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1. Introduction
The tribe Hedysareae DC. comprises a group of genera of 
family Fabaceae currently circumscribed to: Taverniera 
DC., Stracheya Benth., Eversmannia Bunge, Hedysarum 
L., Corethrodendron Basiner, Alhagi Adans., Ebenus L., 
Onobrychis Mill. (Polhill, 1981; Thulin, 1985), and Sartoria 
Boiss. (Arslan et al., 2012). The genera Calophaca Fisch., 
Caragana Lam., and Halimondendron Fisch. ex DC., 
which were previously treated in tribe Galegeae, were 
transferred to tribe Hedysareae by Lock (2005). Members 
of Hedysareae are commonly found in dry open habitats 
with a continental, temperate, or Mediterranean climate, 
including Eurasia, North America, and the Horn of Africa 
(Ahangarian et al., 2007). Some taxa of the tribe are 
economically important as fodder legumes due to their 
high protein content (Hayot Carbonero et al., 2011).

Molecular analyses by Wojciechowski et al. (2004) 
and Lavin et al. (2005) showed that Caragana Fabr. was 
the most closely related sister group to the rest of the tribe 
Hedysareae.

Hedysareae is included in the Inverted Repeat Lacking 
Clade (IRLC) group sensu Wojciechowski et al. (2000, 
2004) and Wojciechowski (2003, 2005). In more recent 
studies, it has been suggested that Hedysareae sensu Lock 
(2005) is a sister group to the Astragalean clade, which 
includes genera such as Astragalus L., Oxytropis DC., and 
Colutea L., in addition to Chesneya Bertol. and its close 
relatives (Lock and Schrire, 2005). According to Lavin 
et al. (2005) the most recent common ancestor of the 
Hedysareae and the Astragalean clade originated between 
25.0 and 39.2 million years ago.

The genus Onobrychis is divided into 2 subgenera: 
Onobrychis and Sisyrosema Bunge (Schischkin and 
Bobrov, 1971; Rechinger, 1984; Ahangarian et al., 2007). 
These 2 subgenera are characterized by different karyotype 
features and geographical origins (Rechinger, 1984; Hejazi 
et al., 2010). The main genera of the tribe are Hedysarum, 
with about 160 species (Ahangarian et al., 2007), and 
Onobrychis, with at least 162 species (Yildiz et al., 1999). 
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Hedysarum and Onobrychis were separated 
taxonomically on the basis of fruit morphology, in 
addition to pollen structure, chromosome number, and 
biochemical features (Polhill, 1981; Yildiz et al., 1999).

Different approaches that have been used to define 
the taxonomy of Onobrychis in terms of species and 
infrageneric taxa circumscription have led to contradictions 
and uncertainty. This is probably due to the fact that only 
a limited number of characters have been considered in 
any one of the available taxonomic descriptions (Boissier, 
1872; Ball, 1968; Hedge, 1970; Rechinger, 1984). We used 
the sectional treatment of Schischkin and Bobrov (1972), 
with updates by Yildiz et al. (1999) and Ahangarian et al. 
(2007).

The most frequently used characters are: annual or 
perennial habit, number of ovules, adnate or free stipules, 
size, the proportion or character of the indumentum, 
fruit morphology, and seed number. Yildiz et al. (1999), 
for example, outlined a classification based mainly on 
fruit morphology using a sample of 40 species for 5 
sections of a total of 162 species classified into 2 subgenera 
and 8 sections. In addition to the other morphological 
data, Dolya and Vasilissa (2000) and Avcı et al. (2013) 
used pollen morphology, while Irfan et al. (2007) used 
electrophoretic analysis of total seed proteins to study the 
systematics of Onobrychis. Unfortunately, the number of 
species included in these last 2 studies was too low to draw 
clear general conclusions on the genus.

A detailed taxonomic investigation of the genus 
Onobrychis based on molecular markers is still lacking. 
More recently, a molecular investigation using rDNA 
internal transcribed spacers (ITS) molecular data 
(Ahangarian et al., 2007) considered the tribe Hedysareae. 
The sample set included 11 species of Onobrychis. 

The ITS sequences have been shown to elucidate 
phylogenetic relationships, especially at the species and 
genus levels (Baldwin et al., 1995; Gültepe et al., 2010; İkinci 
et al., 2011). Important results in Leguminosae have been 
obtained with this marker (for instance, Wojciechowski et 
al., 1999) such that it hence appeared appropriate for our 
investigation. The matK gene is one of the most rapidly 
evolving plastid-coding regions; it consistently showed 
high levels of discrimination capability among angiosperm 
species and was used in many studies, and also in 
Leguminosae (e.g., Wojciechowski et al., 2004; Terzioğlu 
et al., 2012 in other angiosperms). A phylogenetic analysis 
of Leguminosae with the plastid matK gene sequences 
supported many well-resolved subclades within the

 

Leguminosae (Wojciechowski et al., 2004). The results 
obtained with the matK sequences are generally consistent 
with those

 
obtained from other plastid sequence data 

(rbcL and trnL), with higher resolution and clade support 
in Leguminosae (Hu et al., 2000; Wojciechowski et al., 

2004). In our molecular phylogenetic study we used 
both nuclear (ITS) and the chloroplast matK (partial 
sequence) markers on a sample set of 78 accessions from 
41 Onobrychis species. The choice of the plastid matK 
marker was due also to the fact that this marker, like the 
rbcL marker, has been chosen as a plant barcoding marker 
by the Consortium for the Barcode of Life (CBOL Plant 
Working Group, 2009). 

