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ABSTRACT

Effusion cooled liners, commonly used in gas turbine com-
bustion chambers to reduce wall temperature, may also help re-
ducing the propagation of pressure fluctuations due to thermoa-
coustic instabilities.

Large Eddy Simulations were conducted to accurately
model the flow field and the acoustic response of effusion plates
subject to a mean bias flow under external sinusoidal forcing.
Even though existing lower order computational models showed
good predicting capabilities, it is interesting to verify directly the
influence of those parameters such as the staggered arrangement,
the hole inclination, the presence of a grazing flow and the level
of bias flow, which are not fully included in those models.

A first bi-periodic single hole configuration with normal
acoustic forcing was selected to investigate the acoustingbehav-
ior with varying inclination angle, bias and grazing flow. 90◦

and 30◦ perforations were simulated for bias flow Mach num-
ber in the range 0.05-0.1 and grazing flow between 0 and 0.08.
Those conditions were chosen to expand the knowledge of acous-
tic properties towards actual liners working conditions. Asec-
ond more computationally expensive set-up, including 4 inclined
holes at 30◦, focused on the damping of parallel to the plate
waves.

Details of the computational methods implemented in
the general purpose open-source unstructured CFD code
OpenFOAMR© exploited to conduct this analysis are reported to-
gether with an analysis of the results obtained from the acoustic
computations both regarding the flow field generated and the ab-
sorption and energy dissipation coefficient.

NOMENCLATURE

a hole radius [mm]
A absorption coefficient
D hole diameter [mm]
f frequency [Hz]
h plate thickness [mm]
Li characteristic wave amplitude variation
j imaginary number
Ma Mach number
Mab Bias flow Mach number
Mac f Cross-flow Mach number
p static pressure [Pa]
P+ progressive pressure wave [Pa]
P− regressive pressure wave [Pa]
R reflection coefficient
Sx axial spacing [mm]
Sy tangential spacing [mm]
S artificial pressure gradient [kg/(m2s2)]
t time [s]
T temperature [K]
u1 velocity normal to the boundary [m/s]
u2,u3 velocity tangential to the boundary [m/s]
U velocity vector [m/s]
x stream wise direction/position [m]
y span wise direction/position [m]
z normal to plate direction/position [m]
Greeks
α energy dissipation coefficient
β relaxation coefficient
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λi characteristic wave velocities
θ hole inclination angle [◦]
φ phase [rad]
µ dynamic viscosity [kg/(ms)]
ρ density [kg/m3]
σ porosity, [%]

NSCBC reflection coefficient
τSGS subgrid stress tensor [%]

Superscripts
′ fluctuating part
+ dimensionless in viscous units,

downstream propagating wave
− upstream propagating wave
∞ farfield values

INTRODUCTION
There has been in recent years a growing interest among

the aero-engine research community in the study of possible
methods to reduce pressure fluctuations in the combustion cham-
ber caused by thermo-acoustic instabilities. In particular due to
weight constraints and to high working temperatures, attention
was posed on simple passive devices, such as perforated plates,
already employed in that zone of the engine for cooling purposes.
It is in fact known that perforated plates with bias flow act as
dampers with regards to acoustic waves [1].

Despite the fact that simple numerical models to character-
ize those screens have been proposed [2–4] and successfullyap-
plied [1,5,6] also to relatively complex set-up under a widerange
of flow condition, detailed CFD simulations [7–9] and large ex-
perimental campaigns [10–13] are more and more performed
to increase the knowledge of the mechanisms ruling the phe-
nomenon and expand the database of available geometries and
flow conditions.

Surprisingly the use of fully 3D computational technique
did not push researchers to investigate more complex modelsin-
cluding globally three dimensional flow and acoustic conditions.
Most of the reported works dealt with the basic set-up in which
an orthogonally perforated plate with relatively low bias flow is
reflecting a normally incident acoustic wave in absence of any
mean flow in the liner itself [5, 7, 8]. This situation is however
not fully realistic on actual combustor liners since perforations
are usually inclined, the combustor is subjected to a mean flow
and the main acoustic waves are travelling parallel to the plate.
This last effect was firstly studied by Heuwinkel et al. [14] in
which a plane wave running along a long duct was damped by
a 90◦ perforation on its surface composed by two rows of holes
and fed with bias flow from a plenum. They performed both
an experimental and a numerical campaign exploiting URANS
computations. Their numerical work, focused in the range of
0<Mab < 0.1, was only partially successful in predicting acous-

tic measurements; at highMab the error was around 30% because
of an incomplete resolution of the vortices developing at the hole
exit due to a too coarse grid resolution.

