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ABSTRACT: 

 

This paper describes two procedures used to disseminate tangible cultural heritage through real-time 3D simulations providing 

accurate-scientific representations. The main idea is to create simple geometries (with low-poly count) and apply two different 

texture maps to them: a normal map and a displacement map. There are two ways to achieve models that fit with normal or 

displacement maps: with the former (normal maps), the number of polygons in the reality-based model may be dramatically reduced 

by decimation algorithms and then normals may be calculated by rendering them to texture solutions (baking). With the latter, a 

LOD model is needed; its topology has to be quad-dominant for it to be converted to a good quality subdivision surface (with 

consistent tangency and curvature all over). The subdivision surface is constructed using methodologies for the construction of assets 

borrowed from character animation: these techniques have been recently implemented in many entertainment applications known as 

“retopology”. The normal map is used as usual, in order to shade the surface of the model in a realistic way. The displacement map is 

used to finish, in real-time, the flat faces of the object, by adding the geometric detail missing in the low-poly models. The accuracy 

of the resulting geometry is progressively refined based on the distance from the viewing point, so the result is like a continuous 

level of detail, the only difference being that there is no need to create different 3D models for one and the same object. All 

geometric detail is calculated in real-time according to the displacement map. This approach can be used in Unity, a real-time 3D 

engine originally designed for developing computer games. It provides a powerful rendering engine, fully integrated with a complete 

set of intuitive tools and rapid workflows that allow users to easily create interactive 3D contents. With the release of Unity 4.0, new 

rendering features have been added, including DirectX 11 support. Real-time tessellation is a technique that can be applied by using 

such technology. Since the displacement and the resulting geometry are calculated by the GPU, the time-based execution cost of this 

technique is very low. 

 

1. INTRODUCION 

This paper is focused on the use of real-time and 3D modelling 

applications for the visualization and dissemination of the 

cultural heritage. In particular, the pipeline described modelling 

and texturing procedures developed for the 

conversion/optimization of dense point clouds into low-poly 

texturized models that could be easily imported into game 

engines, while retaining the appearance of dense meshes from 

laser scanner surveys. 

For this test, we decided to work on mascarón, a quite sizeable 

statue (measuring approximately 4 by 3 meters) of a 

mythological creature, found on the third of March 2009 in a 

grid of tunnels dug by looters at the base of the acropolis of 

Chilonché’s archaeological site (Guatemalan Petén, Figure 1), 

by an archaeological mission led by architect Gaspar Muñoz-

Cosme of the Polytechnic University of Valencia and by the 

archaeologist Cristina Vidal-Lorenzo of the University of 

Valencia. Between 2010 and 2011, the research team accurately 

documented the archaeological finds through a traditional 

survey and a photographic campaign that produced 2D 

orthographic views. The location of the sculpture – only 

accessible through the grid of tunnels that surrounds it – and its 

complex morphology lends itself well to the use of 3D scanning 

techniques. So, in March 2012, the team, under the guidance of 

prof. Merlo who is experienced in digital surveys, set off on a 

campaign to use such technology to take the first experimental 

measurements (Figure 2). For an overall description of the 

organic shape, which a traditional 2D representation system 

could not easily provide (Figure 3), in May and June 2012 the 

team decided to develop a mesh model of the sculpture, to be 

used for static renderings and real-time applications. The 

processing stage was supervised by Prof. Alessandro Merlo, 

Ph.D. Filippo Fantini, an expert in 3D modelling, and Dr in 

computer science Carlos Sanchez Belenguer.  

To obtain high-resolution polygonal B-Reps from the initial 

point cloud, we followed a conventional pipeline (from Cyra 

Cyclone to Inus Rapidform). At the time of generating the 

mesh, we opted for the highest resolution provided by the 

Figure 1. Archeological site of Chilonché in the region of 

Guatemalan Petén 
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program instead of a preliminary mesh reduction, as we wanted 

to convert all geometrical detail into special bitmaps. Once the 

high-poly mesh had been obtained, we used a global remesh 

signal to correct for topological faults and create an isotropic 

mesh made of regular triangles.  

At the first stage of research, the team chose to convert this 

high-poly model into an optimized one, focussing on classical 

approaches based on mesh density reduction (decimation), and 

to work with Low-Poly Models + Normal Maps to achieve a 

realistic representation, conveniently processed to perform 

within Unity 3D. The end result of this study was shown during 

the 17th International Conference on Cultural Heritage and New 

Technologies (11.06.2012, Vienna). 

