
3D MODEL VISUALIZATION ENHANCEMENTS IN REAL-TIME GAME ENGINES

A. Merlo a, C. Sánchez Belenguer b, E. Vendrell Vidal b, F. Fantini a, A. Aliperta a

a
 DIDA: Dipartimento di Architettura, Università degli Studi di Firenze, Italy -

alessandro.merlo@unifi.it; filippofantini@quipo.it; andrea.aliperta@gmail.com
b
 Instituto de Automática e Informática Industrial - ai2, Universidad Politécnica de Valencia, Spain -

carsanb1@doctor.upv.es; even@upv.es

KEY WORDS: real-time simulations, displacement map, normal map, laser scanning, mesh processing, photogrammetry

ABSTRACT:

This paper describes two procedures used to disseminate tangible cultural heritage through real-time 3D simulations providing

accurate-scientific representations. The main idea is to create simple geometries (with low-poly count) and apply two different

texture maps to them: a normal map and a displacement map. There are two ways to achieve models that fit with normal or

displacement maps: with the former (normal maps), the number of polygons in the reality-based model may be dramatically reduced

by decimation algorithms and then normals may be calculated by rendering them to texture solutions (baking). With the latter, a

LOD model is needed; its topology has to be quad-dominant for it to be converted to a good quality subdivision surface (with

consistent tangency and curvature all over). The subdivision surface is constructed using methodologies for the construction of assets

borrowed from character animation: these techniques have been recently implemented in many entertainment applications known as

“retopology”. The normal map is used as usual, in order to shade the surface of the model in a realistic way. The displacement map is

used to finish, in real-time, the flat faces of the object, by adding the geometric detail missing in the low-poly models. The accuracy

of the resulting geometry is progressively refined based on the distance from the viewing point, so the result is like a continuous

level of detail, the only difference being that there is no need to create different 3D models for one and the same object. All

geometric detail is calculated in real-time according to the displacement map. This approach can be used in Unity, a real-time 3D

engine originally designed for developing computer games. It provides a powerful rendering engine, fully integrated with a complete

set of intuitive tools and rapid workflows that allow users to easily create interactive 3D contents. With the release of Unity 4.0, new

rendering features have been added, including DirectX 11 support. Real-time tessellation is a technique that can be applied by using

such technology. Since the displacement and the resulting geometry are calculated by the GPU, the time-based execution cost of this

technique is very low.

1. INTRODUCION

This paper is focused on the use of real-time and 3D modelling

applications for the visualization and dissemination of the

cultural heritage. In particular, the pipeline described modelling

and texturing procedures developed for the

conversion/optimization of dense point clouds into low-poly

texturized models that could be easily imported into game

engines, while retaining the appearance of dense meshes from

laser scanner surveys.

For this test, we decided to work on mascarón, a quite sizeable

statue (measuring approximately 4 by 3 meters) of a

mythological creature, found on the third of March 2009 in a

grid of tunnels dug by looters at the base of the acropolis of

Chilonché’s archaeological site (Guatemalan Petén, Figure 1),

by an archaeological mission led by architect Gaspar Muñoz-

Cosme of the Polytechnic University of Valencia and by the

archaeologist Cristina Vidal-Lorenzo of the University of

Valencia. Between 2010 and 2011, the research team accurately

documented the archaeological finds through a traditional

survey and a photographic campaign that produced 2D

orthographic views. The location of the sculpture – only

accessible through the grid of tunnels that surrounds it – and its

complex morphology lends itself well to the use of 3D scanning

techniques. So, in March 2012, the team, under the guidance of

prof. Merlo who is experienced in digital surveys, set off on a

campaign to use such technology to take the first experimental

measurements (Figure 2). For an overall description of the

organic shape, which a traditional 2D representation system

could not easily provide (Figure 3), in May and June 2012 the

team decided to develop a mesh model of the sculpture, to be

used for static renderings and real-time applications. The

processing stage was supervised by Prof. Alessandro Merlo,

Ph.D. Filippo Fantini, an expert in 3D modelling, and Dr in

computer science Carlos Sanchez Belenguer.

