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Abstract: The role of vitamin D in maintaining health appears greater than originally 

thought, and the concept of the vitamin D axis underlines the complexity of the biological 

events controlled by biologically active vitamin D (1,25(OH)(2)D3), its two binding 

proteins that are the vitamin D receptor (VDR) and the vitamin D-binding protein-derived 

macrophage activating factor (GcMAF). In this study we demonstrate that GcMAF 

stimulates macrophages, which in turn attack human breast cancer cells, induce their 

apoptosis and eventually phagocytize them. These results are consistent with the 

observation that macrophages infiltrated implanted tumors in mice after GcMAF 

injections. In addition, we hypothesize that the last 23 hydrophobic amino acids of VDR, 

located at the inner part of the plasma membrane, interact with the first 23 hydrophobic 

amino acids of the GcMAF located at the external part of the plasma membrane. This 

al1ows 1,25(OH)(2)D3 and oleic acid to become sandwiched between the two vitamin  
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D-binding proteins, thus postulating a novel molecular mode of interaction between 

GcMAF and VDR. Taken together, these results support and reinforce the hypothesis that 

GcMAF has multiple biological activities that could be responsible for its anti-cancer 

effects, possibly through molecular interaction with the VDR that in turn is responsible for 

a multitude of non-genomic as well as genomic effects. 
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1. Introduction 

The so-called vitamin D axis is involved in various aspects of human breast cancer, the most 

common human tumor. The vitamin D axis is composed of the biologically active form of vitamin D 

(1,25(OH)(2)D3), and by two proteins that specifically bind it. These proteins are the vitamin D 

receptor (VDR) and the vitamin D binding protein that is the precursor of the vitamin D binding 

protein-derived macrophage activating factor, also termed GcMAF [1]. The role of vitamin D in 

human breast cancer is witnessed by the number of studies that have been published on the subject [2]. 

More intriguing, however, is the relative lack of information about GcMAF and human breast cancer; 

in fact, in the peer-reviewed literature, as of today (May 2013), there are only four studies on this 

subject. In two of these studies, the effects of GcMAF were observed on the human breast cancer cell 

line MCF-7 in vitro [3,4]. Another study examined the glycosylation status of vitamin D binding 

protein in cancer patients including breast cancer patients [5], whereas a less recent study reported the 

effects of administering GcMAF to metastatic breast cancer patients [6]. 

It is interesting to notice that no studies have, so far, been performed in order to assess whether 

GcMAF, which is a known powerful activator of macrophages, was indeed capable of activating 

macrophages that could in turn ―attack‖ human breast cancer cells. There is indirect evidence 

suggesting that GcMAF activates macrophages that infiltrate experimental tumors in animal 

models [7,8]. This evidence, however, is indirect and, most important, refers to experimental tumors 

other than human breast cancer. In addition, since the observations quoted above were performed in 

experimental animals, the presence of confounding factors associated with the complexity of the 

responses of the whole organism to the presence of transplanted or advanced tumors, limits the 

possibility of interpretation of the presented results. 

Therefore, in order to fill this gap of knowledge, we performed experiments to provide clear-cut 

evidence that GcMAF, as part of the vitamin D axis, activates normal macrophages that in turn exert a 

tumoricidal action against human breast cancer cells without the presence of confounding factors. 

2. Experimental Section 

Purified, activity-tested GcMAF was obtained from Immuno Biotech Ltd., Guernsey, Channel 

Islands. Paricalcitol was from Abbott, Roma, Italy. All other reagents were from Sigma Aldrich, 

Milano, Italy. 
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2.1. Cell Lines 

Human breast cancer cells (cell line MCF-7) were obtained from the Istituto Zooprofilattico 

Sperimentale della Lombardia e dell‘Emilia-Romagna, Brescia, Italy. Cells were routinely maintained 

at 37 °C in a humidified atmosphere of 5% CO2 in Eagle‘s minimum essential medium in Earle‘s 

Balanced salt solution, supplemented with 1 mM sodium pyruvate, 10% fetal bovine serum (FBS),  

100 U/mL penicillin, and 100 µg/mL streptomycin (Invitrogen, Carlsbad, CA, USA). No 1,25(OH)(2)D3 

was present in the culture medium. In experiments of co-cultures, macrophages (cell line Raw 264.7, 