2. Materials and methods
2.1. Sampling material and total DNA extraction
Seed samples were collected from different locations, 
including the Mediterranean area, North America, 
Iran, and other areas of Asia. The seeds were stored at 
the National Institute of Agricultural Botany (NIAB) 
Gene Bank (Cambridge, UK). Additional samples were 
obtained from leaves of dried specimens of the Bu-Ali 
Sina University Herbarium, Iran (for all specimens used in 
the analysis, see Table 1S in the supplementary material at 
http://www.unifi.it/caryologia/tjb).

Genomic DNA was isolated either from approximately 
40 mg of fresh leaves or from herbarium sample leaves, 
using the modified Tanksley method (Fulton et al., 1995). 
Plant tissues were stored at –80 °C until DNA extraction. 
The microprep buffer was prepared by mixing DNA 
extraction buffer (0.35 M sorbitol, 0.1 M Tris, 5 mM 
EDTA), nuclei lysis buffer (0.2 M Tris, 0.5 M EDTA, 2 
M NaCl, 2% CTAB), 5% sarkosyl, sodium bisulfite, and 
RNAse. This microprep buffer was incubated at 65 °C. 
Frozen dried leaf samples were milled using the QIAGEN 
Geno/Grinder with 500 µL of microprep buffer. Milled 
samples were incubated at 65 °C for 30 min and then DNA 
purification continued using chloroform:isoamylalcohol, 
isopropanol, and 70% ethanol steps. DNA concentrations 
were estimated by gel electrophoresis on 1% agarose. 
We used 1 DNA sample of more than 10 ng/µL for each 
accession.
2.2. Amplification of ITS and matK region
DNA fragments were amplified as follows: the nuclear 
ribosomal RNA internal transcribed spacer regions, which 
includes ITS1 spacer – 5.8S rRNA gene – ITS2 spacer, 
were amplified and later sequenced using 4 primers 
according to White et al. (1990). The primers trnK685F 
GTATCGCACTATGTATCATTTGA and trnK2R* 
CCCGGAACTAGTCGGATGG were used for the 
amplification of the matK sequence as forward and reverse 
primers, respectively, as suggested by Wojciechowski 
et al. (2004) for Fabaceae. For sequencing, we used only 
trnK685F for about 700 bp for the run, corresponding to 
about half of the matK DNA fragment. The set of matK 
sequences was much smaller than the ITS set.

The ITS amplification was performed as follows: 180 s 
at 95 °C; followed by 28 cycles of 30 s at 95 °C, 60 s at 42 
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°C, and 120 s at 72 °C; then a final extension for 180 s at 
72 °C. For the matK amplification, PCR conditions were: 
180 s at 95 °C; followed by 35 cycles of 30 s at 95 °C, 60 s 
at 53 °C, and 120 s at 72 °C; with a final extension for 180 s 
at 72 °C. Clear-cut, single-banded fragments were purified 
and directly sequenced in both directions by using the 
amplification primers. Cycle sequencing and the BigDye 
Terminator Ready Reaction Kit (Applied Biosystems) 
were used. Data were collected by the ABI automated 
sequencer 3730x gel at the NIAB. Resulting sequences 
were further checked with the software CHROMAS 2.3 
(www.technelysium.com.au). A BLAST (Altschul et al., 
1997) search was performed to exclude sequences from 
contaminant organisms.
2.3. Sequence alignment and phylogenetic analysis
The boundaries of the fragments (about 700 bp for 
matK and 560 bp for ITS sequences) were determined 
by comparison with previously published sequences. All 
new accessions with a corresponding GenBank accession 
number are reported online in Table 1S (supplementary 
material: http://www.unifi.it/caryologia/tjb/).

Optimal multiple alignment was obtained with 
CLUSTALW 1.81 (Thompson et al., 1994) and checked by 
eye. The matrices were combined with the Python (Python 
version 2.6.4; Biopython 1.57) program combinex1_0.
py, written by one of the authors, A Papini, which was 
released under GPL license and is available at www.
unifi.it/caryologia/PapiniPrograms.html. The matrices 
are available by the authors as Table 2S for the combined 
matrix with matk+ITS+indels-derived characters 
and Table 3S with only ITS sequences+indels-derived 
characters (supplied as supplementary material at http://
www.unifi.it/caryologia/tjb/Tab2Hedysaroid_comb.nex).

Three representatives of genus Caragana were used 
as outgroups for the phylogenetic analysis: Caragana 
korshinskii, Caragana microphylla, and Caragana 
arborescens. These outgroups were chosen according to 
the relationships of Onobrychis and allied genera outlined 
in recent molecular studies by Wojciechowski (2003), 
Wojciechowski et al. (2004), Lavin et al. (2005), and 
Ahangarian et al. (2007). Sequences described in these 
studies (75 ITS and 7 matK sequences) were also used in 
the analysis and not directly produced by us (GenBank 
accession numbers are supplied in Table 1S).

Parsimony analysis was performed with PAUP* 
version 4 (Swofford, 2002). A preliminary heuristic search 
was performed with multrees off and 100 replicates with 
random addition. The obtained trees were used as a start 
for a successive analysis with multrees on and 10 replicates 
(default settings in PAUP for hs command).