At the second stage, we decided to optimize the model using 

procedures borrowed from such entertainment applications as 

retopology and, with the support of architect Andrea Aliperta, 

other types of procedures: SubD + Displacement Maps. The 

release of Unity 4.0 actually added new rendering features that 

support real-time tessellation. In either case, our priority was to 

monitor all steps in the “filtering” process, in particular the 

geometrical error introduced in the modelling process by the 

transition from laser scanner to game engine that, if not kept 

under control, may “damage” the metrical reliability of the 

meshes, so that, for example, interactive measurements and 

sections could not be taken right on the 3D scene. 

 

2. PURPOSES 

The main problem with real-time 3D simulations is duality 

between efficiency and realism, the former due to polygonal 

optimization, the latter to the quality of detail in the model. 

Until now, two of the most common solutions to this problem 

were using normal maps and different levels of detail (LOD) in 

models. The first solution consists in creating simple geometries 

and applying a texture, the normal map, on them, showing the 

normal vector of the surface in a specific point. With this 

information, flat objects can be shaded in a very realistic way 

without lots of polygons. The main problem with this technique 

is that flat faces remain flat, so, when the line of vision is 

parallel to the surface of the object, results are poor. The second 

solution consists in creating several 3D models for one and the 

same object, at different levels of detail. This way, when the 

object is far from the viewing point, a low-resolution model is 

displayed and, as the object becomes closer, more detailed 

models replace the low resolution ones. The main problem with 

this technique is that several models of one object need to be 

created, and all the levels of detail have to be loaded into the 

GPU in order to display the object. Real-time tessellation is a 

new approach that powerfully combines the two previous 

solutions together. 

 

3. REVERSE-MODELLING AND MAPPING 

PROCEDURES 

This case-study involves a comparison of two 3D model 

optimization procedures, both based on the use of bitmap 

images (hence the acronym IBGP, Image Based Geometric 

Processing), which transfer encoded colour and geometric 

information from a 3D digital model (generally high resolution) 

to another (usually low resolution) through special textures. 

This procedure takes inspiration from game applications, whose 

features (including those of the optimised 3D models) are 

borrowed from entertainment software. 

This review covers different behaviours of normal maps and 

displacement maps, supported by a diffuse colour map applied 

to simplified versions of the same Hi-poly models. 

As a first step, the simplified models had to be developed; the 

first one was developed through the direct decimation of 

polygons in the reverse-modelling software (Inus Rapidform, 

“decimate” command) and its surface is a knitted isotropic 

triangular (number of polygons 163494, average length of edges 

19,41 mm); the second one was built instead through the so-

called "retopology" technique. This consists in tracing the Hi-

poly mesh of the model with a square mesh of lower density, 

known as "control mesh" (number of polygons 8016) or "quad-

dominant mesh". When drawing such mesh, the operator must 

constantly monitor the quadrangular polygon for regularity and 

the size of the edges so as not to build too sparse or too dense a 

mesh. In the former case, oversimplification would prevent any 

optimal geometric fitting on the background surface, resulting 

in a poor quality map. Small edges, however, force us to 

introduce a number of polygons that would make the entire 

procedure useless. It is also important that the mesh be built 

along the main directions on which the morphology of the 

object is based. 

Figure 2. The tunnel dug from looters at the base of the 

acropolis 

Figure 3. 2D orthographic view: horizontal section 
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It is essential to dwell on the difference between the numbers of 

polygons in the two models. In the triangular mesh, the number 

of polygons is locked, while the quad-dominant model, because 

of its squared shape, can support conversions into Catmull-

Clark-like subdivision surfaces; this makes it a variable-detail 

model, because the geometry of the mesh may be interactively 

increased by adjusting the level of subdivision (Figure 4). 

Once we have the low-poly models, in order to encode the 

geometrical information and the texture colour, we need to 

create an UV map for each. This step involves associating the 

positions of the points of the 3D digital model within a 

reference system (u, v), in order to find an objective correlation 

between points on the plane and in space, so that the UV map 

can act as a unique reference system for every texture map that 

may be developed.  

Importantly, the UV map must meet several important 

requirements. The most important one is that the polygons must 

not overlap, so as not to lose any correlation between the points 

in the model and those developed on the same plane. This 

requirement must be met when encoding both normal and 

displacement maps. 