As already stated, another effect generally not considered
is the inclination of the perforations. Combustor liners perfo-
rations, adopted primarily for cooling reasons, generallyimple-
ment hole arrays aiming at full coverage film protection. In or-
der to guarantee adequate cooling performance it is necessary to
blow high quantities of coolant and to maintain the cold flow as
much closer to the wall as possible. This can be only achievedby
using highly slanted perforations below 20◦ [15, 16]. The influ-
ence of an inclined perforation and the consequent grazing flow
was studied by Eldredge et al. [17] considering a 30◦ perforation
with an enlarged, with respect to real engine dimension, hole di-
ameter of 5 mm. They investigated the acoustic behaviour at 10
different forcing frequencies from 89.335 to 893.35 Hz imposed
by means of a fluctuating bias flow inflow velocity. Despite the
good agreement found with Howe model modified to account for
plate thickness, the authors stated that more computationswere
needed to completely characterize the grazing-bias flow acoustic
interaction especially due to arising shear instabilitiesinside the
aperture.

The aim of this paper is to consider all the above mentioned
effects into the same investigation to completely characterize the
perforation already investigated with a basic set-up in [6]. In
practice the analysis includes the effects of slanted perforation
(orthogonal and 30◦ holes), of a mean cross-flow and a non nor-
mal acoustic forcing as well as a two level analysis on the influ-
ence of theMab.

The complete test matrix was computed in a single hole bi-
periodic domain with normal acoustic forcing only but, in order
to consider also parallel running waves, a multi-hole (4 rows per-
foration) case was simulated too.

Details of the proposed numerical techniques are given in
the first part of the paper to provide an overview and a refer-
ence for the computational methodology. A systematic valida-
tion of the acoustic simulation procedure against both available
experiments and lower order numerical tools was already car-
ried out in [6] on simpler reference tests thus the focus of this
work will be on the newly introduced technique only. Compari-
son with results obtained with lumped acoustic procedure (Howe
model [18]) is included in the discussion.
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GEOMETRY AND FLOW CONDITIONS
As already mentioned, this work is focused on the estima-

tion of the absorption properties of multiperforated plates with
cylindrical holes only. To further reduce the number of param-
eters investigated, the diameter and the pitches are maintained
constant, with values representative of real liner perforations as
reported in Tab.1, guaranteeing a porosityσ = 1.17%.

Sx/D 9.125

Sy/D 7.375

h/D 3.125

Table 1. Constant perforation properties

The investigated test matrix consider variable hole inclina-
tion and flow conditions, i.e. bias and grazing flow. Classical
configuration for acoustic analysis dealing with 90◦ perforations
is compared with an inclined hole at 30◦ which is more rele-
vant for cooling purposes. Also the range of investigated flow
conditions have been chosen to represent actual cooling systems
flow regimes at least in terms of velocity field. Each parameter
is varied on two level (L for low and H for high) as reported in
Tab.2. In order to simplify the notation, each condition is identi-
fied by a code representing the inclination angle, the bias and the
cross-flow condition, e.g. 30LH means 30◦ at low bias and high
grazing flow, an additional I identify the cases with in-linehole
arragement.

Low (L) High (H)

θ 30◦ 90◦

Mb 0.05 0.1

Mc f 0 0.08

Table 2. Test matrix

Reference pressure(pREF = 100000Pa) and temperature
(TREF = 293.15K) are maintained close to ambient conditions
and no heat exchange is considered on the domain boundaries.

Concerning the adopted acoustic forcing, the amplitude is
maintained in the linear regime to avoid undesired effects such
as flow reversal, with maximum pressure level of 125 dB while
the frequency range is limited bewteen 550Hz and 1300 Hz.
Even though the range of frequencies of interest is broader and
involves also lower frequency contributions, the computational
cost limited this enquiry as better explained in the following se-
tion.

NUMERICAL METHODS

LES solver

In order to resolve the turbulent acoustic fields, the open-
source finite-volume toolbox OpenFOAMR© [19] was used. In
particular a pressure based solver implementing time resolved
PISO loop for compressible flow was used [20]. The time in-
tegration steps were chosen for each calculation to maintain a
maximum Courant number in the domain around 0.5 to im-
prove solver stability and allow the use of second order centered
scheme for the convective term together with a backward implicit
Euler scheme for time integration.

Sub-grid stresses were modelled following the Smagorinsky
approach. Even though near wall turbulence is supposed not to
deeply influence the acoustic behaviour of the effusion plates, the
sub-grid viscosity is corrected by means of VanDriest near wall
damping [21]. In order to overcome typical near wall deficiencies
of Smagorinsky model, the Wall Adaptive Local Eddy-viscosity
model by Nicoud [22] was also implemented. Anyhow no sensi-
ble differences among the two SGS models were recorded in the
validation and reference test case thus in the following results are
presented with no reference to the model in use.

The computational grids were generated with
ICEMCFDR© software by means of a multi-block structured
approach. Near wall grid requirements for wall resolved LES
were satisfied clustering the grid close to the wall in all three
directions (z+ < 1; x+ < 100; y+ < 20) [23]. A posteriori
analysis were conducted in order to verify the far field grid
requirements. Two criteria were employed to establish sufficient
grid resolution in the interior of the domain: the modelled
turbulent kinetic energy was checked to be less than 20% of total
turbulent kinetic energy and the filter was verified to assume
values only one order of magnitude higher than the Kolmogorov
length scale, estimated using subgrid dissipation, everywhere
in the domain. Global size of the meshes results to be 670·103

cells for the 90◦ hole, 840· 103 for the single hole at 30◦ and
4.3 ·106 for the multi-hole configuration.

