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Abstract Pilling is a complex property of textile fabrics, 
representing, for the final user, a non-desired feature to 
be controlled and measured by companies working in the 
textile industry. Traditionally, pilling is assessed by 
visually comparing fabrics with reference to a set of 
standard images, thus often resulting in inconsistent 
quality control. A number of methods using machine 
vision have been proposed all over the world, with 
almost all sharing the idea that pilling can be assessed by 
determining the number of pills or the area occupied by 
the pills on the fabric surface. In the present work a 
different approach is proposed: instead of determining 
the number of pills, a machine vision-based procedure is 
devised with the aim of extracting a number of 
parameters characterizing the fabric. These are then used 
to train an artificial neural network to automatically 
grade the fabrics in terms of pilling. Tested against a set 
of differently pilled fabrics, the method shows its 
effectiveness. 
 
Keywords Textile Industry, Pilling, Computational 
Vision, Neural Networks, Image Processing, Machine 
Vision System 
 
 

1. Introduction  
 
As widely known, ‘pilling’ may be defined as a surface 
defect of textile fabrics consisting of a number of pills  
(i.e., roughly spherical masses) made of entangled fibres [1]. 
 
Since pilling represents, for the final user, a non-desired 
feature, its control, and measurement, is one of the main 
issues for textile industries. Standing on the surface of the 
fabric and unpleasantly perceived by the final user, pills 
are generally caused by the combination of washing and 
wearing of fabrics. Due to the abrasion of the fabric 
surface, loose fibres entangle into short fine hairs (fuzz) 
and, subsequently, develop into spherical bundles 
anchored to the surface of the fabric. The tendency of a 
fabric to be subjected to pills formation, as explained in 
the D4970/D4970M-10e1 Standard (ASTM, 2010) and in 
the European Standard EN ISO 12945-2:2000 [2, 3], is a 
very complex process closely linked to a number of 
parameters such as fibre content, title, number of twists, 
coverage factor of the mesh, type of fibre or blends, fibre 
dimensions, yarn construction and fabric finishing 
treatments. 
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Moreover, the pilling resistance of a specific fabric in 
actual wear varies more with the general conditions of 
use and of the individual wearers. Consequently, due to 
the complexity of the phenomenon, resistance to pilling 
(also referred as ‘pilling assessment’) is recognized to be 
one of the most important foci of significant industrial 
research activity. In fact, the presence of pilling seriously 
compromises the textile's acceptability to consumers. One 
of the most diffused methods, to date, for pilling 
assessment consists of subjectively evaluating the fabric 
quality using appropriate equipment and a set of 
standard references, as described below. 
 
Obviously, fabrics take a long time to be pilled in normal 
use; therefore, resistance to pilling is usually tested by 
simulated accelerated wear, followed by a manual 
assessment of the degree of pilling based on a visual 
comparison of the sample to a set of test images [4]. 
 
Fabrics are abraded by tumbling, brushing, or rubbing 
specimens with abrasive materials in machines (such as 
Martindale or Pilling box), and then compared by skilled 
workers with visual standards, which may be actual 
fabrics or photographs. On the basis of such a 
comparison, the experts define resistance to pilling using 
the so called ‘degree of pilling’  i.e., an index varying on a 
(arbitrary) scale ranging from a degree of 5, which means 
no pilling, to 1, which means very severe pilling [5,6]. 
Awkwardly, even if this approach is carried out by highly 
skilled workers, the reliability of pilling evaluation is 
quite limited and, as stated in [7], the accuracy is less than 
80%. 
 
In recent decades, automated visual inspection (AVI) of 
fabrics for quality control showed an increasing trend in 
the textile industry, and several approaches have been 
proposed in the scientific literature. Pilling assessment 
using machine vision systems makes no exception: a 
number of approaches have been proposed in order to 
explore image processing-based techniques for pills 
detection and for automated pilling assessment.  
 
Early work was carried out in 1990 [8]; images of fabric 
samples obtained using Martindale are captured under 
near-tangential illumination, thus acquiring images with 
high pill-to-background contrast. Such images are 
binarized using two different thresholds, and then 
compared with a set of standard images. In [9] pill 
regions on fabric samples are localized by combining 
template matching techniques and image thresholding. In 
[10] operations in both the spatial and frequency domains 
are introduced to segment pills from the textured 
background of the fabric web. Such a method calculates 
the total area occupied by pills in the sample image and 
assigns a degree of pilling. In [11] statistical features such 
as mean, variance and median are employed to detect 

defects. In several other works (for instance in [12], just to 
cite one) digital image processing was used to determine 
pills size, number, total area and the mean area of pills on 
a fabric surface, especially based on thresholding. In [13] 
an edge-flow based fabric pilling segmentation algorithm 
that utilizes image colour, texture and phase of the edge 
flow vector was adopted in order to implement the 
pilling segmentation of various complex fabrics. This 
approach determines the total number of pills and the 
area and volume occupied by such pills. 
 
A remarkable approach to extract pill features from 
fabric images was proposed in [14]; using a two-
dimensional Gaussian fit theory authors train a ‘pill 
template’ using actual pill images, and determine a 
reasonable threshold for image segmentation using a 
histogram-fitting technique. Using such an approach 
five parameters to describe pill properties (pill number, 
mean area of pills, total area of pills, contrast and 
density) are defined; from such data a definition of 
pilling grade is also provided.  
 
