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Abstract

The ability to obtain three-dimensional relations using only bi-dimensional projec-

tions of the surrounding environment is a basic key-element for any autonomous

robotic system that wants to emulate the human vision to actively interact with

the world. This thesis focuses on the geometrical estimation of motion and three-

dimensional structure using as only input an image sequence.

In the first part two Simultaneous Localization and Mapping (SLAM) algorithms

are presented. The SLAM softwares are designed with the aim to provide accurate

estimation in real-time without the need of back-corrections or global optimiza-

tions. In the second part an hybrid 3D reconstruction method is described: Using

an active laser projector to retrieve the three-dimensional structure of the scene,

and a passive motion estimation to track the device movements, accurate 3D model

of desktop-size objects are built.
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CHAPTER1

Introduction

1.1 Visual SLAM . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Bayesian vSLAM . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Keyframe vSLAM . . . . . . . . . . . . . . . . . . . . . 5

1.1.3 Loop closure . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.4 Monocular and Stereo configurations . . . . . . . . . . . 7

1.1.5 Application . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Publication . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . 12

The ability to estimate self position and a rough representation of the surrounding

environment is an high desirable feature for any autonomous system. Without

any prior knowlegde neither about the world nor its position, a robot have to

estimate its pose and the map landmarks simultaneously. Techniques named as

Simultaneous Localization and Mapping (SLAM) address this problem (Durrant-

Whyte and Bailey, 2006).

1
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First works on the SLAM theory — also know as Concurrent Mapping and Lo-

calization — appeared in the robotic community as a fundamental step to build

a fully autonomous robot able to move in unknown environment. Initially, statis-

tical foundation to solve the probabilistic mapping process was addressed (Smith

and Cheeseman, 1986, Durrant-Whyte, 1988). Shortly after it was clear that to

solve the problem a joint state of pose and landmark positions had to be incremen-

tally estimated based on new observations (Leonard and Durrant-Whyte, 1991).

In fact to solve the localization problem a reference map of the scene must be

known; On the other hand, to update and augment the map with new or refined

landmarks, the actual position have to be already estimated. The structure of the

SLAM problem—and its acronym—was finally defined during the 1995 Interna-

tional Symposium on Robotic Research (Durrant-Whyte et al., 1996). Then, with

the beginning of the new century, an increasing interest was put on the SLAM

problem with the organization of focused workshops and summer schools.

Various kind of sensors were soon employed to perceive the world, such as laser

range finder (Chatila and Laumond, 1985), sonar-based (Crowley, 1989) and vision-

based (Ayache and Faugeras, 1988) systems, just to name the most relevant.

Among the available sensors, cameras are probably the most versatile and eco-

nomic choice. They are passive sensor, able to produce high resolution images.

However the extraction of useful information from images is difficult and prone to

error: For example, visual features needed to correlate multiple pictures are hard

to track and three-dimensional landmarks are only estimable from at least two

independent measurements.

1.1 Visual SLAM

With Visual SLAM (vSLAM) we refer to specific SLAM solutions that estimate

pose and map using only information extracted from images. Typical inputs for

this kind of problem are video sequences recorded with a known device, i.e. all

calibration parameters are supposed to be known.

Stable and accurate feature points have to be extracted from the images and

successively tracked among the frames of the sequence so to establish initial con-

straints on the input data. Then, after an initialization step—particularly hard

when a single camera is employed—a 3D map representation begin to be available.
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The three-dimensional data are represented in form of a sparse point cloud; Even

if this representation is insufficient to build a detailed and complete model of the

environment, is suitable to guarantee an accurate localization, and with some post

processing is sufficient to give to a robot a rough estimation of the scene. More-

over, sparse representation are more manageable in term of both computational

time and memory occupancy.

Once obtained correspondences between measured image features and 3D points

in the map, the position is estimated minimizing the re-projection error and the

map is updated with new and refined data (see Fig. 1.1).

Figure 1.1: (Best viewed in color) To estimate the position of a camera the
re-projection error (yellow segments) between 2D feature correspondences (red,
blue, orange and purple points) and the projections of the relative 3D points
(cyan square dots) must be minimized.

First works on vSLAM employed solutions based on recursive Bayesian filtering

techniques (Chen, 2003), such as the Extended Kalman Filter (EKF), where the

pose estimation and the map refinement were tackled at the same time. After few

years different approaches were proposed, based on the Structure from Motion

(SfM) theory (Szeliski, 2010, Chapter 7)—a widely known topic in the computer

vision community. In this case the localization and the mapping task could be ac-

complished with an interleaving approach. In any case, both formulations assume

a mainly static scene; While vSLAM system are more or less able to deal with
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occasionally moving objects in the scene, they fail to operate in an high changing

environment given that not enough stable landmarks could be found.

In the following we will refer to the former method as Bayesian vSLAM and as

Keyframe vSLAM for the latter. In the description a monocular setup will be

assumed. Differences between the mono and stereo case will be addressed later.

1.1.1 Bayesian vSLAM

In Bayesian vSLAM, Extended Kalman Filters (EKF) are typically used to simul-

taneously estimate the joint state that defines the pose and the map, alternating

the prediction and update phases.

During the prediction step the device position estimates—expressed with a 6 de-

gree of freedom (DoF) vector describing a three-dimensional roto-translation—are

moved forward with a velocity model and, consequentially, the covariance matrix

is modified increasing the uncertainty of the system. When a new measurement

(i.e. a new image) is available, matches between features in the previous and cur-

rent frame are established and with a non-linear update equation (the pin-hole

projection model) the updated full state (position plus landmarks) is computed.

Using only one camera, the exact position of a 3D point could not be estimated

until it is viewed again in a second image. To overcome this problem and avoid a

delayed initialization, a particle filter created over the optical ray (Davison, 2003)

or an inverse depth parametrization (Montiel et al., 2006) could be used.

During the years many works have been proposed exploiting a similar approach

with positive results. Nevertheless to deal with real-time algorithms a constant

computation time must be respected. For this reason only few 3D points could be

used so to keep the filter state dimension quite constant and avoid a computational

time increase.

As stated in (Strasdat et al., 2012) this is the main drawback of Bayesian vSLAM

approaches: Using a strongly limited number of 3D correspondences the estimation

accuracy is inferior w.r.t. Keyframe-based methods.
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1.1.2 Keyframe vSLAM

In the computer vision community camera localization and map building are tasks

typically accomplished through the Structure from Motion (SfM) theory. Exploit-

ing the projective geometry relationship (Hartley and Zisserman, 2004) between

the image space and the scene 3D space, SfM softwares (Farenzena et al., 2009,

Agarwal et al., 2009) starting from a sparse collection of images are able to com-

pute a point cloud representation of the scene and, as byproduct, the localization

of each image. It’s easy to see a strong correlation with the SLAM problem. The

main differences are the order by which to acquire information and the fulfillment

of the real time constraint: In particular images must be used in temporal order

and the localization and map output have to be provided at regular time intervals.

In this case, a standard pipeline include the following steps: For each frame, fea-

tures have to be detected and matched across past frames, then during the initial-

ization phase the Essential matrix decomposition algorithm is used to retrieve the

poses for the first couple of frames and compute a 3D map by triangulation (Hart-

ley and Sturm, 1997). This approach eases the initialization w.r.t. the Bayesian

case, avoiding the need to include partial observation—feature points seen for the

first time can be used at most to constraint the rotation motion only. After the

initial phase an exterior orientation problem (Hartley and Zisserman, 2004, Chap-

ther 7) is solved, exploiting the known correspondences between 3D landmarks

and 2D features. As for the Bayesian framework, the pose is estimated mini-

mizing the re-projection error with non linear equations; Nevertheless with this

approach robust routines, such as RANSAC (Fischler and Bolles, 1981), could be

included during the estimation process, enabling the system to deal with strong

noisy measurements (i.e. outliers).

It’s worth noting that, the camera pose and the 3D map, even if highly correlated,

are estimated in different times even at different frequencies: Using this observa-

tion it’s possible to split the frames into two separate classes: frames that only

need to be localized and frames that have also to update the map. The latter are

called keyframes. In this sense, keyframes are images sampled along the sequence

for which triangulation and re-projection could be accomplished with high accu-

racy. A careful criteria for keyframe selection is an important factor for vSLAM

systems.
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Finally to reduce the estimation error, Bundle Adjustment (BA) (Triggs et al.,

2000) is used to improve the accuracy of both pose and map. The introduction of

this refinement process is time consuming, so it has to be executed rarely and on

few data. This has lead to implementations of local BA, working only on a limited

set of keyframes and the connected 3D representation (only 3D points visible in

the keyframe subset are included in the optimization).

1.1.3 Loop closure

SLAM approaches, by updating incrementally poses and map, are prone to accu-

mulate errors during time. This will eventually lead to strong erroneous outputs,

manifested as a drift w.r.t. the ground truth trajectory. Particularly affected by

this kind of problem are monocular setups that have to deal with the scale factor

ambiguity.

The main solution that seems to overcome or at least mitigate the drift error is

the Loop Closure (LC) (Williams et al., 2009). When an already visited place is

seen again new constraints among actual and past measurements can be estab-

lished. Adding such information in an optimization routine could lead to an high

increasing of accuracy. Loop closure therefore include two distinct step: The loop

closure detection and the optimization of poses and map.

In literature various approaches to solve the detection and refinement problems ap-

peared during the years. In most of the cases the detection is carried out evaluating

the similarity between images—inspired by content based image retrieval—with

careful implementation that can operate fast and avoid false positive detection.

In fact, by adding an erroneous correlation the estimates will be highly corrupted.

To globally optimize the detected loopy trajectory a topological representation of

the pose and map is used: dividing the SLAM problem in many sub-problem rep-

resented in independent reference frame, i.e. sub-map, and knowing the relative

transformation that link subsequent sub-map the system could be expressed with

a graph that include in the nodes the local maps and on the edge the relative

transformation. Then by imposing that a complete loop will produce an iden-

tity transformation a graph optimization algorithm—such as the g2o framework

(Kümmerle et al., 2011)—could increase the final SLAM output accuracy.
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Although loop closure demonstrated good results to correct drift errors, in our

opinion its practical use is strongly limited for two main reason. SLAM should

deliver an accurate localization and a map representation output in real time,

given that these estimates are likely to be used immediately; instead with the

loop closure method only past, and probably already used, estimates could be

corrected. Moreover to detect a loop closure, a loopy trajectory is needed, very

frequent in odometry and SLAM dataset, but less plausible in a real application

scenario.

1.1.4 Monocular and Stereo configurations

During this introduction the vSLAM problem has been presented mostly keeping

in mind the monocular setup, where only a single moving camera can provide

measurements of the environment. Another widely employed configuration is the

stereo setup: The SLAM sensor is equipped with two synchronized cameras kept

in relative fixed position and fully calibrated—not only intrinsic parameters of

each camera, but also extrinsic values describing the roto-translation between the

two cameras are known a-priori.

While the monocular setup is highly versatile—a single camera can deal with close

and far scene without particular efforts—less expensive and widely available on

consumer mobile devices, it is affected by additional issues such as the delayed 3D

computation and the scale factor uncertainty.

On the other hand stereo setups ease these problems providing a 3D representation

at each time, obtained by triangulation of stereo pair correspondences, and the

metric scale factor of the scene using the extrinsic calibration parameters. In this

way more accurate estimates could be computed, at the cost of a minor flexibility

of the system: The pair baseline has to be related to the environment (shorter for

close scenes, longer for wide areas), a careful calibration must be performed, and

few stereo devices are available off-the-shelf.

Finally, it’s worth noting that other setups have been proposed in the literature,

such as omni-directional camera (Rituerto et al., 2010) or multiple camera config-

uration (Zou and Tan, 2013).
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Figure 1.2: Frames of an augmented reality sequence. Over the real images is
drawn a virtual wire-frame cube that is subject to proper perspective distortions.

1.1.5 Application

As already said, vSLAM can estimate incrementally both the location of the device

and a representation of the environment. This two output are already sufficient

to justify the use of SLAM module for autonomous robot and the interest of the

scientific community aiming to develop ever more accurate and reliable solutions.

In literature it’s possible to find applications in indoord (Davison, 2003, Klein and

Murray, 2007), outdoor (Lim et al., 2011, Mei et al., 2011), aerial (Nemra and
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Aouf, 2009) and even underwater (Mahon et al., 2008) environment. Anyhow it’s

important to understand that in most application fields vSLAM is mainly used

together with other sensory devices, such as Global Positioning System (GPS),

Inertial Measurement Unit (IMU), Doppler Velocity Log (DVL), ect. In the AR-

ROWS project 1, that see the Computational Vision Group of the University of

Florence as a partner, vSLAM will be included in a distributed framework that

will fuse different measurements with the aim to provide a sort of awareness for

underwater autonomous vehicle (AUV).

