
Contents

1 Introduction 1

1.1 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Gene Expression and CGH data 5

2.1 Molecular Biology . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 DNA’s structure . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Chromosomes . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Protein biosynthesis . . . . . . . . . . . . . . . . . . 9

2.2 Gene Expression . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Quantifying gene expression: Microarrays . . . . . . . 10

2.3 CGH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Genomic microarrays . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Statistical methods 19

3.1 Gene expression in statistics . . . . . . . . . . . . . . . . . . 19

3.2 Comparative Genomic Hybridization in statistics . . . . . . 20

3.3 Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . 23

3.4 Bayesian variable selection . . . . . . . . . . . . . . . . . . . 26

i



ii

3.5 Integration, some existing methods . . . . . . . . . . . . . . 34

4 Integrating CHG and Gene expression data 43

4.1 Hierarchical Model . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1 Measurement Error Model for Genetical Genomic Data 44

4.1.2 Hidden Markov Model on the Genetic Covariates . . 46

4.1.3 Prior Model for Variable Selection . . . . . . . . . . . 47

4.2 Posterior inference . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.1 Inference on R and ξ . . . . . . . . . . . . . . . . . . 57

4.3.2 Inference on HMM parameters . . . . . . . . . . . . . 64

4.3.3 Sensitivity analysis . . . . . . . . . . . . . . . . . . . 67

4.4 Real data analysis . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.1 NCI-60 Data . . . . . . . . . . . . . . . . . . . . . . 68

4.4.2 Parameter settings . . . . . . . . . . . . . . . . . . . 69

4.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4.4 Choice of α . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A Likelihood derivation 79

B MCMC steps 81

C Rcpp 87

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

ii



List of Figures

2.1 thymine (T), adenine (A), cytosine (C), guanine (G) . . . . 7

2.2 CGH mesurement plotted against the BAC genomic position.. 14

3.1 The normalized log2 ratio plotted against the position index

with state labels. . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 An example of overlapped N(0, τ 2
i ) and N(0, ciτ

2
i ) densities. 29

4.1 Graphical formulation of the proposed probabilistic model de-

scribed in Section 2. . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Hierarchical formulation of the proposed probabilistic model. 51

4.3 Simulated data: Example of simulated ξi,Xi and Yi, from

top to bottom, respectively, for G = 100,M = 1, 000, L =

250, l = 20 and σ2
ε = .01, for one sample (n = 1). . . . . . . . 56

4.4 Simulated data: Example of trace plots for R for one MCMC

run on simulated scenario 1. . . . . . . . . . . . . . . . . . . 58

4.5 Simulated scenario 1 with σ2
ε = .01: Marginal posterior prob-

ability of inclusion of the elements rgm of the association ma-

trix R. Plots refer to prior model (4.6) with (a) α = 5, (b)

α = 10, (c) α = 50, (d) α = 100 and (e) α =∞ (independent

prior). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

iii



List of Figures iv

4.6 Simulated scenario 1 with σ2
ε = .01: Numbers of FP and FN

obtained by considering different thresholds on the marginal

probabilities of inclusion of Figure 4.5. Threshold values are

calculate as a grid of equispaced points in the range [.07, 1].

Plots refer to prior model (4.6) with different values of α. . . 62

4.7 Simulated scenario 2 with σ2
ε = .01: Marginal posterior prob-

ability of inclusion of the elements rgm of the association ma-

trix R. Plots refer to prior model (4.6) with (a) α = 5, (b)

α = 10, (c) α = 50, (d) α = 100 and (e) α =∞ (independent

prior). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.8 Simulated scenario 2 with σ2
ε = .01: Numbers of FP and FN

obtained by considering different thresholds on the marginal

probabilities of inclusion onR. Threshold values are calculate

as a grid of equispaced points in the range [.07, 1]. Plots refer

to prior model (4.6) with different values of α. . . . . . . . . 66

4.9 Traceplot of the number of included links at each iteration

using α→∞ (left) and α = 25 (right). . . . . . . . . . . . . 71

4.10 Posterior marginal probabilities using α→∞ (left) and α =

25 (right). Red line on probability value 0.06. . . . . . . . . 72

4.11 Heatmap for α→∞. . . . . . . . . . . . . . . . . . . . . . . 73

4.12 Heatmap for α = 25. . . . . . . . . . . . . . . . . . . . . . . 74

4.13 Selected links for four Affymetrix genes using a threshold of

0.07. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.14 Gain/loss estimated frequencies along samples for the 89 CGH

probes considered, our method (left) Guha’s method (right). 75

4.15 Effect of different values of α on the probabilities of inclusion

for different values of π1. . . . . . . . . . . . . . . . . . . . . 77

iv



List of Tables

4.1 Simulated scenarios 1 and 2: Results on false positives, false

negatives, sensitivity and specificity for the dependent prior

model (4.6) and the independent case (α =∞) obtained with

a threshold of 0.5 on the marginal posterior probability of

inclusion on R. . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Simulated scenarios 1 and 2: Results on ξ as number of mis-

classified elements, for the dependent prior model (4.6) and

the independent case (α =∞). . . . . . . . . . . . . . . . . 63

4.3 Simulated scenario 1 with σ2
ε = .01: Results on the estimation

of µ and σ with the independent prior (α =∞). . . . . . . . 67

4.4 Sensitivity (e,f) . . . . . . . . . . . . . . . . . . . . . . . . . 68

v



1
Introduction

A tumor is an abnormal growth of body tissue, it can be cancerous (ma-

lignant) or non cancerous (benign). The word cancer refers to a group of

various diseases, which have in common an uncontrolled cell division leading

to growth of abnormal tissue.

Our understanding of cancer biology and the mechanisms underlying cancer

cell growth have progressed tremendously over the past decade. The discov-

ery of potential therapeutic targets has led to the development of successful

targeted therapies for treating cancer. At the same time, gene microarrays,

proteomics, genome-wide association studies, and next-generation sequenc-

ing technologies are providing a landslide of complex, information-rich data

begging for analysis. The complexity and enormity of many of these data

sets present numerous quantitative challenges in terms of storing, processing,

and analyzing the data so as to discover and validate the biological infor-

mation they contain. This requires careful statistical design and analysis

considerations, as well as the development of innovative statistical methods

to get the most information from these rich data. These new molecular and

genetic approaches promise discovery of new targets for cancer treatment

and prevention, markers for early cancer detection and to guide therapy de-

cisions, leading to personalized therapy approaches whereby the patient’s

cancer can be guided by specific molecular and genetic information mea-

sured from his or her own cancer.
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1.1. Related works 2

Given the quantitative nature of many of the modern biomedical research

questions, the role of biostatistics is crucial to the continuing effort in reduc-

ing mortality and morbidity due to cancer. This is reflected in the increasing

efforts to build strong multidisciplinary teams of statisticians and clinicians

and to establish training programs that can prepare the next generation of

biostatisticians to work in cancer research. The very final goal is to improve

cancer diagnosis and treatment by better understanding the mechanism be-

hind the acquisition of malignant phenotype and the progression of cancer.

Cancer is the consequence of a dynamic interplay at different levels (DNA,

mRNA and protein). Multilevel studies that try to integrate different types

of data have therefore become of great interest. Our project is concerned

with the integration of gene expression (mRNA) and DNA data.

Gene expressions measure the abundance of a set of mRNA transcripts in a

specific tissue. Techniques used for these measurements include, for instance,

microarrays. At DNA level, many different kinds of aberration can occur

and, for this reason, many different methods have been developed to detect

them. Here we focus on methods employed in molecular genomic studies,

capable of single pair base resolution. Among these, a technique well suited

for cancer studies is Comparative Genomic Hybridization (CGH), a method

able to detect copy number changes. This technique has a relatively high

resolution and can span a large part of the genome in a single experiment.

1.1 Related works

In the last decade many publications address the problem of detecting ge-

netic aberrations, in different types of cancer, but only few methods were

developed to integrate gene expression measurement with copy number vari-

ation data. Although many statistical and computational methods for in-

tegrating different types of data have been recently developed, only few of

them focuses on the integration of DNA and RNA data and, among them,

even fewer concentrate on the integration of CGH and gene expression data.
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3

One of the first work on investigating the direct association between the two

data in breast cancer cell lines and tissue samples was the one of Pollack et

al. [2002], based mainly on descriptive statistics. Another example could be

the one of Van Wieringen and Van de Wiel [2009], based on non parametric

tests to study whether whether the estimated CNVs at DNA level would

induce differential gene expression at RNA level. In their article Richardson

et al. [2010] carry out sparse multivariate analysis developing a framework

of hierarchically related sparse regressions to model the associations; they

propose to model the relationship in a hierarchical fashion, first associating

each response with a small subset of predictors via a subset selection for-

mulation, and then linking the selection indicators in a hierarchical manner.

Another article of great interest is the one of Monni and Tadesse [2009], they

present a stochastic algorithm that searches for sets of covariates associated

with sets of correlated outcomes. Last Choi et al. [2010] develop a double-

layered mixture model (DLMM) that simultaneously scores the association

between paired copy number and gene expression data using related latent

variables in the two data sets.

1.2 Contributions

The proposed method reflects my continuing interest in the development of

novel Bayesian methodologies for the analysis of data that arise in genomics.

Novel methodological questions are now being generated in Bioinformatics

and require the integration of different concepts, methods, tools and data

types. The proposed modeling approach is general and can be readily ap-

plied to high-throughput data of different types, and to data from different

cancers and diseases.

A single mutation is not enough to trigger cancer, as this is the result of

a number of complex biological events. Thus, discovering amplification of

oncogenes or deletion of tumor suppressors are important steps in elucidat-

ing tumor genesis. Delineating the association between gene expression and

3
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CGH data is particularly useful in cancer studies, where copy number aber-

rations are widespread, due to genomic instability.

This project focuses on the development of an innovative statistical model

that integrates gene expression and genetics data. Our approach explicit

models the relationship between these two types of data, allowing for the

quantification of the effect of the genetic aberrations on the gene expression

levels. The proposed model assumes that gene expression levels are affected

by copy number aberrations in corresponding and adjacent segments and

also allows for the possibility that changes in gene expression may be due

to extraneous causes other than copy number aberrations. It allows, at the

same time, to model array CGH data to learn about genome-wide changes

in copy number considering information taken from all the samples simulta-

neously.
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2
Gene Expression and CGH data

The central dogma of biology :

DNA
transcription−−−−−−−→ RNA

translation−−−−−−→ proteins,

is at the foundation of any living being. DNA, RNA and proteins are

all intensively active, in a very complex and coordinated way to regulate

those fundamental mechanisms for life. Trying to explain this dogma in a

very short and simplistic manner, using a metaphor, we can say that DNA

is a book of instruction that every cell has inside. The alphabet used is

very simple and contains only four letters: A, T, G and C. It is used to

construct sentences (genes), expressed disguised as proteins. To complete

this metaphor, cells look through this book and read, at the right moment,

only those genes that provide for certain proteins. RNA solve its role during

the Protein bio synthesis.

In April 2003 the International Sequencing Consortium announced that the

Human Genome Project had been completed, 99% of the human genome

had been sequenced, leading people to talk about a post-genomic era. This

event had change deeply the conception of medicine and biology and efforts

moved from the sequencing of human genome to the harvesting of the fruits

hidden in the genomic book.

Before the advent of new technologies developed during this new era bi-

ologist, Molecular Biology was indeed based on one experiment one gene

5



2.1. Molecular Biology 6

criteria, a useful feature to clarify single biological processes, but completely

insufficient to study how the entire organism works. This was overcome with

the advent of microarray technology, broadly studied in the last decade.

In our work we specifically dealt with arrayCGH1 technology, that measures

DNA copy numbers and microarrays that measure RNA expressions. Many

models and studies on those two kind of data came out in the last years

, but only few methods that integrate them had been developed. In the

next sections I will introduce the basis of the molecular biology as well as

an introduction to these kind of data to better understand the framework,

describe technologies behind and mention the most important methods that

relate to our work and that are available for such kind of data.

2.1 Molecular Biology

Cell is the basic structural and functional unit of all known living organisms,

the smallest unit of life. It was discovered by Robert Hooke in 1665 and is

often called the building block of life (see Albert et al. [2002]). Problems at

cells level, especially problems in the genetic code, can cause most diseases.

Every organism is made by one or more cells, vital functions of an organism

occur within them and they contain all the hereditary information needed to

regulate cell functions and to transmit information to the next generation.

In fact all the information are contained in the DNA of each individual cell

of an organism.

2.1.1 DNA’s structure

DNA (deoxyribonucleic acid) is a big molecule and is one of the nucleic

acids2 (the other one is RNA). As the name says, these acids find their place

in the nucleus of cells. They were discovered in 1869 by Friedrich Miescher,

and are very important in recent medical and biological research (see, for

1CGH stands for “Comparative Genomic Hybridization”.
2Nucleic acids are very long chain of a single or double nucleotidic strands’ sub units.
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instance, Dahm [2005]). The basic units that frame nucleic acids are the

nucleotides, which are composed of a five-carbon sugar (either ribose or two-

deoxyribose), a nucleobase (either a pyrimidine, with a single ring structure,

or a purine, with a double ring structure) and a phosphate group. DNA

is made of four different types of nucleobases, and they are formed by a

deoxyribose (five-carbon sugar), a phosphate group and one of the following

nucleobases: adenine (A), cytosine (C), guanine (G), thymine (T), see Figure

2.1.

Figure 2.1: thymine (T), adenine (A), cytosine (C), guanine (G)

The abundance of the four nucleobases depends on the organism con-

sidered, anyway, because thymine pair with adenine and guanine pair with

cytosine, in any species the number of guanine molecules is equal to the

number of cytosine molecules, as well as the number of thymine molecules

is equal to the number of adenine molecules. A DNA molecule is made of

two long polymers that forms the famous double helical structure. This

7



2.1. Molecular Biology 8

structure were first discovered by James D. Watson and Francis Crick, (see

Watson and Crick [1953]). The two nucleobases are connected by hydrogen

bonds, a double one for adenine and thymine and a triple one for cytosine

and guanine (that is the cause of the match). However, along the strands,

the order of the nucleobases can vary very much: DNA molecules present,

at the same time, a regular aspect and a changeable aspect.

The two strands run in opposite directions to each other and are therefore

anti-parallel. Usually to specify strands’ orientation we use the terms 3’-5’:

one of the chain follows the direction 3’-5’, the other one 5’-3’. To give a

simple example consider the sequence 3’-ATCCGTA-5’, its complement is

5’-TAGGCAT-3’.

2.1.2 Chromosomes

DNA separate in different chromosomes. In human cells there are 23 pairs

of chromosomes, 22 of which are non sex (autosomal) and the 23rd is a sex

chromosome. One of each of this pair is inherited from the mother while the

other one from the father. In female all the 23 pairs match, thus in human

females there are two copies of the genomic code, while in men only 22 pairs

match. The ends of chromosomes are called telomers, identified as p if it

corresponds to the short arm whereas called q if it corresponds to the long

arm.

Chromosomes contains genetic information. An amazing aspect of the hu-

man genome is that of the 3.2 billion nucleotides about 99.9% is the same

between one individual and another. This means that only 0.1% of the entire

sequence makes a person unique. This small amount determines attributes

like how a person look, the disease he or she develops. This variations bring

differences at genotype level.