Two-dimensional Fourier analysis and wavelet were used 
in [15] with the purpose of objectively evaluating textile 
surface changes, including pilling. A more recent 
approach [16] used frequency domain image processing 
to separate periodic structures in the image (the fabric 
weave/knit pattern) from non-periodic structures in the 
image (the pills). However, frequency domain analysis 
cannot provide location information. In [17] a CCD 
camera was used to capture the image of a laser line 
projected onto the surface of a series of fabric specimens; 
by means of trigonometric calculations the three-
dimensional shapes of the inspected fabrics are then 
evaluated. Such 3D reconstruction is then used to 
determine the number, area, and density of pills. 
 
Even if the above-mentioned methods implement 
different strategies for assessing pilling of fabrics, almost 
all of them are focused on pill detection i.e., on image 
segmentation. This segmentation is, in turn, aimed at 
determining parameters such as the number and density 
of pills and/or the area occupied by the pills on the fabric 
surface. Once this task is performed, pilling is obtained as 
a parameter inferred from the number of pills, or by a 
comparison between the image of non-defected fabric 
with the one with pills. Moreover, almost all methods 
use, at some point, an image binarization using one or 
more thresholds and morphological operations on 
images.  
 
The present work is meant to propose a different 
strategy for pilling evaluation based on the combination 
of image processing techniques and an AI-based 
approach. Instead of analysing images of pilled fabrics 
in order to segment the pills from the fabric web, the 
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main idea of the paper is to devise a computer-based 
method able to extract a number of objective parameters 
from images of pilled fabric samples so that a 
feedforward backpropagation artificial neural network 
(FFBP ANN) can be trained to determine the degree of 
pilling (i.e., to classify the fabric into a number of 
quality classes). Images of pilled fabric samples are 
acquired using an appositely devised machine vision 
system. Then, the acquired images are pre-processed in 
order to 1) discard colour information, 2) to correct non-
uniformity in illumination and 3) to extract the 11 
parameters described in the next section. As mentioned 
above, such parameters are used to train the ANN. 
Finally, the trained ANN is used as a tool to assess the 
degree of pilling of new fabrics. The work is partially 
based on a previous one by the same authors [18] whose 
aim was to detect and classify a number of defects 
possibly occurring on raw fabrics such as stains, thin 
and thick bars, fillings, double fillings, weft threads, 
double warp threads and broken ends. 
 
2. Machine vision system and parameter extraction 
 
With the aim of developing a rapid and efficient pilling 
grading system, the first step is to perform a laboratory 
pilling classification, according to the standard, to be 
used as a reference. On the basis of this classification it is 
then possible to build a machine vision system able to 
carry out the following tasks: (1) real-time acquisition 
with a CCD camera, (2) extraction of a number of 
parameters from the images and (3) development of an 
ANN based grading tool (the ANN is trained to evaluate 
a pilling degree on the basis of the parameters extracted 
in the task (2)). Figure 1 shows a flow diagram of the 
above-mentioned tasks. 
 

 
Figure 1. Flow diagram of the proposed procedure. After pilling, 
grading is performed by experts, a set of images is acquired, and, 
using image-processing algorithms, a number of parameters are 
extracted and used to train a neural network. Finally, a new set 
of fabrics is graded using the trained network. 

2.1 Laboratory pilling classification 

The main goal of this task was to create a set of pilled 
fabrics with different degrees of pilling in the range 1-5 
with a 0.5 interval between each degree. Nine different 
families of fabrics (with different colours and thicknesses) 
were selected (see Table 1). For each family, a set of 
samples was obtained by cutting nine specimens (38 mm 
diameter).  
 

Fabric Family Colour Thickness
I Red 6 mm 
II Brown 6 mm 
III Violet 6 mm 
IV Red 4 mm 
V Brown 4 mm 
VI Violet 4 mm 
VII Red 3 mm 
VIII Brown 3 mm 
IX Violet 3 mm 

Table 1. Fabric families, colour and thickness 
 
As a result, an overall amount of samples equal to 81 was 
obtained. Each sample was then tested with a Martindale 
pilling tester using an appropriate testing procedure, 
described below. This allowed the classification of each 
fabric, from each family, into nine different classes on the 
basis of visually-assessed pilling degree. As depicted in 
Table 2, the higher the class number, the lower the quality 
of the fabric surface: class 1 means no pilling while class 9 
means severe pilling. 
 
In order to have the same number of samples with the 
same pilling degree, the following procedure (for the sake 
of simplicity described for fabric family ‘I’) was carried out. 
 

Class Pilling degree Notes
1 1 No pilling 
2 1-2  
3 2  
4 2-3  
5 3 Moderate pilling 
6 3-4  
7 4  
8 4-5  
9 5 Severe pilling 

Table 2. Classification of fabrics into nine classes 
 
The first step consisted of archiving a sample classified in 
class 1. Since class 1 refers to a non-defected sample, this 
step is performed by archiving a sample before laboratory 
testing is carried out.  
 