In addition vSLAM could be used also as a fundamental step to realize different

applications. The localization output could be easily exploited to develop Aug-

mented Reality (AR) applications. In AR softwares a virtual object is drawn

over the acquired images at runtime. While the device is moved, the object must

be subjected to correct projective deformations to give to the user the feeling to

observe a real object. In Fig. 1.2 a simple test object (a wire-frame cube) is pro-

jected onto the scene and transformed accordingly with the camera motion. In

our experiment we see that to satisfy the user perception no particularly accurate

estimates are needed, so even simple monocular vSLAM software could be used

for this task.

In a similar way visual motion estimates could be included in an active reconstruc-

tion software to design an hybrid device with a camera and a laser fan projector

to build dense 3D models (see Ch. 3). Differently form the AR application, hybrid

3D reconstruction needs more accurate estimates in order to avoid strong noises

in the final model.

Finally also 3D map could be used to extract rough geometric information about

the scene. For example, in an autonomous driving system, the three-dimensional

point cloud could be used to find the road plane simply by solving a linear system

in a robust estimation framework. If denser reconstructions are needed the vSLAM

map could be augmented with a feature expansion approach (Furukawa and Ponce,

2010) or using multiple stereo depth-maps fused with the localization information

and finally refined (Bradley et al., 2008) (see Fig. 1.3).

1The ARROWS project is supported by the European Commission under the Environment
Theme of the 7th Framework Programme for Research and Technological Development (http:
//www.arrowsproject.eu/).

http://www.arrowsproject.eu/
http://www.arrowsproject.eu/
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Figure 1.3: Dense 3D reconstruction of a road scene. Top: one frame of
the original video sequence. Bottom: two views of the 3D model obtained by
fusion of local dense point clouds (computed with the OpenCV SGBM algoritm)
exploiting vSLAM motion estimates.

1.2 Contributions

The aim of the work in this thesis is to study and develop robust visual Simul-

taneous Localization and Mapping algorithms for both the monocular and the

stereo setup. In Ch. 2 the mono and stereo SLAM softwares are presented and

evaluated. Both solutions employ the keyframe-based approach but avoid the use

of global optimization techniques and back-correction of the estimates (i.e. nei-

ther Bundle Adjustment nor Loop Closure are employed). Instead is performed

a careful selection of information using an accurate feature matching scheme, ro-

bust estimations to detect and reject outliers and a keyframe selection strategy

that guaranties sufficient baseline among successive keyframes.

The proposed monocular setup, named Simulated Annealing Monocular SLAM

(SAMSLAM, see Sect. 2.2), is based on an optimization scheme that iteratively

solve an absolute orientation and a perspective n-point problem in a RANSAC

framework, decreasing the threshold for the maximum allowable errors at each
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repetition. This approach, inspired by the Simulated Annealing algorithm, pro-

vides more accurate solutions at each iteration.

The stereo approach, Selective Stereo SLAM (SSLAM, see Sect. 2.3), exploits

the stereo pair configuration to obtain accurate estimates of the 3D environment

and makes a careful selection of keyframes based on the feature temporal flow

on the images. Working with local information the system is able to correctly

estimate long trajectories with a very low drift error, without requiring any global

optimization.

As a particular application of the vSLAM estimates, in Ch. 3 two hybrid 3D recon-

struction approaches are presented and compared: the first solution employs the

monocular motion estimates while the second one exploits a stereo camera setup.

Both solutions achieve good accuracy results providing a simple and economic

device for 3D acquisitions.

1.3 Publication

The work presented in this thesis resulted in the following publication:

❼ M. Fanfani and C. Colombo. Hybrid 3D Reconstruction: SLAM vs Homography-

Based Motion Estimation. In Proc. of 6th Convegno del Gruppo Italiano

Ricercatori in Pattern Recognition, GIRPR 2012, 2012

❼ M. Fanfani and C. Colombo. LaserGun: A Tool for Hybrid 3D Reconstruc-

tion. In Proc. of 9th International Conference on Computer Vision Systems,

ICVS 2013, pages 274–283, 2013

❼ M. Fanfani, F. Bellavia, F. Pazzaglia, and C. Colombo. SAMSLAM: Simu-

lated annealing monocular SLAM. In Proc. of 15th International Conference

on Computer Analysis of Images and Patterns, CAIP 2013, pages 515–522,

2013

❼ F. Bellavia, M. Fanfani, F. Pazzaglia, and C. Colombo. Robust selective

stereo SLAM without loop closure and bundle adjustment. In Proc. of 17th

International Conference on Image Analysis and Processing, ICIAP 2013,

pages 462–471, 2013
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1.4 Thesis Structure

After this introduction in Chapter 2 the SLAM softwares are presented. More

specifically in Sect. 2.2 and 2.3 are respectively described and evaluated the monoc-

ular SAMSLAM method and the stereo SSLAM approach.

Chapter 3 is devoted to the 3D hybrid reconstruction system that employs the

SLAM motion estimates and the active triangulation approach exploiting the de-

formation of a laser stripe.

Finally in Chapter 4 conclusions are drawn.
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In this Chapter both the monocular and the stereo vSLAM algorithms developed

during my PhD studies will be described in detail and experimental results will be

13
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presented for each system. Before, a brief review of works related to the vSLAM

is given hereafter.

2.1 Related Works

Ayache and Faugeras (1988) studied possible solutions for the estimation of three-

dimensional representations of the environment fusing multiple estimations with

an EKF to reduce uncertainties; Points, lines and planes are used as features to

register successive 3D maps. In (Harris and Pike, 1987) the authors present the

DROID system in which 3D maps are represented as point clouds where for each

point a position estimate and the related uncertainty is given.

Broida et al. (1990) describe a system able to track camera motion starting from a

batch initialization. In addition they address the problem of feature matching and

propose the idea of exploiting the estimate uncertainties to reduce the search area

in the new image. In (Chiuso et al., 2002) a EKF based viual SLAM approach,

named by the author as causal Structure from Motion, is described with a minimal

realization of the problem and particular attention to feature occlusion problems.

A successful work on monocular SLAM was MonoSLAM (Davison, 2003). In this

work an EKF state representation similar to that used by Chiuso et al. (2002) is

used to realize a fully operational SLAM system able to track the motion of an

hand-held camera. The state vector include the positions of both the camera and

the 3D landmarks, plus a linear and angular velocity. At each time the velocities

are perturbed with acceleration (modeled as Gaussian distribution), and then used

to predict the new camera location; To update the state with new measurements

correspondences between 3D landmarks and image features are used. To ease the

matching 3D points uncertainties are used to limit the search area. Previously

unseen landmarks are initialized using a particle filter over the optical ray passing

through the 2D features; By observing again the landmark as time goes by the

depth estimate converge to a peak and than the point is inserted in the EKF

state. In a successive version of the software this problem was resolved using an

inverse depth parametrization (Montiel et al., 2006)—able to encode also infinite

depth—that initializes the landmark with a wide depth uncertainty.

Instead of an EKF, Eade and Drummond (2006) use a Rao-Blackwel-lized particle

filter—inspired by the FastSLAM software (Montemerlo et al., 2002)—to estimate
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a monocular camera trajectory by efficiently tracking hundreds of landmarks, hard

using the EKF implementations.

While approaches EKF based were developed, other research groups proposed

different solutions to the SLAM problem. In (Nistér et al., 2004) a Visual Odom-

etry system for mono and stereo configuration is described. Once established

the correspondences between images, a robust 3-point algorithm (Haralick et al.,

1994) is implemented to estimate the camera position. To mitigate trajectory

drift, the authors insert firewalls at particular times to split the estimation into

sub-problems, limiting the error growth. Anyhow no loop closure techniques are

used. Mouragnon et al. (2006) present a monocular SLAM system similar to the

previous cited one, but including also a local Bundle Adjustment—ran when a

new keyframe is detected—to obtain better estimates without excessive increase

in computational times.

Klein and Murray (2007) developed the PTAM system, a monocular SLAM de-

signed for augmented reality application in close environment. Apart from the

pipeline used for the pose estimation—that includes quite standard steps—the

main contribution of the paper is to exploit two separate and parallel estimation

procedures for the localization and mapping tasks. This idea came from the obser-

vation that while camera pose must be computed with high frequency (relative to

the real camera speed) the 3D map doesn’t need to be updated frequently—given

a static environment. A slower mapping strategy enables the system to use time

consuming optimization: A global Bundle Adjustment is performed over the whole

set of keyframes and the 3D map, achieving impressive results.

In the following years an increasing interest toward keyframe-based vSLAM soft-

ware was notable. Mei et al. (2009) describe a stereo vSLAM system that employs

an adaptive sub-map selection—named active region—to both localize the esti-

mation and, in case of detected loop closure, correct the trajectory without an

explicit use of Bundle Adjustment.

In Strasdat et al. (2010) the authors ask the question ”Why filter?”, and pro-

pose a comparison between Bayesian and keyframe based SLAM evaluating the

trade-off between accuracy and computational cost. They come to the conclusion

that keyframe based approaches, implementing a Bundle Adjustment optimiza-

tion, show an increased accuracy with respect to the filtering solutions. This

result is motivated by the observation that using a lot of landmark measurements
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and tracking only a sparse set of frames (keyframes) produces better estimates.

Following this hint, more published solutions propose systems similar to PTAM

but including pose-graph optimizations to deal with larger workspaces.

In (Strasdat et al., 2010) a monocular keyframe-based approach is presented to deal

with large scale environments: Using a double thread solution similar to PTAM,

the authors define an improved back-end for map optimization. Local Bundle

Adjustment is carried out on keyframes and 3D points included in a sliding window.

To achieve scale-drift free estimations, loop closure is used. When detected a

previously seen scene, the loop is closed and a 7 DoF (rotation, translation plus

scale) optimization is performed on the pose-graph. Then Strasdat et al. (2011)

propose a framework to handle both mono and stereo setup. They employ a

double window optimization where in the small inner windows Bundle Adjustment

optimization is carried out using hard pose-to-point constraints while in the outer

windows soft pose-to-pose constraints are used to solve a pose-graph optimization.

A similar approach is presented in (Lim et al., 2011); While Strasdat et al. optimize

the inner and outer window simultaneously, Lim et al. interleave between a local

and global Bundle Adjustment exploiting a divide-and-conquer strategy—a two

level hierarchical optimization where local maps are seen as rigid object in the

global optimization.

Apart from the main division in Bayesian and keyframe based approaches, vSLAM

can also be characterized by the feature matching strategies adopted. Many works

use computational non expensive solutions to find feature correspondences, such

as in (Davison, 2003) or in (Klein and Murray, 2007) where after a quick corner

detection matches are computed with an active search approach and fast similarity

measures (i.e. normalized sum-of-squared distances). SIFT features are used by

Se et al. (2001) to build a trinocular vSLAM system while in (Beall et al., 2010)

their robustness is exploited to work in underwater environment. Also SURF

features have been used (Zhang and Kang, 2008). In (Klein and Murray, 2008)

edge features are added to the map to improve tracking robustness to motion blur

and fast movements.
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2.2 Simulated Annealing Monocular SLAM

In this section a novel monocular visual SLAM is presented, named SAMSLAM.

The main contribution is the development of a robust optimization scheme—

inspired by Simulated Annealing strategy—in order to replace more typical re-

finement approaches like local Bundle Adjustment.

SAMSLAM works locally on overlapping triplets of successive keyframes with the

aim to guarantee scale and 3D structure coherence. Given a calibrated image

sequence S = {It}, with radial distortion corrected, SAMSLAM proceeds by de-

tecting successive triplets Ti = {Iki−1
, Iki , Iki+1

} of image keyframes {Iki} ⊆ S,

k0 = 0, ki < ki+1—see Fig. 2.1.

Figure 2.1: Overview of the SAMSLAM approach. Keyframe triplets Ti and
Ti+1 are used to estimate successive overlapping local 3D maps, that are then
employed to retrieve the pose of a generic image frame Ij .

A local 3D map Mi and the keyframe poses, Pki−1,ki and Pki−1,ki+1
are obtained

for the current keyframe triplet Ti using the proposed simulated annealing scheme.

The optimization iterates by interleaving between the three-dimensional registra-

tion of maps obtained from each image pairs (Iki−1
, Iki), (Iki , Iki+1

) and (Iki−1
, Iki+1

)

and the computation of the camera poses expressed in a local reference frame.

Both estimations are wrapped in RANSAC frameworks to eliminate possible out-

lier measurements. While the iterations proceed, thresholds on the re-projection

error (used to evaluate both the RANSAC hypothesis and the updated results)

are progressively reduced. In other words, starting from a rough solution for the

poses and map, in successive steps the algorithm recomputes refined outputs.

