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ABSTRACT

Context. Coronal loops act as resonant cavities for low-frequency fluctuations that are transmitted from the deeper layers of the solar
atmosphere. These fluctuations are amplified in the corona and lead to the development of turbulence that in turn is able to dissipate
the accumulated energy, thus heating the corona. However, trapping is not perfect, because some energy leaks down to the chromo-
sphere on a long timescale, limiting the turbulent heating.
Aims. We consider the combined effects of turbulence and energy leakage from the corona to the photosphere in determining the
turbulent energy level and associated heating rate in models of coronal loops, which include the chromosphere and transition region.
Methods. We use a piece-wise constant model for the Alfvén speed in loops and a reduced MHD-shell model to describe the in-
terplay between turbulent dynamics in the direction perpendicular to the mean field and propagation along the field. Turbulence is
sustained by incoming fluctuations that are equivalent, in the line-tied case, to forcing by the photospheric shear flows. While varying
the turbulence strength, we systematically compare the average coronal energy level and dissipation in three models with increasing
complexity: the classical closed model, the open corona, and the open corona including chromosphere (or three-layer model), with
the last two models allowing energy leakage.
Results. We find that (i) leakage always plays a role. Even for strong turbulence, the dissipation time never becomes much lower than
the leakage time, at least in the three-layer model; therefore, both the energy and the dissipation levels are systematically lower than
in the line-tied model; (ii) in all models, the energy level is close to the resonant prediction, i.e., assuming an effective turbulent cor-
relation time longer than the Alfvén coronal crossing time; (iii) the heating rate is close to the value given by the ratio of photospheric
energy divided by the Alfvén crossing time; (iv) the coronal spectral range is divided in two: an inertial range with 5/3 spectral slope,
and a large-scale peak where nonlinear couplings are inhibited by trapped resonant modes; (v) in the realistic three-layer model, the
two-component spectrum leads to a global decrease in damping equal to Kolmogorov damping reduced by a factor urms/Vc

a where Vc
a

is the coronal Alfvén speed.

Key words. methods: numerical – Sun: corona – magnetohydrodynamics (MHD) – turbulence – Sun: transition region – waves

1. Introduction

Solving the coronal heating problem involves understanding
how fast magnetic energy can be accumulated in the corona and
how fast this energy is dissipated. We investigate this problem
by considering a model loop in which kinetic and magnetic en-
ergies are injected into the corona in the form of Alfvén waves
generated by photospheric motions. A large body of work has
been devoted to this problem (Milano et al. 1997; Dmitruk et al.
2003; Rappazzo et al. 2007, 2008; Nigro et al. 2004, 2005, 2008;
Buchlin & Velli 2007). We consider here a previously neglected
effect that plays a large role in regulating the turbulent energy
balance in the corona, namely the leakage of coronal energy back
down to the photosphere.

A solar loop can be described as a bundle of magnetic field
lines that expand into the corona but are rooted in the denser
photosphere at two (distant) points, so that their length is typi-
cally much greater than the transverse scale. The magnetic field
is therefore mostly along the direction of the loop, and provided
the transverse magnetic field is not too strong, the curvature of
the loop may be neglected. In addition, if the ratio of the plasma

to magnetic field pressures is low, the motions are predominantly
incompressible, so the transverse structure in density may be ne-
glected compared to the gravitational stratification, while the ex-
pansion of the field from the denser layers of the photosphere
and chromosphere into the corona may be taken into account
via gradients along the field of the Alfvén speed. The resulting,
simplified coronal loop retains the basic ingredients that lead
to heating: turbulent coupling and propagation through a strat-
ified atmosphere where stratification appears as an increase in
the Alfvén speed from photosphere to corona.

The stratification is characterized by the ratio of mean
Alfvén speeds in the photosphere (V0

a ) and in the corona (Vc
a ),

which is a small parameter:

ε = V0
a /V

c
a � 1. (1)

The part of the wave spectrum entering the corona that we con-
sider here is the low-frequency part, for which the Alfvén speed
contrast is seen by waves of frequency ω as a sharp transition.
This occurs if

ω <∼ max(|∇Va|) ≈ (Vc
a − V0

a )/H ≈ 5−10 Hz (2)
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for Vc
a ≈ 2000 km s−1 and a transition region thickness of about

H = 200 km. For these low frequencies, the transition region
(T.R.) acts as a transmitting and reflecting barrier, with the im-
portant property that the transmission is not symmetric, so that
a coronal loop acts as a cavity that resonates at specific frequen-
cies, based on the Alfvén crossing time tc

a = Lc/Vc
a (Lc is the

length of the coronal part of loop):

ω = nπVc
a/Lc = nπ/tc

a (3)

with n = 0, 1... (Ionson 1982; Hollweg 1984).
The cavity is perfectly insulated within the limit of infinite

Alfvén speed contrast, i.e. ε = 0, which corresponds to the so-
called line-tied limit. In this limit, the corona exerts no feedback
on the solar surface. The zero-frequency resonance is clearly
distinct from the finite frequency resonances; in the former, the
coronal magnetic energy grows without bounds, while the ki-
netic energy remains finite (Parker 1972; Rappazzo et al. 2007).
In the latter case, both magnetic and kinetic coronal energies
grow at equipartition.

In reality, the trapped energy is limited, because the cavity
loses energy by two different mechanisms: damping (turbulent or
not), and leakage owing to the finite Alfvén speed contrast. The
leakage time is given by (Hollweg 1984; Ofman 2002; Grappin
et al. 2008):

tL = Lc/V
0
a . (4)

The leakage time is much greater than the Alfvén crossing time,
since tc

a = εtL
1. The dissipation rate of the loop will thus depend

on (i) the energy input into the corona, as well as its frequency
distribution (resonant or not), (ii) the part of the energy input
that goes into heat and the part that returns to the solar surface
(leakage).

In the previous works starting with Hollweg (1984), it has al-
ways been assumed that the leakage time was long compared to
the (turbulent) dissipation time, so they neglected leakage (line-
tied limit). Because neglecting leakage implies neglecting the
back reaction of the corona on the deeper layers, in the line-tied
limit the velocity can be imposed at the coronal base. This is
justified if the leakage time is longer than the coronal dissipa-
tion time. Estimating the latter to be given by the photospheric
turnover time t0

NL = l⊥/(2πU0), we have for the ratio of the two
timescales:

χL = tL/t
0
NL � (L/l⊥)2π(U0/V

0
a ) � 2π. (5)

Since the coronal energy per unit mass is expected to reach
higher values than at the surface, this largely justifies neglect-
ing leakage. However, identifying the dissipation time with the
turnover time might be erroneous, because turbulence, at least in
some simulations (e.g., Nigro et al. 2008), shows a high degree
of intermittency, so that the dissipation time is orders of magni-
tude longer than such simple estimates.

This motivates us to relax the line-tied hypothesis, using
models of turbulent loops that include leakage. The problem then
becomes more complex, sice the velocity boundary conditions
are no longer fixed, because the velocity is the sum of the in-
coming coronal base field and the outcoming coronal signal. We
consider two versions of the problem that includes leakage. In
the first version, which is called the one-layer model, we simply

1 As seen in Sect. 2.3.3, Eq. (25), at every reflection a fraction ε of the
coronal energy leaks from the transition region down to the chromo-
sphere, so one needs 1/ε reflections to evacuate the coronal energy, i.e.
a timescale tc

a/ε.

Fig. 1. Sketch of the coronal heating process. Above: the general prob-
lem of photospheric injection, transmission, turbulent dissipation, and
leakage back to the photosphere. Red thick arrows at the left foot point
represent the surface shear forcing. Below: the three numerical models
considered in this paper: a) closed model (no leakage) with imposed
velocity at the coronal base, b) semi-transparent corona with imposed
wave input at the coronal base, c) semi-transparent corona including
chromospheric turbulence with imposed wave input at the chromo-
spheric base. Thin arrows indicate the wave reflection and transmission,
white thick arrows represent the leakage out of the numerical domain.

change the boundary conditions at the coronal base, taking leak-
age into account. The incoming spectrum partly depends on the
(given) signal assumed given by the chromospheric layers below
and partly on the signal propagating downward from the corona
and largely (but not fully) reflected. In the second version, which
is called the three-layer model, the domain is enlarged to include
two chromospheric layers. In that case, the signal propagating
upward from the coronal base is still more uncontrolled than in
the previous case, beacause the chromospheric turbulence that
develops and determines the state of the coronal base is not di-
rectly predictable from the photospheric input. Figure 1 summa-
rizes the models: the classical closed model, and the two versions
including leakage.

To describe the turbulence dynamics along the loop, we use
the shell model for reduced MHD (Nigro et al. 2005; Buchlin
& Velli 2007). Shell models of turbulence share with full tur-
bulence power-law energy spectra, as well as chaotic (intermit-
tency) properties that are very close to direct numerical sim-
ulations of primitive MHD equations (Gloaguen et al. 1985;
Biskamp 1994). The system is forced by introducing DC fluctu-
ations, i.e., a spectrum of fluctuations at different perpendicular
scales that is constant in time.

