
Marco Paolieri

Analysis and verification of
regenerative stochastic systems

Ph.D. Thesis

Università di Firenze

Dottorato di Ricerca in

Ingegneria Informatica, Multimediale
e delle Telecomunicazioni

Ciclo XXVII
Coordinatore Prof. Luigi Chisci

Analysis and Verification of
Regenerative Stochastic Systems

Settore scientifico disciplinare ING-INF/05
(Sistemi di elaborazione delle informazioni)

Dottorando
Dott. Marco Paolieri

.......................................

Tutore
Prof. Enrico Vicario

.......................................

Coordinatore
Prof. Luigi Chisci

.......................................

Anni 2012/2014

Contents

1 Introduction . 1
1.1 Organization . 3

2 Stochastic Time Petri Nets . 5
2.1 Definition . 5
2.2 Probabilistic semantics . 15
2.3 The marking process . 17
2.4 Transient analysis of the marking process 19

2.4.1 Markovian marking process . 22
2.4.2 Markov regenerative marking process 26

3 Stochastic State Classes . 35
3.1 Definition . 35
3.2 Calculus of successor classes . 37
3.3 Transient measures . 41

4 Regenerative Transient Analysis . 45
4.1 Regeneration conditions in STPNs . 46
4.2 Regenerative stochastic state classes . 47
4.3 Detection of regeneration points . 50
4.4 Computation of the kernels . 53

5 Verification of an Interval Until Operator 57
5.1 Probability space and cylinder sets . 58
5.2 Probabilistic temporal logic . 60
5.3 Markov renewal equations for the interval until operator 62
5.4 Numerical integration and kernels evaluation 66
5.5 Eliminating the lower bound α . 71
5.6 Case study: Fischer’s mutual exclusion protocol 72

6 Conclusion . 81

References . 83

Chapter 1

Introduction

Predicting the operational properties of a system is a fundamental task of en-
gineering sciences. System models allow to highlight the critical mechanisms
for the satisfaction of performance requirements, enabling an early assess-
ment of design choices. Nonetheless, the modeling of engineering and in-
formation systems, such as computer systems, telecommunication networks,
critical infrastructures or manufacturing systems, is often complex due to
the intertwined effects of concurrency and probability. Distributed process-
ing tasks, for example, are spawned on several nodes in a cluster and proceed
concurrently; during their execution, tasks can start new activities and wait
for their completion in order to produce the final result of the computation.
In addition to concurrency, systems often include randomness. Nodes of a
cluster, hardware components or gas distribution pipes can all fail unex-
pectedly. Similarly, the amount of work required from the system is rarely
known in advance: requests to a web server (and response lengths), commits
to a database, or phone calls in a telecommunication network are naturally
modeled as stochastic phenomena governed by probability laws.

On the one hand, probability allows one to abstract over unnecessary
real-world details and summarize them quantitatively. Although apparently
random, the failure of a hardware component or that of a network switch
are governed by physical laws; analogously, a call on the telephone network
is the result of complex interactions among users. In most circumstances,
modeling these phenomena in great detail would not help with performance
analysis, but lead the modeler astray from a clear understanding of the
system.

On the other hand, probability can also be introduced purposefully in
the design of the system. Randomization is essential, for example, to break
symmetry in distributed systems: when a collision has been detected on a
shared communication medium, how should the transmitters react? A simple
solution is to let each transmitter wait for a random time: if the waiting times
sampled by the transmitters are sufficiently far apart, a new collision will
occur with low probability.

2 1 Introduction

To further complicate matters, most real-world systems exhibit not only
concurrency and probability, but also “memory”. As time advances, the
timers associated with concurrent events change their distributions, and the
logic state of the system does not carry enough information to predict its
future evolution. This phenomenon is intrinsic to aging processes: given a
working component, for example, the probability of a failure in the next
time unit initially decreases over time due to “infant mortality”, and then
increases due to progressive degradation. Another example is that of time-
outs or watchdog timers that trigger a recovery operation after some deter-
ministic time: the distribution of their remaining time is different after each
event, as it reflects the random time spent in previous states. Moreover, the
correct operation of real-time systems can depend crucially on periodic task
releases and activities with bounded worst-case execution times in order to
guarantee deadlines, mutual exclusion, or other concurrency requirements.
Stochastic models of these mechanisms need generally distributed timers
accumulating memory over time.

This thesis ventures into the analysis of non-Markovian stochastic sys-
tems. We focus on regenerative systems, which “lose memory” and prob-
abilistically restart after selected discrete events. The corresponding time
instants, called regeneration points, decompose the execution paths of the
process into independent “epochs” with distributions determined only by
their initial state (and not by the process evolution in previous epochs).

The work presents a solution for the transient analysis of systems in which
multiple generally distributed timers can be started or stopped indepen-
dently, but regenerations are encountered in a bounded number of discrete
events. Regenerations are detected in the state space and epochs are ana-
lyzed with the method of stochastic state classes, which compute the joint
probability density function of timers after each discrete event. Notably, the
approach extends the class of models amenable to state-of-the-art analytical
or numerical techniques.

Building on these results, we investigate the problem of verifying an in-
terval until operator in a regenerative system. The aim is to check whether,
with sufficient probability, the system satisfies a goal condition at some time
in a given interval [α, β] without ever hitting any “forbidden” state. This
problem has been widely studied for memoryless systems, in which the evo-
lution before and after α (the beginning of the time window [α, β]) can be
analyzed independently using transient analysis. Such approach cannot be
generalized to regenerative systems due to the memory accumulated by the
process at time α.

A näıve solution could add a deterministic timer in parallel to the model
so as to represent the elapse of α and register the corresponding event in the
logic state. Unfortunately, this solution crucially affects regenerative tran-
sient analysis, since it is now the deterministic timer that carries memory,
forgoing all regenerations points of the model before α.

1.1 Organization 3

We present a solution based on a renewal argument specific to the interval
until operator, which results in bivariate integral equations (instead of the
univariate Markov renewal equations of transient analysis). By establishing
the theoretical relationship between stochastic state classes and cylinder sets
of sample paths, an algorithm is formulated based on the enumeration of
stochastic state classes limited to the first regenerative epoch. The solution
fully leverages the repetitive structure of the underlying stochastic process,
both before and after α, and results advantageous with respect to other
analytical approaches.

1.1 Organization

The thesis is organized as follows.
In Chapter 2, stochastic time Petri nets are presented. We provide a

probabilistic semantics of the model and discuss the class of its underlying
stochastic process, recalling the main concepts of Markov renewal theory.

Chapter 3 provides an introduction to the method of stochastic state
classes, presenting the properties of the computation of successor classes and
highlighting the most relevant measures that can be derived about model
executions.

In Chapter 4, we introduce the concept of regeneration, provide an algo-
rithm to detect regeneration points over sequences of discrete events, and
leverage measures computed from stochastic state classes to evaluate the
local and global kernels of a Markov regenerative process. In turn, the local
and global kernels are the basis for transient analysis with Markov renewal
equations.

Chapter 5 presents the probabilistic model checking problem for Boolean
combinations of interval until operators. In order to reason about measures
of execution paths of the model, a probability space of paths is defined for
stochastic time Petri nets. Through a renewal argument on the time of the
next regeneration and on the time remaining before the lower bound α, we
formulate a set of bivariate renewal equations specific to the interval until
operator. The numerical solution in the time domain is discussed, and the
computation of the required parameters is proved possible with stochastic
state classes. A case study is also presented, analyzing a probabilistic variant
of Fischer’s mutual exclusion protocol.

Finally, Chapter 6 draws the conclusions of this work.

Chapter 2

Stochastic Time Petri Nets

Stochastic time Petri nets (STPNs) are a powerful and convenient high-
level formalism for the modeling of systems with concurrency, probability
and real-time constraints.

Multiple activities with generally distributed duration can be enabled by
adding “tokens” to “input places” that represent preconditions; in turn, the
fastest activity to complete can start or stop other activities by removing
tokens from its input places and adding tokens to its “output places”. This
mechanism can represent precedence, synchronization, and parallel execu-
tion of activities. In addition, deterministic durations or probability density
functions with bounded supports can produce an ordering between events
that is often essential for the correct operation of real-time systems.

In this chapter, we introduce the formalism and provide a probabilistic se-
mantics in terms of the stochastic process which records, after each discrete
event, the new marking (number of tokens in each place) and the remain-
ing time of enabled activities. From this process, we construct the marking
process of the net and analyze its properties, motivating the discussion with
examples of models and relevant measures.

2.1 Definition

Stochastic time Petri nets introduce random durations and probabilistic
choices in Petri nets, with particular emphasis on minimum and maximum
activity durations. Vertical bars called transitions represent activities, while
the logic state of the net is represented by tokens contained in places. A
directed arc from a place to a transition represents a precondition: the tran-
sition is enabled only if the place (called an input place) contains at least
one token. In contrast, an arc terminating in an empty circle (called in-
hibitor arc) achieves the opposite effect: the transition is enabled only if the
connected place (called inhibitor place) is empty.

6 2 Stochastic Time Petri Nets

Immediately after becoming enabled, each transition samples a time to
fire (also called timer value or clock reading) according to a given probability
density function (PDF). When multiple transitions are enabled, the one with
minimum time to fire will fire first. The token count of each place, which we
call marking, is updated after a firing according to the usual “token game” of
Petri nets: one token is removed from each input place of the fired transition,
and one token is added to each of the output places connected with directed
arcs starting from the transition.

As a result, new transitions can be enabled (adding tokens to their input
places, or removing tokens from their inhibitor places) or disabled (removing
tokens from their input places, or adding tokens to their inhibitor places).
Transitions that are enabled before the firing, after the tokens removal, and
after the tokens addition are called persistent : their times to fire are not
resampled, but instead decreased by the time to fire of the transition that
just fired (which corresponds to the sojourn time in the previous logic state).

Let us formalize the concept and provide some examples.