All characters were weighted equally, and character state 
transitions were treated as unordered. Gaps were treated 
as “simple indel coding” after Simmons and Ochoterena 

(2000), coding them with the software Gapcoder (Young 
and Healy, 2003). This process codes indels as separate 
characters at the end of the same DNA sequences data 
matrix (see Table 2S, supplementary material).

A maximum likelihood (Felsenstein, 1981) search was 
conducted as follows: MrModeltest 2.0 (Nylander, 2004) 
was used to test the best model of sequence evolution 
(based on the Akaike information criterion, Akaike, 1974). 
The model with the best score was used for settings in a 
maximum likelihood (ML) phylogenetic analysis in PAUP. 
The model obtained was used to calculate the likelihood 
value of the maximum parsimony trees.

The analysis was executed with the GARLI package, 
which is based on a stochastic genetic algorithm-like 
approach to simultaneously find the topology, branch 
lengths, and substitution model parameters that maximize 
the log-likelihood (lnL). The package was used on a server 
provided by the Cipres portal (Miller et al., 2009 for the 
site address). For maximum likelihood analysis, indel-
derived characters were excluded.

Bootstrap (Felsenstein, 1985) resampling was 
performed setting search = faststep (with no TBR branch-
swapping because of computational time limits) with 
10 random taxon entries per replicate and the multrees 
option in effect (with 10,000 replicates) under parsimony 
criterion.

A decay analysis was performed for Bremer support 
(Bremer, 1988) with AutoDecay version 5.0 (Eriksson, 
2001) to assess the internal support for relationships 
obtained in the maximum parsimony heuristic analyses.

MrModeltest 2.0 results were also used as an 
evolutionary model for the Bayesian analysis with 
MrBayes (Hulsenbeck and Ronquist, 2001). We used the 
same model for the indel-coded characters of the matrix 
as we did for restriction sites (coded as binary character 
states), as implemented in MrBayes. Bayesian analysis is 
particularly useful to treat mixed character sets (Nylander 
et al., 2004).

The Bayesian phylogenetic analysis was used to assess 
the robustness of tree topology and the support for clades. 
The posterior probability of the phylogenetic model was 
estimated using Markov chain Monte Carlo sampling 
with the Metropolis–Hastings–Green algorithm. Four 
chains were run, 3 heated and 1 cold, for 106 generations 
and were sampled every 100 generations. Following the 
analysis, the posterior probabilities were checked in the 
output of MrBayes (in the file .p produced by the software) 
to estimate the number of trees that should be discarded as 
“burn-in” when the values reached stationarity (that is, it 
did not vary anymore out of a range). When stationarity was 
reached (quite stable values of the log likelihood scores), it 
was possible to evaluate how many of the beginning trees 
to discard as “burn-in.” After the “burn-in” trees were 
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removed from the data set, the remaining trees were used 
to produce a 50% majority-rule consensus tree with PAUP, 
in which the percentage support indicated a measure of 
the Bayesian posterior probabilities. The stationarity was 
reached at approximately generation 30,000, and so the 
first 300 trees (or the “burn-in” period of the chain) were 
discarded. Phylogenetic inferences are therefore based on 
those trees sampled after generation 30,000 for both the 
combined data set and the data set for only ITS. 

The Templeton (Wilcoxon signed-ranks) test 
(Templeton, 1983), implemented in PAUP, was used to test 
the alternative less parsimonious topologies with respect 
to the most parsimonious tree. This test was used to 
evaluate the significance of an alternative position of taxa 
of Onobrychis s.l.

A partition homogeneity test was performed to check 
compatibility between the plastid sequence matK and the 
ITS sequences with PAUP version 4 (Swofford, 2002), with 
heuristic search, 100 replicates, and swap=none to reduce 
the computational effort.

The trees were edited for better readability with the 
program FigTree v1.3.1 by Andrew Rambaut, Institute of 
Evolutionary Biology, University of Edinburgh: http://tree.
bio.ed.ac.uk/software/figtree/.

Supplementary materials (Figures S1–S4 and Tables 
S1–S3, with their legends, are in the file SupplOnobrychis.
html) are available at www.unifi.it/caryologia/tjb/.

3. Results
3.1. Sequence analysis
The total alignment with both markers consisted of 67 
taxa and 1501 characters, of which 717 resulted from 
nucleotide sequence alignment of matK, 643 from the 
ITS sequences (ITS1+5.8SrDNA+ITS2), and another 140 
characters as a result of indel coding (36 for the matK and 
103 for the ITS). The partition homogeneity test in PAUP 
(Swofford, 2002) showed that the matK (plastid genome-
encoded) and the ITS gene set were congruent at P = 0.01 
(just P-value = 1 – (99/100) = 0.010).
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Figure 1. Majority rule consensus tree obtained from the Bayesian trees (excluding the “burn-in” trees) 
from the total evidence matrix formed by matK+ITS1+5.8SrDNA+ITS2 and indels coded as simple gaps. 
Robustness is indicated above branches: the first number corresponds to the Bayesian support, the second 
to the bootstrap (maximum parsimony) support, and the third to the decay values. The value is empty for 
values lower than 50% for Bayesian and bootstrap support and lower than 1 for the decay values. If only 
one number is present, it corresponds to the Bayesian support. In green, Onobrychis subgenus Onobrychis 
section Onobrychis; in yellow, O. subgenus O. section Lophobrychis; in pink, O. subgenus Sisyrosema section 
Hymenobrychis; in blue, O. subgenus Sisyrosema section Heliobrychis.
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3.2. MatK/ITS phylogenetic tree
The phylogenetic analysis, on the basis of the total evidence 
(matK+ITS) with the heuristic search, produced 109 trees 
1111 steps long. Three of these trees were those with 
the best maximum likelihood value (calculated without 
considering indels) on the basis of the evolutionary models 
found with MrModeltest. One of these 3 trees is supplied 
as supplementary material (Figure S1).