The remaining eight samples were then laundered three 
times, conditioned in atmospheric conditions for textiles 
and placed on the eight abrading tables (available on the 
Martindale machine); afterwards, the samples were 
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rubbed against the rotating abradents (rotational speed 
equal to 45 rpm) at low pressure (3 kPa) and with 
continuously changing directions (Shaw, 1954). The 
machine was run using a 100-cycle evaluation interval 
and then visually evaluated by a panel of three experts in 
order to assess the pilling grade. Test cycles were carried 
out until the three experts agreed that a sample, among 
the eight placed ones, had ‘reached’ class 2. At that 
moment, one of the samples was removed from the 
Martindale machine and the test started again. This step 
was performed until each sample was assigned to a 
pilling degree, according to Table 2. A unique 
identification number (‘id’) was assigned to each sample; 
id.II.3., for instance, means that the sample taken from 
family II was graded as class 3. 
 
2.2 Machine vision system 
 
A machine vision system was devised in order to extract 
a number of parameters from pilled samples. Such a 
system consists of a sealed cabin, used in previous work 
[19]. The cabin hosts a Canon EOS 500D camera 
(provided with a 22.3 x 14.9 mm2 CMOS sensor with a 
resolution equal to 4752 X 3168 pixel2). A CIE standard 
illuminant D65 lamp, placed frontally to the fabric 
samples (i.e., with camera principal axis approximately 
parallel to the normal vector of the fabric surface), was 
chosen in order to perform a repeatable and controlled 
acquisition. Images were acquired with an exposition 
time of 1/4 s with F-stop f/11, from a distance of 
approximately 50 cm so that the entire circular sample 
would fill the framing. The spatial resolution is equal to 
0.013 mm/pixel so that the area of a single pill has 
approximately the size of 502-1002 pixels. Images are 
acquired in tiff format. 
 
Each of the 81 samples, classified using the above-
described procedure, was acquired with this machine 
vision system, and each acquired image was stored on a 
PC. Thus, the result of this acquisition task consists of a 
database of 81 images. 
 
With the aim of training the ANN system, the following 
11 parameters were extracted from the images: 

• Entropy curve related parameters (no. 2 parameters); 
• Total skewness and kurtosis (no. 4 parameters); 
• CV coefficient (no. 1 parameter); 
• Brightness-related parameters (no. 4 parameters). 

 
Prior to parameter extraction, a pre-processing of the 
images is provided with the aim of discarding both 
colour information and possible unevenness of 
illumination. This procedure is meant to extend the 
proposed work to other acquisition embodiments 
characterized by different illumination systems and even 
for environmental light conditions. 

2.3 Pre-processing of images 
 
Let J  be the generic fabric sample image, similar to the 
one represented, for instance in Figure 2 (sample with id. 
IV.4). 
 
Such an image encompasses both the sample and the 
(white) background that has to be discarded. As a 
consequence an automatic procedure for cropping all J  
images was devised.  
 
First, an Otsu-based thresholding [20] to the image J  was 
applied so as to obtain an image B  where the fabric 
sample is represented by a white, approximately circular, 
blob (pixel values equal to 1) and the background is black 
(pixel values equal to 0). On image B  the centroid 

),C(CC yx=  of the white object in the image (i.e., fabric 

sample) was then evaluated using widely known blob 
analysis algorithms [21]. Once C  is evaluated, it is possible 
to construct a square with the following vertexes v : 
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where a  is a user defined constant, set to 900 in the 
present work. 
 
Such vertexes were used for cropping the original image, 
thus resulting in a new imageH (sized aa×  pixel2=1800 x 
1800 pixel2) representing a portion of the fabric sample.  
 
In order to discard colour information, image H  was 
converted from the RGB to the *** baL  colour space. 
Such a conversion was performed first by converting 
RGB to the tristimulus values CIE XYZ, under the D65 
illuminant: 

65DXYZ MHH ⋅=                                  (2) 
 
where the matrix 65DM  (size 3x3) is given by: 
 
















=

99124800.007528470.018821200.0
00706879.062735500.018555560.0
02703280.0297361.057670000.0

65DM           (3) 

 
The knowledge of the XYZ values allows the colour 
transformation in the CIELAB space simply using the XYZ 
to CIELAB relations [22]. As a consequence the *** baLH  
image was evaluated and, finally, a new image L  of the 
fabric sample was defined as the *L  channel of *** baLH .  
 
Even if the acquisition is performed using the above-
mentioned appositely devised equipment, a homogeneous 
illumination of the samples is not assured. Accordingly, a 
method for removing possible unevenness in brightness 
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needs to be used. Moreover, this guarantees the method 
to determine pilling grading even when using different 
illuminating systems. With this aim, first, the point cloud 
S  representing the brightness of each pixel of image L  
was constructed. 
 

Figure 2. Fabric sample with id.IV.4. Original image J  is first 
thresholded and then automatically cropped, thus resulting in a 
final imageH . 
 
Then a least-squares approximation using B-splines [23] 
of S  was performed in order to discard brightness 
contribute due to fabric weft and warp so as to retrieve a 
surface Γ  resembling the mean image brightness. 
 
Let m  now be the mean value (scalar) of the entire 
matrix defining L ; once the surface Γ  is computed, a 
corrected image corrL  can be easily evaluated by using the 
following equation: 
 

),(),( jimjicorr ΓLL −+=                          (4) 
 
where i  and j  are, respectively, the row and column 
indexes of the images. 
 
In Figure 3, the point cloud S  and its approximation Γ  
are shown with reference to sample id.IV.4.  
 
In Figure 4, a comparison between the image L  and the 
final result of the proposed procedure, i.e., corrL , is shown 
again with reference to the same sample. As can be 
noticed, the difference between the mean brightness of 
the two images is less than 1/255 grey values. 
 