To obtain high-resolution polygonal B-Reps from the initial

point cloud, we followed a conventional pipeline (from Cyra

Cyclone to Inus Rapidform). At the time of generating the

mesh, we opted for the highest resolution provided by the

Figure 1. Archeological site of Chilonché in the region of

Guatemalan Petén

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5/W1, 2013
3D-ARCH 2013 - 3D Virtual Reconstruction and Visualization of Complex Architectures, 25 – 26 February 2013, Trento, Italy

181

program instead of a preliminary mesh reduction, as we wanted

to convert all geometrical detail into special bitmaps. Once the

high-poly mesh had been obtained, we used a global remesh

signal to correct for topological faults and create an isotropic

mesh made of regular triangles.

At the first stage of research, the team chose to convert this

high-poly model into an optimized one, focussing on classical

approaches based on mesh density reduction (decimation), and

to work with Low-Poly Models + Normal Maps to achieve a

realistic representation, conveniently processed to perform

within Unity 3D. The end result of this study was shown during

the 17th International Conference on Cultural Heritage and New

Technologies (11.06.2012, Vienna).

At the second stage, we decided to optimize the model using

procedures borrowed from such entertainment applications as

retopology and, with the support of architect Andrea Aliperta,

other types of procedures: SubD + Displacement Maps. The

release of Unity 4.0 actually added new rendering features that

support real-time tessellation. In either case, our priority was to

monitor all steps in the “filtering” process, in particular the

geometrical error introduced in the modelling process by the

transition from laser scanner to game engine that, if not kept

under control, may “damage” the metrical reliability of the

meshes, so that, for example, interactive measurements and

sections could not be taken right on the 3D scene.

2. PURPOSES

The main problem with real-time 3D simulations is duality

between efficiency and realism, the former due to polygonal

optimization, the latter to the quality of detail in the model.

Until now, two of the most common solutions to this problem

were using normal maps and different levels of detail (LOD) in

models. The first solution consists in creating simple geometries

and applying a texture, the normal map, on them, showing the

normal vector of the surface in a specific point. With this

information, flat objects can be shaded in a very realistic way

without lots of polygons. The main problem with this technique

is that flat faces remain flat, so, when the line of vision is

parallel to the surface of the object, results are poor. The second

solution consists in creating several 3D models for one and the

same object, at different levels of detail. This way, when the

object is far from the viewing point, a low-resolution model is

displayed and, as the object becomes closer, more detailed

models replace the low resolution ones. The main problem with

this technique is that several models of one object need to be

created, and all the levels of detail have to be loaded into the

GPU in order to display the object. Real-time tessellation is a

new approach that powerfully combines the two previous

solutions together.

3. REVERSE-MODELLING AND MAPPING

PROCEDURES

This case-study involves a comparison of two 3D model

optimization procedures, both based on the use of bitmap

images (hence the acronym IBGP, Image Based Geometric

Processing), which transfer encoded colour and geometric

information from a 3D digital model (generally high resolution)

to another (usually low resolution) through special textures.

This procedure takes inspiration from game applications, whose

features (including those of the optimised 3D models) are

borrowed from entertainment software.

This review covers different behaviours of normal maps and

displacement maps, supported by a diffuse colour map applied

to simplified versions of the same Hi-poly models.

As a first step, the simplified models had to be developed; the

first one was developed through the direct decimation of

polygons in the reverse-modelling software (Inus Rapidform,

“decimate” command) and its surface is a knitted isotropic

triangular (number of polygons 163494, average length of edges

19,41 mm); the second one was built instead through the so-

called "retopology" technique. This consists in tracing the Hi-

poly mesh of the model with a square mesh of lower density,

known as "control mesh" (number of polygons 8016) or "quad-

dominant mesh". When drawing such mesh, the operator must

constantly monitor the quadrangular polygon for regularity and

the size of the edges so as not to build too sparse or too dense a

mesh. In the former case, oversimplification would prevent any

optimal geometric fitting on the background surface, resulting

in a poor quality map. Small edges, however, force us to

introduce a number of polygons that would make the entire

procedure useless. It is also important that the mesh be built

along the main directions on which the morphology of the

object is based.