As the keyframe triplet is updated from Ti to Ti+1, the first keyframe is dropped

and a new one is queued, so that the 3D maps Mi and Mi+1 overlap and the
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consistency of scale and 3D structure is guaranteed. The positions of images that

are not included into the keyframe set, are computed exploiting 2D/3D correspon-

dences between matched features and points of last optimized 3D map using the

EPnP algorithm (Lepetit et al., 2009).

In Subsec. 2.2.1 the implemented feature matching strategy is described. Then in

Subsec. 2.2.2 details of the simulated annealing optimization are given. Subsection

2.2.3 concludes presenting results obtained with SAMSLAM.

2.2.1 Feature Matching and Keyframe Selection

Image alignment for the generic pair (It1 , It2) is based on keypoint matching. For

each image, keypoints are extracted using the HarrisZ detector (Bellavia et al.,

2011), and matches are found using the sGLOH descriptor (Bellavia et al., 2010)

with a Nearest Neighbor scheme.

HarrisZ Detector

The HarrisZ is an extension of the Harris-affine detector that avoid the need of

tuning the thresholds used to compute and select a corner.

As for the standard Harris detector, for each point p = (x, y) the autocorrelation

matrix µ(p) is computed using the partial derivatives of the image Ix(p) and Iy(p)

integrated over a small window N centered on p, as

µ(p) =




∑
q∈N

I2x(q)
∑
q∈N

Ix(q)Iy(q)

∑
q∈N

Ix(q)Iy(q)
∑
q∈N

I2y (q)


 (2.1)

Then exploiting the relation between eigenvalues of µ(p) and its determinant and

trace, corner are extracted if Hz(p) > τ where

Hz(p) = Z(det(µ(p)))− Z(tr2(µ(p))) (2.2)

and
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Z(x) =
x−mean(x)

std(x)
(2.3)

is the z-score function (DeGroot and Schervish, 2001). This normalization avoids

the introduction of both the scalar factor κ used in the standard Harris method

(Harris and Stephens, 1988) to balance the determinant and trace contributions,

and the threshold τ used to select a corner that can be fixed to τ = 0—given

that the mean value of determinant and trace (equal to zero after normalization)

can be related to flat regions. To improve robustness the image derivatives are

filtered with a smoothed edge map in order to enhance the gradient values near

discontinuities.

The method is used in a scale-space framework to guarantee scale-invariance. Cor-

ner detection at different scales is obtained repeating the method by convolving

the image and a Gaussian filter with an increasing standard deviation. It’s worth

noting that no pyramidal representation is used: This choice increases the corner

detection accuracy even at higher scales at the expense of more computational

time to compute the convolutions with bigger Gaussian kernels. �

sGLOH Descriptor

sGLOH is a histogram-based descriptor able to handle efficiently rotation invari-

ance. In classical histogram-based descriptor—like SIFT (Lowe, 2004)—for each

feature a signature is defined by concatenation of orientation histograms com-

puted in blocks of a feature-centered grid. Typically, invariance w.r.t. rotation

is obtained using a dominant orientation given by the higher bin of the gradient

orientation histogram computed on the feature neighborhood.

Instead of using a square grid (as in the SIFT), a polar grid is used, following

the GLOH descriptor (Mikolajczyk and Schmid, 2005), with N circular rings each

equally split into M region, defining NM regions Rn,m with n = {1, . . . , N} and

m = {0, . . . ,M − 1}. The central area could be defined as a single region R0,0 or

divided in M orientation R0,m. In Fig. 2.2 example grids are shown.

For each region Rn,m an orientation histogram is computed. Each bin hi
n,m of the

histogram is computed with a kernel density estimation by Gaussian window as
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(a) (b) (c)

Figure 2.2: Descriptor grid examples: (A) the SIFT grid. (B,C) sGLOH grids
respectively with single and divided central region. (Image taken from (Bellavia
et al., 2010))

hi
n,m =

1√
2πσ

∑

p∈Rn,m

∇M(p) exp

(
−(Φ2π(∇θ(p)− θi))

2

2σ2

)
(2.4)

where ∇M and ∇θ are respectively the gradient magnitude and orientation, θi is

the mean orientation of the i-th bin and σ the bin amplitude. Φ2π(x) is a function

that takes into account 2π periodicity. More intuitively, each bin accumulates

scores based on the bin-point orientation difference weighted with the point gra-

dient magnitude, so that more importance is given to points in which gradient

computation is more robust.

Then the histogram Hn,m related to the region Rn,m is obtained by concatenation

of hi
n,m for i = {0, . . . ,M−1}. The first bin in these local histogram represents the

direction that points outward w.r.t. the grid center, then the remaining bins are

appended in order. Finally, the full descriptor is obtained by concatenating the

local histograms. If a rotation transform αk, with α = 2π/m and k = 0, . . . ,M−1,

is applied the relative descriptor is modified by a cyclic shift of the local region

histograms for each ring without the need of recomputing the whole descriptor

(see Fig. 2.3).

A rotation-invariant similarity measure has to be defined in order to exploit the

full descriptive power of the sGLOH. Given two descriptors H(a) and H(b), their

distance is the minimum w.r.t. each possible rotation angle

D̂(H(a), H(b)) = min
k=0,...,M−1

D(H(a), H
(b)
αk ) (2.5)
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Figure 2.3: A rotation of the same visual patch is expressed as a cyclic shift
of the local region histograms of the sGLOH descriptor. (Image taken from
(Bellavia et al., 2014), best viewed in color)

It’s worth noting that to achieve better matching accuracy in a general framework,

the authors propose to use the sGOr approach (Bellavia et al., 2014). After a first

matching computation, for each best match obtained comparing a point x(a) ∈ I(a)

with any point in I(b), the chosen orientation is used to vote for the global relative

orientation kg, roughly representing the image rotation—under the assumption

that all scene points undergo a similar rotation. Then matches are recomputed

limiting the possible orientations to k = {kg − 1, kg, kg + 1} in order to correct

wrong matches. �

Once obtained the correspondences between image pairs, these are refined on a

temporal constraint basis. Given that frames are acquired in sequence and feature

points move slowly in the image domain, it’s useful to limit the correspondences

search space in a neighborhood of the previous location of the feature. More

formally, let xt1 ∈ It1 be a generic keypoint of image It1 , the corresponding feature

xt2 ∈ It2 must lie in a circular window of radius δr (that define the maximum

allowable flow displacement), i.e.

‖ xt1 − xt2 ‖2< δr (2.6)
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Obtained matches are refined in a RANSAC framework, computing the fundamen-

tal matrix, so to discard correspondences that not satisfy the epipolar constraint

(xT
t2
F1,2xt1 = 0). Moreover, when a new keyframe triplet Ti = {Iki−1

, Iki , Iki+1
} is

found only matches which form a loop chain Ci are kept

Ci =
{
(xki−1

,xki), (xki ,xki+1
), (xki+1

,xki−1
)
}

(2.7)

i.e. only features visible in all the three keyframes are used to estimate the 3D

map Mi and the relative keyframe poses Pki−1,ki , Pki,ki+1
and Pki−1,ki+1

. Note

that, since outliers are dropped out by the simulated annealing scheme, only a

fraction of the loop chain matches contribute to 3D points in the final map Mi

(see Subsec. 2.2.2).

To select a frame as a new keyframe, an heuristic based on the feature flow motion

is used. Given the latest two keyframe Iki−1
and Iki a new keyframe Iki is detected

if there is a sufficient number of matches that show a strong displacement (also

named unfix points) w.r.t. both old keyframes, i.e.

∑
i∈{xo,xn}

T (‖ x
(i)
o − x

(i)
n ‖2> δf )

|{xo,xn}|
> η (2.8)

where {xo,xn} is the matching set between old (o = {ki−1, ki}) and new (n =

{ki+1})) frames, with |{xo,xn}| its cardinality; T is an indicator function that

outputs 1 if its predicate is true, 0 otherwise, δf is the threshold used to select

strong flow matches and η the minimal percentage of unfix points. This heuristic

comes from the well known observation that correspondences with high flow (that

typically represent close scene points) provide better results during triangulation

(see also Subsec. 2.3.2 and Fig. 2.11).

2.2.2 Simulated Annealing Optimization

When a new keyframe triplet Ti = {Iki−1
, Iki , Iki+1

} is detected, chain matches Ci
are computed and a Simulated Annealing optimization is performed in order to

estimate both the updated 3D map Mi and the refined new keyframe pose Pki+1
,

while guaranteeing compatibility with the previous estimations.
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Figure 2.4: Block diagram of the SAMSLAM simulated annealing optimiza-
tion executed on each keyframe triplet Ti.

In Fig. 2.4 a block diagram representing the implemented pipeline is presented.

The simulated annealing approach starts by associating to each image pair (Iki+v
, Iki+w

),

with v, w ∈ {−1, 0, 1} and v < w, an initial 3D map Mv,w
i , obtained by triangu-

lation of the matches (xki+v
,xki+w

) ∈ Ci.

To be able to perform triangulation of the 3D map, an initial estimates of the

relative position Pki+v ,ki+w
between each image pair is needed. In the initialization

phase, when optimizing the first keyframe triplet T1 = {Ik0 , Ik1 , Ik2} poses are

obtained from the essential matrix decomposition. In fact, given the fundamental

matrices Fk0,k1 , Fk1,k2 and Fk0,k2—already computed to discard outlier matches—

exploiting the calibration matrix K it’s possible to obtain the essential matrices

Ek0,k1 , Ek1,k2 and Ek0,k2 as

Eka,kb = KTFka,kbK, a, b ∈ {0, 1, 2} (2.9)

Then given the relation E = [t]×R (Hartley and Zisserman, 2004), rotation R and

translation t up to a scale factor ambiguity are extracted for each image pair. On

the other hand, during the iterations for triplets Ti with i ≥ 2, poses are computed

w.r.t. the last available 3D map Mi−1 exploiting 2D/3D correspondences, solving

an exterior orientation problem.

In our Simulated Annealing approach, after initial triangulation, one of the three

maps Mv,w
i is used as reference Mref

i for all iteration. Inconsistent 3D points with

negative depths in any of the three associated stereo configurations (Iki+v
, Iki+w

)

are removed as well as points far from any of the corresponding camera centers,

since the uncertainty in point localization increases with distance. The proportion

p of points discarded by this latter constraint linearly decreases with the iteration
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q since a more refined model is obtained as the iterations go on. In our experi-

ments p is made to decrease from 30% to 1%. Remaining points in the resulting

sub-map M̃v,w
i are registered to the reference sub-map M̃ref

i through the Horn

method (Horn, 1987), made robust to outliers by RANSAC.

Absolute orientation problem

The absolute orientation problem deals with the estimation of a 7 DoF transform—

composed by a rotation, a translation and a scale factor—that can map a set of

three-dimensional points onto another point set expressed in a different coordinate

frame.

Given two set of three-dimensional points Sa and Sb expressed in different coordi-

nate frames, and the relation that links a point Xa ∈ Sa with Xb ∈ Sb, the Horn

method is used to find the transformation

H =

[
sR t

0T 1

]
(2.10)

such that

X̃b = HX̃a (2.11)

where s is a scalar factor, R a rotation matrix, t a translation vector and X̃ is the

homogeneous representation of the 3D point X. Given that a 7 DoF transform

have to be estimated, at least three non collinear 3D points, which rise nine linearly

independent constraints, have to be used.

Horn (1987) presented a closed form solution for the absolute orientation problem

that is articulated in four main step: (1) computation of the centroids of Sa and

Sb; (2) estimation of R through quaternion representation; (3) calculation of the

scale factor as ratio of the root-mean-square deviation of the two set w.r.t. their

centroid; (4) translation estimation as difference of scaled and rotated centroid.

At first centroids are computed as

X̄a =
1

N

N∑

i=1

Xa,i and X̄b =
1

N

N∑

i=1

Xb,i (2.12)
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where N is the cardinality of Sa and Sb. Then 3D points are expressed w.r.t the

centroid in the new coordinate

X′
a,i = Xa,i − X̄a and X′

b,i = Xb,i − X̄b (2.13)

Rotation can be obtained by finding the unit quaternion q̇† that maximize

q̇† = argmax
q̇

N∑

i=1

(q̇Ẋ′
a,iq̇

⋆) · Ẋ′
b,i (2.14)

where Ẋ = 0 + ix + jy + kz is the purely imaginary quaternion of the vector

X = [x, y, z]T, q̇⋆ is the conjugate of q̇ and q̇Ẋq̇⋆ express the rotation of Ẋ w.r.t.

q̇. The operation (·) is the quaternion dot product. In other words, we want

to find the rotation (expressed with an unit quaternion) such that Ẋ′
b,i and the

rotated Ẋ′
a,i are parallel.

