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Probability is the very guide of life.

Cicero

Statistical thinking will one day be as

necessary for efficient citizenship as

the ability to read or write.

H.G. Wells

While it is easy to lie with statistics,

it is even easier to lie without them.

Frederick Mosteller





Abstract

In this thesis we want to produce a methodology to evaluate a kinship identifi-

cation system, i.e. the set of models and data used to ascertain the identity of an

individual, a probabilistic tool devoted to obtain the likelihood ratio supporting

(or contradicting) the hypothesis that an individual, the candidate for identifica-

tion, is a specific member of a family, conditional on the available familial DNA

evidence. The thesis considers the likelihood ratio as a random variable and fo-

cuses on the evaluation of the probability that a candidate for identification would

be correctly classified exploiting the likelihood ratio distributions conditional on

each hypothesis.

The aim of this work is thus to show how it is possible to make statements

about the goodness of an identification system and to demonstrate how this can be

applied in a great variety of cases. As secondary objective, we want to show how

it is possible to obtain the distributions for the likelihood ratio, finding efficient

computational methods to cope with the their huge state space.

The proposed system evaluation is specific for each case, does not require any

additional laboratory costs, and should be carried out before the identification trial

is performed. In a pre-experimental perspective, we want to evaluate whether a

system fulfils the requirements of the parties involved.

A further objective is to consider and find a solution for some complicating

issues affecting the estimation of mutation rates for STR markers.
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CHAPTER 1

Introduction

1.1 The need for the identification systems’ evaluation

This work stems from a collaboration with the International Organization for

Migration (IOM), one of the world’s leading organizations providing services

and advice to governments and migrants. Our contribution consisted in helping

migrants to rejoin their relatives still living in the country of origin. The iden-

tification procedure usually started with a person, the Sponsor, asking for the

identification of a Candidate, living abroad, as a well specified relative. Usually,

no other option about the relationship between the sponsor and the candidate was

provided and for this reason, in alternative, the candidate was considered unre-

lated with the family. Often the sponsor and the candidate were not on a direct

1
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familial lineage (e.g. parent-child, grandparent-grandchild) and many results did

not strongly support one of the hypotheses. At that time we realized that not only

the specific alleged relationship between the sponsor and candidate was relevant in

determining the strength of the result, but also that there was a case-specific effect

that deserved to be investigated. For these reasons we were persuaded to produce

a contribution able to predict whether a forensic identification based solely on the

use of the sponsor(s) evidence would be able to produce decisive answers once the

candidate data were to be available.

1.1.1 Introduction to the identification problem

The identification of individuals by using genetic data has been adopted in

an increasing manner in the last decades. The contexts are quite varied, but can

be summarized in two kinds of problems. We call direct identification the use

of genetic profiles to compare biological samples, such as blood or semen stains

collected as evidence from a crime scene, with the profiles from people suspected

of having contributed to those samples. Even if matching of profiles does not

guarantee without any doubt (as we will show along the lines of this thesis) a

common source, this result can be used as decisive evidence in a trial.

The other major use of genetic evidence is to perform an indirect identifica-

tion, the most established version of which being that of paternity test: genetic

profiles of mother, child and alleged father are used to make statements about the

probability of the evidence if the alleged father would be the actual father. Similar

reasoning can be used to identify mothers or to reunite families separated for dif-

ferent reasons. Also disputes about inheritance or identification of remains from

deceased people take advantage of indirect identifications based on DNA evidence.

It is commonly acknowledged that the reliability of an identification system
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increases with the degree of kinship between the family member(s) who require

the identification and provide their DNA and the alleged relative’s hypothesized

position in the pedigree (i.e. the set of kinship relationships among a group of in-

dividuals). At the same time the task becomes more difficult if the two alternative

hypotheses are very close each other. Finally, the number of family’s DNA donors

and the number and the specific fragments of the observed DNA have an influence

on the effectiveness of the results. For these reasons, we believe that each kinship

identification has its own characteristics which deserve to be investigated.

Introducing in advance some of the argument that will be treated along the

chapters, the identification procedure is addressed on the basis of the computa-

tion of a Likelihood Ratio (LR) supporting the hypothesis that an individual, the

candidate for the identification, is a specific member of a family, conditional on

the available familial DNA evidence. In standard practice, the LR is almost in-

variably obtained by forensic laboratories without any consideration of the specific

characteristics of each different identification.

One of the main consequences of this lack of specificity in producing the results

is that a common methodology to asses the effectiveness of the probabilistic tools

for forensic cases, the importance of which has also been recognized by Cook et al.

(1998), is not available yet. This reflects also on the activity of whom are called

to take decisions, in civil or criminal cases, based on a likelihood ratio. In fact,

when scientific results are brought into a court, the problem of the admissibility of

expert witnesses’ testimony during legal proceedings. In particular in the United

States this issue is ruled according to the so called "Daubert standard", named

after the U.S. Supreme Court Daubert v. Merrell Dow Pharmaceuticals sentence

in 1993 and then amended twice since then, which states the following:

A witness who is qualified as an expert by knowledge, skill, experience, train-
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ing, or education may testify in the form of an opinion or otherwise if:

1. The expert’s scientific, technical, or other specialized knowledge will help

the trier of fact to understand the evidence or to determine a fact in issue;

2. The testimony is based on sufficient facts or data;

3. The testimony is the product of reliable principles and methods;

4. The expert has reliably applied the principles and methods to the facts of

the case.

These principles have also had some international influences: the Canadian

Supreme Court expressly adopted them in two cases since 2000 and the creation

of a Forensic Science Advisory Council to regulate forensic evidence in the United

Kingdom has been suggested since 2005.

In particular, for the purposes of this thesis, the second and the third principles

are the most interesting. The former requires a sufficient amount of data, and this

request could not always be guaranteed when indirect identification is performed

using poorly informative evidence; the latter explicitly mentions the reliability of

the methods that can be questioned in some cases if an insufficient amount of

information has been used, as we will show ahead in the thesis. With this work

we would like to give guidelines to help in judging when satisfactory standard of

performance are reached.

1.2 Literature overview

In the previous Section we acknowledged the claim for the performance as-

sessment of a methodology employed for forensic purposes. Despite this, in the
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literature there are a limited number of contributions in the field of identifica-

tion through DNA and they focus on the LR obtained using datasets of real or

simulated cases for which the identification of the candidate was already known.

As an example, in Mayor and Balding (2006) the authors describe the char-

acteristics of a kinship analysis attempting to determine whether two individuals

are half-siblings or are unrelated. Results are obtained simulating a large sample

of pairs of individuals: in the half-sibling hypothesis an individual is drawn from

the population, then two of her offspring are sampled; otherwise, if the hypothesis

of no relatedness holds, two individuals are sampled from the population. Finally,

for each sampled pair, the LR and the number of cases for which it does not sup-

port the hypothesis used are computed. There, the LR uncertainty concerns all

the possible LR arising for the half-sibling problem, but there is no indication on

how the identification system is expected to perform in a specific case where some

familial DNA donors are actually observed. In the same vein, Evett and Buckle-

ton (1996), using a database of 1401 different individuals on four loci, evaluated

the likelihood ratio’s empirical distribution originating from criminal identification

cases occurring when two traces, both observed, are queried as to whether they

belong to the same person. Taroni et al. (2007) obtained the LR distributions for

the criminal (i.e direct) identification issue by simulating 100,000 genetic profiles

on 16 loci. In the field of kinship analysis, Brenner and Staub (2003) evaluated the

LR distribution, only under the identification hypothesis, for 19 different pedigrees

simulating for each of them the genetic evidence of 100 familial groups. Lauritzen

and Mazumder (2008), using an information-theoretic approach, proposed a mea-

sure to evaluate the informativeness of different loci for some different kinship

identifications.
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1.3 Goals and contributions

Our work is meant to achieve a methodology to evaluate a kinship identification

system and to suggest improvements in case of unsatisfactory results. We aim to

modify the current practice of treating any kind of indirect identification using a

single standard procedure.

Our proposal shares one of the goals of the Design of Experiments (DOE):

the purpose of improving the statistical inference by appropriately selecting the

conditions under which a crucial unobserved random variable has certain desirable

characteristics.

The focus of this thesis is on ascertaining the LR distributions conditionally

on all the relevant alternative identification hypotheses before carrying out the

identification for specific identification cases, aiming to identify a candidate as an

(unavailable and therefore) unobserved member of a family, exploiting the knowl-

edge of some of the family members’ genetic profiles, and the familial relationships.

The main contribution of the thesis is to recognise the large variety of behaviour

of kinship identification systems related to specific cases. Another result of the

work is reaching the computational feasibility of the LR distributions calculation,

under both hypotheses in a pre-experimental phase, for a specific, well defined

kinship case. Once these distributions are obtained, they can be used in different

ways, some of which will be illustrated, to give an evaluation of the system by

means of different approaches.

The procedure precedes the usual kinship analysis and it uses only a subset of

the data required for the post experimental assessment of the hypotheses under

debate. The final LR computation, including the candidate evidence, is recom-

mended only after the system has shown a satisfactory behaviour.
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1.4 Outline of the thesis

Chapter 1 gives a brief overview of the topic relevant for this thesis, acknowl-

edges some reference that are known in the literature and includes the motivations,

the aims and the contributions given to the field of personal identification by this

work.

Chapter 2 provides a preliminary introduction to the genetics topics relevant

for comprehension of the following Chapters of the thesis. It starts from the

description of the structure of the DNA, then gives the reader an overview on

how DNA data are used in forensic applications and finally provides elements of

population genetics.

Chapter 3 introduces the fundamental concepts behind the theory of Bayesian

networks (BN) and shows how to apply this probabilistic tool to forensic genetics,

with special focus on personal identification, also when more complicating features

are considered.

Chapter 4 is about the main proposal of the research, that is how to correctly

assess the value of a kinship identification system in the pre-experimental phase.

First we give an overview of what kinship identification is, then we introduce the

models adopted for the work and finally the methodology by which the evaluation

of the system is obtained, based on the LR distributions under two competitive

hypotheses, is revealed. We also consider alternative approaches for the evalua-

tion and formulate some comments about the strengths and weaknesses of these

alternatives.

Chapter 5 describes the computational issues arising while treating the high

dimensional spaces of the LR distributions, also giving some information on the

software employed to perform the analysis and the relevant Bayesian networks to
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handle the involved models.

Chapter 6 gives a collection of cases, based on real data, for which the pro-

posed methodology reveals helpful. At first an overview on 71 cases is given, then

we will analyse some of them in further details, also performing sensitivity analysis

on the adopted models.

Chapter 7 elaborates some insights on how to cope with some difficulties

with mutation rates data from various sources and how to handle them in order

to obtain corrected mutation rates.

Chapter 8 finally gives a general discussion about the main findings reached

with this research.



CHAPTER 2

Genetic background

In the current forensic practice, DNA represents a powerful and reliable source of

information capable to help in the treatment of a great variety of identification

cases, e.g. paternity testing, criminal investigations, natural disasters and so on.

In order to correctly use this important source on data, understand of some basic

notions of genetics is required.

2.1 DNA structure and the genome.

Deoxyriboobucleic Acid (DNA) is a nucleic acid containing the genetic instruc-

tions used in the development and functioning of all known living organisms. The

well known double helix structure of the DNA, suggested for the first time by

9
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Watson and Crick (1953), is the representation of two long polymers composed of

simple units called nucleotides. Attached to each of them is one of four types -

adenine (abbreviated A), cytosine (C), guanine (G) and thymine (T) - of molecules

called nucleobases. It is the sequence of these four bases along that encodes the

genetic information.

DNA is contained within the nucleus of a cell in long structures called chro-

mosomes. In humans, chromosomes can be divided into two types: autosomes

and sex chromosomes. Gender related traits, which depends on a person’s sex, are

inherited through the sex chromosomes. The autosomes contain the rest of the

genetic hereditary information. Human cells have 23 pairs of chromosomes (22

pairs of autosomes and one pair of sex chromosomes, these latter named XX in

women and XY in men), giving a total of 46 per cell. Each chromosome contains

a unique strand of DNA (the largest of which, chromosome 1, in about 73mm in

length), and the 46 chromosomes are orderly shown in Figure 2.1.

A gene is a fundamental unit of heritable genetic information, located in a

specific position along the chromosome that is called locus (plural, loci). The

word allele indicates the variant form of a gene observed in a given locus, often

represented by numeric values. At every locus humans contains two alleles, one

inherited from the father and the other one from the mother. The set of alleles

owned by an individual at one locus is named genotype. In particular if the two

alleles in a locus are equal the genotype is homozygous and if they differ the

genotype is heterozygous.
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Figure 2.1: The male human karyotype pictured contains 22 pairs of autosomes and
the X and Y sex chromosomes (the female karyotype has two X chromosomes). The
chromosomes have been labelled with fluorescent probes allowing them to be identified.

2.2 The use of DNA for forensic purposes

The fundamental aim of using DNA data in forensic casework is to obtain

an individual profile, a sort of genetic passport, or fingerprint, that is highly

discriminating. The ideal situation would be that in which the DNA profile is

unique to each individual. However, even people that looks very different to each

others, are in fact very similar at genetic level. Comparing the human genome

with that of our closest animal relative, the chimpanzee, sharing with us a common

ancestors about 6 million years ago, we find that our genomes share 95% of the

DNA sequence.

Modern humans have a much more recent common history (fossils analysis

helped in dating back to 150000 years ago our common human progenitors), thus

approximately 99.9% of human DNA sequences are the same in every person. This
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is what makes us human being rather than oaks or foxes, but from a forensic point

of view there is very little rationale in analysing this part of DNA shared between

individuals. Fortunately, the other 0.1% is truly unique and distinguishes one

individual from another, unless they are monozygotic twins. These fragments of

DNA are of true interest to the forensic scientists. Jeffreys et al. (1984) first re-

ported the DNA profiling technique, also known as "genetic fingerprinting", based

upon these high variable non-coding sequences of DNA, called variable number of

tandem repeat (VNTR) or minisatellites.

2.2.1 Short Tandem Repeats

Short Tandem Repeats (STRs) are, nowadays, the most commonly used type

of VNTR for DNA profiling. A short tandem repeat in DNA occurs when a pattern

of two or more nucleotides are repeated and the repeated sequences are directly

adjacent to each other. The pattern can typically range in length from 2 to 5 base

pairs (bp) and shows a high level of polymorphism. The allelic state is simply

determined by the number of repeats present at the selected locus, so that the

following sequence

⇤⇥ ��CATATTGGGCATGCATGCATGCATGCATGCATGCATGAATTCAG

is associated with an allelic value of 7, since the 4 bases CATG are repeated 7

times (in blue), preceded and followed by random sequences.

Currently the process of acquiring DNA evidence is a standard practice in

every genetics laboratory and it’s mainly based on a biochemical process named

Polymerase Chain Reaction (PCR). PCR was developed in 1983 by Kary Mullis

(who was given the 1993 Nobel Prize R� in chemistry for this invention) and consists

in a process allowing the amplification of specific DNA sequences by means of
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Figure 2.2: Two partial human STR profile on 9 loci belonging to a father and to his
daughter.

successive cycle of DNA replication. In theory, a single molecule can be amplified 1

billion-fold by 30 cycles of amplification; in practice, the PCR is not totally efficient

but does still produce tens of millions of copies of the target sequence. Anyway, its

high sensitivity has a dramatic effect on the types of forensic sample that can be

used, making possible to analyse even highly degraded samples successfully. Once

these sequences have been amplified, they are separated either through gel or

capillary electrophoresis, an analytical technique used to separate DNA fragments

by means of an electric field that induces the nucleic acids to migrate toward the

anode, exploiting the mobilities with which different sized molecules are able to

pass through a viscous medium, the gel, or move in the interior of a small capillary

filled with an electrolyte. Finally they can be visualized using bands of different
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length indicating the variant number of repeats for the considered loci, as in Figure

2.2.

Each STR (there are currently over 10000 published STR sequences in the

human genome) is polymorphic, but the number of alleles can be very small for

some locus. The power of STR analysis comes from looking at multiple STR

loci simultaneously, and this is the reason why a large variety of kits of primers

are available to handle forensic identifications (Butler (2006)). They consist in a

different number of markers on different loci - typically from 8 to 16 - selected in

order to guarantee several features including among other (Goodwin et al. (2007)):

• discrete and distinguishable alleles;

• robust amplification of the locus;

• high power of discrimination, i.e. high polymorphism;

• absence of genetic linkage with other loci being analysed, which means that

independence between loci belonging to the same kit can be assumed.

In addiction to the STR loci, some kits (like the one in Figure 2.2) include

amelogenin, present in the sexual X and Y chromosomes and used for sex deter-

mination. STR loci selected to be used in human DNA profiling generally exhibit

Hardy-Weinberg expected genotype frequencies and there is evidence that the loci

meet the other assumptions of Hardy-Weinberg (more details will be given Section

2.3).

2.2.2 Other kinds of genetic data: Y-DNA, mtDNA, SNPs

Even if in the present work they are not exploited, other kinds of genetic data

can be collected and used for forensic purposes: Y chromosome, mitochondrial



15

DNA (mtDNA) and Single-nucleotide polymorphisms (SNPs). The first two are

mainly used as lineage markers; even if their power of discrimination is lower than

that of autosomal markers, some features make them valuable forensic tools. The

use of SNPs in forensic activity is currently limited to some specialist cases, but

may play an increasingly role in the future: their potentiality consists in the large

number of SNPs in the human genome, on the other hand their limit is the low

degree of polymorphism of SNPs loci.

Y chromosome

The Y chromosome is one of the two sex-determining chromosomes in humans

(and in mammals in general). It contains the gene SRY, which triggers testis

development if present. DNA in the Y chromosome is passed from father to son

unchanged, so Y-DNA analysis is thus used in genealogy research. A Y chromo-

some contains a large number of polymorphisms including more than 100 known

STR markers. The technique used for profiling is the same as for autosomal STRs,

i.e. PCR.

The Y chromosome is helpful in a series of forensic cases such as paternity

testing and sexual assaults when differential DNA extraction is not possible, and

it also simplifies the sorting of material following mass disasters. Finally, due to the

widespread practice of partilocality (where the female moves to the male’s birth

place/residence after marriage), Y chromosome has a non-random distribution

among global population, making it a useful tool for inferring the geographical

origin of recovered biological material.
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mtDNA

Mitochondrial DNA (mtDNA) is the DNA located in organelles called mito-

chondria, it is maternally inherited and it is present in multiple copies. In fact,

differently from the nuclear genome that compares with two copies per cell, in-

dividual cells can contain hundreds of mitochondria which in turn can contain

several copies of the genome.

Mitochondrial DNA shows polymorphic sites concentrated within relatively

small regions of the genome and can be analysed using PCR amplification. In

particular two main regions belonging to the so called control region of the mtDNA

sequence represent the focus of most forensic studies concerning identifications,

and are known as hypervariable sequence regions I and II (HV-I and HV-II). It

is also of interest for forensic purposes that mutation rates shown by mtDNA

sequences are generally higher than nuclear genome.

Mitochondrial DNA is a valuable genetic marker in a number of scenarios ,

and this is mainly due to two properties of mtDNA: the high copy number and

the maternal inheritance. The first property is important when the amount of

cellular material available for the analysis is small or when the DNA is highly

degraded for standard STR typing. The latter characteristic is a useful trait

for human identification when there are no direct relatives to use as a reference

sample. mtDNA is also a powerful tool for tracking ancestry through females

(matrilineage) and has been used in this role to track the ancestry of many species

back hundreds of generations.



17

SNPs

A single-nucleotide polymorphism (SNP) is a DNA sequence variation occur-

ring when a single nucleotide (A, T, C or G) in the genome differs between differ-

ent individuals. For example, two sequenced DNA fragments,
⇤⇥ ��AAGCCTA and⇤⇥ ��AAGCTTA , contain a difference in a single nucleotide which can be exploited

for DNA fingerprinting.

As of October 2011, sequencing of human genome identified over 52 million

SNPs, usually occurring in non-coding regions on DNA. Due to this vast amount

of available data in the different SNPs in the genome, one of the biggest task

is to select the most appropriate SNPs from the overwhelming numbers that are

available. According to the specific application at hand, usually 50-80 highly

polymorphic SNPs are selected for most forensic cases. For more details about the

detection methods see Goodwin et al. (2007).

Even if it takes about four times more SNPs that STR loci to obtain the same

discrimination power, the major advantage of using SNPs is that using current

technology SNP analysis can provide results from highly degraded DNA when

conventional STR profiling has failed. Furthermore, SNPs show a lower mutation

rate than STR loci.

2.3 Elements of population genetics

In the nineteenth century there were several theories of heredity, including

inheritance of acquired characteristics, asserting that features employed more fre-

quently cause the trait to become more developed in the offspring, and blending

inheritance, also advocated by Charles Darwin, which states that offspring dis-

play characteristics that are an intermediate combinations of those of the parents.
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Then another theory established itself in a decisive way.