Definition 2.1 (Stochastic time Petri Net). A stochastic time Petri net
is a tuple 〈P, T,A−, A+, A◦, EFT, LFT, f, w〉 where:

• P is a finite set of places;
• T is a finite set of transitions, disjoint from P ;
• A− ⊆ P × T is the precondition relation;
• A+ ⊆ T × P is the postcondition relation;
• A◦ ⊆ P × T is the inhibitor relation;
• EFT : T → Q>0 and LFT : T → Q>0 ∪ {+∞} associate each transi-

tion t ∈ T with an earliest firing time EFT (t) and a latest firing time
LFT (t) ≥ EFT (t);

• f : T → (R>0 → [0, 1]) associates each transition t ∈ T with a probability
density function ft with support [EFT (t), LFT (t)];

• w : T → R>0 associates each transition with a positive weight.

Given an STPN 〈P, T,A−, A+, A◦, EFT, LFT, f, w〉, a marking m ∈ NP
assigns a nonnegative number of tokens to each place of the net and identifies
a set of enabled transitions E(m) according to the usual rules of Petri nets:
a transition t is enabled by m if m assigns at least one token to each of its
input places and no tokens to its inhibitor places. Formally,

E(m) =
{
t ∈ T | ∀(p, t) ∈ A−,m(p) ≥ 1 and ∀(p, t) ∈ A◦,m(p) = 0

}
.

The state of the net includes the marking and the time remaining before
the firing of each enabled transition.

Definition 2.2 (State). The state of an STPN is a pair 〈m,~τ〉 where m ∈
NP is a marking and ~τ ∈ RE(m)

>0 is a times to fire vector assigning a remaining
time to each enabled transition.

2.1 Definition 7

Given a state s = 〈m,~τ〉, the next transition is selected from the set

Emin(〈m,~τ〉) = arg min
t∈E(m)

~τ(t)

of enabled transitions with minimum time to fire. The selection is performed
randomly according to the discrete distribution given by transition weights:
in particular, each transition t ∈ Emin(s) is selected with probability

w(t)∑
u∈Emin(s) w(u)

.

The state s′ = 〈m′, ~τ ′〉 reached after the firing of t is computed according to
the following rule.

Definition 2.3 (State update rule). Given a state s = 〈m,~τ〉 for the
STPN 〈P, T,A−, A+, A◦, EFT, LFT, f, w〉 and an enabled transition t ∈
Emin(s) with minimum time to fire in s, the successor state of s through t
is s′ = 〈m′, ~τ ′〉 where:

• The new marking m′ is derived from m by removing one token from each
input place of t, resulting in the marking

mtmp(p) =

{
m(p)− 1 if (p, t) ∈ A−,

m(p) otherwise,

and adding one token to each output place of t, resulting in

m′(p) =

{
mtmp(p) + 1 if (t, p) ∈ A+,

mtmp(p) otherwise.

• The new time to fire ~τ ′(u) of each transition u ∈ E(m′) enabled by m′

and also by m and mtmp (which we call persistent to the firing) is equal
to ~τ ′(u) = ~τ(u) − ~τ(t). The time to fire of each persistent transition is
thus reduced by the sojourn time of the STPN in the previous marking,
which corresponds to the minimum time to fire ~τ(t).

• Other transitions enabled by m′ are called newly enabled, and the time
to fire ~τ ′(u) of each is sampled independently in [EFT (u), LFT (u)] ac-
cording to the probability density function fu associated with u in the
STPN definition.

Without loss of generality, we suppose that the initial marking m0 of the
net is given, while the initial times to fire ~τ0 of the transitions E(m0) =
{t1, t2, . . . , tn} enabled by m0 are sampled according to some initial PDF
f~τ0 over Rn>0. It is common to assume that all transitions are initially newly
enabled, and thus

8 2 Stochastic Time Petri Nets

f~τ0(x1, . . . , xn) =

n∏
i=1

fti(xi).

More generally, we are interested in the case that each transition ti ∈ E(m0)
has been enabled for a deterministic time di. Conditioned to this hypothesis,
the reduced times to fire are then independently distributed according to the
PDF

f~τ0(x1, . . . , xn) =

n∏
i=1

fti(xi + di)∫ LFT (ti)

max{di,EFT (ti)} fti(u) du

on the support

D~τ0 =

n∏
i=1

[
max{0, EFT (ti)− di}, LFT (ti)− di

]
.

Following the usual terminology of stochastic Petri nets, a transition t
is called immediate (IMM) if EFT (t) = LFT (t) = 0 and timed otherwise.
A timed transition is called exponential (EXP) if EFT (t) = 0, LFT (t) =
+∞ and ft(x) = λ e−λx for some rate λ ∈ R>0. Transitions with times to
fire distributed according to non-exponential distributions are called general
(GEN); as a special case, a general transition t is deterministic (DET) if
EFT (t) = LFT (t) > 0. For an immediate or deterministic transition t,
the probability mass is concentrated on the value x = EFT (t) = LFT (t).
With an abuse of notation, we denote its probability density function by
ft(x) = δ(x− x) and, for any function g, we write∫

g(x) δ(x− x) dx

for the Lebesgue-Stieltjes integral∫
g(x) d1[x,∞)(x)

where 1A represents the indicator function of the set A:

1A(x) =

{
1 if x ∈ A,

0 otherwise.

Example 2.1 (Preemptive Single-Server Queue). Consider the model of a
queue serving a population of two customers. Each customer enters the queue
after some activity, gets served, and then starts another activity cycle. The
queue has only one server which enforces a preemptive repeat different policy
among the two customers: if the first customer arrives while the service of
the second one is in progress, the server discards the work completed so far

2.1 Definition 9

producing1

buffer1

produce1

Unif([1, 2])

consume1

Unif([1, 2])

producing2

buffer2

produce2

Unif([1, 2])

consume2

Unif([1, 2])

Fig. 2.1: STPN model of a preemptive single-server queue.

for the second customer and switches to serving the first customer. This
model represents, for example, a producer–consumer system in which two
producers create items for a single consumer with priority policy. The system
has limited buffer capacity: after creating an item, the producers must wait
for its consumption before starting to create the next one.

This system can be specified with the stochastic time Petri net of Fig. 2.1.
The transitions produce1 and produce2 represent the production activ-
ities, while consume1 and consume2 correspond to the consumption of
items by the server. For simplicity, the duration of all activities is assumed
to be uniform on the bounded support [1, 2], although we could associate
distinct probability density functions with the production and consumption
of items of the two producers.

The inhibitor arc from buffer1 to consume2 enforces priority among the
two customers. When produce1 fires, it removes a token from producing1
and adds a token to buffer1 , enabling consume1: if consume2 was enabled
by a token in buffer2 , it gets immediately disabled. After the completion of
produce1, a token will be removed from buffer1 and added to producing1 ,
thus enabling produce1. The activity consume2 will then start again by
sampling a new time to fire.

The logic state of the net is represented by its marking, which gives a
token count for each place. In total, the model can reach four markings of
the form (producing1 , buffer1 , producing2 , buffer2):

1. (1, 0, 1, 0) is the initial state of the net, in which both producers are
creating an item;

10 2 Stochastic Time Petri Nets

p1

p2

p3

pout

t1

Unif([5, 15])

t2

Unif([10, 20])

t3

Unif([18, 28])

Fig. 2.2: STPN model of three concurrent activities with bounded duration.

2. (0, 1, 1, 0) is the state in which the first producer has created an item and
the second producer is still completing its production;

3. (1, 0, 0, 1) represents the inverse situation in which the second producer
has created an item and the first one is still completing the production;

4. (0, 1, 0, 1) is the state in which both producers have created an item, and
only the first item is being consumed due to the priority policy.

It is common to denote markings by indicating the name of nonempty places
preceded by the number of contained tokens. For example, the four markings
of the net can be denoted as 1producing11producing2 , 1buffer11producing2 ,
1producing11buffer2 , and 1buffer11buffer2 , or just as producing1producing2 ,
buffer1producing2 , producing1 buffer2 , and buffer1 buffer2 by omitting uni-
tary token counts.

Example 2.2 (PDF supports enforcing precedence). In the definition of
stochastic time Petri nets, the support of the probability density function
associated with each transition t is made explicit by the earliest firing time
EFT (t) and latest firing time LFT (t). By treating time bounds as “first-
class citizens”, this approach enables the verification of important real-time
properties of STPNs through symbolic state-space analysis in the style of
Berthomieu and Diaz (1991) and Vicario (2001).

Fig. 2.2 reports a simple example of three concurrent activities t1, t2,
and t3 with durations uniformly distributed on the supports [5, 15], [10, 20]
and [18, 28], respectively. Regardless of the probability density functions,
the supports impose a strict precedence relation among feasible events: the
transition t1 will surely fire before t3, since its latest firing time LFT (t1) =
15 is strictly lower than the earliest firing time EFT (t3) = 18 of t3.

It is also important to note that times to fire associated with enabled tran-
sitions become dependent random variables when they persist to a firing. Let
X1, X2, X3 represent the times to fire of enabled transitions: initially, these

2.1 Definition 11

random variables are independently distributed, with X1 ∼ Unif([5, 15]),
X2 ∼ Unif([10, 20]), and X3 ∼ Unif([18, 28]). As a consequence, their joint
probability density function

f(x1, x2, x3) =

3∏
i=1

fti(xi) =
1

15− 5
· 1

20− 10
· 1

28− 18

is given by the product of individual PDFs, and it is nonzero over the support
[5, 15]× [10, 20]× [18, 28] ⊆ R3

>0 that results from the Cartesian product of
individual PDF supports. Conditioned to the firing of t2 and decreased by
the elapsed time, the times to fire of t1 and t3 are a bivariate random
variable

(X ′1, X
′
3) = (X1 −X2, X3 −X2 | X2 ≤ X1 ∧ X2 ≤ X3)

with joint probability density function

f ′(x′1, x
′
3) =

− 8

1000x
′
1 + 4

100 if (x′1, x
′
3) ∈ Zα,

− 8
1000x

′
1 + 8

1000x
′
3 − 24

1000 if (x′1, x
′
3) ∈ Zβ ,

− 8
1000x

′
3 + 144

1000 if (x′1, x
′
3) ∈ Zγ ,

over the partitioned support Zα ∪ Zβ ∪ Zγ with

Zα =
{

(x′1, x
′
3) ∈ R2

>0 | 0 ≤ x′1 ≤ 5 ∧ 8 ≤ x′3 ≤ 18 ∧ 3 ≤ x′3 − x′1 ≤ 13
}
,

Zβ =
{

(x′1, x
′
3) ∈ R2

>0 | 0 ≤ x′1 ≤ 5 ∧ 3 ≤ x′3 ≤ 8 ∧ 3 ≤ x′3 − x′1 ≤ 8
}
, and

Zγ =
{

(x′1, x
′
3) ∈ R2

>0 | 0 ≤ x′1 ≤ 5 ∧ 13 ≤ x′3 ≤ 18 ∧ 13 ≤ x′3 − x′1 ≤ 18
}
.