HPA Culture Collection) were activated by culturing them in the same medium of MCF-7 cells and in 

the presence of 100 ng/mL GcMAF for 72 h prior to addition to the MCF-7 cell culture. GcMAF 

concentration was established by preliminary experiments showing a linear dose-response curve. The 

initial response was observed at 1 ng/mL and a plateau was reached at 100 ng/mL. These 

concentrations were consistent with the results previously reported [3,4]. Before addition to the  

MCF-7 cell culture, the macrophages were gently centrifuged and re-suspended in fresh medium in 

order to avoid transferring GcMAF to the co-culture. In this way, we could rule out direct effects of 

GcMAF on MCF-7 cells. The macrophages were added at a ratio of 1:1 to the MCF-7 cell culture. The 

cells were then allowed to settle for 1 h before time-lapse photography. Photography was taken over a 

7-day period using an Olympus CK2 microscope and a GXCAM-3 with NCH Debut capture software. 

In the experiments described in Figures 1A and 2, the cells were fixed and stained as described below 

40 h after co-culturing them. 

2.2. Study of Cell Morphology 

Cell morphology was studied by phase-contrast microscopy using an Optika inverted microscope 

(Model XDS-2; Optika Microscopes, Bergamo, Italy). This microscope had a positive-phase plate for 

phase-contrast imaging below a long working distance condenser lens, and an 8 Mp digital camera 

with LCD Screen (Optika Microscopes, Bergamo, Italy). The light source was a 6 V/30 W halogen 

pre-centered illuminator, with adjustable intensity. Phase-contrast imaging was performed on living 

cells without any fixation or treatment. A series of digital images of living cells were recorded for each 

experimental point and the most representative were chosen. 

Haematoxylin-eosin and Papanicolaou staining were also performed. This last staining results in 

very transparent cells, such that even thicker specimens with overlapping cells could be recorded. 

Briefly, cells were stained with Harris haematoxylin as nuclear stain. Orange G and EA-65 (Light 

Green, Bismarck Brown, and Eosin) were used for cytoplasmic staining (Sigma Aldrich, Milano, 

Italy). Slides were mounted with permanent mounting medium and observed under light microscopy 

(Nikon Instruments SpA, Milano, Italy). Pictures shown are representative of typical experimental 

data. Each experiment was performed with quadrupled samples and was replicated three times. 

2.3. Study of Cell Proliferation 

Assessment of cell proliferation was determined by a Calbiochem Rapid Cell Proliferation Kit 

(Calbiochem, D.B.A., Milano, Italy) [9]. Each condition was replicated with quadrupled samples and 
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each experiment was replicated three times. Differences between experimental values were evaluated 

by the Student‘s t-test. 

2.4. Study of Amino Acid Alignments and Functions 

Analyses were carried out on the nucleotide and amino-acid sequences of the genes coding for 

vitamin D binding protein/GcMAF (isoform 1 precursor; gi|324021743|ref|NP_001191235.1) and 

VDR (gi|38511972|gb|AAH60832.1) in Homo sapiens. In reference to the protein alignments, three 

parameters have been taken into account: 

1. sequence identity 

2. sequence similarity 

3. hydrophobic profile 

These criteria were evaluated because they determine the quality of the alignments. In addition, we 

evaluated the functional value of the amino acids replaced, i.e., the importance that any divergence 

assumes within the sequence. The values obtained have allowed the scores to be added, rather than 

multiplied, in the global calculation of alignment scores. Information concerning the selected genes 

was obtained from the database at the University of California, Santa Cruz [10] referring to the latest 

published version of the human genome [11]. In particular, we used the table refGene, containing all 

gene coding and non-coding for proteins. In this way, it was possible to obtain detailed information on 

human genes, such as: chromosome, position of the start and the end of transcription, position of the 

start and the end of coding part, and the number and the positions of exons. The annotations for the 

genes were obtained using the algorithm liftOver [12]. 

The presence of conserved elements within the alignment was verified by using the information 

contained in the phastConsElements28way table of the UCSC database. This table contains the 

predictions of conserved elements produced by the phastCons program. The positions were reported on 

the alignment. All operations, from the search of genomic information to the creation of the 

alignments, were made using R Statistical Mathematical Software. Once the sequences were aligned, 

the columns of residues were taken into consideration. Any lined-up residue is to be considered 

implicitly related to evolution. The hydrophobic profile was obtained using software on the website [13]. 