2.3.1 Mendelian laws and Hardy-Weinberg equilibrium

From 1856 to 1863, the Austrian friar Gregor Mendel carried out experiments

with some 29000 pea plants that demonstrated the basics concepts of particulate

inheritance. His experiments led him to make two generalizations, the Law of

Segregation and the Law of Independent Assortment, which later became known

as Mendel’s Laws of Inheritance.

Law of Segregation Mendel’s first law predict independent segregation of al-

leles at a single locus, stating that every individual possesses a pair of alleles for

any particular trait and that each parent passes a randomly selected allele to its

offspring.

Law of Independent Assortment Mendel’s second law predicts assortment

of multiple loci. This means that separate genes for separate traits are passed

independently of one another from parents to child.

Although his paper (Mendel (1866)) was criticized at the time and remained al-

most unnoticed for nearly 35 years, Mendel’s results were later recognised and they

are now considered revolutionary. Mendel’s rediscovered hypothesis of particulate

inheritance was also confirmed by a series of experiments and microscope obser-

vations of cell division by the independent works of Walter Sutton and Theodore

Boveri, pointing out the connection between the rules of inheritance and the be-

haviour of the chromosomes, known as Sutton-Boveri Theory (Sutton (1902), Sut-

ton (1903), and Boveri (1904)).
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Mendel’s laws established the very foundation of population genetics, i.e. the

study of the frequency and interaction of alleles and genes in populations over

time, since the concept of particulate inheritance made possible to perform a

wide range of prediction about genotype and allele frequencies. Still progress and

insight into this new science was gradual. In fact, for several years it was generally

believed that rare alleles would disappear from populations over time. Godfrey H.

Hardy (1908) and Wilhelm Weinberg (1908) worked independently to show how

genetic variation is maintained in a population showing Mendelian inheritance.

The Hardy-Weinberg equation (abbreviated in HWE) can be used to predict allele

frequencies given genotype frequencies or vice-versa. It’s formula is:

p2 + 2pq + q2 = 1, (2.1)

where p and q are allele frequencies for a locus with two alleles. If a generic number

of alleles, n, are possible in a locus, HWE gives the probabilities of heterozygous

and homozygous genotypes:

Pr(i, j) =

8

>

>

<

>

>

:

2pipj , if i 6= j,

p2i , if i = j,
(2.2)

with i, j  n.

To hold, (2.1) and (2.2) require some conditions to be met:

• the population is infinitely large;

• random mating occurs within population;

• absence of disturbing influence of selection, mutation, migration and genetic

drift (some of this terms will be explained up ahead in this chapter).
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If this set of conditions can be reasonably assumed, then (2.2) implies that

both allele and genotype frequencies in a population remain constant (i.e. they

are in equilibrium) from generation to generation, and that if one of the two is

known it is possible to calculate the other one. It is important to understand that

one or more of the previously named disturbing influences are always in effect, so

the Hardy-Weinberg equilibrium is impossible in nature, but it is an ideal state

that provides a baseline against which to measure changes.

2.3.2 Deviation from the equilibrium

The conditions for Hardy-Weinberg equilibrium listed in the previous Section

are violated in any realistic human population. This means that there are a number

of factors that can change allele proportions as they are defined in (2.2). These

are referred to as disturbing forces (e.g. Hamilton (2009)). In this paragraph we

take a closer look to some of them.

Infinitely large population

Obviously this assumption is violated to greater or lesser extents: this depends

on the size of the population of interest, but no population on earth can be infinite.

The consequence of finite population size is that the frequency of alleles will change

due to a process known as random genetic drift, where the frequency of any given

allele will increase or decrease through chance events. This is because the alleles

in the offspring are a sample of those in the parents, and chance has a role in

determining whether a given individual survives and reproduces. The result is

that genetic drift may cause gene variants with few allele copies to disappear

completely and thereby reduce genetic variation.

The effect of genetic drift is more pronounced in smaller populations, however,
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most populations are sufficiently large for allele frequencies not to be significantly

affected. Even in relatively small and isolated populations, it has been shown that

alleles that are present at a frequency of more than 1% are rarely lost.

Random mating

Humans clearly do not mate completely randomly. However, because STR

genotypes do not have any physical manifestation, such as height, strength or

intelligence, direct selection of an STR through sexual selection is unlikely and

has not been demonstrated. Nevertheless it would be wrong to assume from this

that random mating is a fair assumption.

In reality a population is often composed of various sub-populations. This

could be caused by geographic proximity, or there may be social reasons, where

people of different ethnic origins will tend to reproduce within their own ethnic

grouping, or linguistic. These sub-populations are not totally isolated from each

other, obviously, but still there is a departure from completely random choice of

mates, since mating between people belonging to the same sub-population appears

more likely. This fact is known as inbreeding.

Main consequence of the violation of the random mating assumption is that,

within each sub-population, there is a non-negligible probability F of two alleles

drawn from the same sub-population being identical by descent (IBD), i.e. arisen

from the same allele in an earlier generation. Thus the probabilities of individu-

als from a sub-population receiving alleles i and j given the population relative

frequencies pi and pj with a inbreeding coefficient F are

Pr(i, j) =

8

>

>

<

>

>

:

2pipj(1� F ), if i 6= j,

p2i + pi(1� pi)F, if i = j,
(2.3)



2.3. Elements of population genetics 22

so that the presence of co-ancestry increases the probability of observing homozy-

gousity, modifying (2.2).

No migration

Human history is full of migrations and this obviously can lead to changes in

the gene pools of populations. The effect of migration on equilibrium depends on

the difference in allele frequencies between the donor and recipient populations.

If, by effect of consistent migration, two distinct populations are living in the

same geographical area and they have different allele frequencies, each population

can be in Hardy-Weinberg equilibrium. If the two different populations are not

recognized within the larger population and are not treated as separate popula-

tions, deviation from the Hardy-Weinberg equilibrium may be apparent. This is

known as the Wahlund effect, i.e. the reduction of heterozygosity in a population

caused by sub-population structure. If random admixture occurs between the two

populations, the admixed population would be in Hardy-Weinberg equilibrium af-

ter one generation. In reality, where two populations have differences in language,

culture or religion, admixture is normally a much longer process.

Natural selection

Natural selection is a key mechanism of evolution: the gradual, non-random

process by which biological traits become either more or less common in a pop-

ulation as a function of the advantaging effect on their bearers. At some loci in

the human genome the effect of selective pressures can be detected, for example

lactase persistence that is present in populations where milk has been a sustained

part of the diet. Mutations that can confer disease resistance can also exhibit

strong selection effects. However, the loci that are used for forensic testing are not
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located within functionally important regions of the genome, since these loci are

non coding. In summary, even if some unknown indirect mechanism for selection

could non be excluded (for example selection by association with disease loci may

possibly affect STR loci), there are enough theoretical reasons to believe that STR

loci are selectively neutral or nearly so.

Mutations

The assumption of no mutations is clearly violated, and this is true especially

for STR loci, that are natural mutational "hot spots", with mutation rates above

much of the coding DNA. Mutation is, in fact, the main source of genetic variation

and this is particularly helpful in the field of personal identification, being in fact

one of the reasons why STR loci are often very polymorphic: the consequence is

that such loci can be fruitfully used as informative markers for forensic purposes.

As a disturbing force for HW equilibrium, the effect of mutation in STR loci

on a divided population is that it tends to oppose the effect of genetic drift. If

drift tends to remove genetic variation from separated sub-populations, mutation

tends to reintroduce it. However, the mutation rates of STRs are still relatively

low and do not have a significant effect on the allelic frequencies within a gene

pool of different or even mixed populations (Buckleton et al. (2005)).

Anyway, it is important to consider the possibility of a mutation to occur

when dealing with kinship identification. To do this it is helpful to construct some

simplifying models of the mutation process itself. Mutation models attempt to

capture the essence of the genetic changes caused by mutation while at the same

time simplifying the process of mutation into a form that permits generalizations

about allele frequency changes. There is no single model of the process of mutation,

but rather a series of models that serve to encapsulate different features of the
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mutation process for different classes of loci and different types of alleles. In

Section 4.3 we will give a summary of the mutation models adopted in this work.

2.4 Summary

In this Chapter, some very fundamental concepts about genetics have been

introduced. The initial part is devoted to describe how DNA is structured and its

role as carrier of heritable information through successive generations. The hu-

man genome is articulated in 46 chromosomes and a unit of genetic information is

represented by a section of it, called gene. Although, only a very small part of the

DNA sequence is of value when we want to use DNA as unique, distinctive, char-

acteristic of an individual. Among these non-coding DNA regions, STR loci are

the most commonly used type of genes used for personal identification purposes,

thanks to the high polymorphism, robustness and absence of dependence between

each other (when appropriately selected). Other kinds of genetic evidence can be

used, but their adoption is more limited than that of STRs.

Mendelian laws and Hardy-Weinberg equilibrium ensure approximated, al-

though useful, models to describe how heritable traits are transmitted from the

parents to the offspring and why the frequency and interaction of alleles and genes

in populations does not change over time, under certain assumptions. Of course

these very baseline models need to be refined if we want to account for various vi-

olations to the mentioned assumptions, for example to consider mutations, which

can, in reality, occur with a non-negligible probability.

These models and their refinements will be considered in some of the subse-

quent chapters, since they play an important role in the individual identification

methodologies.



CHAPTER 3

Introduction to Bayesian networks

A Bayesian network is a probabilistic graphical model that represents the joint

distribution of a set of random variables and their conditional dependencies

via a Directed Acyclic Graph (DAG). More formally a DAG considers a graph

G = (V, E) composed by sets of nodes (or vertices), V , and edges, E , where the

number of vertices nv is finite and the number of the edges is smaller than nv⇥nv.

If X = (Xv:v2V) represents the vector of random variables indexed by V , edges

linking different nodes must be directed : if for example there is a directed edge

from node X1 to X2, then X1 is said to be a parent of X2, or similarly X2 is a

child of X1. More generally, when a directed path (of length greater than 2) from

a node X1 to X3 exists, then X1 is an ancestor of X3 and X3 is a descendant

of X1. Finally, as suggested by the word acyclic, a DAG must not present any

25
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cycle, meaning that there is no way to start at some vertex Xv and, by following a

sequence of directed edges, to loop back to Xv again. Figure 3.1 gives an example

of a simple DAG including five variables.

GFED@ABCX1
// GFED@ABCX2

//

✏✏

GFED@ABCX3

}}||
||
||
||
|

GFED@ABCX4
// GFED@ABCX5

Figure 3.1: Example of a simple DAG with five nodes.

Each node is associated with a conditional probability table (CPT) that takes

as input a particular set of values for the node’s parent variables. For each parental

configuration a CPT gives the probability of the variable represented by the inci-

dent node. States of each node comprise sets of mutually exclusive and exhaustive

values and the probabilities for each node sum to one.

Bayesian networks are thus directed acyclic graphs whose nodes represent ran-

dom variables: they may be observable quantities, latent variables, unknown pa-

rameters or hypotheses. Oriented edges represent (direct) dependencies; nodes

which are not connected to each others imply some form of conditional indepen-

dence. The exploitation of this lack of edges between nodes, and thus of the

conditional independence among them, is a fundamental feature of a Bayesian

network, making possible to obtain the main result a DAG is devoted to: the full

representation of the joint probability distribution of the variables in V , factoriz-

ing it by the product of conditional distributions, taking advantage of conditional

independence relationships to simplify the probabilistic problem specification and

the associated computational complexity.

Not all kinds of probabilistic models can be expressed by means of a Bayesian

network (as we saw, the variables’ underlying model must determine an "order"
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among the variables themselves, i.e. some variables hierarchically imply others,

and the final network structure must be acyclic), but if this is possible, then

a fundamental property of a Bayesian network is the possibility to express its

joint probability function as a product of the individual probability functions,

conditional on their parent variables solely:

Pr(x) =
Y

v2V
Pr

�

xv
�

�xpa(v)
�

(3.1)

where pa(v) is the set of parents of v. For example, the joint probability distribu-

tion of the Bayesian network displayed in Figure 3.1 can be expressed as follows:

Pr(X1, . . . , X5) = Pr(X5|X4)Pr(X4|X2, X3)Pr(X3|X2)Pr(X2|X1)Pr(X1).

Furthermore, a Bayesian network satisfies the local Markov property, resulting

that each variable is conditionally independent of its non-descendants given its

parent variables:

Xv ?? XV\de(v) |Xpa(v) for all v 2 V

where de(v) is the set of descendants of v. Again, referring to the DAG in Figure

3.1 we can affirm, for example, that X5 ?? {X1, X2, X3}|X4.

As a final remark, it must be noted that Bayesian networks have no direct

reference to Bayesian inference, but the word Bayesian is referred to the non-

elementary use of Bayes’ theorem for the computation of conditional probabilities,

to obtain the same result of a naive application of the Bayes’ theorem but in a

much more efficient way, once the parameters ruling their conditional distribution

are known.
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Learning

Two kinds of learning, depending on the fact that it is referred to the variables’

CPTs parameters or to the edges’ structure, can be pursued for the set up of a

Bayesian network: they are respectively called parameter and structure learning.

CPTs’ parameters are not always knows when setting up a Bayesian network:

if this happens, it is possible to learn them by means of different strategies. Pa-

rameters which are unknown must be estimated from data, sometimes using the

maximum likelihood approach. Direct maximization of the likelihood is often

complex when there are missing data. A classical approach to this problem is the

expectation-maximization (EM) algorithm which alternates computing expected

values of the unobserved variables conditional on observed data, with maximizing

the complete likelihood. Under mild regularity conditions this process converges

on maximum likelihood values for parameters.

Automatically learning the graph structure of a Bayesian network is a challenge

pursued within machine learning. A popular methodology is based on an algorithm

called PC algorithm, introduced by Spirtes et al. (1993), that is based on multiple

independence tests on triplets of variables. Exploiting the found conditional in-

dependence relationships one can determine the skeleton of the underlying graph

for each triplet of variable and, then, orient all arrows whose directionality is dic-

tated by the conditional independences observed. For example, let {X1, X2, X3}
be a generic triplet in which X1 ?? X2 and all other pairs are dependent, also

conditionally on the third variable (e.g. X1 6?? X2|X3): this set of relationships

uniquely defines the graphical structure in Figure 3.2.

Alternative methods of structural learning are based on scoring methods, need-

ing a scoring function (e.g. a common one is posterior probability of the structure
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Figure 3.2: Example of structure learning when X1 ?? X2 and X1 6?? X2|X3.

given some training data) and a search strategy, aimed to maximize the score (for

example search algorithms based on Markov Chain Monte Carlo (MCMC) can be

used). Simulation and approximation methods are required since the time for an

exhaustive search rapidly increases with the number of variables.

If parameter and/or structural learning are not the issue of the analysis, since

CPTs and arrows structure are known (or are assumed known) from established

models, the main goal of a BN is to perform probability propagation to obtain

the joint and the marginal conditional probabilities on the variables of interest.

In this case it is common to refer to a Bayesian network as Probabilistic Expert

System (PES). This is, generally, the case of interest for forensic applications and

the reason why a large number of contributions in the field refers to PESs instead

of Bayesian networks.

Software

The most important advantage in representing a complex probabilistic problem

by a graphical model, is to make use of efficient computational algorithms (Pearl

(1988), Lauritzen and Spiegelhalter (1988)) to perform calculations that would be

otherwise nearly intractable since the high-dimensional nature of the problem.

Several pieces of software have been created to facilitate the network building

and to compute the required conditional probability. Cowel et al. (1999) give more

insights about Bayesian networks and PESs in a more general framework. These
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include for example HUGIN and NETICATM , which are oriented to practitioners

since their friendly Graphical User Interface (GUI), but otherwise it is possible to

develop Bayesian network algorithms within general purpose statistical program-

ming languages: among others, Grappa is a suite of functions in R for probability

propagation in discrete graphical models mainly developed by Peter Green1, while

the Bayes Net Toolbox by Murphy (2001) is implemented in MATLAB R�. At an

intermediate-level programming language, also C++ libraries for Bayesian networks

are available.

In the field of personal identification it is possible to adopt one of the mentioned

pieces of software or to use an ad hoc one, the package FINEX (Cowel (2003)),

specifically designed to handle this kind of problems.

3.1 BNs for forensic analysis

Bayesian networks are able to provide a very useful representation of the iden-

tification issues involving the use of DNA evidence. This is of interest for criminal

cases, when a DNA trace of unknown origin is compared with that of a suspect,

but it is more relevant in case of indirect identification since kinship relationships

among relatives are easily conveyed by a Directed Acyclic Graph. There, the in-

heritable DNA characteristics of an individual probabilistically affect those of their

unobservable relatives.

More specifically, the set of kinship relationships among a group of individuals

forms a pedigree, that smoothly fits into a PES. In Figure 3.3 the pedigree of a

family formed of a mother (M) a father (F ) and a child (C) is displayed, adopting

the usual convention that males are included into squares and females into circles.

1
http://www.stats.bris.ac.uk/ mapjg/Grappa/
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F GFED@ABCM

C

Figure 3.3: A simple pedigree of a family with a mother (M) a father (F) and their
child (C).

There are several ways to design a Bayesian network starting from a pedi-

gree and the seminal work of Lauritzen and Sheehan (2003) in this field gives an

overview of different methodologies, introducing three kinds of networks.

• The segregation network gives the most complete representation of the inher-

itance relationships in a pedigree. Two nodes for each individual represent

the paternal and maternal inherited genes. Then, for each non-founding

node (founders are those nodes that have no parents pointing to them), one

additional variable represents the segregation indicator, conventionally tak-

ing value 1 to denote that the paternal allele has been inherited and 0 to

indicate inheritance from maternal gene, according to specified inheritance

rules (the mendelian one as in Section 2.3 or others).

• The allele network can be convenient since complete information about the

segregation mechanism is often unnecessary (or unavailable). This is ob-

tained from the previous one by removing the segregation indicators and

associated edges. Convenient modifications to the CPTs ensure the correct

representation of the segregation laws relevant for the case at hand.

• The genotype network, as in Figure 3.4, is visually the most parsimonious

but not the most useful: nodes represent genotypes, thus the state space for
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each node can be huge with respect to those of nodes representing alleles. For

systems with k possible allelic values, the genotype can assume k(k + 1)/2

different states. This is of substantial importance for computational issues.

GFED@ABCF

��@
@@

@@
@@

@@
GFED@ABCM

~~}}
}}
}}
}}
}

GFED@ABCC

Figure 3.4: Genotype network for the pedigree in Figure 3.3.

Also Dawid et al. (2002) explores the applications of reconstructing relevant

pedigrees ad Bayesian networks when approaching to identification problems, ac-

cording to some simplifying assumptions that will be released in the following

Sections. They make use of a slightly modified version of the allele network intro-

duced earlier, enhancing it with nodes expressing the genotype of each individual,

deterministically defined by the relevant couple of alleles (i.e. the paternal and

maternal inherited alleles fully define the child’s genotype). Figure 3.5 is an exam-

ple of the use of this kind of modified allele network, showing the Bayesian network

associated to Figure 3.3. There the maternal and paternal genotypes (respectively

mgt and fgt) are given by their paternal and maternal inherited alleles, i.e. the

mother maternal and paternal allele (mma and mpa) and the father maternal and

paternal allele (fma and fpa). Then the child inherits from the mother and the

father the two alleles (cma and cpa) forming his genotype (cgt). For the purposes

of this thesis we will mainly make use of this latter kind of network, eventually

further modified, for the analysis and the calculations, but we will also rely on

some genotype networks for displaying purposes only.

Since the independence between loci, as explained in Section 2.2, it is possible

to consider a separated and specific PES for each locus, and then obtain the overall
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Figure 3.5: Bayesian network representing the pedigree in Figure 3.3.

result as a combination of the results from each network.

Among others, an important feature that helps Bayesian networks to solve

problems based on DNA evidence is what is called allele recoding, which ensures

that if only a subset of the possible allelic types is represented in the set of obser-

vations, it is possible to take advantage of the merging of all the unobserved alleles

into a residual one labelled, say, other. This reduces the state space, and thus the

computational complexity of any multi-allelic system without loss of information.

The importance of Bayesian networks goes beyond the analysis of genetic evi-

dence, since they represent a valuable tool for forensic applications based on other

kinds of evidences, different from the genetic one, e.g textile fibres or footprints.

Bayesian networks have been also proposed for structuring and reasoning about

issues of complex cases in judicial contexts (see, for example, Taroni et al. (2006),

Section 2.3.2), or to interpret combined different items of evidence (Dawid and

Evett (1997)). A further advantage is that Bayesian networks can be constructed

for single pieces of evidence; then these networks can be easily combined together

to produce a larger network which combines evidence from different sources from

a case to allow all information to be considered in a natural, but probabilistically
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rigorous, way.