Equation (2.14) could be rewritten as

q̇† = argmax
q̇

N∑

i=1

(q̇Ẋ′
a,i) · (Ẋ′

b,iq̇) (2.15)

where

q̇Ẋ′
a,i =




0 −x′
a,i −y′a,i −z′a,i

x′
a,i 0 z′a,i −y′a,i

y′a,i −z′a,i 0 x′
a,i

z′a,i y′a,i −x′
a,i 0



q̇ = Ra,iq̇ (2.16)

and

Ẋ′
b,iq̇ =




0 −x′
b,i −y′b,i −z′b,i

x′
b,i 0 −z′b,i y′b,i

y′b,i z′b,i 0 −x′
b,i

z′b,i −y′b,i x′
b,i 0



q̇ = Rb,iq̇ (2.17)

Then (2.15) could be rewritten as
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q̇† = argmax
q̇

(q̇TRq̇) (2.18)

where R =
∑N

i=1 RT
a,iRb,i. q̇† is the eigenvector associated to the most positive

eigenvalue of R.

The scale factor s is easily computed with the ratio of the root-mean-square dis-

tance of the points respect their centroid as

s =

√√√√√√√

N∑
i=1

‖ X′
b,i ‖2

N∑
i=1

‖ X′
a,i ‖2

(2.19)

Finally, once obtained the rotation R(q̇†) and the scale factor s, the translation is

estimated as

t = X̄b − sR(q̇†)X̄a (2.20)

Note that R(q̇†) express the change of representation from the quaternion q̇† to

the rotation matrix R. �

At each iteration qh, a 7 DoF (scale, rotation and translation) transformation Hv,w
i

is estimated by the Horn method in a RANSAC framework, where the sampling

set is a subset of the whole validation set and contains only the 25% of points in

M̃v,w
i with maximal flow displacement. This is beneficial to map accuracy, since

high disparity matches are characterized by a better localization in 3D space.

To evaluate the inlier set, 3D points of M̃ref
i are mapped to M̃v,w

i and then pro-

jected to the corresponding images Iki+v
and Iki+w

using the same camera matrices

employed for triangulation. The distances between the projected points and the

effective matches are evaluated and inliers are selected if an error inferior to ǫh is

found. Once completed all RANSAC iterations the greatest inlier set for the pair

(Iki+v
, Iki+w

) is kept. The Horn registration is executed for each pair independently,

so to obtain three set of 3D inliers related to the three maps M̃i−1,i
i , M̃i,i+1

i and

M̃i−1,i+1
i . The final inlier set is composed by the 3D points that are inlier in all

three maps.
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The inlier threshold value ǫh linearly decreases with the iteration q, from 20 to

4 pixels in our experiments. This progressive reduction, used also for the pose

estimation (see forward), implements the simulated annealing scheme. Threshold

changes smoothly so to refine the results as iterations proceed and, in this way,

the system is able to handle even noisy data (e.g. distant 3D points) without fall

in wrong estimation.

After the Horn registration step, the 3D inlier set for iteration q and the related

2D feature points on each image are given as input to the pose estimation step,

implementing the EPnP algorithm wrapped in a RANSAC scheme.

PnP: Persective n Point problem

The PnP problem deals with the estimation of the pose of a calibrated camera

from n 2D-3D correspondences. Lepetit et al. (2009) propose a closed form solution

that achieves good results with a computational complexity of O(n).

The main idea is to base the estimation on four control points cwj with j = 1, . . . , 4

obtained from the n input 3D points Xw
i where i = 1, . . . , n, expressed in the world

coordinate frame, such as

Xw
i =

4∑

j=1

αijc
w
j , with

4∑

j=1

αij = 1 (2.21)

where αij are homogeneous barycentric coordinate. A similar relation holds if

points are expressed in the camera frame as

Xc
i =

4∑

j=1

αijc
c
j (2.22)

In the proposed solution, instead than estimates rotation R and translation t

minimizing the re-projection error, authors try to obtain the 3D points in the

camera coordinate frame and compute R and t solving an absolute orientation

problem.

To achieve such a results, at first αij values are computed from Eq. 2.21, once

defined cw1 as the centroid of the 3D data and the other control points in such a

way that they form a basis aligned with the principal directions of the data.
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Then, given the 2D projections ui with i = 1, . . . , n, it’s possible to define

wi

[
ui

1

]
= KXc

i = K
4∑

j=1

αijc
c
j (2.23)

where K is the known calibration matrix. In Eq. 2.23, the unknowns are the twelve

values {[xc
j, y

c
j , z

c
j ]}j=1,...,4 of the four control point and the n scalar factors wi. It’s

easy to figure out that

wi =
4∑

j=1

αijz
c
j (2.24)

and substituting 2.24 back in 2.23 we can obtain

4∑

j=1

αijfux
c
j + αij(uc − ui)z

c
j = 0 (2.25)

4∑

j=1

αijfvy
c
j + αij(vc − vi)z

c
j = 0 (2.26)

where ui = [ui, vi]
T, (fu, fv) are the focal lengths and (uc, vc) is the camera center

offset. Using at least six 2D/3D matches authors obtain twelve constraint in the

form of equations 2.25 and 2.26, that can be rewritten as

Mc̄ = 0 (2.27)

where c̄ = [cc
T

1 , cc
T

2 , cc
T

3 , cc
T

4 ]T.

Solving Eq. 2.27 to obtain ccj and then using Eq. 2.22, 3D points Xc
i—expressed

in camera coordinate frame—could be retrieved and used as input for an absolute

orientation problem to compute the rotation R and translation t. �

As for the Horn registration step, also in the pose computation the RANSAC

sampling set is limited to the 25% of points with greater flow; Moreover the re-

projection error threshold ǫp—used to define inliers—linearly decreases with the

iteration q, from 5 to 3 pixels in the experiments.
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Figure 2.5: Plot of the reprojection errors as the iterations proceed for the
first keyframe triplet T1 of the Monk video sequence. The reference map is
M̃ref

1 = M̃−1,1
1 . Solid lines indicate the average reprojection errors, while bands

show the behaviour of the standard deviation. Marks represents the maximal
values and the dashed gray line is the RANSAC linear threshold bound ǫh. (Best
viewed in color)

Finally relative poses Pki+v ,ki+w
are recomputed on the whole inlier set of iteration

q. These estimates will replace the previous ones for the next iteration.

Figure 2.5 shows an example of the simulated annealing scheme on the first

keyframe triplet T1 of the Monk video sequence (see Subsec. 2.2.3). Figure 2.6

shows the corresponding 3D maps M̃v,w
i for different iterations q. The average re-

projection error gradually decreases for each image pair (Iki+v
, Iki+w

) to less than 2

pixels, while the number of 3D point inliers increases and the 3D registration im-

proves. Note that the first iteration q = 1 of the first keyframe triplet T1 is the most

time consuming in terms of RANSAC iterations with qh, qp ≃ 500, while in the

other cases qh, qp ≃ 50 since only refinements are required. The RANSAC-based

design can be useful to define efficient parallel and multi-threaded implementations

of the Simulated Annealing scheme.

2.2.3 Results

In order to evaluate the performance of our monocular SLAM approach, two dif-

ferent experiments have been carried out: A quantitative direct measure of the

odometry accuracy, and an indirect evaluation of the 3D reconstruction quality of
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Figure 2.6: The 3D maps M̃v,w
i and the reference map M̃ref

1 at iterations
q = 1, 5, 8 for the keyframe triplet T1 of the Monk video sequence. (Best viewed
in color)

an object acquired using a structured-light framework (see Ch. 3 for details on the

structured-light reconstruction method).

Three different indoor video sequences with a resolution of 640 × 480 pixels and

about 800 frames have been used in the former case — see Table 2.1. The first

two sequences (Desk1 and Desk2 ) explore the same desktop environment as the

camera undergoes two different motions, while the last sequence (Monk) contains

an object scanned by a laser fan projector. This last sequence is also used for

the indirect evaluation through 3D reconstruction. A known planar pattern is

included in the background of all test sequences to recover accurate ground-truth

poses exploiting the homography matrices that exist between the planar pattern

and its image through decomposition in a rotation and translation (Fanfani and

Colombo, 2013).

Table 2.1: Distance error of the camera centres with respect to the ground-
truth length.

Desk1 Desk2 Monk

Mean(%) 1.29 0.93 0.48
Std(%) 0.63 0.30 0.23
Max(%) 3.05 2.39 1.21
Min(%) 0.24 0.29 0.15

Length(cm) 71.31 100.35 74.90
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Table 2.1 shows the Euclidean distance error of the camera centers normalized to

the ground-truth path length, while corresponding tracks are shown in Fig. 2.7.

Since in monocular setup the scale information is lost, camera centers have been

registered to the known ground-truth metric scale using the Horn method. SAM-

SLAM error is about 1% on average, i.e. less than 1 cm for a track length of 100

cm, and trajectories are well aligned.
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Figure 2.7: Track comparison for the video sequences Desk1 (a), Desk2 (b)
and Monk (c). Dashed lines for the Monk sequence indicate that no ground-
truth has been provided. (Best viewed in color)

For the 3D reconstruction test on the Monk sequence, a device equipped with a

camera and a laser fan projector kept in fixed relative positions is used in order

to get an accurate 3D model.

Figure 2.8c shows the 3D reconstruction obtained with the structured-light method

and the SAMSLAM motion estimates. The SAMSLAM reconstruction is quali-

tatively good and shows a mean euclidean error of 0.105 ∗ 10−3cm with stan-

dard deviation of 0.112 ∗ 10−3cm and a maximum error of 1.616 ∗ 10−3cm w.r.t.

the ground-truth reconstruction obtained with motion estimation accurately com-

puted exploiting the planar pattern.

SAMSLAM vs Local Bundle Adjustment

In Table 2.2 results of comparison between the proposed simulated annealing opti-

mization and a three-frame version of the standard Bundle Adjustment algorithm

(reffered to in the following as Local Bundle Adjustment, LBA) is presented.

Given a keyframe triplet, loop matches among the three images are computed. For

the first camera the rotation is set to the identity and the translation to the null
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(a) (b) (c)

Figure 2.8: 3D Reconstructions using the structured-light approach: (a) a
frame of the Monk sequence zoomed on the object to be reconstruced; (b)
ground-truth reconstruction; (c) reconstruction using SAMSLAM motion esti-
mates.

vector. The second camera is obtained by decomposition of the essential matrix

relating the first and second views. The third camera is computed in two distinct

ways: (i) using the result of decomposition of the essential matrix between the

first and third views or (ii) employing PnP on 3D points computed from the first

pair and the known 2D correspondences.

The camera matrices initialized as above, the 3D points and the 2D matches

are passed to both the SAMSLAM optimization and to the LBA to be refined.

Results are finally computed—by evaluating the re-projection error—as reported

in Tab. 2.2

Given the obtained results, it’s not clear which of the two methods is better. To get

a deeper insight into the performances of the methods we compute a normalized

score sm,i as

sm,i =
|em,i + ǫ−min(eS,i, eB,i)|

|eS,i + ǫ−min(eS,i, eB,i)|+ |eB,i + ǫ−min(eS,i, eB,i)|
(2.28)

where i = {0, 1, 2} is the image index, m = {S,B} represent the method used, i.e.

SAMSLAM or LBA, and ǫ is a small constant value (ǫ = 0.001 in this test) used
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Table 2.2: Mean reprojection errors (pxl) after SAMSLAM (SAM) or Local
Bundle Adjustment (LBA) keyframe triplet optimizations.

Sequ.
Image 0 Image 1 Image 2

Init.
SAM LBA SAM LBA SAM LBA

Desk1
0.117 0.204 0.318 0.211 0.199 0.195 Ess
0.124 0.204 0.345 0.225 0.259 0.189 PnP

Desk2
0.190 0.264 0.353 0.609 0.149 0.202 Ess
0.254 0.261 0.355 0.683 0.141 0.202 PnP

Monk
0.165 0.196 0.261 0.386 0.119 0.176 Ess
0.209 0.162 0.726 0.282 0.257 0.144 PnP

to avoid strong score differences in the case of very similar errors.

For example, for the 0.117 in the left top corner of Table 2.2 we will obtain

sS,0 =
|0.117 + ǫ−min(0.117, 0.204)|

|0.117 + ǫ−min(0.117, 0.204)|+ |0.204 + ǫ−min(0.117, 0.204)| = . . .

· · · = 0.011236 with ǫ = 0.001 (2.29)

Note also that smA,i → 0 if emA,i ≪ emB ,i, smA,i → 1 if emA,i ≫ emB ,i, smA,i = 0.5 if

emA,i = emB ,i, and obviously smA,i+smB ,i = 1. Mean scores of the normalized error

values are computed for both methods globally and w.r.t. the chosen initialization

(essential matrix decomposition or PnP) and reported in Tab. 2.3.

Table 2.3: Mean values of the normalized error scores obtained from Tab. 2.2
usign Eq. 2.28 for all values and w.r.t. both kind of initialization—essential
matrix decomposition (Ess) and PnP.