The tree obtained as majority rule consensus trees of 
the Bayesian analysis trees (obtained with MrBayes) is 
shown in Figure 1.

Genus Onobrychis plus Hedysarum boreale (apparently 
inserted in Onobrychis subgenus Onobrychis) was 
supported with 100% Bayesian and bootstrap support, 
value of decay = 17. In fact, the analysis with matK 
alone (Figure S4, supplementary material) resulted in H. 
boreale clustering together with the other 2 accessions 
of Hedysarum considered in the analysis and not within 
Onobrychis.

Genus Onobrychis subgenus Onobrychis section 
Onobrychis plus Hedysarum boreale (in green color in 
Figure 1) had 100% Bayesian and bootstrap support 
and decay value = 11. O. subgenus Onobrychis section 
Lophobrychis Hand.-Mazz. was not monophyletic, since 
O. pulchella, O. alba subsp. laconica, and O. crista-galli 
formed a clade with O. petraea, while O. aequidentata and 
O. caput-galli were sister groups to section Onobrychis.

O. subgenus Sysirosema Bunge was supported as 
monophyletic, with 100% Bayesian and bootstrap support 
and autodecay value = 18. O. subgenus Sisyrosema section 
Hymenobrychis DC. (in pink in Figure 1) was supported as 
monophyletic with 100% Bayesian support, 98% bootstrap 
support, and autodecay index = 11. O. subgenus Sisyrosema 
section Heliobrychis Bunge (in blue in Figure 1) was a 
sister group to section Hymenobrychis and monophyletic 
with 100% Bayesian and bootstrap support and autodecay 
index = 6, even though only 2 accessions were sampled. 
The interspecific relationships in Onobrychis, especially 
within the subgenus Onobrychis, were not resolved. In 
fact, in some cases different accessions of the same species, 
such as O. viciifolia, clustered in a different point of the tree 
without forming monophyletic groups.

The maximum likelihood tree obtained with GARLI 
was very similar to that shown in Figure 1 (data not 
shown). A strict consensus tree of maximum parsimony 
for 1,014,420 trees (search stopped after 90 min) obtained 
only with matK sequences (including indel-derived 
characters) is supplied in the supplementary material as 
Figure S4 (www.unifi.it/caryologia/tjb/FigS4.pdf). In this 
tree, the accession of Hedysarum boreale clustered together 
with the other 2 accession of Hedysarum used in the 
analysis and not together with genus Onobrychis.

3.3. ITS phylogenetic tree
The analysis of the ITS data set showed that the genus 
Onobrychis was not monophyletic because of the presence, 
within Onobrychis, of 1 accession of Eversmannia 
subspinosa and 2 accessions of Hedysarum, H. boreale and 
H. candidissimum (Figure 2). The so-formed clade had 93% 
Bayesian support. H. membranaceum was a sister group to 
Onobrychis + Eversmannia with 93% Bayesian and 62% 
bootstrap support and autodecay index = 2 (Figure 2). A 
Templeton test was then performed with PAUP to test an 
alternative position of H. membranaceum, inserting this 
last species within Hedysarum s. s. The alternative tree was 
significantly different and 10 steps longer with respect to 
the maximum parsimony tree. 

Within the genus Onobrychis, the subgenus Onobrychis 
was also monophyletic (98% Bayesian support, 86% 
bootstrap support, and decay index = 7) (Figure 2). 
Subgenus Sisyrosema was monophyletic with 100% 
Bayesian support and decay index = 13. Eversmannia 
subspinosa was supported as a sister group to subgenus 
Onobrychis (88% Bayesian support and decay index = 
2). An alternative hypothesis with the Eversmannia sister 
group to the whole genus Onobrychis produced a 2-step-
longer tree. The difference was not statistically significant 
after the Templeton test.
3.4. Relationships within Onobrychis
Section Onobrychis plus 1 accession of O. cyri (shown in 
light green in Figure 2) formed a monophyletic group (89% 
Bayesian support). Section Lophobrichis (shown in yellow 
in Figure 2) was not monophyletic, since O. caput-galli and 
O. aequidentata were not included in it, but were sisters 
to section Onobrychis. Section Dendrobrychis DC. (in dark 
green) was divided into 2, with 3 accessions of O. cornuta 
clustered within the main part of section Lophobrychis 
and O. arnacantha (considered as belonging to subgenus 
Sysirosema) in an unresolved position with respect to the 
recognized sections of this subgenus. O. petraea clustered 
together with Lophobrychis + part of Dendrobrychis.