3.1.1 Bayesian networks for complex genetic problems

One of the most important advantages given by the use of Bayesian networks

to solve forensic problems stands in the flexibility of this methodology. This prac-

tically translates in the possibility to increase the complexity of a networks just

adding the appropriate nodes and edges, without altering the existing network

structure.

Mutations

The first, and perhaps one of the most relevant complicating feature affecting

an identification based on DNA data is the possibility of a mutation (or more)

to occur. In Section 2.3.2 we introduced the genetic aspects of mutation, now we

give some detail about their treatment using a Bayesian network. Dawid et al.

(2001) and Vicard and Dawid (2004) give a summary of various models that can

be easily translated into a BN framework:

• the uniform mutation model simply gives a fixed value for the probability

of a mutation towards any other allele;

• for the proportional mutation model the probability of a mutation to allele

j is proportional to the frequency pj in the reference population;

• the one-step mutation model assumes that any mutation can only be to a

neighbouring allele value;

• the mixed mutation model is a mixture the one-step and the proportional

models with respective weights h and 1� h (for some fixed h between 0 and

1), so combining features of both.
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All these models have pros and cons, but the mixed mutation model seems the

most biologically plausible. Furthermore it implies as special cases the single-step

and the proportional models, which can be obtained just setting respectively to 1

or 0 the parameter h. In Section 4.3 we will present the key features of various

models, discuss their mathematical and biological aspects and we will detail the

application of the mixed mutation model in our evaluation methodology.

More complex features involving founding nodes

There are a number of complicating features, such as uncertainty in allele

frequencies (UAF), coancestry, identity by descent (IBD) and mixed populations,

sharing a common characteristic: all of them involve the violation of assumption

about founding nodes in a Bayesian network.

In Green and Mortera (2009) these features are considered, some of which

are used in our research, and they provide solutions on how to handle them in

a Bayesian network context. The issue that is relevant here is the one involving

uncertainty in allele frequencies. In fact a realistic model should relax the as-

sumption of known allele probabilities, and considers them uncertain, since they

are estimated from a sample of the population of interest. This is done by setting

up a Dirichlet process model, that can be expressed as a Pólya urn scheme, which

is amenable to representation as a Bayesian network and intuitively means that

it is reasonable to update the initial allele frequencies derived from the sample

by increasing the probability of the alleles that have been observed to belong the

individuals involved in the analysis.

Finally, we conclude this Section accounting for another complication arising

when considering sub-populations. Coancestry can be taken into account con-

sidering that they had a small number of founders so that the probability F an
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individual’s receiving two copies of the same allele transmitted by the same an-

cestor is not negligible. The solution of this, as already presented in Section 2.3.2,

is to consider (2.3) instead of (2.2), so that the presence of co-ancestry increases

the probability of observing homozygousity. This feature can be introduced into

a BN just coherently modifying the CPTs of the nodes representing the genotypes

of the individuals.

Object Oriented Bayesian Networks

In order to include all the previously introduced refinements in the structure

of a PES, one can either augment the Bayesian network adopted for a partic-

ular application, or rely on an extension of Bayesian network technology called

object-oriented Bayesian Networks (OOBN, Koller and Pfeffer (1997) and for their

application for personal identification Dawid et al. (2007)), allowing hierarchical

definition and construction of a BN, using simple modular building blocks. Ad-

ditional complexity can be introduced by adding new modules or refining the

existing ones. HUGIN is one of the most important reference software which gives

the opportunity to easily create and work with object-oriented Bayesian Networks.

Although, in this work, we do not make use of the recursive computation

implied by the strict applications of OOBNs, they represent a non-negligible tool to

cope with complicating features, and the algorithms we built for our methodology

to evaluate an identification system take into account concepts originally developed

for the OOBN framework.
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3.2 Summary

In this Chapter we have introduced Bayesian networks as valuable tools to cope

with and solve complicated probabilistic problems efficiently exploiting conditional

independence relationships among the variables involved. We defined a Bayesian

network as a set formed of vertexes and edges, G = (V, E), in which the very

fundamental property is given by equation (3.1).

A large number of publications have been issued addressing the topic of the

application of Bayesian networks’ methodology to solve forensic problems. We

saw that a pedigree easily lend itself to be translated into a Bayesian network,

relying on several methods detailing at different levels the biological relations

among individuals which ensure computational efficiency and tractability.

Finally we introduced some more refined models involving features, as mu-

tations and coancestry, that are of interest for this work, accounting for some

possible ways in which these refinements can be included into a Bayesian network.

How this is actually performed in this thesis will be detailed in the following of

the thesis.
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CHAPTER 4

Evaluation of kinship identification

systems

This Chapter presents the core of the researches we conducted in the last years:

some proposals to evaluate kinship identification systems. The proposed sys-

tem evaluation is case-specific, does not require any additional laboratory costs

and should be carried out before an identification trial is performed. Under this

pre-experimental perspective, we evaluate whether a system fulfils the require-

ments of the parties involved.

39
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4.1 Kinship identification

The application of DNA profiling to kinship analysis is widespread and aims

to provide support to some biological relationships. Since the first DNA-based

kinship test in 1985, detailed by Jeffreys et al. (1985), DNA analysis has been

applied to an increasing number of kinship tests: paternity testing is, by far, the

most common form of kinship testing, with hundreds of thousands of tests being

performed worldwide each year, but also more complex relationships are commonly

investigated. Kinship investigation features prominently in forensic science within

both criminal and civil jurisdictions.

In a criminal context, such testing can be required following sexual assaults to

identify the father of a child conceived as a result of an alleged assault. In cases

involving concealed births, abandoned children, or infanticide, it may be necessary

to prove a genetic relationship to either ensure the rightful return of an infant or

to support criminal charges.

During civil trials, indirect identification of an alleged father can be required

to substantiate claims for financial support and maintenance of a child. Similarly

disputes over inheritances can benefit by the application of genetic testing. Kinship

analysis is also now being widely applied by governmental bodies to adjudicate

in cases of immigration and naturalization. The identification of bodies for legal

purposes can also be effected using familial testing.

4.1.1 Notation and mathematical aspects

In this Section we introduce the notation and the terminology we will use

throughout the thesis. In kinship identifications we consider a family asking for

the identification, as one of its members, of an individual, the candidate (C). Two
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hypotheses about the actual state of the kinship relationship are usually taken into

account: conventionally H1 is the hypothesis claimed by the family and assumes

that C is the person posed in the familial pedigree in a defined position (U); H0,

the alternative, implies C being either another relative (U 0) or an individual not

recently related to the family, i.e. C is a generic member of a population. Let the

set F = {F+,F�, U, U 0} contain all the family’s members involved in the analysis:

F+ is the set of relatives providing their DNA profiles, while F� considers the

unobserved relatives required to link the members in F+ to U or U 0.

In Figure 4.1 we represent using genotype networks (cfr. Section 3.1), the

pedigrees induced by the hypotheses in a specific kinship problem. There, under

hypothesis H1, S1 claims C to be his full sibling, occupying the position U in

the familial pedigree; alternatively H0 reckons S1 as the half sibling of C, i.e.

the individual U 0 in the graph representation. H0 modifies the familial pedigree

originally induced by H1, adding to F� an additional (unobserved) individual,

F2, and establishing different relations. In this example the set F+ includes only

one member of the family under both hypotheses: S1. For pictorial purposes only,

hereafter solid lined nodes indicate observed variables, while dotted lines are for

the unobserved ones.

Please note that we maintain distinct variables to probabilistically represent

the positions in the pedigrees (U and U 0) which are occupied by the candidate (C)

under either of the two hypotheses, H1 and H0. In fact, conditionally on U (or U 0),

the genotype of C (represented by the variable XC) is deterministically implied

under both hypotheses: the variable X represents the genotype of an individual,

hence we define a CPT for XC |XU (or XC |XU 0) assigning probability 1 to the

events that C ⌘ U or C ⌘ U 0.
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Figure 4.1: Graphical representation of a kinship problem. Solid lines indicates obser-
vations, dashed lines are unobserved individuals.

4.2 LR computations based on STR DNA evidence

The solution of a kinship identification problem is achieved by the evaluation

of the probability of the observed evidence for people in F+ and for C conditional

on two competing hypotheses, synthesized by the Likelihood Ratio (LR). In terms

of a criminal case, involving either direct or indirect identification, it is common

to refer to these hypotheses as the prosecution hypothesis (Hp) and the defence

hypothesis (Hd). The likelihood approach is a logical way to interpret and present

the DNA profile information, since it considers an alternative scenario.

Since both criminal and civil cases (in these latter two parts are in opposition

without prosecution and defence roles) are involved in the field of indirect identi-

fication based on DNA data, we decided to generically label the two hypotheses

as H0 and H1, as already detailed in Section 4.1.1. Considering the relative sup-

port to the hypothesis H1, against H0, provided by the entire observed genetic

evidence, generically indicated by E , we define the likelihood ratio supporting H1

as

LR =

Pr(E|H1)

Pr(E|H0)
. (4.1)
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In a kinship problem, let the random variable XI represent the probability distri-

bution for the genotype of the generic individual I and let XS represent the joint

distribution for the genotypes of the set of individuals S: using the notation in-

troduced in Section 4.1.1, generic evidence E is replaced by the available evidence

for the case, i.e. xC and xF+ , and (4.1) becomes

LR =

Pr(xC , xF+ |H1)

Pr(xC , xF+ |H0)
. (4.2)

Once the candidate C and the donors in F+ have been typed, the required

LR in (4.2) can be easily computed since the following assertions of conditional

independence hold:

• States of H only affect the probability of observing xC , i.e., XF+ ?? Hz

with z 2 {0, 1}, so that:

Pr(xF+ |H1) = Pr(xF+ |H0),

meaning that the kinship relationships between people in F+ are know with-

out uncertainty (or they are, at least, not affected by the hypotheses under

debate).

• If H1 holds, C ⌘ U , so that:

Pr(xC |xF+ , xU , H1) =

8

>

<

>

:

1, if xC ⌘ xU ,

0, otherwise.
(4.3)
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If, otherwise, H0 is assumed, then C ⌘ U 0, so that:

Pr(xC |xF+ , xU 0 , H0) =

8

>

<

>

:

1, if xC ⌘ xU 0 ,

0, otherwise.
(4.4)

Considering formulas (4.3) and (4.4) we have:

LR(XC = xC) =

=

Pr(xC , xF+ |H1)

Pr(xC , xF+ |H0)
=

Pr(xC |xF+ , H1) Pr(xF+ |H1)

Pr(xC |xF+ , H0) Pr(xF+ |H0)

=

X

xF� ,xU2X
Pr(xC |xF+ , xF� , xU , H1) Pr(xU |xF+ , xF� , H1) Pr(xF� |xF+H1)

X

xF� ,xU02X
Pr(xC |xF+ , xF� , xU 0 , H0) Pr(xU 0 |xF+ , xF� , H0) Pr(xF� |xF+H0)

=

X

xU2X
Pr(xC |xF+ , xU , H1) Pr(xU |xF+ , H1)

X

xU02X
Pr(xC |xF+ , xU 0 , H0) Pr(xU 0 |xF+ , H0)

=

Pr(xC ⌘ xU |xF+ , H1)

Pr(xC ⌘ xU 0 |xF+ , H0)
. (4.5)

If H0 assumes C as a generic member of the reference population, then XC ??
XF |H0 so that the denominator of (4.5) simply becomes Pr(xC |H0). As a result,

in kinship identifications based on STR loci, the LR is evaluated by assessing the

probability of XC = xC , conditionally on two different states of information.

We have seen that computing the LR does not require the assessment of

the prior probabilities for the hypotheses, which simply appear as condition-

ing circumstances. If, instead, H is considered a random variable, with H =

{Hz : z 2 {0, 1}}, and Pr(H0) and Pr(H1) are available, we can use Bayes’ The-
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orem to update prior odds to posterior odds using

posterior odds = LR⇥ prior odds

which here becomes

Pr(H1|xC , xF+)

Pr(H0|xC , xF+)
=

Pr(xC , xF+ |H1)

Pr(xC , xF+ |H0)
⇥ Pr(H1)

Pr(H0)
. (4.6)

Finally we can use the LR to easily derive interpretable posterior probabilities. In

fact starting from (4.6) and considering that Pr(H0|xC , xF+) = 1�Pr(H1|xC , xF+),

one can write:

Pr(H1|xC , xF+) = LR
Pr(H1)

Pr(H0)

�

1� Pr(H1|xC , xF+)

�

= LR
Pr(H1)

Pr(H0)
� LR

Pr(H1)

Pr(H0)
Pr(H1|xC , xF+)

= LR
Pr(H1)

Pr(H0)

n

1 + LR
Pr(H1)

Pr(H0)

o�1
.

On the other hand, we can compute the LR required to update a given prior

to a specified posterior:

LR =

Pr(H1|E)
Pr(H0|E) ⇥

Pr(H0)

Pr(H1)
. (4.7)

We conclude this section with a remark on the choice of the prior probabilities

for the hypotheses, Pr(H0) and Pr(H1). Depending on the case, every prior

probability on H is acceptable and, usually, prior probabilities equal to 0.5 for

both are considered to represent a non-informative state of knowledge. It may

be appropriate in some cases, but equally may be totally inappropriate in others.

However, for practitioners, it has become customary to assign prior probabilities
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of 50% to both H0 and H1. This assumption is hard to justify at the fundamental

level (Good (2001)) and must be seen simply as a pragmatic choice. For example,

in a paternity case in which two alleged fathers are questioned to be the real

one this assumption could be reasonable, but if also non-genetic evidence were

available, prior probabilities should be modified accordingly: this evidence could

in fact include statements of the mother as to with whom she had intercourse, or

evidence that may suggest that the alleged father was out of the Country or in

prison at the time of conception. Such evidence, if relevant and admissible, affects

the prior odds.

4.3 Models and data

In this Section some of the topics introduced in Sections 2.3 and 3.1 will be

discussed in deeper details. The main focus is on the models we adopt in this

work to take into account features, such as mutations or coancestry, relevant for

a kinship identification system based on DNA evidence. One fundamental dis-

tinction among these models is the following: the probability distribution for the

genotype of an individual (XI) is provided by a segregation model if their parents

are explicitly included in the pedigree or by a population model if the individual

I is a founder. Some of these models are considered below.

For the present thesis’ purposes, the segregation model has to define if (and,

in case, how) mutations must be handled; while the population model serves to

refine the standard setting of assuming the allele frequencies as known, considering

them uncertain instead, and acknowledging for the existence of sub-populations.
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4.3.1 Segregation models

Mendel’s law (abbreviated, ML) is the baseline segregation model, stating that

each parent passes at random one of their allele to the offspring, not considering

any mutation mechanism. A more realistic approach allows for mutations in the

segregation process. Various models have been proposed to deal with the phe-

nomenon of mutation and, as already acknowledged, Vicard and Dawid (2004)

discuss a number of such models. Here we consider three of them: the propor-

tional, the one-step and the mixed mutation model.

These three models share some common elements that we introduce here, be-

fore analysing them singularly. First of all, all the models are based on muta-

tion rates which are, usually, estimated over a large number of cases of complete

trios (mother, father and child), for which parental relations have been already

ascertained. In this work we will make use of mutation rates estimated by the

American Association of Blood Banks in one of the latest annual report (AABB

(2008)), correcting them to take account for hidden mutations (Chakraborty et al.

(1996),Vicard and Dawid (2004), Brenner (2004)), i.e. the fact that mutations

do not always lead to a genetic inconsistency. Details on how this correction is

performed are given in Chapter 7.

Secondly, since the independence between loci, we do not need to treat several

loci simultaneously, so we will omit the notation referring to a specific locus. Hence

we will assume that the allelic ladder L, i.e. the set of possible allelic values, is

known for every locus, and we will consider plausible only mutation from and to an

already existing allele in the ladder, not allowing for the creation of new off-ladder

alleles.

Among the proposed models, only one, the proportional mutation model, is
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stationary, meaning that population allele frequencies are not altered by the mu-

tation process (Dawid et al. (2001)). Since it is not clear whether or not allele

frequencies are in reality stationary, and we are proposing a practical tool to handle

kinship cases, we believe that this property is not of primary importance here.

The proportional mutation model

The proportional mutation model arises from the assumption that, whenever

a mutation takes place, the new allele value is generated at random from the

population gene frequency distribution. Under this model, in a locus, every allele

can mutate to each of the other possible alleles of the ladder L with probability

proportional to the allele frequency in the reference population. Considering a

generic locus, let i 2 {m, p} indicate the maternal or paternal lineage of the

mutation, then µi is the associated mutation rate. Let pa and pb be the frequency

of its alleles a and b in the population, so that a, b 2 L. Then M i
a,b is the probability

that the parental allele a belonging to lineage i is received as allele b by the child.

The model defines M i as the gender-related mutation matrix with entries M i
a,b:

M i
a,b =

8

>

>

<

>

>

:

1� µi, if a = b,

µipb, if a 6= b.
(4.8)

Even if the proportional model is not very realistic, since a mutation to an allele

far from the original one is rare, it has the advantage of taking care of any possible

specific mutation and it is also computationally efficient.
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The one-step mutation model

The one-step mutation model assumes that any mutation can only be towards

a neighbouring allele value, i.e. only mutations consisting out of exactly one step

are possible. Let K be the number of different allele values in the ladder, and, as

before, let M i
a,b be the probability that the parental allele a belonging to lineage

i is received as allele b by the child, then the elements of the mutation matrix for

the one-step mutation model are (for a 6= b):

M i
a,b =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

µi, if |a� b| = 1 & a = 1 or K,

µi

2

, if |a� b| = 1 & a 6= 1 or K,

0, otherwise,

(4.9)

and finally M i
a,a is such that

P

b2LM i
a,b = 1. Please note that not all alleles

mutate with the same probability: they do so either with probability µi, µi/2 or

zero.

Studies, e.g. Brinkmann et al. (1998), about mutations in STR markers used

in forensics suggest that the great majority of mutations on the forensic STR loci

involves the addition or deletion of one repeat unit from the parental allele. This

makes the one-step mutation model plausible at the biological level, although the

absolute ban on mutation by more than one step could be too extreme.

The mixed mutation model

The mixed mutation model (hereafter abbreviated with MMM) is obtained by

mixing a single step model and a proportional model with weights h and 1 � h
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respectively, with h 2 [0, 1]. For this reason the elements of M i are

M i
a,b =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

hµi + (1� h)pbµi, if |a� b| = 1 & a = 1 or K,

h
µi

2

+ (1� h)pbµi, if |a� b| = 1 & a 6= 1 or K,

(1� h)pbµi, if |a� b| > 1,

(4.10)

and again M i
a,a is such that

P

b2LM i
a,b = 1. The mixing proportions are specified

according to the fact that a mutation of more than one repetition in the STR

sequence is rather uncommon, thus a reasonably realistic value for h might be 0.9,

emphasising single step mutations, but retaining a non-negligible probability for

mutation by other amounts.

We decided to implement in our analysis the mixed mutation model since it is

the most plausible among the three presented, it comprises the proportional and

the one-step models as special cases and it is still quite computationally tractable.

Furthermore, if null alleles are not explicitly modelled, the choice of a mu-

tation model indirectly implies the choice of a way to account (or not) for their

presence. Null alleles (also called silent alleles) are alleles that do not amplify,

thus leading to believe to observe homozygous genotypes while in fact the true

genotype is heterozygous and involves a null allele. For example, a shared null

allele between parent and child may result in different homozygousity, and lead to

an incorrect exclusion of paternity. Null alleles can, of course, be simply modelled

as a new allele, but there are two drawbacks in doing this: it makes the software

computationally more complex and hence slower, and it requires the population
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frequencies of null alleles per locus, for which some data exist1, but they are gen-

erally not precisely known. We will therefore not consider this as a possibility, but

let the mixed mutation model handle null alleles. In fact, since the proportional

part of model gives a positive probability to every mutation from an allele to any

other allele, if a null allele is transmitted from parent to child this would be treated

by the model as a mutation, always assigning a probability greater than zero to

that genotype combination and not letting a LR = 0 arise.

4.3.2 Population models

The baseline model for the populations is, in this thesis, called HW since

it is derived from the equation introduced by Hardy-Weinberg for a population

in equilibrium. The genotype probability is calculated from the assumed known

probabilities of the alleles in the population, by simply using formula (2.2).