The genotype (e.g. see Churchill [1974]) concern the inherited instructions

the organism carries within its genetic code. It refers to the set of genes that

constitute the DNA of an organism. On the other hand, the term phenotype

refers to any observable characteristic or trait of an organism, such as its

8
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morphology, development, biochemical or physiological property, behavior

and product of behavior. Only genotype is not sufficient to define the phe-

notype, but it interacts with (external or internal) environment. Thus two

individuals with the same genotype (for instance monozygotic twins) not

necessarily share the same phenotype: this could also be explained through

epigenetic mechanisms. Phenotypic variation, due to underlying heritable

genetic variation, is a fundamental prerequisite for evolution by natural se-

lection.

2.1.3 Protein biosynthesis

During DNA duplication the double helix unwind and the base pairs sep-

arate. Then the free nucleotides in cells can pair on the separate base,

creating a new strand. In other moments of cell’s life, DNA is winded in a

way that only enzymes3 can access only to certain genes. A gene is a specific

segment of the DNA molecule, that contains all the codifying information

necessary to instruct a cell to synthesize a specific product (such as an RNA

molecule or a protein). The way between genes and proteins consist of two

different stages: transcription and translation. The first one take place in

the nucleus: codons4 of a gene are copied into messenger RNA by RNA

polymerase5. This RNA copy is then decoded by a ribosome that reads the

RNA sequence by base-pairing the messenger RNA to transfer RNA, which

carries amino acids. Since there are 4 bases in 3-letter combinations, there

are 64 possible codons (43 combinations). These encode the twenty standard

amino acids, giving most amino acids more than one possible codon. There

are also three ’stop’ or ’nonsense’ codons signifying the end of the coding

region: these are the TAA, TGA and TAG codons. These amino acids forms

polymers chain, which in turn join to make proteins.

3Biological molecules that catalyze chemical reactions.
4Codons are sequence of three nucleotides.
5An enzyme that produces RNA.

9



2.2. Gene Expression 10

2.2 Gene Expression

Gene expression is that biological process by which information from a gene

is used in the synthesis of a functional gene product. Regulate gene ex-

pression means to control the amount and timing of appearance of this

functional product. the Central Dogma of Molecular Biology make clear

that if, in different cells, different genes are expressed (copied into RNA),

different proteins will be produced, thus different types of cells will emerge.

Even if all cells in our body have the same genes, cells differentiate6 their

composition, structure and function activating different genes. Also a small

mutation or the influence of the environment where the organism live in,

can cause highly expression of a gene in one person and a very low one in

another. An example of this could be the production of dark pigment in

the skin of a person, after a long exposure to the rays of the sun, pigment

produced by the expression of the melanin gene.

2.2.1 Quantifying gene expression: Microarrays

Gene expression microarrays are powerful tools to measure the abundance

of mRNA7. These arrays tell to the scientists how much RNA a gene is mak-

ing. This is really important because when a gene is expressed it produces

RNA which help with the production of the final protein coded for by the

gene itself. Microarrays’ technology had become an essential tool that many

biologists use to observe the wide genomic expression of the amount of genes

in a specific organism. The revolutionary aspect is just that they allow to

to measure the expression of every single gene in the whole human genome,

so scientists can quickly point out differences in the patterns of two differ-

ent subgroups of individual. On the other hand of the spectrum there are

the blotting methods that could only measure one or few genes at a time,

through a slow and tedious process.

6Each cell use just a small fraction of its genes
7Messenger RNA is produced during transcription.
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Typically a microarray is a slide with DNA molecules fixed on it in a specific

place called spot. A single slide can be made by thousands spot and each

spot can contain millions of the same DNA molecules, that corresponds to

a single gene. Each spot is imprinted on a slide by a robot or are synthe-

sized using the process of photolithography. Microarrays may be used to

measure gene expression in many ways, but one of the most popular appli-

cations is to compare expression of a set of genes from a cell maintained in

a particular condition (condition A) to the same set of genes from a refer-

ence cell maintained under normal conditions (condition B). The outcome

of this application is a colored slide with colors that must be interpreted

and quantified. Assuming that genes in condition A were marked with a

red dye and those in condition B with a green dye, if a gene in condition

A was very abundant, compared to that in condition B, the corresponding

spot would be red. If it was the other way, the spot would be green. . If the

gene was expressed to the same extent in both conditions, one would find

the spot to be yellow, and if the gene was not expressed in both conditions,

the spot would be black. Thus, what is seen at the end of the experimental

stage is an image of the microarray, in which each spot that corresponds

to a gene has an associated fluorescence value representing the relative ex-

pression level of that gene. The intensity of the color is then transformed

into a number that usually corresponds to the log-ratio of the expression of

the gene in condition A and in condition B. Clearly this application is very

useful if, and only if, we want to compare the expression in two different

condition, but the quantification of gene expression in a single condition is

always possible.

Affymetrix is one of the most famous platform. The data i will use are

obtained using this platform. To determine expression levels, gene expres-

sion microarrays use the natural attraction between the DNA and RNA

target molecules. They use the natural binding between the four basis. In

fact RNA is composed of the same four basis, with uracil (U) in place of

thymine. Because of hydrogen bonds that bind the couples A-T (double)

11



2.2. Gene Expression 12

and C-G (triple), in RNA we have exactly the same pairing system (with U

instead of T). Unlike DNA, RNA appears in a single strand and this allows

it to bind easily to any other single stranded sequence (both DNA or RNA).

Two strands (one of DNA and one of RNA) that matches are said to be

complementary and stick to each other: even a single base that not match

its partner could keep a single stranded sequence from sticking to another.

This base attraction is known as hybridization. Microarray use hybridiza-

tion to identify RNA sequences in a sample and to establish which genes

are expressed by that individual and the abundance of this expression. To

illustrate, in details, how this technology works, we will focus on just the

measurement of the expression of just one gene.

First of all a DNA strand is build, a probe, onto a surface glass chip. Even

if genes are made by hundreds of thousand base, the probes are generally

shorter. Thus the choice of the probes to print must face the problem of the

trade of between finding sequence that will be unique to the gene of interest

and affordability. Affymetrix decided for a length of 25 base for each probe.

Scientists must compare the 25 base probe sequence to the rest of human

genome, to make sure that it does not match anywhere else, in order that,

when an RNA molecule binds to the probe, it is clear that the gene is ex-

pressed.

Once a probe is designed to measure expressed RNA, RNA must be ex-

tracted from the biological sample (blood, tumor, etc...). The subsequent

step is to copy it millions of times. The process used to that aim is called

PCR8, after this amplification it is more easy to detect RNA on the array.

While RNA is copied, molecules of biotin are attached to each strand, acting

as molecular glue for fluorescent molecules. This prepared RNA sample is

then washed over the array to allow the hybridization. At this point scien-

tists use fluorescent molecules that stick to the biotin, making RNA glow in

the dark. Last a laser light is shone on the array, cause the stain to glow

8Polymerase Chain Reaction is a biochemical technology in molecular biology to am-
plify a single or a few copies of a piece of DNA across several orders of magnitude,
generating thousands to millions of copies of a particular DNA sequence.

12
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and producing an image where the intensities of different colors represent

different level of expression. When a gene is highly expressed many RNA

molecules stick to the probe causing the probe to shine brightly when the

laser hits in, and viceversa. Before analyzing this kind of data pre processing

and normalization of the data set are necessary.

Gene expression had been widely studied and lots of different methodologies

was being developed to extract meaningful information. Those methods goes

from analysis of variance to mixed models, from multiple testing to cluster

analysis, empirical Bayes and fully Bayesian methods, functional data anal-

ysis and networks.

Our final data set is a matrix of intensity values for each gene and individual,

we run our code after an appropriate data cleaning, see section 4.4.1.

2.3 CGH

Comparative Genomic Hybridization (CGH) is a method designed for iden-

tifying chromosomal segments with copy number aberration. In Kidd et al.

[2008] it was estimated that approximately 0.4% of the genomes of unrelated

people differ with respect to copy number. CGH is a powerful method and

gives best results when combined with microarrays, the so called array CGH.

This technique use microarrays consisting of thousands or million of genomic

targets (probes) that are spotted on a glass surface, with a resolution of the

order in the range 1 MB (one million base pairs) for BAC (bacterial artificial

chromosome) to 50-100 kb (kilo base pairs). Although numerous platforms

have been developed to support array CGH studies, they all revolve around

the common principle of detecting copy number alterations between two

samples. As in measuring gene expression, a sample of interest is labeled

with a dye and then mixed with the reference sample labeled with a differ-

ent dye. The mixed sample obtained is hybridized and the intensity of both

colors is then measured through an imaging process. The final quantity is

expressed as the log2 ratio of the two intensities. The expected copy number

13



2.4. Genomic microarrays 14

number of each segment of DNA is equal to two because in the human body

females have 23 matched pairs of chromosomes, thus the intensity ratio is

determined by the copy number of the DNA in the test sample. If the test

sample has no copy number aberrations the log2 of the intensity ratio is the-

oretically equal to zero. Similarly when there is a single copy gain this leads

to log2
3
2
' 0.58 and multiple copy gains refers to the sequence log2

4
2
, log2

5
2
,

etc.. On the other hand a single copy loss leads to the value log2
1
2

= −1 and

the loss of both copies to −∞ (usually a large negative value is observed).

Figure 2.2 shows an example of this kind of data.

Figure 2.2: CGH mesurement plotted against the BAC genomic position..

2.4 Genomic microarrays

This section is not a complete list of available techniques and is based on

the article by Lockwood et al. [2006]. cDNA microarrays (originally used
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in gene expression profiling) introduce the genome wide approach to array

CGH. The advantage of this technique is that high level amplifications and

deletions can be directly correlated to expression changes using the same

platform. The disadvantage is that only exonic (codifying) regions of the

genome are covered, making alterations to promoter regions and other pro-

tein binding sites undetectable. The main advantage of genome wide-arrays

(LICs9 and BACs) are that they provide robust targets for sensitive detection

of hybridization signals. BAC is not limited to loci annotated with genes.

Because the size of the arrayed elements provide a higher signal to noise ra-

tio, BAC-based platforms allow highly sensitive and reproducible detection

of a wide range of copy number changes including single copy number gains

or loss, homozygous deletions and high level amplifications.

Another technique recruited for copy number assessment in CGH experi-

ments are arrays of photolithographically synthesized short oligonucleotides

(21-25 nucleotides in length) originally designed for detecting single nu-

cleotide polymorphisms (SNPs). A method known as whole-genome sam-

pling assay (WGSA) is an example. In this technique even if the sample

is reduced and is not able to represent the entire genome, the probability

of cross hybridization to multiple short oligonucleotide targets on the array

is reduced. The strength of this strategy is its ability to relate copy num-

ber and allelic status at selected loci. The performance of this technique

compared with the conventional BAC have been studied by Bignell et al.

[2004] using cancer cell lines. Zhao et al. [2004] compared SNP, cDNA

and BAC arrays. The BAC arrays showed the highest signal to noise ratio,

making them better suited to detect single copy variations. However SNP

arrays allow copy number and genotype changes to be measured in a single

experiment.

The methods previously described allow copy number changes to be assessed

on a genomic-wide scale, but the coverage of the arrayed elements can vary

greatly. This leads to large gaps where no information is obtainable. To fully

9Large Insert Clones is a Marker-based technique that sample genome at megabase
intervals, typically covering about 10% of the genome.

15



2.4. Genomic microarrays 16

understand the alterations occurring in various diseases, probes that cover

the entire genome are required. Submegabase resolution tiling set (SMRT)

array can supply for this requirement. Like other large insert clone-based

approaches, it yields high signal to noise ratio due to the hybridization sen-

sitivity of the BACs to their corresponding genome targets. In contrast to

marker based approaches, the overlapping arrangement of the BAC clones

abrogates the need to infer genetic events between marker clones and the

redundancy provides confirmation of copy number status at each locus. The

tiling nature also increases the probability of detecting micro alterations

that may fall between marker probes in other array platforms. The major

consideration in interpreting whole genome BAC array data is the fact that

some clone map to multiple places in the genome due to cross hybridization

to highly homologous sequences.

The choice of platform technology for an array CGH study primarily de-

pends on the type of samples being analyzed and the level of detail de-

sired. A major consideration in selecting an array platform is sample re-

quirement: DNA quality may be compromised in formalin-fixed, paraffin-

embedded archival specimens. Large insert clone arrays efficiently capture

signals from samples of low DNA quantity and quality for genome-wide anal-

ysis, while oligonucleotide and small PCR fragments could facilitate more

detailed investigation at selected regions, when DNA quality and quantity

are not limiting.Amplification techniques have proven effective in increasing

hybridization signal strength and limiting noise through the reduction of

sample complexity at the expense of genomic coverage. A problem of these

techniques is the variability in results using the same sample. Another con-

sideration for array selection is the tissue heterogeneity in a sample, because

it affects detection sensitivity of copy number changes. Increasing the num-

ber of measurements over a genomic distance could provide more data points

within a segmental alteration, thereby increasing the probability of detec-

tion. Thus the use of tiling path resolution arrays should be considered in

analyzing heterogeneous tissue samples. Another important consideration is
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the selection of reference DNA. Common examples are using a sex-matched

reference, sex mismatched; a reference obtained from a pool of individuals

or using a reference from a single individual.

2.5 Applications

Even if the most frequent application is in cancer’s studies, other application

are always possible. In this section will be reviewed the use of array CGH

in measuring copy number status in cancer, genetic diseases and in evolu-

tionary comparisons. Initially in cancer studies focused on specific regions

of tumor genomes, later they expand to the entire chromosome arms. In

terms of genomic-wide approaches the ones that yielded much information

on the genomic landscape of a variety of cancers were cDNA microarrays

and interval LIC arrays.

In inherited diseases it was shown the presence of segmental duplications

and deletions. The discovery of such alterations have been facilitated by the

advance in array-based technique. Megabase interval genomic arrays have

been instrumental in delineating regions affected in many genetic diseases.

In cytogenetically normal patients that exhibit mental retardation and dys-

morphisms have been discovered submicroscopic chromosomal deletions and

duplication. In addition copy number changes were refined in Cri-du-chat

syndrome, congenital diaphragmatic hernia and Prader-Willi Syndrome.

Array CGH have been used in the characterization of large scale DNA vari-

ations. In Iafrate et al. [2004] it was shown that 14 large-scale copy number

variations were located near loci associated with cancer or genetic disease,

suggesting that certain individuals may have higher susceptibility to disease

than others. Other studies illustrate that copy number variations contains

genes that have been implicated in cell growth and other functions.

Last array CGH technology has been employed for use in inter species com-

parisons. In a comparison between human genome and four great apes were

discovered 63 sites of DNA copy variations among 2460 studied. A signif-
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icant number of these sites existed in interstitial euchromatin (see Locke

et al. [2003]). In Fortna et al. [2004] they use a cDNA array CGH

approach, over 29 000 human genes across five hominoid species (human,

bonobo, chimpanzee, gorilla and orangutan) were compared leading to the

identification of more than 800 genes that gave genetic signatures unique to

a specific hominoid lineage. Moreover, there was a more pronounced differ-

ence between copy number increases and decreases in humans and a number

of genes amplified are thought to be involved in the structure and function

of the brain.

18



3
Statistical methods

3.1 Gene expression in statistics

Gene expression have been widely studied in statistics. These studies could

be clustered in two principal groups: class discovery and class comparison.