However for a transient calculation mesh size is only par-
tially responsible for the total computational cost and thenum-
ber of iteration required plays a major role in the necessaryCPU
time. As it will be better described in the following sections, for
an acoustic forcing at 1000 Hz the entire simulation time is 30
ms that in conjunction with a time step in between 2.5 ·10−7 for
the multi-hole case and 1·10−6 for the 90◦ case results in a total
amount of 120000 and 30000 iterations respectively. Calcula-
tions for the single hole cases were run on a 8 cores Intel Xeon
X5472 at 3.00 GHz for more than 400 hours while the multi-hole
model acoustic simulation took almost 800 hours on a 12 cores
X3430 at 2.40 GHz.
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Characteristic Boundary Conditions
In order to simultaneously guarantee small levels of reflec-

tivity on the boundaries and the desired mean conditions, the
Navier Stokes Boundary Conditions proposed by Poinsot et al.
[24] with Linear Relaxation Method [25] were adopted.

NSCBC NSCBC is a method based on the “characteris-
tic lines” which inherits most concepts from Euler Characteris-
tic boundary conditions (ECBC) methods by Thompson [26,27]
with an additional adaptation for the diffusive terms due tovis-
cous and conductivity effects [28]. The concept behind ECBC
and NSCBC is to impose boundary conditions in terms of char-
acteristic waves amplitude variationsLi . Those related to enter-
ing waves are calculated with information provided externally to
maintain the desired mean flow while those related to the leaving
waves are extrapolated from the interior of the domain. Outgo-
ing wave amplitude variations can be specified by making the as-
sumption that the flow in the boundary region is one dimensional
and inviscid. If this is the case the relations of LODI (LocalOne
Dimensional Inviscid problem) strictly applies. They should not
be considered physical conditions but viewed as compatibility
relations between the choices made for physical boundary con-
ditions and the amplitudes of waves crossing the boundary [24].

Equations employed to compute outgoing amplitude varia-
tions are reported in Eq.1, whereλi = (u1− c;u1;u1;u1;u1+ c)
are the respective characteristic wave velocities.

L1 = λ1

(

∂p
∂x1

−ρc∂u1
∂x1

)

L2 = λ2

(

c2 ∂ρ
∂x1

− ∂p
∂x1

)

L3 = λ3
∂u2
∂x1

L4 = λ4
∂u3
∂x1

L5 = λ5

(

∂p
∂x1

+ρc∂u1
∂x1

)

(1)

LRM For the incoming waves instead, it is necessary to
specify the value of their amplitude variations in such a wayto
maintain the desired mean flow conditions without decrementing
the non-reflective behaviour of the boundary itself. A technique
to achieve this property is to relax the wave amplitude variation
with respect to a specified reference value:

L1 = σp (p− p∞)
L2 = σT (T −T∞)
L3 = σu2 (u2−u∞

2 )
L4 = σu3 (u3−u∞

3 )
L5 = σu1 (u1−u∞

1 )

(2)

This kind of procedure is commonly known as the Linear
Relaxation Method (LRM) [25]. Appropriate values of the re-

laxation coefficientsσ provide a partially reflecting behaviour for
the boundary. If the relaxed variable drifts from its targetvalue
its corresponding wave amplitude variation acts as a linearspring
force to push it back toward its target value. Thus theσi param-
eters should be chosen to match the correct inlet impedance.

Acoustic forcing A sinusoidal far-field pressure was ap-
plied in the LRM method to generate the desired acoustic forc-
ing. Standard procedure would require to investigate one fre-
quency at the time imposing a monotonal pressure signal at the
outlet. However since not only a single frequency is of inter-
est, the range of investigation is from 550 to 1300 Hz, and the
computational cost of these simulations is quite relevant,a multi
harmonic pressure wave, see Eq.3, was employed in order to save
computational time.

p∞ = pREF+
N

∑
i=1

p0,icos(2π fit +φi) (3)

Additional post-processing procedures were necessary to
decompose the sample pressure onto a composition of sinusoidal
signals at the desired frequencies as reported in the following
section.

Even though combustion instabilities provide a broadband
low-frequency forcing, it is important to underline that high am-
plitude oscillations actually develop only at a given number of
specific frequencies. Moreover experiments and other computa-
tional predictions generally perform such analysis investigating
one frequency at the time [5], it is hence fundamental, to compare
the responses of pure and multi-tonal signals in order to evaluate
the effects of spurious forcing.

An analysis to assess the effect of multifrequency forcing
compared to standard pure tone excitation was conducted on
the reference test 90HLI. 3 single frequencies computations at
(700,1000 and 1300 Hz) are compared respectively with a dual
frequency (1000 and 1300 Hz) and a narrow banded 4 tones sig-
nal (550, 700, 850 and 1150 Hz). Differences in the computed
absorption coefficients are respectively around 1, 5 and 10%as
reported in Fig.5. Since this kind of uncertainty is comparable to
the one related to the number of time probes included in the post-
processing procedure, in the following excitation is provided by
means of a multi-composed pressure signal.