Init. SA LBA

Ess 0.021397 0.786029
PnP 0.565420 0.434580

Overall 0.389695 0.610305

As can be seen in Tab. 2.3, our method obtains better results with initialization of

the third camera by essential matrix decomposition, while LBA performs slightly

better in the PnP case. Anyway in average, our method produce better estimation.

This behavior could be due to two main aspects: First of all, SAMSLAM opti-

mization is wrapped in a RANSAC framework, so noisy points are excluded from
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the computation while LBA try to minimize the error over the whole point set.

Secondly, in our method, camera poses and the 3D maps are re-computed at each

iteration discarding the previous solutions, while LBA proceeds with iterative re-

finement: this behavior leads to erroneous estimation if the initial solution is not

good enough—e.g., using the essential matrix decomposition the translation scale

factor is not congruent among all cameras, leading to a poor initialization.
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2.3 Selective Stereo SLAM

In this Section a stereo SLAM system named Selective Stereo SLAM (SSLAM) is

introduced. This approach employs a stereo camera device to obtain at each time

a pair of synchronized images of the same scene. The main idea is to make use

of only highly reliable data in the estimation process, which is reflected mainly in

the feature matching scheme and the choice of good keyframes.

The feature matching process is the main source of noise in a SLAM system.

Wrong matches could lead to erroneous estimation, which can be only partially

corrected using robust outlier rejection strategies. To limit as much as possible the

introduction of errors in early processing stages, we choose to employ an accurate

and computationally heavy matching strategy instead of a less accurate solution.

In particular, a robust loop chain matching scheme is adopted, improving upon

VISO2-S (Geiger et al., 2011), but using a more robust detector-descriptor pair

with respect to this latter system. While an additional computation time is re-

quired, the pose estimation gains in accuracy, thus avoiding the introduction of

strong noises and the need of further global optimization or loop closure steps. In

addition, the robust matching adopted lets the system find correspondences not

only between close frames, but also in images with higher disparity, that can be

an issue for approaches based on tracking.

The other aspect mainly characterizing SSLAM is the selection of the keyframes

used as base references for the measurement of the 3D landmark positions and

for the camera trajectory computation. Keyframes are selected only if a strong

feature temporal flow is detected. This idea arises from the observation that

errors propagate also from the uncertainty of the three-dimensional points, which

is higher for distant points corresponding to low temporal flow disparity matches

in the images. The proposed strategy can be more stable and effective with respect

to using a threshold on the average flow disparity (Lee et al., 2011) or a constant

keyframe interleaving (Nistér et al., 2004). Moreover, evaluating 2D measures

such as the feature flow leads to a more robust keyframe selection compared to

approaches that evaluate in 3D space the distance among frames (Geiger et al.,

2011).
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Figure 2.9: Block diagram for SSLAM.

2.3.1 SSLAM Overview

Given a calibrated and rectified stereo sequence S = {ft}, where the frame ft =

(I lt , I
r
t ) is composed by the left I lt and right Irt input images taken at time t ∈ N,

SSLAM alternates between two main steps (see Fig. 2.9). The former step matches

keypoints between the last keyframe fi and the current frame fj, while the latter

estimates the relative camera pose Pi,j = [Ri,j|ti,j] ∈ R
3×4, where Ri,j ∈ R

3×3 is

the rotation matrix and ti,j ∈ R
3 is the translation vector. If the new pose is

successfully estimated and sufficient temporal flow disparity is detected between

fj and fi, the frame fj is updated as the new keyframe.

Assuming that Ri,i = I and ti,i = 0 (where I and 0 are respectively the identity

matrix and the null vector) the absolute pose at time n is defined as Pn = P0,n.

Pn can be computed by concatenating the poses P0,0,P0,k, . . . ,Pi,jPj,n, where time

steps 0 < k < . . . < i < j belong to accepted keyframes and n > j is the current

frame.

Hereafter the loop chain matching scheme (Subsec. 2.3.2) is described. Subsec-

tion 2.3.3 presents the pose estimation algorithm and the keyframe selection strat-

egy. Finally experimental results (Subsec. 2.3.4) are given, based on the KITTI

and NewCollege datasets; Moreover examples of estimation in underwater envi-

ronment are shown.

2.3.2 Loop-chain Matching

The proposed loop chain matching draws inspiration from the circle match of

VISO2-S (Geiger et al., 2011), as the candidate correspondences should be consis-

tent among the four image pairs (I li , I
r
i ), (I

l
i , I

r
j ), (I

r
i , I

r
j ), (I

l
j, I

r
j ). However instead

of a fast but less accurate keypoint detector and descriptor based on simple im-

age filters, a robust detector and descriptor pair is used. This also avoids using
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the two step matching strategy employed by VISO2-S to further refine correspon-

dences, and permits achieving longer and more stable keypoint tracks, crucial for

the pose estimation, without re-initialization issues and keypoint losses occurring

with tracking strategies such as KLT.

As for the SAMSLAM method (see Sec. 2.2), the HarrisZ detector is used to

extract robust and stable corner features in the affine scale-space on the images

I li , I
r
i , I

l
j, I

r
j ; The sGLOH descriptor with a Nearest Neighbour matching on the L1

distance is used instead to obtain the candidate correspondences between image

pairs (I li , I
r
i ), (I

l
i , I

r
j ), (I

r
i , I

r
j ), (I

l
j, I

r
j ) after spatial and temporal constraints have

been imposed to refine the candidates matches (see hereafter).

Let xd
s = [xd

s, y
d
s ]

T ∈ R
2, d ∈ {l, r}, s ∈ {i, j} be a point in the image Ids . A spatial

match (xl
s,x

r
s) between the images on the same frame is computed exploiting the

stereo epipolar constraints imposed by the calibration

|xl
s − xr

s| < δx (2.30)

|yls − yrs | < δy (2.31)

where δy is the error band allowed by epipolar rectification and δx is the maximum

allowed disparity (i.e. the corresponding stereo point must lie inside a δx × δy

rectangular window) with δy << δx.

In the case of a temporal match (xd
i ,x

d
j ) between corresponding images at different

times, the flow restriction

‖ xd
i − xd

j ‖< δr (2.32)

is taken into account, where δr is the maximum flow displacement (i.e. the cor-

responding point in the next frame must lie inside a circular window of radius

δr).

Only matches that form a loop chain

C =
(
(xl

i,x
r
i ), (x

l
i,x

l
j), (x

l
j,x

r
j), (x

r
i ,x

r
j)
)

(2.33)
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are retained (see Fig. 2.10); however, some outliers can still be present. For this

reason, each matching pair of the loop chain C is further filtered by RANSAC to

refine the matches. These four RANSAC runs have an almost immediate conver-

gence due to the high presence of inliers. Only loop chains whose all pair matches

survive to the four RANSACs are finally collected into the set Ci,j ⊆ {C}.

Left

Right

Time

Figure 2.10: (Best viewed in color) Keypoint matches between the keyframe
fi and the new frame fj must satisfy the spatial constraint imposed by the
epipolar rectification (yellow band) as well as the temporal flow motion restric-
tion (orange cone). Furthermore, the four matching points must form a loop
chain C (dotted line). In the ideal case, points xl

j , x
r
j in frame fj must coincide

with the projections x̃l
j , x̃

r
j of Xi,j obtained by triangulation of xl

i, x
r
i in fi in

order for the chain C to be consistent with the pose Pi,j . However, due to data
noise, in the real case it is required that the distances ‖ x̃l

j−xl
j ‖ and ‖ x̃r

j−xr
j ‖

are minimal.

2.3.3 Incremental Pose Estimation

The relative pose Pi,j between fi and fj is estimated in the second step of the

SSLAM approach (see again Fig. 2.10). The 3D point Xi,j corresponding to the

match pair (xl
i,x

r
i ) in keyframe fi can be estimated by triangulation (Hartley and

Zisserman, 2004), since the intrinsic and extrinsic calibration parameters of the

stereo system are known—in particular, we use the iterative linear triangulation

method by Hartley and Sturm (1997).

Let x̃l
j and x̃r

j be the projections of Xi,j onto frame fj, according to the estimated

relative pose Pi,j = [Ri,j|ti,j]. The distance
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∑

Ci,j⊆C,d∈{l,r}

‖ x̃d
j − xd

j ‖2 (2.34)

among the matches of the chain set Ci,j must be minimized, in order for the

estimated pose Pi,j to be consistent with the data. In other words Pi,j is obtained

minimizing the re-projection error on both the left and right images as

Pi,j = argmin
Ri,j ,ti,j

∑

Ci,j⊆C

||K(Ri,jXi,j+ti,j)−xl
j||2+||K(Ri,jXi,j+ti,j+b)−xr

j ||2 (2.35)

where K is the intrinsic calibration matrix and b is the vector accounting for the

baseline between the left and right camera. Equation (2.35) is solved using a

Gauss-Newton iterative refinement based on the computation of the Jacobian of

the projection functions for both left and right cameras.

Due to the presence of outliers in Ci,j, a RANSAC test is run, where the number

of outliers chain matches over Ci,j exceeding a threshold value δt is minimized so

that pose Pi,j be consistent with data.

At each iteration RANSAC estimates a candidate pose Pi,j using a minimal set

of matches, i.e., 3 matches, in order to be robust to outliers (Fischler and Bolles,

1981). The candidate matches used to build the pose model Pi,j are sampled from

the set of candidate matches Ci,j. The pose Pi,j is validated against the whole

set of candidate matches Ci,j and the best model found so far is retained. The

process stops when the probability to get a better model is below some user-defined

threshold value, and the final pose Pi,j is refined on the whole set of inlier matches.

SSLAM filters the frame sequence according to the following observation. Image

resolution provides a lower bound to the uncertainty of the position of the key-

points used in the matching process, although subpixel precision is used. Matches

are triangulated to get the corresponding 3D point, and eventually estimate the

relative pose between two temporal frames. Close frame matches have a low tem-

poral flow disparity and the associated 3D point positions have an high uncertainty

with respect to distant frames, due to the error propagation from the matches on

the image planes. Only points with sufficient displacement can give information

about the translational and rotational motion, as shown in Fig. 2.11. This idea
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Figure 2.11: (Best viewed in color) The uncertainty of matches in the image
planes is lower bounded by the image resolution (red) and it is propagated to
the 3D points. In order to estimate the 3D point Xi,j , by using close frames fi
and fj , a low temporal disparity flow is present in the image planes, and the
3D point location Xi,j can assume an higher range Xi,j of values (dark gray
quadrilateral). In the case of distant frames fi and fw, the possible locations
Xi,w are more circumscribed (blue quadrilateral), for the same resolution limits.

is a straight generalization of the well-known baseline length issues related to the

trade-off between reliable correspondence matching and accurate point triangula-

tion (Hartley and Zisserman, 2004).

Exploiting this idea, SSLAM defines the subset Fi,j of the set of chain matches

Ci,j for fi and fj containing points which can be considered fixed with respect to

the temporal flow disparity and not effective for a good pose estimation:

Fi,j = {C ∈ Ci,j|Td(‖ xd
i − xd

j ‖≤ δf )} , (2.36)

for a given threshold δf . In order for frame fj to be accepted as new keyframe, the

number of non-fixed matches between frames fi and fj must be sufficient according

to a threshold δm:

1− |Fi,j|
|Ci,j|

> δm . (2.37)

Indeed, if the estimation fails due to wrong matches or high noisy data, which

practically leads to a final small RANSAC consensus set, the frame fj is discarded
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and the next frame fj+1 is tested. We also tried to verify if the use of only non-

fixed matches as input to RANSAC pose estimation can lead to better results but

no improvements were found.

Figure 2.12: (Best viewed in color) Examples of successive keyframes retained
according to the temporal flow for two different sequences of the KITTI dataset.
The two temporal keyframes involved are superimposed as for anaglyphs, only
images for the left cameras are shown. Good fixed and unfixed matches are
shown in blue and light violet, respectively, while wrong correspondences are
reported in cyan.

Examples of fixed point estimations are shown in Fig. 2.12. With respect to the av-

erage flow threshold—commonly employed by some SLAM systems— the proposed

strategy is more stable and can handle better keyframe drops. As an example,

referring to Fig. 2.12, the average flow in the top configuration is considerably

higher than that of the bottom one. Lowering the threshold, to accept the bottom

frame, would also include very low disparity frames (just consider to replace in the

bottom frame the unfixed violet matches by twice the matches with half dispar-

ity). In this sense, SSLAM measure is more robust, so that both the frames shown

in the figure are retained as keyframes. In analogy, our frame selection resembles

RANSAC while the average flow is close to the least-square approach.

Finally, a pose smoothing constraint is added between frames, so that the current

relative pose estimation Pi,j cannot abruptly vary from the previous Pz,i, z < i < j.