The aim of the first one is to find groups of genes that could be related and

is based on machine learning technique, also known as pattern recognition

techniques. The genomic analysis starts with low level operations such as

normalization or filtering, and ends with high level ones such as clustering

or other pattern recognition techniques. Pattern recognition could be super-

vised or unsupervised. When it is supervised some links that are prior known

are inserted as known and fixed, while the unsupervised analysis progress

without this kind of knowledge. Cluster analysis is one example of pattern

recognition. This technique explicitly identify underling scheme beneath a

data set, assuming that it exist, and must be validate from a statistical and

scientific point of view. This technique had been widely studied in different

fields of application and is not our intention to go more deep in technical-

ities such as the definition of the metric or the choice of the algorithm to

be used, but we want just to give an idea of the justification in the use

of these techniques in genomics. To that aim is useful to introduce some

biological notion. Co-expression is that phenomenon for which genes show
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3.2. Comparative Genomic Hybridization in statistics 20

similar pattern of expression in a variety of of conditions. Cluster analysis

detects sets of co-expressed genes, thus cluster analysis is important as long

as this phenomenon is well founded. Co-expression is justified both from a

mechanistic and an empiric point of view. If two or more genes are involved

in the same process, they will be expressed at the same time. An example

are drugs that are removed from the body through the united action of some

enzymes. First enzymes convert external products in reaction intermediate

that are then conjugate with soluble groups facilitating their elimination

through kidney.

The aim of class comparison is to test if a class of genes is linked to a cer-

tain effect (e.g. identification of genes related to a certain pathology). An

example could be: ”Is gene expression in mice exhibit in condition A and

B different?”. Techniques such as t-test, ANOVA, logistic regression and

survival analysis are examples of methods used to give an answer. A well

known Bayesian example is the one of Parmigiani et al. [2002] called prob-

ability of expression model (POE). It is a 3 components mixture model that

estimate for each gene the probability of belonging to one of the three latent

categories, over-, under- or normal expression.

3.2 Comparative Genomic Hybridization in

statistics

When studying CGH data, investigators are interested in finding out:

• which regions of DNA have copy number aberrations;

• how many copies are lost or gained.

Different methods have been proposed (Olshen et al. [2004], Sen and Sri-

vastava [1975], Fridlyand et al. [2004], Baladandayuthapani et al. [2010],

Broët et Richardson [2006], Guha et al. [2008], Du et al. [2010], Hodgson

et al. [2001]). Most used methods could be grouped in two categories:
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calling methods and segmentation methods. Segmentation methods, also

known as segmentation methods, seek to identify breakpoints that separate

contiguous regions of common means and estimates these means. Olshen

et al. [2004] developed a method called circular binary segmentation to

translate noisy intensity measurements into regions of equal copy number,

that extend the frequentist solution proposed by Sen and Srivastava [1975]

to detect change in mean. The circular binary segmentation recursively de-

tects pairs of change points to identify chromosomal segments with altered

copy number. Bayesian approaches typically use a joint prior on the con-

figuration of possible change points and the associated parameters. In Bal-

adandayuthapani et al. [2010] they propose a hierarchical Bayesian random

segmentation approach that detect recurrent copy number aberration across

multiple samples. Other approaches include clustering based approaches to

combine similar segments.

Calling methods model aCGH profile at clone level and call the states of

each probe as loss, gain or neutral. For example Broët et Richardson [2006]

propose a three state spatial mixture model, where the spatial correlation is

introduced in the weights of the mixture model through a random Markov

field. For our purpose it is essential to describe the model proposed by Guha

et al. [2008] in detail. In their work they consider only one sample at a time.

They denote with L1, . . . , Ln the DNA fragments and with Yk the normal-

ized log2 ratio observed at clone Lk (k = 1, . . . , n). They therefore introduce

a latent variable called copy number state sk associated with each clone Lk

that assumes values in the set {1, 2, 3, 4}:

1. sk = 1 representing a copy number loss (less than two copies of the

sequence in the fragment Lk);

2. sk = 2 representing a copy-neutral state (exactly two copies of the

sequence in the fragment Lk);

3. sk = 3 representing a single copy gain (exactly three copies of the

sequence in the fragment Lk);
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3.2. Comparative Genomic Hybridization in statistics 22

4. sk = 4 representing a multiple copy gain (more than three copies of

the sequence in the fragment Lk);

They denote with µj (j = 1, . . . , 4) the expected log2 ratio of all clones Lk for

which sk = j and assume that the normalized log2 ratio are distributed as

Yk
ind∼ N(µsk , σ

2
sk

). Then the dependence of the neighboring clones is modeled

using a hidden Markov model (HMM)1. In this context assuming an HMM

means that the probability of a clone to be in a certain state depends only on

the state of the previous one and not on the entire history of the chain, this

implies that the conditional probabilities P (sk+1|sk, . . . , s1) = P (sk+1|sk) =

asksk+1
, where the element asksk+1

is taken from a 4×4 matrixA of stationary

transition probabilities. They assume that the elements of this matrix are

strictly positive, thus the hidden Markov process is a periodic, irreducible

and its four states are positive recurrent. The unique stationary distribution

of A, denoted by πA = (πA(1), πA(2), πA(3), πA(4)) (where πA(i) is strictly

positive for state i = 1, . . . , 4), obtained as the normalized left eigenvector of

the matrix associated with eigenvalue 1, is assumed to be the distribution of

the first clone. In this way they uniquely determines the joint likelihood of

a given sequence. Figure 3.1 shows an example of results obtained applying

this model.

Calling methods shown so far assume the number of states as a fixed

number. Using infinite hidden Markov model (iHMM) this assumption could

be overcome. An example of model without assumption of the number

of states is the one of Du et al. [2010]. In their paper they first give an

overview of hidden Markov model with Dirichlet priors (HMM with Dirichlet

distribution prior, infinite HMM with HDP prior, Sticky HMM with HDP

prior), and then present their sticky hidden Markov model of comparative

genomic hybridization.

1For a description of the HMM look at the next section
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Figure 3.1: The normalized log2 ratio plotted against the position index with
state labels.

3.3 Hidden Markov Models

This section is a basic introduction to Markov process and, in particular,

to the special case of the hidden Markov process. A Markov process could

be thought as a process without memory, where the prediction of future

is based only on the present state, ignoring the whole process’ full history.

Given a set of state S = {s1, s2, . . . , s|S|}, where |S| is the cardinality of the

set S, a series over time can be observed: x ∈ ST , where T is the length

of the series. Consider, as example, a weather system, where the states

are three climate condition: x = {sun, cloud, rain}, with |S| = 3. Going

on with the example, consider a realization of the weather in five days:

{x1 = sun, x2 = cloud, x3 = cloud, x4 = rain, x5 = cloud}, with T = 5.

This is a typical example of output of a random process over time. If we do
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not put any further assumption, state s at time t could be a function of any

number of variables, including all the states from times 1 to t − 1 or even

many others that we did not consider. To make more tractable this time

series, two assumption, called Markov assumption, are introduced and drive

us to the Markov process. The first assumption say that the probability of

being in a state at time t depends only on the state at time t− 1. Formally:

P (xt|xt−1, xt−2, . . . , x1) = P (xt|xt−1),

The intuition beyond this assumption is that state t summarize enough

information of the past to reasonably predict the future. In our example the

climate condition of yesterday gives a strong idea of what weather will be

today. The second assumption say that the distribution over the next state

given current state does not change over time, the probability of having rain

given clouds yesterday is always the same. Formally:

P (xt|xt−1) = P (x2|x1); t ∈ 2, . . . , T

Conventionally, it is also assumed that there is an initial state and the

initial observation x0 ≡ p0, where p0 is the initial probability distribution

over states at time 0.

To identify a Markov process we need to define a transition matrix and an

initial probability vector. In our example we could give equal probabilities

to the states at time 0, p0 = [0.33, 0.33, 0.33], and use a transition matrix

A defined as follows:

A =


sun cloud rain

sun 0.8 0.1 0.1

cloud 0.2 0.6 0.2

rain 0.1 0.2 0.7


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These numbers show intuition that weather is self-correlated: it’s more

probable to stay in the same condition (diagonal elements) and some tran-

sition are more probable than others. Now we can calculate the probability

of our sequence.

P (x) = P (xT , xT−1, xT−2, . . . , x1;p0, A)

= P (xT , xT−1, xT−2 . . . , x2;A)P (x1;p0)

= P (xT |xT−1, xT−2 . . . , x1;A)P (xT−1|xT−2, . . . , x1;A) . . . P (x2|x1;A)P (x1;p0)

= P (xT |xT−1;A)P (xT−1|xT−2) . . . P (x2|x1;A)P (x1;p0)

= P (x1;p0)
∏T

t=2 P (xt|xt−1;A)

= P (x1;p0)
∏T

t=2Axt−1xt

= P (x1 = sun, x2 = cloud, x3 = cloud, x4 = rain, x5 = cloud)

= P (sun|p0)P (cloud|sun)P (cloud|cloud)P (rain|cloud)P (cloud|rain)

= 0.33× 0.1× 0.6× 0.2× 0.2

= 0.000792.

This model is a nice abstraction of time series, but fails to capture a very

common scenario. What happens if we cannot observe the states themselves,

but only a probabilistic function of those states? Consider, for example, a

situation proposed in Jason Eisner [2002]:

You are a climatologist in the year 2799, studying the history of global

warming. You can’t find any records of Baltimore weather, but you

do find my (Jason Eisner’s) diary, in which I assiduously recorded how

much ice cream I ate each day. What can you Figure out from this about

the weather that summer?

To explore this scenario a hidden Markov model could be used. We do

not observe directly the weather, but we observe an outcome generated

by each day (in this example the number of ice cream). To model the

probability of generating an output observation as a function of the hidden

state, we make the output independence assumption and define P (yt =
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3.4. Bayesian variable selection 26

vk|zt = j) = P (yt = vk|y1, . . . , yT , x1, . . . , xT ) = bjk. Matrix B encodes the

probability of our hidden state generating output vk given that the state

at the corresponding time was sj. Note that, in this scenario, the value of

the states are unobserved. There are three fundamental questions we might

ask of an HMM. What is the probability of an observed sequence, what is

the most likely configuration of states that generate an observed sequence

and how can we learn on the parameters A and B, given some data. To

give answers to this questions, different models have been developed. Figure

below shows a graphical representation of a HMM.

zyk−2 zyk−1 zyk zyk+1

r r r z
sk−2

z
sk−1

z
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z
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3.4 Bayesian variable selection

This section is a brief introduction to the theory of the variable selection, I

will focus on the method developed by George and McCulloch [1993] known

as Stochastic Search Variable Selection (SSVS), introduced in the linear re-

gression framework, adapted by many other authors to other model settings,

see for instance George and McCulloch [1997], Smith and Kohn [1996] and

Sha and al. [2004].

A main issue in building up a regression model is the selection of the re-

gressors to include. Given a dependent variable Y and a set of possible

predictors X1, . . . , Xp, the issue is to find a subset of predictors X∗1 , . . . , X
∗
q

that best fit the model Y = X∗1β
∗
1 + . . . + X∗qβ

∗
1 . Different methods have

been proposed, such as AIC, BIC, Cp, based on a comparison of all 2p pos-

sible models. Unfortunately when p is large the computational cost could
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be prohibitive. Typically practitioners use heuristic methods to reduce the

number of potential subset to be investigated. Examples are stepwise pro-

cedures, such as backward and forward algorithms, which include or exclude

variables based on R2 considerations. A special case is the small n large

p context, where most of the standard methods cannot be used, note, for

example, that the matrix XTX is not invertible. To overwhelm these prob-

lems George and McCulloch [1993] proposed a Stochastic Search Variable

Selection method, based on embedding the entire regression setup in a hi-

erarchical Bayes normal mixture model, where latent variables were used to

identify subset choices. In the original methods a Gibbs sampler is used to

indirectly sample from the posterior distribution on this set of possible sub-

set choices, while, in most of the following methods, a Metropolis-Hastings is

used. Clearly best models are those with higher probability. This procedure

use MCMC to obtain a sample from the posterior distribution quickly and

efficiently, in a high-dimensional framework. Starting from the canonical

regression setup:

Y |β, σ2 ∼ Nn(Xβ, σ2In)

where Y is an n× 1 vector, X is an n× p matrix (X = [X1, . . . ,Xp]),

β = [β1, . . . , βp]
′ (1 × p vector) and σ2 is a scalar. In this setting β and

σ2 are considered unknown and Y and X are our data. Selecting predic-

tors is equivalent to set equal to 0 those element of β corresponding to the

non selected predictors. It is assumed that X1, . . . ,Xp contains no vari-

ables that would be included in every possible model, this is justified from

a Bayesian prospective as initially integrating out those coefficients that

belongs to those variable that are included in every possible model. For

example if an intercept was to be included in every model (that is the usual

case), then 1p = [1, . . . , 1] should be excluded from the set of potential pre-

dictors and Y and Xi should be centered. In their work those two authors

build up a prior on each βi that is a mixture of two normal distributions with

27



3.4. Bayesian variable selection 28

different variances. The first one has most of its mass around zero, while

the second one has its mass spread out over possible values. This setup is

similar to the ”spike and slab” mixture of Mitchell and Beauchamp [1988],

but they put a probability mass on βi = 0 instead. Introduce the latent

variable γi that could only assume two values (0, 1), this normal mixture

prior on each βi is represented by:

βi|γi ∼ (1− γi)N(0, τ 2
i ) + γiN(0, ciτ

2
i ).

The hyper parameter τi is set small while ci is set large so that N(0, τ 2
i )

has its mass around zero, while N(0, ciτ
2
i ) is diffuse. With this setting when

γi = 0 βi will assumes very small values clustered around zero that it could

be estimated as zero, whereas when γi = 1 betas are dispersed and corre-

sponds to an important predictor (see figure 3.2).

This model implies that βis are independent given the γ vector. The

prior distribution on each γi is a Bernoulli and they are independently dis-

tributed, so the prior probability on the γ vector is simply the product of p

independent Bernoulli:

P (γ) =

p∏
i=1

pγii (1− pi)(1−γi).

where pi is the prior probability of γi to be equal to one. This probability

may be thought as the prior probability of a generic regressor Xi to be

included in the model: setting the parameter pi is equivalent to set the

sparsity of the model by defining the a priori expected number of significant

regressors. The hierarchical model is then completed by defining the prior

on the residual variance σ2. For this purpose the conjugate invers gamma

prior is used:
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Figure 3.2: An example of overlapped N(0, τ2
i ) and N(0, ciτ

2
i ) densities.

σ2|γ ∼ IG(
νγ
2
,
νγλγ

2
),

which is equivalent to νγλγ
σ2 ∼ χ2

νγ . Note that, in this configuration, νγ

and λγ may depend on γ to incorporate dependence between β and σ2. For

instance one could expect that σ2 would decrease as the dimension of β

increased.
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Embedding the normal linear model in the hierarchical mixture model allows

to obtain the marginal posterior distribution of γ as P (γ|Y ) ∝ P (Y |γ)P (γ),

and it can be used to updates the probabilities on each of the 2p possible val-

ues of γ. This allows to identify those models that are the ”best”, i.e. those

models that have the higher posterior probabilities, and therefore, that are

most supported by the data and the prior distribution. The main target of

the Gibbs sampler is to generate a sequence of γ values (γ(0),γ(1), . . . ,γ(m))

which converges in distribution to P (γ|Y ). A crucial observation is that the

sequence generated by SSVS, with high probability, contains exactly infor-

mation relevant to variable selection. This is due to the fact that those γ

with highest probability will also appear more frequently, while those that

appear infrequently or not at all are simply not of interest and can be dis-

carded. Therefore to find the most probable models it is not necessary to

explore the whole distribution: many models have small posterior probabil-

ity and can be ignored. This is also due to the idea of sparsity : many of the

possible relations can be practically considered as zero. In the small n large

p context the true model is always considered as sparse. This sequence is

embedded in the auxiliary Gibbs sequence of the full sequence of parameter

values:

β(0),γ(0),σ(0),β(1),γ(1),σ(1), . . . ,β(j),γ(j),σ(j), . . . ,β(m),γ(m),σ(m)

an ergodic Markov chain generated by the full conditional distributions

P (β|σ2,γ,Y ), P (σ2|β,γ,Y ) and P (γi|β, σ2,γ−i,Y ), where γ−i is the vec-

tor γ without position i, γ−i = [γ1, γ2, . . . , γi−1, γi+1, . . . , γp]. Notice that

the full conditional2 of γ does not depend on Y and on σ (this imply a fast

update) and the full conditional of σ does not depend on γ, leading to the

following simplifications:

• P (σ2|β,γ,Y ) = P (σ2|β,Y )

2This simplification results from the hierarchical structure where γ affects Y only
through β.
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• P (γi|β, σ2,γ−i,Y ) = P (γi|β,γ−i).