Uncertain Allele Frequencies

A more realistic model relaxes the assumption of known allele probabilities

and considers them uncertain. Considering a database of individuals available for

forensic inference as a random sample from a reference population, for a locus, the

observed alleles’ frequencies, n = {n1, . . . , nk}, N =

Pk
i=1 ni, follow a multinomial

distribution conditional on the vector of the actual frequencies in the population

p = {p1, . . . , pk}. The prior probabilities on p are usually modelled by a Dirichlet

distribution, p ⇠ Dir(�) with � = {�1, . . . , �k}, so that the posterior distribution is

p|n, � ⇠ Dir(�1+n1, . . . , �k+nk). If, in the pedigree involved in the identification

trial, two or more founders’ alleles are not observed and their probabilities are

uncertain, the alleles become dependent. The Uncertainty in Allele Frequencies
1
http://www.cstl.nist.gov/biotech/strbase/NullAlleles.htm
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model (UAF), proposed by Green and Mortera (2009), states that if S founders’

alleles are considered, the marginal distribution of the Sth allele’s probability’s

assuming the value j is a mixture formed by the marginal of p|n, �, i.e., a Beta

distribution, and the probability mass proportional to the number of js observed

on the previous S � 1 founder alleles, i.e.

p(S)j |n, � ⇠
Pk

i �i +N

M
Beta(�j + nj ,

k
X

i 6=j

�i + ni) +
1

M

S�1
X

s=1

1I{s}(j),

so that

Pr(p(S)j |n, �) = �j + nj

M
+

1

M

S�1
X

s=1

1I{s}(j), (4.11)

where M =

Pk
i=1 �i +N + S � 1 and N =

Pk
i=1 ni. Including (4.11) into (2.2) as

one of the p produces the required genotype probability.

The UAF model can be also expressed by the Pòlya Urn scheme, and for this

reason it is easily amenable to be represented by a Bayesian network.

Coancestry

The existence of sub-populations can be taken into account considering that

they had a small number of founders so that the probability F an individual’s

receiving two copies of the same allele transmitted by the same ancestor is not

negligible. In Section 2.3.2 we modified HW equation to take into account this

sub-population effect, obtaining formula (2.3).

It is straightforward to include coancestry in the population model of an iden-

tification system: it is sufficient to redefine the CPTs according to (2.3). This

model is known as the Balding-Nichols model (Balding and Nichols (1995)) and

the parameter F may be interpreted as measuring the degree of uncertainty about
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pa as an estimate of the match probability for a single allele. A number of plausi-

ble values for F ranging from less than 1% to more than 5% have been proposed

in the literature, mainly depending on the ethnicity, and the mentioned paper of

Balding and Nichols is a good starting point. In this thesis, when coancestry will

be considered in the applied cases of Chapter 6, a value for F equal to 0.02 will

be adopted.

4.4 The evaluation of the identification system

In this section we detail our main proposals to evaluate a case-specific kinship

identification system. This is a pre-experimental activity for which a key result

is getting the LR distributions under the two hypotheses, H0 and H1. All these

fundamental aspects will be described in details in the next paragraphs.

4.4.1 The pre-experimental phase

We believe that the evaluation activity about an identification system must

precede the usual kinship analysis. We maturated this belief when we were called

to support familial reunification in collaboration with the IOM, as stated in Section

1.1. An example clarifies this issue.

Suppose some member of an immigrated foreign family ask the permission to

bring in an alleged relative still living in the Country of origin: while their genetic

evidences are immediately and easily available, that of the candidate relative could

not, due to the distance. It may be worthy to assess the potentialities of the

identification system before incur costs (in terms of money and time) of getting

evidence from the candidate. Another example could involve the need to evaluate

the necessity of an exhumation of the body of a deceased person in advance.
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We, thus, defined as pre-experimental the phase in which the genetic evidence

of C is not available yet, either because it is actually difficult to be collected or

because it is of interest to mask it to perform the evaluation of an identification

system as we propose in this work.

4.4.2 The LR distributions

In the pre-experimental perspective, the analysis considers the DNA evidence

belonging to the individuals promoting the identification trial, i.e. those included

in the set F+, but not that of the candidate to the identification whose position

in the familial pedigree is uncertain.

Let XC be the random variable for the genetic profile of the candidate, C. If

its value xC is known, we have seen that it easy to calculate a ratio, the LR (cfr.

Section 4.2), able to express the support to an hypothesis against another one. But,

since here C’s profile is unknown, the likelihood ratio becomes a random variable,

and to stress the dependence on the unobserved XC we named it LR(XC). More

precisely there are two distributions for LR(XC) conditionally on the states of H,

and the first activity to evaluate a system is to derive them; then the analysis of

these distributions produces an evaluation of the system.

To derive the LR distributions we can take advantage of the fact that the

loci commonly used in forensic identification are located at large genetic distances

and therefore are considered independent. The case in which H0 considers the

individual C as a random man from the population is the most common, so now

to differentiate with respect to H1 we use this specific identification hypothesis for

simplicity, being clear that the extension to the case in which C ⌘ U 0 under H0

formally coincides with the treatment of C ⌘ U under H1.

Let i be a generic locus with ki different allele values, the possible LRs are
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determined by calculating (4.5) for all ki(ki + 1)/2 genotypes. Considering n

different loci (i.e. i 2 {1, . . . , n}) the number of possible genetic profiles observable

for an individual is
Qn

i=1 ki(ki + 1)/2. Let XC be the variable representing the

genotypes of C for all the n loci jointly, while XC,i is the genotype of the candidate

for the locus i (practically meaning that XC = (XC,1, . . . , XC,n)), then the support

of LR(XC) is given by the set:

LR =

n

n
Y

i=1

LR(xC,i) : xC,1 2 XC,1, · · · , xC,n 2 XC,n

o

, (4.12)

where XC,i is the sample space for the genotype of C in a generic locus i. Using

allele recoding introduced in Section 3.4 we will be able to apply substantial re-

duction to this space. In Chapter 5 we will give more details about state space

reduction and approximations.

Once the state space of the LR has been established, the following step is to

obtain the LR distributions which, assuming H0 or H1 to hold, depend on the

probability of the genetic profiles of C conditionally on H0 and H1.

If H0 holds, the probability of a genetic profile is obtained by factorizing the

genotypes’ probabilities over the loci through the assumed population model con-

veyed by H0, so that:

Pr
�

LR(XC)|H0
�

= Pr
�

LR(xC,1, . . . , xC,n)|H0
�

=

n
Y

i=1

Pr(xC,i|H0) 8xC,i 2 XC,i.

(4.13)

If H1 holds, i.e. C ⌘ U , then the genetic profiles’ probabilities are obtained
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by factorizing the loci’s probabilities derived by XC |xF+ , H1 and

Pr
�

LR(XC)|H1
�

= Pr
�

LR(xC,1, . . . , xC,n)|H1
�

=

=

n
Y

i=1

Pr(xC,i ⌘ xU,i|xF+,i, H1) 8xC,i 2 XC,i. (4.14)

Hereafter, we consider the likelihood ratio distributions with regard to all the

available loci altogether and for simplicity we refer to LR instead of LR(XC) or

LR(xC,l1 , . . . , xC,ln).

Distributions can be directly represented by histograms or, more conveniently,

by Tippets plots (Evett and Buckleton (1996), Gill et al. (2008)), which allow

of comparing, in the same graph, the LR probability distributions obtained in

different conditions. The analysis of these distributions produces an evaluation of

the system.

4.4.3 The probabilistic evaluation of the system

Our proposal to assess the value of an identification system is based on the

computation of the probabilities the LR does not support the hypotheses when

they actually hold, since originated by misleading evidence (EM ), i.e. the genetic

profiles producing LR values against the hypothesis assumed to hold. Hence we

define two probabilities:

Pr(EM |H1) =

X

xC2XC :LR<1

Pr(xC ⌘ xU |xF+ , H1), (4.15)

Pr(EM |H0) =

X

xC2XC :LR>1

Pr(xC |H0). (4.16)

Evidence in EM is referred to as faithful evidence (EF
). Each party involved in

the trial can evaluate whether the system matches their requirements, either when
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H0 holds or when H1 holds.

Typically, people favouring identification, the pro-id, believe C ⌘ U and are

more interested in (4.15); those favouring no-identification, the con-id, since for

them C 6⌘ U , are more worried about (4.16). Obviously the smaller (4.15) and

(4.16) are, the better the system is. If prior probabilities on H are introduced by

someone who is balanced between the positions, typically the Judge, the hypothe-

ses can be marginalized out:

Pr(EM
) =

X

xC :LR<1

Pr(xC ⌘ xU |xF+ , H1)Pr(H1) +
X

xC :LR>1

Pr(xC |H0)Pr(H0).

(4.17)

Even if LR = 1 is the most natural threshold for making a distinction between

faithful and misleading evidence, Royal (2000) specifies two others values, ⌧0 ⌧ 1

and ⌧1 � 1, to partition the LR space into regions providing strong and weak

support for the hypotheses (Table 4.1). In a judicial setting, these thresholds have

an interesting meaning since they specify the values of LR capable of updating

some prior probabilities on the hypotheses to some required posteriors. A large

distance between prior and posterior probabilities produces ⌧ values far from unity.

For instance, if Pr(H0) = Pr(H1) = 0.5 represents the prior state of knowledge

and conclusive posterior probabilities for both hypotheses are specified to be at

least equal to 0.9933, then ⌧0 and ⌧1 can be determined by using (4.7), so that

⌧0 =
0.0067

0.9933
= 0.0067 and ⌧1 =

0.9933

0.0067
= 148.25.

The specification of the posteriors on H implicitly refers to a decision rule which

ascertains the case only if a certain posterior probability is reached: this trans-

lates numerically the requirement that a decision has to be taken "beyond any
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Table 4.1: Evidence classification according to the LR thresholds and the hypotheses.

LR
[0, ⌧0) [⌧0, 1) (1, ⌧1] (⌧1,1)

H0 strong faithful weak faithful weak misleading strong misleading
H1 strong misleading weak misleading weak faithful strong faithful

reasonable doubt". The issue is considered by Egeland et al. (2006), who reports

a different proposal for the posterior probabilities required for identification and

states that the figure 0.9973 corresponds to a threshold introduced by Essen-Möller

(1938) to consider a paternity as practically proved. We stress that ⌧0 and ⌧1 are

dependent on the prior probabilities, which are the initial state of uncertainty and

the required posteriors representing the final stage of (uncertain) knowledge at

which the analysis aims. Both probabilities must be ascertained by the person

who is in charge of taking a decision about the identification trial.

For the evaluation of the system, the distinction between strong and weak ev-

idence is helpful. Evidence producing LR 2 [⌧0, ⌧1] is considered weak since it

updates the prior probabilities to a level below the judge’s requirement for poste-

riors. On the other hand, evidence producing LR 2 [0, ⌧0) [ (⌧1,1) is classified

as strong evidence and leads to a decision. A high probability of faithful evi-

dence, especially if it is largely strong faithful, ESF , indicates highly satisfactory

performance. Also the distinction between strong and weak misleading evidence,

ESM and EWM , is meaningful. Finally note that the popular exclusion proba-

bility (Buckleton et al. (2005)) corresponds to Pr(LR = 0|H0) and the evidence

producing the exclusion is a part of the strong faithful evidence when H0 holds.

Finally, please note that it is well known that, if H0 holds, it is always true
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that:

E(LR(XC)|H0) =
X

xC2XC

Pr(xU ⌘ xC |xF+ , H1)

Pr(xC |H0)
Pr(xC |H0) = 1,

i.e. the probability to get some LRs values favouring the wrong hypothesis is

always positive, except in the trivial case when all the probability mass is con-

centrated in 1. The fact that misleading evidence is unavoidable motivates our

approach which keeps under control the probabilities of its occurrence.

4.5 Alternative approaches for the evaluation

During these years of research activity, also other approach to the identifi-

cation system evaluation have been explored, among whom the most interesting

are those based either on information theory or on decision thoery. In the next

two paragraphs these techniques will be briefly revised, even if they will not be

employed when we will discuss applied cases in Chapter 6.

4.5.1 Information theoretic approach

Information theory (Shannon (1948)) is a branch of applied mathematics and

computer science involving the quantification of information. A key measure of

information is known as entropy which is a measure of the amount of uncertainty

associated with the value of a discrete random variable, X. In other words, entropy

is a measure of how much the probability mass is scattered over different states.

Thus, let p(x) be the probability mass function of X, then

H(X) = �
X

x2X
p(x) log p(x)
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is its entropy. Maximum entropy, log(m), is therefore achieved when X takes m

distinct values each with probability 1/m, while minimum, 0, is obtained when

one single state gets probability equal to 1.

If, instead, two discrete random variables, X and Y , are considered, one can

calculate the joint entropy, that is

H(X,Y ) = �
X

X ,Y
p(x, y) log p(x, y),

or may be interested in knowing the value of uncertainty when one variable (say

Y ) becomes known. This is called conditional entropy and its formulation is

H(X|Y ) = �
X

X ,Y
p(x, y) log p(x|y).

Starting from the different kinds of entropies introduced above, we are able

to derive one of the most useful measure in information theory. Mutual informa-

tion, in fact, measures the amount of information that can be obtained about one

random variable by observing another. If variables X and Y are considered, it is

indicated with I(X;Y ) and its formulation is

I(X;Y ) =

X

X ,Y
p(x, y) log

p(x, y)

p(x)p(y)

= H(X)�H(X|Y ),

i.e. the mutual information criterion is the gain in the amount of information due

to the knowledge of Y . An important property of mutual information is symmetry,

meaning that I(X;Y ) = I(Y ;X).

The application of information theory for identification purposes was adopted
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in a paper by Lauritzen and Mazumder (2008) and in Muzumder’s PhD thesis

(Mazumder (2010)) to assess the informativeness of genetic markers in kinship

identification. A similar approach can be of interest for our purposes. Let F be

the set given in Section 4.1.1 and let H = {H0, H1} be the set of the possible

alternative hypotheses, then applying the mutual information criterion we can

define the mutual information as

I(H;XF ) = I(XF ;H) =

=

X

H2H

X

xF2XF

Pr(xF , H) log

Pr(xF , H)

Pr(xF )Pr(H)

=

=

X

H2H

X

xF2XF

Pr(xF , H) log

Pr(xF |H)

Pr(xF )
=

=

X

H2H

X

xF2XF

Pr(xF |H)Pr(H) log

Pr(xF |H)

Pr(xF )
=

=

X

H2H
Pr(H)

X

xF2XF

Pr(xF |H) log

Pr(xF |H)

Pr(xF )
, (4.18)

hence I(H;XF ) is the measure of the information gain on H supplied by XF .

Alternatively, mutual information can be calculated as the difference between

the entropies of H and H|XF ,resulting in

I(H;XF ) = I(XF ;H) =

X

xF2XF

Pr(xF )
X

H2H
log(Pr(H|xF ))Pr(H|xF )�

X

H2H
log(Pr(H))Pr(H).

As it appears, this proposed measure is not case-specific since all the family

members are considered unobserved so that (4.18) provides a single measure for

both hypotheses averaging with respect to the prior probability for H.

For our purposes, i.e. conditionally to the available familial genetic evidence,
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i.e. F+, (4.18) becomes:

I(H;XC |xF+) =

X

H2H
Pr(H)

X

xC2XC

log

⇣Pr(xU ⌘ xC |xF+ , H)

Pr(xC)

⌘

Pr(xU ⌘ xC |xF+ , H).(4.19)

Considered as the expected utility of an experiment, I(H;XC |xF+) first com-

putes the divergence between the distribution of XC for each hypothesis, and the

"average" model Pr(xC) = Pr(xC |H0)Pr(H0) + Pr(xC |xF+ , H1)Pr(H1); then it

averages the results according to the prior probabilities on H.

The proposal is attractive, but the unavoidable dependence on the prior prob-

abilities of H could be problematic since in a trial it could be not possible to reach

an agreement among the parties. At the same time this result could not be easily

perceived in a Court because what really matters the judges is the loss represented

by the probability the identification system provides support against an hypothe-

sis if it is actually true. Furthermore, also the use of the marginal probability on

XC (i.e. Pr(xC)) can be confusing and/or poorly attractive. For these reasons,

as in Berger (2000), we propose to use the conditional approach to derive the LRs

distributions and to evaluate the system in a frequentist fashion, computing the

probability to observe LR values when H0 and H1 are assumed to be true.

An historical excursus concludes this section. Before information theory was

developed by Claude E. Shannon, Alan M. Turing, in some unpublished works

(as accounted by Good (1979)), was the first to consider the expected values of

the log(LR), i.e. the logarithm of the updating factor in (4.7), as the funda-

mental quantity to measure the value of an experiment devoted to compare two

hypotheses.
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For kinship identification, for one locus, the expected log(LR)s are:

E(log(LR)|H1) =
X

xC2XC

log

⇣Pr(xU ⌘ xC |xF+ , H1)

Pr(xC |H0)

⌘

Pr(xU ⌘ xC |xF+ , H1)

(4.20)

E(log(LR)|H0) =
X

xC2XC

log

⇣Pr(xU ⌘ xC |xF+ , H1)

Pr(xC |H0)

⌘

Pr(xC |H0), (4.21)

which can be easily generalized to more loci by (4.12). Obviously an identification

system should provide large (� 0) and small (⌧ 0) values for (4.20) and (4.21),

respectively.

Elsewhere Good (1985) emphasized the importance of the entire distribution of

the log(LR), which is related to the mutual information criterion (e.g. Cover and

Thomas (2006)) and originally applied to the design of an experiment by Lindley

(1956).

4.5.2 Decision theoretic approach

Another approach for the evaluation of an identification system relies on sta-

tistical decision theory. Decision theory in economics, mathematics, and statistics

is concerned with identifying the uncertain variables and other issues relevant in

a given decision, its rationality, and the resulting optimal behaviour. Here only

the very essential concepts of decision theory will be introduced and employed.

The decision theoretic framework has been applied in the field of forensic DNA

analysis by Taroni et al. (2007). To evaluate the system by a decision analysis we

need to define the following quantities:

• Decisions. Consider the possibility to choose among n identification sys-

tems, differing for some characteristics, and devoted to cope with a specific

identification problem. The decision consists in choosing among the alter-
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natives D = {d1, . . . , dn} indicating the system to use.

• Outcomes . The LR distributions, one for each identification hypothesis,

are the uncertain outcomes. They vary according to the system employed.

• Consequences. Each possible value of the outcome, LR = j or simply LRj ,

jointly with a decision di produces a consequence Cij . For instance, differ-

ent systems may require different laboratory activities and costs, leading

to different consequences for the same LRj . Here costs related to different

decisions are considered negligible with respect to the matter implied in an

identification. For this reason consequences simply coincide with LRs.

• Utility or loss . Consequences, conditionally to the hypothesis assumed to

hold, can be measured by using an utility, u(LRj |Hz), or a loss function

l(LRj |Hz), z 2 {0, 1}.

In this decision theory framework the final decision is strictly connected with

the fundamental aim of the evaluation: to effectively classify among alternative

hypotheses.

In the following we describe two aptitudes, relevant in identification and con-

cerning the evaluation of consequences. We define as Problem-solver aptitude that

of an actor who eminently appreciates systems strongly supporting the identifi-

cation hypothesis assumed to hold. The same value of utility is attributed to all

the LRjs strongly supporting the holding hypothesis. On the opposite no utility

is attributed to the other LRjs. The proposed utility functions, also represented

in Figure 4.2), are

u(LRj |H0) =

8

>

<

>

:

1, if LRj  ⌧0,

0, if LRj > ⌧0,
(4.22)
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and

u(LRj |H1) =

8

>

<

>

:

0, if LRj < ⌧1,

1, if LRj � ⌧1.
(4.23)

Figure 4.2: Utility functions under H0 a) and H1 b), for the problem solver aptitude.

Alternatively, the Conservative aptitude is that of individuals mostly alarmed

by the possibility the system produces false identifications. Since the pessimistic

aptitude, consequences are measured by a loss function. The proposal, also rep-

resented in Figure 4.3, is

l(LRj |H0) =

8

>

<

>

:

0, if LRj < ⌧1,

1, if LRj � ⌧1,
(4.24)

l(LRj |H1) =

8

>

<

>

:

1, if LRj  ⌧0,

0, if LRj > ⌧0.
(4.25)

To define the thresholds one can refer to those defined in Section 4.4.3: if a

single ⌧ = 1, is used (collapsing the previous two in ⌧0 ⌘ ⌧1 ⌘ ⌧), this value
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Figure 4.3: Loss functions under H0 a) and H1 b), for the conservative aptitude.

splits the LR support in two regions, one favouring H0 (⌧ < 1), the other H1

(⌧ > 1). Other, perhaps more meaningful, thresholds can be specified considering

the behaviour of the actors involved in the system evaluation.