Howe model
The proposed LES methodology is compared to a simplified

approach which solve only for the acoustic field inside the liner
and model the acoustic impedance of perforated plates with bias
flow as an equivalent wall compliance, already presented in [6]
and here briefly summarized.
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Following the mathematical formulation of Dowling and
Eldredge [4] and exploiting Howe [18] model with extension
by Dowling and Hughes [29] to consider a regular pattern of
holes, it is possible to relate the overall wall complianceη to
the Rayleigh’s conductivity K [30].

In such a way a special boundary condition was imple-
mented within the acoustic module of the commercial solver
COMSOLR© to treat those perforated screens. Since only the
acoustic field is solved for, this approach is insensitive tothe
presence of cross-flow thus these results will be reported for the
no grazing flow configuration only.

NORMAL WAVE
As already hinted, this set-up considers a single hole only as-

suming fully developed conditions and repeatability of theacous-
tic behaviour. A bi-periodic domain was implemented to include
the effect of neighbouring holes as shown in Fig.1 in which lat-
eral boundaries are coupled each other with periodic conditions.
In case of desired mean cross-flow, it is generated across thetwo
patches with normal vector oriented in the X direction, called in
the following X+ and X-.

Figure 1. Normal wave case computational domain overview.

This domain definition enables to represent an infinite pat-
tern of holes in both the stream and tangential direction andwas
already implemented for similar purposes in [5, 31]. Surfaces
Y+ andY−, with normal vector orthogonal to the eventual main
flow, reproduce a simple in-line arrangement as better reported
in Fig.2(a). In order to consider typical staggered hole pattern,
a different configuration needs to be employed, as reported in
Figs.2(b) and 2(c). Even though arrangement in Fig.2(b) hasal-
ready been succesfully employed by other authors [17, 32, 33],
with the aim of preserving high mesh quality also in case of high
stream to tangential pitch ratio, the rectangular arrangement was
chosen for this work.

A fluctuating pressure at the outlet boundary, which gener-
ates a wave travelling perpendicular to the wall, is exploited to
impose the acoustic forcing. The outlet is placed at a distance
z= 110a from the perforated plate for each of the analysed cases,
in order to be sufficiently far from the wall. The inlet patch is in-
stead placed closer to the wall and the bias flow is generated by

(a) In-line domain

(b) Staggered Rhomboidal domain

(c) Staggered Rectangular domain

Figure 2. Domain definitions

a totally reflecting velocity inlet. Such a scheme is equivalent
to that exploited by Mendez and Eldredge [5] and Andreini et
al. [6].

Multimicrophone method

To characterize the acoustic behaviour of the perforated
plate in case of a normal acoustic excitation, it is necessary to
reduce the 3D unsteady pressure field into an upstreamp′+1 and
a downstreamp′−1 running wave as described in Fig.3.

The reflection coefficient can then be defined as the ratio
between the reflected and the incident acoustic pressure waves
to the obstacle, see Eq.4, and the absorption coefficient simply
calculated from the reflection coefficient since the perpendicular
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Figure 3. Sampling plane positions to apply the multi microphone tech-

nique.

wave excitation permits to reduce its expression to Eq.5.

R=
p′−1
p′+1

(4)

A= 1−R2 (5)

In order to evaluateA andR, hence to separate pressure con-
tributions given by the concordantp′−1 and discordantp′+1 waves
to the bias flow, the multi-microphone method [34] is appliedto
the pressure field of the acoustically excited solution.

Such technique aims to evaluatep′−1 and p′+1 , by means of
a pressure sampling at various distances from the acoustic obsta-
cle, corresponding to the perforated plate. By the imposition of
compatibility conditions at the plate itself, the resulting equation
for the pressure at positionzi as composition of the upstream and
downstream running wave is reported in Eq.6. A least square
approximation procedure is employed to calculate the values of
p′−1 andp′+1 better reproducing thep(zi , t) monitored at specified
locations.

p(zi , t) = ∑
k

(

P+( fk) ·e
− j2π fk/czi +P−( fk) ·e

j2π fk/czi
)

·e− j2π fkt

(6)
In order to purge sampled data from initial transient be-

haviour and possible effects of non perfect averaging, 30 oscil-
lating periods relatively to the lowest forcing frequency of the
exciting signal are simulated, and only the latest 20 are consid-
ered during the post-processing phase. In fact, as stated in[1]
and [35], this permits to reach well-developed statistically steady
conditions to calculate the aeroacoustic parameters.

The pressure signal is sampled at four different sampling
planes, where an area-average of fluctuating pressure is evalu-
ated. Planes are chosen at the same distance from the solid wall
for each analysed configuration, at distancesz/a = 75, 80, 90,
95 as reported in Fig.3. These are sufficiently far from the hole
outlet to consider the hypothesis of plane pressure wave with a
sufficient approximation.