Neither the PDF nor its piecewise support are in product-form: as expected,
X ′1 and X ′3 are dependent random variables. Stochastic state classes, pre-
sented in Chapter 3, allow to compute joint probability density functions of
enabled timers after each discrete event. This calculus crucially relies on the
manipulation of both analytical PDF expressions and supports.

Example 2.3 (Randomization using weights). When the minimum time to
fire in the current state is associated with multiple transitions, one is selected
randomly according to the discrete distribution given by their weights. This
mechanism allows to introduce randomized choices, or to abstract external
phenomena affecting the result of an action.

Consider, for example, a sender transmitting a packet over a lossy channel:
with probability q, the packet is dropped, requiring a retransmission. In case
of failure, the sender tries to retransmit the packet until the elapse of a
timeout.

Fig. 2.3 presents an STPN model of this system. Each transmission activ-
ity is modeled by the transition send with duration uniformly distributed
over [1, 2]. After its completion, the token is removed from place ready and

12 2 Stochastic Time Petri Nets

ready sentsend
Unif([1, 2])

receivedsuccess

lost

sendingtimedOut timeout
Det(10)

Fig. 2.3: STPN model of a packet transmission over a lossy channel.

added to place sent : as a result, the immediate transitions lost and success
are enabled. The times to fire of these transitions are deterministic and equal
to zero: by assigning w(lost) = q and w(success) = 1− q, we obtain that,
with probability

w(lost)

w(lost) + w(success)
=

q

q + (1− q) = q,

lost is selected, moving the token from sent back to ready ; conversely, with
probability

w(success)

w(lost) + w(success)
=

1− q
q + (1− q) = 1− q,

success is selected, moving the token from place sent to place received .
Upon a lost event, a new transmission is started. After 10 time units,

the timeout transition is fired: by adding a token to the place timedOut ,
transition send is inhibited and the transmission procedure halts. In con-
trast, a success event removes the token from place sending , thus disabling
the timeout.

It is important to stress the fact that weights come into play only for
the selection among immediate or deterministic transitions. The probability
that two transitions sample an identical time to fire value is in fact nonzero
only if they both concentrate some probability mass on the value.

Example 2.4 (Enabling and update functions). It is often convenient to
extend Petri net models with more general mechanisms for the identification
of enabled transitions and for the update of the marking after a firing. In
the style of stochastic reward nets by Ciardo et al. (1993) and stochastic
activity networks by Sanders and Meyer (2001), STPNs can be extended
with enabling functions and update functions.

2.1 Definition 13

Enabling functions define additional requirements on the token counts of
a marking for the enabling of each transition. With enabling functions, a
transition t is enabled by a marking m if

1. m assigns at least one token to each input place of t,
2. m assigns no tokens to the inhibitor places of t, and
3. the enabling function Et associated with t evaluates to true when applied

to m, i.e., Et(m) = true.

Formally, the set of transitions enabled by m becomes

E(m) =
{
t ∈ T | ∀(p, t) ∈ A−,m(p) ≥ 1 and

∀(p, t) ∈ A◦,m(p) = 0 and Et(m) = true
}

where each enabling function Et : NP → {true, false} is an arbitrary test
on markings. Graphically, enabling functions are annotated next to transi-
tions after the symbol “?”.

Update functions define additional token moves to be performed after the
firing of a transition. When the update function Ut : NP → NP is associated
with transition t ∈ T , the new marking m′′ after the firing of t is obtained
by removing one token from each input place of t, resulting in the marking

mtmp(p) =

{
m(p)− 1 if (p, t) ∈ A−,

m(p) otherwise,

adding one token to each output place of t, resulting in

m′(p) =

{
mtmp(p) + 1 if (t, p) ∈ A+,

mtmp(p) otherwise,

and then applying the function Ut to m′, which gives m′′ = Ut(m
′). Tran-

sitions enabled by m′′ are persistent if they are also enabled by m′, mtmp

and m. Graphically, update functions are annotated next to transitions as
token assignments denoted by the symbol “←”.

As an example, consider a system in which the items created by two pro-
ducers are consumed using a shared resource. The access to the resource is
mutually exclusive and buffers have unitary capacity: each producer must
wait for the consumption of the created item before starting a new produc-
tion. In addition, the resource requires a “setup operation” every time it
switches to the consumption of items created by a different producer.

A model of this system is presented in Fig. 2.4. The place lastUsed is
empty when the shared resource is in use; when the resource is available,
the token count of lastUsed records the identifier (1 or 2) of the last pro-
cess that used the resource. After the production of an item (transitions
produce1 and produce2), each process tries to acquire the resource for the

14 2 Stochastic Time Petri Nets

producing1 buffer1produce1

Unif([1, 8])
resSetup1acquire1

?(lastUser > 0
∧ lastUser 6= 1)
lastUser ← 0

resReady1

acquire-ready1

?lastUser = 1
lastUser ← 0

setup1

Unif([0, 1])
consume1

Unif([1, 2])
lastUser ← 1

producing2 buffer2produce2

Unif([1, 8])
resSetup2acquire2

?(lastUser > 0
∧ lastUser 6= 2)
lastUser ← 0

resReady2

acquire-ready2

?lastUser = 2
lastUser ← 0

setup2

Unif([0, 1])
consume2

Unif([1, 2])
lastUser ← 2

lastUser

Fig. 2.4: STPN model of two processes sharing a resource with setup times.

item consumption. The resource is acquired by process i for i = 1, 2 through
transition acquire-readyi if the enabling function ?lastUsed = i is satis-
fied: in this case, lastUsed is set to zero by the update function lastUsed ← 0
and the activity consumei can start immediately.

In contrast, if the previous use of the resource was performed by another
process, process i acquires the resource through transition acquirei, which
is associated with the enabling function ?(lastUser > 0 ∧ lastUser 6= i).
Transition acquirei adds one token to place resSetupi, enabling the tran-
sition setupi: after its completion, the resource is ready and the item con-
sumption can begin.

After the item consumption, the resource is released by setting the token
count of lastUser to the identifier of the process that just used it. This
update of the marking is obtained through the update functions lastUser ← i
associated with transitions consumei for i = 1, 2.

Enabling functions and update functions provide flexible constructs for
the definition of a model. In the example, additional producers can be added
simply by replicating the part of the STPN which represents producer 1 or

2.2 Probabilistic semantics 15

2, and by modifying its identifier in enabling and update functions. Nonethe-
less, enabling and update functions do not extend the modeling power of the
STPN formalism, nor affect the solution techniques presented in the rest of
this work.

2.2 Probabilistic semantics

In this section, we provide a probabilistic semantics of stochastic Petri nets
in terms of the discrete-time process {(mn, ~τn), n ∈ N} in which the random
variable (m0, ~τ0) corresponds to the initial state of the net, and (mn, ~τn) for
n > 0 corresponds to the state reached after the nth transition firing. This
process is intuitively a Markov process: according to the definition of STPNs
given in the previous section, the future evolution of the system depends on
the past history only through the current state. However, the state space of
the process is uncountably infinite due to the continuous set of values for
the times to fire ~τn of transitions enabled by mn. We thus introduce general
state-space Markov chains (GSSMCs).

Definition 2.4 (General State-Space Markov Chain). The process
{Zn, n ∈ N } defined on the probability space (Ω,F , Pµ) and taking val-
ues in Γ is a general state-space Markov chain with initial distribution
µ and transition kernel P if, for all A ⊆ Γ, Pµ{Z0 ∈ A} = µ(A) and
Pµ{Zn+1 ∈ A | Z0, Z1, . . . , Zn} = P (Zn, A) almost surely.

Intuitively, the initial distribution µ assigns a probability measure to the
initial state Z0, while the transition kernel P (Zn, A) gives the probability
that, given the current state Zn, the next state Zn+1 belongs to the set A.
A general state-space Markov chain is fully defined by its initial distribution
and by its transition kernel. In fact, given µ and P , a probability space
(Ω,F , Pµ) can be constructed for {Zn, n ∈ N } by defining the sample space
Ω as the set of sequences (z0, z1, . . .) of states zi ∈ Γ. Then, a probability
measure Pµ on the σ-algebra F of cylinder sets of the form

{ω ∈ Ω | zi0 ∈ Ai0 , zi1 ∈ Ai1 , . . . , zin ∈ Ain}

for all n > 0, indices i0, i1, . . . , in and Aik ⊆ Γ for k = 0, . . . , n, can be
defined from the finite-dimensional distributions

P (Â0, . . . , Âm) =

∫
Â0

µ(dz0)

∫
Â1

P (z0, dz1) · · ·
∫
Âm

P (zm−1, dzm)

by letting m = max(i0, i1, . . . , in) and

Âj =

{
Aik if j = ik for some k,

Γ otherwise,

16 2 Stochastic Time Petri Nets

and leveraging Kolmogorov’s existence theorem, as detailed in Haas (2002).
It is thus sufficient to define a general state-space Γ, an initial distribution
µ and a transition kernel P in order to provide a probabilistic semantics for
stochastic time Petri nets.