We show that the finite leakage time leads to significant dif-
ferences with previous results obtained using line-tied boundary
conditions. The plan is the following. The next section deals with
basic physics, model equations, and parameters. Section three
deals with simple phenomenology. Results are given in section
four and section five contains the discussion.

2. Basic physics, model equations, and parameters

2.1. Three-layer atmosphere: linear reflection/transmission
laws

We begin by describing our model atmosphere and the prop-
erties of linear Alfvén wave propagation within such an at-
mosphere. The atmosphere is considered to be stratified in the
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Fig. 2. The three-layer model: sketch of the transmission and reflection
properties of transverse fluctuations at the coronal bases of a magnetic
loop with piece-wise constant Alfvén speed, in the particular case con-
sidered here (no input from right chromosphere).

vertical direction, with three successive layers representing a
left photosphere/chromosphere, the corona, and a right photo-
sphere/chromosphere. The atmosphere is threaded by a vertical
uniform field B0 along which Alfvén waves propagate. In each
of these three layers, the Alfvén speed is constant, so that a pro-
gressive Alfvén wave propagates at constant speed without de-
formation. When a wave encounters a density jump interface, the
velocity and magnetic field fluctuations, which are parallel to the
interface, are continuous. The proper Alfvén modes propagating
in opposite directions along the loop are defined by the Elsässer
variables:

z± = u ∓ b/
√
ρ (6)

where ρ is the density and u, b are the velocity and magnetic
field fluctuations, which are in planes parallel to the photo-
sphere/corona transition region. Assuming a positive mean field
B0, the quantity z+ will propagate to the right and the quantity
z− to the left. It is immediately seen from this definition that the
density jump at the transition region will determine a wave am-
plitude jump of the order of 1/

√
ρ = 1/ε. The derivation of the

jump relations may be found in Hollweg (1984). Continuity of
the velocity and magnetic field fluctuations at the two interfaces
imply the following relations between wave amplitudes respec-
tively at the left and right boundaries:

z+1 + z−1 = z+L + z−L , z+1 − z−1 = (z+L − z−L ) ε

z+3 + z−3 = z+R + z−R , z+3 − z−3 = (z+R − z−R) ε, (7)

we use 1, L to denote the amplitudes at the position of the left
T.R. (resp. 1 on the photospheric side, L on the coronal side),
and 3,R to denote the amplitudes at the position of right T.R.
(resp. R on the coronal side, 3 on the photospheric side); see
Fig. 2:

z±1 = z±(x = 0−) (8)

z±L = z±(x = 0+) (9)

z±R = z±(x = L−c ) (10)

z±3 = z±(x = L+c ) (11)

with the exponents + or − in 0 and Lc indicating whether we are
on the right or the left side of the two Ti.R.s, located at x = 0
and x = Lc, respectively.

To obtain the jump conditions to be effectively implemented
in the three-layer model, we rewrite Eqs. (7) as follows. We de-
note by input what goes into the corona and output what goes

out. The coronal inputs z+L and z−R are expressed in terms of the
chromospheric inputs (z+1 and z−3 ) and the coronal outputs (z−L
and z+R). Similarly the reflected chromospheric signals z−1 and z+3
are expressed in terms of the chromospheric inputs and of the
coronal outputs:

z+L = (1 + a)z+1 − az−L
z−R = (1 + a)z−3 − az+R
z−1 = (1 − a)z−L + az+1

z+3 = (1 − a)z+R + az−3 . (12)

The parameter a

a = (1 − ε)/(1 + ε) (13)

is the reflection coefficient. It is instructive to consider the limit
ε = 0. Then the coronal reflection coefficient a becomes unity. In
this case, the velocity at the left coronal boundary is exactly z+1 ;
that is, specifying the chromospheric input is the same as speci-
fying the velocity (and the same at the right coronal boundary).
This is the well-known line-tied limit. In this limit, the magnetic
field fluctuation is not specified and depends on the coronal evo-
lution, since one has bL/

√
ρ = −z+1 + z−L . Returning to the general

case with a nonzero Alfvén speed ratio ε, we see that specifying
the chromospheric input does not directly determine the velocity
at the T.R. either. We choose here to consider a nonzero input
only from the left foot point (boundary), in order to follow the
propagation of the incident signal better.

In the early work by Hollweg (1984), the three-layer model
was studied analytically, with a damping term representing the
effects of turbulence. As said, turbulent dissipation is highly in-
termittent thus requiring a description that goes beyond a simple
damping term. We now define the nonlinear part of the model,
i.e., the turbulence model.

The jump conditions just described are not specific of a linear
framework. In the general case where the waves have a perpen-
dicular structure and interact nonlinearly, the jump conditions
hold as well. In the final model to be explained now, where
the wave amplitudes depend on the coordinate along the loop
and on an index n representing the perpendicular wavenumber
kn, the jump conditions are valid for each Fourier coefficient
z±n (x) = z±(x, kn) at x = 0 and x = Lc, if 0 and Lc are the two
coordinates of the transition region. In the following, the integer
subscripts 1 and 3 will be used to label the layers as in Fig. 2,
while the Fourier modes will be labeled with the generic index n.

2.2. Nonlinear model: shell model for reduced MHD

In addition to the linear propagation of perturbations parallel to
the loop mean field, we consider the waves to have a perpendic-
ular structure, so that the wave-vectors also have nonvanishing
components in planes perpendicular to the mean magnetic field.
In this transverse direction nonlinear interactions between differ-
ent perpendicular modes occur, while the dynamics of the paral-
lel propagation (for a given perpendicular mode) remains purely
linear. This model, known as reduced MHD or RMHD (Strauss
1976), is believed to be well adapted to situations with a large
uniform axial field B0 compared to perturbation amplitudes and
strong anisotropy in the sense that the scales perpendicular to the
field are shorter than the length of the coronal loop (Rappazzo
et al. 2007):

∂z±⊥
∂t
∓ B0√
ρ

∂z±⊥
∂x
= −(z∓⊥ · ∇z±⊥) − 1

ρ
∇⊥(pT) + ν∇2

⊥ z±⊥, (14)
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where we have taken identical kinematic viscosity and resistiv-
ity, the density is uniform in the direction orthogonal to the field
and the total pressure gradient guarantees the incompressibility
of the z± fields via the Poisson equation

∇2
⊥(pT) = −∇ · (z∓⊥ · ∇z±⊥). (15)

A second approximation consists in transforming the perpendic-
ular nonlinear couplings by replacing them, at each point on the
x coordinate mesh along the mean field direction, by a dynamical
system defined in Fourier space, which allows reaching a very
high Reynolds number compared to genuine reduced MHD. This
is known as the shell model for RMHD or hybrid shell model
(Nigro et al. 2005; Buchlin & Velli 2007). The Reynolds number
gain can be quantified as follows. Assume K is the perpendicular
resolution (ratio from largest to smallest scales). Assume also the
parallel resolution scales as K2/3. When passing from the RMHD
to shell RMHD, the number of degrees of freedom changes from
K2+2/3 to K2/3Log2(K) � K2/3 (see below). The CPU time re-
quired to describe the same large-scale evolution is proportional
to this number multiplied by K. Conversely, the reachable reso-
lution goes as the CPU time T as T 3/11 in the RMHD case and
as T 3/5 in the shell RMHD case, thus passing from a resolution
K0 to a resolution K11/5

0 . The same is true for the Reynolds num-
ber (which goes as a power of the resolution K), hence typically
passing from 103 to 106.

Coronal heating driven by photospheric motions has been
studied using both RMHD and RMHD shell models in a one-
layer atmosphere (corona) version, with uniform Alfvén speed
and closed (line-tied) boundaries, i.e. imposing the photospheric
perpendicular velocity at loop foot points. Here we use an
RMHD-shell model, but in the three-layer context, that is, in-
cluding the linear jump laws defined previously at the transition
region for each of the perpendicular wave numbers.

The shell model is characterized by the number N +1 of per-
pendicular wave modes, each characterized by a perpendicular
wave number, with amplitudes z±n (the direction of the wave vec-
tor is not specified in the model), with the following discretiza-
tion:

kn = 2nk0 n = 0...N. (16)

Starting from the RMHD equations, one can write the follow-
ing simplified equations (see Buchlin & Velli 2007, for the full
equations with inhomogeneous density):

∂tz
+
n + Va∂xz

+
n = T+n − νk2

nz+n
∂tz
−
n − Va∂xz

−
n = T−n − νk2

nz−n (17)

where Va is either V0
a (chromosphere) or Vc

a (corona), ν is the
kinematic viscosity (equal to the magnetic diffusivity), and the
T±n are the nonlinear terms that are a sum of terms of the form
T±n = Akmz∓pz±q with m, p, and q close to n (see Biskamp 1994;
Giuliani & Carbone 1998, for the full expression of T±n ).