This is achieved by imposing that the relative rotation around the origin between

the two incremental rotations Rz,i and Ri,j is bounded
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|rki,j
T
rkz,i| < δθ1 (2.38)

where rka,b is any k-th column of the rotation matrix Ra,b. Optionally, in the case

of strong constrained movement, like those of a car, a further constraint on the

corresponding translation directions tz,i and ti,j can be added

|ti,jTtz,i|
‖ ti,j ‖‖ tz,i ‖

< δθ2 (2.39)

This last constraint can also resolve issues in the case of no camera movement or

when moving objects crossing the camera path cover the scene.

2.3.4 Results

The KITTI vision benchmark suite (Geiger et al., 2012) and the New College

sequence (Smith et al., 2009) were used to evaluate SSLAM.

Recently, the KITTI dataset has become a reference evaluation framework for

SLAM systems. The dataset provides sequences recorded from car driving sessions

on highways, rural areas and inside cities up to 80 km/h. The benchmark consists

of 22 rectified stereo sequences from about 500 m to 5 km, taken at 10 fps with

a resolution of 1241× 376 pixels. Ground truth trajectories are available to users

only for the first 11 sequences to train the parameters of the SLAM methods, while

results should be submitted to the authors page for the remaining sequences to get

a final detailed ranking. Translation and rotation errors normalized with respect

to the path lengths and speeds are computed in order to rank the methods.

The New College dataset is made up by a very long sequence of 2.2 km for more

than 50000 stereo rectified frames taken inside the Oxford New College campus

using a Segway. Data were recorded at 20 fps with a resolution of 512 × 384

pixels. Although no (reliable) ground truth is available, the sequence consists of

several different loops which can be used to qualitatively compare SLAM methods

by visual inspection of their estimated paths. Unlike the KITTI dataset, data are

recorded at a lower speed and the camera movements are less constrained, i.e.,

strong camera shakes are present.
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Unless otherwise specified, for SSLAM we set δf = 55 px, δm = 5%, δθ1 = 15◦ (see

Subsec. 2.3.3). About the spatial and temporal constraints, the triplet (δr, δx, δy)

is set to (500, 300, 12) px in the case of the KITTI dataset and to (100, 100, 12)

px for the New College dataset, since videos are taken at different resolutions and

baseline. The translation constraint is δθ2 = 10◦ for the KITTI dataset while it is

not used for New College due to high camera shakes.

Furthermore, we tested SSLAM using keypoints detected at full and half resolution

videos; in the latter case, the notation SSLAM† is used. In the case of SSLAM†

less accurate keypoints are found, with bigger (normalized) feature patches, more

sensitive to fast camera movements. Note also that more keypoints are found in

full resolution SSLAM implementation than with SSLAM†. Nevertheless, different

image resolutions do not affect the other parameters of the methods since keypoint

positions are rescaled at the full resolution before the constrained matching in both

cases.

SSLAM Parameter Analysis

Different versions of SSLAM are compared, corresponding to the successive im-

provements of the pipeline proposed in Sect. 2.3.3, in particular we analyzed differ-

ent versions of the more challenging SSLAM†. SSLAM†⋆ indicates the first version

which only includes the loop chain matching described in Sect. 2.3.2, while the

adaptive keyframe selection is incorporated in the default SSLAM†.

In order to analyze the robustness and the effectiveness of the proposed method,

the SSLAM† system was tested with a different number of RANSAC iterations for

the pose estimation. In particular, results of SSLAM† with 500, 15 (set as default)

and 3 RANSAC iterations, and SSLAM†⋆ with 500 iterations are presented, indi-

cated respectively by SSLAM†/500, SSLAM†/15, SSLAM†/3 and SSLAM†⋆/500.

Figure 2.13 shows the average translation and rotation errors of the different

SSLAM† variants for increasing path length and speed, according to the first 11

sequences of the KITTI dataset—see Fig. 2.14. Similar results hold in the case of

full resolution SSLAM.
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Figure 2.13: (Best viewed in color) Average error on the first 11 sequences
of the KITTI dataset. Plots (a-b) refer to the average translation and rotation
error for increasing path length respectively, while plots (c-d) refer to increasing
speed.

The chain loop matching scheme together with the chosen keypoint detector and
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(a) (b)

Figure 2.14: (Best viewed in color) An example of the paths computed for
Sequence 00 (a) and Sequence 08 (b) of the KITTI dataset.

descriptor is robust even for long paths, without bundle adjustment or loop clo-

sure. SSLAM† improves on the standard pose estimation without keyframes selec-

tion (SSLAM†⋆), allowing to track longer paths and confirming that the proposed

keyframe selection strategy is effective.

Moreover, results for SSLAM†/15 and SSLAM†/500 are equivalent, while SSLAM†/3

obtains inferior results but similar to those obtained by SSLAM†⋆/500, giving an

evidence of the robustness of the proposed matching selection strategy and pose

estimation.

A further test aiming at investigating the fixed point threshold δf used to accept

a frame as keyframe was also done. This is the parameter that mainly affects the

results, since selected keyframes decrease as δf increases, while we verified that

the computation is stable with respect to the choice of the other parameters. In

particular, we run SSLAM for different values of δf = 30, 50 (default), 80 px on

both datasets. In the case of δf = 30 slightly inaccurate paths are present with

respect to δf = 50 on both datasets, while for δf = 80 higher pose errors are found.

Figure 2.15 shows the behavior of SSLAM for the different values of δf on the

New College sequence. Clearly the default set δf = 50 px provides better results

since even after a long path loops are correctly closed. This results confirm the

observation that avoiding close keyframes improves the results, but this choice

must be balanced with the tracking capability of the system.

Table 2.4 shows the average number of frames between two consecutive keyframes
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Figure 2.15: SSLAM estimated paths for the New College video sequence with
δf = 30 px (a), δf = 50 px (b) and δf = 80 px (c).

Table 2.4: Average number of frames between two consecutive keyframes and
the corresponding standard deviations for different values of the threshold δf .

δf 35 55 85 35 55 85

Average Std

KITTI 1 2 3 1 1 2
New College 5 10 32 8 13 39
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and the corresponding standard deviations. The values are higher for the New Col-

lege dataset with respect to the KITTI dataset, according to the different camera

speeds. Furthermore, as it can be noted in Fig. 2.16 the keyframe distribution is

not uniform but it is denser near camera turns and accelerations.
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Figure 2.16: (Best viewed in color) An example of keyframe distribution along
the Sequence 00 of the KITTI dataset for SSLAM (default δf=50 px). At each
estimated camera position the number of keyframes that fall inside a window
of 10 frames centred at the camera location is shown according to the colorbar
gradation.

Evaluation on the KITTI dataset

Results on the KITTI odometry benchmark for stereo methods only (more details

are available online (Geiger et al., 2012)) are hereafter reported. Methods that

employ other sensors than stereo cameras, such as point cloud obtained with laser

scanner, are excluded from this discussion.

Table 2.5 reports the evaluation average results, while in Fig. 2.17 shows the

average translation and rotation errors of the different methods for increasing path

length and speed. At the time of submission SSLAM and SSLAM† was ranked

respectively in the 3th and 8th positions, while currently1 the proposed solutions

are ranked in the 6th and 11th positions according to the translation errors.

These rank placements show the robustness of the proposed methodology. Note

however that the benchmark provides qualitative results, since these error metrics

cannot take into account all the properties of a SLAM system. In particular,

1November 2014
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referring to Fig. 2.18 where five sample tracks of the KITTI dataset are reported,

it can be seen that while eVO and VISO2-S show worse results—and also TLBBA

regarding sequence 13 (Fig. 2.18c)—the other methods have similar performance

given that all trajectories are well aligned with the ground truth. Moreover it can

also be shown that plots of the approaches ranked between the 7th and the 10th

positions are less accurate w.r.t. SSLAM†.

Table 2.5: KITTI benchmark evaluation average results.

Rank Method Transl. error(%) Rot. error (deg/m)

1 MFI (Badino et al., 2013) 1.30 0.0030
2 TLBBA (Lu et al., 2013) 1.36 0.0038
3 2FO-CC (VISAP, 2015) 1.37 0.0035
4 VoBa 1.46 0.0030
5 BA-MFT 1.47 0.0031
6 SSLAM 1.57 0.0044

7 eVO 1.76 0.0036
...

...
...

...
11 SSLAM† 2.14 0.0059

12 VISO2-S (Geiger et al., 2011) 2.44 0.0114

Table 2.6 shows the input matches and the found inliers in the RANSAC pose

estimation by SSLAM, SSLAM† and VISO2-S. Note that VISO2-S works similarly

to SSLAM and its code is freely available. As it can be noted, while SSLAM†

outputs a comparable number of initial matches with VISO2-S, only 50% of these

are inliers for VISO2-S: This implies that our matching strategy is more robust.

Note also that the spatial and temporal flow constraints of VISO2-S are more

tight, which would lead theoretically to a higher number of matches since the

probability to make an accidental wrong match is higher for SSLAM and SSLAM†

(except for the epipolar constraint δy, the other thresholds are about equal to the

minimal image size). Yet, as it can be seen from Table 2.6, the opposite holds, in

favour of the robustness and stability of the propose methodology.

Lastly, according to the little documentation of all the methods, since most of

them are anonymous, SSLAM and SSLAM†, MFI and VISO2-S are the only SLAM

methods which do not use bundle adjustment, loop closure and work locally taking

into account only two consecutive keyframes, thus leading efficiently and light

implementations for long sequences.

The SSLAM approach can be considered complementary to that proposed by MFI,

which averages the estimation of tracked keypoints across previous frames in order
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Figure 2.17: (Best viewed in color) Average error on the KITTI benchmark.
Plots (a-b) refer to the average translation and rotation error for increasing path
length respectively, while plots (c-d) refer to increasing speed.

to lower the error (Badino et al., 2013). This implies that MFI takes advantage

from video sequences with long tracks, such as those provided by vanishing points

on the KITTI dataset, i.e. exactly the fixed scene points that SSLAM tries to

avoid. It is therefore reasonable to expect that MFI results would degrade with

respect to SSLAM for high parallax scenes, such as the case of a translation move-

ment perpendicular to the camera, or with a low framerate or fast translations,

that make more difficult to track keypoints among more frames.

Evaluation on the New College dataset

We tested SSLAM and SSLAM† versus VISO2-S, the highest rank in the KITTI

benchmark for which code is available. For the sake of comparison, the VISO2-

S threshold values used during matching were modified from the default (δr =

200, δx = 200, δy = 3) px—used in the KITTI evaluation—with (δr = 100, δx =
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Figure 2.18: (Best viewed in color) Trajectories on the sequences 11 (a),
12 (b), 13 (c), 14 (d) and 15 (e) of the KITTI dataset.
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100, δy = 3), given that the latter values achieve better estimation results than the

default ones in the New College dataset.

SLAM methods are tested not only on the whole sequence but also on the two

subsequences corresponding to the small and large loops present in the images.

This is done to analyze the behavior of the methods at different starting points.

Figure 2.19 shows the obtained tracks. While VISO2-S diverges as the sequence

grows, both SSLAM and SSLAM† maintain the correct paths, closing the loops,

without the need of bundle adjustment and loop closure techniques. In partic-

ular, full resolution SSLAM works slightly better than SSLAM†. This becomes

noticeable only at the end of the last part of the video sequence.

The New College video sequence seems more reliable than the KITTI sequences,

since as it can be seen from Table 2.6, all methods achieve a higher number of

tracked keypoints but also inliers, maybe due to slower camera movements. Any-

way, VISO2-S still obtains a lower number of matches and inliers with respect to

SSLAM and SSLAM†. Note also that the absence of the optionally translation

constraint δθ2 in this sequence does not affect the quality of the results.

Table 2.6: Average number of input matches before the RANSAC pose esti-
mation and final inlier ratios.

KITTI New College

pts inl(%) pts inl(%)

SSLAM 766 98 780 99
SSLAM† 222 96 201 97
VISO2-S 245 50 156 84

Underwater experiment

SSLAM has been tested also in underwater environment with the aim to exploit

its capabilities in the ARROWS Project2(Allotta et al., 2013).

ARROWS (ARchaeological RObot systems for the World’s Seas) is a European

project founded by the European Commission under the Environment Theme of

the 7th Framework Programme for Research and Technological Development. Its

objective is the realization of low cost underwater autonomous vehicles (AUVs)

to be used by archaeological team in exploratory campaigns. SSLAM should be

2http://www.arrowsproject.eu/

http://www.arrowsproject.eu/
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Figure 2.19: (Best view in color) Estimated paths for the New College video
sequence. The plots (a), (b) and (c) refer respectively to first subsequence (from
frame 0 to frame 18400), to the last subsequence (from frame 18400 to frame
52479) and to the whole sequence. Note that to achieve the best top view,
each sequence was rotated so that the displayed axes correspond to the major
directions of the autocorrelation matrix of the point positions, i.e., to the two
greatest eigenvectors.

used in conjunction with other sensors to let the vehicles localize itself in the

environment and perform autonomous navigation tasks.