The above-described procedure was applied to all the 81 
fabric samples, thus obtaining a set of corrected images 

corrL . In Figure 5, the nine corrected images 
corresponding to the nine pilling classes for the fabric 
samples obtained for family IV are shown. 

Figure 3. Comparison between the surface S  constructed 
starting from the image L  and its B-splines least-squares 
approximation Γ  
 

Figure 4. (a) image L , with mean brightness equal to 105.64; (b) 
image corrL  with mean brightness equal to 105.77 

 

Figure 5. corrected images corresponding to the nine pilling 
classes for the fabric samples obtained for family IV 

5Rocco Furferi, Monica Carfagni, Lapo Governi, Yary Volpe and Patrizia Bogani: 
Towards Automated and Objective Assessment of Fabric Pilling



2.4 Image entropy curves 
 
Once each of the original fabric sample images is 
processed, thus obtaining a set of images [ ]corrL , it is 
possible to extract a series of parameters to be used to 
grade the fabric pilling. The first parameter is based on an 
image’s Shannon entropy [24].  
 
With this aim, each image corrL  was iteratively 
thresholded using values varying in the range [0-180] 
with a step equal to 1. For each of the 181 thresholded 
images (binary images), its image Shannon entropy value 

th  (with 1801=t ) was computed using the Shannon's 
entropy calculation [24,25]: 
 


=

⋅−=
1

0
2 )(log

i
iit pph                             (5) 

 
where ip  is the number of pixels with a histogram level 
value equal to i . The entire set of [ ]th , characterizing a 
given image corrL , defines an entropy curve.    
 
By definition, image entropy tends to zero if the image is 
uniform (flat), while it reaches its maximum value for 
highly disordered images. In Figure 6 the comparison 
between the entropy curves for differently graded fabric 
samples is shown (in the example of Figure 6 these are 
evaluated for Family IV). As expected, image entropy 
values tend to rise as the threshold increases (i.e., as the 
degree of disorder rises). Once a maximum value (equal 
to 1) is reached, entropy values decrease until the 
threshold is too high to effectively discriminate between 
objects in an image from the background. Once the 
entropy curve is computed, its standard deviation σ̂  is 
easily retrievable. 
 

Figure 6. Entropy curves for the 9 classes of family I 
 
Generally speaking, fabrics with fewer defects tend to be 
characterized by lower σ̂  values. Although σ̂  value 
varies considerably with pilling grades, the reliability of 
an approach based only on this parameter is far from 
being satisfactory for automatic fabric grading. In effect, 

fabric texture also has an effect on entropy curve values. 
This is the reason why such a parameter was not used as 
a stand-alone discriminant but instead together with the 
other parameters described below. 
 
A second meaningful parameter, related to the entropy 
curve, can be defined by observing that the maximum 
value generally tends to be shifted towards lower 
brightness values as the pilling class worsens. As a 
consequence the ratio μ̂  between the positions of 
maximum value for the entropy curve itself ( maxt ) and 180 
(see Eq. 6) was extracted for all the corrL  images. 
 

180
ˆ maxt

=μ                                        (6) 

 
2.5 Skewness and kurtosis 
 
In a recent study, the authors of [18] used an analogy 
between surface roughness definition in mechanics and 
the bi-dimensional brightness function. This analogy 
enabled the definition of two statistical parameters 
usually adopted for analysing mechanical rough surfaces: 
skewness and kurtosis. Skewness is a measure of the degree 
of asymmetry of a distribution [26]. If the left tail (i.e., the 
tail at the small end of the distribution) is more 
pronounced than the right tail (i.e., the tail at the large 
end of the distribution), the function is said to have 
negative skewness. Reversely, it has positive skewness. If 
the two are equal, the distribution has zero skewness.  
 
Kurtosis is a measure of whether the data are peaked or 
flat relative to a normal distribution, and is defined as a 
normalized form of the fourth central moment of a 
distribution [27]; the kurtosis for a standard normal 
distribution is equal to three; as a consequence, this value 
is used for normalizing the subsequently defined 
parameters kxK  and kyK  (see below).  
 
Being the generic fabric sample image described by the 
grey-level matrix corrL  with pixel values varying in the 
range 0-255, it is possible to evaluate the skewness and the 
kurtosis for each row and column of corrL  (i.e., through 
directions x and y ) by considering the grey-level map 
as a height map and using the well-known relationships 
used in mechanics [27].  
 
The result consists of two curves kxS  and kyS  (one for x  

direction and one for y  direction) and two curves uxK  
and uyK  for each fabric sample image. Both curve values 

change greatly from the mean value in the presence of 
particularly dark or light areas (i.e., in the presence of 
pills) while slightly oscillating around the mean value in 
uniform areas. In Figure 7, the kxS , kyS , uxK  and uyK  

curves for the fabric sample with id.IV.9 are shown.  
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Figure 7. kxS , kyS , uxK  and uyK  curves for the fabric sample 

with id.IV.9 
 
Once the curves are computed, it is possible to define for 
each image corrL  a set of new parameters: 

a) ( )kxkx Smean=Σ ; mean of absolute values of kxS  

(scalar value). 
b) ( )kyky Smean=Σ ; mean of absolute values of kyS  

(scalar value). 
c) ( )3−=Κ uxkx Kmean ; mean of the absolute value 

difference between the kurtosis uxK  and the kurtosis 
for a standard normal distribution (scalar value). 