From the basic Eqs. (17), one can deduce the (exact) energy
budget equation of a flux tube of length L, section πl2⊥0, and den-
sity ρ (assumed constant) as

dE/dt = F(t) − D(t). (18)

Here E is the total energy, F the energy flux, and D the energy
dissipation rate defined as

E = M
1

2L

∫ L

0
dx (u2 + b2/ρ)

= M
1

4L

∫ L

0
dx

[
(z+)2 + (z−)2

]
(19)

F = MVa
1

4L

[
(z+0 )2 − (z+L)2 + (z−L)2 − (z−0 )2

]
(20)

D = M
1

2L

∫ L

0
dx

N∑
n=0

νk2
n(z+2

n + z−2
n ). (21)

Here, M = πl2⊥0Lρ is the mass of the loop system, u2 and b2/ρ,
(z+)2, (z−)2 are the sum of the energies per unit mass in all the
modes n = 0...N. When applying Eq. (18) to the corona, we take
ρc = ε

2ρ0, Va = Vc
a , and the subscripts (integration interval) 0, L

represent the left and right coronal boundaries, respectively (not
including the chromosphere when it is present). The parameter
l⊥0 stands for the largest scale available in the simulation, which
in all runs is always l⊥0 = 4l⊥. In the following, we use the nota-
tions E,D, F as defined in Eqs. (19)–(21) but always normalized
by the total mass M of the loop system, so obtaining average
energies and dissipation rates per unit mass.

Several remarks are in order. First, the nonlinear terms do
not appear in the energy budget Eq. (18), because the total en-
ergy is conserved by nonlinear coupling, as much in the reduced
MHD equations as in the presently used shell model version of
the equations. Second, the energy accumulated or lost by the
corona is not directly controlled. Indeed, the energy flux entering
the corona (Eq. (20), see also the more explicit Eq. (25) below)
is determined by the difference between the incoming and out-
coming energies at the two transition regions; as is made clear in
the next section, the boundary conditions fix the incoming am-
plitudes, possibly in terms of the outcoming amplitudes, but not
the energies.

2.3. Boundary and jump conditions for three- and one-layer
model

As a rule, boundary conditions are defined by imposing the value
of z+n at x = 0 (the rightward propagating wave amplitude) and
the value of z−n at the boundary x = L (the leftward wave ampli-
tude).

2.3.1. Closed model (line-tied)

The loop only contains the corona. The usual closed or line-tied
model has

z+n (x = 0, t) = 2U0
n(t) − z−n (x = 0, t)

z−n (x = L, t) = 2UL
n (t) − z+n (x = L, t) (22)

for boundary conditions. This equation results from Eqs. (12)
with a = 1, z+L ≡ z+n (x = 0, t), and z−R ≡ z−n (x = L, t). The z+L
(z−R) signal in the corona is obtained by prescribing the velocity
amplitude U0

n (UL
n ) of each mode n at the boundary x = 0 (x =

L). One checks from Eq. (22) that, when U0,L
n = 0, then the

energy flux (Eq. (20)) injected in the domain indeed becomes
zero.

2.3.2. One-layer model

In this first model including leakage, the chromosphere is ex-
cluded from the domain, the domain boundaries coinciding with
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the T.R., as in the closed model. The boundary conditions now
take the wave jump conditions (a < 1 in Eqs. (12)) explicitly
into account:

z+n (x = 0, t) = (1 + a)Z+n (t) − az−n (x = 0, t)

z−n (x = L, t) = (1 + a)Z−n (t) − az+n (x = L, t). (23)

The quantities Z+n and Z−n now denote the prescribed wave am-
plitudes entering from the chromospheric side of the transition
region. With reference to Fig. 2 we have Z+n ≡ z+1 and Z−n ≡ z−3 .

2.3.3. Three-layer model

In this second model allowing leakage, the chromosphere is re-
ally included within the domain; in that case, the boundary con-
ditions (at the photosphere) are chosen to be purely open (a = 0
in Eqs. (12) or equivalently in Eq. (23)):

z+n (x = 0, t) = Z+n (t)

z−n (x = L, t) = Z−n (t). (24)

The boundaries are open in the sense that incoming waves are
defined independently of outgoing waves, which in turn generate
no incoming wave, so that they escape freely from the domain:
perturbations coming from the loop reach the boundary and dis-
appear below the boundary without reflection. Wave reflections
and transmissions continuously occur within the domain at the
location of the transition regions, where we apply the jump con-
ditions (Eqs. (12)), for each perpendicular mode n.

The three-layer model and the one-layer model with partially
reflecting boundaries are parametrized by the same number ε,
the photospheric/coronal Alfvén speed ratio. The two models
thus both include the transmission and reflection of waves by the
transition region, but have an important difference. In the one-
layer model, the chromospheric input is specified, as the T.R.
coincides with the boundary of the domain. Instead, in the three-
layer model, the chromospheric input (z+1 , z−3 in Fig. 2) is not
prescribed, since the (prescribed) photospheric input has been
modified by turbulence during its propagation through the chro-
mosphere. Both models have specific advantages: the three-layer
model has more internal degrees of freedom, as it shows two dis-
tinct (but coupled) turbulent layers, one in the chromosphere, the
other one in the corona. On the other hand, the one-layer model
is more directly comparable to the closed line-tied model: the
domain is the same (the corona), only the boundary conditions
change. We study both models, with some emphasis on the three-
layer model.

In the simulations we present, forcing is applied by in-
jecting upward propagating waves only at the left loop foot
point; more precisely, the leftward propagating amplitude at
the right photospheric foot point Z−n (t) will be maintained zero
in Eqs. (23), (24). In the particular case of the closed model
(Eq. (22)), this means that the velocity at the right foot point
UL

n (t) was kept zero. In this case, it interesting to write down the
expression for the net coronal energy flux:

F ∝ Σn

{
(1 + a)2|z+1 |2 − 2a(1 + a)Re(z+1 · z−L	)

−(1 − a2)|z−L |2 − (1 − a2)|z+R|2
}
. (25)

In the previous formula, the 	 denotes the complex conjugate,
indices n are assumed for each variable, and we have used the
notations of Fig. 2, so the formula applies to the three models.
We consider in turn the different terms on the righthand side.

The last two terms are always negative: they thus represent a
pure leakage (and they indeed vanish for a = 1, in the closed or
line-tied model). The first term is always positive and represents
the continuous energy injection. The second term is fluctuating
and is the only term that can cause leakage in the closed model.
In the closed case, however, it is non zero only for the injected
modes (which are at large scales, see next section), due to the
presence of the z+1 factor, which strongly limits the leakage in
the closed case.

2.4. Parameters and timescales

The parameters of the model are the length of the chromo-
spheric and coronal parts of the loop Lch, Lc respectively;
the photospheric-chromospheric Alfvén speed, V0

A; the Alfvén
speed contrast ε; the width of the loop l⊥0; the turbulent corre-
lation scale l⊥; and the amplitude of the forcing at the left pho-
tosphere, U0. In all the models we always force by injecting an
Alfvén wave: U0 is the wave amplitude which is generally not
directly related to the photospheric velocity shear. Only in the
closed model do the two quantities coincide (see Sect. 2.1). The
input photospheric spectrum is distributed on the perpendicular
scales l⊥, l⊥/2, l⊥/4, and will have a correlation time given by
Tf , which completes the set of parameters.

For all the simulations we set V0
A = 700 m/s, Lch = 2 Mm

(so that L scales with Lc only); i.e., we assume that photospheric
values are independent of the loop length and that all loops have
a transition region. We also set l⊥ = l⊥0/4 and Tf = ∞. The rest
of the parameters l⊥, Lc, U0, ε define the following physical
timescales (i.e., input of the model): the leakage time, the coro-
nal Alfvén time, and the input nonlinear time (which rules the
strength of the turbulence resulting from the driving):

tL = Lc/V
0
a (26)

tc
a = Lc/V

c
a = εtL (27)

t0
NL = l⊥/(2πU0). (28)

We also fix Lc = 6 Mm and ε ≈ 0.02, thus only t0
NL will be varied

at fixed tc
a and tL, by changing the parameters U0 and l⊥. In a

subsequent paper we will study the effects of varying the leakage
and the Alfvén timescales. From these characteristic times we
define the following dimensionless parameters that measure the
nonlinear term vs. the two main linear effects (the Alfvén wave
propagation and the leakage):

χL = tL/t
0
NL (29)

χ0 = tc
a/t

0
NL = εχL. (30)

The parameter χ0 has been used by Dmitruk et al. (2003),
Rappazzo et al. (2008), and Nigro et al. (2008) to quantify the
turbulent behavior in their studies of turbulence forcing with
closed boundaries (corresponding to χL = ∞).

Figure 3 shows the plane with χ0 in abscissa and χL in ordi-
nate. This plane is divided in four quadrants by the lines χ0 = 1
and χL = 1. There are actually only three subsets left, as only
the subset with ε < 1, visible as the unshaded region of Fig. 3,
is permitted, due to the stratification. Turbulence is said to be
weak (in the left part) or strong (right part), depending on χ0
being smaller or larger than unity. In the two upper quadrants,
which occupy most of the domain, leakage should be negligible.
Only in the small (left) bottom region should leakage dominate
turbulent loss.