The general state-space of the Markov chain {(mn, ~τn), n ∈ N} can be
defined as

Γ =
⋃

m∈M
{m} × R|E(m)|

>0

where M is the set of reachable markings of the net (countable by hy-
pothesis). Each state 〈m,~τ〉 ∈ Γ includes a marking m and an assignment
of nonnegative times to fire for the transitions E(m) enabled by m. If we
consider sets of states with the simple form

A = {m′} × [0, a1]× [0, a2]× · · · × [0, an]

with m′ ∈ M, E(m′) = {t1, t2, . . . , tn} and a1, a2, . . . , an ≥ 0, then the
initial distribution µ can be defined as

µ(A) =

{∫
[0,a1]×···×[0,an]

f~τ0 if m′ = m0,

0 otherwise,

where m0 is the initial marking and f~τ0 is the initial times to fire PDF of
the STPN. The transition kernel P can be defined as

P (〈m,~τ〉, A) =
∑

t∈Emin(〈m,~τ〉)

w(t)∑
u∈Emin(〈m,~τ〉) w(u)

Pt(〈m,~τ〉, A)

where
Emin(〈m,~τ〉) = arg min

t∈E(m)
~τ(t)

is the set of enabled transitions with minimum time to fire in state 〈m,~τ〉,

w(t)∑
u∈Emin(〈m,~τ〉) w(u)

is the probability that transition t is selected from Emin(〈m,~τ〉), and

Pt(〈m,~τ〉, A) =

∏

i∈Nm,t

∫
[0,ai]

fti
∏

i∈Om,t
1[0,ai] (~τ(ti)− ~τ(t)) if m

t−→ m′,

0 otherwise,

gives the probability that, after the firing of t in 〈m,~τ〉, the next state 〈m′, ~τ ′〉
belongs to A. This probability is nonzero only if m′ is the marking resulting

from the firing of t in m (which we write as m
t−→ m′) and the decreased time

to fire of each persistent transitions ti belongs to [0, ai]: in particular, the

2.3 The marking process 17

t

M(t;ω)

0 1 2 3 4 5 6 7 8 9 10

x1

x2

x3

x4

Fig. 2.5: Sample path of the marking process {M(t), t ≥ 0}.

set Om,t represents the indices of persistent transitions in E(m′) and 1[0,ai]

is the indicator function of the set [0, ai]. Each newly enabled transition
ti is sampled independently, and thus it belongs to [0, ai] with probability∫

[0,ai]
fti ; representing by Nm,t the indices of newly enabled transitions in

E(m′), we obtain the term ∏
i∈Nm,t

∫
[0,ai]

fti .

Note that, without loss of generality, we assumed the sampling PDFs fti to
be zero outside of the supports [EFT (ti), LFT (ti)]. We also stress the fact
that disabled transitions do not influence transition probabilities given the
current state 〈m,~τ〉, although they played a role in the past history of the
Markov chain by setting an upper bound for the times to fire of transitions
that could fire in each state.

2.3 The marking process

The marking process {M(t), t ≥ 0} describes the logic state of an STPN
at each time instant, and it is thus crucial in the computation of many
performance measures. This process is defined over a countable state space
(the reachable markings of the net) and evolves over continuous time with
piecewise-constant sample paths, as illustrated in Fig. 2.5.

For each t ≥ 0, the random variable M(t) can be defined as the
last marking reached within t by the general state-space Markov chain
{(mn, ~τn), n ∈ N} constructed in the previous section. We denote by ∆n

the duration of the nth sojourn in a state, which is given by the minimum
time to fire in the state (mn−1, ~τn−1) of the GSSMC and thus, for all n > 0,

18 2 Stochastic Time Petri Nets

∆n =

{
min1≤i≤k ~τn−1(ti) if E(mn−1) = {t1, t2, . . . , tk},
∞ if E(mn−1) = ∅.

Then, we denote the number of state changes performed within time t by

N(t) = sup

{
j ∈ N :

j∑
n=1

∆n ≤ t
}

(2.1)

and define the marking process {M(t), t ≥ 0} as M(t) = mN(t) for all t ≥ 0.
By construction, the marking process is piecewise-constant and it has

right-continuous sample paths. This property is evident from Eq. (2.1), in

which the jth firing time
∑j
n=1 ∆n is required to be lower or equal to the

current time t. The current marking M(t) = mN(t) thus refers to the last
marking reached within time t that does not enable any immediate tran-
sition. We refer to such markings as tangible markings, and to markings
enabling immediate transitions as vanishing markings.

Also note that infinitely many marking changes can occur in a finite time
interval (Zeno behavior) if the process is absorbed into a set of vanishing
markings or if the absolute firing times converge to a finite value. Both
phenomena can be excluded w.p.1 in STPNs through the following results,
which we report from Haas (2002).

Let M′ denote the set of vanishing markings, and let {(mn, ~τn), n ∈ N}
be the general state-space Markov chain of the states reached by the STPN
after each firing, which is defined on the probability space (Ω,F , Pµ) given
by the transition kernel P and initial distribution µ.

Theorem 2.1 (Return to tangible markings). When M′ is finite,
Pµ{mn 6∈ M′ i.o.} = 1 for any initial distribution µ if and only if, for each
vanishing marking m ∈M′, a tangible marking m′ 6∈ M′ can be reached with
probability greater than zero through the firing of a sequence of immediate
transitions.

The conditions of Theorem 2.1 are trivially necessary: a tangible marking
must be reachable with nonzero probability from each vanishing marking
to avoid the absorption into M′ for any initial distribution µ. The proof
of sufficiency relies on the fact that sample paths confined to M′ exclude
infinitely often sequences of immediate firings that reach tangible markings.
Since each of these sequences has nonzero probability, the measure of sample
paths that remain in M′ is almost surely zero.

In stochastic time Petri nets, visiting tangible markings infinitely often is
a sufficient condition to guarantee that the lifetime

sup
j

j∑
n=1

∆n

2.4 Transient analysis of the marking process 19

of the marking process M(t) is a.s. infinite, thus excluding Zeno behaviors.

Theorem 2.2 (Infinite lifetime of the marking process). If the gen-
eral state-space Markov chain satisfies Pµ{mn 6∈ M′ i.o.} = 1, then

Pµ{supj
∑j
n=1 ∆n =∞} = 1.

The proof relies on the fact that STPNs have unitary rates and fixed time to
fire PDFs associated with transitions. Since tangible markings are reached
infinitely often, at least one timed transition must be enabled and fired
infinitely often, each time guaranteeing a time advancement sampled ac-
cording to its PDF. This infinite sequence of independent and identically
distributed times to fire is sufficient to guarantee that supj

∑j
n=1 ∆n = ∞

almost surely. Finally, the case of an absorbing state in which no transition
is enabled trivially guarantees an infinite lifetime (since ∆n = ∞ for some
n > 0).

2.4 Transient analysis of the marking process

The analysis of the general state-space Markov chain underlying an STPN
is difficult due to its infinite state-space and to the complex PDFs of re-
maining times to fire after a partial history of transition firings. Stochastic
state classes, presented in the next chapter, provide a means to compute
conditional PDFs of persistent timers, but they encounter an exponential
complexity in transient analysis. In fact, the maximum number of successive
firings that can happen within a limited time bound tmax with probability
greater than some value ε > 0 can grow linearly with tmax. When multiple
transitions can fire in each marking, the number of distinct sequences of
transition firings before tmax can grow exponentially. Moreover, the worst-
case memory and time complexity for the computation of joint times to
fire PDFs after a sequence of transition firings grows exponentially with the
length of the sequence, as detailed in Carnevali et al. (2009).

It is thus important to analyze the properties of the marking process
{M(t), t ≥ 0} in order to devise efficient techniques for its transient analysis.
First, we characterize its class in the most general setting by introducing
generalized semi-Markov processes (GSMPs).

Definition 2.5 (Building blocks of a GSMP). A generalized semi-
Markov process is defined by a tuple 〈X,E,A, p, F, r〉 in which

• X is a countable set of logic states;
• E is a finite set of events;
• A : X → 2E assigns a subset A(x) of enabled events to each state x ∈ X;
• p : X × 2E ×X → [0, 1] gives the probability p(x, η, x′) that the simulta-

neous firing of the events η ⊆ 2E in x ∈ X will result in x′ ∈ X;

20 2 Stochastic Time Petri Nets

• F : E×X×2E×X → [0, 1]R gives the sampling distributions F (e, x, η, x′)
of the timer of event e ∈ E in state x′ ∈ X reached from x ∈ X through
the simultaneous firing of the events η ⊆ 2E ;

• r : E ×X → R>0 assigns a speed r(e, x) to the timer of each event e ∈ E
in state x ∈ X.

Similarly to STPNs, the state of the system includes the logic state x ∈ X
and the clock readings ~c ∈ R|E|>0 of enabled events. The initial state x0 is
sampled according to a discrete distribution ν0 and the clock readings ~c0
of enabled events e ∈ A(x0) are sampled independently according to given
initial distributions F0(· , e, x0). In each state 〈x,~c 〉, the the next discrete-
event happens after a sojourn of duration

t∗ = min
e∈A(x)

~c(e)

r(e, x)

and it is triggered by the simultaneous firing of the events

η∗ = arg min
e∈A(x)

~c(e)

r(e, x)
.

The next logic state x′ ∈ X is selected according to the discrete distribution
p(x, η∗, ·). The new clock reading of each persistent event e ∈ A(x′)∩(A(x)\
η∗) is equal to

~c ′(e) = ~c(e)− t∗ r(e, x),

while the clock reading of each new event e ∈ A(x′) \ (A(x) \ η∗) is sampled
independently according to the distribution F (e, x, η∗, x′).

Similarly to STPNs, the general state-space Markov chain {(xn,~cn), n ∈
N} of the logic state and clock readings can be characterized by an ini-
tial distribution and a transition kernel defined according to the aforemen-
tioned mechanisms for the evolution of the state. We call generalized semi-
Markov process the continuous-time stochastic process {X(t), t ≥ 0} which
records, for each t ≥ 0, the logic state of the GSSMC defined for some tuple
〈X,E,A, p, F, r〉.

We highlight the main differences in the definition of GSMPs and STPNs.

• The logic state of a GSMP is an element of an arbitrary countable set,
and not a marking associating token counts to places. As a consequence,
the definition of the set A(x) of events enabled in each state is arbitrary
and must be explicitly specified in the model definition. Nonetheless, a
general enabling mechanism can be introduced in STPNs using enabling
functions, as described in Example 2.4.