Another requirement that the UV map must fulfil, if concerning 

a control mesh, is that the polygon size in the model and the 

polygon size in the UV map must be directly proportional. If a 

polygon mesh Low-poly space approximates a defined number 

of polygons in the Hi-poly mesh, its image in the UV space 

must also be able to contain a reasonable number of pixels to 

receive geometrical information mainly through the baking 

process.  

The baking process consists of an operation whereby the 

software stores information about the geometry and colour of 

the Hi-poly mesh, an RGB image or grey scale built on the UV 

reference system. 

The geometrical information may be encoded in a normal map 

or in a displacement map; despite containing the same type of 

data, they are differently perceived. 

The normal map is an RGB image and, using the tones 

generated by the three colour channels, it can enclose the trend 

of the Hi-poly surface normal. The colour of a pixel in the 

normal map is suggestive of the direction of a normal vector of 

the matching point, the surface of which has been baked. Once 

calculated and applied to the Low-poly mesh, the normal map 

simulates the behaviour of light reflections from the starting 

model and provides an image that is closer to the original non-

decimated one: in other words, by adjusting the shading of the 

low-detail model, the normal map deceptively looks again like 

the original Hi-poly model. 

The displacement map is, instead, a grey scale image, in which 

each shade of grey stands for a deviation of the background 

mesh from the optimized one. This is because, unlike the 

normal map, the displacement map, once applied to the model, 

displaces the points of the surface Low-poly based on the 

deviations calculated during the baking process. So, if you bake 

the surface of a displacement map, the UV map must also fulfil 

the requirement about continuity between adjacent polygons 

(Figure 5). 

There are some criticalities in designing a texture displacement: 

the "pipeline" for the Save format, the features of the surface to 

Figure 4. Different optimized mesh: (a) Triangular isotropic mesh. (b) Quad-dominant mesh. (c) Subdivision surface. 

Figure 5. (a) The u,v reference system. (b) Normal map. (c) Displacement map. 

 

(a) (b) (c) 

(a) (b) (c) 
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be encoded, and the features of the subdivision surface it 

resembles.  
Firstly, note that the software can produce and support a format 

with such a highly dynamic range as the OpenEXR. This format 

can be used to store information in 16 or 32 bits per pixel and 

provides over 255 shades of grey in an 8-bit image, for a more 

accurate rendering of the deviation of the points on the 

subdivision surface. 

In this process, pride of place is given to the measurement of the 

distance of displacement; at the time of baking, the range within 

which the deviation between the two surfaces is to be measured 

must be defined. Such range is found by comparing the 

deviation between the two surfaces through the "accuracy 

analyzer" (a specific tool built into the reverse-modelling 

software) and is reusable after baking (Figure 6). 

Essential to creating the colour texture is a proper photographic 

campaign to take photos that are perfectly focussed, with no 

dominant colour or shadow or line. 

It was decided that an adequate amount of homologous points 

should be located on each image and Hi-poly model for the next 

camera re-sectioning process; high-contrast targets were placed 

on frames with the help of photo-editing software, while in 

Rapidform the control points on the Hi-poly model could be 

selected and exported to an .IGES format. These points were 

converted to a  .DXF format, and the photos with the targets 

were imported into specific software (EOS Systems 

PhotoModeler), which could associate the homologous points 

and then locate the positions shown by the camera within the 

same reference model. 

By exporting the camera to a .FBX format, it could be reused 

(in Luxology Modo) as a projector of its image on the surface of 

the model, and the result of such projection could be baked onto 

the UV map. 

By repeating the same procedure for each frame until the model 

was fully covered and by blending together the images from 

each baking process, the diffuse colour texture was designed 

and eventually applied to the entire model by UV projection. 

This procedure was only used for the triangular mesh model; to 

get the same texture as the one encoded in the UV map of the 

quad-dominant model, we used the "bake from object to render 

output" control, through which we could project the colour from 

the textured model onto the map of the UV texturized one. By 

enabling a "spread coefficient output" between the render 

settings, colour only could be baked, with no interference with 

the lighting of the model (Table 7, Figure 8). 

 

Figure 6. Deviation between Hi-poly mesh and Subdivisio 

    surface valued using Accuracy Analyzer. 

Figure 8. Comparison between optimized models. (a) Subdivision surface from quad-dominant mesh with displacement map and 

diffuse color map. (b) Triangular isotropic mesh with normal map and diffuse color map. 

 

Table 7. 