90◦ in-line and staggered array
Before starting the acoustic simulation a fully-developed

free jet simulation was run for each configuration investigated.
In order to verify and validate the implemented periodic bound-

(a) side view

(b) top view

Figure 4. Isosurfaces of instantaneous velocity gradient second invari-

ant.

ary treatment, isosurfaces of Q were extracted for the 90HH case
(free jet configuration) in both the in-line and staggered calcula-
tions to highlight coherent turbulent structures. As it is possible
to note in Fig.4 the effect of the periodic boundary is low andthe
two jets develop almost in the same manner showing equivalent
jet length.

The acoustic simulations showed, see Fig.5, that the absorp-
tion coefficient is substantially equivalent for the two configura-
tions even though the staggered array of holes results to be more
influenced by the forcing frequency.

At low frequencies both a peak at 850 Hz and a local min-
imum at 700 Hz are evidenced. To purge possible effects of in-
teractions between the forcing modes, additional pure tonesimu-
lations were conducted confirming the reported for the multifre-
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500 600 700 800 900 1000 1100 1200 1300 1400
0.00

0.05

0.10

0.15

0.20
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0.30

0.35

0.40

A

f [Hz]

 LES 90HL
 LES 90HLI
 Howe 90HL
 Howe 90HLI
 Pure tone forcing 90HL
 Pure tone forcing 90HLI

Figure 5. Staggered and in-line arrangement comparison (90◦, Mab =
0.1 and Mac f = 0).

quency forcing (10% variation which is the expected uncertainty
for this type of computations). A further analysis was carried out
for f=690 and 710 Hz to verify if the lower absorption was con-
nected to some specific mode excitation related to the boundary
conditions set-up. The absorptions obtained also for thesetwo
computations allow to conclude that the lower absorption isnot
limited to this specific frequency but is extended also for neigh-
bouring frequencies, in particular minimal absorption is reported
for 690 Hz. The causes for such discontinuous behavior were not
totally identified yet.

Rayleigh conductivity model shows equivalent values of ab-
sorption, roughly 10% lower, with a much lower influence of the
hole arrangement, this is consistent with the fact that in such a
scheme the acoustic field is almost 1D and so independent on the
lateral conditions imposed.

90◦ effect of Mab

It is known that the level of bias flow is deeply influencing
the absorption properties of the perforation: increasing the bias
flow, the plate tends to behave like a rigid plate reflecting more
and more the incident pressure wave [6,11].

In Fig.6, the absorption coefficient forMab = 0.1 andMab =
0.05 is reported. The 90LL configuration shows almost constant
absorption for f ≥ 850Hz with a decrease for lower frequen-
cies. The increase of absorption moving from high to lowMab is
strong, ranging between 30% and 75%.

As already reported the quantitative agreement between LES
and Howe model is quite good for the high bias case, for the low
bias case instead LES predict a more pronounced increment at
the higher frequencies while the acoustic solver predicts ade-
creasing absorption up to 1000 Hz.

500 600 700 800 900 1000 1100 1200 1300 1400
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A

f [Hz]

 LES 90HL
 LES 90LL
 Howe 90HL
 Howe 90LL

Figure 6. High and low bias flow absorption (90◦, Mac f = 0).

Modelling of crossflow
The described set-up is not directly employable to consider

the effect of crossflow since periodic boundariesX− and X+

cannot guarantee the adequate pressure difference to sustain the
main flow. The grazing flow needs to be generated by other terms
artificially introduced in the Navier-Stokes equations.

The idea is to opportunely modify the momentum equation,
introducing an artificial source term driving the grazing flow, de-
spite the fact that a natural mean pressure gradient inX direction
is absent. The momentum equation was thus modified in this
case as:

ρ
∂ui

∂t
+ρ

∂(ujui)

∂x j
+

∂p
∂xi

−
∂

∂x j

(

µ
∂ui

∂xi
− τSGS

i j

)

= Sj (7)

whereS represents an artificial pressure gradient. Such term is
a vector, only acting on the part of grid where the grazing flow
is present. This could theoretically assume every distribution of
values inside the domain, but to avoid further complications, it is
simply chosen as constant in modulus and direction.

Because of the objective difficulty to identify the correct
value of such term to generate the desired grazing flow, its value
is automatically updated at each iteration as follows:

Sn+1 = Sn+∆Sn

∆Sn = β(un
c f −un

MEAN)
(8)

vector un
c f corresponds to the desired grazing flow velocity,

whilst un
MEAN represents the mean volume averaged velocity at

iterationn, computed in the zone where a non-null source term is
required.S is automatically updated until the mean velocity field
inside the domain equals the mean velocity value (uc f ) imposed.
According to Mendez and Nicoud [35] the relaxation coefficient
β was chosen equal toρMEAN/(10dt), wheredt is the simulation
time step.
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Figure 7. Mean streamwise velocity profiles for 90◦ case (Mab = 0.1).
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Figure 8. Mean streamwise velocity profiles for 30◦ case (Mab = 0.1).