• Multiple events can occur simultaneously in GSMPs, while transitions of
an STPN always fire in sequence. In particular, when multiple transitions
have the same minimum time to fire, one is selected randomly according

2.4 Transient analysis of the marking process 21

to weights. It is important to stress the fact that this situation can arise
only with immediate and deterministic transitions.

• After the occurrence of a set of events, the new state of a GSMP is selected
randomly according to an arbitrary discrete distribution. In contrast to
STPNs, in which the successor marking is obtained through token moves,
there are no constraints on the allowed set of successor states. We note
that a similar randomization mechanism can be emulated in STPNs with
immediate transitions, and general marking updates can be introduced
using update functions, as described in Example 2.4. Nonetheless, the
rules to determine the set of persistent and newly enabled transitions in
STPNs are still based on intermediate token counts.

• The clock readings of new events are sampled in GSMPs according to
probability distributions F (e, x, η∗, x′) that can depend on the current
state x, set of fired events η∗ and next state x′. In contrast, STPNs
associate each transition with a fixed PDF for the sampling of its time
to fire. Although less general, this simpler mechanism eases the model
definition and rules out Zeno behaviors (infinite firings occurring in a
finite time) that can be produced by specific successions of PDFs for the
sampling of the same transition after each newly enabling.

• The clocks associated with the events of a GSMP can decrease with dif-
ferent speeds r(e, x) specific to the current state x. In contrast, in STPNs
all the times to fire are always decreased with unitary rate. This hy-
pothesis is essential for the computation of stochastic state classes, since
unitary clock speeds result in PDF supports that can be represented as
DBM zones, as described in Carnevali et al. (2009). As a consequence,
stochastic time Petri nets are not able to model systems with preemptive
resume policy, in which the execution of some activities can be suspended
(setting their decreasing speeds to 0) and successively resumed, as for ex-
ample described in Bobbio et al. (2000).

It is evident from this comparison that GSMPs provide mechanisms that
are strictly more general than those of STPNs. Although clock setting dis-
tributions of GSMPs are required to be positive w.p.1, so that no immediate
events are allowed in GSMPs, the following theorem can be derived directly
from the results of Haas (2002).

Theorem 2.3. For each STPN 〈P, T,A−, A+, A◦, EFT, LFT, f, w〉 with fi-
nite reachable markings M and marking process {M(t), t ≥ 0}, there exists
a GSMP {X(t), t ≥ 0}, given by some tuple 〈X,E,A, p, F, r〉, that has the
same finite dimensional distributions of {M(t), t ≥ 0} under an appropriate
mapping between the state spaces M and X.

The marking process {M(t), t ≥ 0} of an STPN thus belongs to a strict
subclass of GSMPs. These processes can accumulate memory indefinitely:
for all t̃ > 0, the future evolution {M(t), t > t̃} can depend not only on
the current state M(t̃), but also on the previous history {M(t), t < t̃}.

22 2 Stochastic Time Petri Nets

In this case, simulation is regarded as the only tractable approach to the
analysis of the marking process, as detailed in Haas and Shedler (1986),
Haas and Shedler (1989), and Haas (2002). In the following subsections, we
present two important subclasses of GSMPs that allow a numerical solution
for transient probabilities of STPNs.

2.4.1 Markovian marking process

When the time to fire of each transition is sampled according to a fixed
exponential distribution, the marking process of an STPN is a continuous-
time Markov chain (CTMC). This class of stochastic processes does not
accumulate memory over time, and its transient probabilities are amenable
to an efficient numerical solution.

After recalling the main results on CTMCs, we provide an intuition for
the construction of the marking process of an STPN with exponentially
distributed times to fire. For a detailed treatment of the subject we refer the
reader to Ajmone Marsan et al. (1995) and Stewart (1995).

Definition 2.6 (Continuous-time Markov chain). A stochastic process
{M(t), t ≥ 0} taking values in a finite setM and defined on the probability
space (Ω,A, P) is a (time-homogeneous) continuous-time Markov chain if

P{M(t̃+ t) = j |M(t̃) = i,M(x) = ix ∀x ∈ At̃} = P{M(t) = j |M(0) = i}

for all t̃, t > 0, i, j, ix ∈M, At̃ ⊆ [0, t̃).

For a CTMC {M(t), t ≥ 0}, the definition requires that, given the value
i of M(t̃), the distributions of M(t) for t > t̃ be conditionally independent
of the values of M(t) in any subset of past times At̃ ⊆ [0, t̃). This property,
known as the Markov property, implies that the current state summarizes
the past history of the process.

The evolution of a CTMC is determined by its transition probabilities

Pij(t) = P{M(t) = j |M(0) = i}

for all t > 0 and i, j ∈ M, which give the probability that the process
will be in state j at time t given the initial state i at time zero. Transition
probabilities satisfy the fundamental Chapman-Kolmogorov equations.

Theorem 2.4 (Chapman-Kolmogorov equations). Let {M(t), t ≥ 0}
be a CTMC taking values in a finite set M and defined on the probability
space (Ω,A, P). Then, its transition probabilities Pij(t) with i, j ∈M satisfy

P(t̃+ t) = P(t̃) P(t)

for all t̃, t > 0, where P(0) is the |M| × |M| identity matrix.

2.4 Transient analysis of the marking process 23

Given the transition probabilities P(t) and an initial distribution ~µ such that
µi = P{M(0) = i} for all i ∈ M, all the finite-dimensional distributions of
{M(t), t ≥ 0} can be computed as

P{M(t1) = i1,M(t2) = i2, . . . ,M(tn) = in}

=
∑
i0∈M

µi0

n∏
k=1

Pik−1,ik(tk − tk−1)

for all n ≥ 0, times 0 = t0 < t1 < · · · < tn and states i1, i2, . . . , in ∈M.
It is common to define the transition probabilities P(t) through their

right derivatives at zero, given by the infinitesimal generator matrix

Q = lim
t→0+

P(t)−P(0)

t
.

Since the transition probabilities Pij(t) sum to 1 over j for all i ∈ M, the
infinitesimal generator matrix Q always satisfies

Qii = lim
t→0+

Pii(t)− Pii(0)

t

= lim
t→0+

(
1−∑j∈M| j 6=i Pij(t)

)
− 1

t

= −
∑

j∈M| j 6=i

(
lim
t→0+

Pij(t)− 0

t

)
= −

∑
j∈M| j 6=i

Qij . (2.2)

Intuitively, each element Qij measures the infinitesimal “rate of change”
of the transition probability from state i to state j. For this reason, the
elements of Q are called transition rates.

The transition probabilities P(t) of a CTMC {M(t), t ≥ 0} can be com-
puted as the solutions of Kolmogorov forward differential equations

dP(t)

dt
= P(t)Q

with initial condition P(0) = I. The unique solution of these ODEs is given
by the matrix exponential function

P(t) = eQt =

∞∑
n=0

(Qt)n

n!
(2.3)

and it can be evaluated numerically using the technique of uniformization
described in Gross and Miller (1984). Given the transition probabilities P(t)

24 2 Stochastic Time Petri Nets

and an initial state distribution ~µ of a CTMC {M(t), t ≥ 0} defined on a
probability space (Ω,A, P), we have

P{M(t) = j} =
∑
i∈M

P{M(0) = i}P{M(t) = j |M(0) = i}

=
∑
i∈M

µi Pij(t)

for all t ≥ 0 and j ∈M.
For stochastic time Petri nets with only exponentially distributed times to

fire, the infinitesimal generator matrix Q of the CTMC can be constructed
directly from the set of reachable markings M.

Consider a marking i ∈ M in which the transitions E(i) ⊆ T are newly
enabled (in particular, this is the case of the initial state of the STPN).
The corresponding times to fire {~τ(t), t ∈ E(i)} are independent random
variables defined on a probability space (Ω,A, P) and distributed according
to the probability density functions ft(x) = λte

−λtx for t ∈ E(i). Since the
sojourn time in marking i is the minimum of the times to fire, its distribution
is given by

Hi(x) = P{∃t ∈ E(i) such that ~τ(t) ≤ x}
= 1− P{~τ(t) > x ∀t ∈ E(i)}

= 1−
∏

t∈E(i)

∫ ∞
x

ft(u) du

= 1−
∏

t∈E(i)

e−λtx = 1− e−(
∑
t∈E(i) λt)x. (2.4)

The sojourn time in i is thus an exponential random variable with rate∑
t∈E(i) λt (it is the minimum of independent exponential random variables).

In addition, the probability that ~τ(t) is the minimum time to fire in i,
triggering the firing of transition t, is

2.4 Transient analysis of the marking process 25

pi(t) = P{~τ(u) > ~τ(t) ∀u ∈ E(i) s.t. u 6= t }

=

∫ ∞
0

 ∏
u∈E(i)|u 6=t

P{~τ(u) > x}

λte
−λtx dx

=

∫ ∞
0

 ∏
u∈E(i)|u 6=t

e−λux

λte
−λtx dx

= λt

∫ ∞
0

e−(
∑
u∈E(i) λu)x dx

=
λt∑

u∈E(u) λu

and the probability pij that the next state of the CTMC is j ∈ M, given
the current state i, is then

pij =
∑

t∈E(i) | i
t−→j

pi(t) =

∑
t∈E(i) | i

t−→j
λt∑

u∈E(u) λu
. (2.5)

Given a sojourn time x̄, the distribution of times to fire persistent after

the firing i
t−→ j is unaffected. This property, known as the memoryless

property of exponential random variables, is evident if we consider that, for
all t ∈ E(i),

P{~τ(t) > x+ x̄ | ~τ(t) > x̄} =
e−λt(x+x̄)

e−λtx̄
= e−λtx = P{~τ(t) > x}. (2.6)

Thus, the distributions of times to fire enabled in the next marking j carry
no memory of the previous sojourn time or fired transition t. The evolution
of the marking process would be the same if these transitions were newly
enabled: Eqs. (2.4) and (2.5) can then be repeatedly applied to determine
the sojourn time distribution and next state probabilities in each marking.
The resulting elements of the infinitesimal generator Q are thus given by

Qij =
∑

t∈E(i) | i
t−→j

λt (2.7)

for each i, j ∈M with i 6= j, and by

Qii = −
∑

j∈M| j 6=i

Qij

for i ∈M. Transition probabilities can then be computed with Eq. (2.3).