d) ( )3−=Κ uyky Kmean ; mean of the absolute value 

difference between the kurtosis uyK  and the kurtosis 

for a standard normal distribution (scalar value) 
 
In case of a fabric without pills, such four parameters 
roughly tend to zero, corresponding to an oscillating 
distribution close to the mean value (for a distribution of 
infinite accidental values, they would have exactly zero 
value). In the presence of one or more dark (or light) 
areas (i.e., pills), such parameters tend to assume values 
remarkably different from zero, thus indicating the 
occurrence of one or more peaks in distribution. In other 
words, the above-defined parameters characterize, by 
some means, fabric-pilling properties. However, as in the 
case of entropy curves, these are not used as stand-alone 
parameters for grading the fabrics, but rather as 
parameters for the ANN-based system. 
 
2.6 CV and brightness related parameters 
 
In addition to those defined above, a parameter 
experimentally proven to be related to the pilling grade of 
fabrics is the so-called ‘variation parameter’ CV , defined 
as follows [18]: 
 

μ
σ=CV                                        (7) 

 

where σ  and μ  are, respectively, the standard 
deviation and the mean value of the brightness level for 

the image corrL . This (dimensionless) parameter tends to 
zero for fabrics without pills (and more in general for 
images without irregularities or defects), while it is 
considerably higher than zero for a fabric with pills.  
 
Finally, four more parameters were extracted from all of 
the images of the set [ ]corrL : 

- )max( xD and )max( yD , defined as the maximum distance 

between the maximum brightness values (along x 
and y axes) and the mean value, divided by 255 for 
normalization. 

- )min(xD  and )min( yD , defined as the minimum distance 

between the minimum brightness values (along x 
and y axes) and the mean value, divided by 255 for 
normalization.  

 
Since in the generic image corrL  non-uniformities in 
illumination have been previously removed, the 
differences between mean value and local brightness 
values are mainly due to warp, weft and presence of pills. 
Moreover, the maximum (or minimum) brightness value 
is, usually, found in presence of darker (or lighter) areas. 
 
3. ANN-based pilling classification 
 
The major contribution of this work is to simultaneously 
take into account the parameters described above in order 
to effectively perform an automatic fabric pilling grading. 
This is accomplished by using the parameters for training a 
FFBP ANN that allows reaching the objectives of this work 
without formulating experimental thresholds for each 
statistical parameter. This is a straightforward approach 
able to prevent false alarms or unreliable detections and 
classifications. The use of an ANN-based approach is 
particularly suitable for the classification problem studied 
since, although such parameters are recognized as being 
influenced by pilling grade, the influence of each of them 
singularly is not known a priori. A properly trained FFBP 
ANN is capable of generalizing the information on the 
basis of the parameters acquired during the training phase; 
in order to teach the ANN to perform pilling grading, 
proper training and target sets are required. 
 
3.1 Training Set 
 
As described above, from each image corrL  the following 

11 parameters were computed: σ̂ , μ̂ , kxΣ , kyΣ , kxΚ , kyΚ , 

CV , )max( xD , )min(xD , )max( yD  and )min( yD . In Table 3, such 

parameters, referred to one of the families (IV), are listed. 
 
Since 81 fabric images were selected during the 
laboratory-testing phase, a database of 81x11 parameters 
was built, consisting of the following matrix P : 
 

[ ]8121 ,,,,, PPPPP  i=                           (8) 
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σ̂ μ̂ kxΣ kyΣ
Class 1 0.611 0.263 0.039 0.086 
Class 2 0.655 0.279 0.111 0.120 
Class 3 0.616 0.287 0.146 0.143 
Class 4 0.627 0.299 0.180 0.173 
Class 5 0.583 0.299 0.197 0.186 
Class 6 0.577 0.316 0.243 0.231 
Class 7 0.550 0.317 0.266 0.246 
Class 8 0.560 0.328 0.282 0.253 
Class 9 0.566 0.324 0.295 0.251 

kxΚ kyΚ CV )max(xD
Class 1 0.093 0.086 0.031 0.164 
Class 2 0.134 0.098 0.079 0.146 
Class 3 0.242 0.199 0.122 0.213 
Class 4 0.237 0.303 0.201 0.279 
Class 5 0.303 0.312 0.231 0.286 
Class 6 0.372 0.397 0.229 0.272 
Class 7 0.404 0.388 0.346 0.301 
Class 8 0.498 0.441 0.307 0.351 
Class 9 0.474 0.533 0.342 0.346 

)min(xD )max( yD )min( yD  

Class 1 0.056 0.072 0.076  
Class 2 0.067 0.069 0.064  
Class 3 0.107 0.050 0.058  
Class 4 0.176 0.067 0.060  
Class 5 0.290 0.108 0.102  
Class 6 0.288 0.183 0.163  
Class 7 0.302 0.191 0.193  
Class 8 0.395 0.187 0.171  
Class 9 0.404 0.193 0.181  

Table 3. Parameters for family IV 
 
where the generic vector iP  is given by: 
 

T

iyxyx

kykxkykx
i DDDDCV 










 ΚΚΣΣ
=

)min()min()max()max( ,,,,
,,,,,ˆ,ˆ μσ

P                (9) 

 
In order to validate the behaviour of the ANN, only a 
subset of data was used to train the network i.e., the 
actual target set is defined as a subset (matrix sized 
50x11) trP  of P  obtained by randomly selecting 50 
columns from the dataset. The remaining 31x11 matrix 
defines a subset valP  used for validating the ANN and, 
for this reason, is denoted as a ‘validation set’. 
 
