3) in [5]. From (62), (65)
and (66) we have ∫

Ω\Ωr
|∇2w0|2 ≤ Cρ2

0r
1
2 ‖M̂‖L2(∂Ω,R2), (67)

where C only depends on M0, M1, γ, M . Finally, by (59), (67) and (57) we obtain
(58).

Proof of Proposition 1. It is not restrictive to assume ρ0 = 1.
Set

ϑ0 = arctan
1

M0
,

s =
5 + sinϑ0 +

√
sin2 ϑ0 + 30 sinϑ0 + 25

2 sinϑ0
,

χ =
s sinϑ0

5
=

5 + sinϑ0 +
√

sin2 ϑ0 + 30 sinϑ0 + 25

10
,

ϑ1 = arcsin
1

s
.

Let us notice that s > 1, χ > 1 and ϑ1 > 0 only depend on M0.
Given z ∈ R2, ξ ∈ R2, |ξ| = 1, ϑ > 0, we shall denote by

C(z, ξ, ϑ) = {x ∈ R2 s. t.
(x− z) · ξ
|x− z|

> cosϑ}, (68)

the open cone having vertex z, axis in the direction ξ and width 2ϑ.

Step 1 For every ρ, 0 < ρ ≤ ρ1 = 1
16s , and for every x ∈ Ω satisfying sρ <

dist(x, ∂Ω) ≤ 1
4 , there exists x̃ ∈ Ω such that
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i) B5χρ(x) ⊂ C(x̃, x−x̃|x−x̃| , ϑ0) ∩B 1
8
(x̃) ⊂ Ω,

ii) the discs Bρ(x) and Bχρ(x2) are internally tangent to C(x̃, x−x̃|x−x̃| , ϑ1), where

x2 = x+ (χ+ 1)ρ x−x̃
|x−x̃| .

The proof of this step has merely geometrical character and has been given in
[15], Proof of Proposition 3.1. Up to a rigid motion, we may assume that x−x̃

|x−x̃| = e2,

where (e1, e2) is the canonical basis of R2

Set
r1 = ρ, rk = χrk−1 = χk−1ρ, k ≥ 2,
x1 = x, xk = xk−1 + (rk−1 + rk)e2, k ≥ 2.

For every k ∈ N, Brk(xk) is internally tangent to the cone C(x̃, e2, ϑ1) and
B5χrk(xk) is internally tangent to the cone C(x̃, e2, ϑ0). Moreover, we have that
B5rk(xk) ⊂ B 1

8
(x̃) if and only if

k − 1 ≤
log
{
χ−1
6χ−4

(
1
8ρ − s+ 1 + 2

χ−1

)}
logχ

. (69)

In order to ensure that B5rk(xk) ⊂ B 1
8
(x̃) holds at least for k = 1, 2, let us assume

also that ρ ≤ ρ2 = 1
8(6χ+s+1) . Let us define

k(ρ) =

 log
{
χ−1
6χ−4

(
h0

8ρ − s+ 1 + 2
χ−1

)}
logχ

+ 1, (70)

where h0, 0 < h0 < 1, only depending on M0, is such that Ωh is connected for every
h < h0 (see Prop. 5.5 in [6]) and [ · ] denotes the integer part of a real number.
We have that B5rk(ρ)

(xk(ρ)) ⊂ B 1
8
(x̃) ∩ Ω and B5χrj (xj) ⊂ B 1

8
(x̃) ∩ Ω for every

j = 1, ..., k(ρ)− 1.
Moreover let ρ ≤ ρ3 = h0

16s . We have

k(ρ) ≥
log τ

ρ

logχ
, (71)

with τ = (χ−1)h0

16(6χ−4) . Assuming also that ρ ≤ ρ4 = (χ−1)h0

16 , and noticing that
χ−1
6χ−4 ≤

1
5 , we have

k(ρ) ≤
log h0

20ρ

logχ
+ 1. (72)

From (71) and (72), it follows that, for ρ ≤ ρ̄ = min{ρ1, ρ2, ρ3, ρ4},
τ

χ
≤ rk(ρ) = χk(ρ)−1ρ ≤ h0

20
. (73)

Step 2 There exists ρ > 0, only depending on γ, M , µ and M0, such that for every
ρ, 0 < ρ ≤ ρ, and for every x ∈ Ω such that sρ < dist(x, ∂Ω) ≤ 1

4 ,∫
Brk(ρ)

(xk(ρ))
|∇2w0|2∫

Ω
|∇2w0|2

≤ C

(∫
Bρ(x)

|∇2w0|2∫
Ω
|∇2w0|2

)δk(ρ)−1
χ

, (74)

∫
Bρ(x)

|∇2w0|2∫
Ω
|∇2w0|2

≤ C

∫Brk(ρ)
(xk(ρ))

|∇2w0|2∫
Ω
|∇2w0|2

δk(ρ)−1

, (75)
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where C > 1, δ ∈ (0, 1), only depend on γ, M and µ whereas δχ ∈ (0, 1), only
depends on γ, M , µ and M0.