26 2 Stochastic Time Petri Nets

The marking process is still a CTMC when times to fire are sampled
according to exponential or immediate distributions. In this case, STPNs
correspond to generalized stochastic Petri nets (GSPNs) introduced in Aj-
mone Marsan et al. (1984). When the firing of transition t in i results in
a vanishing marking j, the next state of the CTMC {M(t), t ≥ 0} can be
any tangible marking k reachable from j through the firing of immediate
transitions. The construction of Eq. (2.7) can then be modified by consid-
ering state transitions i → k between tangible markings, with probabilities
given by the product of pij and the absorption probabilities from j into each
tangible marking k.

2.4.2 Markov regenerative marking process

When times to fire are sampled according to general distributions, the mark-
ing process {M(t), t ≥ 0} can still satisfy the Markov property immedi-
ately after selected transition firings. The corresponding time instants are
called regeneration points and allow to decompose the process evolution in
“epochs” or “cycles” that are mutually independent given their initial states.

A simple condition for the identification of regeneration points in STPNs
is based on the newly enabling of transitions with generally distributed times
to fire. If all the enabled GEN transitions are newly enabled after a firing,
the times to fire are independently distributed with joint PDF given by the
product of sampling PDFs; immediately after such firing, the marking has
thus sufficient information to determine the future evolution of the process,
and the absolute firing time is a regeneration point.

When regeneration points are encountered after each transition firing,
the marking process is a semi-Markov process (SMP). This condition is still
quite restrictive as it rules out, for example, a time-out (whose distribu-
tion is not memoryless) over a sequence of two actions (with memoryless
or general distribution). In order to enlarge the domain of applicability of
STPNs, it is thus fundamental to consider processes in which regenerations
are still encountered infinitely often, but only after selected transition fir-
ings. This is the class of Markov regenerative processes (MRPs), also known
in the literature as semi-regenerative processes. In this work, we consider
MRPs that encounter regeneration points w.p.1 after a bounded number of
firings. This class allows GEN transitions to persist to other GEN transi-
tions, but the maximum number of transitions firings with persistent GEN
transitions must be bounded. In contrast, multiple enabled GEN transitions
are not allowed in MRPs under enabling restriction, which impose that at
most one GEN transition be enabled in each marking, as discussed in Choi
et al. (1994) and German et al. (1995). The work of Puliafito et al. (1998)
provides a solution for the case of multiple GEN transitions that have been

2.4 Transient analysis of the marking process 27

simultaneously enabled, while the models that we consider in this work allow
GEN transitions to be enabled or disabled independently after each firing.

In the rest of this section, we present the main ideas of Markov renewal
theory, with a definition of semi-Markov and Markov regenerative processes.
For an in-depth introduction, we refer to Çinlar (1975) and Kulkarni (1995).

Definition 2.7 (Markov renewal sequence). Given a probability space
(Ω,A, P), the sequence of random variables {(Xn, Tn), n ∈ N} such that,
for each n ∈ N, Xn takes values in a finite set R, Tn takes values in R>0

and 0 = T0 ≤ T1 ≤ T2 ≤ · · · ≤ Tn, is a Markov renewal sequence with state
space R provided that

P{Xn+1 = j, Tn+1 − Tn ≤ t | X0, X1, . . . , Xn, T0, T1, . . . , Tn, }
= P{Xn+1 = j, Tn+1 − Tn ≤ t | Xn} (2.8)

for all n ∈ N, j ∈ R, and t ∈ R>0.

In a Markov renewal sequence, given the current state Xn at time Tn, the
time increment (Tn+1−Tn) and next state Xn+1 are thus independent of the
previous history. We always assume that the sequence is time-homogeneous
and define as kernel of the sequence the probabilities

Gij(t) = P{Xn+1 = j, Tn+1 − Tn ≤ t | Xn = i}
= P{X1 = j, T1 ≤ t | X0 = i}

which give, for all i, j ∈ R and t ∈ R>0, the probability (independent of n)
that state j will be reached within time t from the initial state i.

From a Markov renewal sequence {(Xn, Tn), n ∈ N}, we can define a
semi-Markov process as the right-continuous and piecewise-constant process
taking the value Xn during the interval [Tn, Tn+1) for all n.

Definition 2.8 (Semi-Markov process). Given a Markov renewal se-
quence {(Xn, Tn), n ∈ N} on the probability space (Ω,A, P) and with state
space R, we define semi-Markov process the process {X(t), t ≥ 0} such that
X(t) = Xn for t ∈ [Tn, Tn+1) and n ∈ N.

As a result of the satisfaction of Eq. (2.8) by the Markov renewal sequence
{(Xn, Tn), n ∈ N}, the semi-Markov process constructed according to Defi-
nition 2.8 satisfies the Markov property immediately after each state change:
the evolution after a regeneration point Tn depends only on the state Xn and
it is uniquely determined by the kernel Gij(t), which gives, for all i, j ∈ R,
the (arbitrary) joint distribution of the sojourn time in i and next state j.

By conditioning on the sojourn time T1 in X0, we can express the kernel
Gij(t) as

Gij(t) =

∫ t

0

dHi(x) pij(x) (2.9)

28 2 Stochastic Time Petri Nets

where

Hi(t) = P{T1 ≤ t | X0 = i}
=
∑
k∈R

P{X1 = k, T1 ≤ t | X0 = i} =
∑
k∈R

Gik(t)

is the sojourn time distribution in state i (independent of the next state j)
and

pij(t) = P{X1 = j | T1 = t,X0 = i}

gives the probability that, after a sojourn in i of t time units, the next
state j will be selected, with

∑
j pij(t) = 1 for all i ∈ R and t ∈ R>0. The

interpretation of Eq. (2.9) is that a semi-Markov process allows an arbitrary
sojourn time distribution Hi(t) in each state i and next state probabilities
pij(t) that can depend on the sojourn time t.

An alternative interpretation of an SMP can be obtained by conditioning
on the next state X1 and expressing the kernel as

Gij(t) = pij Hij(t) (2.10)

where
pij = P{X1 = j | X0 = i}

is the probability that the next state reached from i is j, with
∑
j∈R pij = 1

for all i ∈ R, and

Hij(t) = P{T1 ≤ t | X0 = i,X1 = j}

is the sojourn time distribution given the initial state i and next state j. An
SMP can thus be constructed from

• a discrete-time Markov chain of successive visited states, with transition
probabilities pij , and

• sojourn time distributions Hij(t) that depend on both the initial state i
and the next state j.

Example 2.5 (Continuous-time Markov chain). A continuous-time Markov
chain {X(t), t ≥ 0} with infinitesimal generator Q and state space R is a
semi-Markov process with

pij = −Qij
Qii

for i, j ∈ R such that i 6= j, pii = 0 for all i ∈ R, and

Hij(t) = 1− eQiit

independently of j. Note that by setting pii = 0 for all i ∈ R we modeled
transitions from each state i back to itself as “prolonged sojourns” in i.

2.4 Transient analysis of the marking process 29

In fact, when pii > 0, the probability of n sojourns in i is pn−1
ii (1 − pii).

Since the sum of n independent exponential random variables with rate λ
(corresponding to the sojourn times in i) has the Erlang PDF

fn(x) =
(λx)

n−1

(n− 1)!
λe−λx,

by the theorem of total probability, we see that

dHii(x)

dx
=

∞∑
n=1

P{n sojourns in i} fn(x)

=

∞∑
n=1

pn−1
ii (1− pii)

(λx)
n−1

(n− 1)!
λe−λx

= (1− pii)λe−λx
∞∑
n=1

(piiλx)
n−1

(n− 1)!
= (1− pii)λe−(1−pii)λx

and the sojourn in i can be modeled, without loss of generality, as a single
exponential random variable with rate (1− pii)λ.

Semi-Markov processes thus generalize CTMCs by allowing general so-
journ time distributions that can depend on the current state i and next
state j. As a consequence of this modeling freedom, the Markov property is
not satisfied for all t, but only at jump times Tn.

Markov regenerative processes relax this constraint even further: the pro-
cess is not required to satisfy the Markov property after each state change,
but only at selected random times (called regeneration points) governed by
a Markov renewal sequence. Unlike SMPs, Markov regenerative processes
are not constrained to be constant between regeneration points: they evolve
over “regenerative epochs” delimited by regeneration points and “proba-
bilistically restart” at the beginning of each epoch with a probability law
that depends on the corresponding regeneration condition. In this sense,
Markov regenerative processes also generalize regenerative processes, which
restart after regeneration points with identical distributions. We remark that
Markov regenerative processes are also known as semi-regenerative processes,
as for example in Çinlar (1975), and can in general take values in any topo-
logical space. In this work, we consider Markov regenerative processes taking
values in a finite set (the reachable markings), and adopt the terminology of
Kulkarni (1995), which is more common in the area of stochastic Petri nets.

Definition 2.9 (Stopping time). Let {M(t), t ≥ 0} be a continuous-
time stochastic process on the probability space (Ω,A, P) with sample paths
that are right-continuous and have limits from the left. Then, a real-valued
random variable T : Ω → R>0 is said to be a stopping time with respect to
{M(t), t ≥ 0} if the occurrence or nonoccurrence of the event {T ≤ t} is
completely determined by {M(u), 0 ≤ u ≤ t} for all t ≥ 0.

30 2 Stochastic Time Petri Nets

Definition 2.10 (Markov regenerative process). A stochastic process
{M(t), t ≥ 0} defined on the probability space (Ω,A, P) and taking values
in M is said to be a Markov regenerative process if there exists a Markov
renewal sequence {(Xn, Tn), n ∈ N} with finite state space R such that

• for each n ∈ N, Tn is a stopping time for {M(t), t ≥ 0};
• for each n ∈ N, Xn is completely determined by {M(u), 0 ≤ u ≤ Tn};
• for each n ∈ N, 0 ≤ t1 ≤ · · · ≤ tm with m > 0, and bounded function f

on Mm,

E{f(M(Tn + t1), . . . ,M(Tn + tm)) | X0 = i,M(u) for u ≤ Tn, Xn = j}
= E{f(M(t1), . . . ,M(tm)) | X0 = j}.