90◦ and 30◦ with cross flow
First thing to verify is the capability of the adopted source

term to generate a realistic crossflow in the domain. Both the
90◦ and the 30◦ geometries were investigated for aMac f = 0.08.
The situation between the tests is substantially differentsince at
90◦, there is no momentum injection in the crossflow direction,
while at 30◦ the bias flow is promoting the generation of a mean
grazing flow.

Figs.7 and 8 report the mean velocity profiles at various X
positions along the centerline made dimensionless with respect
to the reference velocity, i.e. bulk velocity in the hole. Itis possi-
ble to note how these profiles are influenced by the jet only up to
certain distance from the wall. For the 90◦ case a wake is noted
up to Z/D=10 while for the 30◦ a peak in streamwise velocity, due
to VR≥ 1, is found up to Z/D=3. Moreover the axial spacing is
sufficient to absorb the perturbations on the mean flow generated
by the jet as the incoming profile is almost unperturbed at X/D=-
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Figure 9. Effect of grazing flow (90◦, Mab = 0.1).

1.5 at least for the inclined jet. The 90◦ case is not showing a flat
cross-flow profile but is instead almost linearly increasing. This
is due to the uniform distribution of the source term, necessary
to generate the mean flow, that is much higher than at 30◦ since
no stream momentum is injected from the hole. The two veloc-
ity profiles, quite different in the proximity of the plate, assume
equivalent values of cross-flow in the far field region were the
desired condition ofMac f = 0.08 is achieved.

Concerning the effects on acoustic properties, the cross-flow
is shown to weakly influence the absorption properties as re-
ported in Fig.9. This comparison could only be performed for
the 90◦ geometry since in streamwise periodic set-up it is not
possible to maintain a null crossflow for an inclined perforation
due to the slanted injection of fluid coming out from the hole.

The 30◦ geometry is so compared to the 90◦ case atMac f =
0.08, see Fig.10, showing that the inclined perforation results in
lower absorption capabilities, except at 700 Hz where the absorp-
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Figure 10. Effect of inclination angle (Mac f = 0.08, Mab = 0.1).
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tions are almost coincident. 30◦ geometry anyhow is less influ-
enced by frequency of excitation and the differences in absorp-
tion are limited with an average value of 0.05. These differences
becomes larger at low bias flow especially at high frequencies.
As noticed comparing Fig.11 and Fig.6 in fact, the increase in
absorption reducing the bias flow is smaller at 30◦ where the ef-
fects of the inclined walls clearly reduce absorption properties
also in the limit of no bias flow.

500 600 700 800 900 1000 1100 1200 1300 1400
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A

f [Hz]

 LES 30HH
 LES 30LH
 Howe 30HH
 Howe 30LH

Figure 11. High and low bias flow absorption (30◦, Mac f = 0.08).

PARALLEL WAVE
As already hinted in the introduction, main pressure waves

travel along combustor axis. It is hence fundamental to assess the
perforated liner acoustic behaviour also in case of parallel run-
ning excitation. In this case however exploiting a bi-periodic ar-
rangement is not easy since the periodic boundaries should gen-
erate the acoustic forcing as well. That is why the single hole
model previously described was abandoned for a more standard
set-up exploiting lateral periodicity only and including aproper
inlet and outlet boundary for the grazing flow as described in
Fig.12.

In such a scheme the level of acoustic damping introduced
by the plate is related to the number of hole rows included in the
model, the higher the number of row the higher the absorption, so
ideally it would be necessary to include the same amount of rows
of the liner of interest. In this analysis, a parallel experimen-
tal campaign investigating the same perforation on a cylindrical
liner with 18 rows [13] was chosen as a reference. However in-
cluding all 18 rows would have been infeasible for computational
cost reasons since maintaining the same amount of cells per hole
as the normal wave set-up would have resulted in 14· 106 cells
in the computational grid. It was hence decided to explore the
behaviour of a 4 rows plate only. Also the investigated condi-

Figure 12. Parallel wave set-up.

tion was limited to the condition 30HH under acoustic forcing at
1000 Hz.

Two source technique
With a parallel running wave, it is not possible to neglect

the transmitted acoustic wave and the number of parameters
to completely characterize acoustically the plate is increased
(R+,R−, t+, t− in Fig.13) thus a more complex post-processing
technique needs to be applied. The two-source technique, al-
ready proposed and implemented to post-process experimental
measurements by [36,37], is hence employed.

This technique consists in exciting the plate twice, once im-
posing a forcing from the inflow (Fig.13(a)) and then moving
the speakers at the outflow boundary (Fig.13(b)). The role of

(a) case A

(b) case B

Figure 13. Schematic of the Two-source technique.
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Figure 14. Mean streamwise velocity profiles for 90◦ case.

the speakers is played by the boundary conditions: in case A a
fluctuating velocity inlet is providing the acoustic forcing while
in case B perturbations are introduced by means of an oscil-
lating pressure outlet. In such a way it is possible to compute
the concordant and discordant running pressure waves exploit-
ing the multi-microphone technique upstream and downstream
of the liner separately. Eqs.9 can be used to compute the acoustic
properties of the plate to finally calculate the energy dissipation
coefficient from Eq.10.
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p
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2,b− p

′−
1,bp

′−
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p
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(9)

α± = 1−

(

1∓Ma
1±Ma

‖R±‖2+ ‖t±‖2
)

(10)

Flow field analysis
First analysis was conducted on the free simulation in order

to verify that the mean cross flow was consistent with the chosen
flow conditions.