Proof of Step 2. Let ρ ≤ ρ = min{ρ1, ρ2, ρ3, ρ4}. Let us apply the three spheres
inequality (56) to the discs of center xj and radii rj , 3χrj , 4χrj , for j = 1, ..., k(ρ)−1.
Since Brj+1

(xj+1) ⊂ B3χrj (xj), for j = 1, ..., k(ρ)− 1, we have∫
Brj+1

(xj+1)

|∇2w0|2 ≤ C

(∫
Brj (xj)

|∇2w0|2
)δχ (∫

B4χrj
(xj)

|∇2w0|2
)1−δχ

, (76)

with C > 1 and δχ, 0 < δχ < 1, only depending on γ, M , µ and M0 which we may
rewrite as ∫

Brj+1
(xj+1)

|∇2w0|2∫
Ω
|∇2w0|2

≤ C

∫Brj (xj)
|∇2w0|2∫

Ω
|∇2w0|2

δχ

. (77)

By iterating (77) over j = 1, ..., k(ρ)− 1, (74) follows. Similarly, by applying the
three spheres inequality to the discs Brj (xj), B3rj (xj), B4rj (xj) for j = 2, ..., k(ρ)
and noticing thatBrj (xj−1) ⊂ B3rj (xj) we can repeat the above argument obtaining
(75).

Step 3 There exists ρ∗, only depending on γ, M , µ, M0, M1, δ0 and F , such that
for every ρ ≤ ρ∗ and for every x̄ ∈ Ωsρ we have

∫
Bρ(y)

|∇2w0|2∫
Ω
|∇2w0|2

≤ C

(∫
Bρ(x)

|∇2w0|2∫
Ω
|∇2w0|2

)δA1+B1 log 1
ρ

χ

, ∀y ∈ Ωsρ, (78)

where C > 1, B1 only depends on γ, M , µ and M0, whereas A1 only depends on γ,
M , µ, M0 and M1.

Proof of Step 3. First we consider the case x̄ ∈ Ωsρ satisfying dist(x̄, ∂Ω) ≤ 1
4 . Let

us take ρ ≤ ρ̄. Since, by (73), 5rk(ρ) ≤ h0

4 , it follows that Ω5rk(ρ)
is connected.

Let y ∈ Ω such that sρ < dist(y, ∂Ω) ≤ h0

4 and let σ be an arc in Ω5rk(ρ)
joining

x̄k(ρ) to yk(ρ). Let us define {xi}, i = 1, ..., L, as follows: x1 = x̄k(ρ), xi+1 = σ(ti),
where ti = max{t s. t. |σ(t) − xi| = 2rk(ρ)} if |xi − yk(ρ)| > 2rk(ρ), otherwise let
i = L and stop the process. By construction, the discs Brk(ρ)

(xi) are pairwise

disjoint, |xi+1 − xi| = 2rk(ρ), for i = 1, ..., L − 1, |xL − yk(ρ)| ≤ 2rk(ρ). Hence we
have

L ≤ M1

πr2
k(ρ)

. (79)

By an iterated application of the three spheres inequality (56) over the discs of
center xi and radii rk(ρ), 3rk(ρ), 4rk(ρ), we obtain∫

Brk(ρ)
(yk(ρ))

|∇2w0|2∫
Ω
|∇2w0|2

≤ C

∫Brk(ρ)
(xk(ρ))

|∇2w0|2∫
Ω
|∇2w0|2

δL

, (80)

where C > 1 only depends on γ, M and µ.
By applying (74) for x = x̄ and (75) for x = y, we have
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∫
Bρ(y)

|∇2w0|2∫
Ω
|∇2w0|2

≤ C

(∫
Bρ(x)

|∇2w0|2∫
Ω
|∇2w0|2

)δk(ρ)−1
χ δk(ρ)+L−1

, (81)

where C > 1 only depends on γ, M , µ and M0.
The above estimate holds for every y ∈ Ω satisfying sρ < dist(y, ∂Ω) ≤ h0

4 . Next,

let y ∈ Ω satisfying dist(y, ∂Ω) > h0

4 . Since B5rk(ρ)
(x̄k(ρ)) ⊂ B 1

8
(˜̄x) ⊂ Ω we have

dist(x̄k(ρ), ∂Ω) ≥ 5rk(ρ), (82)

and by (73),

dist(y, ∂Ω) >
h0

4
≥ 5rk(ρ). (83)

Recalling that Ω5rk(ρ)
is connected, we can consider an arc in Ω5rk(ρ)

joining x̄k(ρ)

to y and mimic the arguments just seen above over a chain of L̃ discs of center
xj ∈ Ω5rk(ρ)

and radii rk(ρ), 3rk(ρ), 4rk(ρ), where

L̃ ≤ M1

πr2
k(ρ)

. (84)

By an iterated application of the three spheres inequality and by applying (74)
for x = x we have∫

Bρ(y)
|∇2w0|2∫

Ω
|∇2w0|2

≤ C

(∫
Bρ(x)

|∇2w0|2∫
Ω
|∇2w0|2

)δk(ρ)−1
χ δL̃

, (85)

where C > 1 only depends on γ, M , µ and M0. By (85), (81), (72), (79), (84) and
since δχ < δ, we obtain (78).