O. subgenus Sysirosema (Figure 2: fuchsia, blue, 
gray, red, and a basal dark green branch) was supported 
as monophyletic with 100% Bayesian and bootstrap 
support and autodecay value = 13, with the exception of 
O. arnacantha (section Dendrobrychis, in dark green), 
taxonomically assigned to subgenus Onobrychis. Subgenus 
Sysirosema was formed by sections Hymenobrychis (in 
fuchsia) + Heliobrychis (in blue) + Laxiflorae (Širj.) 
Rech.f. (in red) + Afghanicae Širj. (in gray). O. subgenus 
Sisyrosema section Hymenobrychis (in pink in Figure 
2) was supported as monophyletic with 100% Bayesian 
support and decay index = 4, provided that we consider 
O. acaulis (taxonomically, this is considered to belong to 
section Anthyllium Nábělek) inserted in Hymenobrychis. 
O. subgenus Sisyrosema section Heliobrychis (in blue in 
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Figure 2. Majority rule consensus tree obtained from the Bayesian trees (excluding the “burn-in” trees) from the ITS matrix formed by 
ITS1+5.8SrDNA+ITS2 and indels coded as simple gaps. Robustness is indicated above branches: the first number corresponds to the Bayesian 
support, the second to the bootstrap (maximum parsimony) support, and the third to the decay values. The value is empty for values lower than 
50% for Bayesian and bootstrap support and lower than 1 for the decay values. If only one number is present, it corresponds to the Bayesian 
support. N= corresponds to the available data about the chromosome number. In green, Onobrychis subgenus Onobrychis section Onobrychis; 
in yellow, O. subgenus O. section Lophobrychis; in light blue, O. subgenus O. section Dendrobrychis; in fuchsia, O. subgenus Sisyrosema section 
Hymenobrychis; in blue, O. subgenus Sisyrosema section Heliobrychis; in brown, O. subgenus Sisyrosema section Laxiflorae; in gray, O. subgenus 
Sisyrosema section Afghanicae; in red, Hedysarum membranaceum. For karyological data references see the text (Section 4.2).
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Figure 2) was supported as monophyletic (100% Bayesian 
support, 87% Bootstrap support, and decay index = 
4) and sister group to section Hymenobrychis. Section 
Laxiflorae was in the basal position of the subgenus in an 
unresolved position with respect to O. arnacantha and the 
clade formed by sections Hymenobrychis + Heliobrychis 
+ Afghanicae. Section Afghanicae (represented here by 
a single accession, O. nummularia) was an outgroup to 
Hymenobrychis + Heliobrychis.

Even in the ITS data set (with more taxa than 
the combined set), the interspecific relationships in 
Onobrychis and particularly within subgenus Onobrychis 
were not easily resolved. The ITS marker does not 
produce trees that keep all the accessions of the same 
species together, such as O. viciifolia, O. cyri, O. iberica, 
O. biebersteinii, O. transcaucasica, and O. altissima in 
subgenus Onobrychis section Onobrychis, and O. michauxii 
and O. mazanderanica in O. subgenus Sysirosema section 
Hymenobrychis. Hence, the phylogenetic analysis of the 
ITS sequence variation did not insert all the accessions of 
the same species into monophyletic groups. 

The maximum likelihood tree obtained with GARLI is 
supplied as supplementary material (Figure S2) together 
with one of the maximum parsimony trees with the best 
maximum likelihood score obtained with PAUP on the 
basis of the MrModeltest settings (Figure S3). These trees 
supported H. membranaceum as a sister group to genus 
Onobrychis+Eversmannia and the position of Eversmannia 
as a sister group to Onobrychis subgenus Onobrychis and 
of O. petraea within section Lophobrychis. Some of the 
maximum parsimony trees (as in Figure S3) positioned 
genus Ebenus as a sister group to O. subgenus Sysirosema. 
This alternative topology had Bayesian and bootstrap 
support lower than 50% and decay index of <1, but the 
Templeton test showed that, at least with the parsimony 
criterion, the difference was not statistically significant 
(data not shown).
3.5. Indels in the combined matK and ITS matrix
The combined matrix is provided as Table S2 
(supplementary material: http://www.unifi.it/caryologia/
tjb/): the indicated indel positions are referred to in 
Table S2. Three indels were shared by the outgroups and 
Alhagi (1153, 1157, and 1297 of the combined alignment). 
Three indels were shared by the outgroups, Alhagi, and 2 
accessions of Hedysarum (919, 947–949, and 976 of the 
combined alignment).The indel in position 1146–1153 was 
shared by Onobrychis sect. Lophobrychis plus O. petraea. 
An indel in 1197 was shared only by the 2 accessions of 
Hedysarum viciifolia.

The ITS matrix was composed of 153 accessions for 
897 positions, of which 1–285 belong to the ITS1, 286–463 
to the 5.8S rDNA, 464–711 to the ITS2, and 712–897 to the 
indels, coded as simple gaps.

3.6. Indels found only in the ITS matrix
Relative only to the ITS alignment, an indel in 35–36 was 
shared by Alhagi plus Eversmannia. Five indels in 71–73, 
108–112, 208, 299–300, and 473 characterized the whole 
genus Ebenus. An indel in 87–88 characterized Hedysarum 
membranaceum+Onobrychis subgenus Sysirosema. An 
insertion in position 80 was shared by Eversmannia, 
Onobrychis subgenus Sysirosema, and Hedysarum 
membranaceum. An insertion in 471–477 was shared by 
O. petraea + section Lophobrychis.