Velocity profiles at various positions along the centerline
of the first two rows of holes were extracted and compared in
Fig.14 with the biperiodic profiles already shown. Except for
the x/D = −1.5 where the multihole simulation shows a flatter
profile due to non complete development of the boundary layer,
the profiles for the single hole and the multihole case basically
coincide, confirming that the artificially generated cross-flow is
realistic.

Acoustic results
The results obtained applying the two-source technique are

reported in Tab.3. Very high transmission coefficient character-

ize both the progressive and regressive direction. It is interesting
to note how the reflectivity of the plate is not symmetric and the
upstream reflectivity is much higher than the downstream one.
Combining those results it is possible to obtain the energy dis-
sipation coefficient that shows to be more than double for the
concordantly running acoustic wave. This difference between
concordant and discordant dissipation coefficient is reported also
in [14] for a 90◦ perforation at lowerMab. They showed a less
stressed difference than in this case but the slanted angle certainly
represent a source of additional non symmetric effects. Further
analysis are required to reduce the obtained data in such a way to
be compared with reference experiments conducted on a 18 rows
plate [13].

Modulus Phase [rad]

R+ 0.036 2.586

R− 0.0197 0.415

t+ 0.985 0.004

t− 0.969 -0.025

α+ 0.0288

α− 0.0605

Table 3. Acoustic properties of the multi-hole plate.

CONCLUSIONS
An analysis about the acoustic behaviour of multi-perforated

plates have been performed exploiting Large Eddy Simulation.
The open-source OpenFOAMR© platform was used to implement
the necessary numerical techniques.

The study was started from a bi-periodic single hole domain
under normal to the plate acoustic forcing. Sensitivity to the
hole arrangement (in-line and staggered),Mab (0.05-0.1) ,Mac f

(0-0.08) and hole inclination angle (90◦ and 30◦) have been ex-
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plored. In terms of acoustic absorption the hole arrangement and
the cross-flow effects are small and can be neglected. On the
contrary the most efficient way to enhance the absorption prop-
erties of the perforated plate is to decrease the bias flow: infact
moving from high to low bias the absorption coefficient is almost
doubled reaching values above 0.35 for the 90◦ geometry. The
reduction in perforation angle reduces the absorption as well but
the effect is limited at least at the high bias condition which is
more relevant for actual effusion cooling systems.

A plate with 4 holes at 30◦ under parallel running acoustic
wave forcing was studied too, showing a pronounced asymmet-
ric behaviour with the progressive energy absorption coefficient
halving the regressive one.

ACKNOWLEDGMENTS
The reported work was performed within the European re-

search projectKnowledge for Ignition, Acoustic, and Instabili-
ties - KIAI (RTD-Project 7th FP, Contract No. 211843). The
permission for the publication is gratefully acknowledgedby the
authors. The authors would like to thank PhD F. Simonetti for
sharing the results obtained with the lumped acoustic approach.

REFERENCES
[1] Bellucci, V., Paschereit, C. O., and Flohr, P., 2004. “Numer-

ical and experimental study of acoustic damping generated
by perforated screens”.AIAA Journal,42(8), pp. 1543–
1549.

[2] Howe, M. S., 1979. “On the theory of unsteady high
Reynolds number flow through a circular aperture”.Pro-
ceedings of the Royal Society of London,366, pp. 205–223.

[3] Jing, X., and Sun, X., 2000. “Effect of plate thickness on
impedance of perforated plates with bias flow”.AIAA Jour-
nal, 38(9), pp. 1573–1578.

[4] Eldredge, J., and Dowling, A., 2003. “The absorption of
axial acoustic waves by a perforated liner with bias flow”.
Journal of Fluid Mechanics,485, pp. 307–335.

[5] Mendez, S., and Eldredge, J. D., 2009. “Acoustic modeling
of perforated plates with bias flow for large-eddy simula-
tions”. Journal of Computational Physics,228, pp. 4757–
4772.

[6] Andreini, A., Bianchini, C., Facchini, B., and Simonetti, F.,
2011. “Assessment of numerical tools for the evaluation of
the acoustic impedance of multi-perforated plates”.ASME
Turbo Expo 2011: Power for Land, Sea and Air(GT2011-
46303).

[7] Gunasekaran, B., and McGuirk, J. J., 2011. “Mildly-
compressible pressure-based cfd methodology for acous-
tic propagation and absorption prediction”.ASME Turbo
Expo(GT2011-45316).

[8] Scarpato, A., Ducruix, S., and Schuller, T., 2011. “A
les based sound absorption analysis of high-amplitude
waves through an orifice with bias flow”.ASME Turbo
Expo(GT2011-45639).