(a) (b) 
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4. SHADER MODEL 5.0 

Dealing with high-density 3D models in real-time visualizations 

has been traditionally complicated: the transfer of highly refined 

meshes between the CPU (Central Processing Unit) and the 

GPU (Graphics Processing Unit) has become one of the main 

bottlenecks of the rendering algorithm. Bandwidth limitations 

between both units, and memory restrictions impose very strict 

constraints to the real-time visualization techniques. 

Prior to Shader Model 4.0, there was no possibility of doing 

per-primitive manipulation on the GPU, which means that 

models loaded in graphics memory could not be refined to more 

detailed ones.  

In fact, only the Vertex Shader Stage, which is the first stage in 

the graphics pipeline, had access to vertex information, and the 

possibility to alter the original shape of the model. It performs 

per-vertex operations such as transformations, skinning, 

morphing, and per-vertex lighting. Its main disadvantage is that 

it always operates on a single input vertex and produces a single 

output vertex, so no refining operations are allowed. 

The addition of a new pipeline stage in Shader Model 4.0, 

(Figure 9) called the Geometry Shader, unlocked new 

possibilities for programmers in creating procedural meshes on-

the-fly. However, the limitation of primitives to refine geometry 

and its computational cost did not completely solve the problem 

of high-density 3D models visualization. 

 

 
With the release of Shader Model 5.0 (Figure 10), three new 

stages have been added to the graphics pipeline: the Hull 

Shader, the Tessellator and the Domain Shader. 

This new pipeline is able to create up to 8192 triangles for each 

triangle that receives, being the amount a parameter set by the 

programmer. Each one of these new triangles can be 

transformed programmatically on the GPU in a shader stage that 

grants access, not only to the input primitive vertices data, but 

also to the GPU generated triangle’s vertices coordinates. 

This way, Shader Model 5.0 becomes an extremely efficient 

architecture tailored to create highly complex meshes on-the-fly 

and simple automatic Level of Detail algorithms. It provides a 

very high efficiency, since it trades CPU-GPU bandwidth for 

GPU arithmetic operations, which are rarely limiting during 

rendering. 

The first stage of the new ones in the graphics pipeline is the 

Hull Shader. This one is a fully programmable stage that 

receives the output from the Vertex Shader. It is divided in two 

parts: the Constant Hull Shader and the Main Hull Shader. Both 

parts have access to the full primitive, and their purpose is to do 

any per-primitive calculations. The Constant Hull Shader is 

invoked once per triangle, and its goal is to establish how much 

the Tessellator has to subdivide it (Tessellation Factor). The 

Main Hull Shader is invoked once per vertex, and its purpose is 

to calculate any basis change on the primitive (control points). 

This way, the Hull Shader outputs the Tessellation Factor to the 

Tessellator, and the control points to the Domain Shader. 

The Tesselator is the stage that deals with the triangle 

subdivision. It is not programmable and takes as input data the 

Tesellation Factor calculated in the Constant Hull Shader stage 

for each triangle in the low-polygon mesh. The result of this 

stage is a new set of triangles distributed in a regular grid, with 

texture coordinates UV varying from 0 to 1. These triangles are 

outputted to the Domain Shader with texture coordinates. 

Tessellation can be performed in two ways: integer and 

fractional. The first one consists in a simple symmetric 

subdivision, whilst the second one subdivides on the edges and 

morphs the vertices based on the decimal part of the 

Tessellation Factor. This way, when using a LOD (Level of 

Detail) scheme, mesh refining is smooth. 

Finally, the Domain Shader is a fully programmable stage that 

has access to the primitive information, and gets invoked once 

per vertex generated in the Tessellator. It receives, as input data, 

the control points generated in the Main Hull Shader and the 

regular grid generated in the Tessellator. Its role in the graphics 

pipeline consists in calculating the position of the new 

generated vertices, converting their parametric UV coordinates 

into world space XYZ coordinates. Resulting triangles are 

passed to the Pixel Shader or if needed to the Geometry Shader.  

From here, the rendering pipeline continues as normal: the 

Rasterizer Stage converts the vector information (triangles or 

other primitives) into a raster image (a bitmap) and, the Pixel 

Shader Stage, invoked once per pixel by the Rasterizer Stage, 

deals with the calculation of the color values for each pixel, 

enabling rich shading techniques such as per-pixel lighting and 

post-processing.  