Figure 2. The tunnel dug from looters at the base of the

acropolis

Figure 3. 2D orthographic view: horizontal section

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5/W1, 2013
3D-ARCH 2013 - 3D Virtual Reconstruction and Visualization of Complex Architectures, 25 – 26 February 2013, Trento, Italy

182

It is essential to dwell on the difference between the numbers of

polygons in the two models. In the triangular mesh, the number

of polygons is locked, while the quad-dominant model, because

of its squared shape, can support conversions into Catmull-

Clark-like subdivision surfaces; this makes it a variable-detail

model, because the geometry of the mesh may be interactively

increased by adjusting the level of subdivision (Figure 4).

Once we have the low-poly models, in order to encode the

geometrical information and the texture colour, we need to

create an UV map for each. This step involves associating the

positions of the points of the 3D digital model within a

reference system (u, v), in order to find an objective correlation

between points on the plane and in space, so that the UV map

can act as a unique reference system for every texture map that

may be developed.

Importantly, the UV map must meet several important

requirements. The most important one is that the polygons must

not overlap, so as not to lose any correlation between the points

in the model and those developed on the same plane. This

requirement must be met when encoding both normal and

displacement maps.

Another requirement that the UV map must fulfil, if concerning

a control mesh, is that the polygon size in the model and the

polygon size in the UV map must be directly proportional. If a

polygon mesh Low-poly space approximates a defined number

of polygons in the Hi-poly mesh, its image in the UV space

must also be able to contain a reasonable number of pixels to

receive geometrical information mainly through the baking

process.

The baking process consists of an operation whereby the

software stores information about the geometry and colour of

the Hi-poly mesh, an RGB image or grey scale built on the UV

reference system.

The geometrical information may be encoded in a normal map

or in a displacement map; despite containing the same type of

data, they are differently perceived.

The normal map is an RGB image and, using the tones

generated by the three colour channels, it can enclose the trend

of the Hi-poly surface normal. The colour of a pixel in the

normal map is suggestive of the direction of a normal vector of

the matching point, the surface of which has been baked. Once

calculated and applied to the Low-poly mesh, the normal map

simulates the behaviour of light reflections from the starting

model and provides an image that is closer to the original non-

decimated one: in other words, by adjusting the shading of the

low-detail model, the normal map deceptively looks again like

the original Hi-poly model.

The displacement map is, instead, a grey scale image, in which

each shade of grey stands for a deviation of the background

mesh from the optimized one. This is because, unlike the

normal map, the displacement map, once applied to the model,

displaces the points of the surface Low-poly based on the

deviations calculated during the baking process. So, if you bake

the surface of a displacement map, the UV map must also fulfil

the requirement about continuity between adjacent polygons

(Figure 5).

There are some criticalities in designing a texture displacement:

the "pipeline" for the Save format, the features of the surface to

Figure 4. Different optimized mesh: (a) Triangular isotropic mesh. (b) Quad-dominant mesh. (c) Subdivision surface.

Figure 5. (a) The u,v reference system. (b) Normal map. (c) Displacement map.

(a) (b) (c)

(a) (b) (c)

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5/W1, 2013
3D-ARCH 2013 - 3D Virtual Reconstruction and Visualization of Complex Architectures, 25 – 26 February 2013, Trento, Italy

183

be encoded, and the features of the subdivision surface it

resembles.
Firstly, note that the software can produce and support a format

with such a highly dynamic range as the OpenEXR. This format

can be used to store information in 16 or 32 bits per pixel and

provides over 255 shades of grey in an 8-bit image, for a more

accurate rendering of the deviation of the points on the

subdivision surface.