3.2 Target set 
 
The aim of the ANN is to classify the fabric into one of 
the nine classes shown in Table 2. For this purpose, for 
each column iP  of trP , a target vector iT  (size 9x1) is 
defined so that all elements are equal to 0 except for the 
one in the position corresponding to the class assigned to 
the fabric sample under consideration. For the sake of 
clarity, if the generic thi  fabric is graded as class 4, its 
target vector is iT = [0,0,0,1,0,0,0,0,0]. According to the 
definition provided, the target set results in a binary 
matrix T  sized 50x11 whose columns are the 50 vectors 

iT . 

3.3 ANN architecture and training 
 
The network devised for the classification system, whose 
structure is shown in Figure 8, has three layers (input, 
hidden and output layer), a hidden layer made of 
sigmoid neurons followed by an output layer of logistic 
neurons, 11 input, h hidden, and nine output units. 
Usually it is possible to choose the best network by 
estimation, for a given problem, of the network 
architecture and parameters within a set of candidate 
configurations. For this purpose, the number of hidden 
units was varied from 12 to 33 with a step of three units, 
comparing the ANN performance using the training trP
and the validation data valP as described below. The final 
network is characterized by h = 15 units.  
 
Training was carried out using a rule based on the 
Levemberg-Marquardt algorithm [28] with a combination 
coefficient μ = 0.05. Such a value [28] allows the updating 
of the ANN weights in a stable and fast way by 
approximating the Hessian Matrix using Jacobian matrix. 
During the training, the weights and the biases of the 
network are iteratively adjusted to minimize a specified 
network error function (in this work the mean square 
error (MSE) correspondent to the training set elements is 
used). The error is monitored during the training process, 
and normally decreases during the initial phase of the 
training.  
 

Figure 8. ANN architecture consisting of three layers: the input 
layer is composed of 11 neurons; the hidden layer is composed of 
15 neurons; the output layer consists of nine neurons, one for 
each class. In this example the ANN accepts as input a vector of 
parameters extracted for a ‘class 4’ fabric sample thus trained 
using a binary output with one value in fourth position. 
 
When the network becomes excessively specialized in 
reproducing the training data, the validation error (i.e., 
the MSE evaluated using the set valP ) usually begins to 
rise. As a consequence, when the validation error 
increases for a specified number of iterations, the training 
is stopped, and the weights and biases at the minimum 
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validation error return. The ANN was developed into a 
MATLAB® environment, equipped with Neural Network 
Toolbox®. Training stopped after 43 epochs with a 
regression value R2 (measuring the correlation between 
outputs and targets) equal to 0.943 for the whole training 
set.  
 
Training, for the set of 81 training vectors, is performed in 
12 seconds using a PC with Core i5 and 8 Gb RAM. Once 
trained, the ANN accepts, as an input, any 11-element 
vector in (whose elements are the 11 parameters extracted 
from corrL  images) and computes the correspondent 
binary output vector Out. 
 
4. Towards pilling assessment: simulation  
of ANN with new inputs 
 
In order to test the performance of the devised approach 
a series of six new fabric families (i.e., families X, XI, XII, 
XIII, XIV and XV) were collected and graded according to 
the procedure described in Section 2.2, thus resulting in a 
set of 54 differently graded fabric samples. Each sample 
was then acquired using the machine vision system 
described in Section 2.2 and the resulting images were 
processed in order to extract the corresponding 11 
parameters as described in Sections 2.3-2.6. Finally, the 
set of parameters was used to simulate the ANN, thus 
obtaining a pilling grading for the 54 new samples.  
 
With the aim of assessing the performance of the pilling 
grading system, a reliability index η , given by the 
following equation, was used: 
 

n

nnn ccc αα α
αη

−+ ⋅⋅−⋅+
=

5.06.0

                  (10) 

 
where cn  is the total number of fabric samples correctly 
classified, α+cn and α−cn  are, respectively, the number of 
fabrics classified in the classes thc )( α+  and thc )( α− , are 
c  the correct class (i.e., the class decided by the experts) 
and n  the overall number of inspected fabric samples. 
α  varies in the range [1-8]. 
 
Since a misclassification in class )( α+c  is conservative 
(i.e., the fabric is erroneously classified in a worse class 

with respect to the actual one), a weight of 
α

6.0  is used 

for evaluating system performance.  
 
In effect, this misclassification is not considered to be 
serious by textile experts since the fabric brought to the 
market is actually even better than declared by the textile 
laboratory. Obviously the worse is the classification, the 
lower is the weight.  

Conversely, if the ANN-based system misclassifies to a 
better class, i.e., )( α−c , it means that a fabric is 
considered better than it actually is; this is an undesired 
situation for textile experts since the risk is to put in the 
market fabrics with an optimistic pilling grade 
evaluation; as a consequence the system’s performance is 
reduced using a weight equal to α⋅5.0 . As a 
consequence, serious misclassification leads to strong 
reliability index reduction.  
 
In Table 4 the results of ANN simulation are compared 
with the classification performed by experts. The 
misclassification in terms of erroneous class is also 
provided. The reliability index for the 54 tested fabric 
samples is equal to 88.52%. 
 