Given the absence of underwater stereo dataset with a provided ground truth,



Chapter 2. Visual SLAM 53

(a) (b)

[cm] [cm]

[c
m
]

-50

0

50

100
-50

0

50

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

(c)

Figure 2.20: (a) and (b): Images acquired in the swimming pool located at
the MDM Laboratory of the University of Florence, using a pair of synchronized
GoPRO underwater cameras. (c): Estimated trajectory and 3D map.

some experiment have been carried out both in a swimming pool (Fig. 2.20) and

in open sea (Fig. 2.21). No reliable ground truth is available, anyhow in both cases,

SSLAM produces plausible estimations respect to the apparent motion visible in

the image sequences.

Dense Map Upgrade

Maps created with SSLAM are sparse three-dimensional point clouds. On the one

hand, these sparse representations are more than sufficient to be used as reliable

landmark in the localization task and offer a simple management with relative
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Figure 2.21: (a) to (d): Example images of a stereo video sequence acquired
during an experimental campaign near Akko, Israel. The sequence is recorded
with a synchronized pair of Basler ACE cameras, enclosed in a waterproof hous-
ing. (e): Three-dimensional plot of the estimated trajectory and structures.

small memory occupancy. On the other hand, by representing the environment in

such a way could be insufficient both for robot complex autonomous interactions

and for render visually pleasant 3D models of the environment—see for example

the green 3D point cloud of the sea-bottom presented in Fig. 2.21. As anticipated

in the Introduction chapter (Subsect. 1.1.5) the SLAM output could be used to

obtain improved the 3D representations of the scene.

During the ARROWS Project, one of the goal to be achieved is the production of
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Figure 2.22: Dense 3D reconstruction of the sea-floor obtained employing
a region growing approach using as input the SSLAM estimate presented in
Fig. 2.21

three-dimensional models based on the acquired underwater images, to be used to

inspect and document areas of archaeological interest. Clearly SSLAM 3D output

is not sufficient.

To obtain more dense reconstructions, two solutions have been tested. Using a

dense stereo matching algorithm—more specifically the SemiGlobal Block Match-

ing3 (SGBM) algorithm implemented into the OpenCV library—is possible to

compute local dense maps with sufficient accuracy exploiting a single stereo frame

with minimal computational burden. Then with the SSLAM motion estimates,

the local maps could be registered into a global model—see Fig. 1.3.

Even if the produced 3D map is not optimal, this solution enriches the 3D scene

representation. However stereo matching algorithms typically suffer of two main

drawback: (i) in scene with no texture or highly repeated pattern matches are

hard to find; (ii) many internal parameters have to be tuned to obtain satisfying

results. In fact, in our test, using the same SGBM configuration with underwater

images produced noisy disparity maps and a poor quality 3D reconstruction.

The second proposed solution employs a region growing algorithm (Furukawa and

Ponce, 2010). Starting from the image correspondences produced by SSLAM to-

gether with the localization information, its possible to obtain dense and accurate

3D models—see Fig. 2.22—at the cost of a long computation time.

3For more details see http://docs.opencv.org/modules/calib3d/doc/camera_

calibration_and_3d_reconstruction.html#stereosgbm

http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#stereosgbm
http://docs.opencv.org/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#stereosgbm
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Running Times

The SSLAM approach is implemented in C/C++ non-optimized multithreaded

code. As it can be seen in Table 2.7, where the average running times for a single

frame are reported, SSLAM scales with the resolution. The feature detector is ac-

curate but slow, since it requires large size kernel convolutions. By taking into ac-

count that only keyframes are strictly required by SSLAM, real-time performance

is achieved when the keyframe computational time is less than fk/fv, where fk is

the keyframe rate (see Table 2.4) and fv is the frame rate of the video sequences

(fv = 10, fv = 20 for the KITTI and New College datasets respectively). This

implies that the time to estimate a single keyframe must not exceed 0.2 s and 0.5 s

respectively for the KITTI and New College sequences. Although only SSLAM†

can run almost in real-time, eventually code optimization using GPU acceleration

could be used to improve the running times.

Table 2.7: Average computational time for a single frame on a Intel-i7 3.50GHz
CPU, 8 cores are used.

SSLAM SSLAM†

KITTI 3.85 s 0.55 s
New College 0.95 s 0.20 s
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In this Chapter are described two softwares for hybrid 3D reconstruction that

exploit passive and active methods to recover 3D models of desktop-size objects.

After a brief presentation of related works, the active triangulation method is

described (see Sect. 3.2). This approach used in conjunction with the passive

motion estimation obtained with a SLAM software could lead to accurate 3D

reconstruction of even texture-less objects. In this thesis both the monocular

(Sect. 2.2) and the stereo (Sect. 2.3) SLAM systems are used. In the former case a

57
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device with a single camera and a laser stripe projector is used, while in the latter

two synchronized cameras are employed together with the laser.

Then will be described steps common to both setups that encompass the laser de-

tection in the images (Subsec. 3.3.1), 3D profiles computation and collation (Sub-

sec. 3.3.2) and finally an optional refinement (Subsec. 3.3.3). Results (Sect. 3.4)

with mono and stereo setups conclude the chapter.

3.1 Related Works

Three-dimensional reconstruction from video sequences is a key topic in computer

vision. Reconstruction methods can be broadly classified into passive—using only

information directly extracted from the images—and active—employing more so-

phisticated hardware to ease the acquisition process and improve the results.

Passive methods use only unstructured illumination, and focus on low cost hard-

ware and a sophisticated software, by which a reasonable accuracy and a high

flexibility can be obtained. Typical passive approaches encompass multi-view re-

construction from either image collections (Farenzena et al., 2009, Agarwal et al.,

2009) or image sequences (Vogiatzis and Hernàndez, 2011), real time stereo (Wang

et al., 2006) and shape from shading (Zhang et al., 1999).

On the other hand, active methods recover the 3D structure of the scanned ob-

ject by exploiting a known light pattern that interacts with the scene while the

camera is kept fixed. Accurate models are obtained also for textureless objects,

working in structured conditions with sophisticated hardware and relatively simple

algorithms.

Rocchini et al. (2001) use a pattern with several light stripes arranged in a regular

way; Object shape is obtained through the so called active triangulation approach

of single image points. While in the classical passive triangulation the intersection

between optical rays of corresponding feature points is computed, in the active tri-

angulation a single optical ray is used an its incidence with the light pattern model

is estimated to obtain the associated three-dimensional point (see also Sect. 3.2).

An active triangulation approach is also used in (Winkelbach et al., 2006), where

a laser plane is projected onto the scene in the presence of a known 3D structure,
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so as to simultaneously estimate the laser plane equation and reconstruct small-

size objects. In (Habbecke and Kobbelt, 2008) a similar approach—used also to

reconstruct room-size environments—employs a laser pointer array swept over the

scene: Differently form the former method, this latter one need a pre-processing

step to calibrate the laser array. Colombo et al. (2011) adopt an active rectification

approach, where model reconstruction is carried out by warping and collating

single laser profiles.

In (Bouguet and Perona, 1999), an active/passive method is presented where cast

shadows produced with a wand are used instead of projected light. Another hybrid

approach extending standard shape from shading (Zhang et al., 1999) is photo-

metric stereo (Hernàndez et al., 2008), where a collection of photos of the object

is taken from a single viewpoint by varying the light source.

3.2 Active triangulation

With active triangulation we refer to the technique used to estimate the depth of

a point in an image exploiting the geometrical characteristics of a known patter

while it interacts with the scene. To better explain such method, we suppose to

use a monocular camera in conjunction with a laser fan projector that draws a

stripe over the scene.

In Fig. 3.1 the proposed setup is outlined. The laser projects in the environment

a fan representable as a three-dimensional plane Λ. When the laser plane hits an

object it draws a stripe Γ that is deformed according to the object shape. Once the

camera captures the scene, in the image a stripe γ—projection of Γ—is visible. For

each image point x ∈ γ its pre-image X ∈ Γ can be computed as the intersection

of the optical ray passing through the camera center C and the point x with the

laser plane Λ. In other words, once estimated the laser plane equation w.r.t. the

camera coordinate frame, it’s possible to recover X as

X = αK−1x with α =
dΛ

n⊤
ΛK

−1x
(3.1)

where nΛ and dΛ are respectively the laser plane normal and its distance w.r.t.

the camera coordinate frame and K is the camera calibration matrix.
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Figure 3.1: Active triangulation scheme. The laser plane Λ interacts with
the object drawing a stripe Γ that is projected over the image in γ. For each
2D point x ∈ γ it’s possible to obtain its pre-image X ∈ Γ computing the
intersection between the optical ray passing through the camera center C and
x and the laser plane Λ.

To obtain the laser plane parameters a calibration step have to be performed (see

Fig. 3.2). Using a planar checkerboard pattern moved in front of the device kept

fixed, different three-dimensional planes π(i) are captured from the camera. Each

pattern induces an homography that can be exploited to recover the planar pattern

parameters.

In fact, suppose to choose a coordinate frame P such that the checkerboard plane π

has equation PZ = 0. A 3D point over the plane will be expressed in homogeneous

coordinates as PXπ = [PX, PY, 0, 1]⊤. Then the following relation holds

λ




x

y

1


 = K

[
r1 r2 r3 t

]




PX
PY

0

1



= K

[
r1 r2 t

]



PX
PY

1


 = HPXπ (3.2)
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Figure 3.2: Laser plane calibration. To obtain the laser plane parameters a ca-
libration routine must be executed. A planar checkerboard pattern is moved in
front of the camera-laser device kept in fixed position. Each patter orientation
produce a different plane π(1), π(2), π(3) w.r.t. the camera coordinate system.
Exploiting the homography that exist between each patter π(i) and its image,
it’s possible to recover its parameter {nπ(i) , dπ(i)} (see text for details). Then
using the active triangulation equation 3D points over the patter Xπ(i) could be
estimated. With at least three non-aligned 3D points the laser plane equation
could be estimated solving a linear system.

where H = K[r1, r2, t] is the homography between π and its image, rj for j = 1, 2, 3

are columns of a rotation matrix and t is a translation vector. Once estimated the

homography Ĥ = [ĥ1, ĥ2, ĥ3] up to a scalar factor h0—i.e. Ĥ = h0H—it’s possible

to recover r1, r2, r3 and t as

rj =
1

h0

K−1ĥj (3.3)
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for j = 1, 2 and

t =
1

h0

K−1ĥ3 (3.4)

while h0 =‖ K−1ĥ1 ‖, given that ‖ r1 ‖= 1, and finally r3 = r1 × r2. R = [r1, r2, r3]

and t express the roto-translation that links the camera coordinate frame with

that attached on the checkerboard pattern. So it holds




PX
PY

0


 = R⊤




CX
CY
CZ


− R⊤t (3.5)

where [CX, CY, CZ]⊤ is the 3D point expressed in the camera frame C; In particular

0 = r⊤3




CX
CY
CZ


− r⊤3 t (3.6)

is the plane π equation expressed in the camera coordinate frame, where nπ = r3

is its normal and dπ = r⊤3 t its distance.

Computed the parameters for each checkerboard plane π(i), for each 2D point

xπ(i),γ(i)—that lies simultaneously on the checkerboard pattern and on the laser

stripe—its 3D pre-image Xπ(i),Γ(i) can be obtained using

Xπ(i),Γ(i) =
dπ(i)

n⊤
π(i)K

−1xπ(i),γ(i)

K−1xπ(i),γ(i) (3.7)

similar to Eq. 3.1, but with the plane π(i) parameters instead of those of the

laser plane Λ. With at least three non-aligned 3D points Xπ(i),Γ(i) , the laser plane

equation could be estimated solving a linear system.
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3.3 Model Building

In this section the main steps of the proposed hybrid reconstruction method are

presented and discussed. In Figure 3.3 a schematic representation of the imple-

mented pipeline is shown.

Figure 3.3: Block scheme of the proposed hybrid reconstruction method.
Dashed lines indicate information used only in the stereo setup.

3.3.1 Laser Detection

To be able to triangulate laser points as described in Sect. 3.2, previously such

points must be detected in the image. In more typical active 3D reconstruction

framework (Winkelbach et al., 2006, Habbecke and Kobbelt, 2008) the laser trace

is detected with background-subtraction techniques, given that the camera is kept

in fixed position and the imaged scene doesn’t change during the acquisition. In

our framework, this approach is not feasible.

Given that the laser draws a bright line on the image (see Fig. 3.4a and 3.4b)

by isolating the intensity channel corresponding to the laser color—red in our

experiments—the laser trace is easily detectable (see Fig. 3.4c). Moreover, assum-

ing to set the laser projector so that its trace crosses diagonally in the image, it’s

possible to enforce two useful constraints on the laser detection: (i) the laser search

could be performed along singular horizontal scan-line and (ii) for each scan-line

there can be at most only one laser point.
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(a) (b) (c)

Figure 3.4: Laser stripe appearance on the image. (a) acquired image; (b)
zoom of the region included into the blue square; (c) red channel of the image:
the pixels of the laser stripe have higher intensity value.