Figure 9. The graphics pipeline in Shader Model 4.0 

Figure 10. The graphics pipeline in Shader Model 5.0 
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5. ON-LINE REALTIME VISUALIZATION OF HIGH-

DENSITY 3D MODELS WITH UNITY 

Since the goal of this project is to disseminate tangible cultural 

heritage through real-time 3D simulations, we chose Unity3D as 

the rendering engine to do so. The main reason is because it 

allows to generate simulations for almost every device with 

enough graphics performance (PC and Mac computers, Android 

and iOS devices…) and, mainly, because it allows to display the 

simulations embedded in a web page, what we consider the best 

way to reach the maximum audience. 

Since on-line visualization happens in a networked 

environment, the architecture of the application is based on a 

client-server paradigm with a Software Delivery strategy. There 

are four main components that play specific roles, and which 

are illustrated in Figure 10: 

 Application server: stores 3D data, information and the 

application code, and transfers them to the clients. Since it 

serves to several clients, it does not provide complex 

computations for individuals. Instead of this, the server 

sends the application code and the data to the client, in 

order to generate the real-time simulation. Therefore, the 

computational power is provided by the end-user. 

 Player server: stores the binary files that perform the web 

player installation on client computers. Since this web-

application requires direct access to graphic hardware in 

order to perform a fast and complex simulation, clients 

have to install a player in their browsers that loads the code 

stored in the application server, and performs the 

simulation. Differentiating the application code and the 

player allows that, with only one installation, clients can 

load lots of different applications.  

 Web client: in charge of the real-time rendering, 

interaction with the user, and all data requests to the server. 

First application run requires a player installation through 

the player server. 

 Network: responsible for data transfers between client and 

server. Because of time delays, interactions between the 

user and the 3D environment have to be performed 

primarily on the client side, keeping this client-server 

communication only for data requests. 

 

With the release of Unity 4.0, new rendering features have been 

added, including DirectX 11 and Shader Model 5.0 support. 

This makes Unity suitable for an advanced visualization like the 

one we propose. 

 
 

5.1 Normal Mapping Technique 

The first attempt to reduce the amount of polygons in the 

displayed model consists in using a low-poly mesh with a 

normal map texture to increase detail. 

Normal mapping technique is very common in real-time 3D 

simulations, and it is used for faking the lighting on the surface 

of the model. With normal mapping, details can be added 

without using more polygons. A common use of this technique 

is to greatly enhance the appearance and details of a low 

polygon model. 

Normal maps are commonly stored as regular RGB images 

where the RGB components corresponds to the X, Y, and Z 

coordinates, respectively, of the surface normal. 

Since all normal mapping calculations happen in the Pixel 

Shader Stage, in the graphics pipeline, this technique does not 

have the capability to refine the model: the amount of vertices 

of the resulting model is always constant. 

Results using this technique (Figure 12) are much better than 

results achieved with a simple lightning but the final 3D model 

is still to simple, and presents an important lack of geometric 

details. 

 

5.2 Tessellation Technique 

To prevent this from happening, we have introduced in the 

visualization a Tessellation Shader that, using the capabilities of 

Shader Model 5.0, takes advantage of the new rendering stages 

to, progressively, refine the model as the camera becomes closer 

to specific parts of the model. 

Figure 11. On-line application architecture. 

Figure 12: Comparison between results achieved with simple lightning (left) and normal mapping (right). Notice how shading of 

surfaces improves by using normal maps, but how the geometric detail of the model remains constant. 

 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5/W1, 2013
3D-ARCH 2013 - 3D Virtual Reconstruction and Visualization of Complex Architectures, 25 – 26 February 2013, Trento, Italy

186



 

The input data for the shader consists in a low-poly 3D model, a 

diffuse texture that stores the color information of the surface, 

and two special textures: a normal map and a displacement map.  

As explained before, these two textures have been calculated by 

projecting the original hi-poly model over the low-poly one, 

according to the normals of its polygons, and results are stored 

according to the UV coordinates of the low-poly model. 

 

5.2.1 Hull Shader Stage: the proposed shader uses the 

Constant Hull Shader to calculate, for each triangle, how many 

times it has to be subdivided. This test can be based in two 

different criteria: the distance to the triangle, or the length (in 

screen space) of the edges of the triangle. The first one works 

good when all triangles of the model have a similar size, which 

is not the case. The second one, the one we are using, specifies 

the desired length, in screen space, of all edges in the final 

model. If an edge’s length is greater than the desired length, it 

gets automatically subdivided. 

This way, if the object is far from the viewpoint, original edges 

of the low-poly model will satisfy the subdivision criteria and, 

in consequence, they will not be subdivided, keeping the 

polygon count of the render very low. 