More specifically, the Judge is the person called to decide about the identifi-

cation controversy: their prior probabilities on the identification hypotheses, and

the posteriors required to assume a decision about the identification, can be used

to define the thresholds. Once these probabilities have been elicited, then the

evaluation of ⌧0 and ⌧1 in (4.22 - 4.25) is reached by using (4.7), having previously

specified the requirements for a decision. Finally, two other parties have interest

in assessing the value of the system: those favouring identification (pro-id) and

those against (con-id). Their role suggests reasonable prior probabilities on H.

Since the pro-ids believe that C ⌘ U , their prior probabilities could be close to

Pr(H0) = 0 and Pr(H1) = 1. The con-ids strongly believe that C 6⌘ U , so their

prior probabilities could tentatively be Pr(H0) = 1 and Pr(H1) = 0. To easily

convey the concept with a simple example, in a paternity case the mother could

wish the candidate to be identified as the father of the baby; the alleged father

might desire the opposite and a judge wants to provide a fair sentence.

The aim of a decision analysis is to compute the expected utility and/or loss
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conditionally to each di through:

E(u|di) =
X

z2{0,1}

X

j2LR
u(LRj |Hz) · Pr(LRj |di, Hz) · Pr(Hz), (4.26)

E(l|di) =
X

z2{0,1}

X

j2LR
l(LRj |Hz) · Pr(LRj |di, Hz) · Pr(Hz), (4.27)

and to maximize (4.26) or minimize (4.27) choosing among the available decisions.

The expected loss and utility vary according to the parties since their different

prior probabilities on H. The pro-ids actually consider only the case in which the

LR distribution is expressed conditionally on H1 (Figure 4.2b and Figure 4.3b).

The con-ids only take account of the distribution of LR|H0, as shown in Figure

4.2a and Figure 4.3a.

In this proposal the expected loss and utility evaluated for the parties are

easily interpretable. If we choose ⌧ = 1 and the problem-solver attitude, the

expected utility amounts to the probability the system supports H1 (pro-id), H0

(con-id) and average of them (Judge) when the hypotheses hold. Conversely,

if the conservative attitude is assumed, the expected loss is the probability the

System supports the hypotheses when they are not actually true. Alternatively,

if ⌧0 and ⌧1 are specified, the expected utility and loss are, respectively, equal to

the probability of false and correct identification according to the decision rule on

which ⌧0 and ⌧1 are chosen.

The proposed loss and utility functions are an extreme version of more realis-

tic and smooth alternatives, but they have the merit to produce expected values

of the utility and loss functions interpretable in term of the probability of some

meaningful regions of the LR distributions, for example establishing a connection

between the obtained losses and the probability of getting misleading results us-
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ing the system. Attempts to combine them inevitably would obscure important

characteristics of the system.

4.6 Summary

In this Chapter we have presented the very fundamental aspects of our re-

search. In the first part we detailed the logic and the main aspects behind kinship

analysis, also introducing the relevant mathematical notation; then we focused

on the method used to easily obtain the likelihood ratio based on the available

evidence.

Then the segregation and population models, already introduced in Sections

2.3 and 3.1, are detailed to cope with model refinements due to mutations, coances-

try and uncertainty in allele frequencies, replacing the baseline assumptions of

Hardy-Weinberg equilibrium and mendelian segregation.

The evaluation of an identification system is pursued in a pre-experimental

phase in which some evidence, the one from the so called candidate to the iden-

tification, is unavailable or masked. The LR distributions under the alternative

identification hypotheses are thus obtained and, on the basis of them, we gave a

probabilistic assessment of the potentialities of a kinship identification system.

Finally we gave two alternative approaches to assess the value of an identifica-

tion system either using information theory concepts or Bayesian decision theory

techniques. Although promising, they both have the drawback to be difficult to

be perceived and interpreted in a court.



CHAPTER 5

Computational aspects

For the purposes of our research, the probabilistic evaluation of an identification

system, one very fundamental aspect is the ability to get the likelihood ratio

distributions conditionally on both the identification hypotheses, for a specific case

of interest, as explained in Section 4.4.2. Even if this may appear a simple task,

it is not trivial instead. In fact, as fast more detailed models refine the analysis,

it becomes more and more difficult to handle the huge state space an individual

genetic trace, and hence the LR, can possibly assume.

In this Chapter we therefore provide some original contributions in the field

of approximated methods in order to get rid of the computational complexity and

finally to obtain the distributions of interest not relying on simulations, but rather

on approximations.

69
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Furthermore we will illustrate the software we used to implement the proposed

methodology, especially focusing on how to build Bayesian networks to model the

genetic information of a pedigree, also handling features of the models detailed in

Section 4.3.

5.1 Computational strategies

The main computational issue is to obtain the LR distributions for all the loci

jointly considered, when H0 and H1 respectively hold. The task can be usefully

pursued in two steps.

First of all, for each locus we need to efficiently derive the LR distribution

conditionally to each hypothesis. This first step is presented in Section 5.1.1.

The second step consists in deriving the LR distributions for each possible

arrangement of the genotypes on different loci and we will detail how to do this

in Section 5.1.2.

5.1.1 LR single locus computations

For each locus we need to efficiently derive the XC distribution conditionally

on each hypothesis, following the population and the segregation models appro-

priate to the case. By the ratio of the probabilities of each possible state of XC ,

conditionally on H0 and H1, we can derive the possible values assumed by the LR

for each locus. The LR distributions are derived assigning to each LR value either

the probability given by Pr(XC |H0) or that from Pr(XC |xF+ , H1), according to

which hypothesis is assumed to hold, which can be obtained from equations (4.13)

and (4.14) of Section 4.4.2.

Since, as seen in Section 3.1, a Bayesian network can easily address the prob-
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abilistic structure of an identification problem, we settled up BNs appropriate for

the cases, taking into account the segregation and population models described in

Section 4.3.

5.1.2 LR multi locus computations

The second step is to derive the LR distributions for each possible arrangement

of the genotypes on different loci. The most immediate but naive way to obtain

the LR distributions is by exact computation. The LR support, for all the loci

considered altogether, is derived by applying (4.12), and then their distributions

under H0 and H1 are obtained using (4.13) and (4.14).

Unfortunately, exact computations produce a number of LR values exponen-

tially increasing according to the number of genotypes for each locus, so that the

LR sample space rapidly becomes intractable. For example, if 15 loci in a kit are

considered, all of them with allelic ladder of length 10, the resulting size of the

genetic profiles state space, and thus that of the LR, is |LR| =
⇣

10(10 + 1)

2

⌘15
=

1.2748⇥ 10

41.

LR equivalence classes

Not all the LRs induced by every possible genetic trace assumed by the Candi-

date are different. Consider for instance the case provided in Appendix A, where

a DNA donor posed on the direct lineage n generations far from U , is attempting

the identification of a candidate. In this case, by (A.1), the number of differ-

ent LR values in a locus is three or six, depending on whether the donor in F+

is homozygous or heterozygous, so it does not depend neither on the number of

possible alleles in the locus nor on n. This implies that we are not required to

consider as many LRs as the number of possible different candidate’s profiles, but
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the LR distributions can be obtained summing up the probabilities of the profiles

producing the same LR. For this reason, these profiles constitute an equivalence

class. For identification cases differing from the one detailed in Appendix A, the

reduction in complexity can be obtained numerically by aggregating the identical

LRs obtained for each locus.

LR quasi-equivalence classes

The strategy outlined above does not introduce approximations of the LR dis-

tributions, but it could not downsize |LR| to a tractable dimension. A possibility

for going further is to use a form of approximation treating profiles producing

very close LR values as belonging to the same equivalence class. Here we con-

sider the issue of obtaining a reduced LR size along with the evaluation of the LR

distributions’ approximation accuracy.

We decided to adopt the following rule, ordaining that the jth and j + 1th

ordered LRs are collapsed if

�(j) =
LR(j+1) � LR(j)

LR(j)
< "

where " is related to the amount of downsizing and to the approximation accuracy.

To produce the LR distributions, calculations are performed by considering the

loci iteratively. At every iteration a new locus is added, thus increasing the state

space. By applying this rule at every step we can contrast the induced size growth.

To control the approximation accuracy issue, consider that if two LRs are

merged, their values are substituted by a unique LR⇤ obtained by specifying f(·, ·)
in

LR⇤
(j) = f

�

LR(j+1), LR(j)

�

. (5.1)
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The LR⇤ distributions are obtained by summing up all the probabilities of

the profiles included in the quasi-equivalence classes evaluated according to each

hypothesis.

Furthermore, to achieve a given desired accuracy, consider that if

f(·, ·) = max
�

LR(li)(j+1), LR(li)(j)
�

,

then

Pr(LR⇤
max

> ⌧) � Pr(LR > ⌧) 8⌧.

If f(·, ·) = min
�

LR(li)(j+1), LR(li)(j)
�

, then:

Pr(LR⇤
min

< ⌧) � Pr(LR < ⌧) 8⌧.

This implies that:

Pr(LR⇤
max

< ⌧)  Pr(LR < ⌧)  Pr(LR⇤
min

< ⌧)

and

Pr(LR⇤
min

> ⌧)  Pr(LR > ⌧)  Pr(LR⇤
max

> ⌧),

i.e., the LR⇤
min

and LR⇤
max

distributions are the upper and lower bounds determin-

ing an interval surrounding the probability of the required subset of LR values.

The approximation accuracy can be measured by the relative difference between

the two probability approximations and the reduction in complexity is the relative

difference between the size of LR and of LR⇤.
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5.2 Software

We decided to implement all the algorithms in a general purpose program-

ming language and we chose MATLAB R�, which has shown excellent performance

in terms of flexibility and computational times. There are many useful toolboxes

that can be added to the MATLAB R� core to expand its features. We used one of

these toolbox, the Bayes Net Toolbox (BNT) for MATLAB R� developed by Mur-

phy (2001), to built appropriate Bayesian networks directly into the MATLAB R�

environment.

The Bayes Net Toolbox is open-source, free of charge, and supports many

different models and inference algorithms. For this latter aim, conditional on the

parameters, inference of the variables can be performed exactly using the junction

tree algorithm.

For our purposes, the main advantage of the BNT is that it is able to easily

return the complete conditional probability distribution on any variable of interest

with just one propagation step for every locus considered. This greatly benefits

the feasibility of the analysis.

Other computational resources

There are many computer programs for computing the likelihood ratio in kin-

ship analysis. Drábek (2009), for example, reviews and tests Familias and DNA-

ViewTM . Familias derives the probability of the observed evidence marginaliz-

ing the unobserved individuals in the pedigrees by means of the peeling algo-

rithm (Lauritzen and Sheehan (2003)); DNA-ViewTM obtains the same result al-

gebraically as a function of the parameters required by the population and segre-

gation models which are used. DNA-ViewTM is also able to simulate the genetic
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traces for a specific individual in a pedigree. Unfortunately, the software does not

provide any tool with which to assess the convergence of the simulated distribu-

tions, nor provide any control on the accuracy.

A version of Familias, called OpenFamilias, written as an R package, allows to

use, within an R shell, all the facilities of Familias, manipulating the intermediate

results. To use OpenFamilias for our computations a possible strategy would be to

call repetitively the getProbabilities function, devoted to obtaining the probability

of the evidence, considering at each run a different genotype for the candidate.

This procedure is feasible, but it is not efficient and fails to exploit the Bayesian

networks’ ability to derive the distribution of the candidate genotypes according

to each hypothesis by a single propagation step.

5.3 Bayesian networks

In this Section we will shortly present and display the relevant Bayesian net-

works we built to cope with the models described in Section 4.3. We refer to the

pedigree represented as genotype network in Figure 3.4. Each of the networks that

will be given describes the kinship structure for a single locus: distinct loci require

distinct networks, but these will differ only in the details of the alleles’ population

frequencies, which can easily be changed.

Note that here the distinction between the solid and dashed nodes is purely

for presentational purposes and has no practical effect on the analysis. This serves

only to distinguish between nodes representing genotypes, which are in principle

observable (displayed with solid lines), and nodes for other variables (depicted

using dashed lines).
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Figure 5.1: Bayesian network for the trio in Figure 3.3.

In Section 4.3 we called baseline models those representing the simplest bi-

ological mechanisms behind allele frequencies in the population and segregation

processes. Both mendelian law of segregation and Hardy-Weinberg equilibrium

can be handled by the Bayesian network in Figure 5.1. Subscripts ma and pa re-

spectively stand for maternal allele and paternal allele, i.e. the two alleles making

the genotype of an individual from the population, this latter indicated by the

subscript gt.

Conditionally on the alleles, the distributions of which depend on their fre-

quency in the population, the genotype is obtained deterministically. Then, with

equal probability, one of the two allele of the parental genotype is selected to be

transmitted (subscript ta) and it is passed to the child with no mutation process.

Coancestry

To handle the sub-population structure induced by coancestry it is sufficient

to modify the Hardy-Weinberg equation, (2.2), including a new parameter F as in
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equation (2.3) of Section 2.3.2. Recalling from Section 4.3.2, F is the probability

that an individual receives two copies of the same allele transmitted by the same

ancestor. If an extra node pointing to the genotype node of an individual (as the

node F in Figure 5.2 that is a parent node for the genotype of a generic person I)

is added to our Bayesian network, then it is possible either to consider different

values for it, each one associated with a certain prior probability, or to consider a

degenerate distribution assigning the entire probability to a value of interest. As

stated in Section 4.3.2, in our applied cases we will adopt this latter strategy and

consider F = 0.02.

The structure depicted in Figure 5.2 must obviously be replied for every person

involved in the network.
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Figure 5.2: Bayesian network for coancestry.

Mixed mutation model

In Figure 5.3 the Bayesian network for the mutation process induces by the

mixed mutation model of Section 4.3.1, for the paternal inheritance lineage, is

shown. Since the mutation mechanism, there the child paternal allele (Cpa) can

be in turn a mutated version (Fmut) of the father’s transmitted allele (Fta) or a

copy of it. The node labelled with mut? rules these options, assigning probability

µp to the earlier case and 1 � µp the the latter. Finally the value of Fmut is
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obtained either as a result of a one step mutation (1step node) or as the outcome

of a proportional mutation (handled by node prop, the probability distribution of

which is that of the associated allele in the population), mixed with weight given

by the h node.

An analogous network can be settled up for the segregation process of the

maternal lineage.
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Figure 5.3: Bayesian network for the mixed mutation model.

Uncertain allele frequencies

The Bayesian network structure to model uncertainty in allele frequency is

depicted in Figure 5.4. There, node M represents the parameter of the same

name (representing the size of the allele database once the familial evidence has

been considered) given in Section 4.3.2 while talking about the UAF model. Then

the four paternal and maternal genes of the individuals in the pedigree (Fma, Fpa,

Mma and Mpa) are either a random draw from the population (the pool nodes) or a

copy from the previous ones. Binary d and temp nodes have only an instrumental

role, avoiding gene nodes’ space state growth. Finally, nodes representing founding

genes are then connected to those for the genotypes and the segregation mechanism

given in the previous paragraphs.

More details and the pseudo-code for this Pòlya Urn scheme can be found in
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Figure 5.4: Bayesian network for the uncertain allele frequency model.

the original paper by Green and Mortera (2009).

5.4 Summary

In the first part of this Chapter we presented some relevant findings of our

research in terms of computational strategies to cope with the high dimensional

space of the LR distributions. We showed how to build approximation methods

to shrink the state space of the genetic trace of an individual, thus obtaining the

whole LR distributions without the need to use simulation methods.

In the, brief, second part of the Chapter we made clear what pieces of software

we used for this work, also mentioning some alternative computational resources

and the reasons why we did not make use of them.

Finally we showed the Bayesian networks built to treat models introduced in
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Section 4.3. We stressed the role of the more relevant nodes appearing in the

figures and gave a practical demonstration on how an identification problem can

be easily described by exploiting the conditional independence relationships of a

Bayesian network.



CHAPTER 6

Applied cases

In this Chapter we first describe how the LR distributions can vary within and

between some archetypical identification issues by reviewing 71 real cases we

have come across in the last ten years, since the start of our collaboration with

the IOM. We experimented a great variety of systems’ behaviours, depending on

the kind of kinship analysis, on the kind and number of evidences considered and

on the alternative hypotheses investigated.

After that, we will give further details about four interesting cases, also showing

the sensitivity of the results to the model assumptions, and whether the cases need

to be improved by including new familial evidence and/or more loci.

81
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6.1 Cases review

Here we re-examine 71 of the cases we treated in our collaboration with the

IOM. For each case, we performed a system evaluation from the pre-experimental

perspective under the probabilistic approach we advocated in Section 4.4. We will

see that this activity could have revealed in advance the low effectiveness of some

identification systems in achieving decisive findings.

The 71 cases, classified with respect to the specific identification issue, are

summarized in Table 6.1, which gives the ranges of probabilities of faithful ev-

idence conditionally on both hypotheses for all the cases included in each class

of kinship. The 71 cases were treated without altering the systems used at the

time they have been originally considered, and the results were obtained assuming

HW equilibrium and Mendel’s law to hold. The classification on the identification

issues is structured in the following manner:

• Full Paternity: a mother and her child try to recognize a man as the father,

the alternative being that this man is a generic person from the reference

population;

• Motherless Paternity As before, but the mother’s genetic data are not

available;

• Full Sibling I: a person tries to identify a candidate as a full sibling, the

alternative being that the candidate is an unrelated individual;

• Full Sibling II: as above, but the alternative hypothesis claims that the

two individuals are half siblings;

• Half Sibling: the candidate is supposed to be the half sibling of the sponsor,

or, alternatively, to be unrelated;
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Table 6.1: Ranges of observed Pr(EF |H0) and Pr(EF |H1) in 71 kinship cases.

Class of kinship n Pr(EF |H0) Pr(EF |H1)

Full Paternity 25 (0.99997 - 1) (0.99999 - 1]
M.less Paternity 15 (0.9997 - 0.9999) (0.99999 - 1]
Full Siblings I 6 (0.9571 - 0.9713) (0.9605 - 0.9902)
Full Siblings II 7 (0.8702 - 0.9195) (0.8521 - 0.8889)
Half Siblings 9 (0.8460 - 0.9368) (0.8398 - 0.9474)
Uncle-Nephew 6 (0.8359 - 0.9015) (0.8308 - 0.8838)
G.parent-G.child 3 (0.8323 - 0.8606) (0.8503 - 0.8694)

• Uncle - Nephew: an uncle tries to identify a person as his nephew, being

alternatively an unrelated individual;

• Grandparent - Grandchild: the candidate can be either the grandchild

of the sponsor or an unrelated individual.

Table 6.1 shows the clear dependence of the system performance on the class of

identification. Paternity cases originate almost perfect classifiers when a mother

and a child try to identify an alleged father and also when the mother’s genetic

data are not available. This is reassuring since these are the most common kinds

of identifications. Kinship analyses implying siblings show more variation. For

the issue considered by Full Sibling I, the range of probability of observing faithful

evidence declines compared to paternity cases, and if the hypotheses become closer

(Full Sibling II), the system performance further decreases appreciably. Results

for the Half Sibling class show that these cases produce much less satisfactory per-

formance. Finally as expected, for Uncle–Nephew and Grandparent–Grandchild

cases, the results belong to the lowest class of performance and support our claim

that the less is the degree of relatedness between the family member(s) who re-

quire the identification and provide their DNA, and the hypothesized position in

the pedigree of the sought for individual, the less reliable is a strategy of identifi-
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cation based on standard procedures.

6.2 Some cases detailed

In this section we give more details about the LR distributions of some cases,

and also verify the effect of including new evidence and assess how sensitive the

results are to modifications of the model assumptions.

All the cases involve Italian individuals, thus allelic frequencies referring to

the Italian population are from Brisighelli et al. (2009). Mutation rates comes

from AABB (2008), but they are further corrected for "hidden mutations" in

the way we will present in Chapter 7. The results are displayed considering the

apportionments of the LR support introduced in Section 4.4.3 and showing some

relevant Tippet plots when the case is judged to benefit of this representation. The

values of ⌧0 and ⌧1 are derived keeping in mind the following scheme: Pr(H0) =

Pr(H1) = 0.5 are the prior probabilities and the posterior probabilities are equal

to 0.9933. As a consequence, by equation (4.7), ⌧0 = 0.00675 and ⌧1 = 148.254.

The approximation accuracy has always been achieved at a value of "  0.0005.

When coancestry is considered, the parameter F = 0.02 is adopted in Equation

(2.3). Case specific genetic data are included in Appendix B of this thesis.

For cases representation we used genotype networks (cfr. Section 3.1): ob-

served variables are represented with solid-lined nodes while unobserved variables

with broken-lined nodes.

A Motherless Paternity case

A man, B, would like to assess his father’s identity. He has serious reasons to

believe he is the son of AF (the Alleged Father) who died some years ago. B has no
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information about his mother, consequently her genetic evidence is not available.