One of the extension of this model is the one proposed by Smith and

Kohn [1996]. Those two authors use the variable selection procedure in

the semiparametric additive models context. They implicitly introduce the

so called spike and slab prior for the regression coefficients, that will be

explicitly introduced by George and McCulloch [1997]:

βi|γi, σ2,X ∼ (1− γi)δ0 + γiN(0, σ2cxii),

where δ0 represents the Dirac delta function pointed in 0 and xii is the ith

element of the diagonal of (X ′X)−1. On the vector of the selected regression

coefficients they specify a g-prior β|γ, σ2 ∼ N(0, σ2c(X ′X)−1), while the

non selected β’s are simply excluded from the model. This setting allows

to integrate out β and σ2 from the model, leading to a faster computing

algorithm. Like George and McCulloch [1993] they uses a Gibbs sampler,

but they only need to sample γ, that is equivalent to explore the model

space.

A similar parametrization was used by Brown et al. [1998a]. The novelty

introduced by those authors is the procedure adopted for updating γ after

having integrated out parameters β and σ2. This procedure is faster then

the one proposed by Smith and Kohn [1996] and consist in starting from a

randomly chosen γ and then it moves through a sequence of further values,

with each step in the sequence having an element of randomness. A new

candidate γ is generated at each point of the sequence by randomly modify-

ing the current one. If this new candidate has a higher probability than the

current one, then we move to it. The move is still possible even if the new

candidate has a lower probability, but it must be accepted with a certain

probability. The new candidate γi+1 is generated from the current one γi

by one of two types of moves:

• Adding or deleting Select one of the p covariates at random. If it is
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already included in the model, delete the variable; if it is not currently

in the model, add it to the model. In this way the new candidate γi+1

differs from the previous γi in just one of its entries;

• Swapping At the same time choose at random one of the included co-

variates and one of the excluded ones. Then swap their values: exclude

the previously included variable and include the previously excluded

variable. Thus the new candidate γi+1 differs from the previous one

in two of its entries.

The new candidate γi+1 is then accepted with probability:

min[
g(γi+1)

g(γi)
, 1]

with g(γ) = P (γ)P (Y |X,γ), where P (γ) is the prior on γ and P (Y |X,γ)

is the likelihood. The above formula is obtained considering that the pro-

posal distribution. Furthermore, at each iteration the first kind of move is

chosen with probability φ and the second one with the reminder probability

(1−φ). In this scheme the parameter φ must be chosen. The value proposed

by Brown et al. [1998a] is 0.5 but other values are always possible.

When it’s possible to integrate out all the parameters but γ this Metropolis

algorithm is preferred to the Gibbs sampler because it allows a faster explo-

ration of the space of the relevant models. Over the years a large amount

of MCMC schemes have been proposed to achieve a faster exploration of

the relevant models. Recently Bottolo and Richardson [2010] proposed a

sampling algorithm based upon Evolutionary Monte Carlo with a parallel

tempering approach to explore the model space faster. This algorithm over-

comes the known difficulties faced by MCMC schemes when attempting to

sample a high dimension multimodal space.

The previous examples are all based on regression with only one response

variable. Brown et al. [1998b] generalized the idea of SSVS to multivariate

regression models with q response variables. To define the SSVS procedure
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in this context is necessary an introduction to matrix variate distribution.

Following the notation introduced by Dawid [1981] Y −M ∼ N(Γ,Σ)

represent a n× q normal matrix-variate distribution where M indicates the

mean and γiiΣ and σjjΓ indicate the covariance matrices of respectively

i− th row and j− th column. This notation has the advantage of preserving

the matrix structure without the need to string by row or column as a vec-

tor. Conditionally on parameters a, B, γ and Σ the standard multivariate

normal regression model is defined as

Y − 1a′ −XB ∼ N(In,Σ),

with n × q random matrix Y , 1 an n × 1 vector of 1s, 1 × q vector of

intercepts a, n × p model matrix X regarded as fixed and B the p × q

matrix of regression coefficients. Then special forms of prior distribution for

parameters a, B, γ and Σ are given

a′ − a0 ∼ N(h,Σ)

B −B0 ∼ N(H ,Σ)

Σ ∼ IW (δ,Q)

and those three parameters can be integrated out from the model. Note

that Brown et al. [1998b] specify a latent p × 1 vector indicator for the

inclusion of the covariates. In this setting if the j− th element of the vector

is equal to 1, then the j − th covariate is significant for all the q response

variables. As a consequence is not possible to define different sets of of sig-

nificant covariates for different response variables. Integrating out the three

parameters, jointly with a QR deletion-addition algorithm in the calculation

of the marginal likelihood, leads to a very efficient Gibbs MCMC scheme for

posterior inference. Moreover, Brown et al. [1998b] use the model averag-

ing idea of Madigan and York [1995] for prediction of new observations Yf .
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Procedure based on the predictive distribution p(Yf |Y ,Xf ) and exploits the

conjugacy of the model; after integrating out a, B and Σ it is possible to

calculate Yf as weighted mean of the expected values of p(Yf |Y ,Xf ) given

different configurations of γ, using as weight the posterior probabilities of

these configurations. According to the posterior probabilities only the best

k configurations are used for prediction.

Scott and Berger [2010] studied the multiplicity correction effect of standard

Bayesian variable selection priors in the linear regression. Their first goal is

to clarify when, and how, multiplicity correction is automatic in Bayesian

analysis, and to contrast this multiplicity correction with the Bayesian Ockham’s-

razor effect. These two authors find that multiplicity issues are partic-

ularly relevant when researchers have little reason to suspect one model

over another, and simply want the data to flag important covariates from

a large pool. In such cases Bayesian variable selection must be used as

an exploratory tool. Then they focus their attention in the comparison of

empirical-Bayes and fully Bayesian approaches to multiplicity correction in

variable selection. They found considerable differences between the results

of the two approaches and suggest that considerable care must be be taken

with the empirical-Bayes approach in variable selection.

Last Bayesian variable selection have been studied in logit and probit mod-

els for binary and multinomial outcomes. Some examples are the models

proposed by Sha and al. [2004], Holmes and Held [2006] and Albert and

Chib [1993].

3.5 Integration, some existing methods

The main goal of our method is to find groups of DNA fragments that pos-

sibly affects the expression of one or more genes. Not many techniques

to integrate CGH and gene expression data have been developed; here we

briefly show the ones of Chin et al. [2006], Choi et al. [2010], Richardson et

al. [2010], Monni and Tadesse [2009], ?,Cai and al. [2011] and Yin and Li
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[2011].

One of the first works on these data is the one of Chin et al. [2006]. They

explore the role of genome copy number aberrations in breast cancer patho-

physiology by identifying association between recurrent CNAs, gene expres-

sion and clinical outcome. Using an unsupervised clustering approach they

shows that the recurrent CNAs differ between tumor sub types defined by

expression pattern and that stratification of patients according to outcome

can be improved by measuring both expression and copy number, especially

high level amplification.

Choi et al. [2010] developed a double-layered mixture model (DLMM) that

simultaneously scores the association between paired copy number and gene

expression data using related latent variables in the two datasets. The

method assigns high scores to elevated or reduced measurements only if the

expression changes are co-observed consistently across samples with copy

number aberration. However, Choi et al. [2010] consider only copy number-

associated changes in gene expression levels. In other terms, the definition

of over or under expression is relative to the distribution of expression values

in samples with no aberrant copy numbers. Thus, even if a gene is highly ex-

pressed in many samples, this gene will not be considered as over-expressed

as long as this is not related to a concordant amplification. This feature

may not be optimal, as the investigation of gene expression changes that ap-

pear to be independent of concurrent amplifications may also be of interest.

Furthermore, in the model proposed by Choi et al. [2010], gene expression

levels are affected only by copy number aberrations occurring on the same

segment of DNA. Indeed, it may be expected that expression levels and

CGH aberration of adjacent segments in the DNA may not be independent.

Hence, a more realistic model of gene-gene interaction may be preferable.

Richardson et al. [2010] consider the generic task of building efficient re-

gression models for sparse multivariate analysis of high dimensional data

sets, where both the number of responses and of predictors are large with

respect to the sample size. The define q regression equations as yk =
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αk1n + Xβk + εk, k = 1, . . . , q where εk ∼ Nn(0, σ2
kIn). Note that in

this definition every regression equation has its own intercept αk and error

variance σ2
k. As many other authors they introduce the latent binary vec-

tor γk = [γk1, . . . , γkj, . . . , γkp]
′ for each equation where γkj = 0 if βkj 6= 0

and γkj = 0 if βkj = 0, j = 1, . . . , p. Considering at the same time all

q regression, the q × p latent binary matrix Γ = (γ1, . . . ,γk, . . . ,γq)
′ can

be obtained. then they assume independence on the q regression, given Γ,

therefore the likelihood becomes:

q∏
k=1

(
1

2πσ2
k

)1/2

exp

{
− 1

2σ2
k

(
yk − αk1n −Xγkβγk

)′(
yk − αk1n −Xγkβγk

)}
,

where βγk is the non-zero vector of regression coefficients of the k-th re-

gression and, similarly, Xγk is the design matrix with columns correspond-

ing to γkj = 1. They follows a g-priors representation for the regression

coefficient, assuming that βγk|γk, g, σ2
k ∼ Npγk

(
0, g(X ′γkXγk)−1σ2

k

)
, where

pγk ≡ γ′k1p the number of non-zero elements in γk. To increase flexibility

g ∼ InvGam(ag, bg). Note that g is the level of shrinkage and it is common

for all q regression equations, thus g is one of the parameters that links the

q regressions. Prior specification is then completed by assigning a Bernoulli

prior on the latent binary indicators, p(γkj|ωkj) = ω
γkj
kj (1 − ωkj)1−γkj , with

k = 1, . . . , q, j = 1, . . . , p. A crucial point of their model are the prior

probability for Γ, i.e. to model the matrix

Ω =



ω11 . . . ω1j . . . ω1p

...
. . .

...
. . .

...

ωk1 . . . ωkj . . . ωkp
...

. . .
...

. . .
...

ωq1 . . . ωqj . . . ωqp


This matrix is so important because it controls sparsity of the model

and here strength between the responses can be included. Richardson et al.
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[2010] propose three different strategies:

1. ωkj = ωk with ωk ∼ Beta(aωk , bωk);

2. ωkj = ωj with ωj ∼ Beta(aωj , bωj);

3. ωkj = ωk × ρj with ωk ∼ Beta(aωk , bωk), ρj ∼ Gamma(cρj , dρj), 0 ≤
ωkj ≤ 1.

The first strategy assumes that the underlying selection probabilities for

each response may be different and arise from independent Beta distribu-

tion. In the second model ωj quantifies the probability for each predictor to

be included in all the regression. The third one uses a shared column effect

ρj to moderate the underlying selection probability ωk specific to the k-th

regression in a multiplicative fashion. They also show that the third model

is the one with better performance allowing an excellent separation between

hot spot3 and background.

Monni and Tadesse [2009] proposed a stochastic partitioning method to asso-

ciate responses and covariates, both much larger in number than the sample

size. They present a stochastic algorithm that searches for sets of covariates

associated with sets of of correlated outcomes. Their model combines the

ideas of mixture models, regression models and variable selection identify

group structures and key relationships in high-dimensional data sets. To

that aim they construct a Markov chain in the space of pairwise partition of

the set of regressors and of the sets of responses. Each element of the par-

tition is then a pair of subsets, the first one composed of covariates and the

other one composed of their correlated outcomes. They impose (because of

the asymmetric role of predictors and responses) that each outcome should

belong to one and only one pair, while covariates could belong to more than

one element of the partition.

Now consider a data set of N independent samples with p covariates and q

outcomes. In order to identify sets of outcome related to a set of predictor,

3Hot spot refers to predictor associated with many responses.
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they consider partitions of the variables into sets of pairs S = (XI , YJ), with

I ⊂ {1, . . . , p} and J ⊂ {1, . . . , q}. In their paper Monni and Tadesse [2009]

called a partition of the data as a configuration, its pairs as the component

of the configuration and the number of the latter as the length of the con-

figuration. Assuming independence among outcomes in distinct components

of a given partition, they define the probability of each configuration as the

product of the probabilities of its components. Then they consider a multi-

variate Gaussian mixture model with an unknown number of components,

where the mean and the scale of each component are determined by a re-

gression model on a subset of predictors. Consider the distribution of the

outcomes Yt1 , . . . , Ytnk of a component Sk = (mk, nk), it is assumed to be:

Yji|Sk
iid∼ N(αj + µk, σ

2
k),

where j = t1, . . . , tnk indices outcomes that belong to that component,

i = 1, . . . , N indices samples, σ2
k is the component specific variance, the loca-

tion of the distribution is split in two parts αj and µk = gk(Xs1 , . . . , Xsmk
).

Substantially they are fitting a mixture of regression models, where the ef-

fects of the regressors on the response are the same within a component, but

vary from one component to another. Writing the regression model as:

Yji = αj +

mk∑
r=1

βksrXsri + εji, εji ∼ N(0, σ2
k)

the likelihood for Sk is then given by:

φ(mk, nk) = (2πσ2
k)
−nkN/2exp

{
− 1

2σ2
k

N∑
i=1

nk∑
j=1

(
Ytji − αtj −

mk∑
r=1

βksrXsri

)2
}
.

Note that component of type (0, f) are distributed as N(αj, σ
2
k) since no
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regressors are associated with f response variables. Moreover components

of type (v, 0) are equivalent to those of type (1, 0), since X is viewed as a

fixed covariate matrix and the corresponding likelihood is equal to 1.

The prior probability distribution for the model parameters are then spec-

ified; conjugate priors are chosen and the component parameters are in-

tegrated out. They indicate with θ′k = (αt1 , . . . , αtnk , βs1 , . . . , βsmk ) the

(nk +mk) vector of regression coefficients, then choose:

θk ∼ N(θ0k, H0σ
2
k)

σ2
k ∼ IG(σ2

0, ν)

where θ′0k = (α0t1 , . . . , α0tnk
, β0s1 , . . . , β0tmk

), H0 = diag(h01nk , h1mk). In

this parametrization H0 controls the strength of the prior information on

the regression coefficients with larger values of h0 and h corresponding to a

wider spread around θ0k. Last the prior probability of each configuration is

given by:

p((m1, n1) . . . (nk,mk)) ∝
K∏
k=1

ρmknk ,

with 0 < ρ < 1. This way large components are a priori penalized with

stronger penalty as ρ decreases. Monni and Tadesse [2009] proposed two

different MCMC algorithm, the first one very simple and the second one is

an extension of the first one using parallel tempering.