In this process, pride of place is given to the measurement of the

distance of displacement; at the time of baking, the range within

which the deviation between the two surfaces is to be measured

must be defined. Such range is found by comparing the

deviation between the two surfaces through the "accuracy

analyzer" (a specific tool built into the reverse-modelling

software) and is reusable after baking (Figure 6).

Essential to creating the colour texture is a proper photographic

campaign to take photos that are perfectly focussed, with no

dominant colour or shadow or line.

It was decided that an adequate amount of homologous points

should be located on each image and Hi-poly model for the next

camera re-sectioning process; high-contrast targets were placed

on frames with the help of photo-editing software, while in

Rapidform the control points on the Hi-poly model could be

selected and exported to an .IGES format. These points were

converted to a .DXF format, and the photos with the targets

were imported into specific software (EOS Systems

PhotoModeler), which could associate the homologous points

and then locate the positions shown by the camera within the

same reference model.

By exporting the camera to a .FBX format, it could be reused

(in Luxology Modo) as a projector of its image on the surface of

the model, and the result of such projection could be baked onto

the UV map.

By repeating the same procedure for each frame until the model

was fully covered and by blending together the images from

each baking process, the diffuse colour texture was designed

and eventually applied to the entire model by UV projection.

This procedure was only used for the triangular mesh model; to

get the same texture as the one encoded in the UV map of the

quad-dominant model, we used the "bake from object to render

output" control, through which we could project the colour from

the textured model onto the map of the UV texturized one. By

enabling a "spread coefficient output" between the render

settings, colour only could be baked, with no interference with

the lighting of the model (Table 7, Figure 8).

Figure 6. Deviation between Hi-poly mesh and Subdivisio

 surface valued using Accuracy Analyzer.

Figure 8. Comparison between optimized models. (a) Subdivision surface from quad-dominant mesh with displacement map and

diffuse color map. (b) Triangular isotropic mesh with normal map and diffuse color map.

Table 7.

(a) (b)

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5/W1, 2013
3D-ARCH 2013 - 3D Virtual Reconstruction and Visualization of Complex Architectures, 25 – 26 February 2013, Trento, Italy

184

4. SHADER MODEL 5.0

Dealing with high-density 3D models in real-time visualizations

has been traditionally complicated: the transfer of highly refined

meshes between the CPU (Central Processing Unit) and the

GPU (Graphics Processing Unit) has become one of the main

bottlenecks of the rendering algorithm. Bandwidth limitations

between both units, and memory restrictions impose very strict

constraints to the real-time visualization techniques.

Prior to Shader Model 4.0, there was no possibility of doing

per-primitive manipulation on the GPU, which means that

models loaded in graphics memory could not be refined to more

detailed ones.

In fact, only the Vertex Shader Stage, which is the first stage in

the graphics pipeline, had access to vertex information, and the

possibility to alter the original shape of the model. It performs

per-vertex operations such as transformations, skinning,

morphing, and per-vertex lighting. Its main disadvantage is that

it always operates on a single input vertex and produces a single

output vertex, so no refining operations are allowed.

The addition of a new pipeline stage in Shader Model 4.0,

(Figure 9) called the Geometry Shader, unlocked new

possibilities for programmers in creating procedural meshes on-

the-fly. However, the limitation of primitives to refine geometry

and its computational cost did not completely solve the problem

of high-density 3D models visualization.

With the release of Shader Model 5.0 (Figure 10), three new

stages have been added to the graphics pipeline: the Hull

Shader, the Tessellator and the Domain Shader.

This new pipeline is able to create up to 8192 triangles for each

triangle that receives, being the amount a parameter set by the

programmer. Each one of these new triangles can be

transformed programmatically on the GPU in a shader stage that

grants access, not only to the input primitive vertices data, but

also to the GPU generated triangle’s vertices coordinates.