As the viewpoint approaches the model, closer triangles will 

eventually fail the test, and thus, they will be refined into 

smaller ones.  

Since all the information needed to calculate the position of the 

new vertices generated by the Tessellator Stage is included in 

the displacement map, there is no need to use the Main Hull 

Shader to calculate control points for the Domain Shader Stage. 

This stage is normally executed for alternative uses of the 

tessellation technique, as parametric surfaces rendering or 

smoothing algorithms. 

 

5.2.2 Tessellation Stage: as said before, Tessellation Stage 

is not programmable, and it takes the original triangles with the 

Tessellation Factor calculated in the Fixed Hull Shader to 

perform the regular subdivision of each triangle. The only thing 

to specify in this stage is the way the Tessellation Factor has to 

be interpreted: as integer or fractional.  

In order to prevent abrupt refinements of the model, tessellation 

is executed in fractional mode, which ensures that interpolation 

between different refinements is performed in a smooth way. 

 

5.2.3 Domain Shader Stage: once the control flow reaches 

the Domain Shader Stage, all original triangles have already 

been subdivided, and it is necessary to establish the position, in 

world space, of each new vertex.  

To do so, since Shader Model 5.0 grants access to the primitive 

information in the Domain Shader, we calculate the 

corresponding pixel of the displacement map for each vertex.  

The gray level of the pixel indicates how much the vertex has to 

be displaced, towards the normal of the face, so it fits the 

original high-poly model. By applying this transformation, we 

ensure that the deviation at this specific position of the refined 

model respect the original one is zero. 

 

5.2.4 Pixel Shader Stage: since all geometric manipulation 

has been already performed, there is no need to execute the 

Geometry Shader Stage. Instead, the control flow of the 

rendering pipeline reaches its last stage: the Pixel Shader Stage. 

Here, the diffuse color of each pixel of the model is calculated 

according to the diffuse map, and the lightning is applied using 

the normal map texture.  

It is important to remark that, for proper shading, the normal 

map texture becomes necessary: all new triangles generated by 

the tessellator are placed in their correct position, but they do 

not have a normal vector. If a normal map is missing, the final 

model geometry will be correct, but it will not shade properly. 

 

5.3 Comparison between both techniques 

Given that the tessellation shader includes in its last rendering 

stage the capabilities of the normal mapping shader, it can be 

said that it is more complete: the resulting shading of the model 

remains the same with both techniques but, with the tessellation 

shader, geometry gets progressively refined based on the 

viewpoint distance. This refinement improves, not only the 

precision of the model, but also visualization aspects that may 

affect to the shadow calculations, visibility culling…(Figure 13) 

This way, with the extra load of one displacement map, the 

same low-poly model used for normal mapping can exactly fit 

the high-poly one, and there is no need to load heavy meshes in 

the GPU. Also, since the refinement criterion is parametric, an 

infinite number of automatic LODs are displayed without any 

extra memory costs or modeling tasks. 

 
6. CONCLUSIONS 

In this paper, we have faced the challenge of cultural heritage 

dissemination through real-time 3D simulations. Since these 

simulations are intended to provide accurate-scientific 

representations, but also to be light enough for a standard 

computer to execute them, we have created a simulation that 

uses real-time tessellation techniques from Shader Model 5.0. 

Figure 13. Comparison between the geometry of the original low-poly mesh (left) and the results of applying it the proposed 

tessellation shader (right) 
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In order to perform real-time tessellation, the way 3D models 

and textures are created is a key factor. We have presented 

procedures in reverse modelling and mapping that allow 

generating low-polygon models from the original high-density 

mesh, and calculating texture maps that store all the data that 

has been lost during the simplification process: the normal map 

for the surface orientation, and the displacement map for the 

deviation between the hi-poly mesh and the low-poly one. 

We have introduced the key aspects of Shader Model 5.0, that 

enabled us to implement a real-time tessellation shader and, 

with the model and textures created using the procedures 

explained in section 3, we have compared the results obtained 

with a traditional normal mapping shader and the proposed 

tessellation shader. 

Given the results presented in section 5, tessellation shaders 

have proven to be more complete than normal mapping shaders. 

The main reason for this is that tessellation shaders can include 

in their Pixel Shader Stage the same code as normal mapping 

shaders but, only tessellation shaders can refine the low-poly 

model into more detailed ones. 

This way, by parametrically refining the triangles of the model 

based on their distance to the viewpoint, we have achieved an 

extremely precise visualization, with a very low computing cost. 
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