Before exhuming AF , to give some indications about the reliability of the system

and using data on B, we obtained the LR distributions evaluated according to the

hypotheses specified below, also graphically shown by means of genotype networks

in Figure 6.1.

• H0: AF and B are not recently related;

• H1: AF is B’s father.
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Figure 6.1: Motherless Paternity case - genotype networks under H0 and H1.

Looking at Table 6.2, it is apparent that the LR distributions concentrate

almost all of the probability on LR values strongly supporting the hypothesis sup-

posed to hold. Moreover, the results are almost insensitive to model’s variation

by either introducing uncertainty in the allele frequencies, or the mixed mutation

model, or allowing for coancestry. Hence any system used for this identification

has satisfactory characteristics and can be accepted without any modifications.

The same conclusions can be derived looking at the whole LR distributions ob-

tained for the system allowing for the largest number of sources of uncertainty

(COA&MMM) and shown in Figure 6.2: it is impressive to note that under both

hypotheses, there is no appreciable probability outside the strong faithful regions.
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Figure 6.2: Motherless Paternity case - Tippett plot for ln(LR) distributions allowing
for coancestry (COA) and Mixed Mutation model (MMM).

A Full Sibling II case

For reasons concerning transplant compatibility, a man, F1, would like to eval-

uate whether one of his brothers, FX , sharing the mother with him and with two

other brothers, F2 and F3, also has the same father. The issue arose because in the

past there had been some rumours about this matter and the parents died some

years ago. Before confessing his doubts to the brothers, F1 wants to verify the

effectiveness of a system using his genetic evidence only. The relevant hypotheses

are specified below and depicted in Figure 6.3.

• H0: F1 and FX are half brothers;

• H1: F1 and FX are full brothers.

In Table 6.3, the first two rows answer the question posed by F1, introducing

only his genetic evidence. As it is apparent, there is a large difference from the

results shown in Table 6.2: now, for instance, conditionally on H0 the probability

of getting misleading evidence is around 10% and the probabilities of strongly

support the correct hypotheses are not very large, being about 10%, if FX and F1

were half brothers, and 30%, if they were full brothers.
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Table 6.2: Motherless Paternity case - LR distributions obtained using combinations of
models.

LR
Models [0, 0.0067) [0.0067, 1) (1, 148.25] (148.25,1)

HW & ML H0 0.9997 0 0.00002 0.00029
H1 0 0 0.0019 0.9981

HW & MMM H0 0.9951 0.0033 0.0011 0.00029
H1 0.00001 0.0006 0.0085 0.9909

UAF & ML H0 0.9997 0 0.00004 0.00031
H1 0 0 0.0032 0.9968

COA & ML H0 0.9997 0 0.00003 0.00028
H1 0 0 0.0025 0.9975

COA & MMM H0 0.9955 0.0032 0.0011 0.00026
H1 0 0.0005 0.0079 0.9916

To realize an enhanced system, F1 asked F2 to provide his genetic evidence.

The results are in rows 3–4 of Table 6.3: there is a large increase in Pr(ESF
)

and the probability of obtaining misleading evidence is reduced to 2% for both

hypotheses, and is negligible for being strongly misleading. Later, since the story

filtered through the family, F3 provided his genetic contribution to the case: now

the system not only contemplates faithful LR values almost with certainty, but

it also contributes with high probability to reach high posterior probabilities for

both hypotheses, whichever of them holds. Looking at the Tippett plots for ln(LR)

distributions under both hypotheses in Figure 6.4, we have a full display of how the

identification system reacts to the addition of evidence. Under H1, the probability

of observing misleading evidence becomes smaller and smaller as long as new

evidence is introduced. Under H0, if two or three brothers are considered, the

probability of faithful evidence under H0 is largely concentrated on very small
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Figure 6.3: Full Sibling II case - genotype networks under H0 and H1 when only F1’s
evidence is available.

Figure 6.4: Full Sibling II case - Tippett plots for ln(LR) distributions for different
amounts of genetic data: a) F+

= {F1}; b) F+
= {F1, F2}; c) F+

= {F1, F2, F3}.

values of the LR distribution, which it is not possible to display in detail even in

the log scale. For the system including F1, F2 and F3 we also verified the limited

influence on the results due to the introduction of the UAF, the mixed mutation

model, and coancestry (lines 7–14 of Table 6.3).

A Two Cousins case

Two people, S and A, allege that they are cousins (in particular, that their

fathers are brothers). If the fact were supported by their genetic evidence, the

immigration of the applicant, A, to the country where the sponsor S already is a

citizen, would be made easier. Because of the alleged weak kinship relationship
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Table 6.3: Full Sibling II case - LR distributions and some different familial evidence
and models.

LR
Evidence Models [0, 0.0067) [0.0067, 1) (1, 148.25] (148.25,1)

F1 HW & ML H0 0.0924 0.8094 0.0976 0.0006
H1 0.0003 0.1216 0.5818 0.2962

F1, F2 HW & ML H0 0.9024 0.0713 0.0255 0.0008
H1 0.00003 0.0145 0.2756 0.7099

F1, F2, F3 HW & ML H0 0.9829 0.0108 0.0058 0.0004
H1 0.000006 0.0023 0.0861 0.9116

F1, F2, F3 COA & ML H0 0.9832 0.0110 0.0053 0.0005
H1 0.000007 0.0023 0.0780 0.9197

F1, F2, F3 HW & MMM H0 0.9648 0.0281 0.0067 0.0004
H1 0.00008 0.0038 0.0923 0.9039

F1, F2, F3 COA & MMM H0 0.9667 0.0268 0.0062 0.0003
H1 0.00008 0.0036 0.0841 0.9123

F1, F2, F3 UAF & ML H0 0.9832 0.0108 0.0056 0.0004
H1 0.000006 0.0023 0.0831 0.9146

between S and A, some doubts arose to the immigration authority about the

ability of the system to treat the case with respect to the following hypotheses

(graphical representation of which is given in Figure 6.5):

• H0: S and A are not recently related;

• H1: S and A are cousins.

At first, the sponsor’s genetic evidence was typed on 13 loci since for two of them

the typing had some laboratory problems. Later, the analysis was replicated to

obtain all 15 loci included in the kit, and, finally, since it was not possible to

get additional familial evidence, another kit was employed to include two more

loci. The results are in Table 6.4. At first glance, the LR distributions appear
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Figure 6.5: Two Cousins case - genotype networks under H0 and H1.

Figure 6.6: Two Cousins case - Tippett plots for ln(LR) distributions for different
amounts of genetic data: a) 13 loci; b) 15 loci; c) 17 loci.

almost totally concentrated in the interval [0.00676, 148.25], i.e. it is very rare

to get strong support to both hypotheses when they actually hold. Moreover,

there is a probability around 25% of getting weakly misleading results if H0 holds,

and around 30% if H1 holds. The probabilities of these unpleasant events only

slightly decrease if more loci are included, but they still persist at a level which

seems too high. Pictorially, the result can be appreciated by looking at Figure

6.6, where, as the number of the loci employed increases, the distance between the

curves becomes slightly larger, testifying to a small increase in the performances

obtained.
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Table 6.4: Two Cousins case - LR distributions apportioned for 13, 15, 17 loci. Hardy–
Weinberg (HW) and Mendelian Segregation (ML) models are considered.

LR
Evidence n. Loci [0, 0.0067) [0.0067, 1) (1, 148.25] (148.25,1)

S 13 H0 0 0.7389 0.2611 0.00005
H1 0 0.3481 0.6409 0.011

S 15 H0 0 0.7493 0.2507 0.00007
H1 0 0.3231 0.6607 0.0162

S 17 H0 0 0.7761 0.2238 0.0001
H1 0 0.2911 0.6800 0.0289

A Stepwise case

A man, B (the candidate), would like to discover his father’s identity. He has

serious reasons to believe he is the son of AF (the Alleged Father), who died some

years ago. To assess B’s paternity consider that AF had a daughter (S) with

his wife M (who is not the mother of B). To avoid the exhumation of AF , S

requested that her own genetic profile should be used. Initially, since M did not

provide her DNA profile, the case was addressed by evaluating the LR according

to the hypotheses specified below:

• H0: B and S do not share recent relatives;

• H1: B is S’s half brother.

Stated in this way the identification procedure clearly deals with one person, S,

who wants to identify her half brother (U). This circumstance only indirectly

implies they share the father. In other words, if the case were merely labelled as a

"paternity test", the very indirect nature of the identification would be obscured.

In this case only the baseline models, i.e. Hardy-Weinberg (HW) as population

model and the Mendelian Laws (ML) as segregation models, are employed, not
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Table 6.5: Stepwise case, first attempt - LR distributions apportioned under Hardy-
Weinberg (HW) and Mendelian Segregation (ML) models.

LR
Evidence [0, 0.0067) [0.0067, 1) (1, 148.25] (148.25,1)

S
H0 0.1647 0.7243 0.1102 0.0008
H1 0.0005 0.1146 0.6830 0.2019

allowing for mutation, coancestry or uncertainty in allele frequencies.

The first attempt (an Half Sibling case) To asses the system’s potential, we

derived the posterior distribution for B’s genotypes according to H0 and H1. The

graphical representations of the BNs able to derive the XB distributions under H0

and H1 are in Figure 6.7.
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Figure 6.7: Stepwise case, first attempt - genotype networks according under H0 and
H1 (only S’s evidence available).

System’s expected performance are quite unsatisfactory. In fact, looking at

Table 6.5, whatever hypothesis is assumed, the system rarely can achieve a definite

result, since the probability of weak evidence is about 0.80 (more precisely, 0.7243+

0.1102 = 0.8345). Moreover, if we consider the partition of the LR support into

the sets [0, 1) and (1,+1), an even more embarrassing result arises. Now the

probabilities to observe evidence not supporting H1 or H0, when they are actually

true turn out to be greater than 11%.
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Table 6.6: Stepwise case, second attempt - LR distributions apportioned under Hardy-
Weinberg (HW) and Mendelian Segregation (ML) models.

LR
Evidence [0, 0.0067) [0.0067, 1) (1, 148.25] (148.25,1)

S&M
H0 0.3079 0.6183 0.7280 0.0010
H1 0.0008 0.0796 0.5165 0.4031

The second attempt (an enhanced Half Sibling case) Later, the system

evaluation was replicated since M was convinced to provide her genetic profile. In

fact, the BNs in Figure 6.8 only differ from those in Figure 6.7 for the observed

node M . The results, provided in Table 6.6, make clear the benefits of such

additional evidence: the probability to observe weak evidence now is reduced to

0.70 if H0 holds, or to less than 0.60 if the identification hypothesis is assumed.

Nevertheless, Table 6.6 shows that the probabilities to observe evidence against

the a hypothesis, when it is in fact true, are still high, being around 8%.
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Figure 6.8: Stepwise case, second attempt - genotype networks under H0 and H1 (S
and M evidences available).

After these attempts it seems sensible to suggest two ways to cope with the

case.

• Make use of more extensive evidence including, if available, the genetic pro-

files of some more family members such as, for instance, the mother of B
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Table 6.7: Stepwise case, third attempt - LR distributions apportioned under Hardy-
Weinberg (HW) and Mendelian Segregation (ML) models.

LR
Evidence [0, 0.0067) [0.0067, 1) (1, 148.25] (148.25,1)

B
H0 0.9997 0.000295 0.000001 0.000004
H1 0.000005 0.000001 0 0.999994

and/or extend the analysis to more loci, like in the Two Cousins case.

• If the previous suggestions cannot be undertaken, another possibility is to

give up the ambition to evaluate the hypothesis of a common father for B

and S without exhuming AF and plan for this latter possibility. Also in

this case it should be useful to know the system expected performances in

advance.

The third attempt (a Motherless Paternity case) Since it was not possible

to follow the first route and since B made his genetic profile available, we consid-

ered the expected performance of the motherless identification system where AF

assumes the role of the candidate to the identification of the father (U) of B, as

is shown in Figure 6.9.
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Figure 6.9: Stepwise case, third attempt - genotype networks under H0 and H1

The performance of this identification system is summarized in Table 6.7. It
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clearly shows that, now, B has the opportunity to carry on with the identification

of his father quite safely. The only drawback is that, unfortunately, AF must

be exhumed, but the analysis itself helps in motivating this choice. The results

obtained in this last attempt are, in our opinion, an example of satisfactory per-

formances.

6.3 Summary

The main contribution of this Chapter is to recognise the large variety of

kinship identification systems related to specific cases. This implies the need to

use different amounts of information to reach satisfactory standards of performance

whose specification must be made clear to all the parties involved. Looking at the

cases reviewed in Section 6.1, it seems reasonable to suggest that systems devoted

to solve paternity cases, whether including maternal evidence or not, generally

have a good level of performance, while other more indirect identification systems

can be fruitfully evaluated with our proposed methodology.

In the second part of the Chapter we have presented a number of cases,

analysing the performance of their identification systems: in some cases, to im-

prove a system, additional genetic profiles from family members and/or an increase

in the number of typed loci have been adopted. Furthermore, in some selected

cases, we managed a sensitivity analysis on the models employed to evaluate the

dependence of the results on such choices. Finally, results are mainly given by

means of the probabilities that the LR belongs to a certain subset of values, but

also graphical representations of the entire distributions using Tippett plots are

given in some cases.
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CHAPTER 7

Mutation rates estimation

This Chapter is one of the results of the period (April-July 2012) I spent

working at the Netherlands Forensic Institute (NFI) in The Hague, The

Netherlands. There I collaborated with people belonging to the Human Biologische

Sporen (Human Biological Traces) team, especially with Klaas Slooten, in some

projects on mutation rates and mutation models, with special attention to the

application of these issues to Disaster Victim Identification (DVI) cases.

The results of this collaboration are a mid-term ongoing project on the DVI

topic and a paper (Slooten and Ricciardi (2012)) on mutation rates estimation,

the main aspects of which will be described here.

97
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7.1 Introduction

We want to investigate the estimation of mutation probabilities for autosomal

STR markers focusing on those currently employed in paternity testing and foren-

sic DNA kinship analysis. It is well known that the estimation of these probabilities

is made difficult by the fact that mutations do not always lead to a genetic incon-

sistency (i.e., the mutation is not visible from the observed genotypes) and since

the parental origin is not always deducible by looking at the genotypes: it may

become clear that a mutation must have happened in order to allow parenthood,

but not from which parent.

Here we focus on a generalization of the first of the above phenomena, the

hidden (sometimes also called covert) mutations. The fact that mutations may

not lead to genetic inconsistencies is well-known: in Chakraborty et al. (1996) the

probability to underestimate the true mutation rate due to this fact is derived alge-

braically. The authors show that the expected bias is a decreasing function of the

number of alleles at a locus. In other words, the underestimation is smaller for the

loci where mutation rate is higher and vice-versa. In a more recent work, Vicard

and Dawid (2004) discerned and corrected a subtle error in the previous analysis.

The probability to observe an incompatible triplet of genotypes for mother, father

and child is thus:

pr(I) =
K
X

i=1

µi(1� pi)
2
+

X

i 6=j

µi[j]pipj(1� pi � pj)
2

where K is the length of the allelic ladder for the considered locus and µi[j] is the

conditional probability of a (paternal) gene mutating into allele i, given that it

is initially neither i nor j. In Appendix C we will give a different, and shorter,

derivation of the latter formula. Brenner (2004) described the results of a simula-
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tion study of the same phenomenon, naming a mutation that does not lead to an

inconsistency a covert mutation.

Mutations on the STR markers consider (almost) always the gain or the loss of

a certain number of repeat units. If d such units have been lost or gained, we call

the mutation a d-step mutation and d is the distance of the mutation. It is also

acknowledged that the, by far, most common mutations are 1-step mutations, and

that mutations become less likely as the mutational distance increases. However,

if a d-step mutation has occurred from (say) father to child, then by looking

at the genotypes of father, mother and child, it may be possible to explain these

genotypes by a k-step mutation with k < d (if k = 0, then the mutation is hidden).

For example, suppose a confirmed father’s genotype is (11,12) whereas the child

has (9,10), then there are four mutational events that could had happened: a one-

step mutation 11 ! 10, a two-step mutation 11 ! 9 or 12 ! 10, and a three-step

mutation 12 ! 9. Consistently classifying mutations as the shortest possible one

(in this case 11 ! 10) leads to a bias towards shorter mutations and our goal is

to investigate the magnitude of this bias.

We should point out here that these computations should serve, in our opin-

ion, to improve estimates of mutation probabilities per locus and distance, prior

to plugging-in these estimates into a mutation model that is intended to fully

model the mutation process, as is done for example in Vicard and Dawid (2004)

and Vicard et al. (2008). Therefore the results obtained here can be viewed as

complementary to those papers.
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7.2 Mutation models

First, we introduce some notation that we will use throughout. Since we do not

need to deal with several loci simultaneously, we will omit notation that refers to a

specific locus and assume that we have chosen one, for which an allelic ladder L is

known. Furthermore, we will distinguish between calculations in which we do not,

and do allow off-ladder alleles to be created, but we will only consider mutations

that consist out of a loss or gain of an integer number of repeat units. We call

a mutation model where alleles mutate only inside L a restricted model, and a

model in which alleles can mutate to alleles outside of L an unrestricted model

and we will consider these two types of models for our analysis. Note that these

are auxiliary models to enable the study of mutations of a fixed k-step distance,

they do not represent the actual mutational process if taken by itself.

7.2.1 Restricted k-step model

According to this model, only mutations consisting out of exactly k steps are

possible. Since we are defining a restricted model, not all alleles can mutate: they

need to have a k-step neighbour in L. Here by µi,j we denote the probability that

allele i mutates into allele j. Let 0  µ  1. We let, for ✏ 2 {�1, 1},

µi,i+✏k =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

µ/2 if {i� k, i+ k} ⇢ L,

µ if i+ ✏k 2 L, i� ✏k /2 L,

0 if L \ {i� k, i+ k} = ;,

all other µi,j = 0 for i 6= j, and µi,i = 1�P

j 6=i µi,j . In particular, if L\{i�k, i+

k} = ; then µi,i = 1, meaning that allele i cannot mutate.
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7.2.2 Unrestricted k-step models

To allow for mutations of distance k, we let

˜L(±k)
= L [ {{a+ k, a� k} | a 2 L}

be the extension of L with all alleles at distance k from the alleles in L. For

example, for the locus D2S441 we have used as allelic ladder

L = {8, 9, 10, 11, 11.3, 12, 12.3, 13, 13.3, 14, 14.1, 15, 16},

so the extended ladders are, for k = {1, 2}

˜L(±1)
= L [ {7, 10.3, 13.1, 14.3, 15, 15.1, 17},

and

˜L(±2)
= L [ {6, 7, 9.3, 10.3, 12.1, 14.3, 15.3, 16.1, 17, 18}.

According to this model,

µi,j =

8

>

>

<

>

>

:

µ/2 if |i� j| = k,

0 otherwise,

for i 2 L, j 2 ˜L(±k). Note that these unrestricted k-step models can only serve

to model mutation from one generation to the next one. In case more generations

are involved, the ladder would have to be expanded further.
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7.2.3 Note on the mutation rate

The mutation rate on the locus is the probability that a randomly selected

population allele on that locus will mutate. It is given by

X

i2L

X

j 6=i

piµi,j =

X

i

pi(1� µi,i),

where the sum runs over all possible alleles on the locus under consideration, and

pi is the population frequency of allele i.

Thus, the mutation rate of the unrestricted k-step models is equal to µ, but the

mutation rate of the restricted k-step models with the same parameter is smaller

if there are alleles that cannot mutate because they have no k-step neighbour on

the ladder.

7.3 Mutation rates per mutational distance

We are interested in the difference between a mutation’s apparent distance and

its actual distance. Suppose that a d-step mutation has occurred from one of the

parents to the child (we do not, in view of mutation probabilities being very small,

consider the possibility of several mutations on the same locus), then the smallest

k such that there exists a k-step mutation from (at least) one of the parents to the

child that explains the genotypes is what we call the apparent distance. We do not

specify yet whether we are looking at parent-child duo’s1 or father-mother-child

trio’s2: in both cases the apparent length of any mutation is well-defined.

Example 7.3.1. Suppose that the mother’s genotype is (13,15), the father’s geno-

type is (14,15) and the child’s genotype is (12,15). Then, the genotypes can be ex-
1
only one parent and the child are observed

2
father, mother and child’s genetic evidences are available
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plained either by a maternal mutation 13 ! 12, or by a paternal mutation 14 ! 12.

Thus, the apparent distance of this mutation is one.

If the father’s genotype would have been (11, 15), then either a mutation 13 !
12 or 11 ! 12 has happened. This mutation also has apparent distance one, but

now both the paternal and the maternal possible mutation of distance one are able

of explaining the child genotype.