This way, Shader Model 5.0 becomes an extremely efficient

architecture tailored to create highly complex meshes on-the-fly

and simple automatic Level of Detail algorithms. It provides a

very high efficiency, since it trades CPU-GPU bandwidth for

GPU arithmetic operations, which are rarely limiting during

rendering.

The first stage of the new ones in the graphics pipeline is the

Hull Shader. This one is a fully programmable stage that

receives the output from the Vertex Shader. It is divided in two

parts: the Constant Hull Shader and the Main Hull Shader. Both

parts have access to the full primitive, and their purpose is to do

any per-primitive calculations. The Constant Hull Shader is

invoked once per triangle, and its goal is to establish how much

the Tessellator has to subdivide it (Tessellation Factor). The

Main Hull Shader is invoked once per vertex, and its purpose is

to calculate any basis change on the primitive (control points).

This way, the Hull Shader outputs the Tessellation Factor to the

Tessellator, and the control points to the Domain Shader.

The Tesselator is the stage that deals with the triangle

subdivision. It is not programmable and takes as input data the

Tesellation Factor calculated in the Constant Hull Shader stage

for each triangle in the low-polygon mesh. The result of this

stage is a new set of triangles distributed in a regular grid, with

texture coordinates UV varying from 0 to 1. These triangles are

outputted to the Domain Shader with texture coordinates.

Tessellation can be performed in two ways: integer and

fractional. The first one consists in a simple symmetric

subdivision, whilst the second one subdivides on the edges and

morphs the vertices based on the decimal part of the

Tessellation Factor. This way, when using a LOD (Level of

Detail) scheme, mesh refining is smooth.

Finally, the Domain Shader is a fully programmable stage that

has access to the primitive information, and gets invoked once

per vertex generated in the Tessellator. It receives, as input data,

the control points generated in the Main Hull Shader and the

regular grid generated in the Tessellator. Its role in the graphics

pipeline consists in calculating the position of the new

generated vertices, converting their parametric UV coordinates

into world space XYZ coordinates. Resulting triangles are

passed to the Pixel Shader or if needed to the Geometry Shader.

From here, the rendering pipeline continues as normal: the

Rasterizer Stage converts the vector information (triangles or

other primitives) into a raster image (a bitmap) and, the Pixel

Shader Stage, invoked once per pixel by the Rasterizer Stage,

deals with the calculation of the color values for each pixel,

enabling rich shading techniques such as per-pixel lighting and

post-processing.

Figure 9. The graphics pipeline in Shader Model 4.0

Figure 10. The graphics pipeline in Shader Model 5.0

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5/W1, 2013
3D-ARCH 2013 - 3D Virtual Reconstruction and Visualization of Complex Architectures, 25 – 26 February 2013, Trento, Italy

185

5. ON-LINE REALTIME VISUALIZATION OF HIGH-

DENSITY 3D MODELS WITH UNITY

Since the goal of this project is to disseminate tangible cultural

heritage through real-time 3D simulations, we chose Unity3D as

the rendering engine to do so. The main reason is because it

allows to generate simulations for almost every device with

enough graphics performance (PC and Mac computers, Android

and iOS devices…) and, mainly, because it allows to display the

simulations embedded in a web page, what we consider the best

way to reach the maximum audience.

Since on-line visualization happens in a networked

environment, the architecture of the application is based on a

client-server paradigm with a Software Delivery strategy. There

are four main components that play specific roles, and which

are illustrated in Figure 10:

 Application server: stores 3D data, information and the

application code, and transfers them to the clients. Since it

serves to several clients, it does not provide complex

computations for individuals. Instead of this, the server

sends the application code and the data to the client, in

order to generate the real-time simulation. Therefore, the

computational power is provided by the end-user.