Among the several systems that can be used for the calculation of the index of the amino acid sequence 

hydrophobicity/hydrophilicity, we selected the Kyte and Doolittle‘s method [14]. The three-dimensional 

protein structures of vitamin D-binding protein and VDR were obtained through the use of the PDB 

archive [15]. Superposition between the two structures was possible through the use of the Swiss Pdb 

Viewer software [16]. The PDB archive contains information about experimentally-determined 

structures of proteins, nucleic acids, and complex assemblies. SwissPdb Viewer is an application that 

provides an interface allowing analysis of several proteins at the same time. The proteins can be 

superimposed in order to deduce structural alignments and compare their active sites or any other 

relevant parts. Amino acid mutations, H-bonds, angles, and distances between atoms are easy to obtain 

thanks to the intuitive graphic and menu interface. 
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3. Results 

When co-cultured with human breast cancer cells in the absence of GcMAF, macrophages did not 

interact with human breast cancer cells and their characteristically irregular morphology was 

maintained (Figure 1A). Little or no vacuoles could be observed in macrophage cytoplasm, indirect 

evidence of a lack of activation. As described before, human breast cancer cells exhibited their 

typically non-homogeneous morphology, with some cells larger than other. The morphology of the 

cells was irregularly polygonal. As expected, human breast cancer cells tended to grow, one on top of 

the other, forming clusters that reflected the characteristic loss of contact inhibition. Figure 1B depicts 

phase contrast microphotography of a cluster of human breast cancer cells cultured in the absence of 

macrophages or any other addition. Cancer cells are visible as cords of cells growing in multi-layers in 

the center of the Figure. At higher magnification (Figure 1C), the cells appeared densely packed, with 

linear, non-fragmented, margins, and with a clearly recognizable organization of chromatin inside the 

nucleus, indicating a strong synthetic activity compatible with the high rate of proliferation of these 

cells. The nucleoli are clearly visible. Figure 1D, shows Papanicolau staining of only human breast 

cancer cells; a significant cluster can be observed in the left lower side of the image. The nuclei appear 

heavily stained as expected in growing cancer cells. The perimeter of the cells is linear with no indents 

or signs of fragmentation. Empty (white) areas in the well are also clearly observable. These represent 

naked areas of the plastic well that reflect the loss of adherence typical of cancer cells. Loss of 

adherence is a pre-requisite for cellular detachment, invasiveness, and metastatic potential. 

Figure 1. (A) Haematoxylin-eosin staining (magnification 300×); in the absence of 

GcMAF, small macrophages do not appear to interact with MCF-7 human breast cancer 

cells. The picture refers to 40 h co-culture. (B) Phase contrast microphotography (300×) of 

a cluster of cancer cells in the center. (C) At higher magnification (1200×) the cells appear 

densely packed. (D) Papanicolau staining (1200×); a cluster in the left lower side of the 

image. The nuclei are heavily stained and the perimeter of the cells is linear with no 

indents or signs of fragmentation. 
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Figure 1. Cont. 

 

However, when human breast cancer cells were co-cultured with macrophages that had been 

previously activated by GcMAF (100 ng/mL) for 72 h, the picture was completely different as shown 

in Figures 2 and 3. The pictures show co-culture of GcMAF-activated macrophages and human breast 

cancer cells after 40 h incubation. GcMAF-activated macrophages appeared as small cells that 

surrounded human breast cancer cells. Figure 2A (Papanicolau staining,) clearly shows a group of 

human breast cancer cell in the center of the image surrounded by hundreds of small macrophages. At 

higher magnification, (Figure 2B) one human breast cancer cell appears completely surrounded by 

macrophages that are also observable on top of the cell. The nucleus of the macrophages is well 

stained, whereas the chromatin in the nucleus of the cancer cell appears fragmented and disorganized. 

The nucleoli, however, are still recognizable; this phenomenon can be interpreted as an index of 

remaining synthetic activity as expected in cells undergoing active apoptosis. The cytoplasm of 

macrophages appears vacuolated thus suggesting active phagocytosis. Figure 2C shows another field 

where two large human breast cancer cells are surrounded by GcMAF-activated macrophages that 

appear to emit cytoplasmic extrusions that search for contact with the membrane of cancer cells. The 

cell in the center of Figure 2C, at higher magnification (Figure 2D), shows a peculiar aspect; the 

chromatin in the nucleus appears fragmented and, in the lower right corner, the cytoplasm appears to 

be indented as if the two macrophages in that region were actively deconstructing the cytoplasmic 

assembly of the cancer cell. A similar phenomenon can be observed on the left where two 

macrophages indent the cytoplasmic profile of the cancer cell. 