4. Discussion
4.1. Phylogenetic relationships
The results of the partition homogeneity test showed that 
the 2 data sets, the plastid partial matK sequence and the 
nucleus encoded sequence ITS, were congruent only at P = 
0.01 (P-value = 1 – (99/100) = 0.010). This P-value is just the 
threshold at which combining 2 data sets would improve 
phylogenetic confidence after Cunningham (1997). After 
Rokas et al. (2003), concatenating more sequences in a 
single matrix would reduce the total number of maximum 
parsimony trees. For these reasons an initial analysis was 
performed with the combined data set, followed by a 
focus on the larger ITS data matrix. We also supplied the 
only matK strict consensus tree of 1,014,420 trees (PAUP 
maximum parsimony heuristic search with outgroup 
Caragana, search stopped after 90 min), as in Figure S4 in 
the supplementary material.

The combined (matK+ITS) phylogenetic analysis 
showed that an accession of Hedysarum boreale clustered 
together with genus Onobrychis, as already observed 
by Ahangarian et al. (2007). However, the analysis 
using matK only (Figure S4, supplementary material) 
positioned H. boreale together with the other 2 accessions 
of Hedysarum. This matK sequence (AY386892 by 
Wojciechowski, Lavin, and Sanderson from a sample 
from Arizona: Wojciechowski 259) was obtained from a 
different sample with respect to the ITS sequence. This last 
was the same used by Ahangarian et al. (2007) in his study, 
that is U50482 for the ITS1 and U50483 for the ITS2, 
both by Sanderson and Wojciechowski from the same 
sample “Wojciechowski and Sanderson 131”. The sample 
of H. boreale may be of hybrid (intergeneric!) origin, since 
the maternally inherited plastid sequence resulted in a 
different phylogenetic position with respect to the nuclear 
ITS. Alternatively, the original samples (or at least one of 
them) of H. boreale may have been wrongly identified. 

The accession of Hedysarum candidissimum (within 
Onobrychis in our results) was published in GenBank 
by Ahlquist and Wojciechowski, voucher M.Nyedegger 
42636 (MSB). Since this sequence was not yet employed 
in other phylogenetic analysis, it was not discussed further 
in this study. As H. boreale, H. candidissimum may also be 
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really more related to genus Onobrychis than to the rest of 
Hedysarum and further DNA markers may be necessary to 
clarify their positions (Martin F Wojciechowski, personal 
communication).

After Martin F. Wojciechowski (personal 
communication), Hedysarum and Onobrychis, both 
containing well over 100 species, are probably paraphyletic 
and relationships are fluid. In view of this uncertainty, 
these species were omitted from the following discussion.

In the total evidence matrix, O. subgenus Onobrychis 
section Lophobrychis was not monophyletic since O. 
pulchella, O. alba subsp. laconica, and O. crista-galli 
formed a clade with O. petraea, while O. aequidentata 
and O. caput-galli, belonging to this section after most 
treatments, were sister groups to section Onobrychis. 
However, very variable chromosome numbers have been 
documented for O. aequidentata: 2n = 14, 16, and 28 (De 
Montmollin, 1984; Romano et al., 1987; Baltisberger, 1991; 
Abou-El Enain, 2002). The same values were documented 
for O. caput-galli (Heyn, 1962; Slavivk et al., 1993; Abou-
El Enain, 2002). Such variation (even apparently with 
different base chromosome numbers: 7 and 8) may suggest 
the presence of a different species poorly characterized 
from a morphological point of view, or even the presence 
of hybrids or species of hybrid origin, under the names 
O. aequidentata and O. caput-galli. The not “orthodox” 
position within the section Lophobrychis may be justified by 
such variability. The difficult phylogenetic reconstruction 
due to species of hybrid origin is well known in “difficult” 
genera such as Quercus (Fagaceae) (Simeone et al., 2013) 
or Rebutia (Cactaceae) (Mosti et al., 2011).

On the basis of the molecular data here presented, genus 
Onobrychis cannot be considered monophyletic without 
inserting in it at least the genus Eversmannia (which was 
nested within Onobrychis). Conversely, the Templeton test 
showed that an alternative tree topology with Eversmannia 
as sister group to Onobrychis was 2 steps longer (with 
parsimony), but not significantly different. Eversmannia 
may be seen as a specialized version of Onobrychis with 
many autapomorphies, even at the molecular level. This 
uncertainty suggests that a larger sampling of Eversmannia 
in particular and Hedysareae in general is necessary to 
clarify the position of this genus before suggesting its 
eventual transfer into Onobrychis.

Ahangarian et al. (2007) separated Hedysarum 
membranaceum as sister group of the genus Sulla (88% 
bootstrap support), while Eversmannia was put into a sister 
group of the genus Onobrychis (see maximum parsimony 
trees). However, these analyses were undertaken on a 
much smaller sample with respect to the data presented 
here and only under the maximum parsimony criterion. 
The position of H. membranaceum as a sister group 
of Onobrychis was confirmed by the Templeton test 

(alternative positions resulted in trees with a statistically 
significant difference). 