The two curves represent each a family of coronal loops
of varying length L, build from a two-temperature hydrostatic
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Fig. 3. Characteristics of typical solar loops compared with simulation
parameters: χL versus χ0. The turnover time is fixed to t0

NL = 1000 s and
we assume a two-temperature hydrostatic loop model (see appendix).
The black solid and dashed lines are for the two coronal temperatures of
3 MK and 0.8 MK, respectively. The circles are for the three-layer runs
A−L (see Table 1). The diagonal dotted lines are the curve χL = (1/ε)χ0

for three values of ε.

model (see Appendix A), which leads to a function Vc
a (L). The

loop length L increases from bottom to top (i.e., with increasing
χL) from 3 to 700 Mm. Most of the hot loops show an Alfvén
speed contrast of ε = 0.003, about ten times lower than the
ε value chosen for the three-layer simulations. The choice of rel-
atively high ε values for the simulations comes from the require-
ment of having a reasonable value for the ratio of integration
time to single time step.

We now give a brief account of the physical and numeri-
cal timescales. Taking for instance l⊥ = 2 Mm, with N = 20
perpendicular wave modes, the highest available perpendicular
wavenumber will be kmax = 1.600 1/km. The shortest nonlin-
ear time (evaluated at the maximum perpendicular wavenumber
in the corona) will be, if zc is the typical coronal amplitude (z
denoting either z+ or z−),

τNL = 1/(kmaxzc) � ε/(kmaxU0) (31)

where we have taken the resonant linear case (see next section)
for which the wave amplitudes are larger by a factor 1/ε in the
corona. Replacing by previous values and assuming ε = 0.01,
we obtain for the smallest nonlinear time

τNL � 6 × 10−5 s. (32)

As a matter of comparison, we use N‖ = 104 grid points to de-
scribe space along the loop, so that, for a typical loop length
L = 6 Mm, we obtain

τ‖ = 1/(kmax
‖ Vc

A) = εL/(πN‖V0
A) � 2 × 10−3 s (33)

for the shortest linear time for parallel propagation in the corona.
As a result, the constraint on the time step comes from the per-
pendicular nonlinear time. Finally, at least in the linear case (see
next section), the characteristic time for large-scale evolution is
the long leakage time:

tL = L/(V0
a ) � 9 × 103 s. (34)

Comparing Eqs. (32)–(34), we see that ≈108 time steps of a dy-
namical system with 2 × 20× 104 degrees of freedom are neces-
sary to achieve one (anticipated) characteristic evolution time of
the system.

Table 1. Parameters for the the simulations.

Run ε Lc l⊥ U0 χ0 χL

(adim) (Mm) (Mm) (km s−1) (adim) (adim)
A 0.020 6 1.500 0.05 0.04 1.8
B 0.020 6 1.500 0.10 0.07 3.6
C 0.022 6 1.500 0.20 0.16 7.2
D 0.022 6 0.500 0.10 0.24 11
E 0.022 6 0.500 0.20 0.48 22
F 0.022 6 0.250 0.20 0.96 43
G 0.022 6 0.125 0.20 1.9 86
H 0.022 6 0.025 0.10 4.8 215
I 0.022 6 0.008 0.10 16 718
L 0.022 6 0.003 0.10 48 2154
A1L 0.020 6 1.500 0.025 0.02 0.9
B1L 0.020 6 1.500 0.10 0.07 3.6
C1L 0.020 6 1.500 0.20 0.14 7.2
D1L 0.020 6 0.500 0.10 0.22 11
E1L 0.020 6 0.125 0.10 0.86 43
F1L 0.020 6 0.063 0.10 1.7 86
G1L 0.020 6 0.025 0.10 4.3 215
H1L 0.020 6 0.008 0.10 14 718
I1L 0.020 6 0.003 0.10 43 2154
Acl 0 6 1.500 0.025 0.02 ∞
Bcl 0 6 1.500 0.10 0.07 ∞
Dcl 0 6 0.500 0.10 0.22 ∞
Ecl 0 6 0.125 0.10 0.86 ∞
Fcl 0 6 0.063 0.10 1.7 ∞
Gcl 0 6 0.013 0.10 8.6 ∞
Hcl 0 6 0.003 0.10 43 ∞

Notes. The three subpanels refer to the three-layer, one-layer, and
closed models in which boundary conditions are open (three-layer),
half reflecting (one-layer ), and line-tied (close). For all runs, Tf = ∞,
V0

a = 0.7 km s−1, Lch = 2 Mm (except for runs H, I, L that have
Lch = 1 Mm). ε denotes the ratio of photospheric over coronal Alfvén
speed (plays no explicit role in the closed model). Lc is the length of the
coronal part of the loop. l⊥ is the perpendicular largest injection scale
(the injected energy is distributed on scales l⊥, l⊥/2, and l⊥/4). U0 is
the amplitude of the input wave. χ0 is the linear to nonlinear time ratio
(Eq. (30)), χL is the leakage to nonlinear time ratio (Eq. (29)).

3. Phenomenology

3.1. Linear coronal trapping and leakage

We first recall the linear result in the zero-frequency case,
i.e. when forcing is time independent; a transverse perturba-
tion (here, any perpendicular mode) is subjected to successive
transmission-reflection at the two coronal bases, left and right.
Since nonlinear interactions are ignored, all modes show the
same evolution. As shown in Grappin et al. (2008) for a loop
with smooth variation in the Alfvén speed, the level of z+ and z−
grows progressively in the corona, in such a way as to achieve
the asymptotic values

z+ � −z− � b/
√
ρ = U0/ε (35)

over a long timescale tL. In other words, the asymptotic solutions
are a uniform magnetic field amplitude everywhere along the
loop at equipartition with the photospheric energy density, as
well as a uniform velocity fluctuation everywhere along the loop.
The asymptotic state is thus the same as would be achieved if the
plasma were completely transparent to Alfvén waves (ε = 1):

u = U0, b = b0 = B0U0/V
0
a , (36)

although this happens on the long timescale tL = L/V0
a and

not on the short Alfvén coronal time tc
a (we assimilate here and

A70, page 6 of 15

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201118046&pdf_id=3


A. Verdini et al.: Turbulence and leakage in coronal heating

in the following the coronal length to the total loop length L).
Typically, if the shear amplitude is U0 = 0.1 m/s and the mean
field B0 = 100 G, then the equilibrium magnetic field associated
with the shear is the equipartition field, that is, b0 � 14.5 G.

3.2. Resonant response

Consider the simplest case where the frequency of the photo-
spheric input is either zero or resonant (that is, equal to n/tc

a,
with n an integer ≥0). The coronal field perturbation induced by
the photospheric field perturbation U0 = b0/

√
ρ0 grows linearly

with time until it saturates at a finite value because of the two
damping losses, the linear leakage (with timescale tL) and the
nonlinear turbulent damping (with timescale tD):

∂tb = B0U0/L − b/tL − b/tD = B0U0/L − b/tη (37)

= b0/tL − b/tη (38)

where b0 = 14.5 G is the photospheric magnetic perturbation,
and tη is the effective damping time:

tη = (1/tL + 1/tD)−1. (39)

In Eq. (38) we have rewritten the first term using the definition
tL = L/V0

a in order to illustrate the fact that, in the absence of
dissipation (tD = ∞, tη = tL), the trapping and leakage times are
equal.

The stationary solution is for the coronal field perturbation:

b = U0 (tηB0/L) (40)

= b0/(1 + tL/tD). (41)

One sees that the coronal response is maximal (equal to the pho-
tospheric value b0 = 14.5 G) when no turbulent damping is
present (tD � tL). In the other limit (tL � tD), turbulent damping
limits the coronal field to a fraction b0: b � b0tD/tL = tDB0U0/L.

Relation (41) may be rephrased in terms of energy per unit
mass as

E = E0(tη/t
c
a)2 (42)

with E0 = 1/2(U2
0 + b2

0/4πρ0) = U2
0. In the case where tD � tL,

Eqs. (41)–(42) have already been given by Hollweg (1984); as
pointed out by Nigro et al. (2008), they are also valid for the
zero-frequency case (see also Grappin et al. 2008), the only dif-
ference being that in the latter case magnetic energy is dominant
in the corona, while in the case of nonzero resonance coronal
magnetic and kinetic energies are at equipartition.

A last remark concerns the use of Eqs. (38) and (41) (but
not Eq. (42)). Caution must be taken when applying the line-
tied limit, tL = ∞, since the trapping time, appearing as tL in
these equations, is finite and fixed. The explicit forms, Eqs. (37)
and (40), are therefore better suited to understanding the differ-
ence between the opened and closed models. In particular, one
sees that the coronal magnetic field grows linearly with time in
the absence of dissipation (Eq. (37)) while, when dissipation is
present, it can grow well beyond the leakage-limited value b0
(Eq. (40)), since the loss timescale tη has no upper limit2.