It is worth noticing that all these morphological changes are consistent with the induction of 

apoptosis of human breast cancer cells by activated macrophages [17]. In particular, some of the 

morphological changes were consistent with the early phases of apoptosis and the morphology of the 

nucleus of human breast cancer cells shown in Figure 2 is almost superimposable to that represented in 

Figure 1 (left panel) of Hacker, 2000 [17]. Even the changes in the morphology of the cytoplasm were 

consistent with the induction of apoptosis by GcMAF-activated macrophages and the cytoplasm of 

human breast cancer cells showed the typical pattern of disintegration that precedes the formation of 

apoptotic bodies. In addition, in this case, the morphology of the cytoplasm of the cancer cells appears 

remarkably similar to that presented in Figure 1 (middle panel) of Hacker, 2000 [17]. Although the 

morphological features observed here are suggestive of active apoptosis, further studies using ELISA 
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tests to quantify the level of human active caspase-3 protein, the major executioner protease in apoptosis, 

will determine quantitatively the degree of apoptosis induced by GcMAF-activated macrophages. 

Figure 2. Co-culture of GcMAF-activated macrophages and human breast cancer cells; 

Papanicolau staining. (A) Cancer cells in the center are surrounded by hundreds of small 

macrophages (100×). (B) One human breast cancer cell is completely surrounded by 

macrophages that are also observable on top of the cell (200×). (C) Two large cancer cells 

are surrounded by GcMAF-activated macrophages (100×). (D) The same cell (200×); the 

chromatin in the nucleus is fragmented and, in the lower right corner, the cytoplasm is to 

be indented as if the two macrophages in that region were actively deconstructing the 

cytoplasm of the cancer cell. 

 

Time-lapse micro-photography shows that after about seven days of co-culture of GcMAF-activated 

macrophages with human breast cancer cells, the irregular growth of the breast carcinoma cells was 

arrested and the large protruding cell biomass was reduced. Figure 3A shows the human breast cancer 

cells and the GcMAF-activated macrophages at day one; the cancer cells, as expected, form an 

irregular layer that covers the field of observation. Individual cancer cells can be recognized as well as 

the naked areas of the plate as described above. GcMAF-activated macrophages appear as small cells 

that are attached to the cancer cells, in most cases, above them. It is interesting to notice that almost no 

macrophages can be observed in the naked areas of the plate, thus confirming the observation that 
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GcMAF-activated macrophages seek for contact with the cancer cells. After seven days of  

co-incubation (Figure 3B), no individual cancer cell can be recognized. After macrophage-induced 

apoptosis, their apoptotic bodies are all grouped together in the center of the field of observation, and 

most of the field is empty of cancer cells. Most GcMAF-activated macrophages surround and infiltrate 

the mass of cancer cell debris in the center. 

Figure 3. Phase contrast microphotography from time-lapse recording of co-culture of 

GcMAF-activated macrophages and human breast cancer cells. (A) Day one of co-culture; 

the cancer cells form an irregular layer. Individual cancer cells can be recognized.  

GcMAF-activated macrophages appear as small cells that are attached to the cancer cells, 

in most cases above them. (B) Day seven of co-culture. No individual cancer cell can be 

recognized. Their apoptotic bodies are grouped together in the center of the field, and most 

of the field is empty of cancer cells. Most GcMAF-activated macrophages surround and 

infiltrate the mass of cancer cell debris in the center. 

 

Taken together these results demonstrate for the first time that GcMAF-activated macrophages 

induce human breast cancer cell apoptosis and the subsequent reduction of the cancer cell mass 

following phagocytosis of apoptotic cancer cells by macrophages. 

4. Discussion 

It is long considered that the role of vitamin D in maintaining health is much greater than originally 

supposed, up to the point that some authors jokingly wonder whether ―does vitamin D make the world 

go ‗round‘?‖ [18]. The emergence of the concept of the vitamin D axis [1,19] further underlines the 

complexity of the biological events controlled by 1,25(OH)(2)D3 through its two binding proteins 

(VDR and vitamin D-binding protein/GcMAF) that interfere with a growing number of events at the 

cellular and molecular level. In this study we focused our attention on the product of deglycosylation 

of the vitamin D-binding protein that is GcMAF, probably one of the most potent macrophage 

activators so far discovered [20]. Our results demonstrate that GcMAF stimulates macrophages that in 

turn attack human breast cancer cells, possibly induce their apoptosis and eventually phagocytise them. 

