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ABSTRACT 
 

This thesis is based on 3 main trials and a further study. The overall aim of my 

research was on one side, to investigate the possibility of using rapid and non-

destructive methods for the determination of fish fillets quality and their 

classification, on the other side, to find out the stunning/slaughtering method able to 

guarantee a minimal or to completely avoid stress condition at the moment 

immediately prior of the slaughtering process, by assessing the effects on fillets 

quality by conventional and innovative methods, from two different farmed species 

[Atlantic salmon (Salmo salar L.) and rainbow trout (Onchorynchus mykiss)]. 

Percussion, asphyxia in the air, electroshock and asphyxia by carbon monoxide (CO) 

were tested; behaviour (on Atlantic salmon), stress indicators, shelf-life evolution 

during cold storage (raw fillets) and sensory analysis (cooked fillets) have been 

investigated, depending on stunning/slaughtering method and, in the case of rainbow 

trout, also on water rearing temperature. 

 

The first study on rainbow trout investigated the possibility of using near infrared 

spectroscopy (NIRS) for the authentication of raw and cooked freeze-dried rainbow 

trout (Oncorhynchus mykiss) fillets. Latent variable models applied on the spectral 

data were developed and used to estimate proximate composition, fatty acid profile, 

fillet yield and cooking loss, and to classify the available dataset by the rearing farm 

and genetic strain of each sample. Results showed that NIR spectra can be used both 

to accurately estimate several chemical properties and to classify samples by rearing 

farm. In order to classify samples by genetic strain instead, a data fusion approach in 

which colour and mechanical information were combined with spectral data was 

used. No major differences were observed between the results obtained from raw 

freeze-dried fillets and those obtained from cooked freeze-dried fillets, except for the 

estimation of certain chemical constituents of interest such as C22:6n-3 and 

polyunsaturated fatty acid content, both of which were better estimated from cooked 

freeze-dried fillets. 

 

In the second study on Atlantic salmon, behaviour analysis showed that CO gas used 

for stunning/slaughtering is not sensed in the first 8-10 min., and then fish respond 

with aversive behaviour, probably elicited by loosing buoyancy or a biological 
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response to hypoxia, before becoming fully sedated. Exposition to CO seems to 

increase catecholamine’s level, resulted in an earlier onset of rigor mortis, lower 

final post mortem muscle pH, higher drip loss after filleting and slighted increase of 

L* and b* values. This study also evaluate and compared sensory analysis, NIRS, 

Electronic nose (EN) and Electronic tongue’s (ET) ability in discriminating Atlantic 

salmon (Salmo salar L.) fillets according to the considered stunning methods 

(percussion: Control; Carbon Monoxide: CO), Storage time (T1; T2) and different 

preparation (raw and thawed; freeze-dried; ethanol storage) of the specimens. 

Samples were NIRS analysed by three different Research Units (RU): Hungary (H), 

Padova (PD) and Torino (TO). As a general pattern, the Storage factor was the main 

source of effects for the instrumental discernment when compared to the Stunning 

effect. According to the two considered factors and their combinations for the seven 

instruments and preparations, the maximum efficiency was performed by the freeze-

dried samples scanned by NIRS devices from the RU of TO, PD and H, also NIRS 

on thawed samples performed by the H RU was efficient; EN, ET and NIRS of 

ethanol specimens resulted to be the worse preparations and analysis methodologies. 

The correlation of maximum rigor time with the spectra resulted to be greater for 

freeze-dried and thawed samples according to all the different considered NIRS 

devices and for ethanol specimens. A general accordance between the spectral 

signature and the appreciation expressed by the panel for some sensory traits was 

observed, indicating that rheological but also taste and flavour properties are 

involved in this vibrational characterization. As general result freeze-dried 

preparation and NIRS devices resulted to be the best combination in samples 

discernment according to Storage Time and Stunning factors, but also to maximum 

rigor mortis time and sensory scores. 

 

In the third study performed on rainbow trout reared at two different temperature 

conditions (8 °C and 12 °C), the effects of stunning/slaughtering methods (carbon 

monoxide asphyxia, CO; electroshock, E; asphyxia in the air, A) on pre rigor mortis 

[blood parameters, rigormortis development, fillets contraction changes, ATP 

depletion and Adenylate Energy Charge (AEC) in muscle] and post rigor mortis (K-

value, texture, lipid oxidation and sensory analysis) changes have been investigated. 

Concerning pre rigor mortis changes, it resulted that electroshock was the most 

suitable slaughtering method, able of limit stress in rainbow trout; asphyxia in air 
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seemed to be the most stressing, as confirmed also by rigor mortis and pH evolution. 

Fillets from asphyxiated fish had the strongest area and perimeter contractions, 

followed by CO and E on one side, and the most rapid length shrinkage and height 

increase, followed by E and CO, on the other. The CO treated fish, reared both at 8 

°C and 12 °C, were able to preserve the higher amount of muscle’s ATP immediately 

after death. 

Post rigor mortis evaluation showed that at the end of the shelf-life (7 days postrigor 

mortis resolution),considering both K and K1-values, freshness results well preserved 

irrespective of the stunning/slaughtering method applied, and water temperature. No 

significant drip losses were detected at any considered time. At rigor resolution 

(TRR0)CO fillets showed higher pH than A fillets (P<0.01), whereas seven days after 

rigor resolution (TRR7) also E fillets’ pH resulted significantly higher than A 

fillets.CO treatment ensured higher a* and C* colour values, and intermediate b* 

value, whereas electroshock provided the lowest fillets colour values. Texture profile 

analysis revealed an effect of the stunning/slaughtering method and of the 

temperature for the cohesiveness parameter. Fish slaughtered by CO presented 

significantly lower (P<0.001) Malondialdehyde content in fillets when compared to 

the other two groups at TRR0, whereas at TRR7 no differences were detected. 

Canonical Discriminant Analysis of sensory attributes, instrumental texture and 

physicochemical measurementsresulted as an accurate tool in discriminating and 

classifying the three groups of treatments at the two considered rearing water 

temperatures. 
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RIASSUNTO 
  

L’obiettivo generale di questo studio è stato, da un lato, quello di approfondire la 

possibilità di utilizzare metodi di valutazione rapidi e non distruttivi per la 

determinazione della qualità di filetti e per la loro classificazione in relazione ai 

fattori di influenza, dall’altro quello di identificare i metodi di 

stordimento/macellazione in grado di garantire una minima o di evitare 

completamente la condizione di stress nel momento della macellazione. A tale scopo 

sono stati valutati gli effetti prodotti da metodi di macellazione tradizionali e 

innovativi sulla qualità dei filetti di due specie diverse di salmonidi, il salmone 

Atlantico (Salmo salar L.) e la trota iridea (Onchorynchus mykiss). Percussione, 

asfissia in aria, elettroshock e asfissia tramite CO sono stati testati; comportamento 

(sul salmone Atlantico), indicatori di stress, evoluzione della shelf-life durante la 

conservazione in condizioni refrigerate (filetti crudi) e analisi sensoriale (fletti cotti) 

sono stati studiati in relazione al metodo di macellazione e alla temperatura di 

allevamento (solo sulla trota iridea) applicati. 

 

Un primo studio sulle trote iridee ha esaminato la possibilità di usare la spettroscopia 

del vicino infrarosso (NIRS) per l’autenticazione di filetti liofilizzati di trota iridea 

(Oncorhynchus mykiss) crudi e cotti, derivanti da ceppi genetici diversi, allevati in 

aziende diverse. Modelli di variabili latenti sono stati sviluppati sui dati spettrali e 

utilizzati per stimare la composizione centesimale, il profilo acidico, la resa in filetto 

e le perdite di cottura, e per classificare il data set disponibile a seconda dell’azienda 

e del ceppo genetico di appartenenza di ogni campione. I risultati hanno mostrato che 

gli spettri NIR possono essere utilizzati sia per stimare in modo accurato diverse 

proprietà chimiche che per classificare i campioni a seconda dell’azienda di 

appartenenza. Allo scopo di classificare i campioni in base al ceppo genetico invece, 

è stato considerato un approccio di fusione dei dati nel quale colore e informazioni 

relative alle caratteristiche fisiche sono stati combinati con i dati spettrali. Nessuna 

differenza importante è stata riscontrata tra filetti crudi e cotti liofilizzati, se non nella 

stima di qualche costituente chimico d’interesse, come il tenore in C22:6n-3 e il 

contenuto di acidi grassi polinsaturi, entrambe i quali sono stati meglio stimati nei 

filetti cotti liofilizzati. 
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Nel secondo studio, l’analisi comportamentale sul salmone Atlantico macellato con il 

monossido di carbonio ha mostrato che il CO non è percepito nei primi 8-10 minuti, 

poi il pesce risponde con comportamento avverso, forse provocato dalla perdita di 

equilibrio o da una risposta biologica all’ipossia, prima di essere completamente 

sedato. L’esposizione al CO sembra aumentare il livello di catecolamine, con un 

anticipato inizio del rigor mortis, pH finale post mortem più basso, maggiori perdite 

di gocciolamento dei filetti e un leggero aumento dei valori L* e b*. 

Questo studio ha anche valutato e confrontato l’abilità dell’analisi sensoriale, del 

NIRS, naso elettronico (NE) e lingua elettronica (LE) nel discriminare filetti di 

Salmone atlantico (Salmo salar L.) a seconda dei metodi di stordimento applicati 

(percussione: Controllo; Monossido di Carbonio: CO), del tempo di stoccaggio (T1; 

T2), e diverse preparazioni (crudi scongelati; liofilizzati; conservati in etanolo) dei 

campioni. I campioni sono stati scansionati al NIRS da tre diverse Unità di Ricerca 

(UR): Ungheria (H), Padova (PD) e Torino (TO). In generale, il fattore Tempo di 

Stoccaggio è risultato la principale fonte di effetti per la discriminazione strumentale 

rispetto al fattore Stordimento. Considerando i due fattori principali e le loro 

combinazioni per i sette strumenti e preparazioni, la massima efficienza è stata 

mostrata dai campioni liofilizzati e scansionati con le strumentazioni NIRS dalle UR 

di TO, PD e H, anche il NIRS sui campioni scongelati realizzato in Ungheria è 

risultato efficiente; NE, LE e il NIRS sui campioni conservati in etanolo sono 

risultate essere le peggiori preparazioni e metodologie di analisi. La correlazione del 

tempo di massimo rigor con gli spettri è risultata maggiore per i campioni liofilizzati 

e quelli scongelati per tutti gli strumenti NIRS considerati e per i campioni in 

etanolo. Una relazione generale tra l’impronta spettrale e gli apprezzamenti espressi 

dai pannellisti per alcuni tratti sensoriali considerati è stata osservata, indicando che 

le proprietà reologiche ma anche quelle del gusto e del sapore sono coinvolte nella 

caratterizzazione vibrazionale. In generale, i campioni liofilizzati e la strumentazione 

NIRS sono risultati essere la migliore combinazione per discriminare i campioni a 

seconda dei fattori Tempo di Stoccaggio e Stordimento, ma anche del massimo 

tempo di rigor mortis e punteggio sensoriale.  

 

Nel terzo studio, realizzato su trote iridee allevate a due diverse temperature (8 e 12 

°C), sono stati valutati gli effetti di diversi metodi di stordimento/macellazione 

(asfissia con monossido di carbonio, CO; elettroshock, E; asfissia in aria, A) sulle 
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caratteristiche pre rigor mortis [parametri ematici, evoluzione del rigor mortis, 

contrazione dei filetti, consumo di ATP e la Carica Energetica Adenilica (AEC) nel 

muscolo] e post rigor mortis (indice di freschezza K, texture del filetto, ossidazione 

lipidica e analisi sensoriale), durante la shelf-life. 

Per quanto riguarda i cambiamenti durante la fase di pre rigor mortis, l’elettroshock 

è risultato essere il metodo di macellazione più adatto, in grado di limitare lo stress 

nella trota, mentre l’asfissia in aria è sembrato essere il metodo più stressante, come 

confermato anche dall’evoluzione del rigor mortis e del pH, mentre il CO ha 

prodotto effetti intermedi tra i due metodi di macellazione precedenti. I filetti ottenuti 

dai pesci sottoposti ad asfissia hanno presentato da un lato la più intensa contrazione 

dell’area e del perimetro del filetto, seguiti dai filetti ottenuti dai pesci macellati con 

CO e con elettroshock, ma anche la più rapida contrazione in lunghezza e aumento in 

altezza, seguiti dai filetti dei pesci trattati con elettroshock e CO. I pesci macellati 

con l’impiego del CO, indipendentemente dalla temperatura di allevamento, 8 °C o 

12 °C, hanno presentato il più alto contenuto di ATP nel muscolo subito dopo la 

morte. 

Relativamente alle caratteristiche riscontrate nelle fasi successive delrigor mortis, è 

emerso che a 7 giorni dalla risoluzione dello stesso, considerando sia il K-value che 

il K 1-value, la freschezza risulta ben preservata indipendentemente dal metodo di 

stordimento/macellazione applicato e dalla temperatura. Non sono state determinate 

rilevanti perdite di gocciolamento dei filetti per nessuno dei tempi considerati. Alla 

risoluzione del rigor mortis (TRR0) i filetti CO hanno mostrato un pH più alto rispetto 

ai filetti A (P<0.01), mentre 7 giorni dopo la risoluzione del rigor mortis (TRR7) 

anche il pH dei filetti E è risultato significativamente più alto rispetto a quello dei 

filetti A. Il trattamento con CO ha prodotto una colorazione rossa più intensa del 

filetto, alta saturazione e b* intermedio, mentre l’elettroshock ha riportato i valori più 

bassi. L’analisi della texture del filetto ha mostrato un effetto significativo dei metodi 

di stordimento/macellazione e della temperatura, limitatamente alla coesività. I pesci 

macellati con CO hanno presentato un contenuto di malondialdeide (MDA) 

significativamente più basso (P<0.001) rispetto agli altri due gruppi a TRR0, mentre a 

TRR7 nessuna differenza è stata riscontrata. L’Analisi Discriminante Canonica (CDA) 

degli attributi sensoriali, dei parametri della texture e delle misurazioni fisico-

chimicheè risultata essere uno strumento accurato nel discriminare e classificare i tre 

trattamenti alle due temperature. 
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1. INTRODUCTION  

1.1 Animal welfare and food quality 

Food quality is perceived as a global concept, which is unavoidable from animal’s 

welfare. Conditions of anxiety, pain, suffering or fear above all have ethical 

implications, since the human being is considered to be responsible for the effective 

respect of the rights and welfare of other living animals, as stated in the declaration 

of UNESCO in 1978. The respect for animal’s welfare, strongly affects consumer 

attitudes towards the product, influencing the choice to those products derived from 

animals that have not been subject to ill treatment. Operations relating the stunning 

and killing, in the slaughtering processes, as well as the operations immediately prior 

stages, can cause particular stress and disturbances that may affect meat quality. 

Humane slaughter procedures, therefore, can improve post mortem quality of fish, as 

reported for warm-blooded animals by many authors (Brown et al., 1998;Geesink et 

al., 2001). To maintain the best original quality, fish would be stunned until death 

and killed without any avoidable stress. 

Fresh fish quality is the major concern to industry and consumers, as fish is 

considered an extremely perishable food commodity. Freshness is the single most 

important attribute when assessing fish quality. Microbiological, biochemical and 

sensory changes are associated with deterioration of fish quality during handling and 

storage (Ehira and Uchiyama, 1986; Gregory, 1994). It is fundamental to reduce 

muscle activity during transport and netting and to ensure stunning/slaughtering 

methods able to minimize pre mortem stress of fish since it may affect rigor mortis 

and pH evolution (Robb, 2001; Robb et al., 2000a; Thomas et al., 1999;), texture 

pattern (Nakayama et al., 1996), fillet colour perception (Jittinandana et al., 2003; 

Robb et al., 2000a; Robb and Warris, 1997), shelf-life (Lowe et al., 1993) and K-

value evolution, defined as a later indicator of fish freshness as reported by 

Izquierdo-Pulido et al. (1992). Stress can provide greater muscle contractile tensions 

and shortening than observed in unstressed stated fish (Nakayama et al., 1999). 

Animal welfare and product quality are linked aspects of the total quality of fish; 

therefore any conflict between the requirements of fish welfare and efficient 

aquaculture should be avoidable 
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1.2 Fish welfare-suffering and quality indicators 

Animal welfare is by no means a straightforward concept. The major issues are the 

meaning, the definition of animal welfare and how best objectively measure it 

(Broom, 1991a;1991b;Dawkins, 1998;Mendl and Paul, 2004). Freedom from hunger 

and thirst, injury, disease, discomfort, fear and distress, pain, as well as the freedom 

to express normal behaviour provides a logical framework with which to assess 

welfare issues (FAWC, 1996). Physical health is certainly a necessary requirement 

for good welfare. It is important to remember that poor health can be both a cause 

and a result of poor welfare. However, for many, good animal welfare goes beyond 

just physical health, and also involves a lack of mental suffering. This aspect of 

welfare therefore seeks to understand subjective experiences of non-human animals 

and proposes the conscious experience of suffering in these animals (Broom, 1991b). 

This is a controversial issue, when it comes to fish. Concepts of animal welfare have 

been applied to those which are considered to have the ability to experience pain, fear 

and suffering and as much have been associated with species with a higher level of 

cognition when compared to fish. However, there is a scientific debate regarding the 

ability of fish to experience pain and fear. 

Some have argued that fish lack of essential brain regions or any functional 

equivalent, making it impossible that they can experience pain and fear (Rose, 2002); 

others suggest that there are similarities with mammals in the basic structure of 

neurons and neuro-hormonal biochemistry, instress responsesand behaviour,which 

seem to indicatethatthe fish arecapableof experiencing pain andsuffering, especially 

in the last momentsof their life,when they arecatch and slaughtered (Ashley and 

Sneddon, 2008;Braithwaite and Huntingford, 2004;Chandroo et al., 2004a; Kestin et 

al., 1995;Sneddon, 2003; Sneddon et al., 2003a; 2003b;Verhejien and Flight, 1997). 

There is no single way to measure welfare, and even if a wide range of behavioural, 

physiological and biochemical parameters are used to assess welfare, none of these 

are considered reliable when individually considered, thus a multidisciplinary 

approach needs to be done. 

 

1.2.1 Behavioural indicators 

Altered behaviour is an earlier and easily observed response to adverse conditions, 

specific responses to natural stressors can be used as an indicator of impaired welfare 

although this cannot be a sufficient approach. 
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Anxiety and fear as behavioural responses can be expressed by freezing (in presence 

of predators), or, by struggle, active avoidance, muscular spasms, pupil dilatation, 

aggression, exploration, risk-taking, active attempt to counteract the stressful 

stimulus. At slaughter, fish behaviour gives clear indications about presence or 

absence of consciousness; the most frequent observations indicating behaviour 

changes with different intensity and persistence are 

• Swimming motility: changes in speed, directions and space use 

• Gill movement: regulation of the ventilatory activity, that is the flow of water 

ventilated over the gills per unit of time. It is fundamental to maintaining 

homeostasis in terms of O2 status, blood and tissues acid-base balance (pH) at precise 

set points. In acclimatised and unstressed fish, the respiratory frequency is adjusted 

close to a minimum possible value. Therefore, increased ventilatory activity is 

commonly used as a sign of stress and poor welfare in fish (Martins et al., 2012). 

Fish also respond to external stimuli (Marx et al., 1997;Tobiassen and Sørensen, 

1999;Van De Vis et al., 2001)such as 

• Capability to maintain the equilibrium when the fish is turned upside down 

• Movement of eye following the changes in body postures in the longitudinal axis 

• Reaction to the needle puncture on the tail or head (pricking) (Lambooij et al., 2002a; 

2002b; 2002c) 

• Handling along the lateral line 

• Application of low voltage electricity. 

However, observation of behaviour only may not be sufficient for unconsciousness 

assessment. For example, electrical stunning can be very painful and paralysis may 

occur without unconsciousness when not properly applied (Croft, 1952; Robb et al., 

2002). Therefore, some methodologies able to indicate brain function, thus the 

presence and the duration of a sensitive state of consciousness are recommended 

even if difficult to perform, such as 

• Electroencephalogram (EEG): necessary to determine whether an electric current has 

been sufficient to induce a general epileptiform insult indicating unconsciousness and 

insensibility (Wageneder and Schuy, 1967). Required the positioning in the fish of 4 

electrodes 

• Visual Evoked Responses (VER): is the brain response to flashes of light directed 

toward the eyes. The absence of an average VER indicates brain dysfunction (Kestin 

et al., 1991;Van de Vis et al., 2001; 2003) 
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• Electrocardiogram (ECG): required the positioning in fish of 2 electrodes plus a 

ground electrode to test heart rate 

• Somatosensory Evoked Responses (SER): responses in the brain to pain stimuli are 

registered. The pain stimulus consisted of scratching the tail by using a needle 

• Vestibule-Ocular Reflex (VORs): movements of the eye when the fish is rocked side 

to side (in a stunned/dead fish the eye does not move). 

Their absence indicates unconscious and insensible fish. 

 

1.2.2 Blood indicators 

At slaughter and during rearing, physiological reactions to the stressors in fish are 

related to primary response to stress, which involves an immediate release in the 

blood stream of catecholamines (CAs) from the chromaffin cells. This is followed by 

the activation of the hypothalamic-pituitary-interrenal (HPI) axis: corticotrophin 

releasing factor from the hypothalamus acts on the pituitary to synthesise and release 

corticotrophic hormone, which in turn stimulates the synthesis and mobilisation of 

glucocorticoid hormones (cortisol in teleosts) from the interrenal cells (Schreck, 

1981;Wendelaar-Bonga, 1997). HPI activation results in energy mobilisation, 

depletion of glycogen stores, increase in glucose plasma level, along with high 

muscle activity, anaerobic glycolysis and an increase in plasma lactate. Thus, both 

levels of glucose and lactate in the plasma are often use in conjunction with cortisol 

to assess stress levels (Arends et al., 1999;Acerete et al., 2004). Cortisol has been 

widely utilised both as a short and a long term stress condition index (Pickering et 

al., 1982;Pickering and Pottinger, 1985). 

Catecholamines are not frequently considered as stress indicators, because they are 

not easy to detect and quickly disappear from the blood stream (Wendelaar-Bonga, 

1997). Despite the use of anaesthetics, handling during blood sampling induces acute 

stress in fish. Therefore, a part of the research in fish welfare is directed to finding 

non-invasive methods for gathering needed data, such as measuring levels of fish 

metabolites in the water (Ruane and Komen, 2003). 

1.2.2.1 Cortisol 

In stressful situations to the animals, secretion of cortisol in the blood plasma 

increases to high levels. Cortisol is the major stress hormone in fish (Ellis et al., 

2007), and is regarded as an important primary stress response (Mommsen et al., 
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1999). This hormone regulates the metabolism of proteins, carbohydrates and fats; 

it’s furthermore involved in the regulatory functions of the immune system, heart, 

growth and reproduction (Pottinger, 2008). When cortisol level is high in the blood, 

the supply of blood and gills’ activity are increased, leading to different physical 

responses such as uneasy movements. Cortisol has the function to increase blood 

glucose levels, and promote the liberation of glycogen in liver. Cortisol also 

influence the hyperosmotic effect, by increasing haematocrit values, but also ions 

levels, especially sodium (Guyton and Hall, 2006). Moreover, stress can give a rapid 

anaerobic metabolism, resulting in reduction of glycogen which in turn gives a rapid 

decrease of pH and faster onset of rigor (Van Laack et al., 2000). When the stress 

event becomes chronic, the cortisol levels can be maintain at high value for days or 

weeks, even if they are gradually decreasing (Wendelaar-Bonga, 1997). Multiple 

stress condition seems to amplify the cortisol response (Mazur and Iwama, 1993; 

Ortuño et al., 2002). Blood sampling procedures inevitably involve introducing 

stressors that, to different extents, affect the levels of blood chemistry constituents; 

thus it could be helpful to test cortisol in less invasive biological matrixes such as in 

mucus or faeces, especially during rearing (Bertotto et al., 2010; Turner et al., 2003). 

 

1.2.2.2 Glucose 

The secondary responses occur as a direct result of the release of cortisol and 

catecholamines (including alterations in blood and tissue chemistry). An increase in 

blood glucose concentrations, or hyperglycaemia, is generally regarded as a reliable 

indicator of stress in fish (Barton, 1997;Wedemeyer et al., 1990). In vertebrates, this 

elevation of blood sugar is typically due to the action of catecholamines in function 

to provide caloric energy for the ‘fight-or-flight’ reaction (Pottinger et al., 2000). 

Catecholamines, such as adrenaline, rapidly direct the phosphorylation of the inactive 

form of glycogen phosphorylase resulting in an increase in glycogenolysis (Vijayan 

and Moon, 1992), with the primary source of glycogen being the liver and muscle 

(Wedemeyer et al., 1990). Gluconeogenesis may, however, gain greater importance 

when the glycogen stores of the liver have been depleted (Janssens and Waterman, 

1988;Mommsen et al., 1988). The increase in circulating adrenaline levels is rapid 

and transient (Wells and Weber, 1990), and the hyperglycaemia almost immediate. 

Cortisol has also been demonstrated to cause hyperglycaemia in fish (Begg and 

Pankhurst, 2004; Leach and Taylor, 1980;Mommsen et al., 1999;Pickering and 
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Pottinger, 1995;Vijayan et al., 1997) following the activation by the HPI axis 

(Pickering, 1981;Sumpter, 1997), probably as the result of gluconeogenesis (Vijayan 

et al., 1991). Glucose is very easy to determine so it is frequently used as a stress 

indicator, although some authors have found a delay in its release (Barry et al., 

1993). 

 

1.2.2.3 Lactate 

Higher energy mobilization and utilization, following the hypoxia conditions or due 

to the increased muscular activity, implies anaerobic glycolysis in white muscle, 

associated with a large build-up of lactic acid both in the muscle and blood, followed 

by hematic pH decrease. Such behaviour is the result of the response to the release of 

catecholamines (Milligan and Girard, 1993). Therefore the increase level of plasma 

lactate is used as stress index (Arends et al., 1999; Erikson et al., 1999; Lowe et al., 

1993), even if fish stores most of the lactate in the muscle. 

 

1.2.2.4 Haematocrit 

In stress conditions, the increase in muscle activity and heartbeat requires higher 

oxygen intake that raises haematocrit (red blood cell number) and thus haemoglobin 

concentration and the oxygen-carrying capacity of the blood. Haematocrit is used as 

a stress index because of its easy detection, even if standard values have to be 

validated for each species before to be correctly used (Reddy and Leatherland, 1988). 

 

1.2.2.5 Free Fatty Acids (FFA) 

It seems that under stress conditions, CAs are involved in the mobilization of free 

fatty acids (FFAs), important energy substrates for fish (Pickering and Pottinger, 

1995). Changes in plasma FFA could be a stress condition index, however, Sheridan 

(1988;1994) concluded that the effects of CAs on FFA levels in fish did not show a 

clear response, since these parameters are too variable to permit any general 

conclusion. For these reasons are not commonly used. 

1.2.2.6 Reactive Oxygen Metabolites (ROM) and Antioxidant Power (AOP) 

Stress condition can promote the oxidation of polyunsaturated fatty acid (PUFAs), 

abundant in fish, which may result in the production of reactive oxygen metabolites 
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(ROMs). The production of ROM is proved to induce severe alterations in nucleic 

acid, proteins, and lipids (Halliwell and Gutteridget, 1984) As a result, the nutritious 

value of post-slaughter fillet is reduced, due to the deterioration of both texture and 

flavour of the product assisted by the degradation and loss of PUFAs (Frigg et al., 

1990; Waagbø et al., 1993). The ROMs production can be contrasted by an adaptive 

response such as the activation of the endogenous detoxification pattern in terms of 

anti-oxidant power mechanism (AOP). The determination of oxidative stress by 

ROMs and AOP intends to identify the early oxidation products (hydro-peroxides), 

thanks to the presence of reactive oxygen species and the correspondent 

unsuccessfully anti-oxidant power mechanism. Animals in good welfare conditions 

generally show a proportional and positive AOP response to ROMs release; on the 

contrary, animals compelled to cope with a prolonged oxidative stress show a non 

proportional and positive AOP response and animals with a major injury show a 

negative correlation (Poli, 2009). 

 

A rapid death does not allow a completion of secondary effects of stress, and pre-

slaughter stress always has to be considered in the stress evaluation at slaughter 

through blood parameters. 

 

1.2.3 Tissue post mortem quality indicators 

Operations concerning stunning and slaughtering processes, as well as the 

immediately prior stages, can cause particular stress and disturbances that may affect 

meat quality. It is fundamental to reduce muscle activity during transport and netting 

and to ensure stunning/slaughtering methods able to minimize pre mortem stress of 

fish since it may affect muscular energy reserves giving rise to an earlier onset and 

resolution of rigor mortis (Nakayama et al., 1996; Thomas et al., 1999), texture 

(Nakayama et al., 1996;Ando et al., 1992), fillet colour perception (Jittinandana et 

al., 2003; Robb et al., 2000a; Robb and Warris, 1997), shelf-life (Lowe et al., 1993), 

ATP degradation rate (Parkhouse et al., 1988) and K-value evolution(define as a later 

indicator of fish freshness) as reported by Izquierdo-Pulido et al. (1992). Severe 

stress caused by pre-slaughter practices can be so aversive to fish that it masks the 

benefits of good slaughter practices. 
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1.2.3.1 Lactic acid and pH 

During strenuous activity anaerobic metabolism is activated and generates muscle 

lactate with consequent lowering of pH (Wood, 1991). Muscle tissue is still alive 

after the slaughtering process (Davey, 1983), as consequence the physiological 

condition of fish muscle prior to slaughter is also related to the tissue post mortem. 

As there is no possibility for the metabolism to recovery after death, the exhaustion 

of muscle energy reserves is inevitable and ends with rigor mortis. The first day post 

mortem, the amount of lactate increases at muscle level and, as consequence, the pH 

decreases. These changes are considered valuable early stress and muscular activity 

indexes (Lowe et al., 1993;Marx et al., 1997; Robb and Warris, 1997). From the third 

day of storage to the end of the shelf-life, differences are generally less marked 

(Lowe et al., 1993; Marx et al., 1997; Robb and Warris, 1997;Robb et al., 

2000a;Sigholt et al., 1997). 

 

1.2.3.2 ATP, ATP/IMP, AEC, K-value 

The effect of a short-term stress on the health of an organism can be measured by the 

energy balance of the cells in that particular moment, represented by adenosine 

triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate 

(AMP), ATP/IMP ratio, inosine (Ino) and hypoxanthine (Hx) amount. In stress 

condition, like transport, netting, stunning and slaughtering, muscle activity results in 

an increased energy demand, thus ATP reserves are depleted through the splitting of 

the phosphate bonds with the consequent transformation of ATP into ADP, and of 

ADP into AMP, and sometimes further to inosine monophosphate (IMP). The 

nucleotides in the muscular tissue’s cells (ATP, ADP and AMP) begin the break 

down process immediately after the animal death, in more stable compounds such as 

IMP, Ino and Hx, which accumulate in the muscular tissue. The sequence ATP to 

IMP is generally completed within two days of storage in the ice after death. The loss 

of IMP can affect the flavour in fresh fish, since it is recognize as a flavour enhancer 

of meaty foods, especially the umami flavour (Kawai et al., 2002) and it is likely that 

IMP contributes to the sweet, creamy, meaty flavours of fresh fish (Bremner et al., 

1988;Fletcher et al., 1990; Fraser et al., 1968; Fuke and Konosu, 1991; Hashimoto, 

1965). Hx increase with the loss of freshness, to reach a maximum value and then 

decrease in the degradation phase. Hx amount gives information about freshness 

evolution in the first post mortem phases. Another important parameter to express the 
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cellular energy charge could be the Adenylate Energy Charge (AEC) = 

(ATP+0.6ADP)/(ATP+ADP+AMP). AEC can assume values between 0 and 1. 

When AEC is equal to 1, energetic reserves are all made of ATP, which means a 

“normal” consumption of ATP molecules, completely restored with the energetic 

synthesis. The condition where AEC = 0 corresponds instead to the only presence of 

AMP, due to an important consumption of energy reserves (ATP and ADP), not been 

restored in the energetic synthesis. Thus, considering the correspondence between 

AEC value and the physiological conditions of the organism, the study of this index 

can be regarded as indicator of a general external stressing event (aspecific). 

All these indexes can be used as early stress indexes. The speed of nucleotide’s 

catabolism is not constant but varies according to the temperature, the species and the 

physiological state of the fish. In some fish species more inosine is accumulated, in 

others instead more hypoxanthine, thus the only determination of Hx amount is not 

always sufficient to give information about fish freshness. For this reason, different 

Indexes (K, K1, G, P, H, Fr) representing the ratio among the different nucleotides 

have been developed, to better highlight the evolution of the process and because 

they are better correlated to the sensory observations (Howgate, 2006). The K-value, 

defined as the ratio of the sum of the non-phosphorylated compounds, Ino and Hx, to 

the sum of all ATP-derived degradation products,and calculated by the following 

formula: 

 

K (%) =[(Ino + Hx) / (ATP + ADP + AMP + IMP + Ino + Hx)] * 100 

 

has been much used as a later Index of freshness (Ehira and Uchiyama, 1986), but in 

almost all storage trials described in literature, concentrations of the adenine 

nucleotides are very low and a revised K-value, designated as K1, is calculated as the 

ratio of the sum of Ino and Hx to the sum of  IMP, Ino and Hx: 

 

K1 (%) = [(Ino +Hx) / (IMP + Ino + Hx)] * 100 

 

In this case, K1 Index monitors the loss of IMP (Howgate, 2005). 
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1.2.3.3 Rigor mortis phases 

ATP in post mortem muscles is mainly derived from glycogen depletion to lactate as 

end product (Cappeln and Jessen, 2002). Rigor mortis development has been closely 

linked to ATP depletion as well as glycogen (Iwamoto et al., 1987;Mørkøre et al., 

2006). The post mortem energy status depends on several factors such as the 

nutritional condition of the fish but also the stress exposure during the slaughter 

process. It is well documented that pre-slaughter handling stress has adverse effects 

on product quality such as accelerating the onset and the maximum rigor score, but 

also softening muscle texture (Ando et al., 1992; Kiessling et al., 2004; Robb, 2001; 

Sigholt et al., 1997;Skjervold, 2002). On the contrary with reduced pre-slaughter 

stress and activity, the onset of rigor mortis is delayed in the time, allowing the 

possibility to handling the fish before its entry into rigor, increasing fillets yield and 

decreasing the damage of the flesh. Pre rigor salmon fillets are thicker, firmer and 

often the colouration is more intense compared with their post rigor counterparts 

(Skjervold, 2002). The onset of rigor mortis is well established as indicator of fish 

freshness (Davey, 1983;Iwamoto et al., 1987). Many quality traits can change as 

affected by conditions at slaughtering time (pre slaughter and slaughter severity 

stresses) and during storage (handling and storage temperatures). The relative quality 

changes can be indicated by: 

• Fish and fillet appearance (physical injuries, gaping and colour) 

• Technological properties of the fish and fillet: rigor evolution, texture (hardness, 

cohesiveness, springiness), water holding capacity, fillet shrinkage, rigor mortis 

onset and resolution and texture, in particular, are important for flesh processing 

(Poli, 2009) 

• Freshness indicators: dielectric properties, K-value, spoilage indicators as biogenic 

amines and lipid oxidation products, such as malonaldehyde 

• Sensory qualities: of raw fish (appearance of the skin, eye and gills, rigor status, 

smell, mucus and flesh consistence), the shelf-life evolution, and sensory traits of 

cooked fillets as texture, taste, odour and flavour. 

 

Like for other farmed animals, good fish rearing practices and welfare have to be 

guaranteed, according to the last European regulations. The main goal is to minimize 

and monitor the pre mortem and slaughtering stress, also by ensuring slaughtering 

practices able to render the fish unconscious until death without any excitement, pain 
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or suffering prior to killing. Slaughtering methods can be evaluated by considering 

many parameters, which however when isolated do not give enough information 

about fish welfare. 

 

1.3 Stunning/slaughtering methods for farmed fish 

When it comes to regulations and legislation governing welfare during farming and 

at slaughter, fish are treated as one species. It is fundamental to keep in mind that a 

wide number of fish species are farmed, with a large variety of ecological adaptations 

and evolutionary developments. This means that different species can react in a 

different way to similar situations: at a given environmental temperature, some 

species die quite quickly (trout) when removed from water into air, while others like 

eels or marine flatfish can take several hours. Aquatic animals, differently from the 

terrestrial ones, have in their environment a limited supply of oxygen, thus depending 

on the habitat fish have adapted to tolerate various degrees of hypoxic and 

hypercapnic environments. In general, some freshwater species have higher tolerance 

to hypoxia and hypercapnia due to more variation in their environment. Some fish 

species like eel, tilapia, cyprinids and goldfish can survive at least 1 hour in hypoxic 

and hypercapnic water, while rainbow trout survives only 10 min (Kestin et al., 

1991). Similarly, eels require a much important amount of stunning current than trout 

or salmon to render them unconscious. Species differences need to be taken into 

account when considering particular procedures. 

Many existing commercial slaughtering methods expose fish to substantial suffering 

over a prolonged period of time. It is required a certain knowledge by the operators, 

for the application of these stunning/slaughtering methods, otherwise the risk is to 

kill the animals in a non-human way even if the method is humane. 

 

The European Food Safety Authority (EFSA, 2004)has classified the methods used 

to killed fish into 2 main groups: 

• Stunning/slaughtering methods 

• Slaughtering without stunning. 

Stunning methods based on bleeding to achieve the death of the fish are seldom 

applied because the brain takes longer time before to lose its functions after bleeding 

(Robb et al., 2000b). Percussive and electrical stunning can be both primary stunning 
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methods and stunning/slaughtering methods depending on the parameters applied but 

generally are almost always stunning/slaughtering methods. 

 

1.3.1. Stunning/slaughtering methods 

1.3.1.1. Percussive method 

Percussive stunning is frequently used in salmon industry and for flat fish. Fish is 

removed from the water, restrained and then hit with a blow or repeated blows on the 

top of the head above the brain by a club (“priest”) or hammer until the fish is 

considered dead. Generally, fish are exposed to the air during the restraining and 

positioning process for 5-10 sec before the blow is delivered. This 

stunning/slaughtering method can be applied both manually (on single fish) and by 

semi-automatic percussive stunning devices (on large number of fish) equipped with 

a flat head pneumatic hammer (20 mm in diameter), which are becoming widespread 

in salmon industry. Percussive stunning using these devices is reported to be 

irrecoverable in more than 99% of case when it is applied correctly (EFSA, 2004). 

Fish are manually pushed head first into a guide and when the snout of the fish 

touches a trigger, the hammer delivers a hard percussive blow to the head of the fish, 

which is immediately rendered unconscious. The carcass is instantly removed and 

exsanguinated, both for quality reason and to prevent recovery in inadequately 

stunned fish. Current developments with semiautomatic percussive slaughtering, 

involved methods for percussively slaughtering fish straight into the water and push 

it to swim towards the apparatus intentionally, without need for an operator. The 

necessary impact energy to stun or kill the fish depends on the shape of the hammer, 

and generally a flat hammer is more efficient than a round one(EFSA, 2004) . When 

correctly applied with adequate force, percussive killing is an efficient and humane 

way to slaughter fish: loss of movement and VERs can be immediate and permanent 

in salmon and trout (Kestin et al., 1995; Marx et al., 1997;Robb et al., 2000a). When 

not properly applied or applied with insufficient force, unconsciousness is not 

immediate and consciousness can be recovered after short time (Kestin et al., 

1995;Robb et al., 2000b). Not all fish species are suitable for percussive killing: in 

sea bream, African catfish or eels, for example, skull morphology seems to prevent 

sufficient energy reaching the brain to render the animal unconscious(Van De Vis et 

al., 2003). Many studies showed that fish killed by percussive blows show reduced 

physical activity at slaughter, slower onset of rigor mortis and post mortem muscle 
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pH decrease, compared to other commercial methods for fish slaughtering (Marx et 

al., 1997; Morzel and Van De Vis, 2003). 

 

1.3.1.2 Spiking (coring or iki jime) 

This method is similar to captive bolt stunning of mammals. Fish are hauled out of 

water, restrained and a spike is driven into the brain through the top of the head by a 

pneumatic pistol, in order to provoke its destruction. In some cases, fish are also 

pithed with a rod or wire to destroy the upper part of the spinal cord and reduce 

carcass convulsions (Robb and Kestin, 2002). Normally, between the capture and 

removal from water and spiking may elapse about from 10 sec to up a minute. High 

precision is required in its application, and it cannot be achieved, for example, in 

small fish like salmon; in this species the brain is harder to target, and considering 

that fish makes strong attempts to escape, the system can be inclined to erroneous 

application that do not disable the brain. Therefore this technique is applied in larger 

fish that can be individually restrained (Robb et al., 2000b). Manual spiking has been 

applied for several years on tuna, but the result, in contrast to the semi-automatic 

one, is a clear delaying in time of death, that is why this technique should not be 

manually performed. 

 

1.3.1.3 Electrical stunning or stunning/slaughtering methods 

The application of electrical current can be a stunning or stunning/slaughtering 

method, according to the considered current parameters and the fish species. 