Since the present paper introduces a metric for pilling 
classification based on neural networks (that processes 
the image-based parameters so as to perform a 
supervised classification) it is useful to compare the 
obtained results with those obtainable using two other 
known methods: self-organizing feature map (SOFM) and 
k-means clustering [31].  
 
SOFM is a type of ANN that produces a low-dimensional, 
discretized representation of the input space of the 
training samples; in this case the SOFM should be able to 
map a transformation from 911 ℜ→ℜ , i.e., from the input 
space of image parameters to classes. Since SOFM uses a 
neighbourhood function to preserve the topological 
properties of the input space, the space is processed in an 
unsupervised manner.  
 
As a consequence the classification performed by this 
method occurs irrespective of the knowledge provided by 
visual human classification, being based solely on the 
topological position of parameters in the input space. 
Results obtained using a SOFM-based classification using 
an output map of size 3x3, devised in a MATLAB® 
software environment, are listed in Table 4. The reliability 
index, using SOFM, for the 54 tested fabric samples was 
43.52%; this result is quite unsatisfactory since the SOFM 
tends to underestimate the pilling grade. 
 
k-means clustering is a technique used to perform a partition 
of n observations into k clusters, in which each observation 
belongs to the cluster with the nearest mean, serving as a 
prototype of the cluster. In this case the aim was to perform a 
partition of 11 parameters into nine classes.  
 
As in the case of SOFM, the classification performed 
using k-means is unsupervised. Applied to the selected 
parameters extracted from images as described above, 
this classifier performs better than SOFM, but the results, 
shown in Table 4, are still unsatisfactory with respect to 
those obtained using the ANN-based method.  
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1 1  1 1 1 
2 2  1 1 2 
3 3  1 1 2 
4 4  1 3 4 
5 5  1 5 5 
6 6  1 6 5 
7 7  1 6 7 
8 9 1+c 0.6 8 7 
9 9  1 8 8 

XI

6 
m

m
 

1 1  1 1 1 
2 2  1 2 2 
3 3  1 4 3 

4 4 1−c  -
0.5 

4 5 

5 6 1+c  0.6 4 5 
6 6  1 5 6 
7 8 1+c  0.6 7 6 
8 8  1 8 6 
9 9  1 8 9 

XII

6 
m

m
 

1 1  1 1 1 
2 2  1 1 2 
3 2 1+c  0.6 2 4 
4 4  1 4 5 
5 5  1 5 5 
6 6  1 6 6 
7 7  1 6 7 
8 8  1 6 8 
9 9  1 7 9 

XIII 

3 
m

m
 

1 1  1 1 2 
2 2  1 3 3 
3 3  1 3 2 
4 5 1+c  0.6 4 4 
5 5  1 5 4 
6 6  1 5 6 
7 8 1+c  0.6 6 7 
8 8  1 8 7 
9 9  1 8 9 

XIV 

3 
m

m
 

1 1  1 1 2 
2 2  1 2 2 
3 3  1 3 3 
4 6 2+c  0 3 4 
5 5  1 5 5 
6 6  1 5 6 
7 8 1+c  0.6 7 7 
8 8  1 8 7 

9 8 1−c  -
0.5 

8 9 

XV

3 
m

m
 

1 1  1 2 1 
2 2  1 2 2 
3 3  1 3 4 
4 4  1 4 4 
5 5  1 5 5 
6 6  1 7 5 
7 7  1 7 7 
8 9 1+c  0.6 9 8 
9 9  1 8 9 

Table 4. Comparison between ANN-based classification and 
experts' classification, SOFM classification and k-means 
clustering-based classification, respectively 
 
The reliability index, using k-means, for the 54 tested 
fabric samples is equal to 65.19%. These results are not  
 

completely unexpected; even if each parameter extracted 
from fabric images describes a different property of the 
fabric texture, the pilling classification is performed by 
experts on the basis of the overall aspect of the fabric (in 
comparison with a standard). In other words, the human-
based classification consists of an (unconscious) critical 
elaboration of visible features in the fabric aimed at 
performing a classification.  
 
Accordingly, supervised training seems to be more 
reliable than unsupervised methods, where the 
parameters are processed only in terms of topological 
distances in the 9ℜ  space (classes). 
 
In order to test the repeatability of the proposed method, 
with particular reference to the image correction 
algorithm described in Section 2.3, the entire set of fabrics 
composing Family XI is acquired by moving the CIE 
standard illuminant D65 so that the projected light on the 
fabrics under investigation is deliberately non-
homogeneous.  
 
In particular, two different acquisitions are performed: 
the first is obtained by tilting the illuminant with an angle 
of approximately 30° with respect to the fabric surface 
normal vector (in both x and y directions); the second 
acquisition is performed by tilting the illuminant with an 
angle of approximately 80° along the x direction and 10° 
along the y direction.  
 
In Figure 9 the two different acquisitions of the fabric 
belonging to Family XI and classified by experts in class 5 
are depicted. In particular, in Figure 9a an example of a 
fabric image acquired by tilting the illuminant with an 
angle of approximately 30° with respect to the fabric 
surface normal vector (in both x and y directions) is shown; 
in Figure 9b an example of fabric image acquired by tilting 
the illuminant with an angle of approximately 80° along 
the x direction and 10° along the y direction is depicted. 
 