2 As we see in the closed model the dissipation timescale can be larger
than the nominal value tL (see Fig. 13), thus leading to b > b0.

0
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cor
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1/T
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c(t   / t   )aη
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Fig. 4. Sketch of the linear coronal energy gain, log(E/E0) as a function
of frequency. E0 is the input photospheric energy at each frequency. It
is assumed that tc

a � tη, and only the non-wkb portion of the spectrum
is shown. The injected spectrum is also indicated as a shaded areas on
an arbitrary scale, for the case of flat, intermediate, and line spectra (in
increasing gray-scale order).

3.3. The general case

In general, the signal injected into the corona is not necessarily
resonant and more generally not monochromatic. To quantify
both the trapped energy and its dissipation rate we need to know
how the time-dependent energy input is distributed between res-
onant and nonresonant frequencies. We thus introduce the corre-
lation time of the energy T 0

cor entering the corona or equivalently
the width of the injection spectrum 1/T 0

cor, which is a priori un-
known.

Recalling that the resonant lines are spaced each 1/tc
a, each

with a width equal to the inverse of the damping time tη, then we
may distinguish several cases depending on the portion of the
excited spectrum (see Fig. 4):

– Flat spectrum: T 0
cor < tc

a. Negligible energy being transmit-
ted outside the resonant lines (enlarged by damping) com-
pared to the energy transmitted for frequencies within the
lines (anti-resonances) leads to a filling factor equal to tc

a/tη
compared to a spectrum made of only resonant frequencies
(Eq. (42)).

– Intermediate T 0
cor: tc

a < T 0
cor < tη. Then the filling factor is

T 0
cor/tη as only the zero-frequency resonance and the first

anti-resonance are excited.
– Long correlation time or resonant spectrum: tη < T 0

cor. This
coincides with the linear resonant gain Eq. (36) if tL � tD.

Finally,

E = E0(tη/t
c
a) (T 0

cor < tc
a) (43)

E = E0(tη/t
c
a) T 0

cor/t
c
a (tc

a < T 0
cor < tη) (44)

E = E0(tη/tc
a)2 (tη < T 0

cor). (45)

We transformed Eq. (44), which originally reads as E =
E0(tη/tc

a)2 T 0
cor/tη. Equations (43), (44) have been derived for

negligible leakage (tη = tD), in the strong turbulence case by
Hollweg (1984) and in the weak turbulent case by Nigro et al.
(2008). The relations proposed here extend these early findings
by including the case where leakage dominates turbulence and
the case of very weak turbulence (resonant spectrum).

To make these expressions explicit, one should express the
unknown parameters in terms of control parameters. It is tempt-
ing for instance to identify T 0

cor with t0
NL: then the three regimes

correspond respectively to strong turbulence (χ0 > 1), weak tur-
bulence (χ0 < 1), and weak dissipation (χL < 1).
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Fig. 5. From left to right: Run Dcl (closed model), Run D1L (one-layer model), and Run D (three-layer model). For all the runs χ0 ≈ 0.2, for the
one-layer and three-layer models χL ≈ 11. Top panels: time evolution of the net energy flux F. Bottom panels: time evolution of the coronal energy
(E) and dissipation below (D). Time is normalized to the input nonlinear timescale t0

NL, energy is normalized to the injection energy at the left
boundary ETR = U2

0 , dissipation and flux are normalized to Hollweg expression DH = ETR/tc
a.

Indeed, the last condition (χL < 1) can only be satisfied if
tL < tD since we exclude the possibility that tD < t0

NL. Thus
assuming T 0

cor = t0
NL, the line spectrum coincides with the linear

resonant gain and can only be reached by imposing χL < 1.
If the injection spectrum has a finite width, a possible choice
is T 0

cor = min(Tf, t0
NL) as suggested by Malara et al. (2010). If

Tf > t0
NL we fall into the previous case. If instead Tf < t0

NL,
the ordering considered in Nigro et al. (2008) and Malara et al.
(2010), the line spectrum is not achievable. However, as we will
see, the correlation time may also be given by other timescales,
such as the leakage time tL or the chromospheric crossing time
tch
a = Lch/V0

a . The remaining (difficult) task is to express the
dissipation time tD (since tη = min(tD, tL)), in terms of χ0 and χL

via the coronal nonlinear time. We will come back to this point
later on.

3.4. Dissipation in the strong and weak regimes

In the strong turbulence case (χ0 > 1), dissipation is expected
to dominate leakage, and a simple explicit expression of the
dissipation rate is obtained after replacing tη = tD in Eq. (43)
(Hollweg 1984):

D = E/tD = E0/t
c
a. (46)

This relation is attractive, because it leads to a universal result:
the heating rate per unit mass does not depend on the detail of
turbulent dissipation, since it only depends on the length of the
loop and the photospheric energy. However, this universality is
lost when we turn to the weak turbulent regime, χ0 < 1, Eq. (44),
which we have seen is probably prevalent in the corona (Fig. 3).
To extrapolate the previous expression (Eq. (46)) to the weak
regime with χ0 < 1, we identify T 0

cor with t0
NL in Eq. (44) and

still adopt tD < tL:

D = E/tD = E0/t
c
a (1/χ0). (47)

This predicts that the weaker the turbulence regime, the higher
the dissipation. We will see that both relations (46), (47) are rea-
sonably satisfied if we use the line-tied limit, but not in the more

realistic open case. In the open case, we find that Hollweg’s ex-
pression (Eq. (46)) actually holds more or less both for χ0 > 1
and χ0 < 1, which requires admitting that tD > tL in the weak
regime, i.e., that the dissipation time becomes very long as tur-
bulence weakens.

4. Results

In the following we compare first the different models in a weak
turbulence case, the most probable for coronal conditions. Then
we focus on the three-layer model and compare the weak and
strong turbulence regimes.

4.1. How leakage changes turbulence: the weak turbulence
case

We consider here a weak turbulent case with χ0 ≈ 0.2, and
compare the closed, one-layer, and three-layer models. The runs
are Dcl, D1L, and D respectively in Table 1; in the open mod-
els χL ≈ 11 so we expect that turbulence is the main channel
for energy loss in all models. Because of this, we should not
expect significant differences between the closed and the one-
layer run. However, we might perhaps find differences due to
the different forcing (from now on we will use forcing to mean
injection into the corona) between the one-layer and the three-
layer runs, recalling that forcing is constant in the first case, and
time-dependent in the second, due to the possibility of a chro-
mospheric turbulence.

The time evolution of the corona in the three models (from
left to right) is summarized in Fig. 5 where the entering energy
flux F (top panel), the total energy E, and dissipation D (bottom
panel) are shown (see Eqs. (19)–(21)). Time is normalized to the
input nonlinear timescale, t0

NL; energy is normalized to the input
coronal energy ETR ≡ z2

TR/4; and the dissipation and the flux are
normalized with respect to Hollweg expression, DH ≡ ETR/tc

a
(for the closed and one-layer model zTR ≡ U0; for the three-
layer model, zTR is the measured quantity z+1 that is not directly
controlled by the boundary conditions).
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Fig. 6. Coronal kinetic energy spectrum (dashed line) and magnetic en-
ergy spectrum (solid line) for runs Dcl, D1L, and D. Wavenumbers are
in units of 1/Mm and in the top x-axis the corresponding shell num-
bers are indicated. The spectra are averaged in time and space and
the normalization is in arbitrary units (spectra are also rescaled). The
symbols on the Eb spectra indicate the first shell number for which
tu
NL(k) = 1/ku(k) < tc

a.

A quick look at the energy flux curves shows a sharp con-
trast between the closed run and the open one-layer run. While
in the closed case, the coronal energy flux is almost always posi-
tive, but in the open case, it is constantly oscillating around zero,
although with a positive mean value flux. This has an immedi-
ate corollary: the energy level shows much lower values in the
open case. Another corollary is that the dissipation rate itself,
i.e., coronal heating, is reduced by a factor ten. This tendency
is sharply enhanced in the case of the three-layer model, which
shows a further reduction of a factor 5. Another remarkable dif-
ference appears in the three-layer model, which accounts for
the chromospheric turbulence. The energy and the energy flux
display quasi-periodic oscillations that are absent in the closed
and one-layer models whose energy time series are shaped by
the time-independent forcing. Such oscillations have a period-
icity of about one leakage time or less (see the top horizontal
axis in the bottom panel). However, we cannot rule out that their
origin lies in the chromospheric turbulence. Indeed, the period-
icity happens to be close to two chromospheric crossing times
2tch

a = 2Lch/LctL = 2/3tL, which we interpret as the timescale
needed for waves injected from the left footpoint to leave the
chromospheric layer (a round trip of the chromosphere). Most
probably such oscillations come from the coupling of the chro-
mospheric and coronal turbulence and both timescales matters,
as we see in Sect. 4.3.