Electrical stunning is generally applied on eels, but recently the research is 

developing commercial system for salmon and trout and currently some commercial 

electric slaughter systems are available. Fish are typically placed in a tank full of 

water where electrodes are attached to the opposite sides, and an electric field of 50-

Hz (mains) is passed. The electrical field is uniform and strong enough to stun the 

fish; loss of movement (Marx et al., 1997; Robb and Kestin, 2002) and VERs or 

SERs are immediate (Kestin et al., 1995; Van De Vis et al., 2003). This system has 

the advantage that the fish are not removed from water before they are insensible or 

dead (Gregory, 1998). In some systems, mainly those used for salmon, fish are 

immediately exsanguinated until death, and it takes around 4-5 min to loose brain 

functions after gill cutting (Robb et al., 2000a); whereas, trout and eels are killed by 
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electrocution and exsanguination is not required. An alternative way to apply 

electrical stunning consists in the application of a weaker electric field for longer 

periods to de-watered fish placed in a tank. The result is that fish exposed to low 

voltages are not stunned but electro-immobilized and, after the current is switched 

off, strong aversive reactions are seen, and death can eventually occur as 

consequence of muscle energy reserves exhaustion (Kestin et al., 1995; Robb and 

Kestin, 2002). The mechanism of death as a result of electrical application is still not 

known. It seems not related to heart fibrillation (Kestin and Lines, pers. comm.), as 

normal cardiac rhythm could be recorded after stunning for a prolonged period. 

Death in these fish could be due to respiratory arrest or complete and irreversible 

depolarization of the nervous system. When fish are stunned and evoked responses 

are lost, the fish enters a stage of mild tonic and clonic spasms which last around 20-

50 sec in salmon and trout (Kestin et al., 1995; Robb and Roth, 2003), eel (Lambooij 

et al., 2002c) and African catfish(EFSA, 2004). Robb et al. (2002) showed that if the 

process does not kill the fish, most trout are fully recovered after 3 minutes. Eels are 

particularly resistant to electrical stunning and require at least 5 min of exposition to 

high current to achieve unconsciousness. If at the same time nitrogen is flushed in the 

water, eels die without recovering consciousness (Lambooij et al., 2002c). Generally, 

according to the fish species, higher stunning current and longer time of exposition 

are associated with longer periods of unconsciousness and higher mortality. 

Electrical stunning has some potential advantages compared to other stunning 

methods: large batches of fish can be stunned or stunned/slaughtered with limited 

handling and restraint (Roth and Moeller, 1999); the process can be performed 

straight in the water avoiding further stress event. However, it has to be born in mind 

that intense electrical currents can damage the carcass (Kestin et al., 1997), causing 

hematoma, blood clots, spinal and vertebrae fractures (Kestin et al., 1995;Roth and 

Moeller, 1999; Wall, 2001). 

 

1.3.2 Slaughtering methods without stunning 

1.3.2.1 Carbon dioxide (CO2) narcosis 

CO2 narcosis was commonly used in some salmonid farms. Fish are placed in a bath 

with CO2 gas saturated water (> 400 mg / l with a pH of 5.0-5.5). The CO2 dissolves 

in water to form H2CO3 acid, fish blood’s pH is lowered and consequently the fall 

causes the destruction of the brain activity, narcosis and eventually death (Kestin et 
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al., 1995;Robb, 2001) in about 3-4 minutes (in salmonid),then fish are slaughtered by 

cutting the gills and bleeding. Researches have shown that several species of fish 

exhibit aversive behaviour towards CO2 narcosis and loss of sensation may occur 

after few minutes, depending on the species. In -salmon the time needed is about 6 

min (Robb et al., 2000a), resulting in the total exhaustion of the fish at the time of 

death (Erikson et al., 2006; Marx et al., 1997;Robb, 2001), which reach the condition 

of rigor mortis during the processing line, approximately two hours after death (Berg 

et al., 1997). Carp, trout and eels showed increased mucus production (Marx et al., 

1997), which could be a further irritation index. Aversive reactions to CO2 stunning 

heve been reported to cause injury and scale loss (Robb and Kestin, 2002; Roth et al., 

2002). Modifications to the process outlined above include ice addiction to CO2 

saturated water in order to cool it at about 1 °C; in Atlantic salmon the consequence 

is a faster loss in physical activity, but the activity still continues for about one min 

(Robb pers. comm.). Immobility is reached before loss of consciousness, within 2-4 

min, and it was demonstrated that fish remain conscious until stunning time, which is 

different according to the species: 2 min in salmon; 3 min in trout; 9 min in carp; 109 

min in eel; 7-10 min in sea bass; thus the risk is to exsanguinate or gut the fish whilst 

it is still conscious (Kestin et al., 1995; Marx et al., 1997; Poli et al., 2002; Robb et 

al., 2000b). Industry recommends that fish should be left in the water for at least 4-5 

min before exsanguination, but observations indicate that fish are often removed 

when all carcass movements cease after 2-3 min (Robb pers. comm.). When fish are 

removed from CO2 saturated water, before respiratory movement have been lost, it 

can recover if placed in well-oxygenated water; whereas if the fish is left in CO2 

solution for a prolonged time, the process lead to death. There is no evidence that 

CO2 has analgesic or anaesthetic effect, just narcosis that does not imply any 

reduction in pain or fear. Carbon dioxide narcosis is potentially a killing method but 

in commercial practices it is usually only a sedation method since fish are rarely left 

in the CO2 bath for long enough to die (Robb pers. comm.). 

 

1.3.2.2 Carbon monoxide (CO)1 

Carbon monoxide has been used in animal euthanasia for a long time (Smith, 2001) 

but is not widely used in fish. However, recent data in Atlantic salmon (Bjørlykke et 

                                                        
1This part is extrapolated from the book chapter Concollato et al. (2015) (Annex 2). 
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al., 2011; 2013), tilapia (Mantilla et al., 2008), pollack (Pollachius pollachius), 

herring (Clupea harengus) and mackerel (Scomber scombrus) (Slinde et al., 

unpublished data)suggest that CO is an excellent fish sedative agent that does not 

appear to cause any visible stress response. 

The mode of action of CO as sedative is not fully understood. However, it is well 

known that CO will bind to the hem group of haemoglobin and myoglobin displacing 

oxygen and producing carboxy-myoglobin (COMb) and carboxy-haemoglobin 

(COHb) that are incapable of oxygen transport. Both COMb and COHb are stable 

compounds, and it has been assumed that the animal will die due to oxygen shortage 

without sensing the deficiency. Recent data also suggest that CO binds to the 

oxygen-storage proteins in Saccus vasculosus and neuroglobin (Ngb) of the brain. It 

is believed that Saccus vasculosus is an oxygen depot with functions during hypoxia 

and stress (Burmester and Hankeln, 2009), while Ngb is an oxygen transporter 

mainly located in neurons of the central and peripheral nervous systems  and in some 

endocrine tissues (Reuss et al., 2002). Blocking these with CO may induce 

immediate sedation and unconsciousness in fish. 

 

1.3.2.3 Death in air or asphyxiation 

Asphyxiation is the oldest slaughtering method characterised by a prolonged 

suffering period before death. It is considered aversive to the fish since it does not 

induce immediate unconsciousness and can cause deleterious change in shelf-life and 

flesh quality, that’s why it cannot be considered humane whatever the circumstances. 

Smaller farmed fish with low individual economic values like trout (Oncorhynchus 

and Salmo spp.) or tilapia (Oreochromis spp.) are usually killed by this technique. 

Within the fish farming industry, this method is commonly used for emergency 

killing (Roth pers. comm.). Fish are removed from water and leave to die in the air; 

in most of the cases, fish exhibit a violent reaction and attempts to escape, followed 

by decreasing muscular activity and spasms, with death after protracted agony (Robb 

et al., 2002). The time need for fish to die depends on both species and temperature 

(Table 1). Generally, higher environmental temperatures results in faster death of the 

fish. 
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Table 1. The effect of killing by asphyxiation in air on time to loss of brain function and carcass 

movement. 

Species 
Temp 
(°C) 

Time to loss of brain 
function (min) 

Time to loss of 
carcass movement 

(min) 
Rainbow trout 14 3 28.6 
Rainbow trout 20 2.6 11.1 
Gilthead sea 
bream 

22 5.5 4 

(Kestin et al., 1991; Robb and Kestin, 2002; Van DeVis et al., 2003). 
 

 

1.3.2.4 Asphyxia in ice/ice slurry/thermal shock 

Asphyxia in ice consists in the transferring fish from water at ambient temperature 

into chilled brine or ice/water slurry at a significantly lower temperature (temperature 

differential at least 10 °C), often followed by draining of the water, as to leave the 

fish surrounded by ice. The purpose is to simultaneously chill, sedate and kill the fish 

by asphyxia. This easy and rapid procedure is used in Mediterranean countries for 

small sized species such as gilthead sea bream (Sparus auratus), sea bass 

(Dicentrarchus labrax) (Smart, 2001), eel (Van De Vis et al., 2003), turbot and for 

rainbow trout in the UK. Fish body temperature, metabolic rate, movements, oxygen 

demand decrease rapidly, and time to death may be extended. Cold adapted species, 

such as rainbow trout, can survive in cold waters for many days by controlling their 

metabolism, as happened in nature during winter periods, thus are not affected by the 

ice slurry and will die by anoxia in the water. When fish are placed in ice slurry, 

reactions can be variable: some species move around before slowing and becoming 

immobilised as their muscles cool; other species, like eel and gilthead sea bream, 

show strenuous attempt to escape (Van De Vis pers. comm.). 

 

 

Table 2. Effect of asphyxiation in ice on time to loss of brain function and carcass movement. 

Species 
Temp 
(°C) 

Time to loss of brain 
function (min) 

Time to loss of 
carcass movement 

(min) 
Rainbow trout 2 9.6 198 
Eel 1 >12 >1 
Gilthead sea 
bream 

0.1 5.0 >1 

(Robb and Kestin, 2002;Lambooij et al., 2002a). 
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As reported in Table 2, asphyxiation in the ice does not induce immediate 

unconsciousness, that’s why some authors have questioned the humane aspect of this 

method (Kestin et al., 1991). The difference between the ambient temperature of the 

fish and that of the ice slurry has to be great in order to cause the thermal shock and 

thus reduce the time to loss of brain function; that is what happened for rainbow trout 

(Table 1 vs. Table 2), where the thermal shock may have played a role in the 

shortening of time to loss of brain function. However in warm Mediterranean 

species, such as gilthead sea bream (Bagni et al., 2002) and European sea bass 

(Zampacavallo et al., 2003) it has been showed that this method does not seems to be 

so stressful, especially if compared with asphyxiation. Live chilled sea bass did not 

show any violent reaction; lower haematocrit, plasma lactate and glucose, muscle 

lactate, reduced metabolic rate, delayed in time the onset of rigor mortis and high 

AEC (Adenylate Energy Charge) was detected. Thanks to the rapid reduction of the 

body temperature, improved flesh quality and shelf-life were showed (Parisi et al., 

2002; Poli et al., 2002; Zampacavallo et al., 2003). However in salmonids, elevated 

plasma cortisol levels, marked muscle pH drop (Skjervold et al., 2001), and over 

time plasma osmolarity disorder (Rørvik et al., 2001) have been reported, probably 

related to aversive reactions. Because of the induced and progressive muscle 

paralysis, behaviour cannot be considered an index of fish aversion toward this 

slaughtering method. This technique allows the brain to recover its function, when 

fish is removed from the cold water very soon; moreover, Robb and Kestin (2002) 

demonstrated that if fish, immediately after loss of VERs and SERs, is placed in 

water at normal temperature it can recover brain function and muscular activity very 

rapidly. 

 

1.3.2.5 Dry salt or ammonia bath 

This commercial method utilised for eel slaughtering consists in placing the fish in a 

bath with dry salt (NaCl - sodium chloride) or 1% ammonia solution. The intent is to 

cause desliming of the fish, as it interferes with processing. Eels react energetically 

to the chemical (Kuhlmann and Munkner, 1996; Van De Vis et al., 2003); they 

struggle around gradually losing the motor functions over a period of 10 min. Slime 

is produced abundantly and when fish are limp and still are removed and processed, 

after about 15 min. The main aim of NaCl or ammonia addition is not to kill the 

animal, but to help in the slime removal and render the fish motionless and suitable 



 40

for processing (Van De Vis et al., 2002), but if left longer fish are rendered 

unconscious and dead. In commercial practice, it’s the gutting and filleting that 

actually kill the fish by bleeding. If the animals die as a result of the process, it is 

probably because of the osmotic shock, it is usual that the most of the eels treated 

with salt are processed before they are dead. For this reason slaughtering of eels in 

salt of ammonia is considered inhumane and it has been forbidden in Germany 

(EFSA, 2004) and Netherlands (Van De Vis pers. comm.) since April 1999 and 

2006, respectively. 

 

1.3.2.6 Bleeding out/exsanguination 

This method is commonly used after stunning of large fish to improve flesh quality, 

but exsanguination without stunning is also performed to slaughter salmon (Salmo 

salar L.) (Robb et al., 2000a), large rainbow trout, cod, turbot and channel 

catfish(Boggess et al., 1973). Gills are cut or manually pulled out or, as in flatfish, 

the main blood vessels in the tail are cut to achieve exsanguination, and the fish 

returned to water to bleed for about 10-15 min (Wardle, 1997). In some cases the 

isthmus is cut or the heart pierced with a knife. When exsanguination is performed 

after stunning, it improves welfare without compromising quality. Bleeding without 

prior stunning of the fish is considered aversive; Atlantic salmon showed erratic 

behaviour during the first 30 sec and the loss of VERs after gills cutting took 4-5 min 

(Robb et al., 2000a). It was reported by Morzel et al. (2002) that turbot took more 

than 15 min before behavioural responses were lost after bleeding. Time to die post 

exsanguination is dependent on the temperature, for instance Robb et al. (2000a) 

showed that salmon at lower temperatures take longer. 

Bleeding without stunning is not considered humane and should not be used, and 

when performed after stunning, major vessels should be cut as to ensure a rapid loss 

of consciousness and death. 

 

An investigation regarding stunning and killing methods of farmed fish was sent out 

to organizations and competent authorities in 22 EU and EC countries (EFSA, 2009). 

EFSA received 6 answers from 4 countries (Norway, United Kingdom, Iceland and 

Greece) concerning the stunning and killing of farmed salmonids, Atlantic salmon 

and rainbow trout. The methods of stunning varies between countries: Iceland uses 

mainly ice slurry without CO2 (75%) and some percussive stunning (25%). United 
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Kingdom uses only percussive stunning. Live chilling with CO2 was the most 

common method in Norway (51%). Other methods used in Norway were exposure to 

CO2 (20%), and percussive stunning (14%), electric stunning (7%), ice slurry without 

CO2 (6%), and combinations of methods (3%). 

All the considered countries reported to be exsanguination the most common 

slaughtering method for salmon. Salmon industry is subject to changes in legislation 

as well as in technical developments, so these figures are likely to change over time. 

For example the use of CO2 is currently banned in Norway, so new perspectives 

and new horizons are now opening. 

 

1.3.3 Pre slaughter immobilization methods used to facilitate killing or 

processing 

Some commercial slaughter operations contemplate a pre-slaughter/handling step as 

to minimize fish activity, therefore to facilitate operations and improve carcass and 

meat quality. 

 

1.3.3.1 Pre slaughter sedation with anaesthetics 

This method is not considered a stunning or killing method but a pre-slaughter 

sedation step. In the EU is forbidden to produce or to import, from countries where 

the practice is allowed, fish slaughtered by the utilization of pre-slaughter 

anaesthetics (Council Directive 2001/82/EC; Council Regulation, EEC/2377/ 90). 

Humane killing by anaesthetics or sedatives based on eugenols is applied and 

marketed outside of the EU; a well-known anaesthetic is marketed under the name 

AQUI-S™. In New Zealand, Chile and Australia isoeugenol (the anaesthetic 

compound in AQUI-S™) is used for stunning of salmon in combination with 

exsanguination. When immersed in the agent, salmon lose motor function and 

responsiveness to stimulation after about 30 min (Robb et al., 2000b). Fish are then 

netted and killed by percussion or spiking without showing any physical activity or 

aversive reaction to handling (Goodrick et al., 1998). Isoeugenol has important 

anaesthetic properties (Robb pers. comm.) and fish sedated before slaughter appears 

to be less stressed than normal fish removed from water to stunning. Induction of 

sedation with AQUI-S™ does not appear to be stressful according to behaviour 

observations, if compared to anaesthesia induction with other anaesthetics such as 



 42

MS222 –metacaine- (Kestin, Robb and Van De Vis pers. comm.), even though at 

high concentrations eels showed escape attempts (Van De Vis pers. comm.). Fish can 

detect the agents due to their characteristic chemical properties; they may be sensed 

through taste and smell and can also irritate the skin. Moreover, when the anaesthetic 

starts to take its effect, loss of balance may also elicit a stress response, thus the 

length of time needed to induce anaesthesia is of great importance. Goodrick et al. 

(1998), Jerrett et al. (1996), Robb et al. (2000b) and Van De Vis et al. (2002) 

reported that salmon and rainbow trout, killed after sedation with AQUI-S™, 

presented improved flesh quality. However, since there is no evaluation on food 

safety aspects, these substances are not available for use on food fish produced or 

imported in the EU, according to the EU Regulation 2377/80. 

 

1.3.3.2 Pre slaughter sedation by slow live chilling 

Live chilling consists in the gradual lowering of the water temperature the fish is in 

(1.5 °C/hour; Michie pers. comm.), and by the supplying at the meantime sufficient 

oxygen to maintain consciousness and prevent hypoxia. The aim of this process is to 

chill and sedate the fish whilst maintaining it conscious and alive. If fish are rapidly 

chilled they become cold paralysed. Generally, salmon are sedated prior to 

slaughtering during transfer from production cages to slaughter station. As a result of 

cooling, fish are still aware not showing aversive behaviour or any response to 

handling (Roth, 2003). 

A more rapid live chilling can be reached by transferring the fish straight from the 

farm into water between 1-5 °C, in a killing and processing station. In this case, 

oxygen can or cannot be supplied and, after a period of chilling, fish are transferred 

to a bath for CO2 narcosis or exsanguination by gill cutting (Robb pers. comm.). 

If the temperature of the water from which fish are moved is high (over 10 °C), the 

rapid drop in temperature results in vigorous activity of the fish at the moment of the 

entering in the chilled water; the fish then become exhausted in about 15 to 20 min, 

even if they can preserve some activity for maximum 30 min. If the drop in 

temperature is low (as happen during winter with salmonids and other temperate 

species) fish do not react and muscle activity does not result affected by cold. 

This means that during exsanguination process, fish are fully conscious and active 

and respond with vigour to gills cutting (Robb, pers. comm.). Rapid live chilling 

increases plasma cortisol levels (Skjervold et al., 2001), and over time also disturbs 
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plasma osmolarity (Rørvik et al., 2001); it also causes a large drop in muscle pH, 

indicating strenuous muscle activity (Skjervold et al., 2001). Roth (2003) showed 

that, when salmon were exposed to 2°C in CO2 saturated seawater, aversive 

behaviour and flight reactions were expressed. Erikson (2002) reported that Atlantic 

salmon maintained in chill seawater for a maximum of 4h prior of CO2 narcosis 

resulted torpid when removed from the water. Live chilling thus raises many 

questions with regard to welfare: after live chilling the VOR reflex may be reduced 

or absent and respiratory movements are very slow, but according to the species the 

fish may still be aware (assessed by EEGs, Van De Vis, unpublished results). 

Therefore, should be pay great attention when monitoring reflexes. 

 

1.4 Methods to evaluate fish quality 

Seafood is most perishable than other high-protein food, and the overall quality is 

characterised of both wholesomeness and sensory acceptability of the consumer 

(Sikorski and Sun Pan, 1994). Chemical composition and microbiological aspects 

influence wholesomeness, whereas sensory factors are determined by flavour and 

texture (Sawyer et al., 1988; Sawyer et al., 1984). 

The term “quality” is widely used in seafood literature and considerable efforts has 

gone on searching for various tests/methodologies to be used as indicators 

(Olafsdottir et al., 1997). The research believed that rapid, non-destructive 

tests/methods for quality/freshness assessment would have been generally accepted 

in industry (Olafsdottir et al., 1997).After fifty years of experimentation there are 

several indicators available in research or as diagnostic tool in investigation of 

complaints, but only a few are commercially performed, since many of them do not 

present the necessary features for commercial functionality (Bremner, 1997; Bremner 

et al., 1987). 

The content in trimethylamine (TMA) (Tozawa et al., 1971), the total volatile basic 

nitrogen (TVB-N) (Antonacopoulos and Vyncke, 2000), the individual 

nucleotides(Haitula et al., 1993) and the nucleotides degradation products (K-value, 

K1-value) have been used as quality indicators (Burns et al., 1985;Ehira and 

Uchiyama, 1986;Karube et al., 1984).Although the sensory method is still the most 

satisfactory and the official method for fish quality assessment, it presents some 

limits, therefore its application in fish processing and technology is quite limited 

(Alasalvar et al., 2001), and other instrumental methods are needed (Macagnano et 
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al., 2005). In the last few years several new instrumental techniques have been 

introduced to measure chemical, physical and biological parameters in fish such as 

texturometers, colorimeters, spectrophotometers, electronic noses and tongues 

(Macagnano et al., 2005). 

 

1.4.1 Total Volatile BasicNitrogen (TVB-N) 

Odour is one of the most important parameters used to evaluate fish freshness. TVB-

N measurement is widely used for seafood quality assessment; it gives information 

about the specific volatile compounds used to monitor the freshness or spoilage state 

of fish. TVB-N analyses include measurements of trimethylamine (TMA), 

dimethylamine (DMA), ammonia and other volatile basic nitrogenous compounds 

associated with seafood degradation. TVB-N analyses generally reflect later stages of 

advanced spoilage and usually is considered not reliable during the first 10 days of 

chilled storage in several species (Huss, 1995). In fresh caught fish TVB-N level is 

usually between 5 and 200 mgN/100 g muscle, whereas levels around 30-35 mgN/ 

100 g muscle are considered as the limit of acceptability for ice-stored cold water 

fish (Connell, 1995; Huss, 1988). TMA is produced during chilled storage of fish and 

is the most used index in evaluating freshness. This compound is very low in fresh 

fish, and its presence is associated with bacterial spoilage (Fernandez-Salguero and 

Mackie, 1987).Headspace methods for the analysis of volatile compounds require the 

collection and concentration of the volatiles for subsequent chromatographic 

separation to identify and quantify the separated compounds. Extremely volatile, low 

molecular weight compounds can be analysed by static headspace methods (Milo et 

al., 1995). More efficient, dynamic headspace methods are necessary for collecting 

and concentrating less-volatilecompounds (Refsgaard et al., 1998) such as those 

contributing to ‘fresh fish’ and ‘oxidized’ odours. Higher-boiling compounds require 

even more efficient isolation methods such as solvent extraction with organic solvent 

or supercritical carbon dioxide (Snyder and King, 1994). Other approaches are the 

simultaneous distillation and extraction in the gas phase (Chung and Cadwallader, 

1994)or high-vacuum distillation(Milo and Grosch, 1996). Once the volatiles have 

been confined, they are transferred by thermal desorption or solvent extraction to a 

chromatograph for separation and identified by appropriate detectors. Although 

instruments with a high degree of automation are available for the trapping and 
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chromatography steps, the time required, complexity and costs of volatile analysis 

methods make them suitable only for specialized research and analytical laboratories. 

 

1.4.2 K-value measurement 

At fish industry level, the use of ATP metabolites as quality indicators is not very 

common because of the costs and time required in the measurements (see PART I, 

1.2.3.2 ATP, ATP/IMP, AEC, K-value). Generally, after acid extraction and 

neutralization, metabolites are separated by ion exchange chromatography or HPLC 

and quantified by their absorbance. HPLC is considered the most reliable method, 

even if other methods have used enzymatic assays and biosensors (Gill, 1995). 

 

1.4.3 Measurements of lipid oxidation in fish 

The high amount of unsaturated lipids in fish is strongly subjected to oxidation, with 

consequent alterations in smell, taste, colour, texture and nutritional value. Oxidation 

starts immediately after catch but becomes considerable for shelf-life only at 

temperatures <0 °C (Harris and Tall, 1989), when oxidation rather than microbial 

activity become the major spoilage factor. Lipid oxidation rises from early post 

mortem changes in fish tissues, which compromises the natural balance between 

antioxidant, pro-oxidants, favours the accumulation of active oxygen species, the 

activation of haemoproteins, the increase in free iron and the consumption of 

antioxidant (Hultin, 1994). Lipid oxidation proportions can be followed using either 

the reactants or the products.Measurements of oxygen consumption can be checked 

with an oxygen electrode (Eriksson and Svensson, 1970), whereas the loss offatty 

acids and antioxidants can be measured using gaschromatography (GC) and high-

performance liquid chromatography (HPLC) (Erickson, 1993). The peroxide value 

(PV) is the most common measure of lipid hydroperoxides, alsocalled primary lipid 

oxidation products. Other methods for analysis are HPLC in combination with 

chemiluminescence detection (Yamamoto et al., 1987) or, if conjugated double 

bondsare present, simple spectrophotometry (Gray, 1978). The primaryproducts 

easily break down into secondary products, such as aldehydes and ketones. The 

volatile nature ofthese compounds makes them suitable for both GC andsensory 

analysis. Aldehydes can also be measured using several colorimetric methods, such 

as the method that determines the anisidine value, or the widely used thiobarbituric-

acid-reactive substances (TBARS) test (Gray, 1978).Tertiary products, arising from 
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interactions between oxidizinglipids and nitrogen-containing compounds, canbe 

followed using fluorescence spectroscopy or, in later stages, by visual assessment or 

colorimetry (Young and Whittle, 1985). 

All of these techniques are applied in research, but only a few are regularly applied in 

the fish industry, because are time-consuming, require expensive laboratory 

equipment and trained personnel. To monitor the evolution of lipid oxidation, it is 

important to consider many methods, especially when comparing different types of 

fish products. Otherwise, the instability of the various oxidation products could make 

the results difficult to explain and extremely confusing. 

 

1.4.4 Texture measurement 

Texture measurements can be used to study structural changes, indeed texture 

parameters are modified by enzymatic but also chemical reactions that lead to 

toughness, softening or change in elasticity of muscle and fillet. Texture is an 

important sensory characteristic of fish flesh responsible of quality or acceptability in 

high-value products (Botta, 1991).There are many factors that can affect fish texture, 

ranging from the species, biological condition of the fish, capture, stunning and 

slaughtering methods, post mortem treatment, storage time and temperature (Careche 

and Barroso, 2009).Texture is represented by different properties derived from food 

structure, and can be described by physical properties (mechanical or rheological). It 

is perceived by the feeling of touch in the mouth and in some cases in the hands. 

Thus it makes more sense to consider textural properties rather than texture itself 

(Coppes et al., 2002). Texture of raw and cooked seafood is an important attribute, 

that is why several attempts has been performed to appropriately measure it(Botta, 

1994).To assess objectively fish and seafood product texture many studies have used 

a wide variety of instruments (Barroso et al., 1997;Hall et al., 1998;Hyldig and 

Nielsen, 2001; Ofstad et al., 1990; Sigurgisladottir et al., 1999; 2000a; 2000b). These 

instruments, for example the Instron Universal Testing Machine, Texture Analizer 

TA.XT2, and the Reograph Gel, can measure different variables under controlled 

conditions. Szczesniak (1998) argued that texture makes sense only when considered 

as “how a food feels in the mouth”, and sensory tasting methods can be as precise 

and repeatable as instrumental ones. These evaluations can vary from informal 

quality checks, trained taste panellists, and more complex consumer tests (Giese, 

1995). Most common tests are: Texture Profile Analyses, Quantitative Descriptive 
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Analyses and Anchored Descriptive Analyses; these methods are time consuming, 

expensive and complex, but provide a complete analysis as perceived by human 

senses. Even though chemical and instrumental tests of fish texture are of high 

scientific value, they cannot by themselves give any information about the final 

quality of the product. Thus complementary sensory analysis is often necessary to 

determine quality parameters and shelf-life of seafood products (York and Sereda, 

1994). 

 

1.4.5 Colour measurement 

Colour is the most important sensory attribute because can influence consumer 

decisions on the purchase of fresh meat, so it is very important to be able to maintain 

the key colour attributes. Colour perception depends on several aspects such as 

species, genetics, diet, post mortem changes in muscles, post mortem storage 

temperatures and time, display and lighting variables during the marketing phase. 

However colour of food is not stable, because it changes with decreasing freshness. 

Colour in fish muscle is best measured with a colorimeter, especially when the flesh 

is fresh since the colour is quite uniform; on the contrary, if colour uniformity is gone 

and colorimeter readings will depend on the location chosen, it will be most 

appropriate to utilise a machine vision based colour which can measure the many 

possible colours in no uniform surfaces. 

In 1976 the CIE (Commission Internationale de L’Eclairage) developed the CIE 

L*a*b* colour space, which describes all the colours visible to the human eye and 

was created to serve as a device-independent model to be used as a reference. With 

CIE L*a*b*,the colorimetric distances between the individual colours corresponds to 

the perceived colour differences, for example the distance between green and 

greenish-yellow is relatively large while that distinguishing blue and red is quite 

small. With the three dimensional Lab colour space (CIELAB colour space), colour 

differences one perceives correspond to distances when measured colorimetrically. 

The three coordinates of CIELAB system, L*, a* and b*, represent respectively the 

lightness of the colour (L* = 0 indicates black and L* = 100 diffused white), its 

position between red and green (-a* values indicate green while +a* values indicate 

red) and its position between yellow and blue (-b* values indicate blue and +b* 

values indicate yellow). Colours have properties like hue, lightness and saturation. 

Hue is colour description as we communicate it (red, green, yellow and blue), and it 
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develop when wavelength are reflected from a matrix surface (e.g. meat) to the 

detector; lightness is referred to the brightness or darkness of the colour; saturation to 

how dull or vivid the colour is. L* values can be traced for lightness and darkness 

determination, a* and b* values to establish the hue and saturation of a sample (meat 

for example) (AMSA, 2012). 

Colour measurements may have a fundamental role in the fresh market of particular 

species like tuna (Ochiai et al., 1988) or salmon(Hatano et al., 1989)where retention 

of flesh colour and its perception is crucial for market acceptance. 

 

1.4.6 Near Infrared Spectroscopy (NIRS) 

Fish industry has been continuously seeking for a non-destructive, reliable, fast and 

cost-effective method for the analysis of fish quality. Fish quality assessment has 

traditionally been on either time-consuming and expensive laboratory analysis or 

sensory assessments (Cozzolino et al., 2002). NIRS analytical technology might 

overcome the abovementioned limitations. 

In fishery, NIRS has been used to estimate the chemical composition of several 

species, such as halibut, cod, and salmon (Cozzolino et al., 2002; Solberg and 

Fredriksen, 2001) and to discriminate between rearing systems (Xiccato et al., 2004) 

and between wild and farmed (Fasolato et al., 2010; Ottavian et al., 2012) or fresh 

and frozen–thawed (Fasolato et al., 2012; Ottavian et al., 2013; Zhu et al., 2012) 

samples. On rainbow trout, Gjerde and Martens (1987), Lin et al. (2006), Rasco et al. 

(1991), estimated a limited number of parameters (fat, moisture, protein and 

spoilage);Dalle Zotte et al. (2014) accurately estimated chemical properties and also 

classifiedrainbow trout fillets according to rearing farm. 

1.4.7 Sensory evaluation of fish freshness and Quality Index Method (QIM) 

Sensory evaluation is the scientific discipline used to measure, analyse and interpret 

features of food as perceived by the senses of smell, sight, taste, touch and hearing. 

Sensory tests are usually distinguished in three groups: discriminative tests, 

descriptive tests and affective tests (Olafsdottir et al., 1997). Discriminative tests 

point out whether there is a difference between the samples and, together with the 

descriptive ones, are considered objective analytical tests in which a trained panel is 

used. Affective tests are subjective consumer tests based on a measure of preference 

or acceptance. The choice of one test than the other depends on the aim of the 

application and if it is used for product development, quality assessment, consumer 
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studies or research. The most common descriptive tests are structured scaling 

according to quality assessment and profiling for an accurate description of one or 

more attributes (Olafsdottir et al., 1997). Sensory changes take place on appearance, 

odour, taste and texture of fish when they degrade (Shewan et al., 1953). In Europe 

the most common applied method for raw fish quality assessment in inspection and 

fishing industries is the European Union Scheme (CouncilRegulation (EC), 

1996).This scheme does not consider differences among the species because only 

general parameters are used. A European alternative scaling method into commercial 

practice is the Quality Index Method (QIM) (Luten and Martinsdottir, 1997). In this 

method a number of important attributes such as gill colour, odour, firmness, 

appearance, etc., are designated scores on a limited scale (usually 0 up to 3) and these 

scores are summed to a total QI (Quality Index) to provide an index which can also 

be used to predict residual shelf-life (Bremner et al., 1987). This is a fast and non-

destructive method, based on the direct observation of the properties of the fish itself. 

In the fish industry, the categorization of raw fillets is also performed. However, 

sensory assessment of cooked fillets is most common, especially in research and in 

QA/QC (Quality Assessment/Quality Control), where experienced tasters are used to 

detect any unusual flavours rather than to determine the “freshness”; the Torry 

scheme (Shewan et al., 1953) is the most commonly used scale for freshness 

evaluation of cooked fish, both in the fish industry and in research laboratories of 

Europe. 

 

1.4.8 Electronic tongue (e-tongue) 

In food analysis field many methods with high accuracy, precision and reliability are 

applied for the detection of specific food compounds, but are expensive, time-

consuming, may require the destruction of the sample, and could be not suitable for 

in situ or at site monitoring. E-tongues, i.e. arrays of gas sensors, go beyond these 

issues and have proved to be rapid, easy to use and very promising for food quality 

evaluation. Although, e-tongues showed good correlations with organoleptic scores 

given by trained panellists. Some good points of e-tongues are their objectivity, the 

fact that do not get tired or infected, can be used also for toxic samples, have higher 

sensitivity than human tongue since the taste system in human is less developed than 

the olfactory one (Escuder-Gilabert and Peris, 2010).E-tongue can be considered as 

analogous of both olfaction and taste, and can be applied for the determination of any 
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kind of dissolved compounds, including volatile ones which give odour after 

evaporation (Legin et al., 2002).E-tongue can be considered for application in: 

process monitoring, freshness evaluation and shelf-life investigation(Gil et al., 

2008a; 2008b;Kress-Rogers, 2001; Rodríguez-Méndez et al., 2009), authenticity 

assessment, foodstuff recognition, quantitative analysis, and other quality control 

studies. Results obtained from applications of e-tongue for fish freshness evaluation, 

pointed out its usefulness for the in situ or at site evaluation, low-cost and time-

consuming features. 

 

1.4.9 Electronic nose (e-nose) 

Electronic noses are instruments that mimic the sense of smell. They are typically 

array of sensors used to detect and accurately distinguish odours in complex matrices 

at low cost (Pearce et al., 2003; Stetter and Penrose, 2002). 

Most food aromas are difficult to characterize with conventional techniques such as 

gas chromatography or gas-chromatography-olfactometry. Sensory analysis 

performed by trained panellists results expensive since can work for only short 

periods of time; responses to odours are mainly subjective and it has to be considered 

the variability between judgements. Hence, the need of an instrument such as the 

electronic nose characterised by high sensitivity and correlation with data from 

sensory analysis. E-noses are easy to build, cost-effective, can perform analysis in 

very short time, and are considered non-destructive techniques for the 

characterization of food flavours (Peris and Escuder-Gilabert, 2009).The composition 

and concentration of volatile compounds emanating from fish depend on its 

freshness. Spoilage odours develop as a result of microbial growth and oxidation 

leading to the degradation of the tissue. Electronic noses can monitor the onset of 

spoilage of fish by detecting some of these volatile degradation compounds 

(Chantarachoti et al., 2006; Di Natale et al., 2001; Du et al., 2001; Olafsdottir et al., 

2004). According to the results obtained from the studies above cited, the e-nose can 

be an alternative simple, fast and non-destructive tool for bacterial analysis in shelf-

life determination (quality assessment) and spoilage classification (safety 

assessment). 
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1.5 Considered species in the research studies 

1.5.1 Atlantic salmon 

Atlantic salmon (Salmo salar Linnaeus 1758) (Figure 1) is a bony freshwater and 

marine fish typical of temperate and cold seas of the North Atlantic, belonging to the 

Salmonidaefamily. It is found naturally along both east and west coasts of the North 

Atlantic Ocean where it exist in both anadromous and non-anadromous freshwater 

resident forms. Salmo salar is the only species of salmon naturally found in the 

Atlantic Ocean. In the eastern areas, it is located between the Bay of Biscay to the 

south, and the Arctic Circle in the north, including the White Sea and the Barents Sea 

and Iceland; along the American coast occurs between Quebec and New England. 

Present in the Baltic Sea (Kottelat and Freyhof, 2007), is also found along the 

southern coasts of Greenland. In the past, go back up even the Spanish rivers where it 

is extinct. It was introduced in Chile, Argentina, New Zealand and Australia 

(Kottelat and Freyhof, 2007). It is completely absent from the Mediterranean Sea and 

the Italian and southern European freshwater. 
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Figure 1. Atlantic salmon (Salmo salar L.). 

 

 

 

Found in all rivers where temperature rises above 10°C for about 3 months per year 

and does not exceed 20°C for more than a few weeks in summer (preferred 

temperatures 4-12 °C) (Kottelat and Freyhof, 2007). Although European Atlantic 

salmons are typically anadromous, there are examples of landlocked races or strains 

(Berg, 1985). Young salmon spends between 1 and 3 (usually 2) years in their natal 

river in Britain, but longer (up to 7 years) in colder regions such as Scandinavia and 

Canada (Gibson, 1993). When they are large enough (ca. 400-500 g), they undergo 

physiological changes where they change camouflage from stream-adapted with 

large grey spots, to sea adapted with shiny sides. They also undergo some 

endocrinological changes, to adapt for the change in osmosis process, from fresh 

water to salt water. Finally, the parr (young fish) will finish smoltification phase by 

swimming with the current instead of swimming against it. When this change of 

behaviour occurs, they are no longer called parr, but are referred to as smolt. In 

April–May when the smolts reach the sea, they follow sea surface currents and feed 

on plankton or fry from other fish species such as herring. After spending a few years 

in the sea (generally 5 for males and 7 for females) they can reach large sizes but 

they are typically 8-13 kg in weight when go back to their natal river to spawn. 

Wild salmon disappeared from many rivers during the twentieth century due to 

overfishing and habitat change (Kottelat and Freyhof, 2007). By the year 2000, the 

number of wild Atlantic salmon had dropped to critically low levels (Dempson, 

2001). 

Atlantic salmon culture started in the 19th century in the UK in fresh-water as a 

means of stocking waters with parr specimens in order to favour wild returns for 

anglers. Sea cage culture was first used in the 1960s in Norway to raise Atlantic 

salmon to marketable size and then spread in the areas which lies within latitudes 40-

70° in the Northern Hemisphere, and 40-50° in the Southern Hemisphere 

(www.fao.org) (Figure 2). 
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Figure 2. Main producer countries of Salmo salar (FAO Fishery Statistics, 2006). 

 

 

 

 

Current worldwide production of farmed Atlantic salmon exceeds 1 000 000 tonnes 

and the major markets are currently Japan, EU and North America (www.fao.org). 

Salmon fillets are rich in n-3 PUFA that have beneficial health effects in humans (De 

Deckere et al., 1998), but are also rich in proteins, vitamins (B6 and B12), minerals, 

phosphorus, selenium and present a low amount in sodium. 

 

1.5.1 Rainbow trout 

Rainbow trout (Oncorhynchus mykiss; Walbaum 1792) (Figure 3) is a North 

American salmonid which typically lives in oxygenated and clear waters, but, thanks 

to its resistance to temperatures up to 20 °C, it proves to be able to adapt to many 

areas. 
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Figure 3. Rainbow trout (Oncorhynchus mykiss).  

 

 

 

Production greatly expanding in 1950s and several local domesticated strains were 

developed. The production of rainbow trout has grown exponentially since the 1950s, 

especially in Europe and more recently in Chile. This is primarily due to increased 

inland production in countries such as France, Italy, Denmark, Germany and Spain to 

supply the domestic markets, and mariculture in cages in Norway and Chile for the 

export market. Chile is currently the largest producer. Other major producing 

countries include Norway, France, Italy, Spain, Denmark, USA, Germany, Iran and 

the UK (Figure 4) (www.fao.org). 

The global aquaculture production of rainbow trout in 2012 has been 855 981 tonnes 

(FAOFishStat). The fresh fish market is large because the flesh is soft, delicate, and 

white to pink in colour with mild flavour. Preferences in meat vary globally with 

USA preferring white meat, but Europe and other parts in the world preferring pink 

meat generated from pigment supplements in aquafeed. 

 

Figure 4. Main producer countries of Oncorhynchus mykiss (FAO Fishery Statistics, 

2006). 
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2. AIM OF THE STUDY  
 
The overall aim of this study was to assess the effects induced by different 

stunning/slaughtering methods on welfare and fillets quality by conventional and 

innovative methodologies, as well to test the discriminant ability of NIRS as 

innovative methodology to evaluate quality of fillets from two different farmed 

species of salmonids, i.e. Atlantic salmon (Salmo salar L.) and rainbow trout 

(Oncorhynchus mykiss). The study points to inform both fish farmers and 

slaughtering/processing plant how important is to consider stunning/slaughtering 

methods able to reduce or minimize pre slaughter stress condition, not only for an 

ethical issue but also in order to preserve shelf-life of the fillets over in time. 

 

To achieve these goals, 3 main research studies were set: 

 
 
2.1 First research study 
 
A first study on rainbow trout tested preliminarily the reliability of using near 

infrared spectroscopy (NIRS) as innovative methodology for the authentication of 

raw and cooked freeze-dried fillets of rainbow trout (Oncorhynchus mykiss) 

belonging to 5 different genetic strains and reared in 3 farms of Trentino Alto Adige 

region (Italy), characterized by different management. All this has been performed as 

a preliminary work to the second study (paper IV), by considering that the latter 

would have foreseenthe transferring ofsamplesindifferent sitesalso locatedatgreat 

geographical distances. 

The aim of the study is synthesized in the paper produced with the results obtained, 

titled 

• Authentication of raw and cooked freeze-dried rainbow trout (Oncorhynchus mykiss) 

by means of near infrared spectroscopy and data fusion (PAPER I, Annex 1; 

published in: Food Research International (2014): 60, 180-188). 