For each scan-line the higher intensity pixels are selected. To avoid losing valid

laser points, a low threshold is used: In this case, together with the pixels of the

laser trace, also false positive detections are retrieved (see Fig. 3.5a). Observing

the image gradient—shown in Figure 3.5b—the laser trace appears surrounded

by two strong edge, so only detected points that have edges on both of their left

and right sides are kept (see Fig. 3.5c). If in a scan-line more than one candidate

satisfies the edge-constraint, the maximum intensity point is chosen. The selected

points describe the laser stripe on the image (Fig. 3.5e). Then sub-pixel accuracy

is then achieved using a Center of Mass algorithm (Fisher and Naidu, 1996).

Stereo laser detection

When using a stereo setup with a pair of synchronized cameras together with

the laser projector, an additional constraint could be enforced during the laser

detection—see Fig. 3.6.

Let Λl : {nl
Λ, d

l
Λ} be the laser plane expressed in the left camera coordinate sys-

tem. A detected point xl can be actively triangulated with Λl using Eq. 3.1. The

obtained 3D point Xl is then projected into the right camera frame in the point

xr. The correspondence {xl,xr} is then weighted using a Sum of Absolute Differ-

ences (SAD) over a square window. This idea comes from the observation that a

wrongly detected laser point, if transferred over the right image using the active

triangulation, will fall in a very different image region, likely causing SAD to be

relatively high. Points with higher weights are therefore discarded. �

Once laser points are detected on the images, active triangulation (Sect. 3.2) is

used to compute 3D laser profile. It’s worth remember that each 3D profile is
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(a) (b)

(c)

(d) (e)

Figure 3.5: To extract image pixels that belong to the laser trace at first
the higher intensity pixels are selected (a). Then, to discard false positives the
image gradient is exploited (b). Given that the laser trace draws on the image
two strong side edges, true positives are found if the previously detected pixels
are surrounded by two edges (c) (zoom of the top rectangle in (b)). (d) is an
example of a false positive detection, where an edge is missing. Finally points
of the laser trace are selected (e).
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Figure 3.6: Stereo laser detection. A laser image point on the left frame and
the projection of the triangulated 3D point on the right frame (green boxes)
have similar neighborhoods. On the other hand, a wrong detection make that
the corresponding point on the right image shows a different appearance (blue
boxes).

related to a different camera coordinate frame. A collation step is needed to

obtain a complete 3D model of the scanned object.

3.3.2 3D Profile Collation

Figure 3.7: On the left two examples of 3D profile reconstructed in the i-th
and j-th stereo frame. Knowing the motion of the device it’s possible to collate
all 3D profile in a single three-dimensional model (right).
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To collate all reconstructed 3D profiles in a global reference frame, the device

have to be continuously localized during the acquisition (see Fig. 3.7). In fact, for

a generic frame i, once obtained its roto-translation {Ri, ti} w.r.t. an arbitrary

chosen base coordinate frame B, each 3D point Xi can be remapped to the base

frame using

XB = R⊤
i [Xi − ti] (3.8)

To estimate the device motion the previously presented visual SLAM system are

used. SAMSLAM (Sect. 2.2) is used in the monocular setup, while for the stereo

setup SSLAM (Sect. 2.3) is employed. Note also that, as anticipated in the In-

troduction (Subsect. 1.1.5) accurate motion estimates have to be used to obtain a

final model without strong noises. The possibility to use SAMSLAM or SSLAM

for this task is another demonstration of the good performances of our SLAM

systems.

3.3.3 Refinement

Even if a careful laser detection is performed so to not triangulate wrong points

and accurate motion estimates are provided by both the mono and stereo visual

SLAM software, errors in the final 3D model are still present—see Fig. 3.8a.

(a) (b)

Figure 3.8: 3D reconstructed point cloud before (a) and after (b) refinement.
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By inspecting the obtained reconstruction once collated all the 3D profiles, the

main source of noise—and consequently the unpleasing appearance of the model—

is given by slightly misaligned profiles. These effects are caused by local errors

during the motion estimation. To improve the final result a refinement step is

carried out.

We suppose that during the acquisition the device is moved at constant velocity

and images are acquired with a constant frame-rate. Under this assumption its

possible to state that each profile should have a similar distance w.r.t. its previous

profile. This condition is violated when wrong motion estimate are used. More-

over, given that both SSLAM and SAMSLAM work incrementally on local data,

if at time t an erroneous localization is provided, all subsequent estimations will

inherit the same error. This behavior leads to a noisy global 3D model composed

by coherent sub-models. Exploiting this observation, a refinement technique has

been developed.

At first for each 3D profile i its distance Di w.r.t. the previous profile is computed

using

Di =
1

ni

ni∑

k=1

dist(Xk
i , X̂

k
i−1) (3.9)

where ni is the number of 3D points in the i-th profile and X̂k
i−1 is the closest

point of the previous profile to Xk
i , i.e.

X̂k
i−1 = argmin

h=1,...,ni−1

D(Xh
i−1) where D(Xh

i−1) = dist(Xk
i ,X

h
i−1) (3.10)

Once computed all the distances Di for i = 2, . . . , N , where N is the total number

of reconstructed profiles, the mean value µD and the standard deviation σD are

retrieved. A cut in the model is made if

Di > µD + 1.5σD (3.11)

Then sub-models that include few profiles are discarded, while the remaining sub-

models are merged again together using the Iterative Closest Point algorithm

starting from the bigger ones. This is possible since during acquisition the object



Chapter 3. Hybrid 3D Reconstruction 69

is scanned with multiple sweeps so the obtained sub-models are well overlapped.

Example of a final cleaned model is shown in Fig. 3.8b.

3.4 Results

Given that, to the best of our knowledge, no datasets are available for this kind of

reconstruction approach, to evaluate the accuracy achieved by the proposed hybrid

method, measurements were taken on the obtained three-dimensional models and

on the real object using an high precision caliber.

(a) (b) (c) (d)

Figure 3.9: Hybrid reconstruction results. Two example reconstruction ob-
tained with the proposed method. See also Fig. 2.8.

Comparing the measurements, both the mono and stereo setups, shows a mean

error of 2.5mm. In Fig. 3.9 example of reconstructed objects are shown. To better

appreciate the three-dimensional output, texture has been added to the model by

sampling the color of the projection of each 3D point into the image sequence.

3.4.1 Monocular vs Stereo Setup

As shown, the monocular and stereo setup of the proposed hybrid reconstruction

system achieve similar accuracy results. Nevertheless there are differences between

the two presented solution: First of all is obvious that the stereo setup requires

more efforts in the calibration phase, since in addition to the estimation of the

intrinsics camera parameters and the laser plane equation, also an exterior cal-

ibration have to be performed so to retrieve the relative geometry between the

stereo cameras.



Chapter 3. Hybrid 3D Reconstruction 70

Moreover, considering the cost and the compactness of the device, the monocu-

lar setup is clearly preferable respect to the stereo one, given that an additional

synchronized camera have to be acquired and mounted—see Fig. 3.10.

(a) (b)

Figure 3.10: The monocular (a) and the stereo (b) setups of the prototype
device used in our experiment.

Table 3.1: Summary of comparison among the presented method and the ap-
proaches described in (Winkelbach et al., 2006) and in (Habbecke and Kobbelt,
2008). In the first column the methods are listed. The Calibration columns in-
dicate the requirements of Intrinsics, Extrinsic and Laser geometry calibration.
The third column shows if the methods allow a variable point of view (PoV).
In the Laser Detection column GB indicate a gradient based detection while
BS a background subtraction approach. The Extra column shows additional re-
quirements such as simple metric scale reference (SR) or structured 3D pattern
present in the scene. Finally we classify the overall flexibility in three classes:
Hight, Mid and Low, and in the last column we report the reconstruction errors,
where AVG is the average error and RMS is the root mean square error.

Method
Calibration Movable

PoV
Laser

Detection
Extra

Overall
Flexibility

Error
(mm)Intr. Extr. Laser

S X X X Yes GB - High 2.5 (AVG)
M X - X Yes GB SR Mid 2.5 (AVG)
W X X - No BS 3D Low 0.37 (RMS)
H X - X No BS - Low -

S: Proposed stereo hybrid method
M: Proposed mono hybrid method
W: (Winkelbach et al., 2006)
H: (Habbecke and Kobbelt, 2008)

Anyhow its worth noting that in the monocular setup a metric reference has to

be included in the scene. In fact using a single camera the 3D scene and the

translation magnitude are estimated up to a scale factor; On the contrary, during

calibration, the laser plane distance w.r.t. the coordinate frame center is com-

puted with metric precision. This lead to have single laser profiles metrically
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reconstructed in 3D, but estimated translations with a different scale factor, caus-

ing the collation process to fail. To overcome this issue the scale factor in the

SLAM system have to be provided exploiting an known reference.

On the other hand employing a fully calibrated stereo pair the scale factor am-

biguity is bypassed and there is no need to introduce into the scene a reference

object; In this way we could assess that the stereo setup achieve the maximum

flexibility of use—also w.r.t. other state-of-the-art active reconstruction method,

as reported briefly in Table 3.1.



CHAPTER4

Conclusion

In this thesis camera localization and three-dimensional structure computation

starting from image sequences have been addressed. The main topic focused on

the Simultaneous Localization and Mapping (SLAM) problem. SLAM solutions

address precisely the task of incrementally estimate the position of a moving cam-

era into an unknown environment—so to compute its trajectory—and, at the same

time, obtain a representation of the navigated scene. Starting from approaches

emerged into the robotic community in the last years of the 20th century, later

many SLAM approaches appear on the computer vision literature—named as Vi-

sual SLAM (vSLAM). The work here presented fits into this topic.

In particular two approaches have been presented in Chapter 2: (i) a monocular

vSLAM system (SAMSLAM, Sect. 2.2), characterized by an optimization scheme

inspired by the Simulated Annealing meta-heuristic and (ii) a stereo vSLAM soft-

ware (SSLAM, Sect. 2.3) based on an accurate selection of the information to be

used in the estimation procedure.

72
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SAMSLAM—Simulated Annealing Monocular SLAM—works incrementally on par-

tially overlapped keyframe triplets. The most innovative idea is the local opti-

mization employed to refine the keyframe estimation: Inspired by the Simulated

Annealing scheme, a two steps iterative framework has been developed. In the first

phase, 3D maps obtained from each image pair in the triplet are registered with the

Horn method made robust using RANSAC. Then inlier 3D points, together with

the relative image features, are used as input for the EPnP algorithm—also this

included in a RANSAC framework—so to obtain improved camera localization.

As the iteration proceeds, threshold used to evaluate the inliers are progressively

reduced, with the aim to make the algorithm converges to a minimal error state.

Results obtained demonstrates the quality of SAMSLAM for odometry tasks in

indoor environment. Moreover, comparing its performances with a local version

of the Bundle Adjustment algorithm shows interesting results, obtaining lower

or comparable errors thanks to SAMSLAM ability to efficiently deal with poor

camera initializations and outlier data.

SSLAM—Selective Stereo SLAM—exploits the stereo camera pair to achieve high

accuracy estimations. Employing a robust loop chain matching strategy over two

stereo frames—the last detected keyframe and the actual frame—to obtain im-

age correspondences, the pose estimation is based on the minimization of the

re-projection error between of a local 3D map computed on the last keyframe and

the 2D image features on the current frame. To maintain low the error even for

long trajectories, keyframes are carefully chosen by analyzing the temporal fea-

ture flow: Only if enough correspondences show an high disparity a new frame is

selected as keyframe. Without the need of employ global techniques such as Loop

Closure with Bundle Adjustment or graph-based optimization, SSLAM achieves

remarkable results in outdoor and even underwater scenarios, reaching the third

position in the international KITTI benchmark at the time of submission (actually

SSLAM stands in sixth position).

Finally an hybrid 3D reconstruction method has been presented (Ch. 3) employ-

ing a prototype device with one or two passive cameras and an active laser fan

projector. Exploiting the active triangulation approach together with the mo-

tion estimates provided by SAMSLAM or SSLAM (depending on the used setup,

monocular or stereo) it’s possible to obtain a dense 3D model of a scanned object.

Capturing the laser deformations while it interacts with the scene, single three-

dimensional profiles can be reconstructed from each video frame. Successively 3D
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profiles can be collated into a unique model by registering them in a global ref-

erence frame using SLAM estimated roto-translations. The reconstructed models

show good accuracy and comparing with other active reconstruction methods, the

proposed solution achieves the higher flexibility of use, particularly with the stereo

setup, since the device can be freely moved by hand and no additional reference

object has to be included in the scene.
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