Scott-Boyer and al. [2012] studied eQTL mapping in a regression frame-

work. Let g = 1, . . . , G denotes a particular gene or trait, i = 1, . . . , n

denotes a particular strain or individual and j = 1, . . . , S denotes a partic-

ular SNP. The model is then defined by:
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yig = µg +
S∑
j=1

xijγjgβjg + εig,

where yig is the expression level of gene g for the individual strain i, µg

is the overall mean expression level of gene g, xij represents the genotype

at locus j for strain i, βjg is the effect size of SNP j on gene g, γjg is the

binary inclusion indicator and εig is an error term, assumed to be Gaussian

with gene specific variance σ2
g . They put a Bernoulli prior distribution over

each γjg with parameter ωjg that represents the inclusion probability. On

this parameter they put a mixture probability, in order to reduce the false

discovery rate, as follows:

ωig ∼ pjδ0(ωig) + (1− pj)Beta(aj, bj)(ωig),

where δ0 is the delta Dirac centered in zero, pj, represent the probability

that ωjg is zero and is identical for all genes. On pj they put a Beta(a0, b0)

distribution, on aj an Exp(λa) and on bj an Exp(λb). They assume µg ∼
N(mg, τ

2
g ) where mg and τg are the empirical mean and standard deviation

of gene expression g. Last βjg is expressed by a mixture as follows:

βjg = γjgN(0, v2
jg) + (1− γ)δ0,

with v2
jg = c(x′jxj)

−1σ2
g , where c is a scaling factor parameter fixed

at S, (x′jxj)
−1 mimics the regression variance, leading to the g-prior and

σ2
g ∼ IG(1

2
, 1

2
) and can be integrated out. The authors underline that this

model has two clear advantages. First it can deal with a large number

of genes at a time (that facilitates the detection of hotspots), and second

each gene expression/trait has its own inclusion indicator γjg, with inclusion

probability parameters not considered common for all SNP positions nor
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supposed identical for all genes but depending on the SNP positions as in

Richardson et al. [2010].

Cai and al. [2011] developed a method to estimate the conditional inde-

pendent relationships among a set of genes adjusting for possible genetic

effects, as well as the genetic architecture that influences gene expression.

They realized a covariance-adjusted precision matrix estimation (CAPME)

method using constrained l1 minimization, implemented by linear program-

ming. Let p be the number of outcomes, q the number of regressors and n

the number of samples, they build up the following model:

y = Γ0x+ z,

where y = (y1, . . . , yp)
′ is a random vector denoting expression levels,

x = (x1, . . . , xq)
′ is a random vector describe the coding for q markers, Γ0 is

a p × q unknown coefficients matrix, z is a p × 1 normal vector with mean

zero, covariance matrix Σ0 = (σ0
ij) and precision matrix Ω0(ω0

ij) = Σ−1
0 .

They further assume that x and z are independent and that they have n

independent identically distributed observations (xk,yk) (k = 1, . . . , n) from

the previous model. Both matrices Γ0 and Ω0 are expected to be sparse,

and Ω0 as an interpretation of conditional dependency and can be used

to construct a conditional dependency graph. For example a generic edge

between yi and yj is excluded if and only if the corresponding zi and zj are

conditionally independent given all other zk’s. Since z follows a multivariate

normal distribution, the conditional independence of zi and zj leads to ωij =

0. The authors are interested in both estimation of Ω0 and Γ0, and use a

two step estimation: First they estimate Γ0 by solving a linear programming

problem, then using this estimated value they estimate Ω0 again solving an

optimization problem and they iterate until convergence.

A similar approach was developed by Yin and Li [2011], but in their model

they are most interested in the estimation of the covariance structure and is

of less importance for our purposes.
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Integrating CHG and Gene expression data

In this chapter we describe the model we develop for the integration of genet-

ical genomics data. We first describe the model build up on the covariates

of the regression and then we focus on the variable selection model. After

a brief overview on the posterior inference, we focus on the simulations we

implemented. Finally we apply our method to real data.

4.1 Hierarchical Model

Our proposed modeling strategy starts with the formulation of a hierarchi-

cal model, integrating gene expression levels with genetic data, that includes

measurement errors and mixture priors for variable selection. We couple this

model with a hidden Markov model (HMM) on the genetic covariates. Our

approach utilizes prior distributions that cleverly incorporate dependencies

among selected variables. It also incorporates stochastic search variable

selection techniques within an inferential scheme that allows to select asso-

ciations among genomic and genetic variables while simultaneously inferring

the hidden states of the HMM. The graphical formulation of the model is

illustrated in Figure 4.1 and its major components are described below. We

also summarize the hierarchical formulation of our full model in Figure 4.2

at the end of this Section.
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Figure 4.1: Graphical formulation of the proposed probabilistic model described
in Section 2.

4.1.1 Measurement Error Model for Genetical Genomic

Data

Let Yig, for g = 1, . . . , G, denote the gene expression measurements and Xim

the CGH measurement, i.e., the normalized log2 ratio observed at the m-th

probe for sample i, with m = 1, . . . ,M and i = 1, . . . , n. We incorporate

measurement errors in the formulation of our model by introducing latent

variables ξim representing the copy number state, i.e., loss, gain or neutral,

of the m-th probe in the i-th sample,

ξim = 1 for copy number loss (less than two copies of the fragment);

ξim = 2 for copy-neutral state (exactly two copies of the fragment);

ξim = 3 for a single copy gain (exactly three copies of the fragment);
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ξim = 4 for multiple copy gains (more than three copies of the frag-

ment).

The rationale behind this modeling choice is that, at the genomic level,

the expression of a gene is affected by the copy number state of a given

clone, with the CGH measurement representing a surrogate of this effect on

a continuous scale.

Let Z = [Y ,X] denote the (n × (G + M)) matrix including all the

data measurements and let ξ = [ξ1, · · · , ξM ] be the (n × M) matrix of

the categorical latent variables. We assume conditional independence of

the gene measurements, conditionally upon the copy number states, that

is, Yi ⊥ Yj|ξ1, . . . , ξM , and of the CGH measurements, conditionally upon

their states, that is, Xi ⊥ Xj|ξ1, . . . , ξM . We consequently factorize the

likelihood as

f(Z|ξ) =
G∏
g=1

f(Yg|ξ)
M∏
m=1

f(Xm|ξm). (4.1)

Monni and Tadesse [2009] and Richardson et al. [2010] have suggested linear

regression models that relate the gene expression levels to the CGH data. For

the conditional model, we therefore assume f(Yg|ξ) ∼ N(ξβg, σgIn). This

model formulation is equivalent to a system of G linear regression models of

the type

Y1 = 1nµ1 + ξβ1 + ε1

Y2 = 1nµ2 + ξβ2 + ε2

... (4.2)

YG = 1nµG + ξβG + εG,

with µ1, . . . , µG gene-specific intercepts and β1, . . . ,βG vectors of regressions

coefficients. Model (4.1) is completed with an appropriate choice for the
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distribution of the CGH measurements, that is a model for X|ξm. For this

we employ hidden Markov models.

4.1.2 Hidden Markov Model on the Genetic Covari-

ates

CGH data are “state persistent”, meaning that copy numbers gains or losses

at a region are often associated to an increased probability of gains and losses

at a neighboring region. We therefore aim at a model that enforces clustering

of the measurements into homogeneous groups, reflecting different levels of

amplification/deletion as captured by the (hidden) states of the CGH clones.

Several methods have been proposed in the literature for such purpose. Here,

we adapt the popular model proposed by Guha et al. [2008], that uses hidden

Markov models and 4 hidden states, and apply it independently to each

sample. Other models, such as those of Fox et al. [2007] and Du et al.

[2010], that consider the number of possible states as a random variable,

may be similarly adapted to our setting.

We assume the CGH measurements independently normally distributed,

conditionally on their copy number states,

Xim|(ξim = j)
iid∼ N(µj, σ

2
j ), (4.3)

with µj and σ2
j representing the expected log2 ratio and the variance of all

probes in state j, for j = 1, . . . , 4. We then capture dependence with an

hidden Markov model which assumes that the probability of a probe to be

in a certain state depends only on the state of the previous one along the

DNA sequence. This implies that the conditional probability of neighboring

probes to be in a certain state is

P (ξi(m+1)|ξi1, . . . , ξim) = P (ξi(m+1)|ξim) = aξikξi(k+1)
. (4.4)
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with A = (ahj), for h, j = 1, . . . , 4, forming the matrix of transition proba-

bilities, with strictly positive elements. This matrix has a unique stationary

distribution πA. We also assume that the state for the first CGH probe, ξi1, is

distributed as πA. Finally, we assume independent Dirichlet priors, Dir(φ),

over the rows of the matrix A. We complete the model, following Guha et

al. [2008], by choosing truncated prior distribution for the parameters µj in

(4.3), reflecting their ordering, as

µj



µ1 ∼ N(−1, τ 2
1 )I{µ1<uppµ1}

µ2 ∼ N(0, τ 2
2 )I{lowµ2<µ2<uppµ2}

µ3 ∼ N(0.58, τ 2
3 )I{lowµ3<µ3<uppµ3}

µ4 ∼ N(1, τ 2
4 )I{µ4>lowµ4}.

The low boundary for µ4 avoids that a large number of single copy gains

can be erroneously classified as multiple copy gains. Similarly, we choose

truncated distributions for the σ−2
j

σj



σ−2
1 ∼ Ga(b1, l1)I{σ−2

1 >uppσ1}

σ−2
2 ∼ Ga(b2, l2)I{σ−2

2 >uppσ2}

σ−2
3 ∼ Ga(b3, l3)I{σ−2

3 >uppσ3}

σ−2
4 ∼ Ga(b4, l4)I{σ−2

4 >uppσ4}
.

The choice of the truncation σ−2
j > 6 is a mild assumption, and it is equiv-

alent to setting σj < 0.41.

4.1.3 Prior Model for Variable Selection

For each gene we wish to find a parsimonious list of CGH aberrations that

affect the gene expression measurements with high confidence. This is equiv-

alent to infer which elements of the vector βg in (4.2) are non-zero, a classical

variable selection problem. The resulting “network” of gene-CGH associa-

tions can be encoded by a (G×M) matrixR of binary elements. Specifically,
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for gene g and probe m, the value rgm = 1 indicates that the corresponding

coefficient βgm is significant, and therefore included in the g-th regression in

(4.2). Otherwise, rgm = 0 indicates that the corresponding regression coef-

ficient is zero. The regression coefficient parameters are then stochastically

independent, given R, and have the following mixture prior distribution

π(βgm|rgm, σ2
g) = rgmN(0, cβσ

2
g) + (1− rgm)δ0(βgm), (4.5)

with δ0(·) a point mass at zero. Prior of type (4.5) are known as a spike-

and-slab prior in the Bayesian variable selection literature, see George and

McCulloch [1997] for univariate linear regression models, and Brown et al.

[1998b, 2002] and Sha and al. [2004] for multivariate regression models.

The prior model is completed with a Gamma prior on σ−2
g , that is σ−2

g ∼
Ga( δ

2
, d

2
), and a Normal distribution on the intercepts, µg|σ2

g ∼ N(0, cµσ
2
g),

with δ, d and cµ to be chosen. Note that assumptions on the marginal

distribution of (X1, . . . ,XM) do not affect the association network, which is

fully encoded by R. Mixture priors for variable selection have been employed

in genomic applications to infer biological networks of high dimensionality,

see for example Jones and al. [2005], Richardson et al. [2010] and Stingo et

al. [2010]. The variable selection formulation we adopt follows Stingo et al.

[2010] and overcomes the somehow rigid structure of the model in Brown et

al. [1998b], which does not allow to select different predictors for different

responses. See also Monni and Tadesse [2009] for an approach based on

partition models.

Lastly, we describe our prior choice for the elements rgm’s of the matrix

R. For this, we incorporate information about the dependence structure

among states of adjacent CGH aberrations. More precisely, we enforce a

dependence structure among the rgm indicators as follows: we assume that

the probability of selection at location m depends on the state of local aber-

rations at the adjacent positions m− 1 and of m+ 1. In particular, we want

to exploit dependence if Xm and X(m−1) (or X(m+1) or both) share the
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same copy number state, i.e. if there is no change in state, since arguably

the effect of ξm on Yg should be more likely the more probes share the same

state, i.e., the more persistent the state. We express this as a conditional

mixture prior distribution of the type

π(rgm|rg(m−1), rg(m+1), ξ, π1) = γ[π
rgm
1 (1− π1)(1−rgm)] +

2∑
j=1

ωjI{rgm=r
g(m+(−1)j)

},

(4.6)

with γ ∈ [0, 1] and where we impose the constraint
∑2

j=1 ωj = (1− γ). Note

that for the first and last segment respectively ω1 and ω2 are equal to zero.

We assume that the value of rgm is drawn independently of the adjacent

configurations with probability γ, whereas, with probability (1 − γ), it co-

incides with one (or both) of the adjacent values in the R matrix. We note

that (4.6) reduces to independent priors of type rgm ∼ Bern(π1) in the case

γ = 1. For each DNA segment we define the parameters γ, ω1 and ω2 as

follows:

γ =
α

α + s(m−1)m + sm(m+1)

,

ω1 =
s(m−1)m

α + s(m−1)m + sm(m+1)

, ω2 =
sm(m+1)

α + s(m−1)m + sm(m+1)

(4.7)

with s(m−1)m = (
exp{1− dm

D
}−1

exp{1}−1
) 1
N

∑N
i=1 I{ξi(m−1)=ξim} and with α a value to be

chosen. Quantities s(m−1)m and capture the average empirical frequencies of

change points along the sequence of the copy number states, across samples.

Construction (4.6) and (4.7) allows us to incorporate spatial dependence

along the genome sequence into the prior model, as the value of rgm depends

on the persistence of a particular state in its neighborhood. In particular,
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the case s(m−1)m = sm(m+1) = 0 reduces to the independent prior rg(m) ∼
Bern(π1), while larger non-negative values of either s(m−1)m or sm(m+1) lead

to smaller γ values and larger ω1 and ω2 values. The prior probability of

rgm = 1 therefore increases if rg(m−1) (or rg(m+1)) is equal to one and if in at

least one sample there is no change point between states of probes m and

m − 1 (or m + 1). The parameter α captures the relative strength of the

dependence structure. In particular, α = 0 implies γ = 0, while α → ∞
leads to γ = 1, that is the independent prior.

We complete prior (4.6) by further imposing a Beta hyperprior, π1 ∼
Beta(e, f), and integrating π1 out we obtain

π(rgm|rg(m−1), rg(m+1), ξ) = γ Γ(e+f)Γ(e+rgm)Γ(f+1−rgm)

Γ(e+f+1)Γ(e)Γ(f)

+
∑2

j=1 ωjI{rgm=r
g(m+(−1)j)

}.
(4.8)

Figure 4.2 summarizes the hierarchical formulation of our full model.

In the case study of Section 4.4.3 we also investigate a refined version

of our prior model (4.6) and (4.7) by taking into account physical distances

between CGH clones. For this we define

s(m−1)m =
1

n

n∑
i=1

I{ξim=ξi(m−1)}(
exp{1− dm

D
} − 1

exp−1
) (4.9)

with dm the distance between the (m−1)-th and m-th CGH probes and D a

quantity to be chosen (some instances could be: length of the chromosome,

length of DNA, ...). This formulation allows us to further weigh quantities s1

and s2 by the distances between adjacent probes. Similar non-linear weights

have been used for example by Wang and al. [2008]. If two adjacent

segments overlap (i.e. dm = 0), then the weight is zero. At the maximal

distance (i.e. dm = D) the weight assumes its maximum value, that is one.