 
2.2 Second research study 
 
The objective of this study was to investigate the effects of carbon monoxide (CO) as 

stunning/slaughtering method in Atlantic salmon (Salmo salar L.) on stress 

indicators (behaviour, adrenaline, noradrenaline, rigor mortis evolution), fillets 
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quality during shelf-life (evaluated by pH, colour, drip losses), sensory properties and 

to test the ability of instruments such as NIRS, e-nose and e-tongue on predicting 

quality traits. This experimental study was preceded by a short review summarizing 

current status of knowledge on the effect of CO in fish, with a focus on sedative and 

anesthetic treatment as well as on quality characteristics of fillet (PAPER II, Annex 

2; published as chapter of the Book: Processing and Impact on Active Components in 

Food (Victor R. Preedy Ed.). Elsevier, UK, pp. 427–431). 

 

The experimental study was organized into two parts: 

• Effect of carbon monoxide for Atlantic salmon (Salmo salar L.) slaughtering on 

stress response and fillet shelf-life (PAPER III, Annex 3; published in: Aquaculture 

(2014), 433:13-18). 

• CO Stunning salmon treatment revealed by electronic nose, electronic tongue and 

NIRS in differently prepared fillets influences post mortemcatabolism and sensory 

traits (PAPER IV). 

 

2.3 Third research study 
 

On rainbow trout reared at two different temperature conditions (8 °C and 12 °C), the 

effects of stunning/slaughtering methods (carbon monoxide asphyxia; electroshock; 

asphyxia in the air) on pre rigor mortis (blood parameters, rigormortis development, 

fillet contraction changes, ATP depletion and Adenylate Energy Charge in muscle) 

and post rigor mortis (K-value, texture, lipid oxidation and sensory analysis) changes 

have been investigated. 

The study was organized into two parts, where in details they have been considered: 

• Effects of stunning/slaughtering methods on pre rigor mortis changes in rainbow 

trout (Oncorhynchus mykiss) reared at two different temperature conditions (PAPER 

V). 

• Effects of stunning/slaughtering methods on post rigor mortis changes in rainbow 

trout (Oncorhynchus mykiss) reared at two different temperature conditions (PAPER 

VI). 
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3. MATERIAL AND METHODS  

 
A range of different methods for assessments of fish welfare, handling stress or 

muscular activity immediately prior to slaughter, and quality of the derived flesh has 

been utilised in this thesis. An overview of these assessments is given in the Tables 3 

and 4, and described in depth in the Part II, which collects the papers that have 

originated from the research work carried out during the PhD period. 

 

3.1 First research study 

Experimental set-up 

A total of 150 farmed rainbow trout (Oncorhynchus mykiss) fillet samples was used 

in this study. Samples of five different genetic strains (indicated as IT1, IT2, IT3, 

USA and UK, according to origin) and three different rearing farms (in Trentino Alto 

Adige region in northeast Italy, indicated as farms A, B and C) were considered, for a 

total of ten samples per farm per genetic strain, i.e. N = 10 (samples) x 3 (farms) x 5 

(genetic strains). Farm characteristics were as follows: farm A - indoor rearing tanks 

supplied with well water at a constant temperature (range: 11-14 °C) throughout the 

year; farm B - outdoor rearing (temperature range: 9-11 °C); and farm C - outdoor 

rearing (temperature range: 3-14 °C). Fish were collected after reaching average 

weight greater than 600 g (i.e., their commercial size). Twenty-four hours post 

mortem, fish were filleted and the fillets were transported in refrigerated condition to 

the laboratory and immediately processed. Left and right fillets of each specimen 

were both weighed and analysed: the former were used to evaluate raw fillet 

properties; the latter were used to evaluate cooked fillet properties. As regards the 

latter, prior to physico-chemical analyses, each sample was wrapped in aluminium 

foil and boiled in steamer for 10 minutes, then cooled at room temperature and re-

weighed after broth removal. Cooking loss was then calculated and expressed as 

percentage of weight decrease. 
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The analytical methods performed in this trial were the followings: 

 

Physical analyses 

• Texture, measured by the Zwick-Roell® texture analyser (Zwick Roell, Ulm, 

Germany) 

• Colour, instrumentally measured by using a Spectro-colour® meter (Dr. Lange, 

Düsseldorf, Germany). 

 

Chemical analyses 

• The measured chemical properties were: moisture (method 950.46; AOAC, 1995), 

crude protein (by Kijeldhal – method 976.05; AOAC, 1995), lipids (by Soxhlet – 

method 991.3; AOAC, 1995), ash (method 920.15; AOAC, 1995), total lipids (Folch 

et al., 1957) 

• Fatty acids profile (Morrison and Smith, 1964). 

 

NIRS scanning 

• Scanning monochromator NIRSystem 5000 (FOSS NIRSystem, Silver Spring, MD, 

USA) was utilised to scan raw and cooked freeze-dried samples at the Animal 

Science Section of the Department of Animal Medicine Production and Health 

(MAPS) of the University of Padua, Italy 

 

Statistical analysis 

A multivariate data analysis technique was performed by using several chemometric 

tools: 

• Principal component analysis (PCA; Jackson, 1991) 

• Partial least-squares regression (PLS; Geladi and Kowalski, 1986) 

• Partial least-squares discriminant analysis (PLS-DA; Barker and Rayens, 2003) 

• Linear and quadratic discriminant analysis (LDA and QDA; Seber, 1984) 

• k nearest-neighbour (kNN; Sharaf et al., 1986) for their classification 

• Multi-block (MB) framework (Westerhuis et al., 1998). 
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3.2 Second research study 

Experimental set-up 

The study was performed at the facilities of the Institute of Marine Research (IMR), 

in Matre, Norway (Figure 5). Forty-five Atlantic salmon (Salmo salar L.) (1.07 ± 0.1 

kg) were assigned to three experimental tanks containing 900 L seawater and fed 

with the same commercial extruded feed. Before the trial, they were starved for 24h. 

The temperature of seawater was constant at 7.3 ± 0.5 °C. Fish in tank 1 were used as 

control (C) and slaughtered by percussion; fish in tank 2 and 3 were flushed with 

100% food grade CO (Yara Praxair, Oslo, Norway), using a ceramic diffuser (wedge 

lock base unit, Point Four Systems Inc., Richmond, Canada), for 8 (CO8) (tank 2) or 

20 minutes (CO20) (tank 3) at 2-3 bar. The timing would have to coincide with the 

time of fish first responding to CO (8 min) and all fish being completely sedated (20 

min). At the given time points, the fish were quickly hauled from the tanks and killed 

by percussion. During the experiment, the CO concentration in the air was monitored 

and measured by the use of portable gas detectors (GasBadge Pro, Oakdale, PA, 

USA). 

 

Figure 5. The facilities of Institute of Marine Research (IMR), in Matre, Norway. 

 

 

The analytical methods considered for assessments of fish welfare, handling stress or 

muscular activity immediately prior to slaughter were the followings: 

 

Behavioural analysis 

During CO injection salmon’s behaviour was recorded with a video camera then 

described according to Roth et al. (2003). Table 3 reports the stages of behaviour 

used as a reference (PAPER III). 
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Table 3. Different stages utilized for classification of the behaviour of Atlantic 
salmon recorded in the videos. 

Stage Description Behavioural signs 

0 Normal 
Active swimming patterns 
Normal equilibrium 
Normal ventilation of operculum 

1 Light sedation 
Reduced swimming activity 
Problems with equilibrium 
Normal ventilation of operculum 

2 Light narcosis 
Weak swimming activity 
Slow and long ventilation rate 
Equilibrium loss with efforts to right 

3 Deep narcosis 
No swimming activity 
Problems of ventilation of operculum 
Total loss of equilibrium 

4 
Surgical 

anaesthesia 

No swimming activity 
Ventilation ceases 
Total loss of equilibrium 

5 
Medullary 
collapse 

Death ensues 

 

 

Blood 

Plasma adrenaline and noradrenaline 

Analysed using BI-CAT - ELISA kit (DLD - Diagnostika, GMBH, Hamburg, 

Germany), according to the manufacturer’s instructions (PAPER III). 

 

Rigor Index 

Calculated according to Bito et al. (1983) (PAPER III). 

 

pH 

Measured by using a Mettler Toledo SevenGo pro pH-meter (Mettler-Toledo Ltd, 

Leicester, UK) equipped with an Inlab puncture electrode (Mettler-Toldedo, Ltd) 

(PAPER III). 
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The analytical methods performed in relation to flesh quality assessment were the 

followings: 

 

Fillet Drip losses 

Drip losses (%) were determined by weighing the fillets at different times during the 

shelf-life (T0, T7 and T14), and calculated by the formula:  

Drip losses = ((D0 – Dt/D0) × 100 

where D0 is the fillet weight immediately after filleting, while Dt corresponds to the 

fillet weight after “t” days of storage (PAPER III). 

 

Fillet colour 

Colour was measured by using a portable Hunterlab MiniScan XE Plus D/8S Color 

Analyzer Colorimeter (PAPER III). 

 

Fillet Sensory analysis 

Performed at time of rigor resolution by 12 trained panellists in two consecutive 

days. Data acquisition was performed by FIZZ software (Biosystemes- France) 

installed in the 12 terminals provided in laboratory’s tasting booths (PAPERIV). 

 

Electronic nose 

An αFox (ALPHA MOS, Toulouse, France) type EN with 18 metal oxide sensors 

(MOS) was utilised (PAPER IV). 

 

Electronic tongue 

An αAstree II (Alpha-MOS, Toulouse, France) type ET with an LS 48 auto-sampler 

unit was applied to measure the characteristics of liquid samples (PAPER IV). 

 

NIRS scanning 

• NIRSystems 6500 spectrometer (FOSS NIRSystem, Silver Spring now Laurel, MD, 

USA) equipped with a sample transport module and small ring cup cuvette (IH-0307) 

was utilised to scan both raw fresh and raw freeze-dried samples at the Department 

of Pig and Small Animal Breeding of the University of Kaposvár, in Hungary 

(PAPER IV). 
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• Scanning monochromator NIRSystem 5000 (FOSS NIRSystem, Silver Spring, MD, 

USA) was utilised to scan raw freeze-dried samples at the Animal Science Section of 

the Department of Animal Medicine Production and Health (MAPS) of the 

University of Padua, Italy (PAPER IV). 

• A Portable LabSpec 4 Standard-Res Lab UV-Vis-NIR Analyzer fiber optic diode 

array spectrophotometer (ASD, Analytical Spectral device Inc., Boudler CO) was 

used to scan raw freeze-dried samples over a 350-1025 nm range at the Agriculture 

Academy of Torino, Italy (PAPER IV). 

• Raw thawed specimens were treated with ethanol (ETH) then scanned by using a FT-

NIRS device (Quantum-One, PE), from 1000 to 2500 nm, that is, 2751 points in the 

interferograms at the Agriculture Academy of Torino, Italy (PAPER IV). 

 

Statistical analysis 

• Paper III: Data were analyzed using the general Linear Model procedures of the 

statistical analysis software SAS (2004) for Windows. A one-way ANOVA tested the 

stunning methods as fixed effects. 

• Paper IV: 

• Modified Partial Least Square Analysis (MPLS) (WinISI v. 1.04 software) of the two 

main factors (treatment and time), and of their combination was carried out for the e-

nose (EN) and e-tongue (ET) traces, but also for the UV-Vis-NIR spectra from 

thawed, freeze-dried and ethanol prepared specimens with the dataset averaged by 

four replicates  

• Paired Friedman compared the different instrumentations 

• Fisher’s Test compared the two main factors effects (Gas and Storage Time) 

• Ward’s Hierarchical Clustering Analysis (HCA) was performed via StatBox software 

v. 6.5 (Grimmer Logiciel, Paris) in order to agglomerate hierarchical clustering of 

objects based on distance measures of dissimilarity or similarity 

• Partial Least Square Discriminant Analysis (PLS-DA) in order to get the 

reclassification % of the spectra from seven instrument-preparation  

• Nonparametric Friedman’s Test for independent samples was applied to ascertain the 

significance of the difference between the C and CO max rigor time 

• PROC MIXED by SAS considered the 12 panelists as a random effect and Gas was 

considered as the fixed factor 
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• Modified PLS (WinIsI 1.5 software) was considered in order to compare the different 

experimental effects (Gas and Storage time) as appreciated by the different devices 

(ET, EN, NIRS) and to study connections with sensory scores and biological 

variables. 

 

 

3.3 Third research study 

Experimental set-up 

The study was performed at the experimental farm of Edmund Mach Foundation, in 

S. Michele all’Adige, Trento, Italy (Figure 6). Five hundred rainbow trout 

(Oncorhynchus mykiss) were equally allocated in 5 tanks containing 3600 L of 

freshwater each. In tanks 1, 2, and 3 the water temperature was maintained at 12 °C 

whereas in tanks 4 and 5 the water temperature was maintained at 8 °C. Three 

stunning methods were applied on rainbow trout: asphyxia in the air (A) lasting 

about 15 min (fish in tank 2 and part of fish in tank 5), electroshock (E) performed by 

the electronic teaser GOZLIN TEQ002 (GOZLIN, Modena, Italy) for 30s at 180 V 

(fish in tank 1 and part of fish in tank 5), and asphyxia with carbon monoxide (CO) 

until death (fish tanks 3 and 4). Eighteen fish per experimental unit were sampled for 

the scheduled analyses. Fish from tank 1 (mean weight 740 ± 105 g) were captured, 

hauled out of water and immediately treated by electricity (E_12 °C); fish from tank 

2 (mean weight 684 ± 95 g) were used as control group and treated by asphyxia in 

the air (A_12 °C); fish from tank 3 (CO_12 °C) and tank 4 (CO_8 °C) (mean weight 

737 ± 120 g and 773 ± 101 g, respectively), were flushed with 100% food grade CO 

(SIAD, Bergamo, Italy). Due to the overall availability of only 5 tanks, from tank 5, 

18 fish (mean weight 667 ± 97 g) were captured, hauled out of waterand then 

immediately treated by electricity (E_8 °C), afterwards other 18 fish (mean weight 

760 ± 85 g) were sampled from the same tank and treated by asphyxia in the air (A_8 

°C). All groups of fish were finally percussively slaughtered. 

During the experiment, the CO concentration in the air was monitored and measured 

by the use of portable gas detectors (GasBadge Pro, Oakdale, PA, USA) and by 

supplementary gas detectors in charge of the firemen of Trento province (Italy), who 

attended to the entire trial. 
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Figure 6. Experimental farm of Edmund Mach Foundation, in San Michele all’Adige, 

Trento (Italy). 

 

 

The analytical methods considered forassessments of the stress associated to the 

slaughter method and fish welfare were the followings: 

 

Plasma lactate and glucose 

Analysed using MaxMat PL (MaxMat S.A., Montpellier, France) (PAPER V). 

 

Cortisol 

Determined using ELISA (RE52061, IBL International GmbH, Hamburg, Germany) 

(PAPER V). 

 

Ions (K+) 

Analysed with selective ion electrodes (Cobas c111, Roche Diagnostics Ltd., 

Rotkreuz, Switzerland) (PAPER V). 

 

Rigor Index 

Calculated according to Bito et al. (1983) (PAPER V). 

 

Fillet shape  

Fillet shape changes during rigor mortis were measured by taking pictures at 

different times post mortem with a NIKON D3000 camera with lens Nikkor 18-55. 

The photographed fillets were analysed by the Software Adobe Photoshop CS4 for 

the following parameters: area, perimeter, maximum length and maximum height 

(PAPER V). 
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pH 

Measured by using a Mettler Toledo SevenGo pro pH-meter (Mettler-Toledo Ltd, 

Leicester, UK) equipped with an Inlab puncture electrode (Mettler-Toledo, Ltd) 

(PAPER V). 

 

ATP and Adenylate Energy Charge (AEC) 

ATP was determined by a HPLC based on Burns and Ke (1985) method. 

From ATP and related catabolites, Adenylate Energy Charge (AEC) = (0.5 ADP + 

ATP)/(AMP + ADP + ATP) (Atkinson, 1968) was also calculated (PAPER V). 

 

 

The analytical methods performed in relation to quality assessment of fillets derived 

from differently treated fish were the followings: 

Freshness indexes: K and K1-value 

K-value, defined as the ratio of the sum of the non-phosphorylated compounds, 

Inosine (Ino) and Hypoxanthine (Hx), to the sum of all ATP-derived degradation 

products was calculated according to Karube et al. (1984) with the formula:  

K-value = [(Hx + ino) / (ATP + ADP + AMP + IMP + Ino + Hx)] * 100 

whereas the K1-value, was calculated as the ratio of the sum of Ino and Hx to the sum 

of  IMP, Ino and Hx: 

K1 (%) = [(Ino +Hx) / (IMP + Ino + Hx)] * 100 

(PAPER VI). 

 

Fillet drip losses 

Drip losses (%) were determined by weighing the fillets at three different times 

during the shelf-life (T0, T7 and T14), and calculated by the formula: 

Drip losses = ((D0 – Dt/D0) × 100, where D0 is the fillet weight immediately after 

filleting, while Dt correspond to the fillet weight after “t” days of storage (PAPER 

VI). 

 

Fillet colour 

Colorimetric attributes were measured by using a spectrocolorimeter (X-Rite, 

RM200QC; X-Rite, Incorporated, Neu-Isenburg, GermanyC) (PAPER VI). 
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pH 

Measured by using a Mettler Toledo FiveEasy/FiveGo pH meter (Mettler-Toledo 

Ltd, Leicester, UK) (PAPER VI). 

 

Texture Profile Analysis (TPA) 

Carried out using a Zwick Roell® 109 texturometer (software: Text Expert II, version 

3), equipped with a 1kN load cell (PAPER VI). 

 

Lipid oxidation products (TBARS Index) 

The determination of the thiobarbituric acid reactive substances (TBARS) was 

carried out according to the method described by Siu and Draper (1978) and 

modified by Luciano et al. (2013) (PAPER VI). 

 

Fillet sensory analysis 

Twelve trained panellists performed a Discriminant Sensory Analysis on fillet from 

fish differently slaughtered with the aim to identify differences in sensory 

characteristics due to the slaughter method. This analysis was carried out at the time 

of rigor resolution, in two consecutive days. Data acquisition was performed by 

FIZZ software (Biosystemes - France) installed in the 12 terminals provided in 

laboratory’s tasting booths (PAPER VI). 

 
Statistical analysis 

Both for paper V and VI data were analysed using the General Linear Model 

procedures of the statistical analysis software SAS 9.1 (2004) for Windows. A two-

ways ANOVA tested the stunning/slaughter methods (three levels: A, CO and E) and 

the water temperatures (two levels: 8 and 12 °C) as fixed effects. The 

stunning/slaughter method (S) x water temperature (T) interaction was also tested. In 

paper VI was also performed a multivariate discriminant analysis on sensory data, by 

considering treatments as discriminant variable (SAS 9.1, 2004). 

 
An overview of the fish welfare and stress assessments, as well as of the quality 

parameters considered in the different trials and in the different papers is given in 

Tables 4 and 5. 
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Table 4. Overview of the fish welfare and stress assessments carried out in the 

different trials and found in the different papers. 

 

Parameters PAPER 
I 

PAPER 
III 

PAPER 
IV 

PAPER 
V 

PAPER 
VI 

Behavioural 
observations  x 

   

Blood:      
       Catecholamines  x    
       Cortisol    x  
       Glucose    x  
       Lactate    x  
       Ions K+    x  
Muscle:      
       ATP & AEC    x  
       pH  x  x x 
       Rigor mortis  x  x  

ATP: Adenosine Triphosphate; AEC: Adenylate Energy Charge.  
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Table 5. Overview of the quality assessments carried out in the different trials and 

found in the different papers. 

 
E-nose: electronic nose; E-tongue: electronic tongue. 

 

Parameters PAPER 
I 

PAPER 
III 

PAPER 
IV 

PAPER 
V 

PAPER 
VI 

K-value     x 
Drip losses  x   x 
Fillet shape changes    x  
Colour x x   x 
Proximate 
composition 

x     

Fatty acid profile x     
Texture Profile 
Analysis 

x    x 

Lipid oxidation 
products 

    x 

Sensory analysis   x x  x 
NIRS x  x   
E-nose   x   
E-tongue   x   
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Abstract 

This study investigated the possibility of using near infrared spectroscopy (NIRS) for 

the authentication of raw and cooked freeze-dried rainbow trout (Oncorhynchus 

mykiss) fillets. Latent variables models applied on the spectral data were developed 

and used to estimate proximate composition, fatty acid profile, fillet yield and 

cooking loss and to classify the available dataset according to the rearing farm and 

the genetic strain each sample belongs to. 

Results showed that NIR spectra can be used both to accurately estimate several 

chemical properties and to classify the samples according to the rearing farm. In 

order to classify the samples according to the genetic strain, instead, a data fusion 

approach was used where color and mechanical information were combined with the 

spectral data. No major differences were observed between the results obtained from 

raw freeze-dried fillets and those obtained from cooked freeze-dried fillets, with the 

exception of the estimation of some chemical constituents of interest such as C22:6 

n-3 and content of polyunsaturated fatty acids, both better estimated from cooked 

freeze-dried fillets. 

 

Keywords: Oncorhynchus mykiss; near infrared spectroscopy; authentication; PLS; 

data fusion; kNN 
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1. INTRODUCTION 

Rainbow trout (Oncorhynchus mykiss) is a North American salmonid which typically 

lives in oxygenated and clear waters but, thanks to its resistance to temperatures up 

to 20 °C, it proves to be able to adapt to many areas. The first ten countries 

producing farmed freshwater trout (O. mykiss and S. trutta above all) are Turkey, 

Iran, France, Italy, USA, Denmark, Spain, Germany, Poland and China. In 2006, 

these countries produced about 75% of all farmed freshwater trout, for an overall 

value of about 1.3 billion USD (www.worldwildlife.org/aquadialogues). 

Fish industry has been constantly seeking for a non-destructive, reliable, fast and 

cost-effective method for the analysis of fish quality. Traditionally, in fact, the 

evaluation of fish quality has been based either on time consuming and expensive 

laboratory analysis or on sensory assessments (Cozzolino, Murray, & Scaife, 2002), 

which needs a trained panel of experts that might be costly and unavailable in some 

situations and/or environments (Nilsen, Esaiassen, Heia, & Sigernes, 2002). Near 

infrared spectroscopy (NIRS) is a well-known analytical technology that is intended 

to overcome the abovementioned limitations. Its use has been constantly increasing, 

and plenty of applications can be found in the literature in very diverse fields (Dalle 

Zotte, Berzaghi, Jansson, & Andrighetto, 2006; Giunchi, Bardinelli, Ragni, Fabbri, & 

Silanghi, 2008; Huang, Yu, Xu, & Ying, 2008; Nicolaï, Beullens, Bobelyn, Peirs, 

Saeys, Theron, & Lammertyn, 2007; Rodriguez-Otero, Hermida, & Centeno, 1997). 

In fishery, NIRS has been used to estimate the chemical composition of several 

species like halibut, cod, salmon (Cozzolino et al., 2002; Mathias, Williams, & 

Sobering, 1987; Nortvedt, Torrissen, & Tuene, 1998; Solberg & Fredriksen, 2001), 

to discriminate between rearing systems (Xiccato, Trocino, Tulli, & Tibaldi, 2004), 

or between wild and farmed (Ottavian, Facco, Fasolato, Novelli, Mirisola, Perini, & 

Barolo, 2012) or fresh and frozen-thawed (Fasolato, Novelli, Salmaso, Corain, 

Camin, Perini, Antonetti, & Balzan, 2012; Ottavian, Fasolato, Serva, Facco, & 

Barolo, 2013; Zhu, Zhang, He, Liu, & Sun, 2012) samples. However, few 

applications can be found on rainbow trout (Gjerde & Martens, 1987; Lin, Mousavi, 

Al-Holi, Cavinato, & Rasco, 2006; Rasco, Miller, & King, 1991), dealing with the 

estimation of few parameters (fat, moisture, protein and spoilage). 

The purpose of the present work was to evaluate the performance of NIRS as a fast, 

cost-effective and non-destructive method for the assessment of both raw and cooked 

rainbow trout (Oncorhynchus mykiss) fillets quality. Samples of five different genetic 
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strains from three different rearing farms were considered and, following Gjerde and 

Martens (1987) that showed that water absorption bands might interfere with 

important spectral bands of other analytes, fillets were freeze-dried before the NIR 

analysis. Partial least-squares regression (PLS; Geladi & Kowalski, 1986) was used 

in the estimation of the chemical composition (proximate composition and fatty acid 

profile), whereas partial least-squares discriminant analysis (PLS-DA; Barker & 

Rayens, 2003), linear (LDA) and quadratic discriminant analysis (QDA; Seber, 

1984), and k nearest neighbor (kNN; Sharaf, Illman, & Kowalski, 1986) models were 

developed to classify the samples according to the rearing farm and genetic strain 

they belong to. Furthermore, since the classification accuracy obtained from the NIR 

spectra was found to be poor with respect to the genetic strain, a data fusion approach 

was adopted to improve the results. The spectral information was fused with 

mechanical properties and colorimetric data within a multi-block framework 

(Ottavian et al., 2013; Westerhuis, Kourti, & MacGregor, 1998), resulting in an 

higher classification accuracy. To the author’s knowledge, this is the first study 

attempting at classifying the samples according to their genetic strain using NIR 

spectra. 

The paper is organized as follows. The Materials and Methods section describes the 

available data and the statistical techniques used for their manipulation. The Results 

and Discussion section presents firstly a preliminary analysis of the dataset, and then 

the estimation and classification results for both raw and cooked freeze-dried 

samples. 

 

2. MATERIALS AND METHODS 

2.1 Sampling and sample treatments 

A total of N =150 farmed rainbow trout (Oncorhynchus mykiss) fillet samples was 

used in this study. Samples of five different genetic strains (indicated as IT1, IT2, 

IT3, USA and UK, according to their provenience) and three different rearing farms 

(in Trentino Alto Adige region, in the north-east of Italy, indicated as farm A, B and 

C) were considered, for a total of ten samples per farm per genetic strain, i.e. N = 10 

(samples) × 3 (farms) × 5 (genetic strains). Farm characteristics were as follow: farm 

A - indoor rearing tanks supplied with well water at a constant temperature (range: 

11-14 °C) throughout the year; farm B - outdoor rearing (temperature range: 9-11 

°C); and farm C - outdoor rearing (temperature range: 3-14 °C). 



 105 

Fish were collected after they achieved an average weight greater than 600 g. 

Twenty-four hours post mortem fish were filleted and fillets were transported to the 

laboratory and immediately processed. Leftand right fillets were both weighted: one 

was used to evaluate the raw fillets properties, whereas the other one was used to 

evaluate the cooked fillets properties. For the latter, prior to the physicochemical 

analyses each sample was wrapped in an aluminium foil and boiled in a steamer for 

10 minutes, then cooled at room temperature and weighed after broth removal. 

Cooking loss was then calculated and expressed as percentage weight decrease. 

2.2 Sample analyses 

A list of all measured quality attributes for each sample is given in Table 1, while 

details on the analyses are given in the following subsections. 

2.2.1 Physical analyses 

Texture and color information were collected using a Zwick-Roell® texture analyzer 

(Zwick-Roell, Ulm, Germany) and a Spectro-color® meter (Dr. Lange, Düsseldorf, 

Germany), respectively. 

The compression test was repeated three times in three different fillet positions 

(epaxial, ventral and caudal, indicated as E, V and C in Figure 1, respectively) using 

a cylindrical probe, a 200 N load cell and at 20 mm/min (constant) speed. The shear 

stress test was carried out in the middle of the fillet (position A in Figure 1), using a 

linear blade, a 200 N load cell and at 30 mm/min (constant) speed. Data were 

collected in terms of compression force or shear stress at different percentage of 

deformation (with respect to the original dimension) and at different absolute 

deformation (in mm). 

CIELAB L*, a* and b* (i.e. the three colour indexes obtained from the colorimeter; 

CIE, 1974) were measured in positions E, V and C (see Figure 1), by averaging from 

three replicates for each measurement point. Hue angle ( )/(tan **1 ab− ) and Chroma (

)( 2*2* ba + ) values were derived from a* and b*(see Table 1). 

2.2.2 Chemical analyses 

For each sample, the chemical properties analysed were moisture (method 934.01; 

AOAC, 2002), protein (method 992.15, AOAC, 1993), total lipid content (method 

920.39 – AOAC, 2002) and ash (942.05; AOAC, 2002). Fatty acid profiles of freeze-

dried samples were analysed by gas chromatography (Morrison & Smith, 1964) after 

Folch extraction (Folch, Lees & Sloane-Stanley, 1957). 
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2.2.3 NIRS analysis and spectra pretreatments 

After the freeze-drying process, fillets were ground twice with a Retsch Grindomix 

GM 200 (Retsch GmbH, Hann,Germany) at 4000 rpm and then at 8000 rpm per 10s. 

Two aliquots per sample were placed in a 50 mm diameter ring cup and scanned in 

reflectance mode at 2 nm intervals from 1100 nm to 2500 nm using a scanning 

monochromator NIRSystem 5000 (FOSS NIRSystem, Silver Spring, MD, USA). For 

each aliquot of a sample, a mean spectrum was obtained by averaging from 32 

multiple scans; then, the spectrum of the sample was obtained by averaging those of 

the two aliquots. 

Mathematical pretreatment reduced the light scattering caused by the sample 

particles and removed the additional variation in baseline shift typically present in 

diffused reflectance spectra. Standard normal variate and first- and second order 

derivates were used to this purpose (Barnes, Dhanoa, & Lister, 1989; Savitzky & 

Golay, 1964). 

2.3 Multivariate data analysis techniques 

Several chemometric tools were used to analyze the available data: principal 

component analysis (PCA; Jackson, 1991) for preliminary data analysis, partial least-

squares regression (PLS; Geladi & Kowalski, 1986) for estimating chemical 

properties from NIR spectra, and partial least-squares discriminant analysis (PLS-

DA; Barker & Rayens, 2003), linear and quadratic discriminant analysis (LDA and 

QDA; Seber, 1984) and k nearest-neighbor (kNN; Sharaf et al., 1986) for their 

classification. Furthermore, in order to improve the classification accuracy, data from 

different instruments (spectra, mechanical properties, color information, etc.) were 

fused (Cozzi, Ferlito, Pasini, Contiero, & Gottardo, 2009; Ottavian et al., 2013; Zhu 

et al., 2012) within a multi-block (MB) framework (Westerhuis et al., 1998). 

To validate the proposed models, the data were split into two groups: 120 samples 

were used in the calibration step, while the remaining 30 (2 samples per farm per 

genetic strain) for model validation. Model parameters were selected in cross-

validation (Wold, 1978) of the calibration data, using a venetian blind algorithm. 

Please note that with the exception of the PCA models used in the preliminary data 

analysis, all models were built on raw and cooked freeze-dried fillets separately. 

2.3.1. Exploratory analysis 

Principal component analysis (PCA; Jackson, 1991) was used as an exploratory tool 

of the available data. PCA returned a compact representation of the data and 
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highlighted the existing correlation among samples and variables. Given a generic 

matrix X [N×M], its PCA decomposition is given by     

  

X
T
PCA ETPX +=    , (1) 

with T [N×A], PCAP  [M×A] and XE [N×M] being respectively the scores, loadings 

and residual of the model built on A principal components (PCs), and the superscript 
T indicating the transpose of a matrix. Note that the data in X need to be properly 

scaled before transformation (1) is carried out. PCA summarizes the information 

stored in the X matrix by defining a low-dimensional space (called latent space), 

whose axes (of which the A loadings PCAP are the direction cosines) represent the 

directions of maximum variability of the original data. The scores T = [t1, t2, …, tA], 

i.e. the projections of X onto the latent space, represent the new variables. 

2.3.2. Estimation of chemical properties 

Given a matrix Y [N×I] of I quality attributes (i.e. the measured chemical properties 

listed in Table 1) of the N samples of X, the PLS model finds the main driving forces 

that are most related to the response by maximizing the correlation among the 

projections of X and Y onto a common latent space (the model space). Formally, 

X
T
PLS ETPX +=  (2) 

Y
T ETQY +=  (3) 

*XWT =  (4) 

where PLSP  [M×A] and Q [I×A] are the loadings relating the projections in the model 

space T to the data matrices X and Y (respectively). W* [M×A] is the weight matrix, 

through which the data in X are projected onto the latent space to give the scores T. 

XE [N×M] and YE [N×I] are the residual matrices, and account for the mismatch in 

the reconstruction of the original data in the A-th dimensional PLS model space. Both 

X and Y data need to be scaled prior to being transformed. 

The variable importance in projection (VIP) index (Chong & Jun, 2005) can be used 

to identify the most influential variables. The VIP index for the m-th predictor is 

given by 
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where 2
,aRY  is the variance of the response matrix Y explained by the a-th latent 

variable (LV), and amw ,  is the weight of the m-th variable on the a-th LV of the PLS 

model. Variables with VIP greater than 1 are typically considered of great 

importance. 

2.3.3. Classification 

The four classification strategies considered in this study are detailed below. Two of 

them (PLS-DA and LDA) are linear classifiers, while the other two (QDA and kNN) 

are non-linear ones. Please note that while PLS-DA models are calibrated directly on 

the available data, LDA, QDA and kNN models are calibrated on the scores obtained 

from their PCA decomposition. In the latter case, cross-validation is used to optimize 

the number of PCA factors (and, for kNN, the number k of neighbors to consider; 

Balabin, Safieva, & Lomakina, 2010). 

PLS-DA 

The Y [N×L] response matrix of the PLS-DA model (which is formally identical to 

the PLS of (2-4)) is built with L columns, being L the number of classes of the 

specific classification problem. The class (one out of L) of each sample was coded by 

L binary strings, i.e. class l was represented as 

]00 ,1 ,00[ KK . (6) 

 

Since the output of the PLS-DA model was not in the form of 0’s and 1’s, but instead 

a real number that spanned a range wider than [0,1], a threshold was chosen to define 

class membership. Following a Bayesian approach (with the assumption that the 

predictions within each class are approximately normally distributed), the threshold 

value was determined in such a way as to return the best possible split among classes 

with the least probability of false classification of future predictions (Fawcett, 2006). 

The number of LV to retain was selected by maximizing the classification accuracy 

(i.e. the percentage of correctly classified samples) in cross-validation. 

 

 

l-1 L-l 
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LDA 

LDA aims at determining the linear combinations of features which best separate the 

samples of the calibration set. LDA works assuming that the variability within each 

class follows a normal m-variate distribution with the same covariance matrix (which 

is estimated using the data of all classes), which in turns implies that the separation 

surface formed by joining the points characterized by the same probability of 

belonging to a given class is an hyperplane. 

As an example, for a problem involving the classification of samples between two 

classes J and K, the n-th sample xn is attributed to class J if 

0>+ ba nx  (7) 

where a and b are respectively the constant term and the linear coefficients of the 

separating hyperplane. 

 

QDA 

QDA is closely related to LDA. Unlike in LDA, in QDA there is no assumption that 

the covariance of each class is identical, hence implying a quadratic separation 

surface. Eq. (7) defining the attribution of the n-th xn sample to class J is modified as 

0T >++ nnnba Cxxx  (8) 

to include the quadratic coefficient matrix C. 

 

kNN 

In this method, the n-th xn sample is assigned to the most common class label among 

those of its k closest neighbors. The closest neighbors are determined by means of a 

distance function. The Euclidean distance was used in this study, i.e. the distance Dns 

between xn and another sample xs was defined as 

( )( )TsnsnnsD xxxx −−= . (9) 

 

Data fusion 

In order to enhance the classification accuracy obtained from PLS-DA, LDA, QDA 

and kNN applied to the spectral information, the different types of available data (see 

Section 2.2) were fused within a multi-block framework. Namely, the matrices 

containing each piece of information were concatenated horizontally and block-

scaled, i.e., each variable was scaled according to 
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where 
bmx  and 

bmσ  represent the mean and standard deviation of the m-th variable of 

the b-th block. The division by the square root of the number of columns (variables) 

of the block (Mb) ensured the same representativeness of each block. 

 

3. RESULTS AND DISCUSSION 

3.1 Exploratory analysis 

The average NIR spectra for both raw and cooked fillets are shown in Figure 2. 

The main result of the cooking process is a downshift of the spectra. Figure 2 reveals 

the existence of two regions (around 1400 nm and around 1900 nm) where the 

difference is minimal, which is consistent with the freeze-drying treatment of the 

samples, since water absorbance is usually reported for these regions (Murray, 1986). 

The score plots of a 3 PCs PCA model calibrated on the [300×700] matrix of the 

spectra (raw and cooked fillets, with no spectra pretreatments applied) are shown in 

Figure 3. PC1, explaining 95% of the total variance, mainly accounts for the 

difference between raw and cooked samples (see Figure 3a). The loading values on 

PC1, in fact, are almost the same for the entire spectral range considered, indicating 

that the difference between raw and cooked samples can be mainly related to the 

average absorbance, as it was clearly observed in Figure 2. 

In Figure 3b-c the score of the raw samples are highlighted according to the farm 

(Figure 3b) and genetic strain (Figure 3c) they belong to (a similar behaviour was 

observed also for the cooked samples). The plots suggest that, at least in the PC1-

PC2 plane, samples of different farms or genetics strains are not linearly separable, 

i.e. non-linear classifiers (such as QDA and kNN, see Section 2.3.3) might be 

necessary. 

3.2 Estimation of chemical properties 

The PLS estimation results are given in the following sections. For each chemical 

property, results are presented in terms of average (measured) value, standard 

deviation (SD), standard errors (SEC, SECV, SEP) and coefficients of determination 

(R2
cal, R

2
cv, R

2
p) for model calibration, cross-validation and validation, respectively. 

Since the estimation of the physical parameters returned poor results, results are not 

shown. 
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3.2.1 Raw freeze-dried fillets 

Results for raw samples are given in Table 2. 

For proximate composition, excellent prediction ability was observed for moisture 

and lipid content, while unsatisfactory results were obtained for ash and fillet yield. 

Similar results were reported also by other authors, though referring to different fish 

species (Majolini, Trocino, Xiccato, & Santulli, 2009). As for the ash content, it 

should be considered that its prediction is known to be challenging (Prieto, Roehe, 

Lavìn, Batten, & Andrés, 2009). 

With regard to the fatty acid profile, Table 2 shows that satisfactory estimates were 

obtained for the polyunsaturated fatty acids of the n-3 (ΣPUFAn-3) and n-6 series 

(ΣPUFAn-6), and for the C18:2n-6c (present in plant oils used in the feed of cultured 

fish), C22:6n-3 (DHA), C18:3n-3 (α-linolenic acid) and C18:1n-9 (the prevailing 

among MUFAs; Alasalvar, Taylor, Zubcov, Shahidi, & Alexis, 2002; Fasolato et al., 

2010; Testi, Bonaldo, Gatta, & Badiani, 2006) content. A lower accuracy was 

observed in the estimate of C16:0 (the most abundant among the saturated fatty 

acids) and, analogously, in the estimate of ΣSFA. With respect to C20:5n-3, the 

estimate obtained was quite unexpectedly poor, especially considering its high 

content (as it usually characterizes fish species typical of cold waters). 

As a general comment on the results of Table 2, it should be said that the evaluation 

of the goodness of the fitting of the measured data should not be based solely on the 

analysis of the coefficients of determination (R2
cv and R2

p), since the coefficients of 

variation (i.e. the ratio between the standard deviation and the average value of a 

given quality attribute) are different for different chemical attributes. Indeed, the 

quality of two estimates can be very different even if their R2 values are similar. 

Hence, when referring to the Table, also the standard error (SECV and SEP) should 

be taken into account and compared with the standard deviation (values of the ratio 

between SD and SEP greater than 2 are usually considered satisfactory). 

3.2.2 Cooked freeze-dried fillets 

Results for cooked samples are given in Table A1 in the Appendix. With respect to 

the proximate composition, estimates are generally worse than those obtained for the 

raw fillets. As for the fatty acid profile, instead, better estimates (on average) were 

observed for cooked fillets, particularly for the content of C17:0, C18:1n-9c, C18:2n-

6c, C20:1n-7, C20:4n-6, ΣSFA, C22:6n-3 and ΣPUFA. 
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Despite the differences observed in the estimation accuracy of the quality attributes 

of raw and cooked fillets, a comparison with other literature results was not possible 

as (to the authors knowledge) there are no applications dealing with NIR applied on 

cooked fish samples. However, a similar analysis was reported by Bajwa, 

Kandaswamy & Apple (2009) for beef meat patties: the authors attributed the lower 

accuracy obtained for cooked samples to the cooking loss. As for the cooking loss, 

please observe that the estimate obtained in the present study could not be considered 

satisfactory, though the accuracy was higher than that reported by other studies (for 

example, by Prevolnik, Čandek-Potokar, & Škorjanc, 2010 on pork intact meat 

samples). 

Figure 4 presents the VIP index for the PLS model of some selected properties of 

economic and nutritional interest. Fillet yield (Figure 4a) exhibits a peak at 1600 nm, 

cooking loss (Figure 4b) in the range of 1500-1600 nm, the total lipid content around 

1200, 1700 and 2300 nm (Figure 4c), whereas C20:5n-3, C22:6n-3 and ΣPUFAn-6 

mainly at 1700 and between 2200 and 2400 nm (Figure 4d). The carbon-hydrogen 

(CH) stretch second overtone is usually reported at 1202 nm, and thus the region 

around 1200 nm was related to the absorbance of CH, CH2, and CH3 groups. In the 

region around 1700 nm, the first overtone stretch bonds of groups CH, CH2 (1722 

and 1760 nm), and CH3 are represented: hence, these peaks were especially related to 

the samples lipid content. The region around 2200 nm was characterized by CH and 

CH2 combination bands, which could be related to fatty acids, protein, and peptide 

groups (Ottavian et al., 2012). Eventually, protein absorbance is reported at at 1550, 

2055, 2180 nm (Khodabux, L’Omelette, & Jhaumeer-Laulloo, Ramasami, & 

Rondeau, 2007).  