 Player server: stores the binary files that perform the web

player installation on client computers. Since this web-

application requires direct access to graphic hardware in

order to perform a fast and complex simulation, clients

have to install a player in their browsers that loads the code

stored in the application server, and performs the

simulation. Differentiating the application code and the

player allows that, with only one installation, clients can

load lots of different applications.

 Web client: in charge of the real-time rendering,

interaction with the user, and all data requests to the server.

First application run requires a player installation through

the player server.

 Network: responsible for data transfers between client and

server. Because of time delays, interactions between the

user and the 3D environment have to be performed

primarily on the client side, keeping this client-server

communication only for data requests.

With the release of Unity 4.0, new rendering features have been

added, including DirectX 11 and Shader Model 5.0 support.

This makes Unity suitable for an advanced visualization like the

one we propose.

5.1 Normal Mapping Technique

The first attempt to reduce the amount of polygons in the

displayed model consists in using a low-poly mesh with a

normal map texture to increase detail.

Normal mapping technique is very common in real-time 3D

simulations, and it is used for faking the lighting on the surface

of the model. With normal mapping, details can be added

without using more polygons. A common use of this technique

is to greatly enhance the appearance and details of a low

polygon model.

Normal maps are commonly stored as regular RGB images

where the RGB components corresponds to the X, Y, and Z

coordinates, respectively, of the surface normal.

Since all normal mapping calculations happen in the Pixel

Shader Stage, in the graphics pipeline, this technique does not

have the capability to refine the model: the amount of vertices

of the resulting model is always constant.

Results using this technique (Figure 12) are much better than

results achieved with a simple lightning but the final 3D model

is still to simple, and presents an important lack of geometric

details.

5.2 Tessellation Technique

To prevent this from happening, we have introduced in the

visualization a Tessellation Shader that, using the capabilities of

Shader Model 5.0, takes advantage of the new rendering stages

to, progressively, refine the model as the camera becomes closer

to specific parts of the model.

Figure 11. On-line application architecture.

Figure 12: Comparison between results achieved with simple lightning (left) and normal mapping (right). Notice how shading of

surfaces improves by using normal maps, but how the geometric detail of the model remains constant.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5/W1, 2013
3D-ARCH 2013 - 3D Virtual Reconstruction and Visualization of Complex Architectures, 25 – 26 February 2013, Trento, Italy

186

The input data for the shader consists in a low-poly 3D model, a

diffuse texture that stores the color information of the surface,

and two special textures: a normal map and a displacement map.

As explained before, these two textures have been calculated by

projecting the original hi-poly model over the low-poly one,

according to the normals of its polygons, and results are stored

according to the UV coordinates of the low-poly model.

5.2.1 Hull Shader Stage: the proposed shader uses the

Constant Hull Shader to calculate, for each triangle, how many

times it has to be subdivided. This test can be based in two

different criteria: the distance to the triangle, or the length (in

screen space) of the edges of the triangle. The first one works

good when all triangles of the model have a similar size, which

is not the case. The second one, the one we are using, specifies

the desired length, in screen space, of all edges in the final

model. If an edge’s length is greater than the desired length, it

gets automatically subdivided.

This way, if the object is far from the viewpoint, original edges

of the low-poly model will satisfy the subdivision criteria and,

in consequence, they will not be subdivided, keeping the

polygon count of the render very low.

As the viewpoint approaches the model, closer triangles will

eventually fail the test, and thus, they will be refined into

smaller ones.

Since all the information needed to calculate the position of the

new vertices generated by the Tessellator Stage is included in

the displacement map, there is no need to use the Main Hull

Shader to calculate control points for the Domain Shader Stage.

This stage is normally executed for alternative uses of the

tessellation technique, as parametric surfaces rendering or

smoothing algorithms.

5.2.2 Tessellation Stage: as said before, Tessellation Stage

is not programmable, and it takes the original triangles with the

Tessellation Factor calculated in the Fixed Hull Shader to

perform the regular subdivision of each triangle. The only thing

to specify in this stage is the way the Tessellation Factor has to

be interpreted: as integer or fractional.