These results are consistent with the observation that macrophages infiltrated experimental tumors 

implanted in severely immunodeficient mice after GcMAF injections [8]. However, at variance with 

the observation reported above, in our experiments we could rule out indirect effects due to the 
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adaptive response of the whole organism to the presence of an advanced tumor and to the  

GcMAF-induced inhibition of angiogenesis with consequent tumor hypoxia and necrosis [8]. A 

limitation of the present study is represented by the use of only two cell lines, which are human breast 

cancer cell line MCF-7, and mouse Raw 264.7 macrophages. It should be noticed, however, that 

GcMAF exerted qualitatively superimposable effects on primary human mononuclear cells [21] and in 

the human monocytoid cell line, MonoMac 6 [22]. Future experiments will elucidate whether the 

effects observed in this study can be extrapolated to other human breast cancer cell lines challenged 

with GcMAF-activated human macrophages. 

The observation that GcMAF, a component of the vitamin D axis, exerts tumoricidal effects on 

human breast cancer cells through macrophage activation raises the question of whether there is any 

interaction between GcMAF and the VDR. Such a type of interaction would be critical to understand 

the effects of 1,25(OH)(2)D3 and GcMAF at the molecular level. This question might appear odd at 

first, as, for many years, it had been thought that VDR was localized in the cytoplasm and in the 

nucleus, and GcMAF could not cross the plasma membrane and therefore had to be recognized by a 

surface receptor, possibly a lectin-type receptor [23]. However, the observation of an association 

between the polymorphisms of the gene coding for VDR, and differential responses to GcMAF in 

human monocytes [21], as well as with metastatic breast cancer [24], raises the apparently odd issue of 

a molecular interaction between GcMAF and the VDR. In support for this hypothesis there is the 

observation that the VDR translocates to the plasma membrane [25], and plasma membrane associated 

VDR is responsible for the rapid, non-genomic effects of vitamin D [26]. Thus, in order to verify the 

possibility of a molecular interaction between GcMAF and VDR, we compared the amino acid 

sequences corresponding to their respective 1,25(OH)(2)D3 binding sites. There are 23 hydrophobic 

amino acids near the amino terminus of GcMAF (-----MKRVLVLLLAVAFGHALERGRDY) and  

23 amino acids near the carboxyl terminus of the VDR (SFQPECSMKLTPLVLEVFGNEIS-----). If 

these two sequences are aligned (Figure 4A), it is possible to observe, not only that in both proteins 

there is a long stretch [21,24] of hydrophobic amino acids (highlighted in green in Figure 4A, upper 

insert), but that four hydrophobic amino acids are identical (L L FG; indicated in yellow and in green 

above and under the alignment. The sequence of GcMAF is above). In addition, 11 amino acids have 

similar functional valence as indicated by the conventional symbols (*), (.) and (:). Therefore, in the 

1,25(OH)(2)D3 binding domains of GcMAF and VDR there are in total 11 out of 23 amino acids that 

show functional identity or similarity and 13–14 that are hydrophobic. A molecular interaction 

between the two proteins can therefore be proposed (Figure 4A). According to this model, the last  

23 hydrophobic amino acids of VDR (VDR is on the right of Figure 4A), located at the inner part of 

the plasma membrane (represented as a dotted line), could interact with the first 23 hydrophobic amino 

acids of the GcMAF (GcMAF is on the left of the Figure 4A) located at the external part of the plasma 

membrane, with 1,25(OH)(2)D3 (represented in yellow) sandwiched between the two vitamin  

D-binding proteins. Oleic acid, taken as an example of an unsaturated fatty acid bound to 

GcMAF [27], could stabilize the complex at the level of the plasma membrane. In fact, both 

1,25(OH)(2)D3 and oleic acid in GcMAF are located in a shallow cleft of the GcMAF protein that 

makes them accessible to the plasma membrane. In addition to the mode of interaction proposed in 

Figure 4A, there could be further additional interaction that takes into consideration just the fact that 

vitamin D binding-protein (and therefore also GcMAF) binds unsaturated fatty acids as demonstrated 
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by Williams et al., 1998 [27]. The fatty acid binding site is located between domains II and III, which 

is between positions 304 and 387. When we aligned the 23 hydrophobic amino acids of the VDR 

quoted above (represented in the insert in Figure 4B; also in this case, the sequence of GcMAF is 

represented above that of VDR) and the corresponding hydrophobic amino acids of the unsaturated 

fatty acid binding site of GcMAF (in particular, those in position 356–386), we observed that there was 

a significant degree of functional homology; in fact there are eight amino acids with similar functional 

valence in a long stretch of hydrophobic amino acids (highlighted in blue). 