3.3 Classification 

Results of the four classification strategies are given in the following subsections. In 

each case, model parameters (LVs of the PLS-DA models, PCs of the PCA models 

for LDA, QDA and kNN, and k for kNN), spectra pretreatment (no pretreatment, 

SNV and/or its combinations with the derivatives D1 and D2, i.e. the four 

combinations tested), and calibration, cross-validation and validation accuracies are 

presented. 

3.3.1 Raw freeze-dried fillets 

Results for the classification by farm using the NIR spectra are given in Table 3. 

With the exception of the PLS-DA model, the classification accuracies were found to 
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be fairly similar among models. It is interesting to notice that not only NIR allowed 

to discriminate between Farm A (indoor rearing, hence with more uniform and 

controlled fish farming conditions) and Farms B and C (outdoor rearing), but also 

between Farm B and C, that differed in terms of water temperature, altitude (400 and 

700 m a.s.l. respectively) and dissolved oxygen (8.25 and 10.35 ppm, respectively). 

As a confirmation of the conclusions drawn from the preliminary analysis (see 

Section 3.1), a high number of PCs were retained for the classification (with the 

difference between the PLS-DA model and the other models being mainly the 

pretreatment on the spectra). 

Results for the classification by genetic strain for raw samples are given in Table 4 

for the NIR spectra and in Table 5 for proximate composition, colour and mechanical 

properties. 

Cross-validation and validation accuracies (which better resemble the practical use of 

the models on unknown samples) were found to be not satisfactory, with values 

generally below 60% (with few exceptions). Note that, as suggested from the PCA 

analysis, non-linear classifiers (kNN in particular) had better performances. 

In order to improve the results, the available information (proximate composition, 

NIR spectra, colour and mechanical information) were fused together. Since kNN 

returned the highest classification accuracy (see Tables 4 and 5), it was used also to 

classify the combined information. Results are given in Table 6 for three different 

data combinations. 

It should be noticed that higher classification accuracies were obtained when fusing 

the available information (with respect to those obtained using each piece of 

information alone). 

The combination of NIR spectra, colour and mechanical information represented the 

best choice, as the proximate composition analyses (whose addition to the fused 

information did not improve the cross-validation accuracy, on which the selection of 

the best model was based) are much more time consuming. The fact that the addition 

of the proximate composition did not improve the classification accuracy was 

somewhat expected, as the information on the genetic strain carried by the 

compositional data was found to be very poor (see Table 6). 

The confusion matrix for the validation data for the best model of Table 6 is given in 

Table 7. Recall that the confusion matrix represents, at each row-column intersection, 

the number of samples belonging to the class specified by the row that were assigned 
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to the class specified by the column (Fawcett, 2006). Five out of thirty samples were 

misclassified, and the majority of the errors involved samples of the genetic strain 

IT2. Please note that the use of the kNN classifier limits the interpretability of the 

results obtained, as no statistics such as the VIP index are available. 

 

3.3.2 Cooked freeze-dried fillets 

The results for the classification exercises on the cooked samples are given in the 

Tables A2-A6 in the Appendix. As a general comment, it can be noticed that the 

accuracy of the models was approximately the same obtained for raw samples, i.e. 

the cooking process did not alter the discriminating capabilities previously observed. 

Samples could be easily discriminated according to their rearing farm, with poor 

classification accuracies obtained only for PLS-DA modelling. 

The discrimination of the samples according to their genetic strain, as for the raw 

samples, was improved by adopting the data fusion approach (Table A5). The 

combination of NIR spectra and colour and mechanical properties within a multi-

block kNN model return an almost 100% cross-validation accuracy, with only 4 (out 

of 30) misclassifications within the validation dataset. As it can be observed from the 

confusion matrix (see Table A6), errors were found to be concentrated for the genetic 

strain IT2. 

 

4. CONCLUSIONS 

This study was intended to investigate the capability of NIR spectroscopy in the 

authentication of raw and cooked rainbow trout (Oncorhynchus mykiss) fillets. 

PLS models were built to estimate proximate composition, fillet yield, cooking loss 

and fatty acid profile. No relevant differences were observed between the estimates 

obtained from raw and cooked fillets, with the exception of some constituents of 

interest (such as C22:6n-3 and ΣPUFA), for which the models calibrated from 

cooked samples showed a higher accuracy. 

PLS-DA, LDA, QDA and kNN models were built to classify the samples according 

to the rearing farm and the genetic strain they belong to. As a general result, non-

linear classifiers (kNN in particular) overperformed the linear ones (PLS-DA and 

LDA). In order to improve the accuracy of the classification by genetic strain, a data 

fusion approach was developed, where NIR spectra, colour and mechanical 

information were combined within a multiblock framework. With respect to the 
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classification exercises, no relevant differences were observed between raw and 

cooked rainbow trout fillets. 

 

Appendix A 

This Appendix reports the results obtained on cooked freeze-dried samples, which 

were not included in the manuscript for the sake of conciseness. 

Table A1 presents the PLS estimates of the chemical properties listed in Table 1, 

while Tables A2-A6 shows the results of the classification exercises. 
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Table 1. List of the measured quality attributes. 

Quality attributes Type Quality attributes Type  

Compression force Physical C16:1n-7 Chemical 

Compression force @ 10% deformation Physical C17:1 Chemical 

Compression force @ 20% deformation Physical C18:1n-7 Chemical 

Compression force @ 30% deformation Physical C18:1n-9ct Chemical 

Compression force @ 40% deformation Physical C20:1n-7 Chemical 

Compression force @ 50% deformation Physical C20:1n-9 Chemical 

Compression force @ 3 mm deformation Physical C20:1n-11 Chemical 

Compression force @ 5 mm deformation Physical C22:1n-7 Chemical 

Compression force @ 7 mm deformation Physical C22:1n-9 Chemical 

Compression force @ 9 mm deformation Physical C22:1n-11 Chemical 

Deformation at maximum compression force Physical ∑MUFA(2) Chemical 

Shear stress Physical C16:2n-4 Chemical 

Shear stress @ 10% deformation Physical C16:3n-4 Chemical 

Shear stress @ 20% deformation Physical C16:4n-1 Chemical 

Shear stress @ 30% deformation Physical C18:2n-4 Chemical 

Shear stress @ 40% deformation Physical C18:2n-6ct Chemical 

Shear stress @ 50% deformation Physical C18:3n-3 Chemical 

Deformation at maximum shear stress Physical C18:3n-4 Chemical 

L* Physical C18:3n-6 Chemical 

a* Physical C18:4n-1 Chemical 

b* Physical C18:4n-3 Chemical 

Hue Physical C20:2n-6 Chemical 

Croma Physical C20:3n-6 Chemical 

Fillet yield Physical C20:4n-6 Chemical 

Cooking loss Physical C20:3n-3 Chemical 

Lipids Chemical C20:4n-3 Chemical 

Protein Chemical C20:5n-3 Chemical 

Ash Chemical C22:2n-6 Chemical 

Moisture Chemical C21:5n-3 Chemical 

C14:0 Chemical C22:4n-6 Chemical 

C15:0 Chemical C22:5n-6 Chemical 

C16:0 Chemical C22:5n-3 Chemical 

C17:0 Chemical C22:6n-3 Chemical 

C18:0 Chemical ∑PUFA(3) Chemical 

C20:0 Chemical ∑PUFAn-6 Chemical 

C22:0 Chemical ∑PUFAn-3 Chemical 

∑SFA(1) Chemical   
(1)Saturated fatty acids;(2)Monounsaturated fatty acids;(3)Polyunsaturated fatty acids. 
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Table 2. PLS models performance: raw samples. 

Quality attributes 1 Average SD SEC R2
cal SECV R2

cv SEP R2
p 

Fillet yield 51.39 2.91 1.98 0.54 2.35 0.36 1.51 0.44 

Moisture  73.01 1.43 0.28 0.96 0.34 0.95 0.38 0.96 

Protein 20.82 0.97 0.38 0.85 0.50 0.73 0.40 0.68 

Lipids  5.64 1.13 0.24 0.96 0.27 0.94 0.33 0.95 

Ash 1.34 0.07 0.05 0.53 0.05 0.47 0.04 0.17 

C14:0 3.97 0.33 0.16 0.78 0.20 0.65 0.17 0.66 

C15:0 0.28 0.02 0.01 0.62 0.02 0.45 0.01 0.55 

C16:0 13.28 0.66 0.28 0.83 0.36 0.71 0.35 0.60 

C17:0 0.24 0.02 0.02 0.56 0.02 0.35 0.01 0.52 

C18:0 3.14 0.21 0.12 0.69 0.15 0.53 0.13 0.31 

∑SFA 21.12 1.02 0.42 0.83 0.60 0.66 0.51 0.59 

C16:1n-7 5.63 0.37 0.16 0.81 0.21 0.68 0.27 0.65 

C17:1 0.16 0.01 0.01 0.72 0.01 0.53 0.01 0.48 

C18:1n-7 2.54 0.13 0.06 0.79 0.08 0.64 0.05 0.88 

C18:1n-9ct 11.05 1.02 0.40 0.85 0.50 0.76 0.55 0.70 

C20:1n-7 0.20 0.02 0.01 0.65 0.01 0.51 0.01 0.57 

C20:1n-9 0.51 0.06 0.04 0.48 0.04 0.42 0.04 0.32 

C22:1n-11 0.19 0.04 0.02 0.84 0.02 0.76 0.01 0.84 

∑MUFA 20.62 1.09 0.58 0.72 0.63 0.67 0.65 0.60 

C16:2n-4 0.64 0.05 0.03 0.60 0.04 0.38 0.03 0.69 

C16:3n-4 0.55 0.06 0.03 0.69 0.04 0.55 0.03 0.56 

C16:4n-1 0.74 0.11 0.05 0.79 0.07 0.62 0.05 0.71 

C18:2n-4 0.38 0.03 0.02 0.78 0.02 0.68 0.02 0.76 

C18:2n-6ct 10.53 2.17 0.69 0.90 0.87 0.84 1.03 0.76 

C18:3n-3 1.54 0.23 0.10 0.83 0.12 0.72 0.12 0.71 

C18:3n-4 0.42 0.04 0.03 0.42 0.03 0.30 0.02 0.37 

C18:4n-1 0.63 0.09 0.06 0.53 0.06 0.45 0.05 0.45 

C18:4n-3 1.19 0.10 0.04 0.81 0.05 0.67 0.06 0.61 

C20:2n-6 0.43 0.08 0.05 0.62 0.06 0.37 0.05 0.37 

C20:3n-6 0.31 0.04 0.02 0.71 0.02 0.56 0.03 0.21 

C20:4n-6 0.99 0.05 0.03 0.67 0.03 0.53 0.03 0.27 

C20:5n-3 11.90 1.17 0.55 0.78 0.71 0.64 0.72 0.49 

C21:5n-3 0.53 0.04 0.02 0.83 0.02 0.71 0.02 0.66 

C22:5n-3 2.95 0.27 0.13 0.76 0.16 0.66 0.16 0.67 

C22:6n-3 22.59 1.57 0.69 0.81 0.72 0.80 0.77 0.72 

∑PUFA 57.92 1.57 0.61 0.85 0.80 0.75 1.04 0.62 

∑PUFAn-6 12.89 2.25 0.74 0.89 0.94 0.82 1.06 0.77 

∑PUFAn-3 41.62 2.26 0.57 0.94 0.71 0.90 0.93 0.82 
1Fillet yield and proximate composition are expressed as percentage; fatty acids are expressed as percentage of 
total fatty acid methyl esters. 
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Table 3. Classification by farm from NIR spectra of raw samples: results. 

Model 
Model 

parameters 
Spectra 

pretreatment 
Calibration 

accuracy (%) 
Cross-validation 

accuracy (%) 
Validation 

accuracy (%) 
PLS-DA 5 LV SNV & D2 85.8 69.2 86.7 

LDA 16 PC No preprocessing 100 100 100 

QDA 12 PC No preprocessing 100 100 100 

kNN k = 5, 16 PC No preprocessing 98.3 98.3 96.7 

 
 

 

Table 4. Classification by genetic strain from NIR spectra of raw samples: results. 

Model 
Model 

parameters 
Spectra 

pretreatment 
Calibration 

accuracy (%) 
Cross-validation 

accuracy (%) 
Validation 

accuracy (%) 
PLS-DA 17 LV SNV & D2 62.5 44.2 36.7 

LDA 21 PC No preprocessing 92.5 66.7 60.0 

QDA 9 PC No preprocessing 85.8 62.5 53.3 

kNN k = 5, 14PC No preprocessing 90.8 90.8 60.0 

 
 

 

 

Table 5. Classification by genetic strain from proximate composition and color and mechanical 
properties of raw samples: results. 

Data Model Model 
parameters 

Calibration 
accuracy (%) 

Cross-validation 
accuracy (%) 

Validation 
accuracy (%) 

Proximate 
composition

PLS-DA 4 LV 40.8 33.3 26.7 

LDA 4 PC 38.3 33.3 23.3 

QDA 3 PC 35.0 30.0 30.0 

kNN k = 3, 1 PC 89.2 89.2 26.7 

Colour 

PLS-DA 15 LV 65.0 53.3 60.0 

LDA 14 PC 70.0 54.2 53.3 

QDA 10 PC 76.7 49.2 56.7 

kNN k = 1, 12 PC 81.7 81.7 63.3 

Mechanical 
properties 

PLS-DA 20 LV 64.2 41.7 43.3 

LDA 11 PC 55.8 45.8 53.3 

QDA 11 PC 82.5 47.5 46.7 

kNN k = 3, 4 PC 82.5 82.5 43.3 
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Table 6. Multi-block kNN classification by genetic strain from all available information: results for raw 
samples. 

Fused data 
Model 

parameters 
Calibration 

accuracy (%) 
Cross-validation 

accuracy (%) 
Validation 

accuracy (%) 
Colour, NIR k = 3, 8 PC 84.2 84.2 66.7 

Colour, NIR, Mechanical 
properties 

k = 3, 7 PC 91.7 91.7 83.3 

Color, NIR, Mechanical 
properties, Proximate composition

k = 1, 13 PC 91.7 91.7 73.3 

 
 

 

 

 

 

 

 

 

Table 7. Confusion matrix for the best multi-block kNN classifier (raw samples). 

 IT1 IT2 IT3 UK USA 

IT1 5 0 0 1 0 

IT2 0 3 1 1 1 

IT3 0 0 5 0 1 

UK 0 0 0 6 0 

USA 0 0 0 0 6 
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Table A1. PLS models performance: cooked samples. 

Quality attributes 1 Average SD SEC R2
cal SECV R2

cv SEP R2
p 

Fillet yield  51.93 3.02 2.10 0.52 2.24 0.46 1.67 0.40 

Moisture 69.44 1.48 0.62 0.83 0.68 0.79 0.66 0.82 

Protein 25.01 1.26 0.52 0.83 0.66 0.72 0.80 0.46 

Lipids 5.46 0.96 0.24 0.94 0.25 0.93 0.65 0.56 

Ash 1.35 0.08 0.06 0.52 0.07 0.28 0.05 0.28 

Cooking loss 12.94 3.68 2.09 0.68 2.37 0.58 2.45 0.45 

C14:0 4.22 0.35 0.18 0.75 0.22 0.60 0.20 0.53 

C15:0 0.32 0.03 0.02 0.75 0.02 0.59 0.02 0.60 

C16:0 16.14 0.86 0.50 0.66 0.62 0.49 0.45 0.46 

C17:0 0.30 0.06 0.02 0.91 0.02 0.86 0.03 0.73 

C18:0 3.82 0.23 0.12 0.73 0.15 0.58 0.13 0.47 

∑SFA 25.09 1.49 0.73 0.76 0.95 0.60 0.66 0.73 

C16:1n-7 6.48 0.39 0.20 0.72 0.26 0.54 0.19 0.52 

C17:1 0.16 0.03 0.02 0.58 0.02 0.41 0.02 0.15 

C18:1n-7 3.01 0.15 0.07 0.79 0.09 0.67 0.07 0.78 

C18:1n-9ct 12.67 1.31 0.47 0.87 0.60 0.79 0.60 0.74 

C20:1n-7 0.20 0.02 0.01 0.78 0.02 0.60 0.01 0.60 

C20:1n-9 0.56 0.05 0.04 0.36 0.04 0.34 0.03 0.21 

C22:1n-11 0.19 0.08 0.07 0.20 0.08 0.16 0.04 0.07 

∑MUFA 23.52 1.35 0.56 0.83 0.70 0.73 1.00 0.40 

C16:2n-4 0.66 0.07 0.04 0.68 0.05 0.53 0.04 0.27 

C16:3n-4 0.59 0.07 0.04 0.67 0.05 0.45 0.04 0.26 

C16:4n-1 0.80 0.12 0.06 0.74 0.08 0.61 0.07 0.46 

C18:2n-4 0.38 0.04 0.01 0.88 0.02 0.79 0.02 0.60 

C18:2n-6ct 11.12 2.34 0.73 0.90 0.98 0.82 0.91 0.77 

C18:3n-3 1.44 0.22 0.10 0.80 0.12 0.71 0.09 0.68 

C18:3n-4 0.39 0.04 0.02 0.64 0.03 0.43 0.02 0.37 

C18:4n-1 0.58 0.10 0.06 0.64 0.07 0.49 0.06 0.38 

C18:4n-3 1.09 0.09 0.05 0.67 0.07 0.45 0.07 0.21 

C20:2n-6 0.45 0.08 0.07 0.17 0.08 0.13 0.04 0.03 

C20:3n-6 0.26 0.04 0.02 0.66 0.03 0.44 0.02 0.13 

C20:4n-6 1.01 0.06 0.03 0.69 0.04 0.55 0.03 0.47 

C20:5n-3 9.29 0.94 0.38 0.83 0.49 0.73 0.65 0.31 

C21:5n-3 0.50 0.05 0.03 0.74 0.03 0.56 0.03 0.45 

C22:5n-3 3.34 0.40 0.22 0.69 0.25 0.61 0.22 0.50 

C22:6n-3 18.08 1.95 0.69 0.88 0.78 0.84 0.79 0.83 

∑PUFA 51.33 1.90 0.83 0.81 1.05 0.69 0.78 0.85 

∑PUFAn-6 13.32 2.36 0.80 0.88 1.04 0.81 0.95 0.73 

∑PUFAn-3 34.65 2.45 0.68 0.92 0.92 0.86 0.95 0.82 
1Fillet yield and proximate composition are expressed as percentage; fatty acids are expressed as percentage of 
total fatty acid methyl esters. 
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Table A2. Classification by farm from NIR spectra of cooked samples: results. 

Model 
Model 

parameters 
Spectra  

pre-treatment 
Calibration 

accuracy (%) 
Cross-validation 

accuracy (%) 
Validation 

accuracy (%) 
PLS-DA 11 LV No pre-processing 82.5 78.3 80.0 

LDA 7 PC No pre-processing 100 100 100 

QDA 12 PC No pre-processing 100 98.3 93.3 

kNN k = 1, 7 PC No pre-processing 100 100 90.0 

 
 

 

Table A3. Classification by genetic strain from NIR spectra of cooked samples: results. 

Model 
Model 

parameters 
Spectra  

pre-treatment 
Calibration 

accuracy (%) 
Cross-validation 

accuracy (%) 
Validation 

accuracy (%) 
PLS-DA 15 LV SNV & D2 75.8 51.7 33.3 

LDA 23 PC No pre-processing 85.0 66.7 60.0 

QDA 11 PC No pre-processing 94.2 59.2 56.7 

kNN k = 2, 9 PC SNV 90.8 90.8 63.3 

 
 

 

Table A4. Classification by genetic strain from proximate composition and color and mechanical properties of 
cooked samples: results. 

Data Model Model 
parameters 

Calibration 
accuracy (%) 

Cross-validation 
accuracy (%) 

Validation 
accuracy (%) 

Proximate 
composition

PLS-DA 4 LV 45.0 36.7 36.7 

LDA 4 PC 46.7 40.0 33.3 

QDA 3 PC 48.0 43.3 46.7 

kNN k = 5, 4 PC 74.2 74.2 40.0 

Colour 

PLS-DA 13 LV 63.3 48.3 40.0 

LDA 9 PC 59.2 55.8 43.3 

QDA 11 PC 76.7 50.8 43.3 

kNN k = 3, 2 PC 86.7 86.7 53.3 

Mechanical 
properties 

PLS-DA 25 LV 71.7 52.5 46.7 

LDA 14 PC 60.0 50.8 60.0 

QDA 14 PC 90.8 40.0 43.3 

kNN k = 3, 5 PC 89.2 89.2 40.0 
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Table A5. Multi-block kNN classification by genetic strain from all available information: results for cooked 
samples. 

Fused data 
Model 

parameters 
Calibration 

accuracy (%) 
Cross-validation 

accuracy (%) 
Validation 

accuracy (%) 
Colour, NIR k = 3, 4 PC 89.2 89.2 63.3 

Colour, NIR, Mechanical 
properties 

k = 1, 19 PC 97.5 97.5 86.7 

Colour, NIR, Mechanical 
properties, Proximate composition

k = 5, 8 PC 90.0 90.0 70.0 

 
 

 

 

 

 

 

 

 

 

 

Table A6. Confusion matrix for the best multi-block kNN classifier (cooked samples). 

 IT1 IT2 IT3 UK USA 

IT1 6 0 0 0 0 

IT2 0 3 1 2 0 

IT3 0 1 5 0 0 

UK 0 0 0 6 0 

USA 0 0 0 0 6 

 
 
 
 

 

 

 

 

 

 

 



 

 

Figure 1. Rainbow trout fillet with indication of the measurement points: E (epaxial), V (ventral), C 
(caudal) and A (central).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Average raw and cooked freeze
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Rainbow trout fillet with indication of the measurement points: E (epaxial), V (ventral), C 
(caudal) and A (central). 

 
Average raw and cooked freeze-dried rainbow trout samples. 
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Rainbow trout fillet with indication of the measurement points: E (epaxial), V (ventral), C 
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(a) 

 
                                   (b)                                                                        (c) 

Figure 3. PC1-PC2 score plot of the preliminary PCA model built on the spectra matrix. In (a) raw and 
cooked samples are highlighted differently. In (b) and (c) raw samples belonging to different farms and 
genetic strains (respectively) are highlighted differently. 
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                                   (a)                                                                        (b) 

 
                                   (c)                                                                        (d) 
Figure 4. VIP index for (a) fillet yield, (b) cooking loss, (c) lipids content and (d) C20:5n-3, 
C22:6n-3 and PUFAn-6 (PLS models built using data from the cooked samples). 
 
 
 
 
 
 
 
 
 
 
 
 

1200 1400 1600 1800 2000 2200 2400
0

2

4

6

8

10

12
 

V
IP

 in
de

x

Wavelength (nm)

1200 1400 1600 1800 2000 2200 2400
0

2

4

6

8

10

12

V
IP

 in
de

x

Wavelength (nm)

1200 1400 1600 1800 2000 2200 2400
0

2

4

6

8

10

12

V
IP

 in
de

x

Wavelength (nm)

1200 1400 1600 1800 2000 2200 2400
0

2

4

6

8

10

12

V
IP

 in
de

x

Wavelength (nm)

 C20:5 n-3
 C22:6 n-3
 ΣPUFA n-6



 131

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 132

PAPER II  
 



 133



 134

The effect of carbon monoxide on slaughter and processing of fish 

 

Concollato A.1, Bjørlykke G. A.2, Kvamme B. O.3, Sørheim O.4, Slinde E.5, 6, Olsen R. 

E.1 

 
1Institute of Marine Research, Matre Research Station, N-5984 Matredal, Norway 

2Institute of Marine Research, P.O. Box 1870, N- 5817 Bergen, Norway 
3Institute of Marine Research, P.O. Box 1870, N- 5817 Bergen, Norway 

4Nofima, P.O.Box 210, N-1431 Ås, Norway 
5Institute of Marine Research, P.O. Box 1870, N- 5817 Bergen, Norway 

6Department of Chemistry, Biotechnology and Food Science, Norwegian University of 

Life Science, N-1432 Ås, Norway 

 

 
 
 
 
 
 
 
 
 
 
 
Published: The Effect of Carbon Monoxide on Slaughter and Processing of Fish. 
In: Processing and Impact on Active Components in Food (Victor R. Preedy Ed.). 

Elsevier, UK, pp. 427–431. 
Annex 2 



 135

The effect of carbon monoxide on slaughter and processing of fish 

 

Anna Concollato 

Institute of Marine Research, Matre Research Station, N-5984 Matredal, Norway 

Phone: +3484968502 

Email: anna.concollato@unifi.it 

Gry Aletta Bjørlykke 

Institute of Marine Research, P.O. Box 1870, N- 5817 Bergen, Norway 

Email: gry.aletta.bjorlykke@imr.no 

Bjørn Olav Kvamme 

Institute of Marine Research, P.O. Box 1870, N- 5817 Bergen, Norway 

Email: bjornok@imr.no 

Oddvin Sørheim 

Nofima, P.O.Box 210, N-1431 Ås, Norway 

Email: oddvin.sorheim@nofima.no 

Erik Slinde 

Institute of Marine Research, P.O. Box 1870, N- 5817 Bergen, Norway 

Department of Chemistry, Biotechnology and Food Science, Norwegian University of 

Life Science, N-1432 Ås, Norway 

Phone: +47 99538480 

Email: erik.slinde@imr.no 

Rolf Erik Olsen* 

Institute of Marine Research, Matre Research Station, N-5984 Matredal, Norway 

Phone: +47 97598169 

rolf.erik.olsen@imr.no 

 

*Corresponding author 

 

Abbreviated title of paper: Effect of CO on fish 

 

Key Words: carbon monoxide, fish quality, slaughter, color, chromatography, visible 

and near infrared reflection spectrophotometry 

 

 



 136

Abstract 

The use of carbon monoxide (CO) to anaesthetize fish is not in common use. 

However, CO is an efficient sedative that does not produce aversive reactions in fish. 

Combined with other slaughter methods (electrical stunning), CO is a promising 

candidate for future and humane fish slaughter. New data suggest that CO causes brain 

death due to oxygen displacement in the heme-groups of neuroglobin and Saccus 

vasculosus, two recently discovered brain structures in fish. CO enhances flesh color 

by preventing discoloration caused by myoglobin and hemoglobin oxidation, and may 

improve quality in salmon and white fish. Using filtered smoke with CO, and CO 

packaging, favor quality. CO inhibits bacterial growth and reduces the contribution of 

heme-proteins to lipid oxidation. Chromatographic measurement of CO content in 

water enables continuous monitoring capabilities and excellent research possibilities. 

The effects of CO on fish quality can be assessed using Visible and Near Infrared 

Reflection spectrophotometry.  

 

Introduction 

Fish are regarded as a highly perishable food, since they are very susceptible to 

microbial and chemical decay. The type and rate of decay varies with fish species and 

is significantly influenced by the immediate handling before and after slaughter, and of 

processing and packaging systems. In general, it is important to keep the product cool 

at all times, and to limit oxygen availability. Optimizing these processes will lower the 

two main challenges, bacterial growth and lipid oxidation, the latter being particularly 

challenging in fatty fish species.   

 

In the aquaculture industry, there is a growing awareness of maintaining animal 

welfare all the way through the slaughter process. The ethics involved in fish 

husbandry requires that the process proceeds with a minimum amount of strain. 

Normally, the fish should be anaesthetized before being slaughtered and bled. This has 

proven to be a challenge for the industry. The use of chemicals like clove oil had been 

suggested as a non-toxic anesthetic (Iversen et al., 2003). However, the use of 

chemicals is troublesome as traces may remain in the flesh at consumption and will 

cause concern by some consumer groups. Further, the use of chemicals is likely to be 

banned in some countries while allowed in others. This creates a challenge when fish 

are sold on a global market. Consequently, in most countries the aquaculture industry 
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relies on non-chemical anesthetic methods. In Norway, only percussion and electrical 

stunning are allowed by the authorities, while other countries also use liquid ice and 

carbon dioxide (CO2). Many of these methods have potential welfare issues that may 

limit their use in the future. For example, electrical stunning may cause muscular 

contraction promoting rapid onset of rigor-mortis. The force of contractions may also 

damage connective tissue, and cause detachment of myotomes (Robb, 2001; Jerrett et 

al., 1996). However, when properly applied on sedated fish, the method is very useful 

(Roth et al., 2003). Immersion in liquid ice is considered stressful by many authors 

and is a questionable approach (Robb, 2001; Kestin et al., 1991). The method also 

requires a relatively high difference between temperature in holding-water and the ice-

bath to efficiently immobilize the fish. The use of CO2 is basically to asphyxiate the 

fish, and the exposure generally elicits a flight response, causing the fish to swim 

erratically, trying to escape. The method is therefore regarded as unacceptable (EFSA, 

2009).  

 

Recently, carbon monoxide (CO) has been suggested as an alternative sedative or 

anesthetic agent. CO treatment has proven advantageous in many aspects (Bjørlykke et 

al., 2011), as it is not only an efficient sedative, but may also improve product quality 

and stability. In the following we are summarizing current status of knowledge on the 

effect of CO in fish, with a focus on sedative and anesthetic treatment.  

 

Carbon monoxide, neuroglobulin and Saccus vasculosus. 

In animals, the predominant heme containing groups are found in myoglobin and 

haemoglobin. The predominant states are oxy-myoglobin/hemoglogin (OMb/OHb)), 

deoxy-myoglobin/hemoglobin (DMb/DHb) and met-myoglobin/hemoglobin 

(MMb/MHb). The globins all have a central iron bound to them that is either ferrous 

(Fe2+) or ferric (Fe3+). In normal oxygenated tissue all globins are in their reduced state 

and bound to molecular O2 (OMb/OHb). When oxygen is delivered to tissues, the 

deoxy form results. In tissues, often after slaughter, the ferrous iron will eventually 

oxidize to the ferric state, producing the met form (MMb/MHb). 

 

When CO is added it will bind to the heme group of hemoglobin and myoglobin. The 

binding displaces oxygen and produces carboxy-myoglobin (COMb) and carboxy-

haemoglobin (COHb) that are incapable of oxygen transport. Both COMb and COHb 
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are stable compounds, and the animal will die due to oxygen shortage, but without 

sensing the oxygen deficiency. 

Over the past few years, there has been an increased interest in the use of CO for fish 

sedation and anaesthesia (Bjørlykke et al., 2011). The main reason is new data 

showing that CO may not only cause oxygen depletion, but also act directly on brain 

possibly causing brain death before slaughter. The data indicate that CO binds to 

oxygen-storage proteins in Saccus vasculosus below the brain, and neuroglobin (Ngb), 

a newly discovered globin, in the brain (Figure 1). Saccus vasculosus is found in fish 

and marine mammals and may function as an oxygen depot during hypoxia and stress. 

Ngb is mainly located in neurons of the central and peripheral nervous systems (Figure 

1A) and in some endocrine tissues (Reuss et al., 2002). It is a monomeric heme protein 

(Figure 1B) with a typical globin fold and a molecular weight of 17 000 (Bjørlykke et 

al., 2012a). Ngb binds to ligands like oxygen, nitrogen-oxide, azide, cyanide and CO. 

The total concentration of Ngb in brain is fairly low (Bjørlykke et al., 2012a), while 

the level of Ngb in the neuronal retina is relatively high (Schmidt et al., 2003). 

Although the function of neuroglobin is still unknown, it appears to be involved in 

cellular stress regulation, and signalling, and possibly also in hypoxia signalling 

(Burmester and Hankeln, 2009). 

 

Effect of CO on fish 

CO has been used in animal euthanasia for a long time since it leads to a rapid and 

painless death with no awareness for the agent and little or no stress reaction (Smith, 

2001). Compared to terrestrial animals, fish are hard to slaughter due to a general 

adaptation to a hypoxic water environment and their high capabilities for brain 

anaerobic energy metabolism (EFSA, 2009; Soengas and Aldegunde, 2002). 

 

Despite the potential for use, CO has not been widely explored in fish. It has been 

demonstrated that CO can be used to sedate Atlantic salmon (Salmo salar L.) prior to 

killing without any visible adverse reactions or stress (Bjørlykke et al., 2012b; 

Bjørlykke et al., 2011). CO has also been used to anaesthetize tilapia (Mantilla et al., 

2008). Recently, we compared the effect of CO on pollack (Pollachius pollachius), 

Atlantic salmon, small herring (Clupea harengus) and mackerel (Scomber scombrus) 

using 100% food grade CO and a ceramic diffuser. With pollack, herring, and 

mackerel, the swimming pattern did not change with the treatment. After 
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approximately 5 minutes they showed signs of fatigue, and after 10 minutes they start 

to lose the equilibrium and swam near the surface. After approximately 12 minutes, all 

fish were laying at the bottom of the tank. The fish were hauled out of the tank and 

killed by percussion. In Atlantic salmon we observed the same behaviour, with one 

difference. After 12 minutes, most fish lost equilibrium and rolled over, while some 

briefly exhibited erratic swimming movements, before finally rolling over at the 

bottom of the tank. The fish were hauled from the tank and killed by percussion. As in 

previous experiments (Bjørlykke et al., 2012b; Bjørlykke et al., 2011), we could not 

observe any aversive or painful reactions, and the erratic unconscious movements are 

most likely due to irregular nerve pulses. In this respect, getting the correct dosage of 

gas mixtures is likely to be essential for best slaughter practices. Detecting the soluble 

gasses in the water (Figure 2) is therefore essential to control and reproduce the effect 

of CO on fish.  

 

Processing of fish with CO 

The dominant commercial method for applying CO to fish during processing is by 

pretreatment with filtered smoke (Kowalski, 2006). Fish rich in red muscle containing 

heme proteins, like tuna (various Thunnus) and mahi mahi (Coryphaena hippurus), are 

suitable for this technology. Filtered smoke is generated from natural sawdust by 

removal of some taste and odor components, carcinogen compounds and gases. 

Usually filtered smoke contains 15 – 40 % CO, and the fish is treated in chambers for 

2 – 48 hours, depending on the size and thickness of fillets. Thereafter, the treated 

fillets are vacuum packaged, frozen and transported to the markets.  

 

In addition to filtered smoke, fish may be pretreated, packaged or stored in high 

concentrations of CO, close to 100 %. Packaging of fresh meat with low levels of CO, 

up to 0.4 %, combined with high levels CO2 and free of oxygen is well established, in 

particular in the USA (Cornforth and Hunt, 2008). Based on the beneficial experiences 

obtained with low CO packaging of meat over the last 2 – 3 decades, there is a 

potential for implementing this technology in the fish processing industry, yielding 

better color, longer shelf-life and inhibition of lipid oxidation. The application of CO 

already to the live fish is in this connection regarded as beneficial. 
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Effects of CO on fish quality 

Color 

In normal tissue, most color is caused by myoglobin. But some haemoglobin will also 

be present, particularly if fish have not been bled. Fresh tissue contains only 

OMb/OHb which has a bright red color. Shortly after death, oxygen is lost producing 

DMb/DHb that has a dark red color. With further decay, iron is oxidized to its ferric 

state, producing MMb/OHb which has a brown color. By consumers this color change 

is a little attractive feature, and producers therefore aim at maintaining the bright red 

color as long as possible. 

 

When CO is added it binds directly to DMb, or to OMb displacing oxygen, producing 

COMb/COHb that has a cherry red color. They are stable compounds and the 

degradation to MMb/MHb takes a long time (Chow et al., 1998) and will thus prevent 

discoloration. The attribute has been used by some producers to maintain color in 

products like tuna for a long period of time. The process (gas or filtered wood smoke) 

may also be used to stabilize globins of white flesh fish, improving the color 

appearance over time (Mantilla et al., 2008; Kowalski, 2006).Table 1 shows redness, 

a* values, of salmon, herring and mackerel treated with CO compared to control 

groups. In herring and mackerel the COMb in the red muscle show persistent cherry 

red colour due to binding of CO. An important aspect of the trial was the typical 

rancid taste was not as pronounced in CO treated fish after 6 days as for the controls. 

Storage of Atlantic salmon in 100% CO and consequent binding to heme demonstrated 

that this pigment contributes slightly to the color in addition to the dominant 

astaxanthin pigment (Bjørlykke et al., 2011; Ottestad et al., 2011).  

 

Visible (VIS) / Near Infrared Spectroscopy (NIRs) spectra of CO in fish 

Ottestad et al. (2011) used spectroscopic measurements on mackerel muscle to study 

how spectral changes correspond to color variations under three different storage 

conditions air, vacuum and CO (Figure 3). The spectral color properties were 

dominated by myoglobin (and hemoglobin) at different oxidation states and bound to 

different ligands. The formation of COMb was positively correlated to the a* value on 

the L*a*b* scale (lightness, redness and yellowness). This implies the presence of 

different myoglobin species in fish, as reported by other authors (Mantilla et al., 2008; 

Smulevich et al., 2007). It will be interesting for future studies to use spectroscopy as 
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a non-destructive way for online measurements of water, lipid and protein (Folkestad 

et al., 2008) together with visible color.   

 

Lipid oxidation 

After slaughter oxidative processes will start in meat. Oxymyoglobin is a relatively 

unstable compound and has the potential to contribute significantly to oxidation 

through several pathways. For example, OMb (Fe2+) is easily oxidized to MMb (Fe3+) 

producing superoxide anion that can dismutate to hydrogen peroxide and thus initiate 

lipid peroxidation. Next peroxides (lipid peroxides and hydrogen peroxide) are strong 

oxidizers that can oxidize OMb Fe2+>Fe3+(Tajima and Shikama, 1987) and thus 

propagate peroxidation. Finally, many peroxidation products like aldehydes, eg 4-

hydroxy-2-noenal, may themselves attack sites on myoglobin facilitating its oxidation 

(Faustman et al., 2010). COMb does not contain oxygen and will thus not as easily 

facilitate the production of superoxide radical. Introducing a ligand like CO to the 6th 

coordination orbital increases the stability of the Fe2+ in the heme moiety. This will 

increase the shelf-life, and reduce lipid oxidation and browning of the product 

(Cornforth and Hunt, 2008; Hsieh et al., 1998). This is especially important in fatty 

fish where the high level of unsaturated fatty acids makes them more susceptible to 

lipid oxidation.  

 

Microbial growth 

CO is known to have an inhibitory effect on microbial growth at levels above 5% (Gee 

& Brown, 1980). Fish treated with filtered smoke benefits from this by having 

extended microbiological shelf lives (Kowalski, 2006). In a study of aerobic bacteria 

in stored yellowfin tuna (Thunnus albacares),, filtered smoke efficiently reduced 

bacteria caused by high levels of CO, carbon dioxide and smoke components 

(Kristinsson et al., 2007). The storage of tuna under 100 % CO reduced bacterial 

growth, but to a smaller extent than filtered smoke. The mechanism of CO induced 

inhibition on bacterial growth is still relatively unclear however. CO will affect cell 

respiration through inhibition of many enzymes (e.g., cytochromes) with heme groups 

similar to Hb and Mb. With cytochromes, CO inhibits oxidative phosporylation and 

thus aerobic bacteria respiration and survival (Prescott et al., 1996). During prolonged 

storage of marine fish with red muscles, bacteria may penetrate the flesh and convert 

free histidine to histamine. Although histamine is toxic at very low concentrations, it 
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does not cause appreciable visual or organoleptic changes. This increases the risk of 

intoxication by the consumer. Treating (directly or indirectly) fish with CO can reduce 

aerobic bacterial growth and histamine formation and increase shelf-life(Garner and 

Kristinsson, 2004). 

 

Practical considerations 

Human toxicity 

It is important to be aware of the possible toxic effect of CO on humans. It is a 

colorless, odorless, tasteless and non-irritant gas. Inhalation of CO decreases the 

amount of O2 delivered to the tissues. The affinity of hemoglobin for CO is over 200 

times higher than its affinity for O2. However, low concentration of CO is not 

considered a hazard. The uptake of CO to hemoglobin is reversible and the half-life of 

COHb is 4-6 hours. The rate of absorption and excretion of CO from the body is 

relatively slow. When working with CO a security alarm should be worn at all times. 

The administrative Norwegian working norm of CO is 25 ppm.  

 

Legal issues 

Presently, CO is not permitted for foods in the EU and Norway. The regulations in the 

use of CO in treatment and processing of muscle foods differ between countries and 

regions. The adoption of CO in treatment and processing differ in various countries 

due to regulatory limitations. United States Food and Drug Administration stated 

“tasteless smoke” or filtered smoke as GRAS (Generally Rrecognized as Safe) in 2000 

(USFDA, 2000). Later, packaging of meat with up to 0.4 % CO har been permitted in 

the USA to master-bags and case-ready meat. Until 2004, low CO concentrations were 

widley used for packaging of meat in Norway, but at that time CO packaging was 

prohibited due to trade agreements with the EU. The positive effects of CO might 

cause a change in legislation in EU in the future. However, there are no regulations in 

EU on the use of CO as a sedative or anaesthetic component for fish. 

 

Conclusion 

 
• CO is an efficient sedative and anaesthetic agent in fish 

• CO affects brain directly by binding to heme proteins in Saccus vasculosus and 

Ngb 
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• CO can be detected together with gases like nitrogen, oxygen and carbon 

dioxide using gas chromatography 

• Visible and NIR spectroscopy can be used to study color and protein, fat and 

water content online 

• CO stabilizes color of red fish muscle 

• CO increases product stability by inhibition of microbial growth and lipid 

oxidation. 
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Legend to figures. 

Figure 1. A) Immunostaining using anti salmon neuroglobin in 1:70 dilution. 

Neuroglobin is found in perikardion (thick marker), and axon (thin marker) in 

thalamus of brain of Atlantic salmon. The arrows mark some of the positive staining. 

B) Western blot analysis using anti salmon neuroglobin detect recombinant salmon 

neuroglobin (Bjørlykke et al., 2012a) at the expected Mw of 17000. 