In order to prevent abrupt refinements of the model, tessellation

is executed in fractional mode, which ensures that interpolation

between different refinements is performed in a smooth way.

5.2.3 Domain Shader Stage: once the control flow reaches

the Domain Shader Stage, all original triangles have already

been subdivided, and it is necessary to establish the position, in

world space, of each new vertex.

To do so, since Shader Model 5.0 grants access to the primitive

information in the Domain Shader, we calculate the

corresponding pixel of the displacement map for each vertex.

The gray level of the pixel indicates how much the vertex has to

be displaced, towards the normal of the face, so it fits the

original high-poly model. By applying this transformation, we

ensure that the deviation at this specific position of the refined

model respect the original one is zero.

5.2.4 Pixel Shader Stage: since all geometric manipulation

has been already performed, there is no need to execute the

Geometry Shader Stage. Instead, the control flow of the

rendering pipeline reaches its last stage: the Pixel Shader Stage.

Here, the diffuse color of each pixel of the model is calculated

according to the diffuse map, and the lightning is applied using

the normal map texture.

It is important to remark that, for proper shading, the normal

map texture becomes necessary: all new triangles generated by

the tessellator are placed in their correct position, but they do

not have a normal vector. If a normal map is missing, the final

model geometry will be correct, but it will not shade properly.

5.3 Comparison between both techniques

Given that the tessellation shader includes in its last rendering

stage the capabilities of the normal mapping shader, it can be

said that it is more complete: the resulting shading of the model

remains the same with both techniques but, with the tessellation

shader, geometry gets progressively refined based on the

viewpoint distance. This refinement improves, not only the

precision of the model, but also visualization aspects that may

affect to the shadow calculations, visibility culling…(Figure 13)

This way, with the extra load of one displacement map, the

same low-poly model used for normal mapping can exactly fit

the high-poly one, and there is no need to load heavy meshes in

the GPU. Also, since the refinement criterion is parametric, an

infinite number of automatic LODs are displayed without any

extra memory costs or modeling tasks.

6. CONCLUSIONS

In this paper, we have faced the challenge of cultural heritage

dissemination through real-time 3D simulations. Since these

simulations are intended to provide accurate-scientific

representations, but also to be light enough for a standard

computer to execute them, we have created a simulation that

uses real-time tessellation techniques from Shader Model 5.0.

Figure 13. Comparison between the geometry of the original low-poly mesh (left) and the results of applying it the proposed

tessellation shader (right)

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5/W1, 2013
3D-ARCH 2013 - 3D Virtual Reconstruction and Visualization of Complex Architectures, 25 – 26 February 2013, Trento, Italy

187

In order to perform real-time tessellation, the way 3D models

and textures are created is a key factor. We have presented

procedures in reverse modelling and mapping that allow

generating low-polygon models from the original high-density

mesh, and calculating texture maps that store all the data that

has been lost during the simplification process: the normal map

for the surface orientation, and the displacement map for the

deviation between the hi-poly mesh and the low-poly one.

We have introduced the key aspects of Shader Model 5.0, that

enabled us to implement a real-time tessellation shader and,

with the model and textures created using the procedures

explained in section 3, we have compared the results obtained

with a traditional normal mapping shader and the proposed

tessellation shader.

Given the results presented in section 5, tessellation shaders

have proven to be more complete than normal mapping shaders.

The main reason for this is that tessellation shaders can include

in their Pixel Shader Stage the same code as normal mapping

shaders but, only tessellation shaders can refine the low-poly

model into more detailed ones.

This way, by parametrically refining the triangles of the model

based on their distance to the viewpoint, we have achieved an

extremely precise visualization, with a very low computing cost.

REFERENCES

Alliez P., Ucelli G., Gotsman C., Attene M., 2008. Recent

Advances in Remeshing of Surfaces. In: Shape Analysis and

Structuring. Springer Berlin Heidelberg, Berlin, pp. 53-82.