Figure 4. Amino acid alignments and three-dimensional protein structures of  

vitamin D-binding protein/GcMAF and VDR. (A) 23 hydrophobic amino acids of VDR 

(on the right), located at the inner part of the plasma membrane (dotted line), interact with 

23 hydrophobic amino acids of the GcMAF (on the left of the Figure) located at the 

external part of the plasma membrane. In the insert the hydrophobic amino acids are 

highlighted in green and the four hydrophobic amino acids that are identical (L L FG) are 

highlighted in yellow and in green above and under the alignment. Vitamin D indicates 

1,25(OH)(2)D3. (B) 23 hydrophobic amino acids of the VDR interact with a stretch of 

hydrophobic amino acids of the unsaturated fatty acid binding site of GcMAF. In the insert, 

eight amino acids with similar functional valence in a long stretch of hydrophobic amino 

acids highlighted in blue. 

 

Therefore, it can be hypothesized that GcMAF and the VDR have multiple sites of interaction at the 

level of the plasma membrane. According to this model, the presence of 1,25(OH)(2)D3, in the culture 

medium should increase the effects of GcMAF by facilitating the interaction between GcMAF and 

VDR. Consistent with this model, we previously demonstrated that the effects of 1,25(OH)(2)D3 and 

GcMAF were synergistic in inhibiting MCF-7 cell proliferation [4], and the preliminary results 

reported in Table 1 indicate that GcMAF and paricalcitol, a non-hypercalcemic VDRagonist, also have 

synergistic effects. In the experiment described in Table 1, we chose to use paricalcitol instead of 

1,25(OH)(2)D3 in order to determine whether the synergism between 1,25(OH)(2)D3 and GcMAF that 

we had previously observed [4], was to be ascribed exclusively to 1,25(OH)(2)D3, or could also be 

obtained with other VDR agonists. From the results presented in Table 1, it appears that paricalcitol, 

and, possibly, other VDR agonists, could fit the molecular model proposed in Figure 4. 
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Table 1. Effects of GcMAF and paricalcitol on Raw 264.7 macrophages. Raw 264.7 cells 

were incubated for 30 min with indicated additions. The effects of GcMAF on macrophage 

activation were assessed by determining cell proliferation. In fact, it was demonstrated that 

monocytes/macrophages activated by GcMAF administration immediately stop DNA 

replication and rapidly synthesize a large amount of Fc-receptors as well as an enormous 

variation of receptors [28]. Paricalcitol was added at the concentration of 300 fg/mL. At 

this concentration, paricalcitol did not exert any effect. In the presence of paricalcitol  

(300 fg/mL), the effect of 4 ng/mL GcMAF was identical to that of 40 ng/mL GcMAF in 

the absence of paricalcitol. These results demonstrate that the presence of a selective VDR 

agonist at a concentration that is not sufficient to activate VDR per se increases by an order 

of magnitude the response to GcMAF. Data are presented as means ± S.E.M. (n = 12).  

* p < 0.02 vs. control. 

Treatment Absorbance units (×10
3
) 

Control (no addition)  390 ± 11 

Paricalcitol 450 ± 10 

GcMAF 40 ng/mL 379 ± 9 * 

GcMAF 4 ng/mL + paricalcitol 327 ± 10 * 

Taken together, these results support the hypothesis that the interaction between GcMAF and VDR 

might be facilitated by VDR agonists. This hypothesis is further strengthened by the recent observation 

that activated macrophages are able to generate enough biologically active vitamin D so as to be 

detectable in the general circulation [29], thus suggesting a paracrine/autocrine positive feedback loop. 

5. Conclusions 

The results presented in this study suggest that the role of vitamin D in physiology and pathology is 

far more complex than previously envisaged. Thus, in addition to 1,25(OH)(2)D3 itself, at least 

another component of the vitamin D axis, GcMAF, exerts significant effects at the cellular level and it 

appears that the effects of GcMAF are interconnected with VDR activation. Therefore, it can be 

hypothesized that these interconnections between 1,25(OH)(2)D3, GcMAF and VDR will be 

instrumental in devising new therapeutic usages for the components of the vitamin D axis. 
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