We note that distances for probes that occur at the sequence boundaries are

set to zero by default.
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Likelihood:

f(Z|ξ) =
∏G
g=1 f(Yg|ξ)

∏M
m=1 f(Xm|ξm),

f(Yg|ξ) ∼ N(ξβg + 1nµg, σ
2
gIn),

f(Xim|(ξim = j)) ∼ N(µj , σ
2
j ),

P (ξi(m+1) = i|ξim = j) = aij .

Model parameters:

Conditional model Marginal Model
βgm|rgm, σ2

g ∼ rgmN(0, cβσ
2
g) + (1− rgm)δ0(βgm) Aj. ∼ Dir(φ)

µg|σ2
g ∼ N(0, cµσ

2
g) µj ∼ N(δj , τj)Ij

σ−2
g ∼ Ga( δ2 ,

d
2) σ−2

j ∼ Ga(bj , lj)Ij

Variable selection parameters:

π(rgm|rg(m−1), rg(m+1), ξ, π1) = γ[π
rgm
1 (1− π1)(1−rgm)] +

∑2
j=1 ωjI{rgm=r

g(m+(−1)j)
}

π1 ∼ Beta(e, f)

Fixed Hyperparameters:

cµ, cβ, δ, d, e, f, α, δj , τj , bj , lj ,φ

Figure 4.2: Hierarchical formulation of the proposed probabilistic model.
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4.2 Posterior inference

Our primary interest lies in the estimation of the association matrix R and

of the matrix ξ. For this we design a Markov chain Monte Carlo algorithm.

Our marginal likelihood, integrating out µ, βg and σ2
g , is

f(Yg|ξ,R) =
(2π)−

n
2 ( cµ

cµ+n
)
1
2 (cβ)

kg
2 Γ(n+δ

2
)(d

2
)
δ
2

|Ug|
1
2 Γ( δ

2
)(d+qg

2
)(n+δ

2
)

, (4.10)

with

Ug = cβIkg + ξ′RHnξR; qg = Y ′gHnYg − Y ′gHnξRU
−1
g ξ
′
RHnYg; Hn = In −

1n1
′
n

n+ cµ

and where kg is the number of significant regressors for the gth regression.

See Appendix A for details of this derivation. Our MCMC algorithm consists

of the following steps:

• Update R via a Metropolis step. Here we first select ng genes at

random using a geometric distribution (see Appendix B for details).

Then, for each selected gene, we either add/delete one element (with

probability ρ) or swap two elements of the row of R that corresponds

to that particular gene. An A/D step consists in choosing at random

an element and changing its value (if it is a 0 it becomes a 1 and vice

versa), while the swap step consists in swapping the position of a 1 and

a 0 elements. In this step we do not consider genes whose probes have

more than 90% of the samples estimated in state 2. This constraint is

biologically justified, as CGH probes that are in neutral state do not

exhibit chromosomal aberration and would therefore not be associated

with changes in mRNA transcript abundance. The change proposed

for each gene is then accepted with probability

min[f(Y|ξ,Rnew)π(Rnew|ξ)
f(Y|ξ,Rold)π(Rold|ξ) , 1]. (4.11)

52



53

Because All moves are symmetric, the proposal distribution does not

appear in the previous ratio. Details on the functional form of π(R|ξ)

are given in Appendix B.

• Update ξ via a Metropolis step. This step consists in choosing at ran-

dom a column of ξ (say m) and update the value of nm of its elements,

selected at random using a geometric distribution (see Appendix B

for details). For each element, a candidate state is sampled using the

current transition matrix A (i.e., we propose ξnewim based on ξoldi(m−1))

and the proposal is accepted with probability:

min[π(R|ξnew)f(X|ξnew)f(Y |ξnew,R)π(ξnew|ξold,A)q(ξold|ξnew)
π(R|ξold)f(X|ξold)f(Y |ξold,R)π(ξold|ξold,A)q(ξnew|ξold)

, 1]. (4.12)

See Appendix B for details on how to calculate the various terms of

the acceptance probability.

• Update µj, for j = 1, . . . , 4, via a Gibbs step. Here we generate

µj|X, ξ, σj ∼ N(ηj, θ
−2
j )Ij,

with precisions θj = τ−2
j +njσ

−2
j and weighted means ηj = θ−2

j (δjτ
−2
j +

X̄jnjσ
−2
j ), where nj =

∑M
m=1

∑n
i=1 I{ξim=j}, X̄j = 1

nj

∑M
m=1

∑n
i=1XimI{ξim=j}

and Ij indicates the truncation.

• Update σj, for j = 1, . . . , 4, via a Gibbs step. We generate

σj|X, ξ, µj ∼ IG(αj +
nj
2
, βj +

Vj
2

)Ij,

where nj =
∑M

m=1

∑n
i=1 I{ξim=j}, Vj = (Xim − µj)2I{ξim=j} and Ij indi-

cates the truncation.

• Update A via a Metropolis step. We generate a new value for each

row of A as Anew
.j |ξ ∼ Dir(φ + oh1, φ + oh2, φ + oh3, φ + oh4), where
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ohk =
∑n

i=1

∑M−1
m=1 I{ξim=h,ξi(m+1)=k}, and accept the proposed value

with probability

min[1,
n∏
i=1

πAnew(ξi1)

πAold(ξi1)
], (4.13)

where πA denotes the stationary distribution of the transition matrix

A.

Given the MCMC output, we first perform inference on R by estimating the

marginal posterior probability of inclusion for the single elements, counting

how many times each position was set equal to one, after burn-in. The final

selection is then made by looking at those elements of R that have marginal

posterior probability greater than a certain threshold. We then estimate ξ

by calculating, for each position, the most frequent state value. Our MCMC

output also allows us to do inference on the transition matrix A and the

means and variance components.

4.3 Simulation Studies

We generate an n×M matrix ξ as follows:

• We set all the elements of the matrix ξ equal to 2.

• We select1 L < M columns and, for each column, we randomly gener-

ate all its values using a transition matrix of the form

A =


0.7500 0.1800 0.0500 0.020

0.4955 0.0020 0.4955 0.007

0.0200 0.1800 0.7000 0.010

0.0001 0.3028 0.1000 0.597


1We select some groups of adjacent columns and some random columns.
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• We then randomly select additional (M −L)/2 columns and, for each

column, we randomly generate 10% of its values according to the same

transition matrix above.

We generate the copy number state of the first probe by sampling from the

initial probability vector πA, which we obtain, following Guha et al. [2008],

as the unique stationary distribution of the transition matrix A, defined as

the normalized left eigenvector of the matrix associated with eigenvalue 1.

We fix the values of µj and σj, j = 1, . . . , 4, to µ1 = −0.65, µ2 = 0, µ3 =

0.65, µ4 = 1.5 and σ1 = 0.1, σ2 = 0.1, σ3 = 0.1, σ4 = 0.2, and then generate

the data matrix X of the CGH profiles by sampling each CGH probe from

a Normal distribution with mean and variance corresponding to the state it

belongs to. Next we select l significant β’s among the L DNA segments and

generate them as β ∼ N(β0, 0.3
2), picking the sign at random. We generate

the error term as ε ∼ N(0, σ2
ε ) and the intercept as µg ∼ N(0, σ2

µg), with

σµg = 0.1, and, finally, set Yig = µg + βXig + ε, with g = 1, . . . , G. Figure

4.3 depicts the simulated data for G = 100,M = 1, 000, L = 250, l = 20 and

σ2
ε = .01, for one sample.

For hyperparameter settings, a vague prior is assigned to the intercept

parameters by setting cµ to a large value tending to∞. The hyperparameter

cβ in the prior on the regression coefficients determines, together with the

hyperparameters of the prior on R, the amount of shrinkage in the model.

We follow the guidelines provided by Sha and al. [2004] and specify this

parameter in the range of variability of the data so as to control the ratio

of prior to posterior precision. Specifically, we set cµ = 106 and cβ = 10.

Also, we specify vague priors on the error variances by setting δ = 3, the

minimum value such that the prior expectation exists, and choosing d so that

the expected value of the variance parameter is comparable in size to a small

percentage of the expected error variances of the standardized responses (we

chose 5% for the results reported in the paper). Some sensitivity to the

hyperparameters of the prior on R, and specifically the Beta hyperprior on

π1, is to be expected. In the simulations reported below we consider the
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Figure 4.3: Simulated data: Example of simulated ξi,Xi and Yi, from top to
bottom, respectively, for G = 100,M = 1, 000, L = 250, l = 20 and σ2

ε = .01, for
one sample (n = 1).
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dependent prior model (4.8), where we set π1 ∼ Beta(e, f) with e = .001

and f = .999, and look at performances for different values of α. We also

consider the simpler independent prior, corresponding to α → ∞. As for

the prior settings of the HMM model, we again follow Guha et al. [2008]

and use a very similar hyperparameter specification. Specifically, we set

µj ∼ N(δk, τ
2
k )·I{lowµ<µ<uppµ}, for j = 1, . . . , 4, with δk = [−1, 0, 0.58, 1], τk =

[1, 1, 1, 2], lowµ = [−∞,−0.1, 0.1, µ3 + σ3] and uppµ = [−0.1, 0.1, 0.73,∞].

Also, we use σ−2
j ∼ Ga(bj, lj) · I{σ<uppσj } with bj = 1, lj = 1 and uppσ =

[.41, .41, .41, 1]. Finally, we assume each row of the transition matrix as

independently distributed according to a Dirichlet D(φi1, φi2, φi3, φi4) with

φ = [1,1,1,1].

When running the MCMC chain, we sample the initial values for µj

and σj from their respective priors, while ξ is initialized by fixing three

thresholds and considering ξim = j (j = 1, . . . , 4) if Xim > Tj with T =

[−∞,−0.5, 0.29, 0.79]. The initial value of A is derived from ξ by counting

the number of transitions at each position and dividing by the row total.

We set the initial R as a matrix with all positions equal to zero. We set

the probability of an A/D move to ρ = 0.5. All results we report here were

obtained by running MCMC chains with 500,000 iterations and a burn-in of

350,000. We assessed convergence by inspecting the MCMC sample traces

for all parameters, see Figure 4.4 for an example.

4.3.1 Inference on R and ξ

In a first scenario (simulated scenario 1), we set G = 100 and (n;M ;L; l) =

(100; 1, 000; 250; 20). We then generated the l = 20 non-zero β’s from a

N(2, 0.32), except for six of them which we sampled from a N(.5, 0.32). We

repeated the simulation for two different values of the variance of the error

term, that is, σ2
ε = .01, .25. We start by summarising the inference on the

association matrix R. We investigate the effect of the dependent prior (4.6)

by running chains for different values of α, that is, α = (5, 10, 50, 100,∞).

Figure 4.5 shows marginal posterior probabilities of inclusion for the ele-
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Figure 4.4: Simulated data: Example of trace plots for R for one MCMC run
on simulated scenario 1.
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ments rgm of the matrix R, for the case σ2
ε = .01 and the five α values.

The figure show that, as α decrease, for some group of links their posterior

probabilities increase, while for some other they decrease. Table 4.1 shows

the results in terms of false positives (FP), false negatives (FN), sensitivity

and specificity, obtained with a threshold of .5 on the marginal posterior

probability of inclusion shown in Figure 4.5. With the term false positives

we indicate the number of positions estimated as significant which are not

significant in the true R matrix. With false negatives we indicate the num-

ber of positions estimated as not significant which are significant in the true

R matrix. We calculate sensitivity as the number of false positives divided

by (l) and specificity as the number of true negatives divided by (G×M− l).
We notice that lower values of α, enforcing more dependence among CGH

probes, lead to lower numbers of FN but increased numbers of FP, leading

to improved sensitivity and only slightly worse specificity. The small vari-

ability in specificity is due to the fact that the number of true negatives

(TN) is always a very large value. Results are similar for the two different

error variance values we considered, although, as expected, the model works

better when the error variance is smaller (see Table 4.1).

In order to investigate the effect of the choice of the threshold on the

marginal probabilities of inclusion, Figure 4.6 shows numbers of FP and FN

obtained by considering different threshold values, calculated as a grid of

equispaced points in the range [.07, 1]. The 4 panels clearly show that the

dependent prior outperforms the independent one regardless of the choice of

the threshold value.

As for inference on ξ, Table 4.2 shows the numbers of misclassified el-

ements of ξ for α = (5, 10, 50, 100,∞). It seems that there is no effect on

the choice of α on the misclassification rate, i.e. a better estimation in the

variable selection do not lead to a better estimation in the classification of

the X. Our inferential scheme also allows us to look at the distribution of

the misclassification values of ξ over the four possible states. For example,

for σ2
ε = .01 and α = (5,∞) we obtained
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Figure 4.5: Simulated scenario 1 with σ2
ε = .01: Marginal posterior probability

of inclusion of the elements rgm of the association matrix R. Plots refer to prior
model (4.6) with (a) α = 5, (b) α = 10, (c) α = 50, (d) α = 100 and (e) α = ∞
(independent prior).
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Scenario 1 α = 5 α = 10 α = 50 α = 100 α =∞
σ2
ε = 0.01 (indep prior)

False Positives 24 22 14 7 2
False Negatives 1 1 3 3 5
Sensitivity 0.95 0.95 0.85 0.85 0.75
Specificity 0.99975 0.99978 0.99985 0.99992 0.99997

Scenario 1 α = 5 α = 10 α = 50 α = 100 α =∞
σ2
ε = 0.25 (indep prior)

False Positives 32 24 8 1 0
False Negatives 2 3 5 5 6
Sensitivity 0.9 0.85 0.75 0.75 0.7
Specificity 0.99968 0.99976 0.99992 0.99999 1

Scenario 2 α = 5 α = 10 α = 50 α = 100 α =∞
σ2
ε = 0.01 (indep prior)

False Positive 11 10 6 5 3
False Negative 2 2 5 6 12
Sensitivity 0.9 0.9 0.75 0.7 0.4
Specificity 0.99983 0.99990 0.99994 0.99995 0.99997

Scenario 2 α = 5 α = 10 α = 50 α = 100 α =∞
σ2
ε = 0.25 (indep prior)

False Positive 25 8 3 5 2
False Negative 6 5 8 10 14
Sensitivity 0.7 0.75 0.6 0.5 0.3
Specificity 0.99975 0.99992 0.99997 0.99995 0.99998

Table 4.1: Simulated scenarios 1 and 2: Results on false positives, false negatives,
sensitivity and specificity for the dependent prior model (4.6) and the indepen-
dent case (α = ∞) obtained with a threshold of 0.5 on the marginal posterior
probability of inclusion on R.
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Figure 4.6: Simulated scenario 1 with σ2
ε = .01: Numbers of FP and FN obtained

by considering different thresholds on the marginal probabilities of inclusion of
Figure 4.5. Threshold values are calculate as a grid of equispaced points in the
range [.07, 1]. Plots refer to prior model (4.6) with different values of α.
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# missclassified α = 5 α = 10 α = 50 α = 100 α =∞
(percent) (indep prior)
Scenario 1 79 75 72 75 70
σ2
ε = 0.01 (0.079%) (0.075%) (0.072%) (0.075%) (0.07%)

Scenario 1 75 70 86 70 76
σ2
ε = 0.25 (0.075%) (0.07%) (0.086%) (0.07%) (0.076%)

Scenario 2 62 68 59 70 66
σ2
ε = 0.01 (0.062%) (0.068%) (0.059%) (0.07%) (0.066%)

Scenario 2 62 71 66 74 72
σ2
ε = 0.25 (0.062%) (0.071%) (0.066%) (0.074%) (0.072%)

Table 4.2: Simulated scenarios 1 and 2: Results on ξ as number of misclassified
elements, for the dependent prior model (4.6) and the independent case (α =∞).