[9] Mazdeh, A., and Kashani, R., 2011. “Distributed parameter
acoustic modeling of a perforation with bias flow”.ASME
Turbo Expo(GT2011-46649).

[10] Bhayaraju, U., Schmidt, J., Kashinath, K., and Hochgreb,
S., 2010. “Effect of cooling liner on acoustic energy ab-
sorption and flame response”.ASME Turbo Expo(GT2010-
22616).

[11] Heuwinkel, C., Enghardt, L., Bake, F., Sadig, S., and
Gerendas, M., 2010. “Establishment of a high quality
database for the modelling of perforated liners”.ASME
Turbo Expo(GT2010-22329).

[12] Rupp, J., Carrotte, J., and Macquisten, M., 2011. “The use
of perforated damping liners in aero gas turbine combustion
systems”.ASME Turbo Expo(GT2011-45488).

[13] Andreini, A., Facchini, B., Ferrari, L., Lenzi, G., Simonetti,
F., and Peschiulli, A., 2012. “Experimental investigation
on multi-perforated liner geometries for aero-engines. Part
I: Evaluation of global acoustic parameters”.ASME Turbo
Expo 2012: Power for Land, Sea and Air(GT2012-69853).

[14] Heuwinkel, C., Enghardt, L., Rohle, I., Muhlbauer, B.,
Noll, B., Aigner, M., and Busse, S., 2008. “Compari-
son of experimental and numerical results concerning the
damping of perforated liners with bias flow”.ASME Turbo
Expo(GT2008-50585).

[15] Facchini, B., Tarchi, L., and Toni, L., 2009. “Investigation
of circular and shaped effusion cooling arrays for combus-
tor liner application - Part 1: Experimental analysis”.Pro-
ceedings of ASME Turbo Expo 2009: Power for Land, Sea
and Air(GT2009-60037).

[16] Andreini, A., Bianchini, C., Ceccherini, A., Facchini, B.,
and Mangani, L., 2009. “Investigation of circular and
shaped effusion cooling arrays for combustor liner appli-
cation - Part 2: Numerical analysis”.Proceedings of ASME
Turbo Expo 2009: Power for Land, Sea and Air(GT2009-
60038).

[17] Eldredge, J. D., Bodony, D. J., and Shoeybi, M., 2007. “Nu-
merical investigation of the acoustic behavior of a multi-
perforated liner”. 13th AIAA/CEAS Aeroacustic Confer-
ence(3683).

[18] Luong, T., Howe, M., and McGowan, R., 2005. “On the
Rayleigh conductivity of a bias-flow aperture”.Journal of
Fluids and Structures,21, pp. 769–778.

[19] Weller, H. G., Tabor, G., Jasak, H., and Fureby, C., 1998.
“A tensorial approach to computational continuum me-
chanics using object-oriented techniques”.Computers in
Physics,12(6).

[20] Fureby, C., Weller, H. G., Tabor, G., and Gosman, A. D.,
1997. “A comparative study of subgrid scale models in ho-

11 Copyright c© 2012 by ASME



mogeneous isotropic turbulence”.Physics of Fluids,9(5),
pp. 1416–1429.

[21] Fureby, C., 1996. “On subgrid scale modeling in large eddy
simulations of compressible fluid flow”.Physics of Fluids,
8(5), pp. 1300–1311.

[22] Nicoud, F., and Ducros, F., 1999. “Subgrid-scale stress
modelling based on the square of the velocity gradient ten-
sor”. Flow, Turbulence and Combustion,62, pp. 183–200.

[23] Sagaut, P., 2005. “Large eddy simulation for incompress-
ible flows”. Springer.

[24] Poinsot, T. J., and Lele, S. K., 1992. “Boundary condi-
tions for direct simulations of compressible viscous flows”.
Journal of Computational Physics,101, pp. 104–129.

[25] Yoo, C., Wang, Y., Trouve, A., and Im, H., 2005. “Charac-
teristic boundary conditions for direct simulations of turbu-
lent counterflow flames”.Combustion Theory and Model-
ing, 9, pp. 617–646.

[26] Thompson, K. W., 1987. “Time-dependent boundary con-
ditions for hyperbolic systems”.Journal of Computational
Physics,68, pp. 1–24.

[27] Thompson, K. W., 1990. “Time-dependent boundary con-
ditions for hyperbolic systems II”.Journal of Computa-
tional Physics,89, pp. 439–461.

[28] Lodato, G., Domingo, P., and Vervisch, L., 2008. “Threedi-
mensional boundary conditions for direct and Large-Eddy
Simulation of compressible viscous flows”.Journal of
Computational Physics,227, pp. 5015–5143.

[29] Hughes, I., and Dowling, A., 1990. “The absorption of
sound by perforated linings”.Journal of Fluid Mechanics,
218, pp. 299–335.

[30] Leppington, F., and Levine, H., 1973. “Reflexion and trans-
mission at a plane screen with periodically arranged circu-
lar or elliptical apertures”.Journal of Fluid Mechanics,61,
pp. 109–127.
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