H. membranaceum is the only species within the 
monotypic section Membranacea B.Feldtsch. of the 
genus Hedysarum. This species is restricted to north 
Africa and is morphologically distinct from the other 
Hedysarum species and the other genera of Hedysareae in 
that it has pods with wide wings up to 3 mm wide, short 
inflorescences, ovate standard, wings with a short auricle, 
a keel with a short claw, and a protruded hilum in the seed 
(Choi and Ohashi, 2003). Choi and Ohashi (1996) noted 
that H. mebranaceum Coss. et Bal. is intermediate between 
sect. Fruticosa and other species of Hedysarum in terms of 
pollen morphology, petal shape, and a suffrutescent habit. 
H. membranaceum turned out to be the most divergent 
species among the Mediterranean representatives of the 
genus Hedysarum on the basis of ISSR data (Chennaoui-
Kourda et al., 2007) and in a previous analysis with ITS 
data restricted to 8 species of Hedysarum s. l. (Chennaoui 
et al., 2007). The molecular data, together with the results 
of the Templeton test and the morphological features 
(Choi and Ohashi, 2003), indicate that this taxon may be 
recognized as a separate genus with respect to Hedysarum 
if further morphological and/or molecular characters 
confirm the here-observed phylogenetic position.

The position of O. petraea, previously positioned in 
O. section Onobrychis subsection Macropterae Hand.-
Mazz., was nested within Lophobrychis+Dendrobrychis. 
On the basis of these data, we suppose that the sectional 
treatment may deserve some changes. On the basis of the 
molecular data alone, in order to form a monophyletic 
clade corresponding to a section, part of Lophobrychis, 
Dendrobrychis, and subsection Macropterae of section 
Onobrychis (O. petraea) should be kept together. Further 
molecular data may be useful to further clarify the 
relationships of these species.

Onobrychis subgenus Sysirosema was resolved as 
monophyletic with high support and should therefore be 
maintained. At the sectional level, O. subgenus Sisyrosema 
section Heliobrychis was monophyletic and a sister group 
of section Hymenobrychis. This result confirmed that 
of Arslan and Ertuğrul (2010), who used seed storage 
proteins as molecular markers. The monophyly of sections 
Laxiflorae and Afghanicae is not excluded by the here-
presented results, even if the relationships of section 
Laxiflorae were not completely clear. A gametophytic 
chromosome count of n = 7 for O. laxiflora (Kathoon and 
Ali, 1991) may suggest this number as the basal number for 
the subgenus Sisyrosema. Section Afghanicae is positioned 
as a sister group to Heliobrychis + Hymenobrychis.

The presence of O. arnacantha (section Dendrobrychis, 
in dark green in Figure 2), taxonomically assigned to 
subgenus Onobrychis, in a basal position close to subgenus 
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Sysirosema was quite unexpected. The same result was 
obtained by Ahangarian et al. (2007), who suggested 
that some morphological features, similar those of other 
species of section Dendrobrychis (as O. cornuta, inserted 
in the analysis), were due to parallelism.

O. acaulis was nested within section Hymenobrychis 
despite it currently being classified as belonging to section 
Anthyllium. Such incongruence may be due to erroneous 
assignment of O. acaulis to section Anthyllium, or a 
wrong assignment of the status of the section to this last 
group of species. Section Anthyllium did not appear to be 
sufficiently separated from section Hymenobrychis, but 
better sampling within this section is necessary before 
eventual definitive taxonomic rearrangements.

An alternative tree topology with genus Ebenus as a 
sister group to O. subgenus Sysirosema appeared in some 
maximum parsimony trees. This position had Bayesian 
and bootstrap support lower than 50% and decay index of 
<1, but the Templeton test showed that, at least with the 
parsimony criterion, the difference was not statistically 
significant. For this reason it was also decided that the 
current status of Eversmannia should not be changed 
(together with a current insufficient sampling of species 
within this genus and the lack of data for other small 
genera within Hedysareae).

Results from this study showed that the genus Hedysarum 
was polyphyletic, and to a greater extent than was already 
proposed by Choi and Ohashi (2003). Phylogenetic analysis 
showed that it was resolved into 4 different clades. One 
clade separated from Hedysarum, corresponding to genus 
Sulla (already separated from the rest of Hedysarum by Choi 
and Ohashi, 2003), Hedysarum s. s. with the type species 
H. alpinum, and a last group resulted in a sister group to 
Taverniera and H. kumaononense. We did not make further 
taxonomic decisions in relation to Hedysarum (apart from 
H. membranaceum) since sampling in the here-presented 
data favored Onobrychis. Moreover, some important genera 
related to Hedysarum, such as Sartoria and Corethodendron, 
are not represented here.

The key to the genera of Hedysarum and allied genera 
as proposed by Choi and Ohashi (2003) still remains 
valid even though taxonomic rearrangements have been 
proposed as a result of this study.
4.2. Karyotype evolution in Hedysareae
The known chromosome numbers are indicated in Figure 
2. On the basis of the data available from the IPCN 
chromosome numbers databank (tropicos.org, Missouri 
Botanical Garden), genera Alhagi, Sulla, and Taverniera 
have a basic number of n = 8. These 3 genera are those 
resulting sister groups to the rest of Hedysareae after our 
phylogenetic analysis (Figure 2). Astragalus and Chesneya 
of the related Astragalean clade (Sepet et al., 2011) also 
have a basic number of n = 8. A count of 2n = 18 in Sulla 