Figure 6 shows the time and space-averaged kinetic and
magnetic spectra in the corona for the three models. One sees
that all cases show well-developed power-law ranges, plus a
magnetic hump at large scales. The (common) forcing range
is represented by a gray vertical band and the symbol on the
magnetic spectrum marks the largest scale for which the effec-
tive nonlinear time computed on the rms velocity at that scale is
shorter than the Alfvén crossing time. The only significant differ-
ence visible between the three spectra is that the magnetic peak
is located at the largest forcing scale for the open runs, while it
has migrated to a scale that is larger by a factor two for the closed
run. This indicates that an inverse transfer is active in all cases,
but that it is more active in the closed case, or also possibly that

Fig. 7. Run D (three-layer open model, weak turbulence case): spatial
distributions of fluctuations (top and mid panels) and turbulent heating
(bottom panel). The time-averaged rms amplitude (in km s−1) are plot-
ted as a function of loop coordinate (in Mm) for z+, z− (top panel, solid
and dashed lines, respectively) and for b/

√
4πρc, u (bottom panel, solid

and dashed lines, respectively). The time-averaged heating rate (in arbi-
trary units) is plotted in the bottom panel as a solid line, and a snapshot
is shown in dotted line.

it has been hindered by leakage of the largest scales in the open
cases.

We are thus forced to conclude that, in the open models, de-
spite the fact that χL > 1, the energy accumulation is limited by
leakage. This means that the nonlinear timescale t0

NL is a sharp
under-estimation of the real dissipation timescale. We come back
on this point in the following.

4.2. The three-layer model: chromosphere vs corona

We describe here the structure of the open three-layer model in
the weak turbulence case. In particular we compare the chromo-
sphere and corona. We show in Fig. 7 the spatial profiles in the
corona and chromosphere of the fluctuations and of the dissipa-
tion rate. The top panel shows the time average of the rms value
z+ and z− amplitudes with z±rms defined as

z±rms =

√∑
n

|z±n |2. (48)

The mid panel shows the time-averaged rms values of velocity
u and magnetic field in km s−1 units (b/

√
ρ). The bottom panel

shows the time average and a snapshot of the heating rate.
In spite of the presence of turbulence (as revealed by the

spectra examined above), the rms amplitudes of all quantities
are seen to be remarkably smooth functions of loop coordinates
except of course at the T.R. Main features are (1) that the mag-
netic field amplitude in the corona and chromosphere are ac-
tually comparable (the magnetic field amplitude plotted in the
figure is b/

√
4πρ, hence a factor of about 1/ε = 50 between the

coronal and chromospheric values); (2) that the velocity contrast
is significantly greater than unity but much smaller than the mag-
netic contrast (in units of velocity), and its coronal profile has a
simple form; and (3) that the z+ and z− levels are comparable in
the corona.

Feature (1) implies that the main part of the magnetic energy
trapped in the corona is actually close to the linear state of zero
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Fig. 8. Run D. Contour plot of the spectra E±(x, kn) (snapshots) for z+

and z− (top and bottom panels, respectively) compensated for k5/3 in the
chromosphere (left panels) and in the corona (right panels). Ordinate:
shell number ns = log2(kn/k0). Abscissa: coordinate x along the loop
in Mm. The contours have different ranges in the chromospheric and
coronal layers to highlight their structures better.

resonance (in the linear case with zero frequency the asymptotic
coronal magnetic field fluctuations is equal to the photospheric
field, see Grappin et al. 2008). (2) The coronal profile of the
velocity field is actually close to the profile of the first linear
resonance (Nigro et al. 2008). Feature (3) allows full nonlinear
coupling that is compatible with the existence of a developed
spectrum.

Nigro et al. (2008) have already found in the closed case that
the characteristic linear resonance profiles of the coronal cavity
are not deeply affected by the presence of a nonlinear cascade. It
appears that the same linear resonance profiles are not affected
by leakage either.

Finally, the time-averaged profile of the average dissipation
rate per unit mass (bottom panel in Fig. 7) shows that the chro-
mospheric dissipation remains negligible, and also that the left
T.R. (i.e. above the foot point where energy is injected) is dissi-
pating at a slightly higher rate than the other foot point. A typical
snapshot is also shown, providing a hint of the substantial inter-
mittency of the heating rate, both in space and time.

The turbulent activity of both the chromosphere and corona
are shown in Fig. 8, in which we plot snapshots of the z− and z+

spectra E±(x, k⊥) (top and bottom panels) respectively in the left
chromosphere and corona (left and right panels). The spectra are
compensated for k5/3 in both layers. The motivation for plotting
z± spectra instead of u and b spectra is to make the respective
contributions of the chromosphere and corona to the spectral for-
mation clear, since the directions of propagation are identifiable
for z±, not for u and b. Only the left chromosphere has been rep-
resented (since the evolution is purely linear in the right chromo-
sphere, due to the absence of z− input from the right foot point),
its length has been enlarged to make its structure more conspicu-
ous, and the contours have different ranges in the chromopshere
and in the corona.

One can see in the figure something like the trajectory of tur-
bulence from the left foot point to the corona and all the way
back (so, one begins from the top left panel and proceeds clock-
wise). First, in the chromosphere the onset of turbulence does
not take place immediately starting from the left foot point: the
z+ spectrum (top left) first shows only the three injected scales

(seen as a red-yellow band), and only very progressively adds
smaller scales (first seen as a blue haze). Spatial intermittency
then appears about in the middle of the chromosphere in the
form of small-scale filamentary structures. This corresponds to a
travel time ΔL/V0

a � 1100 s, which is close to the nonlinear time
t0
NL � 800 s.

In the corona (top panels) one sees in contrast no large par-
allel gradients, as seen previously with the rms z+ and z− ener-
gies. A conspicuous feature of the coronal spectrum is the hump
appearing as a red ribbon that is displaced towards large scales
(when compared to the peak in the chromospheric injected spec-
trum, top left). This again reveals the inverse transfer already
noted above in Fig. 6.

Finally, one sees in the bottom left panel that the wave leak-
ing from the corona makes the z− chromospheric spectrum look
much more developed than its z+ counterpart.

4.3. The three-layer model: increasing turbulence

We now increase in the three-layer model the turbulence strength
χ0 from 0.04 to 4.8 (runs A, D, F, H). This is achieved by de-
creasing the nonlinear time, while the leakage time is fixed. Even
though we have already seen that the nonlinear time is clearly a
strong lower bound for the dissipative time, again, one should
thus expect the open model to match the closed model in the
limit χL � 1 at some point. This point is considered again in the
discussion where the properties of all models are summarized.

In Fig. 9 we illustrate how the dynamics change in the open
three-layer model when increasing χ0. The left panel shows the
rms magnetic field amplitude in the corona normalized to b0, the
linear zero-frequency solution, while the two other panels show
the (space and time averaged) total energy spectra respectively
in the chromosphere and the corona.

The main points are (1) when the nonlinear time is too
large (very small χ0, run A), one sees that turbulence has no
time to develop before reaching the corona. Both the chro-
mospheric and coronal spectra remain largely devoid of small
scales. Dissipation is thus negligible. The asymptotic level of
the magnetic field is close to its 15 G linear value, the growth of
brms being extremely regular and devoid of any small-scale fluc-
tuations. All this happens in a leakage time. (2) Decreasing the
nonlinear time progressively decreases the asymptotic coronal
field. Its growth becomes now chaotic, the signal in the lefthand
panel showing a whole spectrum of frequencies, with, most re-
markably, periods close to the leakage time for the two interme-
diate values of χ0, but also periods close to two chromospheric
crossing time 2tch

a = 1/3tL for the strongest χ0 (run H in the left
panel, see for example the range t/tL ∈ [3, 4]). (3) At reason-
ably large χ0, the coronal spectra are developed. However, the
chromospheric spectra are significantly steeper. In the chromo-
sphere, the slope is close to 1.8, while it is close to 1.7 in the
corona. (4) The chromospheric spectra are devoid of the humps
that appear in the coronal spectra.

We thus conclude that too weak a cascade does not change
linear zero-frequency results at all, and that there is a χ0 thresh-
old above which turbulence has common properties. There are
slight differences in the chromosphere and corona, the main ones
being the large-scale coronal peak, and a slightly different slope.

We now examine frequency spectra. We computed frequency
spectra of (z±rms)

2 at each position along the loop and then they
were averaged separately in the corona and in the chromosphere.
The original time series was windowed with the hanning pro-
cedure, and the zero frequency is also displayed as the low-
est frequency in the plot (Fig. 10). The coronal z+ and z− have
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Fig. 9. Runs A, D, F, and H with increasing χ0. Left panel: growth of rms coronal magnetic field (normalized to its asymptotic linear value
b0 = 15 G). Middle and right panels: total energy spectrum E(k) averaged in time and space in the chromosphere and in the corona, respectively.