 
Figure 9. a) example of a fabric image acquired by tilting the 
illuminant with an angle of approximately 30° with respect to the 
fabric surface normal vector (in both x and y directions); b) 
example of fabric image acquired by tilting the illuminant with 
an angle of approximately 80° along the x direction and 10° 
along the y direction 
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The acquired images are corrected, and the 11 fabric 
parameters to be used as input for the ANN are 
consequently extracted. In Table 5 the values of the 
extracted parameters for the fabric taken as an example in 
Figure 9 are listed.   
 
Finally, the ANN is simulated using the 11 parameters. 
The results of classification, listed in Table 6, show that 
the method is able to coherently classify the fabrics even 
using a different illumination setup. Obviously, this 
simple test is not sufficient to assess the reliability of the 
method under strongly different conditions and further 
analysis is recommended for the future.  
 

Parameters
Controlled 

illumination 
(CI) 

Test 1 Test 2 

σ̂ 0.601 0.603 0.605 

μ̂ 0.308 0.311 0.312 

kxΣ 0.188 0.198 0.192 

kyΣ 0.192 0.196 0.196 

kxΚ 0.306 0.313 0.31 

kyΚ 0.331 0.295 0.295 

CV 0.241 0.245 0.245 

)max(xD 0.299 0.303 0.303 

)min(xD 0.304 0.301 0.301 

)max( yD 0.111 0.115 0.115 

)min( yD 0.112 0.116 0.116 

Table 5. Comparison between parameters extracted using the 
proposed method under controlled illumination and, respectively, 
by tilting the illuminant with an angle of approximately 30° with 
respect to the fabric surface normal vector (test 1) and by tilting the 
illuminant with an angle of approximately 80° along the x 
direction and 10° along the y direction (test 2) 
 

Quality 
class  

by experts 

ANN-based 
classification 

in CI 

ANN-based 
classification 

Test 1 

ANN-based 
classification 

Test 2 
1 1 1 1 
2 2 2 2 
3 3 3 3 
4 4 4 4 
5 6 5 6 
6 6 6 6 
7 8 8 7 
8 8 8 8 
9 9 9 9 

Table 6. Classification results for Family XI using different 
illuminations 
 
5. Conclusions and discussion 
 
In the present work a method for automatically 
classifying the pilling grade of fabrics is devised and 
tested. The method integrates hardware and software, 
based on ANNs, in order to perform the classification. 

The proposed method is proven to be effective since it 
respects human-based classification with a reliability of 
around 87.5%. Referring to the test set of 54 fabrics, the 
ANN-based software was able to correctly classify 44 
fabrics (81.48% of the fabrics) and to classify nine fabrics 
in a conservative way. This means that if the textile 
company is willing to accept a conservative 
misclassification (i.e., a classification in class ( α+c ) , the 
system’s performance rises to 96.3%. 
 
The definition of a reliability index, as discussed in the 
previous section, is crucial for two reasons: first, the index 
obviously enables the measurement of the performance of 
the developed method; second, it allows a comparison 
between the proposed method and other analogous 
systems (not referring to pilling grade but to machine 
vision systems in the textile field) provided by the 
literature. For instance in [29] an accuracy varying in the 
range 87.6-97.1% is assessed. In [30] an average 
classification rate is defined, varying in the range 84.4%-
98.2%. Since these results support those provided by the 
present work, it can be asserted that the proposed 
method is aligned to the state of the art of machine 
vision-based systems in the textile field.  
 
It must be noted that the proposed method still has some 
crucial drawbacks. The most important limitation is a 
typical weakness of ANN-based methods: to work 
properly, the system needs to be trained. This means that 
for any kind of fabric to be inspected, at least a set of 
specimens has to be processed according to the procedure 
described in Section 2.1.  
 
In effect, there is no experimental evidence that ANN 
trained to perform pilling assessment on a certain type of 
fabric is reliable for performing classification for other, 
different, textiles. Since the experimental procedure is 
time-consuming, the setup of the system requires a 
preliminary phase consisting of the construction of a 
database of fabric typologies.  
 
Moreover, in case that the textile company using the 
method starts to produce a new kind of fabric, again the 
characterization of pilling grades has to be performed in 
order to train the ANN.  
 
Fortunately, the computational time for extracting both 
image-related information and for training the ANN are 
not time-consuming: image processing is performed in 
less than 15 seconds using a PC with Core i5 and 8 Gb 
RAM, while training, depending on the size of the 
training set, may take from a few seconds (e.g., training 
set sized 50x11) to 2 minutes (e.g., training set sized 500 x 
11). Another important issue to be taken into account is 
that the method has been tested on monochromatic 
fabrics. As a consequence it has to be tested further, and 
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improved, when dealing with mélange or speckle fabrics  
where two or more colours coexist in weft and warp (or, 
generally speaking, in fibres).  
 
Future work will be also addressed to test the reliability 
of the method under several non-homogeneous light 
conditions. In fact, the results in the present work 
demonstrate that image correction can reduce the impact 
of incorrect light on fabrics; this necessitates further study 
to assess if the method is effective using different kinds of 
illuminant placed in different positions, and even in the 
extreme conditions of environmental light. Moreover, 
since a number of methods for correcting images with 
non-uniform backgrounds exist [32], it could be useful to 
test a range of such methods in this particular textile 
application.  
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