The first condition of Definition 2.10 states that an observer who has watched
{M(u), 0 ≤ u ≤ t} can tell whether the next regeneration point Tn is less
than or equal to t, or not. The second condition states that the observer
can determine Xn from the evolution {M(u), 0 ≤ u ≤ Tn} of M until Tn.
Intuitively, these clauses imply a causal relation between {M(t), t ≥ 0} and
the Markov renewal sequence {(Xn, Tn), n ∈ N}.

The third condition states that the random variable

f(M(Tn + t1), . . . ,M(Tn + tm)),

which is a function of the values of M at times Tn+ t1, . . . , Tn+ tm after Tn,
is independent of the past evolution {M(u), 0 ≤ u ≤ Tn} given the value
of Xn. The expectation of f(M(Tn + t1), . . . ,M(Tn + tm)) given {Xn = j}
is then the same as that of f(M(t1), . . . ,M(tm)) given {X0 = j}: after Tn,
we observe the same evolution of M(Tn + t) that we would see for M(t) by
starting the Markov renewal sequence in X0 = j.

In a sense, M(t) restarts after Tn with a behavior that depends only on
Xn. In turn, the evolution of M(t) causes the next regeneration point Tn+1

and regeneration condition Xn+1 ∈ R.
Note that the state spaces M and R are in general distinct: in our case,

M is the finite set of markings reachable in the STPN and R is the set of
regeneration conditions Xn of the Markov renewal sequence. In Chapter 4
we will show that the marking process encounters a regeneration point when,
immediately after a firing, all GEN transitions are either disabled, or they
have been enabled for a deterministic time. Thus, the set R contains pairs
(m, ~d) in which m ∈M is the marking after the firing and ~d is the enabling
vector with deterministic enabling times di ∈ R>0 for the GEN transitions

enabled by m. Each pair (m, ~d) has sufficient information to determine the
joint PDF of the times to fire of all enabled transitions, and to characterize
the evolution of the STPN after the regeneration point.

This idea extends state-of-the-art analysis of regeneration points in
stochastic Petri nets. In fact, the usual notion of regeneration corresponds
to time instants of firings after which all GEN transitions are either disabled

2.4 Transient analysis of the marking process 31

t

M(t;ω)

1 2 3 4 5 6 7 8 9 10

m1

m2

m3

m4

T0

X0 = M(T0)

T1

X1 = M(T1)

T2

X2 = M(T2)

Fig. 2.6: Sample path of a Markov regenerative process {M(t), t ≥ 0} with
Markov renewal sequence {(Xn, Tn), n ∈ N} on the same state space.

or newly enabled. This condition always results in regenerations of the form
(m,~0): the marking at the regeneration point has sufficient information to
characterize the future evolution of the STPN. In this case, the set R of
regeneration conditions is a set of markings, Xn = M(Tn) for all n, and the
third condition of Definition 2.10 becomes the Markov property at Tn. In
Fig. 2.6 we report an example of the sample paths of a Markov regenerative
process with Markov renewal sequence defined on the same state space.

The repetitive structure of Markov regenerative processes can be lever-
aged to compute transient probabilities. Let {M(t), t ≥ 0} be a Markov
regenerative process defined on the probability space (Ω,A, P) and taking
values in M, and let {(Xn, Tn), n ∈ N} be its Markov renewal sequence
with state space R. We define the transition probabilities of {M(t), t ≥ 0}
as

Pij(t) = P{M(t) = j | X0 = i}
for all regeneration conditions i ∈ R and states j ∈ M. We can then ap-
ply a “renewal argument” to Pij(t) so as to distinguish whether the first
regeneration T1 is reached after t or within t, obtaining

Pij(t) = P{M(t) = j | X0 = i} = P{M(t) = j, T1 > t | X0 = i}
+ P{M(t) = j, T1 ≤ t | X0 = i} . (2.11)

We define the first term

Lij(t) = P{M(t) = j, T1 > t | X0 = i} (2.12)

32 2 Stochastic Time Petri Nets

as local kernel of {M(t), t ≥ 0} and, by conditioning on all possible values
for the first regeneration condition X1 and regeneration time T1, we obtain
for the second term

P{M(t) = j, T1 ≤ t | X0 = i}

=
∑
k∈R

∫ t

0

P{M(t) = j | X0 = i,X1 = k, T1 = u} dGik(u)

=
∑
k∈R

∫ t

0

P{M(t− u) = j | X0 = k} dGik(u)

=
∑
k∈R

∫ t

0

Pik(t− u) dGik(u) (2.13)

where
Gij(t) = P{X1 = j, T1 ≤ t | X0 = i}

is the kernel of the Markov renewal sequence (also called global kernel of the
Markov regenerative process) and

P{M(t) = j | X0 = i,X1 = k, T1 = u} = P{M(t− u) = j | X0 = k}

is a consequence of the third condition of Definition 2.10. By substituting
the identities of Eq. (2.12) and Eq. (2.13) into Eq. (2.11), we obtain

Pij(t) = Lij(t) +
∑
k∈R

∫ t

0

Pik(t− u) dGik(u)

for all i ∈ R and j ∈M, or, equivalently, the matrix form

P(t) = L(t) +

∫ t

0

dG(u) P(t− u) . (2.14)

Eq. (2.14) comprises a set of Volterra integral equations of the second kind,
known as generalized Markov renewal equations. The local kernel L charac-
terizes the evolution of {M(t), t ≥ 0} within a regenerative epoch, while the
global kernel G characterizes the successive regenerations and the duration
of the epochs.

Once the kernels are known, the solution of Eq. (2.14) can be performed
in the time domain through a discretization approach, or in the frequency
domain through Laplace transform. For a detailed discussion we refer to
Brunner and van der Houwen (1986) and Kulkarni (1995).

In Chapter 4 we will present an algorithm for the detection of regener-
ation points and the computation of the kernels of the marking process of
STPNs in which GEN transitions can persist to the firing or to the newly

2.4 Transient analysis of the marking process 33

enabling of other GEN transitions, but regenerations are encountered w.p.1
in a bounded number of transition firings.

Chapter 3

Stochastic State Classes

Stochastic state classes compute the logic state and joint probability density
function (PDF) of the active timers of a discrete-event system given a se-
quence of events. Each event is triggered by the elapse of a timer: therefore,
its occurrence conditions the PDF of other persistent timers, which must be
lower than the elapsed timer and are decreased, after the event, by its ran-
dom value. The closed-form PDF of times to fire persistent after a sequence
of events is computed from the initial sampling PDFs through repeated in-
tegration and conditioning over the set of timer values “compatible” with
the sequence.

The method of stochastic state classes was introduced for the analysis of
stochastic time Petri nets in Vicario et al. (2009) and Carnevali et al. (2009),
but it has been applied also to other stochastic discrete-event systems, such
as the stochastic extensions of timed automata presented in Ballarini et al.
(2013). The calculus requires sampling PDFs with closed-form antideriva-
tives and timers decreasing with the same rate in each state. The latter
condition allows to represent the supports of joint PDFs as zones encoded
by difference bound matrices (DBMs).

In this perspective, stochastic state classes enrich nondeterministic state
classes with probability. Reachability analysis based on state classes, as for
example in Berthomieu and Diaz (1991) and Vicario (2001), computes the
continuous set of values for the active timers given a sequence of firings;
stochastic state classes enrich this set with a closed-form PDF which allows
to compute quantitative measures on the transient behavior of the system.

3.1 Definition

In this chapter, we present stochastic state classes for the marking and
times to fire PDF of a stochastic time Petri net, conditioned to a sequence

36 3 Stochastic State Classes

of transition firings. Given an STPN 〈P, T,A−, A+, A◦, EFT, LFT, f, w〉,
stochastic state classes are defined as follows.

Definition 3.1 (Stochastic state class). A (transient) stochastic state
class is a tuple

Σ = 〈m,D〈τage ,~τ〉, f〈τage ,~τ〉〉
where

• m ∈ NP is a marking;
• f〈τage ,~τ〉 is the PDF (immediately after a firing) of the random vector
〈τage , ~τ〉 including the age timer τage and the times to fire ~τ = (τ1, . . . , τn)
of transitions E(m) = {t1, . . . , tn} enabled by m;

• D〈τage ,~τ〉 ⊆ Rn+1 is the support of f〈τage ,~τ〉.

Note that Definition 3.1 includes the additional τage timer in stochastic
state classes. This timer is not associated with any transition: it is initially
set to the deterministic value 0 and decreased with unitary rate after each
firing, similarly to all of the other times to fire. Its value is thus equal to the
opposite of the absolute time of the last firing, and the joint PDF f〈τage ,~τ〉
allows to compute measures for a specific subset of times to fire and firing
time values. The reason for encoding the opposite of the absolute time is
technical: when all the timers in the model decrease with the same rate, the
support of their joint PDF can be represented as zones encoded by difference
bound matrices. In summary, a stochastic state class includes a marking, a
set of values for τage and for the times to fire of enabled transitions, and a
joint PDF on these values.

In the initial stochastic state class Σ0 = 〈m0, D〈τage ,~τ0〉, f〈τage ,~τ0〉〉, the
marking m0 is the initial marking of the STPN, τage has deterministic value
0, and the times to fire of the enabled transitions E(m0) = {t1, . . . , tn} are
distributed according to a given joint PDF f~τ0 with support D~τ0 ⊆ Rn>0.
Therefore, we have

D〈τage ,~τ0〉 = [0, 0]×D~τ0
and

f〈τage ,~τ0〉(xage , x1, . . . , xn) = δ(xage) · f~τ0(x1, . . . , xn) .

Without loss of generality, we assume that, in the initial state s0 =
〈m0, ~τ0〉 of the STPN, each transition ti ∈ E(m0) has been enabled for
a deterministic time di ≤ LFT (ti). As a consequence, the times to fire
~τ0(t1), ~τ0(t2), . . . , ~τ0(tn) are independent random variables with product-
form joint PDF

f~τ0(x1, . . . , xn) =

n∏
i=1

fti(xi + di)∫ LFT (ti)

max{di,EFT (ti)} fti(u) du
(3.1)

on the support

3.2 Calculus of successor classes 37

D~τ0 =

n∏
i=1

[
max{0, EFT (ti)− di}, LFT (ti)− di

]
. (3.2)

In particular, di = 0 for all i = 1, 2, . . . , n when each enabled transition is
newly enabled in the initial state.