Apollonio F.I., Gaiani M., Manferdini A.M., 2010.

Modellazione semantica, metodi a multirisoluzione. In:

Benedetti B., Gaiani M., Remondino F. (editors). Modelli

digitali 3D in archeologia: il caso di Pompei. Edizioni della

Normale, Pisa, pp. 236-250.

Brodlie, K., 2000. Visualization over the World Wide Web. In:

Scientific Visualization (Dagstuhl ’97 proc.), IEEE Computer

Society Press, pp.23-29.

Cohen J., Olano M., Manocha D., 1998. Appearance-Preserving

Simplification. In: SIGGRAPH '98 Proceedings of the 25th

annual conference on computer graphics and interactive

techniques. ACM New York, NY.

Chittaro, L., Ranon, R., 2007. Adaptive 3D Web Sites. In:

Brusilovsky, P., Kobsa, A., Nejdl, W. (editors), The Adaptive

Web - Methods and Strategies of Web Personalization, Lecture

Notes in Computer Science, Vol. 4321, pp. 433-464.

Fantini F., 2010. Image Based Data Processing (IBDP): la

restituzione attraverso displacement subD a partire dal

rilevamento laser scanner. In: Materia e Geometria, 18/2010,

pp. 149-158.

Guidi G., Russo M., Beraldin J.A., 2009. Acquisizione 3D e

modellazione poligonale. McGraw-Hill, Milano, pp. 294-300.

Lai Y.K., Kobbelt L., Hu S.M., 2008. An Incremental Approach

to Feature Aligned Quad Dominant Remeshing. In: Proceeding

SPM '08. Proceedings of the 2008 ACM symposium on Solid

and physical modelling, ACM New York, NY.

Merlo A, Dalcò L., Fantini F., 2012. Game engine for cultural

heritage. New opportunities in the relation between simplified

models and database. In: Guidi G., Addison A.C. (editors),

Virtual Systems and Multimedia (VSMM). Proceedings VSMM

2012, Milano 2-5 settembre 2012, Institute of Electrical and

Electronics Engineers, Inc., pp. 623-628.

Merlo A., Vendrell-Vidal E., Fantini F., Sánchez-Belenguer C.,

2012. Abstract “Mayan Mascarón from Chilonché (Petén,

Guatemala): New Technologies for Cultural Heritage

Dissemination”. 17th CHNT International Conference on

Cultural Heritage and New Technologies, Vienna, Austria,

http://www.stadtarchaeologie.at/?page_id=5142.

Papaioannou, G, et al, 2003. Enhancing Virtual Reality

Walkthroughs of Archaeological Sites. In: Proceedings of the

Eurographics 4th International Symposium on Virtual Reality,

Archaeology and Intelligent Cultural Heritage, pp. 193-201.

Verdiani G. (editor), 2011. Il ritorno all'immagine, nuove

procedure image based per il Cultural Heritage. Lulu.com, pp.

11-14.

Unity – Game Engine. http://www.unity3d.com. San Francisco,

United States. (13 Jan. 2013)

Zara, J., 2004. Virtual Reality and Cultural Heritage on the

Web. In: Proceedings of the 7th International Conference on

computer Graphics and Artificial Inteligence. Limognes,

France, pp. 101-112.

Zara, J., 2006. Web-Based Historical City Walks: Advances and

Bottlenecks. In: PRESENCE: Teleoperators and Virtual

Environments. Vol. 15, No. 3, pp. 262-277.

ACKNOWLEDGEMENT

This project has been partially financed by the “

 (PAID)” of the

 and the “Plan Nacional de

I+D+i 2008-2011” from the

Competitividad.

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5/W1, 2013
3D-ARCH 2013 - 3D Virtual Reconstruction and Visualization of Complex Architectures, 25 – 26 February 2013, Trento, Italy

188