Now let us consider the case x̄ ∈ Ωsρ satisfying dist(x̄, ∂Ω) > 1
4 . Let ρ ≤ ρ and

notice that Bsρ(x̄) ⊂ B 1
16

(x̄). Hence, given any point x̃ such that |x̄− x̃| = sρ, we

have that B 1
8
(x̃) ⊂ Ω. Therefore we can mimic the construction in Steps 1 and 2,

finding a point x̄k(ρ) ∈ Ω5rk(ρ)
, with k(ρ) satisfying (71), (72) and rk(ρ) satisfying

(73), such that the following inequality holds∫
Brk(ρ)

(xk(ρ))
|∇2w0|2∫

Ω
|∇2w0|2

≤ C

(∫
Bρ(x)

|∇2w0|2∫
Ω
|∇2w0|2

)δk(ρ)−1
χ

(86)

with C > 1 only depending on γ, M and M0.
Let y ∈ Ωsρ such that dist(y, ∂Ω) ≤ 1

4 . By the same arguments seen above, we
have ∫

Bρ(y)
|∇2w0|2∫

Ω
|∇2w0|2

≤ C

(∫
Bρ(x)

|∇2w0|2∫
Ω
|∇2w0|2

)δk(ρ)−1
χ δk(ρ)+L−1

, (87)

where C > 1 only depends on γ, M , µ, M0, and L satisfies (79).
Let y ∈ Ωsρ such that dist(y, ∂Ω) > 1

4 . By repeating the arguments above, we
have ∫

Bρ(y)
|∇2w0|2∫

Ω
|∇2w0|2

≤ C

(∫
Bρ(x)

|∇2w0|2∫
Ω
|∇2w0|2

)δk(ρ)−1
χ δL̃

, (88)

where L̃ satisfies (84) and C > 1 only depends on γ, M , µ and M0.
From (87), (88), (72), (79), (84), and recalling that δχ < δ, we obtain (78).
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Let us cover Ω(s+1)ρ with internally nonoverlapping closed squares of side l = 2ρ√
2
.

Any such square is contained in a disc of radius ρ and center at a point of Ωsρ and
the number of such squares is dominated by

N =
M1

2ρ2
. (89)

Therefore, from (78) and (89), we have

∫
Bρ(x)

|∇2w0|2 ≥
∫

Ω

|∇2w0|2
(
C ′ρ2

∫
Ω(s+1)ρ

|∇2w0|2∫
Ω
|∇2w0|2

)δ−A1−B1 log 1
ρ

χ

, (90)

where B1 and C ′ > 0 only depend on γ, M , µ and M0, whereas A1 only depends
on γ, M , µ and M0 and M1.

By Lemma 5.2, assuming also ρ ≤ ρ̃
s+1 , where ρ̃ has been introduced in Lemma

5.2 and only depends γ, M , µ, M0, M1, δ0, F we have∫
Bρ(x)

|∇2w0|2 ≥
(
C̃ρ2

)δ−A1−B1 log 1
ρ

χ
∫

Ω

|∇2w0|2, (91)

where C̃ > 0 only depends on γ, M , µ, M0, M1 and δ0. Let us take ρ ≤ C̃. Noticing
that | log ρ| ≤ 1

ρ , for every ρ > 0, and that ρ̃ < 1, by straightforward computations

we obtain that (50) holds with A = 3 exp(A1| log δχ|), B = | log δχ|B1 + 1 for every

ρ ≤ ρ∗ with ρ∗ = min{ρ̄, ρ̃
s+1 , C̃}, ρ

∗ only depending on γ, M , µ, M0, M1, δ0, and
F .

Conclusion. We have seen that (50) holds for every ρ ≤ ρ∗ and for every x̄ ∈ Ωsρ,
where ρ∗ only depends on γ, M , µ, M0, M1, δ0 and F .

If ρ > ρ∗ and x̄ ∈ Ωsρ ⊂ Ωsρ∗ , then we have∫
Bρ(x̄)

|∇2w0|2 ≥
∫
Bρ∗ (x̄)

|∇2w0|2 ≥ C∗
∫

Ω

|∇2w0|2, (92)

where C∗ only depends on γ, M , µ, M0, M1, δ0 and F . Since x̄ ∈ Ωsρ, we have
that

diam(Ω) ≥ 2sρ, (93)

and, on the other hand,

diam(Ω) ≤ C2, (94)

with C2 only depending on M0 and M1, so that

2s

C2
≤ 1

ρ
. (95)

By (92) and (95), we have∫
Bρ(x̄)

|∇2w0|2 ≥
C

exp

[
A
(

1
ρ

)B] ∫
Ω

|∇2w0|2, (96)

with C = C∗ exp

[
A
(

2s
C2

)B]
.
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