α = 5

1 2 3 4

1 12606 19 0 0

2 19 73451 13 0

3 0 12 12663 6

4 0 0 10 1201

α =∞
1 2 3 4

1 12612 17 0 0

2 13 73454 15 0

3 0 11 12661 4

4 0 0 10 1203

with columns referring to the true states and rows to the estimated ones.

Note the large diagonal elements, representing the number of correct classi-

fications, and the relative small numbers of misclassified samples. Also, all

misclassified cases occur between adjacent classes (elements at the right or

left of the diagonal). Similar results were obtained in all the other cases.

In a second scenario (simulated scenario 2) we induced dependence among

regression coefficients by selecting two clusters of adjacent β’s and generat-

ing them as β ∼ N(.5, 0.32). We again set σ2
ε = .01, .25. Tables 4.1 shows

the results of the inference on R. As expected, the dependent prior works

better in terms of FP than in the previous simulated scenario, and has sim-

ilar results in terms of FN, even if the β’s used to generate the data are in

general smaller. The independent prior instead shows worse performances
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than in the previous simulated scenario, particularly in terms of FN. Fig-

ure 4.8 shows the numbers of FP and FN obtained by considering different

threshold values, calculated on the same grid as for Figure 4.6. Again, re-

sults show how the dependent prior outperforms the independent one. With

respect to Figure 4.6 we notice that results for the dependent priors show

numbers of FN that decrease more rapidly for larger threshold values.

The number of misclassification in terms of ξ that can be red on Table

4.2, shows an error rate of about 0.07%, that is a very good result. The errors

are in the range [62, 86] and seem to be randomly distributed. Looking at

the distribution of the misclassification values of ξ over the four possible

states, for σ2
ε = .01 and α = (5,∞) we obtained

α = 5

1 2 3 4

1 12574 7 0 0

2 18 73623 12 0

3 0 6 12561 6

4 0 0 13 1207

α =∞
1 2 3 4

1 12544 6 0 0

2 21 73619 9 0

3 0 11 12557 5

4 0 0 20 1208

We also looked at the results when increasing the size of the simulated

data. Performances of our model and priors were very consistent with those

we have reported above. For example, for (n;M ;L; l) = (200; 2, 000; 500; 50)

and by generating the β’s independently, similarly to scenario 1, with σ2
ε =

.01, the dependent prior with α = 100 led to (FP ;FN ;Sensitivity;Specificity) =

(0; 5; 0.9, 1), for inference on R. The model also incorrectly classified 331

elements of the ξ matrix, corresponding to a 0.08275% misclassification rate.

4.3.2 Inference on HMM parameters

Our MCMC algorithm also allows inference on the parameters of the HMM,

that is the transition matrix A and the mean and variance parameters of

model (4.3). For example, Table 4.3 shows results for µ and σ for scenario

1, with the smaller error variance value and using the independent prior.

The estimated values are all very close to the true ones, with the exception
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Figure 4.7: Simulated scenario 2 with σ2
ε = .01: Marginal posterior probability

of inclusion of the elements rgm of the association matrix R. Plots refer to prior
model (4.6) with (a) α = 5, (b) α = 10, (c) α = 50, (d) α = 100 and (e) α = ∞
(independent prior).
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Figure 4.8: Simulated scenario 2 with σ2
ε = .01: Numbers of FP and FN obtained

by considering different thresholds on the marginal probabilities of inclusion on
R. Threshold values are calculate as a grid of equispaced points in the range
[.07, 1]. Plots refer to prior model (4.6) with different values of α.
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µ1 µ2 µ3 µ4

True -0.64974 0.00039 0.64955 1.51394
Estimated -0.64968 0.00041 0.64932 1.50810

σ1 σ2 σ3 σ4

True 0.10113 0.09979 0.10049 0.19928
Estimated 0.10199 0.09993 0.10083 0.21072

Table 4.3: Simulated scenario 1 with σ2
ε = .01: Results on the estimation of µ

and σ with the independent prior (α =∞).

of σ4 which shows a slight overestimation. We obtain similar results in all

simulations we considered.

As for the estimation of the transition matrix, we obtained good for the

elements that corresponds to high probabilities, but are imprecise for very

little values.


0.3513 0.6183 0.0216 0.0088

0.1101 0.7762 0.1118 0.0019

0.0089 0.6209 0.3267 0.0436

0 0.6000 0.0586 0.3414




0.3269 0.6412 0.0217 0.0102

0.1026 0.7826 0.1037 0.0110

0.0079 0.6204 0.3015 0.0702

0.0009 0.6015 0.0602 0.3374


4.3.3 Sensitivity analysis

When looking at the sensitivity of the results to our prior choices we focused

in particular on cβ, e, f, α). We follow Guha et al. [2008] as a guideline to

choose the truncation on the means and variances of the hidden Markov

model, and for the hyperparameter settings on the transition matrix. They

performed sensitivity analysis on the truncation values around the mean

of the second state and find out that the false discovery rate in terms of

ξ is robust to the choice of this values in the interval [0.05, 0.15]. Same

results for the choice of parameters φ on the Dirichlet when they are very

small compared to the sample size. On the third simulation we look what

happens using different values for the hyperparameters (e;f)=(.01;.99) using
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(e;f) (.01;.99) (.001;.999)
α 10 100 10 100
False Positive 9 4 10 5
False Negative 2 6 2 6
Sensitivity 0.9 0.7 0.90 0.7
Specificity 0.99991 0.99996 0.99990 0.99995

Table 4.4: Sensitivity (e,f)

the dependent prior with two different values of α = 10, 100. Table 4.4 shows

the results in terms of R comparing them with the results obtained using

the same settings of α and with (e;f)=(.001;.999).

4.4 Real data analysis

4.4.1 NCI-60 Data

The model we described is specific for copy number aberrations data on the

X, while on the Y any kind of data that could be affected by variation at

DNA level can be used, in principle. In this section we consider gene expres-

sion data. Our data arises from a well known public database: Cellminer2.

This web application facilitates systems biology through the retrieval and

integration of the molecular and pharmacological data sets for the NCI-60

cell lines. On the website there is the chance to download data at DNA,

RNA or Protein levels, as well as view meta data on the cell lines, download

drug data, get a list of mutations found in 24 known, important human

cancer genes and access to several done analysis.

The NCI-60 is a set of 60 human cancer cell lines derived from diverse tissues:

brain, blood and bone marrow, breast, colon, kidney, lung, ovary, prostate

and skin.

There are many different data available for DNA, RNA and proteins, both

2http://discover.nci.nih.gov/cellminer/home.do
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raw and normalized data set. We consider the normalized data sets, focus-

ing on aCGH Agilent 44K, DNA level, and Affy HG-U133(A), RNA level,

using the RMA normalization method (available only for RNA). Both data

sets are made by more than 44,000 variables, thus a reduction in the dimen-

sionality is needed. To that aim we first reduce the number of samples by

one because sample 40 had all missing data at DNA level. Then we impute

the remaining missing data using the k-nearest-neighbours, setting k = 5.

Finally for RNA data we perform an ANOVA and we select those probes

with corresponding adjusted p-values lower than 0.01. For DNA data we

must first select genes that belong all to the same chromosome (we choose

chromosome 8) and then perform an ANOVA and select those probes with

adjusted p-values lower than 0.2. In this way the final data set for RNA is

made by 59 samples and 3296 probes, while the one for DNA is made by 59

samples and 89 probes.

4.4.2 Parameter settings

Before running the code we need to set all the hyperparameters of the

model. Parameter setting is very similar to that used in the simulation

analysis, except for some parameters. We set cµ = 106 and cβ = 10,

following the same guidelines we used in the simulations. Again we fol-

low the same setting for the error variances, specifically we set δ = 3,

and choosing d so that the expected value of the variance parameter is

comparable in size to a small percentage (5%) of the expected error vari-

ances of the standardized responses. In the variable selection framework

we set the two hyperparameters of the Beta hyperprior on the parame-

ter of the Bernoulli in such a way that the expected number of included

links is 1% of the total. Specifically we set e = 0.01 and f = 0.99.

For α3 we will show results for two different values, α = 25 and ∞. As

prior settings of the HMM, we follow again what Guha et al. [2008] did.

Specifically, we set µj ∼ N(δk, τ
2
k ) · I{lowµ<µ<uppµ}, for j = 1, . . . , 4, with

3See section 4.4.4.
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δk = [−1, 0, 0.58, 1], τk = [1, 1, 1, 2], lowµ = [−∞,−0.1, 0.1, µ3 + σ3] and

uppµ = [−0.1, 0.1, 0.58,∞]. Also, we use σ−2
j ∼ Ga(bj, lj) · I{σ<uppσj } with

bj = 1, lj = 1 and uppσ = [.41, .41, .41, 1]. Finally, we assume each row of

the transition matrix as independently distributed according to a Dirichlet

D(φi1, φi2, φi3, φi4) with φ = [1,1,1,1]. We also set the probability of an

A/D step ρ = 0.5.

We then run 100,000 iterations with burn in of 50,000, and set the probabil-

ity of the geometric on the number of genes to be updated at each iteration

on the R matrix πR = 0.1, and the one on the number of samples to be

updated at each iteration on the ξ matrix πξ = 0.3.

4.4.3 Results

In this section we show results both in terms of variable selection, that is

our primary aim, and in terms of CGH data classification.

Variable selection results

Before looking at the results, we assess convergence by inspecting the MCMC

sample traces for all parameters, see Figure 4.9 for an example. As common

practice for the posterior inference on the coefficients of the model, we per-

form it on the marginal posterior probability of each of them, and not on

the posterior probability of the entire model. This is due to the fact that

because of the huge number of potential coefficients the weight of just one

of them toward the probability of the entire model could be very small.

Figure 4.10 shows the posterior probability values for all the possible

links. This figure shows a very huge number of links that have very little

values, and just for some of them the posterior probability rise up. Since

looking at this plots do not give a clear suggestion on the threshold to be

chosen, we decided to set the threshold to 0.07. The rationale behind this

choice is that with this threshold we have about 100 genes for which at least

one CGH probe is estimated as significant.
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Figure 4.9: Traceplot of the number of included links at each iteration using
α→∞ (left) and α = 25 (right).

We use the same threshold to obtain the two Heatmaps in figures 4.11

and 4.12. Specifically we select those genes that have at least one CGH

probe selected for at least one of the two values of α. Both figures shows

the detection of the so called hotspots: if a CGH probe is significant for

one Affymetrix probe it is expected to be significant for some others. At

the same time heatmap for α→∞ shows a tendency of including groups of

adjacent CGH probes to be significant for the same Affymetrix probe. This

tendency is enforced when using α = 25 and is coherent with how we build

up our probability on each element of the inclusion matrix.

Choosing the four Affymetrix probes with the higher number of related

CGH probes we obtain Figure 4.13. In this figure green ellipses corresponds

to non codifying regions, thus we do not have the names of the corresponding

genes.

CGH classification results

Looking at the results on the right part of our model, the estimates of the

state specific means and variances are respectively [−0.6373,−0.0057, 0.5003, 1.0291]
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Figure 4.10: Posterior marginal probabilities using α → ∞ (left) and α = 25
(right). Red line on probability value 0.06.

and [0.2092, 0.0897, 0.1227, 0.2683]. The estimated transition matrix is

0.9654 0.0277 0.0057 0.0012

0.0029 0.9878 0.0077 0.0016

0.0171 0.0079 0.0257 0.9661


Figure 4.14 shows estimated gain (ξ > 2) and loss (ξ = 1) frequencies

along samples for each of the considered CGH probes. Our result is very

similar to that obtained using Guha et al. [2008] method. Anyway our

method seem to estimate a smaller number of alterations. We believe that

this difference is due to the fact that the transition matrix of our model

is estimated using the information of all the sample simultaneously, while

Guha et al. [2008] method consider only one sample at a time.
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Figure 4.11: Heatmap for α→∞.
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Figure 4.12: Heatmap for α = 25.
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Figure 4.13: Selected links for four Affymetrix genes using a threshold of 0.07.

Figure 4.14: Gain/loss estimated frequencies along samples for the 89 CGH
probes considered, our method (left) Guha’s method (right).
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4.4.4 Choice of α

Using different values of α could lead to very different results. For example,

let’s fix s(m−1)m = sm(m+1) = 0.654. Fix also the probability of the Bernoulli

prior π1 = 0.001. In this scenario a value of α = 5 leads to the triplet

(γ, ω1, ω2) = (0.7936, 0.1032, 0.1032). With this setting consider the prob-

ability of a certain link to be included if the two adjacent coefficients5 are

both estimated as significant: this probability goes from 0.001 (independent

prior) to 0.2072. At the same time consider the probability of not being

included if both the adjacent links are estimated as not significant: it goes

from 0.999 (independent) to 0.9992064. Thus we have at the same time a

big increase in the probability of inclusion and small decrease in the proba-

bility of not inclusion. This could lead to a scenario where the model starts

including coefficients and the number of estimated significant links become

unlikely huge.

Figure 4.15 shows this effect for a grid of 100 values in the range [1, 100], con-

sidering two different values on the probability of inclusion of the Bernoulli,

respectively π1 = 0.001 and π1 = 0.1. The impact on the probability of inclu-

sion is particularly strong when the probability of inclusion on the Bernoulli

prior is low. Compare the two sub figures of 4.15 shows, for instance, that

the effect described above is less strong when π1 = 0.1, but still remains.

4.5 Discussion

We developed a hierarchical Bayesian model to discover sets of CGH probes

that could affect gene expression. We first model CGH measurement and

group them into four possible categories. Then we use this latent variable

to measure similarities between one segment and the following. Therefore

using this similarity measure jointly with distance between CGH segment,

4Consider that this quantity could assume values in the range [0, 1].
5With adjacent coefficient we mean the coefficient between the same gene expression

and adjacent CGH probes.
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Figure 4.15: Effect of different values of α on the probabilities of inclusion for
different values of π1.

we model the probability of inclusion of each link, enforcing the detection

of adjacent groups of covariates that affect the same response. We believe

that our model is supported by the results obtained.

Simulation results shown a better performance of our prior on the variable

selection model, with respect to a simple Bernoulli prior. Our model outper-

form the Bernoulli prior in any scenario, and in particular when assuming

groups of adjacent CGH probes that affect the same gene at mRNA level,

with low value of the β coefficients. At the same time parameter estimation

on the hidden Markov model lead to very good results.

Results on real data using the independent prior seems to support the idea

behind our model. At the same time the hidden Markov model on the co-

variates seems to work properly and using more than one sample at a time

to estimate parameters seem to lead to even better results.

We aim to compare our results with those that can be obtained applying

the model of Monni and Tadesse [2009]. any other methods can be used for

a comparison, such as those of Richardson et al. [2010], Scott-Boyer and al.