Fig. 10. Runs D and H (weak and strong χ0): frequency energy spectra
E+( f ), E−( f ), computed by taking the Fourier transform of the (z±rms(t))

2

at each plane and then space averaging separately in the chromosphere
(bottom black and red lines) and corona (top black line). The E− (not
plotted) and E+ coronal spectra are indistinguishable. The vertical lines
mark some relevant timescales: dotted lines for the resonances at n ≥ 1;
dot-dashed lines for the (round-trip) chromospheric crossing time, 2tch

a ;
and long-dashed lines for the leakage time, tL.

practically the same spectrum, so we only plot z+ in the corona,
while the chromospheric spectra are plotted for both z+ and z−.

On the coronal spectra peaks appear close to (but not coin-
ciding exactly with) the resonant frequencies: n/tc

a. This con-
firms again that the quasi-linear trapping properties are not
strongly affected by leakage.

For weak turbulence (left panel), the spectra are dominated
by the lowest frequencies, the input zero-frequency and a low-
frequency bump. As the strength of turbulence is increased (right
panel), more energy goes into finite-frequency resonances, some
of them becoming as energetic as the low-frequency part of the
spectrum. The location of the low-frequency bumb corresponds
roughly to two characteristic timescales, the leakage time, tL,
and two chromospheric crossing time, 2tch

a , which we interpret
as the signature of the turbulence activity in the coronal and

chromospheric layer, respectively. In run D (low turbulence) two
distinct bumps appear in the chromopheric spectrum E+ch at fre-
quencies 1/tL and 1/2tch

a , while in run H (strong turbulence) the
bump lies between them. In the coronal spectra (and also in E−ch)
the bump is somewhat wider, possibly showing a coupling with
the (zero and finite frequency) resonances. The importance of
both timescales points out that the low-frequency spectrum in
the three-layer model is affected by the coupling between the
coronal and chromospheric turbulence.

5. Discussion

We have studied the problem of heating coronal loops by forcing
a photospheric shear through the injection of Alfvén waves at
one foot point and by waiting for the injected Alfvén waves to be
transmitted into the corona, to be trapped (amplified), and finally
to dissipate due to turbulence. For this we used a simplification
of the RMHD equations that exploits shell models to account for
the perpendicular nonlinear coupling.

In contrast to previous work, we considered a finite Alfvén
speed difference between the photosphere and the corona and
freely propagating waves deep in the photosphere, thus allowing
energy to leak back to the chromosphere and to deeper layers of
the solar atmosphere. We found that, although leakage does not
dramatically change the quasi-linear trapping properties of the
corona or the spectral properties of turbulence, it strongly alters
the level of the energy trapped in the corona and the resulting
dissipation.

We have seen that the coronal energy and dissipation rate
vary, depending (i) on the ratio χ0 of the linear Alfvén cross-
ing time by the nonlinear input time t0

NL and (ii) on the choice
of the atmosphere model, allowing or not the development of a
chromospheric turbulence. We now systematically present these
variations and discuss them. We present the closed model, one-
layer and the three-layer models on an equal footing. The closed
model results should allow direct comparison with earlier work,
and the comparison between the one-layer and three-layer mod-
els should make the effect of chromospheric turbulence clear.
However, we consider that the three-layer model is the most re-
alistic of the three models. We vary χ0 while fixing the Alfvén
speed contrast to ε = 0.02 and the loop legnth to Lc = 6 Mm.
The dependence on ε and Lc will be postponed to a further study.
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Fig. 11. Coronal energy per unit mass normalized by the T.R. injec-
tion energy as a function of the time ratio χ0. Left: closed model re-
sults (symbols); mid panel: one-layer model results (symbols); right:
three-layer model results (symbols); dashed line: resonant scaling; dot-
ted line: intermediate correlation time scaling; solid line: small correla-
tion scaling.

5.1. Energy

We show in Fig. 11 how the energy trapped in the corona de-
pends on the turbulence strength χ0 in the different models (left:
closed model; midpanel: one-layer; right: three-layer). In each
case, we show how the results are fitted by the generalization of
the Hollweg-NMV model as given by the three different possi-
ble regimes (Eqs. (43)–(45)). For this purpose we normalize the
energy to the coronal input energy z2

TR/4, which coincides with
the input energy U2

0 in the closed and one-layer model, while it
is a measured quantity for the three-layer model (z2

TR ≡ |z+1 |2 in
Fig. 2).

The regime is identified by the choice of the correlation time
of the input spectrum, which is different in the different models.
For instance, a constant signal in the closed model is a partic-
ular case of the resonant regime (line spectrum) while the flat
spectrum should be found for a very short correlation time. It
is striking that the best fit, although largely imperfect, is always
obtained by the resonant expression (zero-frequency spectrum),
regardless of the turbulence strength (i.e. both for small and large
χ0).

The behavior of the system is therefore dominated by the
n = 0 resonance. This could be expected for the closed and one-
layer models, since the input signal is time independent, but less
so for the three-layer model, in which the chromospheric turbu-
lence modifies the input frequency spectrum to the corona, at
least for large χ0. It therefore seems that the dominance of the
low frequencies is not caused by the particular forcing chosen
here, but is a consequence of the coronal activity itself. As we
have seen, the coronal spectrum shows a bump at large perpen-
dicular scales containing very low frequencies but this bump is
not present in the chromospheric spectrum (see Fig. 9).

A last point concerns the model differences. While all three
models attain the same energy level for χ0 > 1, it is seen
that they strongly differ in the weak turbulence regime. In the
closed model the energy grows until turbulence becomes effi-
cient enough to balance the input energy. In the opened models,
instead, the energy accumulation is prevented by the leakage and
the resulting level is much lower.

Fig. 12. Dissipation normalized by Eq. (46) vs. χ0 for the three mod-
els. The vertical dotted lines mark the values χ0 = ε (t0

NL = tL) and
χ0 = 1. The dashed line is the prediction from Eq. (51) for the three-
layer model.

5.2. Heating rate

The heating rate is shown in a single plot for all three models
in Fig. 12. We show the dissipation per unit mass normalized to
Hollweg expression, Dh = ETR/tc

a, (Eq. (46)) vs. χ0: diamonds
are for the closed model, stars for the one-layer model, and cir-
cles for the three-layer model.

In the weak turbulent part of the diagram (χ0 < 1), we again
find the same ordering of the models observed above for the
energy: a line-tied model leads to a heating rate inversely pro-
portional to the turbulence strength (our results follow the fit
D ∝ (u2/tc

a)χ−1/2
0 proposed by Dmitruk & Gomez 1999), while

for the open models the heating rate goes down proportionally
to the turbulence strength. We note, however, the sudden drop
in the dissipation rate at very low χ0 (roughly corresponding to
t0
NL > tL), due to the absence of formation of a high-wave number

spectrum in the open models: the coronal energy level is too low
to trigger a cascade before fluctuations leak out of the corona.

In the strong turbulent regime (χ0 > 1), the dissipation
is nearly independent of the turbulence strength. The level of
this plateau is common to the closed and one-layer models,
which differ only in their boundary conditions, but it is lower
for the three-layer model. This is to be attributed to the chro-
mospheric turbulence that reduces the coronal input, hence the
actual strength of the turbulence, for given χ0.

5.3. Dissipation time

Finally we consider in Fig. 13 the dissipation time, tD = E/D,
normalized to the coronal crossing time tc

a. For the open models,
the right vertical axis also shows the dissipation time normal-
ized to the leakage time, which makes sense since the ratio ε
between the Alfvén and leakage time remains fixed in the data
shown here. The few points of the open models with very low
turbulence strength χ0 show very high values of the dissipation
time, due to the undeveloped turbulence, as already mentioned
above.

These points aside, one sees that increasing χ0 (i.e., decreas-
ing the input nonlinear time), the dissipation time decreases as
expected, but that, most remarkably, it stops decreasing when χ0
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Fig. 13. Dissipation time vs. χ0 for the three models; note the different
normalization in the left and right axis. The vertical dotted lines mark
the values χ0 = ε (t0

NL = tL) and χ0 = 1.

Fig. 14. Run D: comparing the instantaneous dissipation time with the
slow Iroshnikov-Kraichnan timescale (red) and the standard nonlinear
time (blue, below).

reaches about unity. The plateau is comparable for the one-layer
and closed models, corresponding to tL � 10tD in the one-layer
model, while it corresponds to tL � tD in the three-layer model.

It would certainly be progress, both from the theoretical and
the practical viewpoints, to understand how the heating time and
energy are related. The difficulty is that the usual relations here
are modified by the existence of the large-scale hump in the spec-
trum. One cannot consider that there is a straightforward (direct)
cascade from the large to the small scales, since the energy is
clearly “blocked” at large scales.

That this is so can be easily verified by comparing the instan-
taneous dissipation time with the nonlinear time tNL = 1/(ku)
(with k = k⊥ the largest forcing scale, and u the rms velocity),
which usually rules the direct Kolmogorov cascade. However, a
strikingly good result (shown in Fig. 14) is obtained when using
a factor Vc

a/u to increase the nonlinear time 1/(ku):

tD � 1/(ku)(Vc
a/u). (49)

The fit is good enough and works for all values listed in
Table 1 for the turbulence strength χ0 for the three-layer model.