In view of the different mutation rates between men and women, our goal is to

estimate mutation rates per mutational distance and per gender. First, in Section

7.4, we will show how to take into account that the apparent mutational distance

is possibly shorter than the actual mutational distance. Then, in Section 7.5, we

will discuss how to use this result to determine the required mutation probabilities.

Suppose that µ⇤
k is the observed frequency of mutations of apparent distance

k. We let Ak,l be the probability that a k-step mutation has apparent distance l.

If the actual probability of a k-step mutation is µk, the relation between the µk

and the µ⇤
k can be conveniently summarized by the matrix equation

0

B

B

B

B

B

B
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B
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which we may write more compactly as

~µ⇤
= A · ~µ,
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or equivalently (since A is invertible) as

~µ = A�1~µ⇤. (7.1)

If µ⇤
k = 0 for all k � n0, then so are the corresponding µi. Thus, knowledge of all

Ak,l for k < n0 is sufficient.

7.4 Computation of entries Ak,l

The entries Ak,0 expressing the probability that a k-step mutation does not

lead to an inconsistent genotype, can be easily computed algebraically. As stated

in Section 7.1, this is done by Chakraborty et al. (1996) and Vicard and Dawid

(2004) and in Appendix C we shortly derive it in a different, but more intuitive,

way. The formula for parent-child duo’s is obtained along similar lines, and it is

not detailed. For l > 0, we estimated the Ak,l by computer simulations.

7.4.1 Method

For each actual mutational distance k 2 {1, 2, 3} we selected 100,000 times

a father’s genotype and a mother’s genotype, drawn at random according to the

allele frequencies observed in the NFI reference database (containing the genotypes

of 2085 individuals). For each couple we created a child that inherited its maternal

allele without mutation, but applied a k-step mutation to the paternally inherited

allele. We then calculated the apparent distance of the mutation both for the

father-child and for the father-mother-child pedigree. This simulation was carried

out separately for the restricted and the unrestricted k-step models.
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Table 7.1: Probabilities Ak,l of apparent mutational distance l for a k-step mutation,
unrestricted k-step model (for k = 1, 2, 3), for parent-child duo’s.

Locus A1,0 A1,1 A2,0 A2,1 A2,2 A3,0 A3,1 A3,2 A3,3

D1S1656 0.25 0.75 0.23 0.31 0.46 0.22 0.28 0.19 0.31
TPOX 0.61 0.39 0.6 0.21 0.19 0.61 0.17 0.09 0.14
D2S441 0.48 0.52 0.44 0.3 0.25 0.46 0.25 0.09 0.2
D2S1338 0.29 0.71 0.28 0.34 0.38 0.27 0.31 0.19 0.22
D3S1358 0.47 0.53 0.44 0.4 0.15 0.41 0.4 0.15 0.04
FGA 0.34 0.66 0.32 0.39 0.29 0.3 0.37 0.19 0.13
D5S818 0.58 0.42 0.55 0.37 0.08 0.52 0.39 0.08 0.02
CSF1PO 0.56 0.44 0.52 0.38 0.1 0.49 0.39 0.1 0.02
SE33 0.14 0.86 0.14 0.23 0.63 0.13 0.22 0.17 0.48
D7S820 0.42 0.58 0.41 0.4 0.19 0.38 0.39 0.17 0.06
D8S1179 0.42 0.58 0.4 0.39 0.21 0.38 0.38 0.16 0.08
D10S1248 0.52 0.48 0.49 0.39 0.12 0.46 0.39 0.12 0.03
TH01 0.45 0.55 0.43 0.24 0.33 0.42 0.22 0.13 0.23
VWA 0.43 0.57 0.41 0.4 0.19 0.38 0.39 0.17 0.06
D12S391 0.27 0.73 0.26 0.35 0.39 0.25 0.32 0.2 0.22
D13S317 0.45 0.55 0.43 0.38 0.19 0.41 0.36 0.14 0.08
PENTA E 0.26 0.74 0.26 0.26 0.48 0.25 0.25 0.2 0.29
D16S539 0.48 0.52 0.47 0.37 0.17 0.44 0.37 0.15 0.05
D18S51 0.32 0.68 0.3 0.38 0.32 0.29 0.36 0.2 0.15
D19S433 0.47 0.53 0.43 0.38 0.19 0.4 0.37 0.13 0.09
PENTA D 0.41 0.59 0.39 0.38 0.23 0.37 0.35 0.17 0.11
D21S11 0.37 0.63 0.34 0.37 0.29 0.31 0.36 0.18 0.16
D22S1045 0.52 0.48 0.49 0.35 0.16 0.47 0.34 0.09 0.1

7.4.2 Results

Now we present the obtained entries Ak,l (with 1  k  3) for the various

models that we have considered. Results show significative differences according

to different amount of data considered, thus we classified them following this

scheme.

• Duo’s For the unrestricted and restricted k-step models, the results are

summarized in Table 7.1 and Table 7.2 respectively.
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Table 7.2: Probabilities Ak,l of apparent mutational distance l for a k-step mutation,
restricted k-step model (for k = 1, 2, 3), for parent-child duo’s.

Locus A1,0 A1,1 A2,0 A2,1 A2,2 A3,0 A3,1 A3,2 A3,3

D1S1656 0.25 0.75 0.24 0.31 0.45 0.23 0.3 0.2 0.27
TPOX 0.61 0.39 0.61 0.21 0.18 0.63 0.14 0.08 0.14
D2S441 0.48 0.52 0.45 0.31 0.24 0.49 0.24 0.1 0.17
D2S1338 0.29 0.71 0.28 0.34 0.38 0.28 0.31 0.2 0.22
D3S1358 0.47 0.53 0.45 0.41 0.14 0.43 0.38 0.14 0.04
FGA 0.33 0.67 0.32 0.4 0.28 0.31 0.38 0.19 0.12
D5S818 0.58 0.42 0.55 0.37 0.08 0.52 0.38 0.08 0.01
CSF1PO 0.55 0.45 0.52 0.37 0.1 0.49 0.39 0.1 0.02
SE33 0.14 0.86 0.14 0.23 0.63 0.13 0.22 0.17 0.48
D7S820 0.43 0.57 0.42 0.4 0.18 0.4 0.38 0.16 0.06
D8S1179 0.42 0.58 0.41 0.39 0.2 0.4 0.37 0.15 0.07
D10S1248 0.52 0.48 0.49 0.39 0.12 0.46 0.39 0.12 0.03
TH01 0.45 0.55 0.44 0.32 0.24 0.43 0.27 0.16 0.14
VWA 0.43 0.57 0.41 0.4 0.19 0.4 0.39 0.16 0.05
D12S391 0.27 0.73 0.26 0.35 0.39 0.26 0.33 0.2 0.21
D13S317 0.45 0.55 0.43 0.39 0.18 0.44 0.35 0.13 0.07
PENTA E 0.26 0.74 0.26 0.26 0.48 0.25 0.26 0.21 0.28
D16S539 0.48 0.52 0.46 0.37 0.17 0.45 0.37 0.14 0.04
D18S51 0.31 0.69 0.31 0.38 0.31 0.29 0.35 0.2 0.15
D19S433 0.46 0.54 0.43 0.38 0.19 0.41 0.38 0.13 0.08
PENTA D 0.4 0.6 0.38 0.38 0.23 0.37 0.36 0.17 0.11
D21S11 0.37 0.63 0.34 0.37 0.28 0.33 0.36 0.18 0.14
D22S1045 0.52 0.48 0.49 0.36 0.15 0.48 0.34 0.08 0.09
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Table 7.3: Probabilities Ak,l of apparent mutational distance l for a k-step mutation,
unrestricted k-step model (for k = 1, 2, 3), for trio’s.

Locus A1,0 A1,1 A2,0 A2,1 A2,2 A3,0 A3,1 A3,2 A3,3

D1S1656 0.09 0.91 0.07 0.14 0.79 0.05 0.1 0.11 0.74
TPOX 0.12 0.88 0.08 0.27 0.65 0.18 0.1 0.1 0.62
D2S441 0.14 0.86 0.05 0.27 0.69 0.14 0.13 0.13 0.61
D2S1338 0.1 0.9 0.08 0.19 0.73 0.08 0.14 0.15 0.63
D3S1358 0.22 0.78 0.16 0.29 0.55 0.09 0.18 0.19 0.54
FGA 0.15 0.85 0.13 0.24 0.63 0.1 0.19 0.16 0.55
D5S818 0.28 0.72 0.13 0.29 0.58 0.03 0.14 0.24 0.59
CSF1PO 0.27 0.73 0.15 0.28 0.57 0.04 0.16 0.23 0.58
SE33 0.05 0.95 0.05 0.1 0.86 0.04 0.08 0.08 0.8
D7S820 0.2 0.8 0.16 0.28 0.57 0.09 0.19 0.18 0.54
D8S1179 0.19 0.81 0.14 0.27 0.6 0.09 0.18 0.18 0.55
D10S1248 0.25 0.75 0.15 0.28 0.57 0.07 0.16 0.21 0.56
TH01 0.1 0.9 0.07 0.14 0.8 0.04 0.07 0.09 0.8
VWA 0.21 0.79 0.15 0.28 0.57 0.09 0.19 0.18 0.54
D12S391 0.11 0.89 0.1 0.2 0.7 0.08 0.17 0.14 0.61
D13S317 0.2 0.8 0.12 0.28 0.6 0.09 0.18 0.18 0.55
PENTA E 0.08 0.92 0.08 0.14 0.78 0.06 0.14 0.15 0.65
D16S539 0.21 0.79 0.16 0.27 0.57 0.08 0.19 0.18 0.55
D18S51 0.13 0.87 0.12 0.23 0.65 0.09 0.19 0.16 0.56
D19S433 0.22 0.78 0.11 0.23 0.65 0.04 0.12 0.19 0.66
PENTA D 0.17 0.83 0.13 0.27 0.6 0.11 0.19 0.16 0.54
D21S11 0.16 0.84 0.1 0.19 0.71 0.04 0.11 0.14 0.71
D22S1045 0.22 0.78 0.07 0.24 0.69 0.03 0.14 0.25 0.59

• Trio’s For the unrestricted and restricted k-step models, the results are

summarized in Table 7.3 and Table 7.4 respectively.

7.4.3 Discussion on the obtained Ak,l

The tables indicate that, especially for large mutational distances, the apparent

distance is very often smaller than the actual distance, especially for duo’s but

also for trio’s. Within each class (duo’s or trio’s) the effect is most notable for the

restricted model. This is not surprising, since in the unrestricted model alleles can
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Table 7.4: Probabilities Ak,l of apparent mutational distance l for a k-step mutation,
restricted k-step model (for k = 1, 2, 3), for trio’s.

Locus A1,0 A1,1 A2,0 A2,1 A2,2 A3,0 A3,1 A3,2 A3,3

D1S1656 0.09 0.91 0.08 0.16 0.76 0.07 0.15 0.13 0.65
TPOX 0.12 0.88 0.11 0.41 0.48 0.37 0.19 0.1 0.33
D2S441 0.14 0.86 0.05 0.28 0.67 0.21 0.23 0.18 0.38
D2S1338 0.1 0.9 0.08 0.18 0.73 0.08 0.15 0.16 0.61
D3S1358 0.23 0.77 0.17 0.32 0.51 0.14 0.24 0.21 0.41
FGA 0.15 0.85 0.12 0.25 0.63 0.11 0.22 0.17 0.5
D5S818 0.28 0.72 0.13 0.29 0.58 0.04 0.15 0.24 0.57
CSF1PO 0.27 0.73 0.16 0.26 0.58 0.05 0.16 0.23 0.56
SE33 0.05 0.95 0.05 0.1 0.85 0.04 0.08 0.08 0.8
D7S820 0.2 0.8 0.18 0.31 0.5 0.13 0.27 0.21 0.39
D8S1179 0.19 0.81 0.14 0.28 0.58 0.12 0.24 0.2 0.44
D10S1248 0.25 0.75 0.15 0.29 0.56 0.08 0.17 0.22 0.53
TH01 0.1 0.9 0.15 0.31 0.54 0.12 0.21 0.18 0.49
VWA 0.21 0.79 0.15 0.28 0.56 0.12 0.23 0.2 0.44
D12S391 0.11 0.89 0.1 0.22 0.69 0.1 0.18 0.15 0.57
D13S317 0.2 0.8 0.13 0.31 0.56 0.14 0.24 0.22 0.41
PENTA E 0.08 0.92 0.09 0.14 0.77 0.07 0.15 0.17 0.61
D16S539 0.21 0.79 0.16 0.27 0.57 0.11 0.23 0.19 0.47
D18S51 0.13 0.87 0.12 0.22 0.65 0.1 0.19 0.16 0.54
D19S433 0.22 0.78 0.11 0.25 0.64 0.05 0.15 0.2 0.6
PENTA D 0.17 0.83 0.12 0.27 0.61 0.1 0.19 0.17 0.54
D21S11 0.16 0.84 0.11 0.2 0.69 0.06 0.14 0.16 0.64
D22S1045 0.22 0.78 0.07 0.25 0.68 0.04 0.18 0.29 0.49
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mutate into a new, off-ladder, allele that is smaller (or larger) than all of the alleles

on the ladder. Such mutations are more likely to have their apparent distance to be

equal to the actual distance than mutations that are forced to stay on the ladder.

The biological truth will, in our opinion, be in between the two models. Indeed,

on the one hand one may argue that alleles do not have knowledge of the ladder

as we know it, and that therefore the unrestricted model is appropriate. On the

other hand, the fact that alleles have not been observed in a large reference sample

(recall that we have taken allele frequencies from a reference database containing

2085 genotypes), means that alleles not included in the ladder are rare, and there

may be a biological mechanism that prevents their existence.

Note also that the differences between loci are quite substantial: considering

for example the upper left corner of Table 7.2, we see that A1,0 = 0.25 for locus

D1S1656 and A1,0 = 0.61 for locus TPOX. This is explained by the greater poly-

morphism of the former locus. In general, largely polymorphic loci often reveal the

actual length as the apparent length (as can also be seen from the Tables) since

the alleles that have not mutated in reality have a greater probability of being

more distant from the mutated allele.

Sampling uncertainty

Each of the entries Ak,l (for l > 0) has a sampling uncertainty that we can

estimate using the normal approximation. In this case, for n = 100, 000 trials we

obtain that the 95% confidence interval has half-width equal to up to 0.003 for

the probabilities close to 0.5, and down to about 0.001 for the probabilities down

to 0.05.
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7.5 Corrected mutation rates

We will now use the obtained estimates of the Ak,l to evaluate the effect of the

correction for apparent mutational distance.

7.5.1 Duo’s

If mutation rates are estimated from parent-child duo’s, it is clear from Tables

7.1 and 7.2 that the µ⇤
i are much smaller than the µi for i � 1. We do not

have a data set at our disposal to determine the µ⇤
i from, therefore we restrict

ourselves to the exposition of one of the more dramatic examples, namely the

locus D5S818 (using results from the unrestricted models). In that case, when

mutational distances up to 3 are considered, the matrix inversion (7.1) yields

(µ0, µ1, µ2, µ3) =

(µ⇤
0�1.37µ⇤

1�0.56µ⇤
2+3.73µ⇤

3, 2.37µ
⇤
1�10.02µ⇤

2�3.86µ⇤
3, 11.57µ

⇤
2�63.01µ⇤

3, 64.14µ
⇤
3)

from which we observe again that high-distance mutations are much more frequent

than they appear to be. Since µ⇤
k << µ⇤

k�1, we see for example that 2-step

mutations are in the order of ten times as frequent as they appear to be in parent-

child duo’s.

7.5.2 Trio’s

The situation is more complex now, compared to duo’s, since the apparent

length of a mutation may be smaller than the actual length, but it may also be

ascribed to the other parent.

Referring to Example 7.3.1, suppose that the mother has genotype (13, 15),

the father has genotype (14, 15) and the child has genotype (12, 15). Then either
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a maternal mutation 13 ! 12 or a paternal mutation 14 ! 12 could had occurred

(recall that we only consider a single mutation per locus as possibilities). If indeed

the mutation that has occurred was the paternal 14 ! 12, then it is counted as

a mutation of apparent distance 1, but its apparent distance is obtained from a

possible mutation that is in reality from the other parent than the one that did

have the mutation.

This shows that when observed frequencies of apparent mutational distances

are recorded in trio’s, they do not immediately allow us to determine gender-

specific mutation rates per distance. In order to be able to do so, we make the

following assumption. Let µ1,k be the mutation frequency for paternal k-step

mutations and µ2,k that for women, then we assume that

µ1,k

µ2,k
= m, (7.2)

independently of k for all k � 1.

Now we can count apparent distances of all mutations in trio’s, and this will

give us µ⇤
k, the apparent mutation frequency of k-step mutations, from either

parental lineage. From the µ⇤
k we can obtain µk = µ1,k + µ2,k = (m + 1)µ1,k by

applying (7.1). Finally, the factor m can be estimated by only considering the

non-indeterminate mutations: the ones where the parental origin is clear. This

conclusion has been drawn already in Vicard and Dawid (2004), but we present a

simple way to arrive at this result for completeness.

In view of (7.2), the probability with which a paternal mutation is indeter-

minate is the same as the one for a maternal mutation, and we denote it by ↵I .

If we do not assume (7.2) then this need not be true. Now, let µi
= 1 � µi,0 =

µi,1 + µi,2 + . . . be the mutation rate for gender i, and let µi,NI be the appar-
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ent mutation frequency for gender i of non-indeterminate mutations (i.e., where a

mutation is visible and only a mutation of the parent of gender i can explain the

genotypes). Since µi,NI
= µi

(1�↵I)�, where � is the (again, gender-independent)

probability that a non-indeterminate mutation has positive apparent distance, we

have
µ1,NI

µ2,NI
=

µ1

µ2
.

This implies that we can estimate m by

m =

µ1,NI

µ2,NI
.

7.5.3 Accounting for apparent versus actual distance based on

AABB data

The AABB regularly publishes data on mutations in their Annual Report

Summaries for Testing (e.g., AABB (2003), AABB (2008)). These reports contain

counts of apparent mutations as well as counts of indeterminate mutations. It is

however not clear to us what the definition of an indeterminate mutation is in these

reports, nor if mutations are counted according to apparent (in our definition)

length. For the purpose of illustrating our methodology, we have therefore decided

to combine the following data:

• Data in the 2003 report (Appendix 3 of AABB (2003)) on the distance of the

obligatory allele, which we have interpreted to contain apparent mutational

distances. These data distinguish between mutations of distance +1, -1, +2,

-2 and other. We have merged the +1 and -1 data and similarly for distance

2. Moreover for simplicity, we have considered all the other mutations (if

observed) as 3-step mutations. We consider the Appendix to contain the



113

µ⇤
1,k/(1 � µ⇤

1,0) (observed paternal mutation rate for apparent distance k,

given that there is mutation with positive apparent distance) and µ⇤
2,k/(1�

µ⇤
2,0) (similarly for maternal mutations). We have only used the loci for

which more than 50 mutations had been counted (thereby excluding TPOX,

TH01, PENTA D, PENTA E) and for which not only one-step mutations

had been recorded (thereby excluding D19S433);

• Appendix 1 in the 2008 report (AABB (2008)) on the apparent paternal and

maternal mutation rates, which we have interpreted as 1 � µ⇤
1,0 (paternal)

and 1� µ⇤
2,0 (maternal).

We have combined these data to define the vectors (µ⇤
i,0, µ

⇤
i,1, µ

⇤
i,2, µ

⇤
i,3) for the

loci that we have allele frequencies for. The results, for paternal mutations, are

summarized in Tables 7.5 and 7.6 below. To ease notation we have omitted in

these tables the subscripts that refer to the paternal gender, e.g., we write µk

instead of µ1,k. In all calculations we have used the entries Ak,l from Table 7.4,

i.e., from the restricted model for trio’s.