[2012], etc.. (see Section 3.5).
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4.5. Discussion 78

We also want to apply our method using pathway data instead of gene ex-

pression data as responses. This could be obtained performing a principal

component analysis on genes that belong to the same pathway. In such a

way the assumption of independence among responses become more realis-

tic. Moreover we would like to increase the number of covariates, as well

as to consider covariates that come from different chromosomes. Lastly we

can use a model with dummy variables for the copy number variations ef-

fects. When focusing on these novelties we must consider, as always, the

computational issue. For instance using dummy variables for copy number

variation effects is really simple to implement, but can increase substantially

the computational time.
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Likelihood derivation

We outline here the basic calculations to get to the marginal likelihood

(4.10). Our regression model can be expressed as:

f(Yg|ξR,R, σ2
g ,βg, µg) ∼ N(ξRβg + 1nµg, σ

2
gIn)

with π(µg|σ2
g) ∼ N(0, c−1

µ σ2
g), π(βg|R, σ2

g) ∼ N(0,
σ2
g

cβ
Ikg) and π(σ2

g) ∼ IG(δ, d
2
).

Integrating out the intercept parameters we obtain:

f(Yg|ξR,R, σ2
g ,βg) =

∫
f(Yg|ξR,R, σ2

g ,βg, µg)π(µg|σ2
g)dµg

=
∫

(2πσ2
g)
−n+1

2 c
1
2
µ exp{− 1

2σ2
g
(Yg − ξRβg − 1nµg)

′

×(Yg − ξRβg − 1nµg)} exp{− cµ
2σ2
g
µ2
g}dµg

=
∫

(2πσ2
g)
−n+1

2 c
1
2
µ exp{−n+cµ

2σ2
g

(µg − 1′n(Yg−ξRβg)

n+cµ
)2

− 1
2σ2
g
[(Yg − ξRβg)′(Yg − ξRβg)− (Yg − ξRβg)′ 1n1

′
n

n+cµ

×(Yg − ξRβg)]}dµg
= (2πσ2

g)
−n

2 ( cµ
n+cµ

)
1
2 exp{− 1

2σ2
g
[(Yg − ξRβg)′(Yg − ξRβg)

−(Yg − ξRβg)′ 1n1
′
n

n+cµ
(Yg − ξRβg)]}
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Integrating out the regression coefficients leads to:

f(Yg|ξR,R) =
∫
f(Yg|ξR,R,βg)π(βg|R, σ2

g)dβg

=
∫

(2πσ2
g)
−n+kg

2 ( cµ
n+cµ

)
1
2 c

kg
2
β exp{− 1

2σ2
g
[(Yg − ξRβg)′Hn

×(Yg − ξRβg) + cββ
′
gβg]}dβg

=
∫

(2πσ2
g)
−n+kg

2 ( cµ
n+cµ

)
1
2 c

kg
2
β exp{− 1

2σ2
g
[Y ′gHnYg + β′gUgβg

−2β′gξ
′
RHnYg]}dβg

= (2πσ2
g)
−n+kg

2 ( cµ
n+cµ

)
1
2 c

kg
2
β |Ug|−

1
2 exp{− 1

2σ2
g
[Y ′gHnYg

−Y ′gHnξRU
−1
g ξ

′
RHnYg]}

= (2πσ2
g)
−n

2 ( cµ
n+cµ

)
1
2 c

kg
2
β |Ug|−

1
2 exp{− 1

2σ2 [qg]},

where Hn = In − 1n1′
n

n+cµ
, Ug = cβIkg + ξ′RHnξR and qg = Y ′gHnYg −

Y ′gHnξRU
−1
g ξ
′
RHnYg. Finally integrating out σ2

g we obtain:

f(Yg|ξR,R) =
∫
f(Yg|ξR,R, σ2

g)dσ
2
g

=
∫

(2πσ2
g)
−n

2 ( cµ
n+cµ

)
1
2 c

kg
2
β |Ug|−

1
2

( d
2

)
δ
2

Γ( δ
2

)
(σ2

g)
−(1+ δ

2
) exp{− qg

2σ2 − d
2σ2
g
}dσ2

g

= (2π)−
n
2 ( cµ

n+cµ
)
1
2 c

kg
2
β |Ug|−

1
2

∫ ( d
2

)
δ
2

Γ( δ
2

)
(σ2

g)
−(1+n+δ

2
) exp{−d+qg

2σ2
g
}dσ2

g

=
((2π)−

n
2 (

cµ
n+cµ

)
1
2 c

kg
2
β ( d

2
)
δ
2 Γ(n+δ

2
)

|Ug |
1
2 Γ( δ

2
)(
qg+d

2
)
n+δ
2

,

which is (4.10).
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B
MCMC steps

Here we describe how to compute the quantities involved in the various steps

of our MCMC algorithm. During the update of R (and of ξ) we first se-

lect a list of genes, as rows of R (and a list of samples, as elements of a

randomly selected column of ξ) and then update and accept/reject their in-

dividual values. For this, we first sample from a geometric distribution with

probability pg (pn) and add the result to the index of the last selected gene

(sample). If the resulting index is greater than G (n), then we discard the

new value and stop, otherwise we add the new position to the list of selected

genes (samples) and draw a new value from the geometric distribution. For

the first draw, we simply consider the result as the position to be updated.

The updates on µj, σj, for j = 1, . . . , 4, and the transition matrix A follow

Guha et al. [2008], though applied to all samples simultaneously.

Updating R

We give details on how to calculate the probability π(R|ξ) when updating

R:

π(R|ξ) =
G∏
g=1

π(rg1|rg2, ξ)π(rgM |rg(M−1), ξ)
M−1∏
m=2

π(rgm|rg(m−1), rg(m+1), ξ).
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When calculating the ratio π(Rnew|ξ)
π(Rold|ξ) we need to consider only those quantities

whose values change when a single element of R is updated. What follows

is the description of the different scenarios that could occur when applying

our MCMC update.

• Adding/deleting:

– If the selected element is not either the first or last marker,

three elements change their values: π(rgm|rg(m−1), rg(m+1), ξ),

π(rg(m−1)|rg(m−2), rgm, ξ) and π(rg(m+1)|rgm, rg(m+2), ξ).

– If the selected element is either marker 1 or M, only two quantities

change their values:

∗ π(rg1|rg2, ξ) or π(rgM |rg(M−1), ξ);

∗ π(rg2|rg1, rg3, ξ) or π(rg(M−1)|rg(M−2), rgM , ξ).

• Swapping:

– Swap between adjacent elements; four quantities change their val-

ues:

∗ π(rg(m−1)|rg(m−2), rgm, ξ);

∗ π(rgm|rg(m−1), rg(m+1), ξ);

∗ π(rg(m+1)|rgm, rg(m+2), ξ);

∗ π(rg(m+2)|rg(m+1), rg(m+3), ξ).

– Swap between “quasi-adjacent” elements, i.e., two elements that

are two marker positions apart. Five quantities get involved (say,

for example, that rgm get swapped with rg(m−2)):

∗ π(rg(m−3)|rg(m−4), rg(m−2), ξ);

∗ π(rg(m−2)|rg(m−3), rg(m−1), ξ);

∗ π(rg(m−1)|rg(m−2), rgm, ξ);

∗ π(rgm|rg(m−1), rg(m+1), ξ);

∗ π(rg(m+1)|rgm, rg(m+2), ξ).
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Note that if the swap involves either marker 1 or M then these quantities

reduce by one. Equation (4.8) is used to calculate all quantities involved in

the steps above.

Updating ξ

With this update, when calculating the probability π(R|ξ) we need to look

for changes in the values of γ, ω1 and ω2. Suppose we change the value of

the kth element, then

• we need to recalculate 1
n

∑n
i=1 I{ξik=ξi(k−1)} and 1

n

∑n
i=1 I{ξik=ξi(k+1)};

• these quantities result in changes in the values of γk, ωk1 , ωk2 , γk−1,

ωk−1
1 , ωk−1

2 , γk+1, ωk+1
1 , ωk+1

2 ;

• we apply equation (4.8) to calculate the new values of π(rgk|rg(k−1), rg(k+1), ξ),

π(rg(k−1)|rg(k−2), rgk, ξ) and π(rg(k+1)|rgk, rg(k+2), ξ).

Equation (4.10) is then used to calculate f(Y |ξnew,R) and f(Y |ξold, R),

while f(xim|ξim) is simply the density of a N(µξim , σ
2
ξim

), calculated in the

current values of µξim and σ2
ξim

.

Next, we focus on the ratio:

π(ξnew|ξold,A)q(ξold|ξnew)

π(ξold|ξold,A)q(ξnew|ξold)
,

that can be factorized as

n∏
i=1

π(ξnewim |ξoldi(m−1), ξ
old
i(m+1),A)q(ξoldim |ξnewim )

π(ξoldim |ξoldi(m−1), ξ
old
i(m+1),A)q(ξnewim |ξoldim )

.

The ratio of interest can be evaluated as
π(ξold

k(m+1)
|ξnewkm ,A)

π(ξold
k(m+1)

|ξoldkm,A)
, when m 6= M , and

simply as 1 when m = M , by noting that q(ξnewim |ξoldim ) = π(ξnewim |ξoldi(m−1),A),
π(ξnewim |ξoldi(m−1)

,ξold
i(m+1)

,A)

π(ξoldim |ξoldi(m−1)
,ξold
i(m+1)

,A)
=

π(ξold
i(m+1)

|ξnewim ,A)π(ξnewim |ξoldi(m−1)
,A)

π(ξold
i(m+1)

|ξoldim ,A)π(ξoldim |ξoldi(m−1)
,A)

, and considering that

we update a single sample, sample k in our example.
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Updating µ

Let k = {1, 2, 3, 4} be the label for the four different states, δ0k be the center

of the truncated normal distributions in the prior specification of µk, nk be

the number of CGH in state k, X̄k the mean of X’s over those markers that

are in state k and Ik denote the support of µk. Specifically

nk =
M∑
m=1

n∑
i=1

I{ξim=k}, X̄k =
1

nk

M∑
m=1

n∑
i=1

XimI{ξim=k}.

The posterior probability for µ is obtained as:

π(µk|X, rest) ∝ exp{− 1
2τ2k

(µk − δ0k)
2} exp{− 1

2σ2
k

∑nk
i=1(Xik − µk)2}In

= exp{− 1
2τ2k

(µk − δ0k)
2} exp{− 1

2σ2
k

∑nk
i=1(Xik − X̄k + X̄k − µk)2}Ik

= exp{− 1
2τ2k

(µk − δ0k)
2 − 1

2σ2
k

[
∑nk

i=1(Xik − X̄k)
2 +

∑nk
i=1(X̄k − µk)2}Ik

∝ exp{− 1
2τ2k

(µk − δ0k)
2} exp{− nk

2σ2
k

(X̄k − µk)2}Ik
= exp{−1

2
[µ2
kθ

2
k − 2µk(

δ0k
τ2k

+ X̄k

(
σ2
k
nk

)
) + (

δ20k
τ2k

) + (
X̄2
k

(
σ2
k
nk

)
)]}Ik

∝ exp{−1
2
(θ2
k)[µ− ηk]

2}In →∼ N(ηk, (θ
2
k)
−1)Ik

where θk = τ−2
k + nkσ

−2
k and ηk = θ−2

k (δ0kτ
−2
k + X̄knkσ

−2
k ).

Updating σ2

π(σ2
k|X, rest) ∝

β
αj
j

Γ(αj)(σ2
k)αj+1 exp{− βj

σ2
k
} 1

(2π)
nk
2 (σ2

k)
nk
2

exp{− 1
2σ2
k
Vk}

∝ 1

(σ2
k)(αj+

nk
2 +1)

exp{− 1
σ2
k
(βj + Vk

2
)} →∼ IG(αj + nk

2
, βj + Vk

2
),

where Vk =
∑M

m=1

∑n
i=1(Xim − µk)2I{ξim=k}.
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Updating A

Let’s focus on a single row of the transition matrix A, then the distribution

of the states arises from a multinomial distribution (except for the first

element of each sample), and the prior distribution of any row of the matrix

is Dir(φ, φ, φ, φ):



π(oh1, oh2, oh3, oh4|ah1, ah2, ah3, ah4) ∼Multinomial(ah1, ah2, ah3, ah4);

π(ah1, ah2, ah3, ah4) ∼ Dir(φ, φ, φ, φ);

ohj =
∑n

i=1

∑M−1
m=1 I{ξim=h,ξi(m+1)=j};∑4

h=1 oh1 + oh2 + oh3 + oh4 = n(M − 1);

ah1 + ah2 + ah3 + ah4 = 1;

πA(ξi1).

We follow Guha et al. [2008] and generate a proposal C from the distribu-

tion ch|all ∼ Dir(φ + oh1, φ + oh2, φ + oh3, φ + oh4), ignoring the marginal

distribution of state ξ1. We then accept the proposal with probability

β = min[1,
∏n

i=1
πC(ξi1)
πA(ξi1)

].
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C
Rcpp

R is an open source programming language suited for statistical analysis.

It uses a friendly command line interface and many packages are available

directly on the CRAN web page1 (most of them for statistical’ s purposes).

The main disadvantage of this programming language is its slowness, making

it not suited for computationally intensive tasks. To address this problem,

C, C++, and Fortran code can be linked and called at run time. Our MCMC

is an example of computationally intensive task, therefore we used the two

packages Rcpp and RcppArmadillo2 to speed up our code. Essentially we

use R as an interface but all the computations needed to obtain the MCMC

chains are coded directly in C and, in particular, using the Armadillo li-

brary3. It is a linear algebra library that aims towards a good balance

between speed and ease of use, with a syntax deliberately similar to Matlab.

Algorithms 1 and 2 show the pseudo-code for the Metropolis step on R.

Inputs are: g the number of genes, m the number of CGH fragments, pR

(i.e pR see R update, section 4.3), phi the probability of A/D step, R vector

form of the R matrix, countnotwo that contains for each m the number of

samples not in state two.

1http://cran.r-project.org/
2http://dirk.eddelbuettel.com/code/rcpp.html
3http://arma.sourceforge.net/
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Algorithm 1 R update - selection of genes to be changed

SET sommo to zero
SET nR to zero
while sommo<g+1 do

PUT in geom a random number sampled from a geometric distribution
with parameter pR
ADD geom to sommo
PUT sommo in choiceg [nR]
INCREMENT sommo
INCREMENT nR

end while
DECREASE nR
if nR==0 then

PUT a random number sampled from a discrete uniform in the interval
[0, g − 1] in choiceg [0]
SET nR to one

end if
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Algorithm 2 R update - reprise

for 0 ≤ggg<nR do
PUT in Rgene positions of R that correspond to gene ggg
SET piRxi to zero
PUT in ones Rgene’s positions equal to one
PUT in counto ones ’s length
PUT in zeros Rgene’s positions equal to zero
PUT in countz zeros ’s length
CREATE vector zerosok of length countz
SET all zerosok ’s positions to zero
SET countzok to zero
for 0 ≤j<countz do

if countnotwo[zeros [j]]6= 0 then
PUT in zerosok [countzok ] zeros [j ]
INCREMENT countzok

end if
end for
CREATE vector posok joining vectors ones and zerosok
PUT in x a random number sampled in the interval [0, 1]
if countz=m or countz= 0 or x<phi or countzok= 0 then

PUT in choice one value in posok chosen at random
CHANGE the value in Rgene[choice]

ADD to piRxi log π(Rnew|ξ)
π(Rold|ξ) (for details see Appendix B)

ADD to piRxi log f(Yg |ξR,Rnew)

f(Yg |ξR,Rold)

else
PUT in choice1 one value in zerosok chosen at random
PUT in choice2 one value in ones chosen at random
SWAP the values in Rgene[choice1 ] and Rgene[choice2 ]

ADD to piRxi log π(Rnew|ξ)
π(Rold|ξ) (for details see Appendix B)

end if
PUT in random a random number sampled in the interval [0, 1]
if random< exp{piRxi} then

return Rgene
else

return -1
end if

end for
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