 

Figure 2. Detection of soluble gasses in water using an SRI dissolved gas analyzer-gas 

chromatography (DGA-GC) system equipped with a Thermal Conductivity Detector 

(TCD) and a Flame Ionisation Detector (FID). Two different standards (i.e. water 

samples) with different amounts of CO are shown, with the upper trace sample having 

twice the CO content as the lower trace sample. This detection method shows 

excellent reproducibility and allows detailed analysis of the water gas atmosphere. A 

detailed explanation of the system can be found at the SRI homepage 

(http://www.srigc.com).  

 

Figure 3. Absorption spectra from mackerel fillet stored in vacuum, air and CO. The 

Soret maximum in Visible Spectra for mackerel packed in air was 421 nm; in CO 423 

nm; and in vacuum 431 nm. This show the presence of the various myoglobin species 

depending on storage conditions. Fillet stored in vacuum (black solid line), air (dotted 

line) and CO (hyphened line). Courtesy of Jens Petter Wold, Nofima. 
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Table 1. Colour (a*, i.e. change in red colour) of cold room stored (4oC) Atlantic 
salmon (1.30 kg), herring (0.16 kg) and mackerel (0.56 kg) after being anaesthetized 
with CO. The L* and b* values were very similar for treated and untreated fish. 
--------------------------------------------------------------------------------------------------------
--------- 
Day Salmon Herring Mackerel 
--------------------------------------------------------------------------------------------------------
--------- 
     Control  CO  Control       CO     Control      CO 
-------------- ------------------------------------------------------------------------------------------
--------- 
1    22.3 +0.7 23.0 +2.0 2.7 +1.1 10.0 +2.0 9.5 +1.0   8.9 +2.0 
6    19.4 +1.0 21.9 +2.0 3.7 +0.3 10.3 +2.0 5.1 +0.9 10.0 +0.7 
-------------------------------------------------------------------------------------------------------- 
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Abstract 

The effect of carbon monoxide (CO) as stunning method in Atlantic salmon (Salmo 

salar L.) on stress indicators (adrenaline, A; noradrenaline, NAD) and on fillets 

quality during the shelf-life has been investigated.  The CO was dissolved into tanks 

with salmon for 8 and 20 minutes to obtain fish groups CO8 and CO20, respectively. 

These groups were compared to a non-stressed Control group (C). All the fish were 

hauled out from the tank and killed by percussion. Adrenaline content of CO20 group 

was 1.8 and 1.7-fold higher than CO8 and C groups respectively (P<0.001), which 

exhibited similar values. Noradrenaline content was higher in CO20 than in C group 

(8.1 vs. 5.4 ng/ml plasma; P<0.0001). The CO treatment resulted in a small significant 

increase in lightness and yellowness, not altering the overall “natural” colour of the 

fillet. CO treatment caused a rapid onset of rigor mortis and a small but significant 

increase in drip loss (P<0.05). 
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1. INTRODUCTION 

Fish quality can be influenced by pre, ante and post mortem conditions, including 

handling before slaughter, slaughtering methods and storage conditions. 

Animal welfare has become a crucial issue for farmed fish. There are no optimal 

stunning conditions available today. 

Carbon monoxide (CO) has proven not to provoke the aversive reactions (Smith, 

2001) as seen with CO2 (Poli et al., 2005). The effectiveness of CO is due to its 

displacement of oxygen on heme proteins (hemoglobin (Hb), myoglobin (Mb) and 

neuroglobin (Ngb)), causing tissue hypoxia (Brunori and Vallone, 2007; Devenport, 

2002; Kalin, 1996). The effect is quick sedation and unconsciousness and the animal 

will die due to O2 shortage without sensing the deficiency. It is also believed that CO 

binds to the oxygen-storage proteins in Saccus vasculosus,a well-vascularized organ 

situated in the ventral side of the brain with several putative functions during hypoxia 

and stress, but also as oxygen depot and transport(Burmester and Hankeln 2009; 

Yanez et al., 1997; Sanson, 1998). 

CO has been used for decades as food preservative in food industry (Sørheim et al., 

2001). However, CO has also been demonstrated to mask spoilage as the cherry red 

colour can last beyond the microbiological shelf-life of the meat (Kropf, 1980). 

Consequently, the use has been discontinued for meat in many countries (Wilkinson et 

al., 2006). 

CO is also known to improve colour stability in red muscles (Chow et al., 2008; 

Kowalski, 2006), reduce microbial growth (Gee and Brown, 1980) and lipid oxidation 

(Cornforth and Hunt, 2008; Hsieh et al., 1998) even when live fish is exposed to CO 

(Mantilla et al., 2008). The latter is particularly interesting in fatty fish like salmon, 

which is vulnerable to lipid oxidation due to the high level of unsaturated fatty acids. 

When CO is added, it binds directly to oxymyoglobin/oxyhemoglobin (OMb/OHb), 

displacing oxygen, producing COMb/COHb that has a cherry red colour. They are 

stable compounds and the degradation to meth-forms MMb/MHb takes longer time 

(Chow et al., 1998) and will thus prevent discoloration. In Atlantic salmon, herring 

and mackerel anaesthetized by injecting CO in seawater, redness (a* value) was more 

persistent than the control groups; moreover CO treated fish did not develop the 

typical rancid smell even after 6 days of cold storage as was the case of the controls 

(Concollato et al., 2014). The autoxidation of heme protein to meth-forms is also a 
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critical step in lipid oxidation. MMb/MHb reacts with peroxides and stimulates 

formation of chemical compounds able of initiating and propagating lipid oxidation 

(Shahidi and Botta, 1994; Everse and Hsia, 1997; Mantilla et al., 2008), which is a 

major cause of quality deterioration in seafood, contributing to the formation of off-

odours, off-flavours and texture declining. Since CO is expected to retard lipid 

oxidation of Hb and Mb to the meth-forms, it is possible that this treatment may 

extend the shelf-life of the product. 

Bjørlykke et al. (2011) observed that Atlantic salmon did not take any notice of the gas 

once injected in the tank by diffusers. One limitation of killing fish with CO is its 

relative low solubility in water. It was reported by Daniels and Getman (1948) and 

Lide (2005) that CO has a 1.7 x 10-5 mole fraction solubility in water at 25 °C and 101 

kPa. This solubility however is similar to that of O2 in water (2.2 x 10-5 mole fraction 

solubility at 101 kPa) (Lide, 2005). This suggests that O2 and CO dissolved volumes 

are almost equal. The volume of O2 or CO dissolved in water is dependent by the 

partial pressure of the gas and temperature, the solubility of which increases as the 

temperature decreases (Mantilla et al., 2008). 

Stress is a biological response elicited when an animal make abnormal or extreme 

adjustments in its physiology or behaviour in order to cope with adverse aspects of its 

management (Terlouw, 2005). During exposure to internal and environmental 

stressors, catecholamines like adrenaline (AD) and noradrenaline (NAD) are released 

by modulating cardiovascular and respiratory functions in order to maintain adequate 

levels of oxygen in the blood. Catecholamines also initiates breakdown of glycogen to 

increase available energy input during stress. This leads to physical responses 

including unsettled movements. In addition, stress may turn the metabolism in a more 

anaerobic one, which result in a lower glycogen content giving a faster pH decrease 

and onset of rigor mortis (Van Laak et al., 2000). 

The aim of this study was to expose Atlantic salmon to CO before slaughtering in 

order to provide information on how this gas can affect adrenaline (AD) and 

noradrenaline (NAD) plasma levels and the fillet’s quality changes during the shelf-

life, in comparison with fish percussively slaughtered. 
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2. MATERIALS AND METHODS 

2.1 Experimental set-up 

The trial was carried out at the Institute of Marine Research, in Matre (61° N, western 

Norway). A total of forty-five Atlantic salmon (Salmo salar L.) (1.07 ± 0.1 kg) were 

assigned to three experimental tanks containing 900 L seawater, and were fed with the 

same commercial extruded feed. One week prior to the experiment, the ceramic 

diffusors (wedge lock base unit; Point Four Systems Inc., Richmond, Canada), were 

placed into the tanks, and used to deliver oxygen twice a day to get the fish 

accustomed to the bubbles. Before the trial, they were starved for 24h. The 

temperature of seawater was constant at 7.3 ± 0.5 °C. Fish in tank 1 were used as 

control (C) and slaughtered by percussion; fish in tank 2 and 3 were flushed with 100% 

food grade CO (Yara Praxair, Oslo, Norway), for 8 (CO8) (tank 2) or 20 minutes 

(CO20) (tank 3) at 2-3 bar. The timing would have to coincide with the time to fish 

first responding to CO (8 min) and all fish being sedated (20 min). At the given time 

points, the fish were quickly hauled from the tanks and killed by percussion. During 

the experiment, the CO concentration in the air was monitored and measured by the 

use of portable gas detectors (GasBadge Pro, Oakdale, PA, USA). 

The experiment was approved according to “The Regulations in Animal 

Experimentation” in Norway and carried out by certified personnel. 

 

2.2 Behavioural analysis and measurement of CO 

During CO injection salmon’s behaviour was recorded with a video camera then 

described according to Roth et al. (2003). Table 1 reports the stages of behaviour used 

as a reference. Seawater CO analysis was performed as described in Concollato et al. 

(2014). Calibration was performed using standard gas containing 0.01, 0.1 and 1.0 % 

CO. 

 

2.3 Plasma adrenaline (AD) and noradrenaline (NAD) 

Immediately after slaughter, heparinised blood samples were collected from the caudal 

vein of 5 fish per tank (total No. = 15 fish). Samples were placed on ice and plasma 

prepared by centrifugation (13.500 rpm for 2 min) and frozen at -80 °C until the 

analyses. AD and NAD were analysed using BI-CAT - ELISA kit (DLD - 

Diagnostika, GMBH, Hamburg, Germany), according to the manufacturer’s 

instructions. 
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2.4 Rigor Index, pH, colour and drip loss 

After slaughter, salmons from tank 1 (C group) and tank 2 (CO20 group) were 

individually tagged, weighed and stored in polystyrene boxes with ice. Rigor mortis 

and pH were determined on 6 fish/treatment at 0, 3, 9, 15, 24, 30, 40, 48 and 64 hours 

post mortem. Rigor mortis was measured by tail drop, and Rigor Index (RI) was 

calculated according to Bito et al.(1983), using the following formula: 

RI (%) = [(L0 - Lt)/L0] × 100 

where L0(cm) is the vertical distance between the base of the caudal fin and the table 

surface measured immediately after the death, whereas Lt (cm) is the vertical distance 

between the base of the caudal fin and the table surface at the selected time intervals. 

The pH was measured on the cranial part of the epaxial neck region, using a Mettler 

Toledo SevenGo pro pH-meter (Mettler-Toledo Ltd, Leicester, UK) equipped with 

an Inlab puncture electrode (Mettler-Toldedo, Ltd). After rigor mortis resolution (64 h 

post mortem, Time 0 – T0), all the 30 fish were gutted, filleted and weighed, then right 

fillets were vacuum packed and stored at -20 °C for further analyses, whereas the left 

fillets were stored for 14 days (T14) in PEHD (Poly-Ethylene High Density) trays with 

absorbent pads on the bottom, in a cold room at 2.5 °C. From T0 until T14, every 

second day, colour (L*a*b* values) and pH were measured. Flesh colour was 

measured using a portable Hunterlab MiniScan XE Plus D/8S Color Analyzer 

Colorimeter Spectrophotometer instrument, calibrated with a white and a black 

standard. The tristimulus L*a*b* measurement mode was used, where the L* value 

represents lightness, the a* value represents the redness and the b* value represents the 

yellowness indexes (Hunter and Harold, 1987). 

 

Drip losses (%) were determined by weighing the fillets at T0, T7 and T14, and 

calculated by the formula: 

Drip losses = ((D0 – D7, 14)/D0) × 100 

where D0 is the fillet weight immediately after filleting, while D7 andD14 correspond to 

the fillet weight after 7 or 14 days of storage, respectively. 
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2.5 Statistical analysis 

Data were analysed using the General Linear Model procedures of the statistical 

analysis software SAS 9.1 (2004) for Windows. A one-way ANOVA tested the 

stunning method as fixed effect. 

 

3. RESULTS 

3.1 Behavioural analysis and measurement of CO 

The water samples indicated that the content of CO in the water was 0.1% after 8 min., 

and 0.6% after 20 min. All these values indicate super saturation, as the amount of CO 

at equilibrium is 0.028%. 

Salmon showed a normal swimming activity before CO injection in the tank. Fish 

behaviour was very similar for both experimental groups, CO8 and CO20, in the first 8 

min. As CO injection started, all fish behaved normally, with many swimming through 

the gas. At about 2 min, salmon showed a slight increase in motility, but still keeping 

normal swimming pattern and ventilation, which refers to stage 0 of consciousness 

(Roth et al., 2003). At 7 min a light sedation set in (stage 1; Table 1), as some fish had 

slight problems with equilibrium, whereas others laid on the bottom of the tank for 

few seconds. At 8 min. all fish expressed abnormal erratic swimming behaviour and 

uncontrolled convulsions. At this time fish from CO8 group were hauled and killed by 

percussion. In tank 3 (CO20 group) from 8 min. onward, as in CO8 group, salmons 

showed the same erratic swimming behaviour followed by circular movements near 

the surface, and then dive back in the water again. At 10 min., narcosis level 3 was 

reached (stage 3), and some fish started to lay on the bottom with abdomen up, little 

convulsions, and little operculum ventilation. Other fish looked like unconscious for 

some seconds and then suddenly swam showing convulsions. After 20 min. all the fish 

had reached stage 4-5 having no swimming activity or ventilation. They were then 

hauled from the tank and killed by percussion. 

 

3.2 Plasma adrenaline and noradrenaline 

Fish treated for 20 min. with CO showed significantly higher (P<0.0001) levels of 

catecholamines compared to C and CO8 fish (Table 2). Plasma AD level in CO20 

group was significantly higher than C and CO8 groups (4.8 vs. 3.1 and 4.8 vs. 3.0 

ng/ml plasma; P<0.001), the latters not differing between them. Plasma NAD level 



 162

was higher in CO20 than in C (8.1 vs. 5.4 ng/ml plasma; P<0.0001) while CO8 group 

presented an intermediate value. 

 

3.3 Rigor Index, pH, drip loss and colour 

Rigor Index evolution showed that fish of the CO20 group had earlier onset of rigor 

mortis than those of C group (Figure 1A). Full rigor wasreached by CO20 

fishapproximately 10 hours post mortem, whereas by C fish 24 hours post mortem. 

Rigor mortis evolution was quicker for asphyxiated salmon (CO20); indeed 

itsresolution was reached 48 hours post mortem, time at which C group was still in 

rigor. 

C and CO20 groups had similar rate of muscle pH drop (Figure 1B) during the first 24 

hours: 7.06 vs. 6.74, 6.67 vs. 6.65, 6.48 vs. 6.45, 6.38 vs. 6.31, and 6.38 vs 6.28 at 0, 3, 

9, 15 and 24-h post mortem, respectively. Thereafter, at 30 and 64-h the CO20 group 

had significantly (P<0.05) lower pH (6.29 vs 6.51 and 6.33 vs. 6.51). 

The drip loss after 14 days of chilled storage is given in Table 3. Treatment increased 

drip loss in the CO20 group compared to the Control, since a slight but significantly 

higher loss was observed in CO20 compared to C group after 14 days of chilled 

storage (4.3 vs. 3.7 %; P<0.05; Table 3). 

In Table 4 have been reported CO effects on flesh colour only at day 0 and day 14 of 

storage in cold room (+2.5 °C), since no significant differences were detected for the 

other days. On fresh fillets, CO20 group of fish had significantly higher lightness (L*) 

and yellowness (b*), compared to the Control group. These differences disappeared 

over time, and no differences were found at T14. Treatment had no effect on redness 

(a*). 

 

4. DISCUSSION 

4.1 Behavioural analysis and measurement of CO 

Even on first measurement of CO in the water, it appeared that the content was much 

higher than the maximum water solubility indicating super saturation. At present, it is 

not possible to calculate the actual amount of CO dissolved that is available for the 

fish through the gills, or if super saturation has an additional effect compared to fully 

saturated water. 

There were no effects of CO on fish swimming activity for the first 5 min. This clearly 

shows that salmon do not sense or smell CO. At about 8 min fish started to lose 
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buoyancy, and responded by abnormal erratic swimming behaviour, swam in circles 

near the surface before diving again and had uncontrolled convulsions. Bjørlykke et al. 

(2011) detected similar behaviour in Atlantic salmon only after 12 min from CO 

injection into the tank. This could be related to the lower water temperature (5.8 ± 

0.5 °C vs. 7.3 ± 0.5 °C) and the not negligible greater mean body weight (3.4 ± 1.4 kg 

vs.1.07 ± 0.1 kg) with respect to the present study. At lower temperature the CO 

solubility should increase, but it has to be considered that also animal’s metabolism 

become slower, likely requiring longer time to obtain the same reaction. It was 

observed that Atlantic salmons, reared at water temperature (7.4 ± 0.2 °C) and body 

weight (0.8 ± 0.1 kg) similar to our conditions, once subjected to a sudden increase in 

CO levels by the influx of saturated water with high and medium CO concentrations, 

show the same intense reaction only approximately after 2-4 min. (Bjørlykke et al., 

2013). This may indicate that a rapid CO saturation of the water generates a faster 

stunning of the animal by skipping the initial step of slow diffusion, during which fish 

probably has the time to sense critical environmental conditions. Atlantic salmon is an 

active swimmer normally responding to perceived reduction in O2 availability by a 

strong escape reaction (Zahl et al., 2010), which has been also confirmed in our study. 

The observed escape behaviour and surface seeking are probably originated by 

secondary hypoxia sensing mechanism, since CO effectively replace O2 and inhibit its 

use throughout the fish body due to its higher affinity for oxygen binding proteins than 

oxygen itself (Blumenthal, 2001; Goldstein, 2008). Secondary effects that may signal 

hypoxia acidosis are due to anaerobic metabolism that increase lactate concentration, 

decreased ATP or increased ROS production. All of these are putative oxygen sensing 

mechanisms, and may elicit strong aversive reactions, at least in mammals (Lahiri et 

al., 2006). At 10 min, presumably a higher narcosis level was reached (stage 3), when 

some fish were lying on the bottom with abdomen up, showing little convulsions 

repeated in time and problem of operculum ventilation; others fish looked like 

unconscious for some seconds and then suddenly swam showing convulsions. 

Bjørlykke et al. (2013) described the same behaviour 8 min. after CO diffusion. The 

causes of erratic swimming behaviour in salmon have yet to be solved. Further work 

in this area is warranted. Performing this trial has been very useful because 

information here obtained helped to understand an important limit: the slow diffusion 

of the gas into tanks containing fish seems to be stressful since death is delayed in the 

time. It could be helpful reliable measurements of actual dissolved CO in water and 
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possible improvements of CO delivery systems.This preliminary work has made it 

clear that further studies should consider stunning in water previously saturated with 

CO or else a common stunning method followed by slaughtering in CO saturated 

water.  

 

4.2 Plasma adrenaline and noradrenaline 

Adrenaline values similar to those obtained for CO20 group were found in resting 

rainbow trout by Nakano and Tomlinson (1967) after blood sampling by caudal 

peduncle decapitation, which is an undoubtedly traumatic method. Later on Iwama et 

al. (1989) observed that blood adrenaline concentrations increased significantly during 

the latter stages of deep anaesthesiain rainbow trout. Carbon monoxide exposure for 

20 min significantly increased AD and NAD levels compared to C group while in CO8 

group catecholamine concentration did not differ from those of C group. It is 

important to consider that C and CO8 groups presented AD and NAD levels beyond 

the threshold of physiological range (usually less than 10 nM). This can make us to 

hypothesize that, when fish are exposed for short time period (8 min.) to CO, the gas is 

not really perceived as such, but has almost the same stressful effect of net capture 

followed by percussion stunning/killing method, commonly used. NAD concentrations 

similar to those of C (5.4 ng/ml) and CO8 (6.4 ng/ml) groups were detected in rested 

rainbow trout (5.02 ng/ml) (Van Dijk and Wood, 1988) and stressed ones after 6 min. 

of violent chase (6.66 ng/ml) (Milligan and Wood, 1987), respectively. 

The high values of AD and NAD found in CO20 exposed fish might depend on CO 

influence on oxygen metabolism. By considering the general behaviour of the fish 

observed during the CO injection in the water, no aversive reactions such as those 

evocate when treated with CO2 (Robb and Kestin, 2002; Roth et al., 2002) were 

evidenced in our trial. In fact, during the first 7 min of CO exposure fish were looking 

like do not take any notice about the gas presence by swimming freely trough it; 

however, after this time, fish started to show erratic swimming behaviour suggesting 

the presence of death cramps. In a recent study, Concollato et al. (2014) argue the 

hypothesis that the CO affinity to Ngb may induce immediate sedation and 

unconsciousness in fish, covering an important role in stress management in fish. 

However, from the results emerged in this trial it seems that CO treatment was 

stressful to fish as it increased catecholamine’s secretion. The few studies on AD and 

NAD release in salmonids found in literature are those cited above (showing similar 
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data), but none considered the catecholamine’s release in relation to the application of 

different pre-slaughter stunning methods on fish. That is why further insights are 

needed. 

When conducting field studies concerning stress, an important challenge is represented 

by the practical difficulty in sampling blood samples from undisturbed fish; up to now 

this problem is still not overtaken. 

 

4.3 Rigor Index, pH, drip loss and colour 

The intense rigor mortis process and the significant final pH decline observed in 

CO20 group at time of rigor resolution resulted in a significantly higher drip loss. 

Heme protein’s affinity for CO is at least 240 times higher than that for O2 (Roughton, 

1970), this implies a dramatic reduction in O2 transport and, as a result, the 

metabolism quickly change from aerobic to anaerobic, the ATP is gradually depleted 

and lactic acid is accumulated leading to a decrease in pH (Fennema, 1996). This 

explains the fast pH decrease early post mortem, that turned out in an early onset of 

rigor mortis (Bjørlykke et al., 2011), denaturation of muscle proteins with subsequent 

lower water holding capacity and higher drip losses. This demonstrates that it is 

extremely important to avoid fast post mortem pH decline as it weakens tissues 

between the muscle blocks (the myosepta) which then break, blocks become separated, 

and “gaping” takes place (Robb et al., 2000). The extension of the pre-rigor period is 

considered an important factor to maximize fillet’s yield, since it is reduced when the 

fish is processed during the rigor stage (Azam et al., 1990). Fish processing plants then 

evaluates the delay in the start of rigor positively, because the full rigor filleting leads 

to a reduction in the yield and because the loss of freshness begins at the stage of post-

rigor. 

At T0, exposure to CO led to a small but significant increase in L* and b* values in 

comparison to the C fillets, not altering the overall “natural” colour of the fillet. 

During the 14 days of chilled storage the C fillets, compared to the CO20 fillets, 

showed an increased of b* value in comparison to T0 likely attributed to both lipid and 

heme proteins oxidation. Heme proteins, once oxidized to MHb/MMb, can give a 

brown-yellowish appearance to the red muscle, thus explaining the increase in b* 

value (Kristinsson and Demir, 2003). The slightly higher, but not significant, a* value 

in CO20 at T0 could be attributed to CO binding to Mb or Hb, displacing oxygen, 

producing COMb or COHb that has a stable cherry red colour, and the degradation to 
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MMb or MHb could take longer time (Chow et al., 1998), preventing discoloration. 

Indeed after 14 days of storage the redness for CO20 group was almost unchanged, 

highlighting the positive effect of CO. It must be mentioned that salmon fillets contain 

astaxanthin that gives the characteristic red to orange colour, and it may have 

minimized the colour differences among the experimental groups (Bjørlykke et al., 

2011; Ottestad et al., 2011). 

 

5. CONCLUSIONS 

Behavioural analysis showed that salmon do not sense the CO gas. At 8 to 10 minutes, 

the fish respond with aversive behaviour before becoming fully sedated. It is possible 

that the swimming behaviour is elicited as a response to loosing buoyancy, or a 

biological response to hypoxia. This is confirmed also from blood analysis, showing a 

general increasing level of catecholamines in the order C<CO8<CO20. 

CO treated fish resulted in an earlier onset of rigor mortis, lower final post mortem 

muscle pH and higher drip loss after filleting. The assimilation of CO by Atlantic 

salmon’s muscles, through injection in the water, slightly increased L* and b* values, 

limited however to the fresh samples (T0). None significant difference in redness (a*) 

at any considered time was found between CO and Control group, probably because of 

the content in astaxanthin that may have minimized the colour differences among the 

experimental groups. 

Further studies are needed to improve CO application as stunning/killing method. This 

includes reliable measurements of actual dissolved CO in water and possible 

improvements of CO delivery systems, so that to minimize stress perception 

immediately before slaughtering. The solution of these issues could allow the direct 

application of CO for stunning/slaughtering fish. Otherwise it could be necessary the 

utilization of other stunning methods followed by slaughtering in CO saturated water. 
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Captions of Tables 

Table 1. Modified protocol from Burka et al. (1997) to determine, based on 
behavioural observations of Atlantic salmon, different stages (0-5) of reaction to 
electrical exposure. Behavioural studies were based on signs of swimming activity, 
reactivity to visual and tactile stimuli, equilibrium efforts, and ability to ventilate. 
 
 
Table 2. Mean Adrenalin (AD) and Noradrenaline (NAD) values (ng/ml plasma) in 
blood samples collected from Atlantic salmon (No.= 5/treatment): control (C), CO8 
and CO20. 
 

Table 3. Drip loss (DL, %) during cold storage of Atlantic salmon fillets from control 
(C) and exposed to CO for 20 minutes (CO20) groups. 
 
 
Table 4. Colour parameters (lightness [L*], redness [a*], yellowness [b*]) at day 0 
and day 14 of storage in cold room (+2.5 °C), measured in fillets of Atlantic salmon 
from control (C) and exposed to carbon monoxide for 20 minutes (CO20) groups. 
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Table 1. 
 

Stage Description Behavioural signs 

0 Normal 
Active swimming patterns 
Normal equilibrium 
Normal ventilation of operculum 

1 Light sedation 
Reduced swimming activity 
Problems with equilibrium 
Normal ventilation of operculum 

2 Light narcosis 
Weak swimming activity 
Slow and long ventilation rate 
Equilibrium loss with efforts to right 

3 Deep narcosis 
No swimming activity 
Problems of ventilation of operculum 
Total loss of equilibrium 

4 
Surgical 

anaesthesia 

No swimming activity 
Ventilation ceases 
Total loss of equilibrium 

5 
Medullary 
collapse 

Death ensues 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2. 
 

 
Treatment Significance RSD(1) 

C CO8 CO20   
AD 3.1a 3.0a 4.8b <0.0001 0.5 
NAD 5.4a 6.4ab 8.1b <0.0001 0.9 

(1) Residual Standard Deviation 
Different superscripts in the same line indicate significant differences. 
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Table 3. 
 

 Treatment 
Significance RSD(1) 

 C CO20 
DL 0-7 days 2.3 2.9 NS 0.7 
DL 7-14 days 1.4 1.4 NS 0.5 
DL 0-14 days 3.7a 4.3b <0.05 0.8 

 (1) Residual Standard Deviation 

 Different superscripts in the same line indicate significant differences  
NS: not significant 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4.  

 

Time 
(days) 

 
Treatment 

Significance RSD(1)  
 C CO20 

0 
L* 50.7a 52.8b <0.01 1.6 
a* 19.9 21.1 NS 1.7 
b* 18.2a 19.3b <0.05 1.3 

14 
L* 49.8 50.7 NS 1.4 
a* 21.2 21.2 NS 1.7 
b* 19.8 19.2 NS 1.2 

                                                             (1) Residual Standard Deviation 
 Different superscripts in the same line indicate significant differences 

NS: not significant 
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Caption of Figure  

Figure 1. Rigor Index (A) in Atlantic salmon of control (C) and exposed to CO 
for 20 minutes (CO20) groups. The values are presented as means (No.= 
6/group) ± SD. Symbol (*) denotes significant differences (*=P<0.05; 
**=P<0.01). 
 
 
Figure 2. pH values (B) in Atlantic salmon of control (C) and exposed to CO 
for 20 minutes (CO20) groups. The values are presented as means (No.= 
6/group) ± SD. Symbol (*) denotes significant differences (*=P<0.05; 
**=P<0.01). 
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Figure 1 
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Salmo salar L.CO stunning treatment revealed by electronic nose, electronic 

tongue and NIRS in differently prepared fillets influences post mortem 

catabolism and sensory traits 

 

 

Abstract 
The objective of this study was to evaluate and compare sensory analysis, NIRS, 

Electronic nose (EN) and Electronic tongue’s (ET) ability in discriminating Atlantic 

salmon (Salmo salar L.) fillets according to stunning methods (percussion: Control; 

Carbon Monoxide: CO) and Storage Time (64 h, T1 or 14 days post-mortem, T2) and 

different preparation of the specimens (Thawed, in Ethanol and Freeze-dried). 

Samples were NIRS analysed by three different Research Units (RU): Hungary (H), 

Padova (PD), Torino (TO). As a general pattern, the Storage factor was the main 

source of effects for the instrumental discernment when compared to the Stunning 

effect. According to the two considered factors and their combinations for the seven 

instruments and preparations, the maximum efficiency was performed by the freeze-

dried samples scanned by NIRS devices from the RU of TO, PD and H, also NIRS on 

thawed samples performed by the H RU was efficient; EN, ET and NIRS of ethanol 

specimens resulted to be the worse preparations and analysis methodologies. The PLS-

DA and distance matrix confirmed these findings also. The correlation of maximum 

rigor time with the spectra resulted to be greater for freeze-dried and thawed samples 

according to all the different considered NIRS devices and for ethanol specimens. A 

general accordance between the spectral signature and the appreciation expressed by 

the panel for some sensory traits was observed, indicating that rheological but also 

taste and flavor properties are involved in this vibrational characterization. As general 

result freeze-dried preparation and NIRS devices resulted to be the best combination in 

samples discernment according to Storage time and Stunning factors, but also to 

maximum rigor mortis time and sensory scores. 

 
Key words: Salmo salar L., carbon monoxide stunning, e-nose, e-tongue, NIRS, 
samples preparation 
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1. INTRODUCTION 

All over the world, food safety and quality, are considered important issues directly 

related to people’s health and social progress. Consumers are always more careful for 

quality labels and trust marks on food products, and il expects manufacturers and 

retailers to provide high quality products. These factors have driven the development 

of fast, efficient and reliable methods for food quality assessment. Among the 

vibrational techniques, that capitalize the fundamental properties of the organic bonds 

(C-H-O-N) in the electromagnetic spectrum, the FTMIR (Fourier Transformed 

Medium Infra Red, 2500-25.000 nm wavelengths) assumes absolute dominance in the 

milk world (Soyeurth et al., 2009). No similar development was extended by the IR in 

the solid agro-food media, mainly because lack of predictability of the method in 

complexes matrices, as grain, leaves, meat and cheese. The fundamental vibrations of 

the CHON bounds in the IR region are rebounded as overtones in the Near Infrared 

region (800-2500 nm wavelengths) and these vibrations may be de-convoluted and 

correlated - as causative - to the fundamental unique vibration originated in the IR 

band when the incident radiation strikes the organic molecules. The Near Infrared 

Reflectance Spectroscopy (NIRS) technology capitalizes the overtones and 

combinations of the constituents represented in the easily prepared or even in the intact 

samples, by using appropriate chemometric methods. NIRS represents a very common 

tool in the agro-world. The vibrational spectroscopy in the near infrared region is a 

very versatile device, with a paramount use in industry, farming and breeding, but also 

in experimental works. It provides a large amount of information from the spectra and 

this characteristic makes it a powerful tool for food analysis. It is widely used in many 

fields, as to identify adulteration of beverages (Paradkar, Sivakesava, & Irudayaraj, 

2002; Pontes et al., 2006); evaluation of milk and dairy product quality (Cattaneo, 

Giardina, Sinelli, Riva, & Giangiacomo, 2005; Karoui et al., 2005; 2006); 

identification and constituent analysis of fruit, wine, meat, oil and corn; differentiation 

of wines on the basis of vintage year (Cozzolino, Smyth, & Gishen, 2003); 

determination of free fatty acids and moisture in fish oils (Cozzolino, Murraya, 

Chreeb, & Scaifec, 2005). Meat researchers have long sought non-destructive, 

objective techniques to predict meat quality. Several studies have focussed NIRS can 

be used to predict beef tenderness. A number of Authors nevertheless investigated off-

line experimental procedures which were destructive in that they required excision of a 

muscle sample for spectroscopy (Hildrum et al., 1995; Liu et al., 2003; Rødbotten, 
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Nilsen, & Hildrum, 2000) or they were limited to sampling a very small area (4 cm2) 

and thus, would be highly subject to error induced by non-representative sampling of 

the target muscle or interference from intramuscular fat. Their focus was altogether 

meat tenderness, but a number of other meat quality traits have been investigated with 

success by NIR Spectroscopy (Downey & Beauchene, 1997; Liu et al., 2003) and 

membership to ethnic groups of cattle (Andrighetto et al., 2004) or poultry (Fumière et 

al., 2000) or categories (Alomar, Gallo, Castaneda, & Fuchslocher, 2003). A special 

specimens of animal muscle were the ethanol preparate, that was preliminarily utilized 

in rabbits (Masoero, Brugiapaglia, Bergoglio, & Chicco, 2004), replicated in buffalo 

(Masoero, Bergoglio, Vincenti, De Stefanis, & Brugliapaglia, 2005) and in cattle 

(Masoero, Iacurto, & Sala, 2006) allowing significant results in easy and rapid NIR 

discrimination of two genetic origin for Semitendinosus and Sternum mandibularis 

muscle specimens from Friesian and Piemontese cattle. In forensic pathology 

purposes, an ethanol-based fixative method has been developed by Iesurum, Balbi, 

Vasapollo, Cicognani, and Ghimenton (2006), with a better DNA recovery in higher 

amounts compared with DNA extracted from formalin-fixed tissue. 

Dalle Zotte et al. (2014) attained traceability results by NIRS and fusion data in the 

authentication of raw and cooked freeze-dried rainbow trout fillets. 

The instrument of the ElectronicNose (EN) category, capitalize the electrochemical 

properties of low-weight molecules to excite complementary metal-oxide 

semiconductor (CMOS) sensors. EN consists of an array of chemical sensors, each 

with partial specificity to a wide range of odorant molecules. The signs of the sensory 

arrays produce the “fingerprints” of the given flavour, which are evaluated with 

chemometric methods. EN is widely used for foodstuff analysis, becoming promising 

towards industrial applications. In this particular field, electronic noses can help in 

freshness definition of product characterized by limited shelf-life, such as fish; 

distinction between fresh and thawed samples and the maintenance of a constant 

temperature during storage are of extreme importance. EN has been proven to be a 

valuable technique for food and drinks industry for product discrimination, 

classification, quality evaluation and control (Antoce, & Namolosanu, 2011; Peris, & 

Escuder-Gilabert, 2009; Torri, Migliorini, & Masoero, 2013). The Electronic Tongue 

(ET) has become established as rapid and easy-to-use tools, promising for evaluation 

of food quality from liquid media. Electronic tongues are still considerably far from 

natural taste sense, but they have shown good correlations with organoleptic scores 
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given by human panelists: artificial senses are not subjective, do not become tired or 

infected and can be used also for toxic samples. Moreover, ET can have better 

sensitivity than the human tongue and can detect substances undetectable by their 

natural counterparts. This because the taste system in humans is not as highly 

developed as the olfactory system (Escuder-Gilabert, & Peris, 2010). Legin, 

Rudnitskaya, and Vlassov(2002)pointed out that ‘the electronic tongue can be thought 

of as analogous to both olfaction and taste and it can be used for the detection of all 

types of dissolved compounds, including volatile ones, which give odors after 

evaporation. This device can be used for process monitoring (Parra et al., 2006), 

freshness evaluation and shelf-life investigation (Ahlers, 2007), authenticity 

assessment (Dias et al., 2008), foodstuff recognition/characterization (Ciosek, 

Brzózka, & Wróblewski, 2004), quantitative analysis (Rodríguez-Méndez et al., 

2008), and other quality control studies (Chen, Zhao, & Vittayapadung, 2008). 

The objective of this work was to evaluate and compare sensory analysis, NIR, 

Electronic -Nose and Electronic Tongue’s ability in discriminating Atlantic salmon 

fillets (Salmo salar L.) according to stunning methods, storage time, and different 

preparation of the specimens. 

 

 

2. MATERIAL & METHODS 

 2.1 Experimental set-up 

Atlantic salmons (Salmo salar L.) were farmed at the facilities of the Institute of 

Marine Research (IMR), in Matre, Norway. For the study, 30 salmons with a mean 

weight of 1.08 ± 0.09 kg were equally and randomly divided in 2 experimental tanks 

containing 900 L seawater each and maintained at constant temperature of 7.3 ± 0.5 

°C. Fish in tank 1 were used as control (C) and killed by percussion; fish in tank 2 

were flushed with 100% food grade CO (Yara Praxair, Oslo, Norway) using a ceramic 

diffuser (wedge lock base unit, Point Four Systems Inc., Richmond, Canada) for 20 

minutes (CO) at 2-3 bar. Then, CO fish were hauled out of the tanks and percussively 

slaughtered. For personnel safety the air CO concentration was monitored and 

measured during the experiment by use of portable gas detectors (GasBadge Pro, 

Oakdale, PA, USA). The experiment was approved according to “The Regulations in 

Animal Experimentation” in Norway and conducted by certified personnel. 
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Salmons from C and CO groups were individually tagged, weighed and stored in 

polystyrene boxes with ice. Immediately after slaughter, rigor mortis was determined 

on 6 fish/treatment at 0, 3, 9, 15, 24, 30, 40, 48 and 64 hours post mortem (interval T0-

T1), during this time fish were stored in a cold room at +2.5 °C. Rigor mortis was 

measured by tail drop, and Rigor Index (RI) was calculated according to Bito, 

Yamada, Mikumo, and Amano(1983), using the following formula: 

RI (%) = [(L0 - Lt)/L0] × 100 

where L0 (cm) is the vertical distance between the base of the caudal fin and the table 

surface measured immediately after the death, whereas Lt (cm) is the vertical distance 

between the base of the caudal fin and the table surface at the selected time intervals. 

After rigor mortis resolution (64 h post mortem, Time 1 – T1) all fish were gutted, 

filleted and weighed. Right fillets were immediately vacuum packed and stored at -20 

°C, whereas the left ones were stored for 14 days (Time 2 - T2, interval T1-T2 in days) 

in PEHD trays with absorbent pads on the bottom, in a cold room at 2.5 °C, then 

stored at -20 °C. 

All right and left fillets of the 30 salmons (15 C and 15 CO) were delivered in dry ice 

at the Padova (Italy) Research Unit (RU; Department of Animal Medicine, Production 

and Health). Then all right (15 C-T1; 15 CO-T1) and left (15 C-T2; 15 CO-T2) fillets 

were divided, while still frozen, in three (cranial, central and caudal) and two (cranial 

and caudal) parts respectively, which were send in dried ice to the RU laboratories of 

Kaposvár University, Hungary (H; caudal part), Padova (PD; central part), for sensory 

analysis by trained panelists, and Torino (TO; cranial part). 

Hungarian RU required from each raw sample about 8 and 60 g to perform EN and ET 

analyses (EN-H; ET-H), respectively, whereas to carry out NIRS scans first on raw 

(THAW-H) and then on the same raw but freeze-dried samples (FD-H), at least 40 g 

where necessary. Hungarian RU freeze-dried the raw samples and, after NIRS scan, 

the same samples were NIRS scanned again by devices in Padova (FD-PD) and Torino 

(FD-TO) RU, in order to compare the predicting ability of the three different 

instruments. 

For sensory analysis only fresh samples (CT1 and COT1) were tested because it could 

have been risky for the panelists to taste samples after 14 days of chilled storage. For 

this analysis it was required at least 50 g from each thaw fillet. 

When the 60 fillets samples, organized in 4 groups (C-T1, C-T2, CO-T1, CO-T2), 

arrived at HRU facilities, they were stored over night in chilled room at 4 °C, to ensure 
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a slow and proper thawing process. The following morning fillets were skinned, 

weighted (average weight 111.14 ± 21.51) and homogenized in a WARING 800 EG 

blender. After homogenization about 8 g were collected for electronic nose (EN) 

analysis, approximately 60 g were sealed in bags and cooked in water bath at 75 °C for 

20 minutes in order to perform electronic tongue (ET) analysis, whereas the remaining 

part was used first for NIRS scanning on the raw matrix, then freeze-dried as 

aforementioned, for NIRS analyses. 

When cranial samples arrived at the laboratory of Torino, after thawing a small 4 g 

sample was plugged in a 25 ml tube Ethanol 95% commercial solution and the tubes 

were stored in dark at + 4 °C. A rapid coagulation of the muscle protein and the 

substitution of the water in the tissue by the ethanol molecules give the appearance of 

cooked fish. The lecture of the specimens (ETOH-TO) was preceded by 1-hour 

ethanol evaporation at room temperature in order to intensify the vibrational response 

of the salmon matrices. 

 

2.2 Instrumental analyses 

2.2.1 Electronic nose  

An αFox (ALPHA MOS, Toulouse, France) type EN with 18 metal oxide sensors 

(MOS) was used. The adsorption of volatile compounds onto the MOS surface 

generates a change in the electrical resistance that varies with the type of compound 

and its concentration in the headspace (HS). The multisensory arrays of EN are 

interfaced with computers, which collect the sensor signals via RS-232 ports. The raw 

EN sensor values were saved in the form of relative resistance changes (∆R/R0). 