7.5.4 Discussion

From Table 7.5, we see first of all that apparent mutation rates underestimate

the actual mutation rates substantially, as was already well known: this is due to

mutations being hidden. For one-step mutations, we see that their frequency is

underestimated with about the same factor as the mutation rate. For mutations

of distance two and three, we see that their frequency is underestimated by more

than this factor: by about a factor two for 3-steps mutations. From Table 7.6 we

see that, as a result of this, the ratio of 1-step versus 2-steps mutations is in general

lower in reality than it is when apparent mutational distances are considered. In
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Table 7.5: Effect of correcting for apparent mutational distance for paternal mutation
rates, per mutational distance

Locus µ/µ⇤ µ1
µ⇤
1

µ2
µ⇤
2

µ3
µ⇤
3

D2S1338 1.11 1.11 1.36 N/A
D3S1358 1.29 1.28 1.98 N/A
FGA 1.18 1.16 1.14 1.98
D5S818 1.4 1.39 1.72 N/A
CSF1PO 1.37 1.37 1.75 N/A
D7S820 1.26 1.25 1.99 N/A
D8S1179 1.24 1.23 1.36 2.27
VWA 1.26 1.25 1.67 2.29
D13S317 1.25 1.24 1.82 N/A
D16S539 1.27 1.27 1.77 N/A
D18S51 1.16 1.15 1.17 1.83
D21S11 1.18 1.18 0.75 1.59

Table 7.6: Effect of correcting for apparent mutational distance for paternal mutation
rates: relative frequency of smaller mutations versus longer mutations

Locus µ1/µ2

µ⇤
1/µ

⇤
2

µ1/µ3

µ⇤
1/µ

⇤
3

µ2/µ3

µ⇤
2/µ

⇤
3

D2S1338 0.82 N/A N/A
D3S1358 0.65 N/A N/A
FGA 1.02 0.59 0.57
D5S818 0.81 N/A N/A
CSF1PO 0.78 N/A N/A
D7S820 0.63 N/A N/A
D8S1179 0.91 0.54 0.6
VWA 0.75 0.55 0.73
D13S317 0.68 N/A N/A
D16S539 1.07 0.6 0.56
D18S51 0.98 0.63 0.64
D21S11 1.58 0.74 0.47

other words, 2-steps mutations are relatively more frequent with respect to 1-step

mutations than the apparent distances suggest; and the same is true for other k

versus l-steps mutations where k < l. Note also that for the locus D21S11, the

opposite effect seems to occur for 1-versus 2-steps mutations, we believe that this
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may be due to the fact that µ⇤
3 > µ⇤

2 for this locus, which suggests that it would be

better to refine the analysis extending it to more than 3-steps mutations. Indeed,

our assumption that all mutations that are neither one nor 2-steps mutations are

3-steps mutations, may not be correct. As previously remarked, in the absence of

more precise data the results here are included only for the purpose of illustrating

the methodology.

Remark also that the AABB data, for many loci, do not contain any mutations

of apparent distance greater than two. A larger data set would be required in order

to be able to estimate µ3 by means of (7.1); alternatively, the available data could

be fitted into a model that makes predictions on the rates of mutations of larger

distances.

7.5.5 Sampling uncertainty

The data presented in Tables 7.5 and 7.6 are subjected to uncertainty that can

be divided into three sources: uncertainty regarding the entries Ak,l, regarding µ⇤
i,0

(i.e., the mutation frequency) and uncertainty regarding the µ⇤
i,k (i.e., regarding

the specific mutation probabilities for distance k and gender i). As previously

noted, the sampling uncertainty for the Ak,l is very small and we will hence treat

it as negligible. The apparent mutation frequencies 1 � µ⇤
i,0 are based on large

numbers of meioses (typically, more than 100,000). They may be subjected to

a bias which is greater than their sampling uncertainty, but without information

on this possibility we will simply treat the µ⇤
i,0 as known. The distance-specific

µ⇤
i,k for k > 0 however, are what we are interested in this work and hence we will

focus on them. They are based on much smaller samples (ranging, for the loci

in Tables 7.1 - 7.4, from 81 for D2S1338 to 663 for FGA for paternal mutations

in AABB (2003)) and we have investigated the uncertainty that this implies on
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the estimates for the µi, by bootstrapping. If, in (AABB, 2003, Appendix 3), nl

mutations had been observed with nl,i of these of apparent distance i, we sampled

10.000 times a bootstrapped sample of mutations (i.e., we sampled nl mutations,

with replacement, from the reported set). We then recalculated µ/µ⇤ and µ1/µ⇤
1.

For longer mutations, it is essential to know whether or not all of the mutations

that are neither one nor two-steps mutations were indeed 3-steps mutations. In

the absence of such knowledge, the figures µ2 and µ3 are purely illustrative and we

have therefore concentrated on the most reliable inferences. In view of the limited

available amount of data, it is hard to assess the sampling uncertainty on µ2/µ⇤
2

without making additional assumptions on the mutation process.

The results are displayed in Table 7.7. We can observe that estimates µ/µ⇤

and µ1/µ⇤
1 seem to be quite insensitive to sampling uncertainty in the µ⇤

i .

Table 7.7: Mean and confidence interval of actual versus apparent mutation rates,
obtained by bootstrapping data from (AABB, 2003, Appendix 3)

Locus µ
µ⇤ 95% CI µ1

µ⇤
1

95% CI
D2S1338 1.115 (1.113,1.116) 1.108 (1.097,1.116)
D3S1358 1.288 (1.286,1.290) 1.278 (1.262,1.290)
FGA 1.176 (1.175,1.177) 1.163 (1.157,1.169)
D5S818 1.396 (1.388,1.402) 1.390 (1.374,1.402)
CSF1PO 1.372 (1.367,1.375) 1.368 (1.357,1.375)
D7S820 1.257 (1.256,1.257) 1.252 (1.243,1.257)
D8S1179 1.238 (1.236,1.24) 1.231 (1.221,1.238)
VWA 1.257 (1.256,1.258) 1.250 (1.242,1.256)
D13S317 1.246 (1.244,1.248) 1.241 (1.232,1.248)
D16S539 1.274 (1.271,1.275) 1.267 (1.254,1.275)
D18S51 1.155 (1.154,1.156) 1.148 (1.143,1.153)
D21S11 1.184 (1.180,1.186) 1.179 (1.172,1.184)
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7.6 Discussion

As we have seen, mutations of greater mutational distance are more common

in reality than those estimated from apparent mutational distances. In trio’s,

mutations consisting of two or three steps appear to be about twice as likely as

compared to apparent mutational distances in trio’s. In estimation of mutation

rates per distance from parent-child duo’s, the effect is much more dramatic.

When a likelihood ratio needs to be calculated for a locus that involves an

apparent mutation, it can be underestimated when using apparent mutational

distance frequencies, especially when 1-step mutations cannot explain the geno-

types. This is of course an undesirable situation, and we believe that when precise

likelihood calculations are required, the corrections proposed in this article should

be taken into account.

From section 7.5 it is clear that it is conceptually easier to estimate gender-

specific and distance-specific mutation rates in duo’s than in trio’s. Indeed, in

that case there is no need to make an assumption such as (7.2), since no mutations

from the other parent are considered. However, in duo’s many more mutations are

hidden (i.e. have apparent distance zero) or have a shorter apparent than actual

length compared to those in trio’s. This means that more data are needed in order

to obtain reliable estimates of the µ⇤
k for k > 1 when using data from duo’s than

when using data from trio’s.

Thus, as it is completely logical, genotypes of trio’s are more informative about

mutation frequencies than genotypes of duo’s. The drawback is that mutations

cannot directly be attributed to a parental lineage. We have made assumption

(7.2) in order to facilitate computations, and one important consequence is that

mutations are indeterminate with the same probability in either parental lineage.
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This last fact is well known. In Vicard and Dawid (2004) it is also assumed that

men and women mutate according to the same model with different mutation

rates. Assumption (7.2) is frequently made in the literature if a non-zero female

mutation rate is considered.

Therefore, the difference between male and female mutation rates can be re-

liably estimated by the non-indeterminate mutations. For distance and gender

specific rates however, a precise analysis becomes more complex, requires a large

data set, and we have refrained from carrying it out.

Finally, we have chosen not to distinguish between mutations that gain or lose

the same number of repeat units. This may not be entirely realistic, and one may

consider undesirable to make that distinction. The adaptation of the method is

straightforward: one needs to choose an ordering on the possible distances, e.g.,

0 � �1 � 1 � �2 � 2 � . . . and then define the apparent distance of a mutation

as the lowest possible according to this ordering. This will lead to a similar matrix

Ak,l as the one that we have considered. However, implementation of this refined

method also requires more data as we now distinguish between more types of

mutations. For this reason, we have chosen not to make the distinction.

7.7 Summary

In this Chapter there is a brief account on a part of my research activities while

visiting the Netherlands Forensic Institute (NFI), in The Hague. There I focused

on mutation rates and mutation models related topics. Aim on this part of the

thesis is to handle some complicating features commonly affecting the mutation

rates estimation, in particular to study a generalization of the hidden mutation

phenomena, considering how largely the observed mutation rate per mutational
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distance differ from the actual rate.

To pursue this aim, in the first part of the Chapter we built appropriate aux-

iliary mutation models, differentiating among restricted and unrestricted ones.

After that, considering both paternity trio’s and duo’s cases, we obtained the

probabilities to underestimate the length of an occurred mutation by means of

simulations.

Finally, relying on data issued by the America Association of Blood Banks,

we proposed a way to correct the published data on mutation frequencies per

distance, also giving some insights about the uncertainty derived from the adoption

of simulation methods.
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CHAPTER 8

Discussion

In this thesis we proposed a novel methodology to evaluate kinship identification

systems. The goal of the analysis is to provide probabilistic information on

the misleading results possibly deriving from the analysis before the traditional

identification process is undertaken.

We described the theoretical and analytical aspects of our proposal in Chapter

4. The analysis considers the DNA evidence belonging to the individuals pro-

moting the identification trial, but not that of the candidate to the identification,

whose position in the familial pedigree is questioned. Thus the procedure pre-

cedes in time the usual kinship analysis and is performed without any additional

costs and laboratory work since it uses only a subset of the data required for the

post-experimental phase of the assessment of the hypotheses under debate, during
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which the LR is obtained in the way described in Section 4.2. In other words, this

implies to perform the LR computation only after one has verified that the iden-

tification system has achieved the required expected performance for the case of

interest. In our opinion, it should be compulsory to employ identification systems

which had been proven to achieve a certain standard of quality, and this should

represent a crucial aspect for any identification trial.

It is important to point out that, in our opinion, the final judgement on the

goodness of an identification system in the pre-experimental phase is neither upon

the shoulders of the statistician nor on those of the forensic scientist, but must be

evaluated by the decision maker, i.e. the person or the group of people (a judge,

an authority, a committee and so on) called to decide upon a case on the basis

of some evidence. For this reason they should be trained in order to be able to

take these kind of decisions based on probabilistic results given to them by the

scientist.

This methodology shares one of the goals of the topic of the Design of Experi-

ments (DOE): the purpose of improving the statistical inference by appropriately

selecting the conditions under which a crucial unobserved random variable has

certain desirable characteristics. DOE usually aims to evaluate and control the

variability of the random variables the experiment is going to observe by means

of treatments under which the experiment could be carried out, followed by an

optimization step. In this paper, the focus is on the probabilities the candidate’s

genetic characteristics can assume, conditional on the alternative hypotheses. The

different conditions under which the candidate’s genetic traces could arise are re-

lated to some realistic scenarios arising by sequentially including, up to the point

of having reached satisfactory characteristics, different loci and familial donors.

The adopted technique could be extended to other classification problems,
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notwithstanding that the formulation of the required models might be, in other

circumstances, more demanding, questionable, and not so directly driven by the

hypotheses. Here, the hypotheses completely define the variables to be included

and the structure of dependence between them. If the stochastic system is rep-

resented by a Bayesian network, the only further ingredients are the population

and the segregation models which specify the conditional probability of each node

with respect to its parents, which are mainly determined and estimated outside

the classification at hand. Moreover, in the application section, the realized sen-

sitivity analysis suggests that there is only a slight dependence of the results on

such choices.

We believe that the use of probabilities of faithful and misleading evidence

for each of the hypotheses under debate is the most natural way for people in

the forensic field to appreciate the goodness of a system: other approaches based

on utility functions (Taroni et al. (2007)) or information theoretical measures

(Lauritzen and Mazumder (2008)) are possible but, in our opinion, not easy to

be perceived in a court. Other alternatives could also be taken into account: for

example the probabilities of exclusion as detailed in Buckleton et al. (2005) are

just (partial) subsets of the LR distribution, i.e. probabilities associated to the

event the LR is equal to 0.

Another relevant result reached by this thesis is the development of an efficient

computational strategy to obtain the LR distributions required for the analysis,

for a specific, well defined kinship case, as shown in Chapter 5. Furthermore the

adoption of Bayesian networks allows us to easily consider complicating issues

involving more realistic biological models for DNA evidence.

In our opinion, the whole matter presented in this thesis is relevant since, up to

now, the capabilities of a proposed system have not been revealed to the parties,
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including those called to make the final judgement on the identification trial. In

order to advocate the effectiveness of this methodology we presented a number of

applied cases in Chapter 6.

Finally, the proposal represents a way to take into account the principles ex-

pressed in the Daubert v. Merree Dow Pharmaceutical Inc. sentence we referred

to at the beginning of the thesis, in Section 1.1.



APPENDIX A

LR equivalence classes

Here we consider a case in which an individual, the DNA donor, is trying

to identify a candidate as the family member U posited to be a distance of n

generations on the direct lineage. If n = 1, this is a motherless paternity case;

if n = 2, it is the case of a grandparent trying to identify a candidate as the

grandson; and so on. We illustrate how the number of different LRs arising in

this circumstance is not equal to the number of possible genotypes the candidate

can assume, k(k + 1)/2, but is a number independent of k and n, where k is the

number of alleles in the locus.

Let X0
= (r, s) be the genotype of the donor and assume the population alleles’

probabilities p are known. For the sake of simplicity, we make use of the HW and

the ML models.
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On the donor lineage, consider the probability distribution of the transmitted

allele. At the first generation, n = 1, it can assume only two values, r and s, with

probability 0.5. For n > 1, the probability of observing r or s is 0.5n plus the

probability of coming from the non-donor lineage.

Let An be the distribution of the allele n generations after the donor had

provided X0
= (r, s), then:

Pr
⇣

An
= i|X0

= (r, s)
⌘

=

8

>

<

>

:

(0.5)n + (1� (0.5)n�1
)pi, if i 2 {r, s},

(1� (0.5)n�1
)pi, if i 62 {r, s},

for n > 1.

Since the allele coming from the non-donor lineage still has a probability gov-

erned by the population parameters, the genotype probability along the genera-

tions, Xn, Pr
⇣

Xn
= (i, j)|X0

= (r, s)
⌘

is

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(0.5)n(pr + ps) + (1� (0.5)n�1
)2prps, if i = r, j = s,

(0.5)n(pj) + (1� (0.5)n�1
)2prpj , if i = r, j 6= s,

(0.5)n(pi) + (1� (0.5)n�1
)2pspi, if i 6= r, j = s,

(0.5)n(pr) + (1� (0.5)n�1
)p2r , if i = r, j = r,

(0.5)n(ps) + (1� (0.5)n�1
)p2s, if i = s, j = s,

(1� (0.5)n�1
)2pipj , if i 6= r, j 6= s.
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For this reason the LR =

Pr
�

Xn
= (i, j)|X0

= (r, s)
�

Pr
�

Xn
= (i, j)|p� is:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(0.5)n+1 (pr + ps)

prps
+ (1� (0.5)n�1

), if i = r, j = s,

(0.5)n+1p�1
r + (1� (0.5)n�1

), if i = r, j 6= s,

(0.5)n+1p�1
s + (1� (0.5)n�1

), if i 6= r, j = s,

(0.5)np�1
r + (1� (0.5)n�1

), if i = r, j = r,

(0.5)np�1
s + (1� (0.5)n�1

), if i = s, j = s,

1� (0.5)n�1, if i 6= r, j 6= s.

(A.1)

The last line shows that for the descendant’s genotypes with alleles different

from r and s, the LR always assumes the value of 1� (0.5)n�1. This fact reduces

the LR sample space to six or three possible states, depending on whether the

donor is heterozygous or homozygous, respectively.
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APPENDIX B

Genetic data for the applied cases

In this Appendix we give details about the genetic data employed in the applied

cases of Chapter 6. In the next few tables, also genetic evidence of the candidate

to the identification will be given, even if it remains clear that we did not make

use of such pieces of evidence.

129



130

A Motherless Paternity Case

Table B.1: Genetic evidence for the Motherless Paternity case.

Locus B AF
D8S1179 13-14 8-14
D21S11 30-32.2 28-30
D7S820 8-11 8-12
CSF1PO 10-10 9-10
D3S1358 14-17 16-17
TH01 7-9 8-9
D13S317 11-13 11-13
D16S539 9-9 9-12
vWa 16-17 16-17
TPOX 9-11 9-12
D18S51 13-15 15-17
D5S818 12-12 12-12
FGA 22-25 22-25

A Full Sibling II Case

Table B.2: Genetic evidence for the Full Siblings II case.

Locus FX F1 F2 F3

D8S1179 11-12 11-13 11-13 11-13
D21S11 28-29 28-28 28-29 28-29
D7S820 10-10 9-11 10-10 9-10
CSF1PO 11-12 11-11 11-12 11-11
D3S1358 17-18 17-18 17-18 17-18
TH01 9-9 8-10 8-9 8-9
D13S317 11-12 11-12 11-12 11-12
D16S539 11-12 11-11 11-12 11-11
vWa 15-17 17-18 16-18 15-17
TPOX 9-11 9-11 8-11 9-11
D18S51 12-19 19-19 16-19 16-19
D5S818 11-12 12-13 11-12 11-12
FGA 20-20 20-20 20-20 20-25
D2S1338 17-20 19-21 20-21 17-19
D19S433 12-15 13-15 12-15 13-15
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A Two Cousins Case

Table B.3: Genetic evidence for the Two Cousins case for different sets of employed loci.

13 loci 15 loci 17 loci
Locus S A S A S A
D8S1179 13-15 11-13 13-15 11-13 13-15 11-13
D21S11 27-28 28-29 27-28 28-29 27-28 28-29
D7S820 11-12 8-10 11-12 8-10 11-12 8-10
CSF1PO 10-12 10-10 10-12 10-10 10-12 10-10
D3S1358 13-17 17-18 13-17 17-18 13-17 17-18
TH01 6-8 6-9 6-8 6-9 6-8 6-9
D13S317 11-11 8-11 11-11 8-11 11-11 8-11
D16S539 12-13 10-11 12-13 10-11 12-13 10-11
vWa 16-17 14-17 16-17 14-17 16-17 14-17
TPOX 8-11 8-8 8-11 8-8 8-11 8-8
D18S51 13-13 14-15 13-13 14-15 13-13 14-15
D5S818 11-12 11-12 11-12 11-12 11-12 11-12
FGA 21-23 21-25 21-23 21-25 21-23 21-25
D2S1338 17-20 23-26 17-20 23-26
D19S433 15-15.2 14-15 15-15.2 14-15
PENTAD 8-14 14-14
PENTAE 12-17 5-14
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A Stepwise Case

Table B.4: Genetic evidence for the Stepwise case.

Loci S M B
D8S1179 14-14 13-14 13-13
D21S11 31.2-32.2 30-32.2 28-28
D7S820 10-10 10-10 8-11
CSF1PO 12-12 12-12 11-12
D3S1358 18-18 15-18 15-18
TH01 6-9 9-9.3 6-7
D13S317 12-12 10-12 8-8
D16S539 10-10 9-10 11-11
VWA 17-17 17-19 16-16
TPOX 8-9 8-9 8-11
D18S51 15-17 16-17 15-15
D5S818 10-12 9-12 10-13
FGA 20-22 22-23 23-25
PENTAD 13-13 12-13 9-10
PENTAE 12-14 12-17 17-17



APPENDIX C

Hidden mutations, algebraically

In this Appendix we algebraically determine the probabilities Ak,0 with which

a mutation goes unnoticed in a trio, i.e. no mutations are needed to explain the

observed genotypes of father, mother and child.

We consider a general mutation model with mutation probabilities µi,j . We

consider the observed genotypes to be those of a father-mother-child trio, and

suppose that a mutation from (say, paternally inherited) allele i to j has happened.

We can now distinguish between three possibilities, assuming that no maternal

mutation takes place:

• The father has genotype (i, i). In that case, the mutation goes unnoticed if

and only if the mother has genotype (i, j) and has transmitted allele i to the
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child. This happens with probability

X

i

X

j 6=i

p3iµi,jpj . (C.1)

• The father has genotype (i, j). In that case, the mutation always goes un-

noticed. This event has probability

X

i

X

j 6=i

piµi,jpj . (C.2)

• The father has genotype (i, k) for k /2 {i, j}. In this case, the mutation goes

unnoticed if and only if the mother has genotype (j, k) and has passed on

allele k, or if she has genotype (i, j) and has passed on allele i. This event

has probability
X

i

X

j 6=i

X

k/2{i,j}
piµi,jpj(p

2
k + pipk). (C.3)

Clearly, these are the only three ways for a mutation not to lead to an inconsistency

in the genotypes, and since they are mutually exclusive, the probability that in a

full trio a mutation has happened which has gone unnoticed, is equal to

X

i

X

j 6=i

piµi,jpj

0

@

1 + pi � pipj +
X

k/2{i,j}
p2k.

1

A (C.4)

To compute the Ak,0 it now suffices to use (C.4) with a k-step mutation model.

This gives the same results as those obtained from our computer simulation.
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