coronaria (as Hedysarum coronarium) is known (Issolah et 
al., 2006), such that Arslan et al. (2012) also consider n = 9 
to be a possible basis chromosome number in Hedysarum 
s. l. The count 2n = 16 was also found in the genus Sartoria 
(not sampled here; Arslan et al., 2012). Hedysarum s. s. 
(the clade containing the genus type H. alpinum) has n = 7, 
apart from 1 count of n = 8 for an accession of H. alpinum. 
The same number (7) was also documented for the genus 
Ebenus. This last genus was the sister group of the clade 
containing Hedysarum membranaceum+Onobrychis+Eve
rsmannia. A count of n = 8 is available for Eversmannia. 
The situation is more complex in Onobrychis. Within the 
subgenus Sysirosema, the chromosome number is always n 
= 7 in section Hymenobrychis, apart from a count of 2n = 
16 for Onobrychis galegifolia, not sampled here and which 
would deserve further testing, and some counts of 2n = 16 
for O. subnitens (Ranjbar et al. 2012), while n = 8 would 
be the base chromosome number in section Heliobrychis. 
This last section appears to be homogeneous regarding 
chromosome number and DNA sequence evidence, 
while it appeared quite variable in morphological 
characters (Karamian et al. 2012). Within the subgenus 
Onobrychis, n = 8 is known for sections Dendrobrychis 
and Lophobrychis. These 2 sections clustered together in 
the phylogenetic analysis and were the sister groups to 
section Onobrychis, which only had known chromosome 
counts of n = 7. Comparing the phylogenetic analysis with 
the karyotype data, we can assume a base number n = 8 
for the tribe (present in the more basal genera), changing 
to 7 in Hedysarum s. s. and Ebenus. This number would 
be maintained in Onobrychis subgenus Sysirosema, while 
n = 8 in sect. Heliobrychis would be a derived condition. 
The change to n = 8 would occur also in Eversmannia, a 
possible sister group to subgenus Onobrychis in some of 
the presented trees based on the ITS (Figure 2). The same 
number is maintained in sect. Dendrobrychis and sect. 
Lophobrychis, while n = 7 in section Onobrychis would be 
again a derived condition.

A variation in chromosome number and ploidy level 
is known for some species, particularly for Onobrychis 
subgenus Onobrychis section Onobrychis. Accessions 
of O. altissima, for instance, have 2n = 14 (Arslan et al., 
2012) and others have 2n = 28 (Hejazi et al., 2010), while 
a variation of 2n = 22, 27, 28, 29 was found in O. viciifolia. 
After Ranjbar et al. (2010), O. altissima is considered to be 
closely related to the cultivated sainfoin (O. viciifolia) and 
may be a progenitor of it, while, based on morphological 
similarity, a close relationship between the 2 species was 
postulated by Hedge (1970). Gömürgen (1996) found also 
cases of meiotic chromosome instability in O. armena. 
This chromosome number variation even within species 
may suggest the presence of cryptospecies with similar 
morphology but a different chromosome number, at 
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least in some of the species of this section. The presence 
of cryptospecies may partly explain the failure of the ITS 
sequence to distinguish between species within section 
Onobrychis. Moreover, polyploidy within some taxa may 
be due to ITS polymorphism, even with the possible 
formation of paralogues. This phenomenon may cause 
difficult phylogenetic reconstruction and possible conflicts 
between nuclear and chloroplast sequences, as in the genus 
Quercus (Bellarosa et al., 2005; Simeone et al., 2009; Papini 
et al., 2011).

5. Conclusion
The main results of this analysis are: genus Onobrychis may 
be not considered monophyletic, since Eversmannia was 
nested within it, while the position of the monotypic section 
Membranacea B.Feldtsch. of genus Hedysarum (containing 
only one species, H. membranaceum Coss. & Bal.) was 
supported as a sister group of Onobrychis+Eversmannia. 
The 2 markers that were employed (ITS and matK) 
were able to distinguish between genera within the tribe 
Hedysareae and intrageneric relationships in Onobrychis 
and Hedysarum. Nevertheless, these markers were unable 
to fully distinguish between species of Onobrychis, 
particularly in sect. Onobrychis. Published cytogenetic 
data may suggest that this result is linked to difficult 
species circumscription (various chromosome numbers in 
polyploid series are present within the same species). The 
phylogenetic analysis showed that the most basal clades of 
the tribe have n = 8 as a basic chromosome number, with 

n = 7 appearing in a clade corresponding to Hedysarum 
s. s. and Ebenus. These last groups were clustered as a 
sister group to Onobrychis+Eversmannia+Hedysarum 
membranaceum. The chromosome numbers followed 
a variable pattern in Onobrychis. Subgenus Sysirosema 
section Hymenobrychis has a chromosome number of n = 
7 while section Heliobrychis has n = 8. This chromosomal 
switch may be the basis of the separation of these sections. 
In subgenus Onobrychis, the sections Dendrobrychis and 
Lophobrychis have n = 8, while the more derived section 
Onobrychis has again n = 7. A count of n = 8 was reported 
for Eversmannia, in agreement with the molecular 
phylogenetic analysis (indicating a sister group position 
with respect to subgenus Onobrychis).

We did not take taxonomic decisions in relation to 
Hedysarum, since sampling in the here-presented data 
favored Onobrychis. Moreover, some important genera 
related to Hedysarum, such as Sartoria and Corethodendron, 
are not represented here.
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