According to the applied static headspace (HS) technique, samples were placed in 

hermetically sealed vials of 10 ml. After the equilibrium has been established between 

the matrix and gaseous phase, an ALPHA MOS HS 100 auto sampler was used for 

sampling the HS. Synthetic air was used as a permanent airflow. The acquisition time 

and time between subsequent analyses were 120 and 1080 s, respectively. Four 

parallel measurements were performed (n = 4 x 4). During the EN method 

development the use of the following parameters resulted acceptable signal intensity 

values: sample quantity 2 g, sample temperature 60 °C, equilibration time 180 s, 

injection volume 3000 µl and the flow rate 150 ml/min. 
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2.2.2 Electronic tongue 

An αAstree II (Alpha-MOS, Toulouse, France) type ET with an LS 48 auto sampler 

unit was applied to measure the characteristics of liquid samples. The equipment 

consists of an array of seven cross-selective chemical modified field effect transistor 

(CHEMFET) based potentiometric chemical sensors. In the presence of dissolved 

compounds, a potentiometric difference is measured between each of the seven 

sensors and the Ag/AgCl reference electrode. The multisensory arrays of ET are 

interfaced with computers, which collect the sensor signals via RS-232 ports. The 

basic ET parameters were formed by averaging the intensity values when sensors were 

in equilibrium. Since the broth collected after cooking resulted insufficient to test each 

sample, the cooked fillets were stored at -20 °C and one week later 6 samples from 

each group were randomly chosen to extract the liquid part needed for the ET 

measurements. From each of the 28 samples 3 g were sampled, diluted in Millipore 

water in the rate 1:20 and homogenized, then centrifuged (12.000 rpm for 5 min) and 

filtered with filtering paper (Sartorius Stedim Biotech, grade: 1289, diameter: 125 

mm). Finally from each treatment group were obtained 6 sub-samples for a total of 28 

ET measurements. 

Once the samples were ready, those have been placed in 6 glass holders of 25 ml into 

which the measuring unit, namely the chemical sensors, the reference electrode and a 

stirrer were positioned. Six parallel measurements were performed (n = 4 x 6). The 

first element (K) of the sample series served as sensor conditioning. The measurement 

and the sensor cleaning times were 120 and 15 s, respectively. Millipore grade water 

was used for sensor cleaning. 

 

2.2.3 NIRS analyses 

Sixty (60) Atlantic salmon (Salmo salar L.) fillets were analysed in this study. 

Homogenized sample were scanned, in 4 repetitions, as thawed and as freeze-dried 

state at the HRU. NIRS spectra were collected in reflectance mode using NIRSystems 

6500 spectrometer (FOSS NIRSystem, Silver Spring now Laurel, MD, USA) equipped 

with a sample transport module and small ring cup cuvette (IH-0307). Reflectance 

spectra were recorded from the 1100 to 2500 nm region and recorded as –log(R) at 2 

nm intervals, with the WinISI II version 1.5 spectral analytical software (InfraSoft 

International LLC, Port Matilda now State College, PA, USA). In PD RU a similar 

FOSS NIRSystems 5000 (FOSS NIRSystem, Silver Spring, MD, USA) was used. In 
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TO RU Vibrational examination was conducted using a portable Model LSP 350-

2500P LabSpec Pro portable spectrophotometer (ASD; Analytical Spectral Devices, 

Inc.; Boulder, CO), which was equipped to collect spectra from 350 to 2500 nm. The 

probe was an ASD Model A122100 high-intensity reflectance probe that served as an 

external light source (2900 K colour temperature quartz halogen light) to illuminate 

the object of interest. This probe can be used to collect reflectance spectra on an area 

as large as 25 mm in diameter. Reflected light was collected through a ASD Model 04-

14766 1-m long fiber optic jumper cable that consisted of a bundle of forty-four 200-

lm fibers. 

 

2.3 Sensory method applied  

For the sensory analysis it has been chosen the descriptive method to detect 

information needed to establish the presence or absence of perceived differences 

between the two stunning methods (C and CO). 

A total of 30 right and central fillets (15 from C-T1, 15 from CO-T1) were used. Each 

fillet (with skin) was placed in aluminium trays (12.0 cm x 14.5 cm) previously drilled 

on the bottom so as to prevent the cooking of the fillets straight in their fluid; then they 

were covered with an aluminium foil on the top. Fillets were cooked in ventilated 

electric oven preheated at 200 °C, by placing on the bottom a pan with water in order 

to collect the cooking losses; cooking time was set up at the achievement of an internal 

temperature of the sample of 75-85 °C determined by a temperature probe. When 

cooked, the trays were placed in an incubator at 50 °C, and then served to the panelists 

at the request, according to the random distribution sequence. 

The trial involved 12 trained panelists with experience in determination of sensory 

profile of different food matrices. They were subjected to training sessions for the 

purpose of familiarize with the matrix of interest, select the appropriate descriptors and 

define on a scale of measure the relative perceived intensity (Table 1). Olfactory, 

tactile, gustative and textural sensory aspects were evaluated and for each of them 

different descriptors were chosen after an accurate bibliographic research. Global 

odour and aroma intensity (olfactory descriptors); friability and tenderness (tactile 

descriptors); saltiness and sourness (taste descriptors); adhesiveness, fibrousiness and 

tenderness (textural descriptors) were evaluated by scored, linear and continuous scale 

of measure (0-10). Brackish/marine, “fishy”, animal feed, cardboard, stale, boiled 

potatoes, salmon and others (olfactory descriptors); bitter, astringent and metallic 
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(taste descriptors); stringy, unctuous and low solubility (textural descriptors) were 

evaluated by categories (presence/absence, Table 1). 

The panel was trained with fresh purchased salmon, portioned into pieces and placed 

in the freezer at -18 ° C in individual plastic bags, like the samples to analyse. The 

evaluation sheet, the distribution of samples to the judges and the acquisition of the 

data was performed using FIZZ software (Biosystemes - France) installed in 12 

terminals in the tasting booths of the lab. Thanks to this software, assessments made 

by the panelists (mouse click on the scale of measurement) are automatically 

transferred to the sheet of data collection; in this way no paper sheets are filled in by 

the panelists. The purchased sample in the evaluation of the treatments represented the 

reference standard, assigning an arbitrary score for each descriptor: this sample was 

cooked together with the samples to analyse. To each panelist were offered in 2 

consecutive days 1 to 2 fillets of 50g each, corresponding to the reference and 

treatment, respectively, to evaluate successively. During the evaluation the panelists 

used unsalted crackers and natural water in order to neutralize any residual sensation 

between a sample and thenext. 
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3. DATA ANALYSIS 

3.1 Instruments 

All the digital signals produced by the instruments, which were recorded in native 

formats by specific software, were then imported into the WinISI II 1.03 software for 

chemometric elaboration. The replicate spectra were averaged before any chemometric 

elaboration. 

 

3.2 Qualitative discrimination analysis based on spectra, comparison of the 

instrumental efficiency and differences between two 1-VR coefficients 

The bi-factorial design with the Gas factors at 2 levels and the Storage time also with 2 

levels (T1 and T2) produced four groups, which were considered as dummy values (1-

4) and also contrasted each other in order to build a distance matrix. The calibration 

process was performed by the Modified Partial Least Squares (MPLS) method using 

NIRS II software, version 1.04, from Infrasoft International (ISI, State College, PA, 

USA) using a cross-validation system to assess the optimal number of latent variables 

to be included into the equations, permitting one passage for elimination of outliers 

(t>2; H>10). The prediction capacity of the calibrated models was then evaluated with 

the 1-VR parameter, which is routinely used by WinISI users and researchers 

(Mentink, Hoffman, & Bauman, 2006) and statistics as a cross-validation and a Relative 

Prediction Deviation (RPD) were considered for performance evaluation (Williams, 

1987). 

On the distance matrix a Ward’s Hierarchical Clustering Analysis (HCA) was 

performed via StatBox software vs. 6.5 (Grimmer Logiciel, Paris) in order to compare 

the relative average dissimilarity patterns (Jobson, 1992). HCA performs agglomerate 

hierarchical clustering of objects based on distance measures of dissimilarity or 

similarity. In order to rank two independent factors the z-score obtained from by 

Fisher transformation according Preacher (2002) was used to testify the differences 

between two 1-VR values, with two-sided alpha< 0.05 limit. Because an objective 

judgments about the instruments and preparations is needing we have used the 

nonparametric paired Friedman tests (StatBox 1.5, Grimmer Logiciels, Paris), 

considering the variables as the key for pairing the observations; the observed value of 

Kruskal-Wallis H, is distributed as a chi² (df = 1); this test being one-sided, the P-

value is compared at the signification limit: alpha= 0.05. 
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3.3 Rigor mortis test 

The rigor mortis condition was examined in 6 salmons at the time 0, 3, 9, 15, 24, 40, 

48 hours, from T0 to T1 (Concollato et al., 2014). 

For each salmon an individual parabolic curve was fitted to establish the time at the 

maximum rigor and that variable in hours was retained (Figures 1 and 2). 

A nonparametric Friedman’s test for independent samples was then applied to 

ascertain the significance of the difference between the C and CO maximum rigor 

mortis time. 

A regression of the variable on the dummy values 1 (C) and 2 (CO) established the 

Rsquare limit value for the discrimination in the real conditions. 

 

3.4 Panel test analysis 

The 12 panelists were considered as random effects in a mixed model (PROC MIXED 

by SAS, 2007). The fixed factor was the Stunning method (Stun). The scores on raw 

fillets were considered for the Stun effect elaboration in a linear model. Moreover in 

order to fit the instrumental spectra (ET, EN, NIRS) the panelist score, were 

standardized as follows: 

S_c =  (C-CO) / 2 / std.dev + 1  

and S_co =  (CO-C) / 2 / std.dev + 1 

Where C and CO  = estimated score for the C and CO salmons for the ith panelist; S_c 

and S_co = standardized score for the C and CO salmons from the ith panelist. 

 

3.5 Correlation of the spectra from the different devices (ET, EN, NIRS) and 

preparations with the rigor mortis and sensory variables 

The set of the spectra of the samples was multiplied as much times as were the number 

of the recorded rigor mortis maximum time (i.e. 6 times) or the number of panelists 

(i.e. 12 times). 

As reference to the panelists case, the first subset was coupled to the set-scores of the 

first panelist, the second subset of spectra set was coupled to the second panellist set-

scores and merged below the previous, and so on till to twelfth. In an analogous 

manner each of the 6 rigor mortis score was applied to all the spectra registered in the 

companion salmons, so the data set was multiplied by 6. 

Calibration and cross-validation was performed by the MPLS method in the WinISI 

1.5 software, with mathematical pre-treatment of standardization and 1st-derivation, 
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allowing one passage to eliminate the outliers, with t set at a limit > 2.0. The 1-VR 

coefficient was considered in order to compare the different experimental effects (Stun 

and / or storage Time) as appreciated by the different devices (ET, EN, NIRS) as well 

as to study the connections with the sensory scores and the biological variables. 

 

3.6 Comparison of the 1-VR efficiency of the spectroscopies in the whole set, or 

separately for the two Time of storage 

If the spectra registered at the Time1 are different from the spectra registered at the 

Time2 an unique relationship between the spectra and the measured values may be 

doubtful. Then we must compare the 1-VR values of the common regression with the 

1-VR values of the two Time and the two Time together. Furthermore we must 

compare the different devices within the spectra or within the Time2 and the Time2 

categories already. In order to perform these comparisons we have considered as 

suitable the nonparametric Friedman tests (StatBox 1.5, Grimmer Logiciels, Paris), 

considering the variables as the key for coupling the observations; the observed value 

of Kruskal-Wallis H, is distributed as a chi² (df = 1); this test being one-sided, the P-

value is compared at the signification limit: alpha= 0.05. 

 

3.7 Comparison of the 1-VR efficiency of the spectroscopies for the different sensory 

variables 

In a similar process, as that above mentioned, we can rank the ten sensory variables 

according their 1-VR values performed in the different devices. In this case we have to 

compare each couple of the ten variables in order to rank the 1-VR coefficients. The z-

score obtained from by Fisher transformation according Preacher (2002) was used to 

testify the differences in the 1-VR values, with two-sided alpha< 0.05 limit. 

 

 

4. RESULTS 

4.1 Instrumental appreciation of the factors Stun and / or Storage 

As a general pattern, the Storage factor was the main source of effects for the 

instrumental discernment when compared to the effects of the Stun. In fact the avg. 1-

VR coefficients were showed in the Table 2: 0.835r vs. 0.488s values that correspond 

to avg. RPD coefficients 3.3 vs. 1.8. The two effects did not interact because the 1-VR 



 192

contrast of the two Stun condition is similar when examined at T1 or at T2 time 

(0.562t vs. 0.521t). 

 

4.2 Instruments and preparations 

As regard to the preparations (Table 2) the maximum of efficiency was attained by the 

freeze-dried preparation that was examined by the PD (1-VR avg.= 0.895a) similar to 

TO (0.848ab) and H (0.842b) URs. The thaw examination by the Hungarian team was 

also at that level (0.867ab). A step of lower efficiency distinguishes the ethanol 

specimens (0.467c) and the EN instrument (0.573c). The ET appears as the most 

inefficient instrument (0.180d). 

As shown in the Table 3, the average distance matrices of the Thaw and of the FD 

preparations had very high 1-VR values (> 0.84); the ethanol preparation and the e-

nose ranged around 1-VR 0.5, while the e-tongue had very low avg. distance matrix 

(0.19). As highlighted in Figure 3, the FD specimens strongly agree for the 

discernment of the four groups. In fact a symmetric pattern subordinates the minor 

factor (Stun) at the major factor (Storage Time); very similar symmetric patterns were 

enhanced in the examinations by e-nose, and by the e-tongue, but to a lesser extent, 

because its non significant reclassification ability (Table 4). In the NIRS spectra of the 

thaw specimens the two groups at the T1 appeared less symmetrically dispersed, while 

in the clusters derived from spectra of the ethanol specimens no homologous patterns 

were recognized, and in this preparation we can suppose that an interaction between 

the Stun and Time-storage factors could have appeared. Table 4 reports the full 

reclassification square, with the global significance test. All the instruments, except 

the e-tongue, were significant as regard to a non random distribution of the 

observations. According the seven groups records it was possible to calculate a 

relationships between the 1-VR coefficients and the reclassification percentage; as 

reported in Figure 4, the percentage of reclassification may be estimated as 0.98 

detracted of the 0.78 * Log(1-VR), with R2 0.81. 

Figure 4 shows the high (R2= 0.80) relationship between the two criteria considered 

for the evaluation of the results in the trial. 

• On X-axis the 1st criteria: PLS of averaged spectra from seven instrument-

preparations 

• On Y-axis the2nd criteria: PLS-DA of averaged spectra from seven instrument-

preparations. 
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4.3 Spectra of the NIRS instruments and preparations 

Figure 5 presents the average NIR spectrum (as Log(1/R)) of Thaw, Ethanol and 

Freeze-dried specimens. 

A flat curve means low absorbance because of a high reflection of the signal. 

Obviously the raw meat absorbs in the water a high part of the signal then resulting a 

salient curve. The freeze-dried specimens did not absorb the signal, chiefly because of 

their very low water content, then the curves appear more flat as respect to the raw; 

notice that the curves from the two FOSS instruments appear very superimposed. In 

the minor Vis-NIR band of the ASD instrument from Torino the ethanol specimens 

curves also appear superior to the freeze-dried, because the inherent major ethanol-

water absorbance of the signal. 

 

4.4Rigor mortis 

As highlighted in Table 5 a very strong effect was apparent on the time of the 

maximum rigor mortis occurrence, as a consequence of the Stun treatment, which 

strongly anticipates the phenomenon. The unpaired Friedman test has P = 0.0037, 

disregarding the different amount in the standard deviations, limited to 2.53 h in the 

usual conditions or expanded to 7.52 in the CO use. The correlation of these values 

with the spectra of the devices and preparations are highlighted in Table 6, last 3 

columns. Notice that the average 1-VR level is quite high (0.61) and in four cases 

surpasses the 0.74 limit of discrimination based on the real maximum rigor mortis 

time. As regard to the ability of the different instruments to collimate the real results 

the freeze-dried preparation, together with the thawed preparation and also the ethanol 

specimens prepared and examined in Torino, gained the highest fit (a, a, a respectively 

for All spectra, and storage time T1 and T2) with all the different NIRS devices 

utilized; however only two exceptions occurred: the NIRS of Padova did not 

appreciate the freeze-dried preparation of the All spectra (0.59b, 0.76a, 0.75a) and the 

minor capacity NIRS ASD of TO RU was less efficient in evaluating the storage time 

1 (0.63ab, 0.56b, 0.74a). 

The EN gave minor efficient results as compared to NIRS of the freeze-dried and 

thawed and ethanol preparations (0.47c, 0.63b, 0.47b), and even less efficient were the 

discrimination results for the ET (0d, 0.43c, 0.25c). 

In conclusion we can observe that the effect of the anticipated rigor mortis on the 

muscle specimens, despite of different preparations and of different instruments, was 
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dragged on the vibrational spectroscopy of the equipollent tissues, examined after 

different storage time. Notice, that the storage time itself was also greatly apparent in 

the spectra composition (see previous results), but with proper and different 

vibrational signature. 

 

4.5Sensory Test 

As reported in Table 7, the positive aspects of the CO treatment were the reduction of 

aroma (-8%) and odour (-10%). Some negative aspects concerned a reduction of the 

tactile-crumbliness (-13%) and tactile-tenderness (-15%), while the treatment 

increased the salty taste (+14%). 

Notice that the PLS fitting of the averages of the ten variable scores to a dummy value 

1 (C) and 2 (CO) reaches a R2 level of 0.48 (Figure 6). 

As regard to the correlation of the spectra realized by different devices and 

preparations, some prominent considerations arise from the examination of the Table 

8. In general many 1-VR coefficients appeared very highly significant, indicating a 

statistical indirect relationships of the traits into the spectra, but with no expectation of 

individual prevision ability. 

The tenderness score (Avg. 1-VR = 0.45a) and the salty taste (0.41a) reached the 

maximum of correlation considering the whole set of calibrated instruments. Odour 

intensity (0.38b) and tactile tenderness (0.36c) were at almost comparable levels. 

Slightly lower precisions were attained for tactile crumbliness (0.27d), for the aroma 

intensity (0.20e), and for adhesiveness (0.17e). No correlation was established for the 

scores of sour, fibrousiness and overall acceptance. 

All these correlations arise from a general indirect relationship of the spectra with the 

variation induced by the factor C vs. CO in the results of the panel test: as shown in 

Figure 7, the 1-VR values (Y) from all the devices are positively related with the 

probability of the gas factor (X = log 1/Prob) for the Stun factor in the ten sensory 

variables, pertinent to the whole instrumental set, that is pooling all the spectra 

produced at the two storage times, T1 and T2. Notice that the tactile tenderness and the 

salty taste are appreciated more than the common average function. 

As regard to the ability of the different instruments to collimate with the panel, the 

results are provided in the last 3 columns of the Table 8. Notice that the average 1-VR 

level is poor because it derives from some insignificant sensory variables, apparently 

not affected by the Stun effects. 
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The freeze-dried preparation, together with the thawed preparation, gained the highest 

fit with all the different NIRS devices utilized. The ethanol preparation realized and 

examined in TO RU was alike the previous, but because of differences in the spectra 

pertinent to the Time1 and Time2 storage duration, the pooling for time was not as 

efficient (avg. 1-VR = 0.02c vs. 0.23a and 0.23a respectively for T1 and T2). The EN 

gave similar efficient results as the freeze-dried and thawed and ethanol preparations, 

for the storage time, T1 and T2 separated (0.16b, 0.26a, 0.25a). On the contrary the ET 

was not efficient, and the respective coefficients were 0.04c, 0.15b and 0.11b. 

We have observed a general concordance of the spectral signature of the specimens 

with the appreciation expressed by the panel in some sensory traits. Not only 

rheological, but also flavour and taste properties are involved in this vibrational 

characterization. 

 
 
5. DISCUSSION 

 5.1 Instrumental methods appreciation of Stun and/or Storage factors, instruments and 

preparations 

Despite the differences observed between Storage and Stun factors, as the main source 

of effect for instrumental discernment in favour of Storage, and considering the wide 

set of instruments and preparations set up in this trial, a comparison with other 

literature results was not possible (at least at the authors knowledge). As showed in the 

clusters Figures, the Storage factor had an higher impact on samples, but the Stun 

effect was very similarly perceived at both the checked time, because the effects 

revealed at T1 was preserved and checked again at T2. In few cases, namely with the 

ethanol specimens, the groups were erratically confounded. Mantilla et al. (2008) 

showed that with increasing Storage time, CO concentrations in the biological matrix 

decreases, by confirming findings and favouring Storage time effect. Combinations of 

the two factors showed that on average CO both at T1 and T2 is not differently 

detected by the instruments, but it cannot be possible because at T1 there is no Storage 

time effect, which is present instead at T2 where it is summed to that of the Stun. This 

misrepresentation of the data may depend from the different efficiency of the 

considered instruments; indeed it is interesting to note that NIR scan of ETOH-TO 

specimens presented lower correlation with Gas at T1 when compared to T2, probably 

because the alcohol had a lower reaction with the fresh proteins (T1), that is the 

contrary of what happened for ET and EN which positively react to fresh proteins. In 
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general NIRS on freeze-dried samples resulted to be the most useful instrument and 

sample preparation combination. First probably because of the higher sensitivity of the 

method when compared to ET and EN, which are based on a global selectivity 

concept, able to recognize just a limited number of molecules (Smyth, & Cozzolino, 

2012). Second, because the removal of water through the freeze-drying treatment 

further increases accuracy (Smyth, & Cozzolino, 2012). 

 

5.2 Distance matrix and PLS-DA 

The distance matrix and PLS-DA confirmed findings reported above: NIRS scanning 

of thawed and freeze-dried samples resulted as the most useful method and sample 

preparation in discerning specimens according to Storage time and Stun factors, with 

Storage time being the most discerning factor. 

The high relationship between 1-VR coefficients and the PLS-DA indicate that the 2 

criteria gives similar results, indeed in both cases NIR on raw and freeze-dried 

specimens performed in H, PD and TO resulted to be the best instruments in 

discerning samples, and in evaluating the presence and incidence of both experimental 

factors (Stun and Storage time). 

 

5.3 Rigor mortis 

When fish are killed, creatine phosphate is degraded before to the breakdown of ATP. 

When the creatine phosphate and ATP reach a similar concentration, ATP content 

decrease and rigor mortis starts till a full rigor mortis status when ATP diminishes to 

about 1 µmol/g. Rigor mortis occurs when in myofibrils ceases cross bridge cycling of 

myosin and actin, and permanent linkages are formed (Wang, Tang, Correia, & Gil, 

1998). 

Rigor mortis is resolved after some time. Possible causes of post mortem tenderization 

include a weakening of Z-discs of myofibrils (Seki, & Tsuchiya, 1991), a degradation 

of connective tissue, or a weakening of myosin-actin junctions (Yamanoue, & 

Takahashi, 1988). The effect of the anticipated rigor mortis on muscle specimens, 

caused from the anaesthetic effects of CO, despite of different preparations and of 

different instruments, was revealed by the vibrational spectroscopy of the equipollent 

animals and examined after different storage time from different NIRS instruments. 

NIRS resulted very useful in determining tissues changes correlated to earlier onset of 

rigor mortis, and reflected in the spectra over time. The rapid evolution of rigor 
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mortisis strictly linked to other changes that probably affected the spectra versus time, 

such as different levels of ATP, glycogen, lactate, pH, K-value and muscle texture 

(Ehira, & Uchiyama, 1986; Berg, Erikson, & Nordtvedt, 1997; Sigholt et al., 1997; 

Thomas, Pankhurst, & Bremner, 1999; Robb, 2001; Roth, Moeller, Veland, Imsland, 

& Slinde, 2002; Howgate, 2005). In the case of fish, no studies have been identified in 

literature where different NIRS devices recorded spectra at time of rigor resolution 

and after 14 days of cold storage in order to compare them and predict their correlation 

with time at maximum rigor mortis. In beef cattle (Lomiwes, Reis, Wiklund, Young, 

& North, 2010), in a range of normal commercial variation, the NIRS as an on-line 

method to quantify glycogen and predict ultimate pH (pHu) of pre rigor beef M. 

Longissimus dorsi (LD) was unsuitable; in fact the spectra were poorly correlated 

against glycogen and pHu (R
2)=0.23 and 0.20, respectively. 

Notice that storage time itself was also greatly apparent in the spectra composition but 

with proper vibrational signature that not interact with the Stun effect. 

Roth et al. (2002) observed that in Atlantic salmon stunned with carbon dioxide (CO2), 

electricity, or percussion prior to slaughter the pre mortem stress during CO2 stunning 

resulted in an earlier onset and resolution of rigor mortis followed by accelerated post 

mortem softening. In the present study the very early onset of the rigor was not 

followed by a softening, but by a hardening of the tissues, probably related to the long-

term (20 min.) stress during CO exposition. Skjervold, Fjæraa, Østby, and 

Einen(2001) showed that pre-slaughtering stress affected salmon firmness depending 

on the severity and duration of stress: short term stress leads to muscle softening, 

whereas long term exhaustion leads to increase muscle firmness. This is in accordance 

with patterns of stress influence in mammal meat (Hedrik, Aberle, Forrest, & Merkel, 

1994). 
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5.4 Sensory Test 

In veal, Brugiapaglia, Destefanis, Lussiana, Giomo, & Masoero(2011) investigated the 

meat sample preparation methods and NIRS methodology to predict sensory scores of 

veal belonging to two ethnic groups and fed on different diets. Three preparations of 

Longissimus thoracis samples, i.e., thaw, ethanol-prepared, and freeze-dried, were 

studied. The distance matrices reached different 1-VR levels: 0.65 (thawed and ethanol 

samples); 0.42 (freeze-dried), whereas the panel was very distinctive (0.62). 

Prediction of Panel scores were effective as 1-VR of ethanol specimens for Flavour 

(0.68) and Texture (0.68). It was concluded that NIRS scan of thawed samples 

anticipates results achieved by a wide set of laboratory analyses. NIRS analysis of 

ethanol samples exhibited strong predictive value of Panel scores. In the present study, 

as regard the ability of the instruments to collimate with the panel, freeze-dried 

preparations together with the thawed one, gained the highest fit with all the different 

NIRS devices. 

 

6. CONCLUSIONS 

This study meant to evaluate and compare sensory analysis, NIRS, Electronic Nose 

and Electronic Tongue’s ability in discriminating Atlantic salmon (Salmo salar L.) 

fillets according to stunning methods and storage time and different preparation of the 

specimens. Generally, Storage factor resulted to be the main source of effects for the 

instrumental discernment when compared to the effects of the Stun. As regard the 

samples preparations and instruments used, the maximum efficiency was performed 

by the freeze-dried samples scanned by NIRS devices from the RU of PD, TO and H, 

also NIRS on thawed samples performed by the H RU was efficient; EN, ET and 

NIRS of ethanol specimens resulted to be the worst preparations and analysis 

methodologies. The PLS-DA and distance matrix confirmed these findings also. The 

correlation of maximum rigor time with the spectra resulted to be greater for freeze-

dried and thawed samples according to all the different considered NIRS devices and 

for the ethanol specimens. A general accordance between the print of samples’ spectra 

and the appreciation expressed by the panel for some sensory traits was observed, 

indicating that rheological but also taste and flavour properties are involved in this 

vibrational characterization. 
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It can be concluded that, as general result, freeze-dried preparation and NIRS devices 

resulted to be the best combination in samples discernment according to Storage time 

and Stun factors, but also according to maximum rigor mortis time and sensory scores. 
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Table 1. Panel test: considered descriptors and measurement unit 

 
Sensory aspect Descriptors Type of measurement Unit 

Olfactory 

Global odour intensity Scores, linear and 
continuous 

0-10 
Global aroma intensity 
Brackish/marine 

Categories Presence/Absence 

“Fishy” 
Animal Feed 
Cardboard 
Stale 
Boiled potatoes 
Salmon 
Others 

Tactile 
Friability Scores, linear and 

continuous 
0-10 

Tenderness 

Taste 

Saltiness 

Categories Presence/Absence 
Sourness 
Bitterness 
Astringent 
Metallic 

Texture 
 

Adhesiveness 
Scores, linear and 

continuous 
0-10 Fibrousiness 

Tenderness 
Stringiness 

Categories Presence/Absence Unctuous 
Low solubility 
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Table 2. Chemometric analyses (by WinISI v. 1.04 software) of the two main factors Stun and Storage time, and of their combinations, for the 
seven instruments and preparations, according the average (Avg.) values of 1-VR in cross-validation. Paired Friedman’s test compares the 
instruments (a>b>c>d) and Fisher’s test compares the two main factors (Stun and Storage time) effects (r>s) and their combinations (t>u) 
 

   ET-H  EN-H  THAW-H   FD-H  FD-PD FD-TO ETOH-TO 1-VR RPD 

  Factor 28  60  60  60  60  60  60  Avg. Avg. 

  Stun 0.000 s 0.439 s 0.853 s 0.832 s 0.862 s 0.626 s 0.170 s 0.488s 1.8 

  Time 0.493 r 0.799 r 0.942 r 0.901 r 0.930 r 0.973 r 0.805 r 0.835r 3.3 

  Group 0.000  0.596  0.845  0.787  0.825  0.749  0.236    

1_Control_T1 2_Control_T2 _12 0.310  0.662  0.944  0.844  0.865  0.968  0.663    

3_Stunned_T1 _13 0.000 t 0.354 t 0.959 t 0.717 u 0.937 t 0.565 u 0.402 t 0.562t 2.3 

4_Stunned_T2 _14 0.000  0.596  0.945  0.946  0.946  0.983  0.804    

2_Control_T2 3_Stunned_T1 _23 0.082  0.813  0.739  0.830  0.905  0.951  0.008    

4_Stunned_T2 _24 0.000 t 0.049 u 0.662 u 0.813 t 0.894 t 0.854 t 0.372 t 0.521t 1.8 

3_Stunned_T1 4_Stunned_T2 _34 0.735  0.852  0.909  0.906  0.895  0.964  0.742    

  Avg. 0.180  0.573  0.867  0.842  0.895  0.848  0.467  0.662 2.5 

   d  c  ab  b  a  ab  c    

a>b>c>d: Test of Friedman paired by rows, P<0.05; r>s: Test of Fisher for the main effects within instruments and preparations, P<0.05; t>u: Test of Fisher for the effects of the Stun 
factor in the two conditions of Storage time, within instruments and preparations, P<0.05. 
FD-H: 400-2498 nm, 1049 digits; instrument: FOSS 6500, Hungary 
FD-PD: 1100-2492 nm , 700 digits;  instrument: FOSS 5000, Padova 
FD-TO: 350-1025 nm, 1049 digits; instrument: ASD CCS-Aosta s.r.l. 
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Table 3. Distance matrix of the 1-VR coefficients by the PLS of the averaged (Avg.) spectra 
from seven instrument-preparation, and reclassification percentage of the individualsof thefour 
groups (A reclassification results from Table 4) 

 

FD-H Group 1 2 3 4 Avg. Reclassification % A 
1_Control_T1 0 0.844 0.717 0.946 0.843 95% 

2_Control_T2 0.844 0 0.83 0.813   
3_Stunned_T1 0.717 0.83 0 0.906   
4_Stunned_T2 0.946 0.813 0.906 0   

FD-PD Group 1 2 3 4 Avg.  

1_Control_T1 0 0.865 0.937 0.946 0.907 93% 
2_Control_T2 0.865 0 0.905 0.894   

3_Stunned_T1 0.937 0.905 0 0.895   

4_Stunned_T2 0.946 0.894 0.895 0   

FD-TO Group 1 2 3 4 Avg.  

1_Control_T1 0 0.968 0.565 0.983 0.881 85% 

2_Control_T2 0.968 0 0.951 0.854   

3_Stunned_T1 0.565 0.951 0 0.964   

4_Stunned_T2 0.983 0.854 0.964 0   

ETOH-TO Group 1 2 3 4 Avg.  

1_Control_T1 0 0.663 0.402 0.804 0.499 38% 

2_Control_T2 0.663 0 0.008 0.372   

3_Stunned_T1 0.402 0.008 0 0.742   

4_Stunned_T2 0.804 0.372 0.742 0   

THAW-H Group 1 2 3 4 Avg.  

1_Control_T1 0 0.944 0.959 0.945 0.86 85% 

2_Control_T2 0.944 0 0.739 0.662   

3_Stunned_T1 0.959 0.739 0 0.909   

4_Stunned_T2 0.945 0.662 0.909 0   

EN-H 1 2 3 4 Avg.  

1_Control_T1 0 0.662 0.354 0.596 0.554 60% 

2_Control_T2 0.662 0 0.813 0.049   

3_Stunned_T1 0.354 0.813 0 0.852   

4_Stunned_T2 0.596 0.049 0.852 0   

ET-H 1 2 3 4 Avg.  

1_Control_T1 0.00 0.31 0.00 0.00 0.19 46% 

2_Control_T2 0.31 0.00 0.08 0.00   

3_Stunned_T1 0.00 0.08 0.00 0.74   

4_Stunned_T2 0.00 0.00 0.74 0.00  
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Table 4. Reclassification % in the four groups by the PLS-DA of the spectra from seven instrument-preparations, at the Time 1 and at the 

Time 2, and statistical significance

 
 

  FD-H (P <0.00001) FD-PD (P <0.00001) FD-TO (P <0.00001) 

Stun Time Group 1 2 3 4 Misses 1 2 3 4 Misses 1 2 3 4 Misses 

C 1 1 15 0 2 0 2 15 0 0 0 0 13 0 5 1 6 

C 2 2 0 15 1 0 1 0 14 0 0 0 0 15 0 1 1 

CO 1 3 0 0 12 0 0 0 0 13 1 1 2 0 10 0 2 

CO 2 4 0 0 0 15 0 0 1 2 14 3 0 0 0 13 0 

   15 15 15 15 60 15 15 15 15 60 15 15 15 15 60 

  Misses 0 0 3 0 3 0 1 2 1 4 2 0 5 2 9 

  % 0% 0% 20% 0% 5% 0% 7% 13% 7% 7% 13% 0% 33% 13% 15% 

   THAW-H (P < 0.00001) EN-H (P <0.00001) ETOH-TO (P = 0.01066) 

Stun Time Group 1 2 3 4 Misses 1 2 3 4 Misses 1 2 3 4 Misses 

C 1 1 14 0 3 0 3 10 2 1 1 4 8 4 5 2 11 

C 2 2 0 12 0 1 1 0 1 0 2 2 1 1 5 2 8 

CO 1 3 1 0 11 0 1 5 2 13 0 7 4 4 4 1 9 

CO 2 4 0 3 1 14 4 0 10 1 12 11 2 6 1 10 9 

   15 15 15 15 60 15 15 15 15 60 15 15 15 15 60 

  Misses 1 3 4 1 9 5 14 2 3 24 7 14 11 5 37 

   7% 20% 27% 7% 15% 33% 93% 13% 20% 40% 47% 93% 73% 33% 62% 

   ET-H (P = 0.10504)            

Stun Time Group 1 2 3 4 Misses           

C 1 1 1 0 2 0 2           

C 2 2 1 4 2 2 5           

CO 1 3 3 1 4 0 4           

CO 2 4 2 2 0 4 4           

   7 7 8 6 28           

  Misses 6 3 4 2 15           

   86% 43% 50% 33% 54%           
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Table 5. Values of the maximum rigor mortis time (in hours) in the selected examined Atlantic 
salmons. 
 

 Stun 

Salmon # C CO 

1 24 1 

2 24 3 

3 24 6 

4 26 10 

5 28 11 

6 30 22 

Avg. 26.00 8.83 
St.dev 2.53 7.52 

Unpaired Friedman's test P: 0.0037 

PLS-D of the C and CO groups 
R2 based on the max rigor mortis

time 

 
0.74 
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Table 6. Rigor mortis maximum time correlated with the spectra of the different devices and 
Fisher’s test of the 1-VR values. 
 

    Fisher’s test 

Device Sample Spectra N (1-VR)  
Max-Rigor 

All spectra Time1 Time2 

Electronic 
Nose 

Thawed All spectra 360 0.47 b c   

H . Time0 180 0.63 a  b  
. . Time2 180 0.47 b   b 

Electronic 
Tongue 

Thawed All spectra 168 0 b d   

H . Time0 84 0.43 a  c  
. . Time2 84 0.25 a  c 

NIRS Thawed All spectra 360 0.74 b a    
FOSS . Time0 180 0.81 a a   

H . Time2 180 0.66 b  a 

NIRS Freeze-dried All spectra 360 0.68  a    
FOSS . Time0 180 0.74  a   

H . Time2 180 0.72   a 

NIRS Freeze-dried All spectra 360 0.59 b b   
FOSS . Time0 180 0.76 a a  

PD . Time2 180 0.75 a  a 

NIRS Freeze-dried All spectra 360 0.63 b ab   
ASD . Time0 180 0.56 b b  
TO . Time2 180 0.74 a  a 

NIRS Thawed All spectra 720 0.70  a    
ASD Ethanol Time0 360 0.79  a   
TO . Time2 360 0.73   a 

. Average . . 0.61 . . . . 
Within column: a>b>c>d, Fisher’s bi-lateral test: P<0.05.
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Table 7. Results of the mixed model analysis of the sensory scores of the 10 variables by the 12 
panelists of the Atlantic salmon samples 
 

Sensory variables C CO P CO/C 

Sourness 1.97 1.86 0.3742 -6% 

Adhesiveness 4.59 4.37 0.2123 -5% 

Fibrousiness 4.89 4.85 0.7488 -1% 

Tactile_Crumbliness 4.68a 4.05b 0.0384 -13% 

Aroma_intensity 5.96a 5.48b 0.0301 -8% 

Odour_Intensity 6.47a 5.82b 0.0096 -10% 

Saltiness 3.15b 3.58a 0.0546 14% 

Tenderness 5.78a 4.92b 0.002 -15% 

Tactile_tenderness 5.12 4.82 0.322 -6% 

Acceptability 4.65 5.37 0.2765 16% 
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Table 8. Sensory scorescorrelated with the spectra of the different devices and Friedman and Fisher test of the 1-VR values 
 

 AFriedman’s test 

Device Sample Spectra N Average Sour Adhesiveness Fibrousiness Tactile_ 
Crumbliness 

Aroma_ 
Intensity 

Odour_ 
Intensity 

Salty Tenderness Tactile_ 
Tenderness

Acceptance Within  
Instrument 

All spectra Time1 Time2 

Electronic Nose Thawed All spectra 1440 0.16 0.00 0.05 0.00 0.20 0.23 0.26 0.28 0.36 0.21 0.00 s u   

H . Time1 720 0.26 0.00 0.20 0.00 0.41 0.32 0.39 0.41 0.51 0.40 0.00 r  t  

. . Time2 720 0.25 0.00 0.12 0.00 0.36 0.33 0.42 0.43 0.53 0.36 0.00 r   t 

Electronic Tongue Thawed All spectra 336 0.04 0.00 0.03 0.00 0.06 0.01 0.03 0.16 0.06 0.05 0.00 s v   

H . Time1 168 0.15 0.00 0.10 0.00 0.19 0.18 0.20 0.23 0.36 0.21 0.00 r  u  

. . Time2 168 0.11 0.00 0.09 0.00 0.05 0.13 0.15 0.19 0.34 0.16 0.00 r   u 

NIRS Thawed All spectra 720 0.26 0.00 0.16 0.00 0.32 0.31 0.41 0.47 0.57 0.37 0.00  t   

FOSS . Time1 360 0.27 0.00 0.24 0.00 0.30 0.20 0.47 0.53 0.52 0.44 0.00   t  

H . Time2 360 0.25 0.00 0.23 0.00 0.27 0.14 0.46 0.52 0.48 0.43 0.00    t 

NIRS Freeze-dried All spectra 720 0.26 0.00 0.21 0.00 0.32 0.17 0.46 0.50 0.53 0.43 0.00  t   

FOSS . Time1 360 0.28 0.00 0.27 0.00 0.34 0.20 0.49 0.53 0.49 0.47 0.00   t  

H . Time2 360 0.29 0.00 0.29 0.00 0.41 0.25 0.47 0.52 0.54 0.44 0.00    t 

NIRS Freeze-dried All spectra 720 0.26 0.00 0.19 0.00 0.28 0.20 0.47 0.50 0.51 0.44 0.00  t   

FOSS . Time1 360 0.29 0.00 0.25 0.00 0.44 0.27 0.47 0.52 0.53 0.44 0.00   t  

PD . Time2 360 0.28 0.00 0.29 0.00 0.38 0.22 0.47 0.52 0.51 0.44 0.00    t 

NIRS Freeze-dried All spectra 720 0.25 0.00 0.25 0.00 0.23 0.19 0.47 0.52 0.44 0.45 0.00  t   

ASD . Time1 360 0.25 0.00 0.26 0.00 0.23 0.16 0.46 0.52 0.44 0.45 0.00   t  

TO . Time2 360 0.28 0.00 0.30 0.00 0.30 0.23 0.48 0.52 0.53 0.47 0.00    t 

NIRS Thawed All spectra 1320 0.02 0.00 0.02 0.00 0.02 0.00 0.06 0.02 0.07 0.04 0.00 s v   

ASD Ethanol Time1 660 0.23 -0.01 0.00 0.00 0.29 0.25 0.43 0.36 0.54 0.41 0.00 r  t  

TO . Time2 660 0.23 0.00 0.05 0.00 0.33 0.25 0.41 0.35 0.52 0.42 0.00 r   t 

Averages variables 0.22 0.00 0.17 0.00 0.27 0.20 0.38 0.41 0.45 0.36 0.00     

B Rank, (Fisher’s test) f e f d e b a a c f     

AIn ranking average 1-VR by device: Fisher’s test; r>s; t>u>v, P<0.05;  Bin ranking of sensory variable instrumental correlation: paired Friedman’s test: a>b>c>d>e>f, P<0.05. 
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Figure 1. Fitting of the maximum rigor mortis time in the 6 C Atlantic salmons. 

 

 

 

 

 

 

Figure 2. Fitting of the maximum rigor mortis time in the 6 CO Atlantic salmons. 
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Figure 3. Cluster of the four groups based on the distances matrix of the mean spectra in cross-validation calibration mode for the seven 
instrument-preparation samples. 
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Figure 4. Relationships between the average 1-VR coefficients (X axis) of the PLS equations 
and the percentage of reclassification (Y axis). 
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Figure 5. Average NIR spectrum (Log (1/R)) of Thawed, Ethanol and Freeze-dried specimen. 
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Figure 6. Plot of the PLS discriminant function for the C and the CO effects, based on the ten 
variables panellist scores. 