However, the fit is more hazardous for the one-layer model, and
simply does not work at all for the closed model.

This simple law for the three-layer model deserves some
comment. The expression in Eq. (49) recalls the delayed cas-
cade time predicted by the Iroshnikov-Kraichnan phenomenol-
ogy. This phenomenology was meant to describe the (delayed)
cascade of interacting Alfvén waves with wavevectors not per-
pendicular to the mean field. The delaying effect was supposed
to work all along the cascade, leading to a specific spectrum,
different from the Kolmogorov one (3/2 instead of 5/3). Here,
the situation is different. Indeed, the coronal spectrum adopts a
slope close to 5/3, not 3/2, and, most probably (but this study
is postponed to a later work), the characteristic timescale that
rules the cascade here is the strong turbulence timescale 1/(ku).
However, the energy is dominated by the spectral hump at large
scale, which is not ruled by the fast timescale, but by the de-
layed timescale of Eq. (49). This comes from the effect of the
resonant trapped linear modes that act to deplete the nonlinear
coupling terms, in the same way as in the Iroshnikov-Kraichnan
phenomenology, although only at large scales.

5.4. Conclusion

We focus here on the three-layer model, which is by far the
most realistic model of the three we have studied. We have in-
creased our knowledge concerning the physical mechanisms at
work since we know now that a) the coupling between the chro-
mospheric input and that of the coronal cavity is close to that
of zero-frequency resonance, b) leakage always plays a substan-
tial role, and c) the timescale of dissipation is long because the
Kolmogorov time 1/(ku) is reduced by the u/Vc

a factor.
We also found that a rough prediction for the dissipation rate

is given by the classical expression, D � DH = z2
TR/t

c
a (Eq. (46),

see Fig. 12), where zTR is the amplitude of the input fluctuation at
the T.R. level. This result is a bit paradoxical, since this relation
was first obtained by Hollweg, on the basis of assumptions that
are not verified in our simulations: (i) a short correlation time for
the chromospheric input and (ii) negligible leakage. In our sim-
ulations the conditions are completely different: (i) long correla-
tion time (ii) and substantial leakage. The solution to the paradox
lies in the rough compensation of several effects: (i) the energy
level is decreased by leakage and the chromospheric turbulence,
but largely increased by resonance; and (ii) the dissipation time
is increased by the large-scale hump.

Although the above heating rate contains the unknown T.R.
level of input fluctuations, it can be used as a predictive law if we
identify the T.R. input value zTR with the (imposed) photospheric
value U0. This gives the simple classical result

D = DH0 = U2
0/t

c
a. (50)

If we again consider the three-layer results and plot the ratio
D/DH0 instead of the ratio D/DH as in Fig. 12, it is interesting
to note that the result is not basically changed, but nevertheless
the deviation from the horizontal (here D/DH0 = 1) is reduced a
bit, because limited to at most a factor 5.

Can we use our new knowledge to improve the prediction
of the dissipation rate beyond the approximate law D � DH?
Unfortunately the answer is no, because of our poor knowledge
of the relation between the known photospheric input U0 and
the (largely unknown) chromospheric input zTR, as well as the
coronal velocity fluctuation level uc. If we bypass this step by
replacing the unknown quantities (zTR, uc) by U0, using the zero-
frequency resonant expressions with dominant leakage for the
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coronal fluctuations (bc = U0/ε, uc = U0, Eq. (45)) and the
dissipation time (Eq. (49)), we obtain for the dissipation rate per
unit mass:

D = b2
c/tD � U2

0/ε
2(1/t0

NL)(U0/V
c
a )

= DH (L/l⊥) (U0/V
0
a )2. (51)

When using this expression with the parameter values of the
three-layer model as given in Table 1, one obtains the dashed
line in Fig. 12. This is clearly not an improvement on the simple
relation D/DH � 1. It is actually much worse by direct compari-
son with the numerical simulation results (the circles in Fig. 12)
but also from a more general point of view, since dissipation is
largely believed to grow with B0, while Eq. (51) predicts the re-
verse (D ∝ 1/V0

a ).
To progress, we must understand how to relate the chromo-

spheric and coronal velocity level to the photospheric one. We
should also explore how the heating rate depends on all parame-
ters, in particular, the Alfvén speed contrast ε and the loop length
Lc. Finally, we should investigate whether the properties of pho-
tospheric turbulence, in particular the correlation time, modifies
the coronal reaction.
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Appendix A: Atmospheric model

To obtain the parameter χ0 for a “realistic” coronal loop, we have
to determine the Alfvén crossing time, in other words, the rela-
tion ε(L) for a given V0

a . We model the loop as a semicircular
cylinder of radius R, subject to a constant vertical acceleration
g = GM�/R2�. The loop has constant cross-section and is threat-
ened by a uniform magnetic field. For simplicity the loop is as-
sumed to be isothermal in the chromosphere and in the corona.
The two temperatures are related by the jump at the transition
region (T.R.)

T (s) = T0 +
1
2

(Tc − T0)

[
tanh

(
s − sR

tr

δtr

)
+ tanh

(
sL

tr − s

δtr

)]
(A.1)

where s ∈ [0, πR] is the coordinate along the loop, sL,R
tr and δtr

are the position and width of the two transition regions, sL
tr =

R sin−1(htr/R), sR
tr = L − sL

tr. We set the T.R. height htr = 2 Mm
and its width to δtr = 0.2 Mm. We consider two coronal tem-
peratures, Tc = 0.8 MK, 3 MK in order to consider short loops
(reaching the low corona) and longer loops. We finally assign the
following values to the “base” parameters, magnetic field, num-
ber density, and temperature: B0 = 100 G, n0 = 1017 cm−3, and
T0 = 4500 K.

The density profile along the loop is obtained by solving the
equation for the static equilibrium

1
ρ

dρ
ds
= − 1

T
dT
ds
− g

T
cos πs/L, (A.2)

and the cos function accounts for the projection of gravity along
the loop. Varying the loop length we find short loops that do not
reach the T.R. heights (R < 2 Mm) and long loops that indeed
reach the corona. For the former, the density is found by direct
integration of the above equation, while the equations will be
solved numerically for long loops.

Fig. A.1. Coronal Alfvén speed Vc
a as a function of the loop length L

for the hydrostatic two-temperature model of a coronal loop. Solid and
dashed lines correspond to coronal temperatures of 3 MK and 0.8 MK,
respectively.

The static loop model, according to its temperature profile,
defines a relation ε(L) that can be estimated by considering the
temperature jump at the T.R. as a discontinuity and calculating
the density at the loop apex s = L/2. By integrating from the
photosphere to the T.R. and from the T.R. to the corona, one
finds

ln(ρtr−/ρ0) = −ghtr/T0 (A.3)

ln(ρc/ρtr+) = −g(R − htr)/Tc (A.4)

where ρtr∓ are the densities just below and above the transition
region. Assuming that the T.R. is in pressure equilibrium, the
density jump is given by ln(ρtr+/ρtr−) = ln(T0/Tc) so finally one
gets

2 ln ε = −
[
R − htr

Hc
+

htr

H0

]
+ ln

[
T0

Tc

]
≈ −

[
htr

H0

]
− ln

[
Tc

T0

]
(A.5)

where we have introduced the density scale heights in the chro-
mosphere and corona, H0 = T0/g ≈ 0.27 Mm and Hc =
Tc/g ≈ 60 Mm respectively, and make use of the definition
ε = (ρc/ρ0)2. From Eq. (A.5) one can see that for long loops,
R < Hc (used in the last equality), the density contrast is deter-
mined almost entirely by the T.R. jump and is independent of the
loop length, except for very long loops that span a density scale
height in the corona (L � 200 Mm). By numerical integration
of Eqs. (A.1), (A.2) we obtain for a long loop ε = 0.004, which
is a factor two larger than the estimate based on Eq. (A.5), the
discrepancy arising from the fact that the T.R. is not in pressure
equilibrium.

To obtain the solid and dashed black lines in Fig. 3, we
use the relation ε(L) = V0

a /V
c
a (L) as found from the numeri-

cal integration for the two coronal temperatures Tc = 0.8 MK
and Tc = 3 MK (here Vc

a (L) ≡ maxx[Va(L, x)]). The maxi-
mal Alfvén speed is shown in Fig. A.1 as a function of the
loop length: Vc

a increases monotonically and then experiences
a sudden jump at around L = 4.2 Mm. After that jump it de-
creases slightly and then increases again monotonically. In the
first part (L <∼ 4.2 Mm), loops are short enough to remain in
the first isothermal layer (the chromosphere), where the density
scale height is small. The jump at L ≈ 4.2 Mm is determined
by the fact that loops reach the height of the T.R. In this thin
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layer, the density scale height is very small, and density drops
very quickly. Loops with length between ≈4.2 Mm and 4.4 Mm
do not penetrate the corona, remaining in the T.R., so the Alfvén
speed increases even more, reaching a local maximum. The next
part of the profile is characteristic of loops that reach the second
isothermal layer (the corona), where the density scale height is
large.
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