 

 

 

 

 

 

 

 

Figure 7.  Plot of the average 1-VR values (Y) from all the devices vs. the log (1/P) (X) for the 
Stun factor in the ten sensory variables. 
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Effects of stunning/slaughtering methods on pre rigor mortis changes in rainbow trout 

(Oncorhynchus mykiss) reared at two different temperature conditions. 

 

 

Abstract 

The effects of stunning/slaughtering methods (carbon monoxide asphyxia, CO; 

electroshock, E; asphyxia in the air, A) on blood parameters, rigor evolution, fillets 

shape changes, ATP depletion and Adenylate Energy Charge (AEC) in muscle 

immediately after death were investigated in rainbow trout reared at two different 

temperature conditions (8 °C and 12 °C). Treatment A has proved to be the most 

stressful: cortisol concentration three times higher than baseline levels (153 ng /ml), 

high concentrations of lactate (5.58 mM) and glucose (6.08 mM), while treatment E 

resulted the most suitable method for slaughtering. 

Water temperature influenced rigor mortis evolution: at 12 °C no significant 

differences among treatments emerged, while at 8 °C, the groups solved rigor in the 

order: A, CO and E. Fillets from treatment A exhibited both the strongest area and 

perimeter contractions (in the order A>CO>E and A>E>CO, respectively) and the 

most rapid length shrinkage and height increase, followed by E and CO. Globally CO 

treatments showed the highest ability in preserving muscle energy immediately after 

death, in fish reared at both temperatures. 

 

 

Key words: Oncorhynchus mykiss;slaughtering methods; stress; blood indicators; ATP; 

rigor mortis 
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1. INTRODUCTION 

Food quality is perceived as a global concept, which is unavoidable from animal’s 

welfare. Conditions of anxiety, pain, suffering or fear above all have ethical 

implications, since the human being is considered to be responsible for the effective 

respect of the rights and welfare of other living animals, as stated in the declaration of 

UNESCO (1978). The respect for animal’s welfare strongly affects consumer attitudes 

towards the product, influencing the choice to those products derived from animals 

that have not been subjected to ill treatment. Operations concerning stunning and 

slaughtering processes, as well as the immediately prior stages, can cause particular 

stress and disturbances that may affect meat quality. Humane slaughter procedures, 

therefore, can improve post mortem quality of fish, as reported for warm-blooded 

animals by many authors (Brown et al., 1998; Geesink et al., 2001). Fish slaughtering 

methods have been reviewed by Robb and Kestin (2002), and the most relevant 

identified are percussive stunning, CO2 narcosis and electrical stunning. In addition to 

these methods, the use of carbon monoxide (CO) could present an attractive alternative 

to CO2, as, contrarily to CO2 (Poli et al., 2005),it does not produce aversive effects by 

animals. Substantial inhalation of CO can be fatal because of its high ability to bind to 

respiratory pigments, such as haemoglobin (Hb) (Davenport, 2002), for which it 

presents an affinity 210-270 times greater than that of oxygen (O2) (Kalin, 1996). This 

strong binding is the major cause of CO stunning effectiveness, thanks to the exclusion 

of Hb in the O2’s transport, but also to the very slow reversibility of the 

carboxyhaemoglobin (COHb) complex at atmospheric pressure and oxygen saturation. 

Carbon monoxide is then able to form bonds with heme proteins like Hb, myoglobin 

(Mb) and neuroglobin (Ngb), the latter being a molecule that has the function of 

carrying oxygen to the brain and nerve tissues with a protective role during hypoxia 

(Brunori and Vallone, 2007; Liu et al., 2009; Sun et al., 2001), by replacing oxygen. 

It is also believed that CO binds to proteins that retain the oxygen in Saccus 

vasculosus, a well vascularised organ of the caudal hypothalamus of elasmobranchs 

and most bony fish. This organ is well vascularized and many presumed functions like 

pressure regulation and reception, chemoreception, ionic regulation of the 

cerebrospinal fluid, storage and transport have been hypothesised (Sanson, 1998; 

Yáñez et al., 1997). When these proteins bind to the CO, the animal dies due to lack of 

O2 without feeling its deficiency, and this is the reason why this gas is not considered 

harmful to the animals (Concollato et al., 2015). CO also influences cellular 
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respiration through the inhibition of many enzymes, such as cytochromes, which 

possess hem groups similar to those of Hb and Mb, causing the suppression of 

oxidative phosphorylation (Prescott et al., 1996). 

Another important aspect to consider is CO ability to enhance the fish fillet’s colour 

(Bjørlykke et al., 2011) and overall meat quality (Chow et al., 1998;Gee and Brown, 

1981;Hsieh et al., 1998; Mantilla et al., 2008). Fillets of Atlantic salmon, herring and 

mackerel, anesthetized by injection of CO in seawater, had a more persistent red value 

(a*) and did not develop the characteristic odour of rancid after 6 days of refrigerated 

storagethan the groups not treated with CO (Concollato et al., 2015). Thus, the 

antioxidant ability of CO may be of considerable interest, mitigating the risk of lipid 

oxidation and thereby extending the shelf-life of products (Cornforth and Hunt, 2008). 

At present, very little literature information about the practice of euthanizing fish with 

CO is available. Bjørlykke et al. (2011) and Concollato et al. (2014) studied CO 

effects on stress parameters and quality in Atlantic salmon. Bjørlykke et al. (2011) 

showed that CO positively affected fillet colour, resulted in an earlier onset of rigor 

mortis and a faster decrease in pH due to the lactate secretion. It was also highlighted 

that salmons exposed to CO did not express aversive reactions and were easily 

slaughtered by percussion. Concollato et al. (2014) found that CO treatment resulted in 

an increased level of catecholamines, enhancement of lightness (L*) and yellowness 

(b*) values, earlier onset of rigor mortis, as a consequence of a rapid pH decrease, and 

higher drip losses. Behaviour analysis showed that the observed aversive swimming 

could be elicited as a response to the loose of buoyancy or a biological response to 

hypoxia. 

In tilapia (Mantilla et al., 2008), CO anaesthesia showed a significant increase in 

redness (a*) and L* on treated fillets in comparison with the control ones. It was 

observed that tilapia remained calm before dying, revealing that the process is not 

stressful, but that the use of CO has an anaesthetic effect on the animals since they 

stopped moving and remained calm until euthanasia was completed. 

The aim of the study was to investigate the possibility to apply carbon monoxide and 

electricity in comparison with the asphyxiation in air, still widely used in some Italian 

farms, for stunning/killing rainbow trout reared at two different water temperatures (12 

and 8 °C). Fish welfare and quality performances were evaluated. 
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2. MATERIAL AND METHODS 

2.2 Experimental set-up 

The study was performed at the experimental farm of Edmund Mach Foundation, in S. 

Michele all’Adige, Trento (Italy).  

Five hundred rainbow trout (Oncorhynchus mykiss) were equally allocated in 5 tanks 

containing 3600 L of freshwater each. In tanks 1, 2, and 3 the water temperature was 

maintained at 12 °C whereas in tanks 4 and 5 the water temperature was maintained at 

8 °C.  Three stunning methods were applied: asphyxia in the air (A) lasting about 15 

min (tank 2 and 5), electroshock (E) performed by the electronic teaser GOZLIN 

TEQ002 (GOZLIN, Modena, Italy) for 30s at 180 V (tank 1 and 5), and asphyxia with 

carbon monoxide (CO) until death (tank 3 and 4). Eighteen fish per experimental unit 

were sampled for the scheduled analyses. 

Fish from tank 1 (mean weight 740 ± 105 g) were captured, hauled out of water and 

immediately treated by electricity (E_12 °C); fish from tank 2 (mean weight 684 ± 95 

g) were used as control group and treated by asphyxia in the air (A_12 °C); fish from 

tank 3 (CO_12 °C) and tank 4 (CO_8 °C) (mean weight 737 ± 120 g and 773 ± 101 g, 

respectively), were flushed with 100% food grade CO(SIAD, Bergamo, Italy). From 

tank 5, 18 fish (mean weight 667 ± 97 g) were captured, hauled out of waterand then 

immediately treated by electricity (E_8 °C), afterwards other 18 fish (mean weight 760 

± 85 g) were sampled from the same tank and treated by asphyxia in the air (A_8 °C), 

due to the overall availability of only 5 tanks. All groups of fish were finally 

percussively slaughtered.  

During the experiment, the CO concentration in the air was monitored and measured 

by the use of portable gas detectors (GasBadge Pro, Oakdale, PA, USA) and by 

supplementary gas detectors in charge of the firemen of Trento province (Italy). 

 

2.3 Plasma parameters 

Immediately after percussive slaughtering, blood samples were collected from the 

caudal vein of 5 fish from each group. Blood was placed in heparinised tubes, 

centrifuged at 4000 rpm for 10 min; the resultant plasma was transferred into 

Eppendorf tubes and stored at -80 °C until analyses. 

Plasma lactate and glucose were analysed using MaxMat PL (MaxMat S.A., 

Montpellier, France). Cortisol was determined using ELISA (RE52061, IBL 

International GmbH, Hamburg, Germany). Osmolality was measured using freeze 
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depression (Fiske® 210 Micro-Sample Osmometer, Advanced Instruments, Inc., 

Norwood, MA, USA) and ions (Na+, K+, and Cl-) were analysed with selective ion 

electrodes (Cobas c 111, Roche Diagnostics Ltd., Rotkreuz, Switzerland). 

 

 

2.4 Rigor Index and pH evolution, fillet shape changes during rigor mortis, ATP and 

related catabolites determination 

After slaughtering the 5 fish per experimental group used for blood sampling were 

also considered for Rigor Index and pH evolution measurements. Three other fish were 

destined to the fillet shape change assessment, drip losses and ATP and its catabolites 

determination. The remaining 10 fish were used for further analyses, not included in 

this manuscript. 

For Rigor Index and pH evaluation fish were individually tagged, weighed and stored 

in polystyrene boxes with ice, maintained in a cold room at a temperature ranging 

between 0 and +2 °C until rigor-mortis resolution, i.e. at about 76 hours post mortem. 

Measurements were done immediately after slaughter (T0) and at 4, 15, 24, 33, 39, 48, 

57 and 76 hours post mortem. Rigor mortis was determined by the Rigor Index, 

calculated according to Bito et al. (1983) using the following formula: 

RI (%) = [(L0 - Lt)/L0] × 100 

where L0 (cm) is the vertical distance between the base of the caudal fin and the table 

surface (used as a support base for the fish),measured immediately after the death, 

whereas Lt (cm) is the vertical distance between the base of the caudal fin and the table 

surface at the selected time intervals. 

The pH was measured on the cranial part of epaxial fillet portion, using a Mettler 

Toledo FiveEasy/FiveGo pH meter (Mettler-Toledo Ltd, Leicester, UK). 

On the 3 fish per treatment mentioned above, manual filleting in pre rigor condition 

was carried out. Afterwards, left fillets, maintained in a cold room at a temperature 

ranging between 0 and +2 °C, were used to assess the shape changes during rigor 

mortis, by taking pictures at 0, 4, 9, 15, 24, 33, 48 and 60 hours post mortem with a 

NIKON D3000 camera with lens Nikkor 18-55. The photographed fillets were 

analysed by the Software Adobe Photoshop CS4 for the following parameters: area, 

perimeter, maximum length and maximum height. 

From the cranial side of the epaxial portion of the right fillets of the same fish utilised 

for fillet shape changes analysis, maintained in a cold room at a temperature ranging 
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between 0 and +2 °C, 1 g of muscle was sampled immediately after death for 

adenosine 5’-triphosphate (ATP) and its catabolites. [i.e. adenosine 5’-diphosphate 

(ADP), adenosine 5’-monophosphate (AMP), inosine 5’-monophosphate (IMP), 

inosine (Ino) and hypoxanthine (Hx)] concentration analysis, determined by a HPLC 

based on Burns and Ke (1985) method. The HPLC apparatus comprised a pump 

system (Beckman mod. 125-S) equipped with a UV detector (Beckman mod. 166) 

with absorbance fixed at 254 nm, analogic interface (Beckman mod. 406), Ultrasphere 

ODS Reverse Phase column (Beckman; length 250 mm, internal diameter 4.6 mm; 

particle size 5 µm; pore size 80 Å), Ultrasphere ODS pre-column (4.6 mm ID, 45 mm 

length), and 20-µl fixed loop. The mobile phase was KH2PO4, 0.5 M, pH 7.0. 

Standards were purchased from Sigma-Aldrich (St. Louis, MO, USA). 

From ATP and related catabolites, Adenylate Energy Charge (AEC) = (0.5 ADP + 

ATP)/(AMP + ADP + ATP) (Atkinson, 1968) was also calculated. 

Our main interest was to detect the amount of ATP and AEC left in the muscle 

immediately post mortem (T0), in relation with the stunning/slaughtering methods 

applied. These parameters are involved in the first period of freshness evolution. 

 

2.5 Statistical analysis 

Data were analysed using the General Linear Model procedures of the statistical 

analysis software SAS 9.1 (2004) for Windows. A two-ways ANOVA tested the 

stunning methods (three levels: A, CO and E) and the water temperatures (two levels: 

8 and 12 °C) as fixed effects. The stunning method (S) x water temperature (T) 

interaction was also tested. 

 

3. RESULTS 

3.1 Plasma parameters 

Fish subjected to A, E, and CO slaughtering methods, at the two temperature 

conditions (8 or 12 °C), showed significantly different (P<0.001) glucose levels (Table 

1), with decreasing trend in the order CO>A>E. 

The highest lactate levels were found in A and CO groups (5.58 and 5.36 mM, 

respectively), while the E group had the lowest lactate amount (3.23 mM). 

Trout slaughtered by asphyxia had significantly higher cortisol level (P<0.001) 

compared to the CO and E groups (153 vs 60.4 and 40.4 ng/ml, respectively) with no 

differences between the CO and E groups.. However, cortisol showed a highly 
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significant (P<0.001) interaction between stunning method (S) and water temperature 

(T) (Table 2), indicating that trout reared at 8 °C and stunned by A, had the highest 

level of cortisol of all groups of treatment both at 8 °C -CO and E- that at 12 °C -A, 

CO and E- (231 vs. 49.5 and 40.4 ng/ml; 231 vs. 74.19, 31.26 and 80.45 ng/ml, 

respectively). 

Stunning by A exhibited the lowest K+ concentration (5.58 vs 6.59 and 6.06 mM for 

A, CO and E, respectively; P<0.05) and a significant interaction SxT between  

slaughter method and water temperature. As highlighted in Table 2, in trout 

maintained at 8 °C the K+ level decreased in the order CO>E>A (P<0.001), whereas 

for those kept at 12 °C, the trend was A>CO (P<0.001), with the E group having 

intermediate values. When comparing stunning methods applied at the two different 

temperatures, CO_8 °C expressed the highest value of K+ to all treatments, A_8 °C 

had significantly lower value only than A_12 °C (4.96 vs. 6.21mM, respectively); 

CO_8 °C significantly higher to all treatments applied at 12 °C (8.10 vs. 6.21 vs. 5.08 

and5.38 mM, respectively), and E_8 °C significantly higher to CO_12 °C and E_12 °C 

(6.75 vs. 5.08 and 5.38 mM, respectively). 

For plasma Chloride, no differences due to slaughtering method or rearing temperature 

were found. 

 

3.2 Rigor Index and pH evolution, fillet shape changes during rigor mortis, ATP and 

related catabolites content 

Trout maintained at 8 °C, and exposed to A, had an earlier onset and resolution of 

rigor mortis (Figure 1A), reaching Rigor Index (RI) = 0 only 48h post mortem, 

followed by CO and E groups, at about 75h after death. At 12 °C any significant 

difference was determined, even though the more rapid increase and resolution of rigor 

in A group was evident (Figure 1B). Considering pH trend, immediately after death, A 

group had both at 8 °C (2A) and 12 °C (2B) a significantly lower pH than E and CO 

groups, the latters not different between them. Later on, at 8 °C, no difference was 

attributed to the slaughtering methods till rigor resolution; while for trout reared at 12 

°C, A group at 40 and 46 hours post mortem had the lowest pH, significantly different 

from that of CO group, while E showed intermediate values. At both temperatures, 8 

°C and 12 °C, pH was not different among the three considered groups at rigor 

resolution (76h). 
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At 4h post mortem in A, CO and E fillets the perimeter values accounted for the ~92, 

96 and 99%, respectively of the value recorded immediately after death (100%). Fillets 

from asphyxiated fish, had a significantly higher contraction both at 4h after death 

with respect to CO and E, that at 9, 15 and 24h with respect to E and CO (except at 24 

h). Area contraction of A fillets at 4h after death was significantly higher than that of E 

fillets, with CO fillets having intermediate position (values accounted for the 92.5 vs. 

99.5 vs. 95.7% of the initial value, respectively; Figure 3); at 9 and 15h post mortem, 

A continued to be the treatment with significantly higher area contraction. A group 

length contraction was of greater magnitude, which already at 4 hours post mortem 

reached a maximum value of 85% of the initial length of the fillet (as also observed for 

the previous parameters characterizing the fillet shape changes), while the other two 

groups reached later the maximum values of their contraction. Length contraction 

magnitude was smaller for CO fillets when compared to E fillets; at the end of the 

considered period (48h post mortem), the latters showed shrinkage values similar to 

that of A fillets, significantly higher with respect to that of CO. A more rapid increase 

in height was exhibited by A fillets, whereas the most intense was detected for E fillets 

and the lowest for CO fillets (12 and 7% more than the initial values, respectively), 

even if the differences did not result statistically significant. By averaging the values 

of the experimental treatments at the end of the monitoring period (48h post mortem), 

area, perimeter, length and height exhibited irreversible changes accounting for the 

92.8, 92, 86.5, and +9.5% with respect to the initial values, respectively. 

Results relating to the content in ATP and AEC immediately post mortem (T0) in 

muscle from rainbow trout subjected to three different stunning/slaughtering methods 

were compared (Table 3). Tissues samples from CO group exhibited significantly 

higher (P<0.05) amount both of ATP (2.27 µmol/g) that AEC value (0.83; P<0.001) 

when compared to A (1.20 µmol/g and 0.52, respectively) and E (1.13 µmol/g and 

0.64, respectively). The AEC resulted affect by water temperature, indeed at 12 °C it 

increased significantly (P<0.05) with respect to 8 °C (Table 3). Significant (P<0.01) 

interaction SxT was found for ATP and AEC value (Table 4). As concerning ATP and 

AEC Index concentrations in the fillet, the lowest values were showed by E_8 °C and 

A_12 °C groups, within and between groups of treatment, respectively. 
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4. DISCUSSION 

4.1 Blood parameters and cortisol 

Both slaughtering methods and temperatures had significant effects on blood 

parameters. Fish exposed to A and E were hauled out of the tank and killed within a 

few minutes while CO fish were exposed to the treatment for a prolonged period of 

time. This means that CO fish would have more time to mobilize glycogen stores and 

increase plasma glucose levels when compared to A and E treated fish. Alterations in 

glucose metabolism are a common response to stress in captured fish (Barton and 

Iwama, 1991), which response provides extra energy resources enabling the animal to 

overcome the disturbance. This was evident in the present trial although the levels 

were increased in A group probably because of the intense muscle activity during the 

15 min of asphyxia in the air. 

Lactate increase is a consequence of anaerobic metabolism, and would be expected to 

increase in A fish in particular, which was the case (Thomas et al., 1999; Wood, 

1991). It was also noticeable that the lactate level in CO fish increased following the 

treatment indicating that the latter part of the treatment was anaerobic and by 

confirming CO binding affinity towards O2(Kalin, 1996; Davenport, 2002). The 

general increase in lactate production with temperature shows that the metabolism is 

higher at this temperature. 

Trout slaughtered by asphyxia in the air had the highest level of cortisol, significantly 

different from those of CO and E groups. In general, fish resting levels of cortisol vary 

considerably (2-42 ng/ml), whereas post-stress levels are known to vary from 20 to 

500 ng/ml (characteristically <300 ng/ml) (Barton and Iwama, 1991). Similar 

concentrations to that of A group were reported by Skjervold et al. (1999) in Atlantic 

salmon kept at low density (less than 50 kg/m3), then slaughtered by live chilling 

(184.0 ± 62.66 ng/ml), and by Merkin et al. (2010) in rainbow trout after long term (4 

hours) crowding (200-300 kg/m3; 45.35 ± 35 ng/ml). A highly significant interaction 

SxT highlighted very high value for cortisol in A_8 °C group with respect to all the 

groups of treatment, both at 8 that 12 °C. This could be explained by the double use of 

tank 5, from which the fish slaughtered by electricity first, and then those by asphyxia 

in air were hauled out. The disturbance caused to the fish when removed from the tank 

itself was enough (beyond the killing method used) to generate an increase in cortisol 

in fish left in the tank (Pickering et al., 1982), this is what happened for A_8 °C group. 

This condition could have minimized the temperature effect. 
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Plasma K+ levels were significantly higher in trout slaughtered with CO, when 

compared to the control, slaughtered by percussion. Ultsch et al. (1981) sustained that 

large increase in serum K+ levels are reported in fish as consequence of strenuous 

exercise and intracellular acidification, and as an effect of acute stress and 

haemoconcentration (Mc Donald and Milligan, 1997). This could explain the highest 

values found in CO group mainly due to CO action in displacing O2 and favouring 

cellular acidification, which was probably more intense in CO group since exposition 

was prolonged in time if compared to A one. The significant interaction SxT obtained 

revealed an effect of the different slaughtering methods, depending on the temperature 

of the water in which trout were maintained: the K+ concentration in plasma of CO 

groups was the highest and the lowest in rainbow trout reared at 8 °C and at 12 °C, 

respectively. Waring et al. (1996) proposed multiple and cumulative effects to explain 

serum K+ variations in Atlantic salmon under stress conditions. No difference was 

found for chlorides level in the plasma, nor between the groups slaughtered by 

different methods or among groups maintained at different temperature. 

 

4.2 Rigor Index and pH evolution, fillet shape changes during rigor mortis, ATP and 

related catabolites content 

At 8 °C, asphyxiated group showed an earlier onset and resolution of rigor mortis 

followed by CO and E groups, resulting significantly different from them. This trend 

was detected also at 12 °C but without any significant difference. The different 

behaviour observed in A groups when compared to the others, could be the result of 

the procedure adopted for the slaughtering of fish kept in tank 5 at 8 °C. It is therefore 

likely that on these fish, two cumulative stressor effects were added, the first 

associated to the collection of E group from the same tank, and the second to the 

slaughtering method. In species subjected to capture or handling stress, it was 

observed an earlier onset and resolution of rigor mortis(Berg et al., 1997; Jerret et al., 

1998; Robb, 2001). The intense activity before slaughter caused considerable muscular 

glycogen consumption and thus lactate production, resulting in a rapid onset and 

resolution of rigor in A group when compared to CO and E groups. This condition 

could explain the lower strength with which rigor was expressed, and its faster 

resolution. E group entered in rigor after A and CO respectively since, being electricity 

a very rapid slaughtering method (30s vs. 15 min. for asphyxia vs. ~30 min. for CO), 

fish suffered a minor stress immediately before death, resulting in the saving of the 
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muscle glycogen stores, postponing its degradation to lactate and thus delaying in the 

time of the rigor mortis resolution. 

It is knew the high CO affinity towards hem proteins and its blocking effects on O2 

utilisation at high concentrations; it is more likely that this property resulted less 

stressing for the fish with respect to the asphyxiation in air, but more than the 

electrical stunning, especially at lower temperatures. 

pH values showed that both at 8 °C and 12 °C, A group significantly differed, at least 

immediately after death, from CO and E groups, which exhibited a similar trend 

through all the monitoring time (76h) (Figure 2). This means that the double 

disturbance caused to A_8 °C group and the different water temperatures, had no 

influence, at least on the pH evolution, since in both cases for all the respective 

stunning methods applied, pH evolution followed the same pattern, ending up with not 

different values. 

Maximum area and length contraction values similar to that of A group were found, 

with different timing, by Misimi et al. (2008) on both stressed (chased to exhaustion 

for 30 min.) and unstressed (anesthetised with AQUI-S™) Atlantic salmon (~14% and 

~9%, respectively); whereas Mørkøre et al. (2006) found for cod anesthetized by 

metacaine (MS222), a length contraction value of 21%. Further, it has been reported 

that an earlier onset of rigor mortis, caused by stress, can provide greater muscle 

contractile tensions and shortening than those observed in unstressed fish (Nakayama 

et al., 1999), by confirming what happened for A group. It is interesting to note that 

CO seemed to reduce fillets length contraction at the end of the monitoring period (48 

h), with respect to electroshock and asphyxia slaughtering methods. During rigor, A 

and E fillets’ height increased as a consequence of the major length decrease: height 

increased up to 9 and 12% at about 4 and 9h after death, respectively, corresponding 

with maximal rigor of whole fish, to reach again at 48h post mortem the values 

observed at 4 and 9h. On Atlantic cod fillets Misimi et al. (2008) found a significant 

effect of stress on perimortem changes in the height. 

The recorded behaviour seems to confirm that fillets obtained from the most stressed 

animals, because of the adopted slaughtering method by asphyxiation in air, begin to 

contract and change their shape earlier than fillets obtained from slaughtered animals 

with the other two techniques. This result, which is in line with the values registered 

for the blood parameters and with the pH value, must be related with the greater 
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depletion of muscle energy in the case of fish that have suffered greater stress 

condition at the time of death. 

Results obtained from chemical analysis, confirmed data from plasma, fillet shape 

changes, rigor (only at 8 °C) and pH (both at 8 °C that 12 °C) evolution. Asphyxia in 

the air resulted as the most stressing stunning/slaughtering method applied in this trial, 

because of the prolonged (15 min.) exposition, which resulted in an intense stress and 

muscle activity, accompanied by marked ATP depletion immediately after death, 

together with E treatment (Lowe et al., 1993; Ruff et al., 2002; Thomas et al., 1999). 

Lower muscle pH immediately post mortem and a more rapid decline during storage in 

A group are also confirmed with observations in other species of fish (Izquierdo-

Pulido et al., 1992; Nakayama et al., 1992). The lower pH levels have generally been 

attributed to H+ generation associated with lactate production and ATP breakdown 

(Hochachka and Mommsen, 1983; Wood and Perry, 1985). Thomas et al. (1999) 

detected similar ATP concentrations to CO group in stressed and stressed and 

exercised Atlantic salmon immediately after death (2.22 and 2.17 µmol/g, 

respectively), and to A and E groups (1.20 and 1.13 µmol/g, respectively) after 12h of 

storage (1.23 µmol/g) of the same fish. Mishima et al. (2005) in horse mackerel 

(Trachurus japonicus) slaughtered by temperature shock, at 8h post mortem found 

similar values (~ 2.10 µmol/g) to those of CO group, whereas 12h post mortem, when 

slaughtered by cutting the brain, to those of A and E (~ 1.20 µmol/g). 

The different degree of stress sustained by all the groups of treatment and the variation 

in the actual time of death affected post mortem AEC (Adenylic Energetic Charge) 

values, significantly higher for CO followed by E and A groups. 

Berg et al. (1997) reported for stressed (stunning with CO2) Atlantic salmon AEC 

values similar to those of E group only 3 hours after slaughter (0.66 ± 0.07 vs. 0.64 ± 

0.08, respectively), which were comparable to values of unstressed group from the 

same trial (netted individually and killed within 25s by a blow to the head) at about 20 

hours post mortem. Similar AEC values to CO group (0.83 ± 0.08) were found by 

Erikson et al. (1999) in Atlantic salmon been chased for 1h before slaughter (0.88 ± 

0.04) and by Schulte et al. (1992) in rainbow trout been exercised to exhaustion for 30 

min before slaughter (0.84 ± 0.011). 

Interactions showed that water temperature exerted an important effect. Reduction of 

fish muscle temperature, removes substantial thermal energy accessible for the muscle 

degradation that starts within hours after slaughter (Skjervold et al., 2001). At 8 °C 
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electroshock seemed to be the treatment which deplete more energy, at 12 °C, instead 

it was asphyxia, whereas CO seemed not been affected by water temperature. This 

seems to show an evident effect of the temperature since the treatments applied were 

always the same, but it must be keep in mind that while at 12 °C electroshock and 

asphyxia in the air where applied in fish from two different tanks, whilst at 8 °C first E 

and than A were applied in fish from the same tank because of last minute 

contingencies which deprived us of one tank. Only groups treated with CO did not 

differed in energy content both at 8 and 12 °C. 

 

5. CONCLUSIONS 

From this study it resulted that electroshock was the most suitable slaughtering 

method, able of limiting stress in rainbow trout, asphyxia in air seemed to be the most 

stressing, as confirmed also by rigor mortis and pH evolution, whereas CO was placed 

in the middle. Fillets from asphyxiated fish had the strongest area and perimeter 

contractions followed by CO and E on one side, and the most rapid length shrinkage 

and height increase, followed by E and CO, on the other. CO_8 °C and CO_12 °C 

were able to preserve the higher amount of muscle’s ATP immediately after death. 

It must be born in mind that, in this trial, the fish asphyxiated in the air reared at 8 °C 

was strongly stressed by the double sampling. In this preliminary study on the CO 

application for slaughtering rainbow trout some critical points with regard to the 

procedure of gas release into water were highlighted, thus it would be interesting to 

perform a pressurize release of CO in a closed circuit, with subsequent injection into 

the water, to improve gas efficiency and personnel safety. On the other side, the 

application of electrodes on animals removed from the water, and therefore in 

compromised conditions from a welfare point of view, is also considered a critical 

point. 
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Table 1. Plasma parameters and cortisol levels in rainbow trout reared at 8 °C or 12 °C and 

stunned/slaughtered by asphyxia (A), CO (CO) or electricity (E) (No. = 5 fish/group). 

Parameters 
Stunning (S) Temperature (T) P-value 

RSD (1) 
A CO E 8 °C 12 °C S T SxT 

Glucose (mM) 6.08a 7.47a 5.00c 6.03 6.34 <0.001 NS NS 0.79 
Lactate (mM) 5.58a 5.36a 3.23b 4.26b 5.19a <0.001 <0.01 NS 0.84 
Cortisol (ng/ml) 153a 60.44b 40.4b 107a 62b <0.001 <0.01 <0.001 50.317 
K+ (mM) 5.58b 6.59a 6.06ab 6.60a 5.56b <0.05 <0.001 <0.001 0.69 

(1) Residual Standard Deviation 
a, b: Within each criterion, means in the same row having different superscripts are significant at P ≤ 0.05 level. 
NS: not significant. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2.Plasma parameters and cortisol levels in rainbow trout reared at 8 °C or 12 °C and 

stunned/slaughtered by asphyxia (A), CO (CO) or electricity (E): interaction temperature x 

stunning/killing methods (No. = 5 fish/group). 

Parameters 8 °C 12 °C 
 A CO E A CO E 

Cortisol (ng/ml) 230.90A 49.50B 40.44B 74.19B 31.26B 80.45B 
K (mM) 4.96D 8.10A 6.75B 6.21BC 5.08D 5.38CD 

A, B: means at the same time after death having different superscripts are significantly different at P ≤ 0.01 level. 
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Table 3. ATP and AEC values immediately post mortem (T0) in muscle of rainbow trout reared 

at 8 °C or 12 °C and stunned/slaughtered by asphyxia (A), CO (CO) or electricity (E) (No. = 3 

fish/group). 

Parameters
Stunning (S) Temperature (T) P-Value 

RSD(1) 
A CO E 8 °C 12 °C S T SxT 

ATP 1.20b 2.27a 1.13b 1.14 1.93 <0.05 NS  <0.05 0.77 
AEC 0.52b 0.83a 0.64c 0.62b 0.71a <0.001 <0.05 <0.001 0.08 

(1) Residual Standard Deviation 
a, b: Within each criterion, means in the same raw having different superscripts are significant at P ≤ 0.05 level; 
NS: Not significant. 
. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Table 4. ATP and AEC values immediately post mortem (T0) in muscle of rainbow trout reared 

at 8 °C or 12 °C and stunned/slaughtered by asphyxia (A), CO (CO) or electricity (E): interaction 

temperature x stunning/slaughtering methods (No. = 3 fish/group). 

 

Parameters 
8 °C 12 °C 

A CO E A CO E 
ATP 1.39ab 2.02ab 0.0031c 1.00bc 2.51a 2.26ab 
AEC 0.63b 0.81a 0.41c 0.42c 0.85a 0.86a 

 
a, b: Within each criterion, means in the same row having different superscripts are significant  
atP ≤ 0.05 level.
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Figure 1.Rigor Index (RI) evolution in rainbow trout reared at 8 °C (A) and 12 °C (B) 

stunned/slaughtered by A, E or CO. Value are presented as means (No. = 5 fish/group). 

Uppercase and lowercase denotes significant differences (A, B = P<0.01; a, b = P<0.05, 

respectively). 

 

A, B: means at the same time after death having different superscripts are significantly different at P ≤ 0.01 level; 
 a, b: means at the same time after death having different superscripts are significantly different at P ≤ 0.05 level. 

 



 242

Figure 2. pH evolution in rainbow trout reared at 8 °C (A) and 12 °C (B) stunned/slaughtered 

by A, E or CO. Value are presented as means (No. = 5 fish/group). Uppercase and 

lowercase denotes significant differences (A, B = P<0.01; a, b = P<0.05, respectively). 

 

A, B: means at the same time after death having different superscripts are significantly different at P ≤ 0.01 level; 
a, b: means at the same time after death having different superscripts are significantly different at P ≤ 0.05 level. 
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Figure 3. Perimeter, area, maximum length and maximum height of fillet in rainbow trout 

stunned/slaughtered by A, E or CO, measured at different times after death, expressed as a 

percentage of the value measured immediately after death (No. = 3 fish/group). 

 

A, B: means at the same time after death having different superscripts are significantly different at P ≤ 0.01 level;  
a, b: means at the same time after death having different superscripts are significantly different at P ≤ 0.05 level. 
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Effects of stunning/slaughtering methods on post rigor mortis changes in rainbow 

trout ( Oncorhynchus mykiss) reared at two different temperature conditions. 

 

Abstract 

Post rigor mortis changes related to texture, chemical and sensory properties in 

rainbow trout (Oncorhynchus mykiss) reared at two different temperature conditions (8 

and 12 °C) were investigated to better understand to what extent different 

stunning/slaughtering methods, i.e. carbon monoxide asphyxia (CO), electroshock (E) 

and asphyxia in the air (A), can influence their evolution in the course of storage 

time.In long terms (TRR7 = 10 days post mortem), considering both K and K1-values, 

freshness results well preserved irrespective of the stunning/slaughtering method 

applied, and water temperature. At rigor resolution (TRR0)CO fillets showed higher 

pH than A fillets (P<0.01), whereas seven days after rigor resolution (TRR7) also E 

fillets pH resulted significantly higher than A fillets. CO treatment ensured higher a* 

and C* colour values, and intermediate b* value, whereas electroshock provided the 

lowest a*, b* and C* values in fillets. Texture profile analysis revealed an effect of the 

stunning method and of the temperature for the cohesiveness parameter. Fish 

slaughtered by CO presented significantly lower (P<0.001) malondialdehyde content 

in fillets when compared to the other two groups at TRR0, whereas at TRR7 no 

differences were detected. Canonical Discriminant Analysis of sensory attributes, 

instrumental texture and physico-chemical measurementsresulted as an accurate tool in 

discriminating and classifying the three groups of treatments at the two considered 

rearing water temperatures. 

 

 

 

Key words: rainbow trout; stunning methods; shelf-life; colour; TBARS; texture 

profile analysis; sensory analysis 
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1. INTRODUCTION 

Freshness is the most important attribute when assessing fish quality. Microbial, 

biochemical and sensory changes are associated with deterioration of fish quality 

during handling and storage (Ehira & Uchiyama, 1986; Gregory, 1994). It is 

fundamental to reduce muscle activity during transport and netting and to ensure 

stunning/slaughtering methods able to minimize pre mortem stress of fish since it may 

result in detrimental effects on fillets texture (Nakayama, 1996; Ando, Toyohara 

&Sakaguchi, 1992), colour perception (Robb, Kestin, & Warriss, 2000; Robb & 

Warris, 1997; Jittinandana et al., 2003), shelf-life (Lowe et al., 1993) and K-value 

(defined as a later indicator of fish freshness; Izquierdo-Pulido, Hatae, & Haard, 

1992). 

Stress can provide greater muscle contractile tensions and shortening than observed in 

unstressed fish (Nakayama, Ooguchi, & Ooi, 1999). As reported by Robb (2001) in 

rainbow trout, a very rapid drop in muscle pH due to stress can affect colour 

parameters (higher L*, H°, C* and lower Roche card score) making fish flesh 

appearance lighter and more opaque. The use of absolute or relative amounts of 

particular degradation products as indicators of freshness and spoilage is very common 

in scientific literature (Ehira & Uchiyama, 1986; Jones, Murray, Livingston, & 

Murray, 1964). During the capture/harvesting process and the struggling associated 

with the death of the fish, much of the ATP (adenosine triphosphate) is converted to 

AMP (adenosine monophosphate) and sometimes further to IMP (inosine 

monophosphate), and the sequence ATP to IMP is generally complete within two days 

of storage in the ice after death. Over the first few days of storage in ice, loss of IMP 

occur, by affecting the flavour in fresh fish. IMP is recognized as a flavour enhancer of 

meaty foods, especially of the umami flavour (Kawai et al., 2002), and it is likely the 

IMP contributes to the sweet, creamy, meaty flavours of fresh fish (Bremner, Olley, 

Statham, & Vail, 1988; Fletcher, Bremner, Olley, & Statham, 1990;Fraser, Pitts, & 

Dyer, 1968;Fuke & Konosu, 1991; Hashimoto, 1965). The K-value has been much 

used as an Index of freshness (Ehira &Uchiyama, 1986), defined as the ratio of the 

sum of the non-phosphorylated compounds, Ino (Inosine) and Hx (Hypoxanthine), to 

the sum of all ATP-derived degradation products. Generally an upper K-value limit of 

70 to 80% is for good quality and, lower than 40-50% for excellent quality large 

commercial-size Atlantic salmon at 14 and 7 days post mortem,respectively (Erikson 

et al., 1997).In almost all storage trials described in literature, concentrations of the 
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adenine nucleotides are very low and a revised K-value, often designated as K1-value, 

is calculated as the ratio of the sum of Ino and Hx to the sum of IMP, Ino and Hx. In 

this case, K1-value monitors loss of IMP (Howgate, 2005). Animal welfare and 

product quality are linked aspects of the total quality of fish; therefore requirements of 

fish welfare and efficient aquaculture should be guarantee. To maintain the best 

original quality, fish should be stunned until death and killed by avoiding any kind of 

stress (Poli et al., 2005). Most relevant fish stunning/slaughtering methods are 

mechanical percussion, CO2 narcosis and electrical stunning (Robb & Kestin, 2002). 

Percussive stunning is mainly used for salmon and others large fish. The fish is hit in 

front of the brain and instantly rendered insensible. For the fish is still possible to 

recover, if the destruction of the brain is partial, so it is important that the method is 

followed by bleeding or by another slaughtering practice (Wall, 2001). CO2 narcosis is 

commonly used in some salmonid farms. Fish are placed in a bath with CO2 gas 

saturated water (> 400 mg / l with a pH of 5.0-5.5). The CO2 dissolves in water to 

form an acid, fish blood’s pH is lowered and consequently the fall cause the 

destruction of brain activity, narcosis and eventually death (Kestin, Wotton, & Adam, 

1995; Robb, 2001) in about 3-4 minutes (in Salmonid),then fish are slaughtered by 

cutting the gills and bleeding. Researches have shown that several species of fish 

exhibit aversive behaviour towards CO2 narcosis and loss of sensation may occur after 

few minutes, depending on the species, resulting in the total exhaustion of the fish at 

the time of death (Erikson, Hultmann, & Erik Steen, 2006; Marx, Brunner, Weinzierl, 

Hoffmann, & Stolle, 1997;Robb, 2001), which reach the condition of rigor mortis 

during the processing line, approximately two hours after death (Berg et al., 1997). 

Electro-narcosis (typically 50-70 V) is used as routine for laboratory purposes or in 

some farms, especially in the case of trout and salmon (Lambooij et al., 2002c). It is 

considered "humane" because, if properly applied, the animal is rendered immediately 

insensible, as the electric current stops brain activity (Kestin et al., 1995). Electrical 

stunning is immediate, easy to control, efficient (Wall, 2001), it makes possible the 

anaesthesia of many fish all together (Roth &Moeller, 1999). On the other side, the 

strong contraction of the muscles causes tetany rather than anaesthesia (Close et al., 

1996), intense electrical currents can damage the carcass (Kestin et al., 1997), causing 

hematoma, blood clots, spinal and vertebrae fractures (Kestin et al., 1995; Roth & 

Moeller, 1999; Wall, 2001). The use of carbon monoxide (CO) presents itself as an 

attractive alternative to the use of CO2 for the slaughter of the fish, as it does not 
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produce aversive effects by animals, as happens with CO2(Poli et al., 2005). CO forms 

bonds with hem proteins -for which presents an affinity 210-270 times greater than 

O2(Kalin, 1996)- like haemoglobin (Hb), myoglobin (Mb) and neuroglobin (Ngb), by 

replacing O2; thus substantial inhalation of CO can be fatal. When fish are exposed to 

CO, microbial growth, lipid oxidation and browning may possibly be reduced, 

therefore the shelf-life of the product is prolonged (Cornforth & Hunt, 2008;Prescott, 

Harley, & Klein, 1996). This would be preferable in fatty fish like salmon and trout, 

which are highly vulnerable to lipid oxidation due to the high level of unsaturated fatty 

acids and the hem containing proteins. CO acts as a reducing agent in which it forms 

complexes with iron or copper in enzymes (White et al., 1973), and therefore the hem-

catalysed lipid oxidation is reduced when CO is bound to the hem. Meat and fish 

exposed to CO at low levels show desirable bright red, stable colour of the muscle 

(Cornforth & Hunt, 2008; El-Badawi, Cain, Samuels, & Angelmeier, 1964; Lanier et 

al., 1978; Sørheim, Nissen, & Nesbakken, 1999). Colour of fish fillets is also affected 

when live fish is exposed to CO (Concollato et al., 2014; Concollato et al., 2015; 

Mantilla et al., 2008). CO is shown to enhance the colour and quality of fish (Chow, 

Hsieh, Tsai, & Chu, 1998; Gee & Brown, 1981;Hsieh, Chow, Chu, & Chen, 1998). 

CO promotes MMb reduction and thereby it has anti-oxidative capacity (Lanier et al., 

1978). The use of CO in fish slaughtering may therefore contribute to a more stable 

product (Bjørlikke et al., 2012). 

The aim of the present study was to investigate the effects on post rigor fillet 

characteristics of different stunning/slaughtering methods, i.e. electroshock (E), carbon 

monoxide asphyxia (CO), asphyxia in the air (A), being the latter a traditional method 

widely used in Trentino Alto Adige (Italy) rainbow trout farms. 

 

2.MATERIAL AND METHODS 

2.1 Experimental set-up 

The study was performed at the experimental farm of Edmund Mach Foundation, in S. 

Michele all’Adige, Trento (Italy). 

Five hundred rainbow trout (Oncorhynchus mykiss) were equally allocated in 5 tanks, 

containing 3600 L of freshwater each. In tanks 1, 2, and 3 the water temperature was 

maintained at 12 °C whereas in tanks 4 and 5 at 8 °C. Three stunning methods were 

applied: asphyxia in the air (A) lasting about 15 min. (tanks 2 and 5), electroshock (E) 

performed by the electronic teaser GOZLIN TEQ002 (GOZLIN, Modena, Italy) for 
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30s at 180 V (tanks 1 and 5), and asphyxia with carbon monoxide (CO) until death 

(tanks 3 and 4). Eighteen fish per experimental unit were sampled. 

Fish from tank 1, with mean weight 0.740 ± 0.105 kg, were captured and immediately 

killed by electricity (E_12 °C); fish from tank 2 (mean weight 0.684 ± 0.095 kg) were 

used as control group and killed by asphyxia in the air (A_12 °C); fish from tank 3 

(CO_12 °C) and tank 4 (CO_8 °C) (mean weight 0.737 ± 0.120 kg and 0.773 ± 0.101 

kg, respectively), were flushed with 100% food grade CO(SIAD, Bergamo, Italy). 

From tank 5, 18 fish (mean weight 0.667 ± 0.097 kg) were hauled out and then 

immediately killed by electricity (E_8 °C), afterwards other 18 fish (mean weight 

0.760 ± 0.085 kg) were sampled from the same tank and slaughtered by asphyxia in 

the air (A_8 °C), due to the overall availability of only 5 tanks. 

All groups of fish were finally percussively slaughtered. During the experiment, the 

CO concentration in the air was monitored and measured by the use of portable gas 

detectors (GasBadge Pro, Oakdale, PA, USA) and by supplementary gas detectors in 

charge of the firemen of Trento province (Italy). 

 

2.2 Energy metabolism, freshness indexes, drip losses, pH, colour and texture profile 

analysis 

After slaughter, all the animals (No.=108) were individually tagged and weighed. 

Fifteen fish per treatment (on overall 90 fish) were stored whole in polystyrene boxes 

with ice in a cold room ranging between zero and +2 °C until rigor mortis resolution 

(TRR0), i.e. 76 hours post mortem. Other 3 fish per treatment (on overall 18 fish) were 

immediately manually filleted in pre rigor condition. 

At 0, 2, 7, 10 days post mortem (T0, T2, TRR4, TRR7, respectively), from the cranial 

side of the right fillet epaxial part, 1 g of muscle was sampled. The concentrations of 

adenosine 5’-triphosphate (ATP) and related catabolites, i.e. adenosine 5’-diphosphate 

(ADP), adenosine 5’-monophosphate (AMP), inosine 5’-monophosphate (IMP), 

inosine (Ino) and hypoxanthine (Hx) were determined by a HPLC with the analysis 

method based on Burns &Ke (1985) (results reported in PART II, PAPER V). The 

HPLC apparatus comprised a pump system (Beckman mod.125-S) equipped with a 

UV detector (Beckman mod. 166) with absorbance fixed at 254 nm, analogic interface 

(Beckman mod. 406), Ultrasphere ODS Reverse Phase column (Beckman, length 250 

mm, internal diameter 4.6 mm; particle size 5 µm; pore size 80 Å), Ultrasphere ODS 
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pre-column (4.6 mm ID, 45 mm length), and 20-µl fixed loop. The mobile phase was 

KH2PO4, 0.5 M, pH 7.0. Standards were purchased from Sigma (St. Louis, USA). 

Adenylate Energy Charge (AEC) = (0.5 ADP + ATP)/(AMP + ADP + ATP) 

(Atkinson, 1968), ATP/IMP ratio (Erikson et al., 1997) (results reported in PART II, 

PAPER V), K-value (%) = [(Ino + Hx) / (ATP + ADP + AMP + IMP + Ino + Hx)] * 

100 (Saito et al., 1959), and K1-value (%) = [(Hx + Ino) / (Hx + Ino + IMP)] * 100 

(Karube et al., 1984) were also calculated. Our main interest was to detect K and K1-

values in the muscle at the end of the storage period considered (TRR7), in relation 

with the stunning/slaughtering methods applied, since are involved in an advanced 

period of freshness evolution. 

Drip loss was also determined, by weighing the left fillets immediately after death 

(T0), at time of the rigor resolution (TRR0) and 7 days after rigor resolution 

(corresponding to the end of the trial; TRR7). Drip loss was calculated by the formula: 

Drip loss (t) = [(D0– DRR0 or DRR7)/D0] × 100 

where D0is the fillet weight immediately after filleting, DRR0 and DRR7 correspond to 

the fillet weight at rigor mortis resolution and after 7 more days of storage, 

respectively. 

Three values of drip loss were then calculated: from T0 till TRR0, from TRR0 till TRR7, 

and the cumulative value from T0 till TRR7. 

During the rigor mortis process, i.e. 24 h post mortem, pH of the fillets was measured 

by using a pH-meter (Mettler Toledo FiveEasy/FiveGo pH meter (Mettler-Toledo 

Ltd, Leicester, UK). 

After rigor mortis resolution (76 h post mortem, time TRR0), all the 90 fish were 

transferred to the processing plant (ASTRO, San Michele all’Adige, Trento, Italy), 

where they were mechanically filleted and weighed. Afterwards, right fillets were 

vacuum packed and stored at -80 °C for further analyses (TRR0 samples), whereas the 

left fillets were stored for 7 days (TRR7 samples), in polyester trays with absorbent 

pads on the bottom, in a cold room at +2.5 °C, for the analyses scheduled during the 

shelf-life. Daily, from TRR0 until TRR7, L*a*b* colour values (CIELab) and pH were 

measured, by using a spectrocolorimeter (X-Rite, RM200QC; X-Rite, Incorporated, 

Neu-Isenburg, Germany) and the pH-meter above mentioned. 

A Texture Profile Analysis (TPA) was carried out eight days after the rigor resolution 

(TRR8), using a Zwick Roell® 109 texturometer (software: Text Expert II, version 3) 
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equipped with a 1kN load cell. Kramer cell test and Warner-Bratzler shear force test 

were performed on the caudal region of each fillet. 

The Warner-Bratzler shear force test was performed using a straight blade that moved 

down at a constant speed of 15 mm/s to 100% of the total deformation. Maximum 

shear force, defined as the maximum resistance of the sample to shearing (Veland 

&Torrissen, 1999) was determined. 

The Kramer cell test was performed on a 80 mm x 80 mm sample. The Kramer cell 

was composed of 5 linear blades moving down at a crosshead constant speed of 10 

mm/s and withdrawing at a speed of 15 mm/s. The force vs. deformation curve was 

registered until the 50% of the total deformation. The test was repeated for 5 cycles 

simulating the chewing. Five texture parameters were calculated, as suggested by 

Veland & Torrissen (1999) and Ayala et al. (2010): hardness (peak force of the first 

compression cycle), energy of shear (the sum of the area of the first upstroke and the 

area of the first downstroke), cohesiveness (ratio of positive force area during the 

second compression compared to that obtained during the first compression), 

resilience (ratio of the area of the upstroke compared to the area of the first 

downstroke during the first compression cycle) and gumminess (hardness multiplied 

by cohesiveness).  

All measurements were done at room temperature. 

 

2.3 Lipid oxidation (TBARS Index) 

Lipid oxidation was determined on 90 fillets (15 per treatment) both at the rigor 

resolution (TRR0) and at the end of the storage period considered (TRR7) by 

determination of thiobarbituric acid reactive substances (TBARS), according to the 

method described by Siu & Draper (1978) and modified by Luciano et al. (2013). 

Oxidation products were quantified as malondialdehyde (MDA) equivalents (mg 

MDA/kg fillet). 

 

2.4 Sensory evaluation 

The descriptive method has been used. Twelve panelists with experience in 

determination of sensory profile of different food matrices were subjected to training 

sessions with the purpose to familiarize with the matrix of interest, to select the 

appropriate descriptors and to define on a scale of measure the relative perceived 

intensity. Olfactory, tactile, gustative and textural sensory aspects were evaluated and 
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for each of them different descriptors were chosen after an accurate literature research. 

Global odour and aroma intensity (olfactory descriptors); friability and tenderness 

(tactile descriptors); saltiness and sourness (taste descriptors); adhesiveness, 

fibrousiness and tenderness (textural descriptors) were evaluated by scored, linear and 

continuous scale of measure (0-10). Brackish/marine, animal feed, cardboard, stale, 

boiled potatoes, salmon and others (olfactory descriptors); bitter, astringent and 

metallic (taste descriptors); stringy, unctuous and low solubility (textural descriptors) 

were evaluated by categories (presence/absence). 

Sensory analysis was performed in duplicates on 90 fillets (15 for each group of 

treatment), at time of rigor resolution (TRR0) in two consecutive days. Fillets were 

placed in aluminium box previously drilled on the bottom so as to prevent the cooking 

of the same in their own liquids (cooking loss). An aluminium foil was placed on the 

top of each box. Cooking process was carried out in an electric oven, pre-heated at 200 

°C and the cooking time has been set up to the achievement of a core temperature of 

75-85 °C. Each panellist received 50 g fillet sample, and evaluated one at a time the 

six samples, corresponding to the six treatments. The presentation order for all 

samples in both sessions was randomised to prevent first order and carry over effects 

(Macfie, Bratchell, Greenhoff, & Vallis, 1989). Data acquisition was performed by 

FIZZ software (Biosystemes - France) installed in the 12 terminals provided in 

laboratory’s tasting booths. 

 

2.5 Statistical analysis 

Data were analysed using the General Linear Model procedures of the statistical 

analysis software SAS 9.1 (2004) for Windows. A two-ways ANOVA tested the 

stunning/slaughtering methods (three levels: A, CO and E) and the water temperatures 

(two levels: 8 and 12 °C) as fixed effects. The interaction stunning/slaughtering 

method (S) x water temperature (T) was also tested. Multivariate discriminant analysis 

was performed on sensory data, instrumental texture and physicochemical 

measurements by considering treatments as discriminant variable (SAS 9.1, 2004). 
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3. RESULTS 

3.1 Energy metabolism, freshness indexes, drip loss, pH, colour and texture profile 

analysis 

Information relating to K and K1 values at the end of the storage period (TRR7), from 

rainbow trout subjected to three different stunning/slaughtering methods were 

compared. The mean K-value of rainbow trout slaughtered by asphyxia in the air in 

this study was significantly lower than that of trout slaughtered by electroshock (45.5 

vs. 57.0%; P<0.05), whereas CO group exhibited an intermediate value (50.2%). Fish 

reared at 12 °C showed significantly higher K-value with respect to that at 8 °C (55.9 

vs. 45.9%; P<0.05), at TRR7.K1-value resulted not affected, neither by the 

stunning/slaughtering methods applied, nor by the water temperature at TRR7 (Table 

1). 

Table 2 reports cumulative drip loss (DL%) calculated at different time post mortem. 

Results showed that the experimental treatments did not affect fish drip loss. 

Effects on pH and fillets colour during the shelf-life period (TRR0-TRR7) are shown in 

Table 3. Slaughtering methods did not affect colour indexes systematically: at 

TRR0,only redness (a*) was affected, with CO group showing significantly higher 

(P<0.01) values with respect to E group (16.3 vs. 14.4, respectively); the same pattern 

was shown at TRR7, with a* and Chroma values significantly higher (P<0.05) for CO 

with respect to E (18.1 vs. 16.6 and 25.5 vs.23.5,respectively),whereas yellowness (b*) 

resulted significantly (P<0.05) higher for A compared to E (18 vs. 16.5, respectively). 

Water temperature instead, resulted in more important and constant differences on 

fillet’s chromatic characteristics. Lightness (L*), a*, b* and Chroma resulted always 

higher for trout reared at 8 °C, with significant differences at the different considered 

times, except for TRR3. A significant effect of stunning/slaughtering methods and 

water temperatures on pH at TRR0 and TRR7 emerged. At the first day of rigor 

resolution (TRR0), pH of CO group was clearly higher than that of A group, whereas E 

presented a mean value; low water temperature (8 °C) significantly increased pH 

values. At the end of the storage (TRR7), higher water temperature favoured a slight 

increase in pH; also a general lowering in pH was observed, but CO and E groups still 

reported the highest values. 

About the texture characteristics, slaughter conditions affected only cohesiveness, 

which presented significantly higher values in A and E fillets compared to the CO 

ones (0.52 vs. 0.41, P<0.01; Table 4).The other texture parameters showed a marked 
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similitude between A and E groups, while the CO one differed numerically for its 

structure, presenting higher hardness and shear stress values, but lower resilience and 

gumminess. Water temperature had a major effect on the texture of the fillet than the 

slaughtering method: at 12 °C, it resulted in increased hardness and shear stress, as 

well as lower values of cohesiveness and resilience were registered.  

 

3.2 Lipid oxidation 

Stunning/slaughtering method significantly affected malondialdehyde (MDA) content 

(Table 5). Fillets of fish slaughtered by CO showed lower MDA values (P<0.001) than 

the other two groups (0.66 vs. 1.22 and 1.10 mg/kg; P<0.01), confirming CO ability to 

reduce and delay over time lipid oxidation of the product with respect to the other two 

slaughter methods, within 76h post mortem. At the end of the storage (TRR7), instead, 

no differences were detected concerning MDA content among the different treatments. 

 

3.3 Sensory analysis 

Canonical Discriminant Analysis (CDA) was used to achieve the most discriminative 

variables for the three-stunning/slaughtering methods. Variables significantly 

responsible for the discrimination are reported in increasing order of discriminating 

power in Table 6 (8 °C) and 7 (12 °C), according to Wilks λ significance (P<0.01). 

The CDA showed up that fillets from A, CO and E groups are well discriminated 

within fish reared at 8 and 12 °C for the same variables: adhesiveness, pH_IR24, 

tactile tenderness and acidity; this means that the different water temperatures did not 

have any effect on them. Stunning methods significantly affected cohesiveness, a*, b*, 

resilience and shear stress of fish reared at 8 °C, whereas they affected juiciness, 

saltiness and odour intensity of fish reared at 12 °C. 

The relative positions of the treatments in the graphical representations reflect the high 

discriminant ability of the considered variables (Figures 1 and 2). CO_8 °C, A_8 °C 

and E_8 °C groups resulted totally separated in Figure 1 (0% error), whereas in Figure 

2 groups CO_12 °C, A_12 °C and E_12 °C were mostly separated (20% error). 

In Figure 1 the first axis (Can-1) accounted for the 88% of the total variability of the 

measured variables (cohesiveness, adhesiveness, pH_IR24, tactile tenderness, acidity, 

a*, b*, resilience and shear stress), whereas the second axis (Can-2) accounted for the 

12%. Fifteen out of fifteen samples were correctly classified, with no errors (Table 8). 

In Figure 2, the first axis (Can-1) account for the 63% of the total variability of the 
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measured variables (saltiness, juiciness, odour intensity, pH_IR24, acidity, tactile 

tenderness and adhesiveness), whereas the second axis (Can-2) account for the 36%. 

One out of fifteen samples was misclassified, involving E treatment which is mixed 

with A in the cross validation (Table 9). 

 

4. DISCUSSION 

4.1 Energy metabolism, freshness indexes, drip losses, pH, colour and texture profile 

analysis 

The rapid depletion of ATP (TRR0) (see PART II, PAPER V) and faster loss of 

freshness (higher K-value) presented by E group at TRR7 (10 days post mortem), is 

probably associated with the tetanus and higher level of muscle activity during 

electrical current exposure (Chiba et al., 1990).K-values similar to those of E and CO 

groups were found by Erikson, Beyer, & Sigholt (1997) in unstressed (~56%) -

individually netted and killed by a blow on the head- and baseline (~ 52%) -first 

anesthetized and then killed by blow on the head- salmons, 10 days post mortem 

during storage in ice, respectively. Ozogul & Ozogul (2004), reported K-value of 

~50% and ~60% (as CO and E groups, respectively) after 10 days of MAP or ice-

storage in rainbow trout slaughtered by a blow on the head, respectively. In grass carp 

slaughtered by electricity, Scherer et al. (2005) found after 10 days of ice storage a K-

value (~60%) similar to that of E group. 

Electroshock resulted unexpectedly the stunning method less able in preserving 

freshness of the fillet, with respect to asphyxia in the air, if only considering K-value 

information. Taking into account some other parameters like cortisol levels, rigor 

mortis evolution, ATP and AEC values immediately post mortem (T0) of the three 

groups of treatments (see PART II, PAPER V), it was likely to be A the worse 

treatment. In salmonids the K-value seems to increase sharply during the first days of 

storage before levelling off at about 7 dayspost mortem. However, the variation in 

reported values for salmonids seems to be large, with K-value after 7 days of storage 

ranging between 40 and 80% (Erikson et al., 1997). Haitula, Kiesvaara, & Moran 

(1993) proposed for whitefish (Coregonus wartmanni) a K-value upper limit of 80% 

as criteria for good quality fish, and the same criteria was also used for trout. 

Considering K-value limits proposed by Erikson et al.(1997), trouts in this study 

presents an excellent quality range. K1-values resulted not different among the three 

groups, but showed a global higher value with respect to K-value, as expected,because 
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of the increase ATP degradation to IMP over time (Karube et al., 1984). In long terms 

(TRR7 = 10 days post mortem), considering both K and K1-value, freshness results well 

preserved irrespective of the stunning/slaughtering method applied, and water 

temperature. 

Any significant effect was attributed to stunning/slaughtering method or water 

temperature for drip losses, measured along the whole study. 

Considering the storage period (TRR0-TRR7), it resulted a significant effect of 

stunning/slaughtering method and water temperature on pH measured at TRR0 and at 

TRR7. At the day of rigor resolution (TRR0), the pH of fillets of CO group was clearly 

higher than that of A group, with E fillets at intermediate values. Earlier studies on 

stress of relatively short duration have demonstrated a faster drop of muscle pH after 

slaughter and a lower final pH (Sigholt et al., 1997; Thomas, Pankhurst, & Bremner, 

1999). This confirmed that probably the higher pH presented by CO group, is due to 

the pre-slaughter prolonged stress condition suffered,so that the most of the glycogen 

was consumed before death, resulting in a lower lactate production and pH decrease. 

At TRR7, pH presented a general lowering, because of the natural degradation 

processes and breakdown products formation, but CO and E groups still reported the 

highest values. Low water temperature (8 °C) maintained significantly higher the pH 

at TRR0, probably because contributed to reduction in the activity of the enzymes 

taking part in glycogenolysis and further breakdown of glucose (Skjervold et al., 

2001). At the end of the storage, instead, 8 °C-reared fish showed significantly lower 

pH. 

Like the aforementioned parameters, also fillet colour seemed to be influenced by the 

stunning/slaughtering methods applied in the present study. In rainbow trout(Robb, 

2001) the decrease in pH resulted in significantly higher L*, Hue and Chroma values 

(more yellow and brighter meat), or lower scores in the subjective evaluation by 

Roche colorimetric cards. As regards the stunning methods, anesthetized rainbow trout 

showed darker (lower L*) and redder (lower Hue) meat, and lower Chroma than 

electro-narcotized fish (Robb, Kestin, & Warriss, 2000). In the present study, exposure 

to CO resulted in a significant increase in redness both at TRR0 that TRR7 when 

compared to E, but it was not different from A, even if the value was numerically 

higher. It is known that CO binds easily to oxymyoglobin/oxyhemoglobin 

(OMb/OHb), displacing oxygen, producing COMb/COHb that has a cherry red colour. 

The latters are stable compounds and the degradation to meth-forms MMb/MHb takes 
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longer time and will thus prevent discoloration. The significant difference in redness at 

TRR0 (4 days post mortem) and TRR7 is thus mainly due to COMb/COHb production. 

In Atlantic salmon, herring and mackerel anaesthetized by injecting CO in seawater, 

a* value was more persistent than in the control group even after 6 days of cold 

storage (Concollato et al., 2015). A slight increase of a* value was detected by 

Bjørlykke et al. (2011) both on the fillets that on gills of Atlantic salmon slaughtered 

by CO compared to control (percussion), similarly to what was found in this study. 

Furthermore, several other studies show that CO enhances colour and quality of the 

fish (Chow, Hsieh, Tsai, & Chu, 1998; Hsieh et al., 1998). Yellowness (b*) and 

Chroma were affected at the end of the storage period (TRR7) only, with a general loss 

in colour in E fillets.  

After 7 days of cold storage, as expected, b* value increased in all 

stunning/slaughtering methods applied, and it was significantly higher in A than E, CO 

presenting intermediate values. This is likely attributed to both lipid and heme proteins 

oxidation process: it has been demonstrated that the use of CO can reduce lipid 

oxidation (Cornforth & Hunt, 2008; Hsieh et al., 1998)even when live fish is exposed 

to CO (Mantilla et al., 2008). Heme proteins, once oxidized to MHb/MMb, can give a 

brown-yellowish appearance to the red muscle, thus explaining the increase in 

yellowness value (Kristinsson and Demir, 2003). It is important to take into account 

that colour is also dependent on astaxanthin and cantaxanthin amount in the flesh, 

which depends on its inclusion level in feed stuffs (Nickell and Springate, 2001) and 

that the high fat content in farmed salmonids causes dilution of astaxanthin and 

interferes with colour perception (Christiansen et al., 1995), by minimizing treatment 

differences. 

Water temperature affected fillet’s chromatic characteristics. At TRR0L*, a* and 

Chroma resulted always higher for rainbow trout reared at 8 °C, but at TRR7 only L* 

value was significantly higher in 8 °C group.Our results support those found by other 

authors in Arctic charr (Salvelinus alpinus).Olsen & Mortensen (1997) found that 

Arctic charr reared at 8 °C had a stronger fillet pigmentation than fish reared at 12 °C. 

Later, Ginés, Valdimarsdottir, Sveinsdottir, & Thorarensen (2004) showed that flesh 

from Arctic charr reared at 10 °C had a more intense red/orange colour than flesh from 

Arctic charr reared at 15 °C, regardless of the strain. 

Regarding texture profile analysis (TPA) parameters, stunning methods affected 

cohesiveness only; in particular, CO fillets resulted as the less able to fully recover the 
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original structure during the break between two successive compressions 

(cohesiveness), behaviour supported by the not significant but higher shear stress and 

hardness, and the lower resilience and gumminess. As demonstrated by Nakayama 

(1996) and Roth, Moeller, Veland, Imsland, & Slinde (2002), our results confirmed 

that pre mortem muscle activity (asphyxia) in fish contributes to a softer texture. 

Water temperature had a major effect than the stunning/slaughtering method on fillet’s 

texture: it seems like that low temperatures favoured a lower shear stress and hardness 

explaining thus the greater cohesiveness, resilience (which give a measure of the 

springiness) and gumminess, resulting in lower TPA values.Ginés, Valdimarsdottir, 

Sveinsdottir, & Thorarensen (2004) found that Arctic charr reared at 15 °C had a 

lower (7.95 ± 1.75 g) but not significant cohesiveness than that of those reared at 10 

°C (8.28 ± 1.60 g). Our studysupports that of Ginés, Valdimarsdottir, Sveinsdottir, & 

Thorarensen (2004) but it’s likely thatit could be the result of low temperature and the 

double intense stress event (catching and stunning). Due to this unexpected fish 

response, what impact has water temperature on fillet texture is still unclear. Skjervold 

et al. (2001) have shown that crowding stress before slaughtering increased firmness 

of meat, although this effect was not significant (P<0.057). From a previous study of 

Atlantic salmon by Sigholt et al. (1997) it resulted a less firm texture in fish stressed 

by crowding for less than 1h. The stressed fish in our study (A) probably reduced the 

glycogen stores before slaughtering, showing a small reduction in post-rigor pH, but 

still significantly lower (6.52) with respect to the other CO (6.57) and E (6.60) groups 

at TRR7 (day before the texture analysis was performed). It seems that pre-slaughter 

stress affected salmon firmness depending on the severity and duration of stress: short 

term stress leads to muscle softening, while long term exhaustion leads to increase 

muscle firmness (Skjervold et al., 2001). This is in accordance with patterns of stress 

influence in mammal meat (Hedrik et al., 1994). 

 

4.2 Lipid oxidation (TBARS Index) 

Results obtained from this study confirmed CO capability in reducing/delaying over 

time lipid oxidation of the product when compared to the other two-

stunning/slaughtering methods. It is known that lipid oxidation is affected by many 

factors: oxygen, temperature, Mb content, metal catalysts and enzymes, pH, NaCl, etc. 

Slaughtering methods and pre mortem stress had no effects on lipid’s oxidation in the 

study of Huidobro et al. (2014) on gilthead sea bream (Sparus aurata) slaughtered 
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with ice plus water or with liquid ice. In eels (Anguilla anguilla), Morzel and Van de 

Vis (2003) found that lipids were significantly more susceptible to oxidation in fish 

slaughtered by the commercial method (salt baths) with respect to those by gas 

combined with electricity. Salt baths cause physical damage to the muscle, thus 

making cells easily accessible to catalytic enzymes and oxidative substrates. The 

strong affinity of CO towards Mb, prevents O2 binding to Mb making difficult its 

oxidation and the consequent production of superoxide radicals, responsible for the 

initiation of lipid peroxidation (Cornforth & Hunt, 2008;Hsieh, Chow, Chu, & Chen, 

1998). This may explain why the group stunned/slaughtered by using CO presents, 

even after only 76h from death, a significantly lower MDA content than that of A and 

E groups, for which instead the process of lipid oxidation seemed to be more intense 

and rapid. Furthermore, no differences were detected in MDA content among the 

experimental groups at the end of the storage (TRR7, i.e. 10 days after death), in 

agreement with the Mantilla et al. (2008) findings.However, if fish have been treated 

with CO, the COcontent in their flesh is expected to decline overtime, and this could 

explain the similar lipid oxidation for the considered treatments. Ishiwata et al. (1996) 

reported that the increase in CO concentration on extended storage is one of the 

indicators used by the Japanese health authorities to discriminate fish treated or not 

with CO. 

 

4.3 Canonical Discriminant Analysis (CDA) of sensory, instrumental texture and 

physico-chemical measurements 

Sensory differences in colour and texture are especially important for consumer 

appreciation and preference for salmonids (Sylvia et al., 1995). Results from the 

CDAs relating to sensory analysis, instrumental texture and physico-chemical 

measurements for the three stunning/slaughtering methods showed that the most 

predictive variables at lower (8 °C) rearing water temperature were mostly related to 

texture and colour, whereas for higher (12 °C) temperature to few sensory variables. 

These findings confirm results obtained from Table 3 and 4. With regard to fillet 

pigmentation, it has been demonstrated that a reduced food stay in the gut due either to 

high water temperature or to increased feed intake may affect the digestibility of 

carotenoids negatively (Ytrestøyl et al., 2005): in Arctic charr, lowering of 

environmental temperature has been shown to increase pigment deposition (Ginés et 

al., 2004; Olsen & Mortensen, 1997). Azevedo, Cho, Leeson, & Bureau (1998), 
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Choubert, Fauconneau, & Luquet (1982) and Elliott(1976)shown that with salmonids 

the digestibility of dry matter, energy and protein is positively related with 

temperature, and this aspect could have had partly influenced juiciness, saltiness and 

odour intensity in trout reared at 12 °C. Cross validation and CDA scattegram 

approaches resulted as good discriminating tools both at 8 °C that 12 °C. 
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5. CONCLUSIONS 

In long terms (TRR7 = 10 days post mortem), considering both K and K1-values, 

freshness results well preserved irrespective of the stunning/slaughtering method 

applied, and water temperature. During refrigerated storage fish fillets from CO and E 

groups showed a higher pH than A group, both at time of rigor resolution (TRR0), and 

at the end at the period considered (TRR7). CO treatment was effective in ensuring a 

more intense red colour to the fillet and high Chroma, whereas E treatment exhibited 

lowest a*, b* and Chroma values. 

Texture profile analysis revealed an effect of the stunning/slaughtering (S) method, of 

the water temperature (T) and an interaction SxT, related to cohesiveness. TBARS 

value resulted slightly significantly lower in fish stunned by CO, when compared to A 

and E groups, in the first 76h post mortem. At the end of the storage period (TRR7), no 

TBARS differences were detected among treatments. Canonical Discriminant 

Analysis resulted as an accurate tool in discriminating and classifying the three 

treatments, at the two considered rearing water temperature.  
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Table 1. K and K1 content in rainbow trout reared at 8 °C or 12 °C and stunned/killed by 
asphyxia in air (A), asphyxia with CO (CO) or electricity (E). 

Time (day) Parameters 
Stunning (S) Temperature (T) P-value 

RSD (1) 
A CO E 8 °C 12 °C S T  

TRR7 K1 (%) 53.22 59.76 63.21 55.65 61.81 NS NS  7.44 
TRR7 K (%) 45.50b 50.23ab 57.03a 45.94b 55.90a <0.05 <0.05  7.16 

(1) Residual Standard Deviation 
A, B: Within criterion, means in the same row having different superscripts are significant at P ≤ 0.01 level; 
a, b: Within criterion, means in the same row having different superscripts are significant at P ≤ 0.05 level. 
NS: not significant. 
 
 
 

Table 2. Cumulative drip losses (DL,%) during storage in refrigerated room (+ 2.5 °C) of 
rainbow trout fillets belonging to groups exposed to asphyxia (A), CO (CO) or electricity (E). T0 
(day of slaughter), TRR0 (day of rigor mortis resolution), TRR7 (last day of storage). 

 
Days post mortem 

Stunning (S) Temperature (T) P-value 
RSD(1) 

A CO E 8 °C 12 °C S T 
DL T0-TRR0  3 0.8 0.7 0.6 0.6 0.8 NS NS 0.3 
DL TRR0-TRR7  7 3.3 3.2 2.8 3.3 3 NS NS 0.7 
DL T0-TRR7 10 4.1 3.9 3.4 3.8 3.8 NS NS 0.8 

(1) Residual Standard Deviation. 
NS: not significant. 

 
 
 
 

Table 3. pH and colour parameters measured during storage in refrigerated room (+2.5 °C), at 
TRR0 (day of the resolution of rigor mortis) and TRR7 (last day of storage), of farmed rainbow 
trout reared at two different temperature conditions (8 or 12 °C) and subjected to three different 
methods of stunning/killing (A, CO or E). 

TRR Parameters 
Stunning (S) Temperature (T) P-value RSD(1) 

A CO E 8 °C 12 °C S T  

0 

 

pH 6.70B 6.79A 6.76AB 7.0a 6.46b <0.01 <0.001 0.092 
L* 42.1 42.0 43.0 42.8A 41.9B NS <0.01 1.7 
a* 15.2AB 16.3A 14.4B 15.8a 14.9b <0.01 <0.05 2.1 
b* 14.7 15.0 14.0 15.0 14.2 NS NS 2.4 
Chroma 21.2 22.1 20.2 21.8a 20.5b NS <0.05 3.0 
Hue 44.1 42.9 44.2 43.5 43.7 NS NS 3.6 

7 

pH 6.52B 6.57A 6.60A 6.54B 6.58A <0.001 <0.01 0.070 
L* 41.0 40.4 40.9 41.5A 39.9B NS <0.001 1.7 
a* 17.6ab 18.1a 16.6b 17.8 17.2 <0.05 NS 2.0 
b* 18a 17.9ab 16.5b 17.7 17.3 <0.05 NS 2.3 
Chroma 25.3ab 25.5a 23.5b 25.1 24.1 <0.05 NS 2.9 
Hue 45.5 44.6 44.7 44.7 45.2 NS NS 2.8 

(1) Residual Standard Deviation.  
A, B: Within criterion, means in the same row having different superscripts are significant at P ≤ 0.01 level; 
a, b: Within criterion, means in the same row having different superscripts are significant at P ≤ 0.05 level. 
NS: not significant. 
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Table 4. Texture Profile Analysis parameters of rainbow trout fillets belonging to groups reared 
at 8 or 12 °C, and exposed to asphyxia in air (A), CO (CO) or electricity (E), measured at day 8 
after rigor resolution (TRR8), after the storage in refrigerated conditions (+2.5 °C). 

Parameters 
Stunning (S) Temperature (T) P-value  RSD(1) 

A CO E 8 °C 12 °C S T 
 

 

Shear Stress (N) 56.17 63.63 57 52.61b 65.25a NS <0.05 12.83 

Hardness (N) 254.79 287.74 271.97 240.14B 302.86A NS <0.001 38.86 

Cohesiveness 0.52a 0.41b 0.52a 0.56A 0.41B <0.01 <0.001 0.07 

Resilience 0.11 0.08 0.13 0.13a 0.09b NS <0.05 0.04 

Gumminess 129.09 115.58 137.96 132.62 122.47 NS NS 24.17 
(1) Residual Standard Deviation.  
A, B: Within criterium, means in the same row having different superscripts are significant at P ≤ 0.01 level; 
a, b: Within criterium, means in the same row having different superscripts are significant at P ≤ 0.05 level 
NS: not significant. 

 
 
 

Table 5. Malondialdehyde content (MDA) in rainbow trout fillets from groups reared at 8 or 12 
°C and exposed to asphyxia in air (A), CO (CO) or electricity (E), stored in cold room (+2.5 °C) 
and analyzed at TRR0 (day of rigor resolution, 76h post mortem). 

Parameters 
Stunning (S) Temperature (T) P-value 

RSD(1)

A CO E 8 °C 12 °C S T 

MDA (mg/kg) 1.22A 0.66B 1.10A 1.02 0.97 <0.01 NS 0.73 
(1) Residual Standard Deviation.  
A, B: Within criterion, means in the same row having different superscripts are significant at P ≤ 0.01 level; 
a, b: Within criterion, means in the same row having different superscripts are significant at P ≤ 0.05 level 
NS: not significant. 
 
 
 

Table 6. Summary of the most significant variables extracted by the two CDAs (Canonical 
Discriminant Analysis) for the three-stunning/slaughtering methods applied at 8 °C. 

Variables 
CDA for the three stunning methods 

Partial R-Square F value Pr < F Wilks’ λa P <λ 
Cohesiveness 0.42 3.6 0.066 0.29 0.01** 
Adhesiveness 0.37 2.59 0.13 0.18 0.009** 
pH_IR24 0.56 5.04 0.04 0.08 0.003** 
Tactile Tenderness 0.55 4.9 0.04 0.04 0.0002*** 
Acidity 0.47 3.17 0.10 0.02 0.0002*** 
a* 0.58 4.07 0.08 0.008 0.0002*** 
b* 0.70 5.79 0.05 0.002 0.0001*** 
Resilience 0.73 5.47 0.07 0.0007 0.0001*** 
Shear Stress 0.87 10.34 0.05 0.00009 0.0001*** 
aDescriptors are sorted according to their Wilks λ significance. 
**: P< 0.01; ***: P< 0.001 
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Table 7.Summary of the most significant variables extracted by the two CDAs (Canonical 
Discriminant Analysis) for the three-stunning/slaughtering methods applied at 12 °C. 

Variables 
CDA for the three stunning methods 

Partial R-Square F value Pr < F Wilks’ λa P <λ 
Saltiness 0.60 7.52 0.01 0.40 0.01** 
Juiciness 0.48 4.19 0.05 0.21 0.004** 
Odour Intensity 0.46 3.44 0.08 0.11 0.0034** 
pH_IR24 0.50 3.5 0.09 0.06 0.0024** 
Acidity 0.50 3.04 0.12 0.03 0.0024** 
Tactile tenderness 0.61 3.87 0.10 0.01 0.002** 
Adhesiveness 0.77 6.6 0.05 0.003 0.001** 
aDescriptors are sorted according to their Wilks λ significance. 
**: P< 0.01; ***: P< 0.001 
 

 

 

Table 8.Cross validation table of the CDA of rainbow trout fillets according to three 
stunning/slaughtering methods, at 8 °C. 

Treatment 
Classified by CDA 

Total Errors (%) 
A CO E 

A 5 0 0 5 0 
CO 0 5 0 5 0 
E 0 0 5 5 0 
Total 5 5 5 15 0 
 
 
 
Table 9. Cross validation table of the CDA of rainbow trout fillets according to three 
stunning/slaughtering methods, at 12 °C. 
 

Treatment 
Classified by CDA 

Total Errors (%) 
A CO E 

A 5 0 0 5 0 
CO 0 5 0 5 0 
E 1 0 4 5 20 
Total 6 5 4 15 6.67 



 

Figure 1. CDA scattergram of the three stunning/slaughtering methods in fish reared at 8 °C.
The axes (Can-1 = 88% and Can
variables (cohesiveness, adhesiveness, pH_IR24, tactile tenderness, acidity, a*, b*, resilience 
and shear stress). Ninety-five percent ellipses are drawn around each 
such a way that leaves outside the misclassified animals.

CDA scattergram of the three stunning/slaughtering methods in fish reared at 8 °C.
1 = 88% and Can-2 = 12%) account for the total variability of the measured 

variables (cohesiveness, adhesiveness, pH_IR24, tactile tenderness, acidity, a*, b*, resilience 
five percent ellipses are drawn around each centroid of groupings in 

such a way that leaves outside the misclassified animals. 
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CDA scattergram of the three stunning/slaughtering methods in fish reared at 8 °C. 
2 = 12%) account for the total variability of the measured 

variables (cohesiveness, adhesiveness, pH_IR24, tactile tenderness, acidity, a*, b*, resilience 
centroid of groupings in 

 



 

Figure 2. CDA scattergram of the three stunning/slaughtering methods in fish reared at 12 °C. 
The axes (Can-1 = 63% and Can
variables (saltiness, juiciness, odour intensity, pH_IR24, acidity, tactile tenderness and 
adhesiveness). Ninety-five percent ellipses are drawn around each centroid of groupings in 
such a way that leaves outside the misclassified animals
 
 

CDA scattergram of the three stunning/slaughtering methods in fish reared at 12 °C. 
1 = 63% and Can-2 = 36%) account for the total variability of 

variables (saltiness, juiciness, odour intensity, pH_IR24, acidity, tactile tenderness and 
five percent ellipses are drawn around each centroid of groupings in 

such a way that leaves outside the misclassified animals. 
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CDA scattergram of the three stunning/slaughtering methods in fish reared at 12 °C. 
2 = 36%) account for the total variability of the measured 

variables (saltiness, juiciness, odour intensity, pH_IR24, acidity, tactile tenderness and 
five percent ellipses are drawn around each centroid of groupings in 
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6. CONCLUSIONS 
 
The application of rapid/non-destructive methodologies can successfully discriminate fish 

fillets and provide information about their quality. Specifically: 

◊ on rainbow trout NIRS, supported by appropriate chemometric tools, has proven its ability 

and accuracy in estimating proximate composition, fillet yield, cooking loos and fatty acid 

profile; and in classifying samples by rearing farm and genetic strain with no relevant 

differences between raw and cooked freeze-dried fillets in both cases 

◊ On Atlantic salmon NIRS performed on differently prepared samples and scanned from 

three different instrumentation resulted the best methodology in discriminating samples and 

in evaluating the presence and incidence of slaughtering method applied and storage time, 

respectively, when compared to sensory analysis, NIR, e-nose and e-tongue methodologies 

The study of different stunning/slaughtering methods, demonstrated that is possible to reduce 

stress condition immediately prior to slaughter and thus improve fillets quality. Specifically: 

◊ Asphyxia in the air (A) resulted the most stressing method by increasing cortisol secretion 

three times over the basal levels, resulting in the earlier onset and resolution of rigor mortis 

and most intense fillet shape changes and showing the highest lipid oxidation rate. It must be 

born in mind that the group reared at 8 °C undergone to a double sampling that for sure 

influenced the results   

◊ Carbon monoxide asphyxia (CO) resultedthe most stressing when only compared to 

percussion slaughtering in Atlantic salmon; whereas was placed in the middle when 

compared to A and electroshock (E) in rainbow trout. In rainbow trout CO showed its ability 

in preserving ATP immediately after death, improving red colour of the fillet and in 

delaying in time lipid oxidation when compared to A and E 

◊ Electroshock (E), globally, resulted the best stunning/slaughtering method showing the 

lowest levels of cortisol in the blood, later onset of rigor mortis and less intense fillet shape 

changes,butit did not improve the overall filletcolour. 

Research efforts in the field of infrared spectroscopy, sensors and instrumental techniques are 

addressing some of the challenges of food product measurements, and of the physico-chemical 

changesnot well understood by using traditional chemistry responsible for modifications of 

food products’stability. Further studies on CO application as stunning/slaughtering method in 

fish, considering its positive effects on fillets quality,should include reliable measurements of 

CO dissolved in the water and possible improvements of delivery systems, so as to minimize 

stress perception immediately before slaughtering. 
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