Given a class Σ, the state PDF conditioned to the firing of a transition
γ at an absolute time in the interval I is given by the successor class of Σ
through γ and I.

Definition 3.2 (Succession relation). We say that, with probability µ,
the stochastic state class Σ′ = 〈m′, D′〈τage ,~τ〉, f

′
〈τage ,~τ〉〉 is the successor of

Σ = 〈m,D〈τage ,~τ〉, f〈τage ,~τ〉〉 through γ ∈ E(m) at some time in I, and we

write Σ
γ,I,µ
===⇒ Σ′, if, given that the marking of the STPN is m and 〈τage , ~τ〉

is a random vector distributed over D〈τage ,~τ〉 according to f〈τage ,~τ〉, then:

• the transition γ has non-null probability µ to fire in Σ at some time in I;
• if γ fires in Σ at some time in I, its firing yields the marking m′ and,

conditioned to this event, the new times to fire vector is distributed over
D′〈τage ,~τ〉 according to f ′〈τage ,~τ〉.

The relation
γ,I,µ
===⇒ can be enumerated through a calculus for the computa-

tion of the probability of outgoing events, and for the symbolic derivation
of the support and closed-form PDF of 〈τage , ~τ〉 in successor classes.

3.2 Calculus of successor classes

Successors of stochastic state classes according to Definition 3.2 can be com-
puted through symbolic integration and conditioning over the set of times to
fire values compatible with the firing. This calculus satisfies two fundamental
properties, discussed in detail in Carnevali et al. (2009):

1. The support of joint PDFs can be encoded as difference bound matrices.
2. When each transition t is distributed according to an expolynomial PDF

ft(x) =

m∑
j=1

cj x
aje−λjx

for some cj ∈ R, aj ∈ N, and λj ∈ R>0, the joint PDF of 〈τage , ~τ〉
after each firing is a piecewise function defined on a partition of the
DBM support into sub-zones that can also be represented as DBMs. The
function is continuous and each piece is a multivariate expolynomial of
the form

38 3 Stochastic State Classes

f〈τage ,~τ〉(xage , x1, . . . , xn) =

k∑
j=1

cj x
a0j
agee

−λ0jxage

(
n∏
i=1

x
aij
i e−λijxi

)

with cj ∈ R, aij ∈ N, and λij ∈ R>0 for j = 1, 2, . . . , k and i = 0, 1, . . . , n.

The first property allows an efficient computation of the supports of suc-
cessor classes, which are amenable to the calculus of successor state classes
of Vicario (2001). The second property provides an algorithmic approach to
the computation of indefinite integrals (antiderivatives), which is possible
for each variable xage , x1, . . . , xn of a multivariate expolynomial through in-
tegration by parts. In the following, we define difference bound matrices and
recall the main steps of the calculus.

Difference bound matrices, introduced in Dill (1990) and leveraged in
Berthomieu and Diaz (1991) and Vicario (2001) for the analysis of time
Petri nets, represent upper and lower bounds of pairwise differences xi − xj
between variables xk for k = 1, . . . , n. By introducing a fictitious variable
x∗ = 0, a difference bound matrix B represents the terms Bij of all the
constraints of the form xi − xj ≤ Bij and xi = xi − x∗ ≤ Bi∗; lower bounds
of the form xi − xj ≥ c or xi ≥ c are represented by imposing xj − xi ≤ Bji
with Bji = −c, or x∗−xi ≤ B∗i with B∗i = −c, respectively. Let Q∞ denote
the set of rational numbers Q extended with a “positive infinity” element
∞ and its opposite −∞ = −(∞), such that, for all c ∈ Q, c +∞ = ∞,
c−∞ = −∞, c <∞, and c > −∞.

Definition 3.3 (Difference bound matrix). Given a set of variables
{x1, x2, . . . , xn}, a difference bound matrix is a matrix B of upper bounds
Bij ∈ Q∞ for the pairwise differences xi − xj for all i, j ∈ {∗, 1, 2, . . . , n}
such that i 6= j, with x∗ := 0.

A difference bound matrix on the variables {x1, x2, . . . , xn} identifies the
convex subset of Rn{

~x ∈ Rn | xi − xj ≤ Bij for all i, j ∈ {∗, 1, 2, . . . , n} such that i 6= j
}

which is said to be a zone. Distinct DBMs can identify the same zone when
some constraint xi−xj ≤ Bij is the logical implication of other constraints:
in this case, in fact, if the constraint is relaxed by increasing Bij , the same
zone is identified. In order to remove this ambiguity, we always consider
DBMs in normal form.

Definition 3.4 (DBM in normal form). A difference bound matrix B
on the variables {x1, x2, . . . , xn} is in normal form if Bik + Bkj ≥ Bij for
all i, j, k ∈ {∗, 1, 2, . . . , n} such that i 6= k, k 6= j and i 6= j.

As a consequence of the definition, when a DBM is in normal form, the
coefficient Bij always represents the tightest upper bound on the difference
xi − xj for all i, j ∈ {∗, 1, 2, . . . , n} with i 6= j, even when the constraint

3.2 Calculus of successor classes 39

xi−xj ≤ Bij is made irrelevant by other constraints. Given a DBM zone on
n variables, its normal form can be computed with time complexity O(n3)
by the Floyd-Warshall algorithm for the all-pairs shortest path problem.

The zone identified by a normal-form DBM B on the variables
{x1, x2, . . . , xn} can be projected over a subset of variables I ⊂
{x1, x2, . . . , xn} by removing from B the rows and columns that correspond
to variables not in I; we indicate the resulting DBM as B ↓ I.

The Cartesian product between the zone over {x1, x2, . . . , xn} defined by
DBM B and a real interval [a, b] for a, b ∈ Q is identified by the DBM B′

over the variables {x1, x2, . . . , xn, xn+1} and such that, for all i 6= j,

B′ij =

Bij if i 6= n+ 1 and j 6= n+ 1,

b if i = n+ 1 and j = ∗,
b+B∗j if i = n+ 1 and j 6= ∗,
−a if i = ∗ and j = n+ 1,

Bi∗ − a if i 6= ∗ and j = n+ 1.

Difference bound matrices can encode the piecewise support D〈τage ,~τ〉
of PDFs f〈τage ,~τ〉 for vector 〈τage , ~τ〉: the zone in Rn+1 over the variables
xage , x1, x2, . . . , xn gives the possible values for τage and for the times to fire
~τ(t1), ~τ(t2), . . . , ~τ(tn) of enabled transitions.

Given a stochastic state class Σ = 〈m,D〈τage ,~τ〉, f〈τage ,~τ〉〉 with E(m) =
{t1, t2, . . . , tn}, the probability µ that tk with 1 ≤ k ≤ n will fire first at some
time in I, as well as the stochastic state class Σ′ = 〈m′, D′〈τage ,~τ〉, f

′
〈τage ,~τ〉〉

after the firing, can be computed through the following steps.

Succession probability. Given the stochastic state class Σ =
〈m,D〈τage ,~τ〉, f〈τage ,~τ〉〉 after the previous firing, the probability that
tk has minimum time to fire and that the next firing will be at an
absolute time in I is nonzero only if the zone

Dk,I
〈τage ,~τ〉 = {(xage , ~x) ∈ D〈τage ,~τ〉 | xk ≤ xj for all j 6= k, xk − xage ∈ I}

is not empty. The DBM Bk,I
〈τage ,~τ〉 of this zone can be constructed from the

DBM B of D〈τage ,~τ〉 as the normal form of

Bk,Iij =

min(Bij , sup I) if i = k and j = age,

min(Bij ,− inf I) if i = age and j = k,

min(Bij , 0) if i = k and j = 1, . . . , k − 1, k + 1, . . . , n,

Bij otherwise.

Then, Dk,I
〈τage ,~τ〉 is nonempty if and only if Bk,Iij + Bk,Iji ≥ 0 for all i 6= j.

Under this assumption, when ~τ(tk) is not deterministic, the probability
value µ can be computed as

40 3 Stochastic State Classes

µ =

∫
Dk,I〈τage ,~τ〉

f〈τage ,~τ〉(xage , x1, x2, . . . , xn) dxage d~x

while, when ~τ(tk) is deterministic, the probability value µ is given by

w(tk)∑
u∈Emin

w(u)

∫
Dk,I〈τage ,~τ〉

f〈τage ,~τ〉(xage , x1, x2, . . . , xn) dxage d~x

where Emin = {ti ∈ E(m) | τ(ti) is deterministic and minimum} and
w : T → R>0 is the weight assignment function of the STPN.

Conditioning. The PDF f〈τage ,~τ〉 is divided by µ to condition the random
vector 〈τage , ~τ〉 to the firing of tk at some time in I, resulting in the
probability density function

fk,I〈τage ,~τ〉(xage , x1, x2, . . . , xn) =
1

µ
f〈τage ,~τ〉(xage , x1, x2, . . . , xn)

over the support Dk,I
〈τage ,~τ〉.

Time advancement and projection. According to the semantics of STPNs,
the time to fire ~τ(tk) must be subtracted from that of each persistent
transition and discarded from ~τ (since tk is always newly enabled after
its firing). The PDF of the vector 〈σage, ~σ〉 where σage = τage −~τ(tk) and

~σ =
(
~τ(t1)− ~τ(tk), . . . , ~τ(tk−1)− ~τ(tk),

~τ(tk+1)− ~τ(tk), . . . , ~τ(tn)− ~τ(tk)
)
,

conditioned to the firing of tk in I, can be computed from fk,I〈τage ,~τ〉 as

f〈σage,~σ〉(xage , x1, . . . , xk−1, xk+1, . . . , xn) =∫ Uk(xage,~x)

Lk(xage,~x)

fk,I〈τage ,~τ〉(xage + xk, x1 + xk, . . . , xk, . . . , xn + xk) dxk (3.3)

where

Uk(xage, ~x) = min
(
{Bk,Ik∗ } ∪ {B

k,I
j∗ − xj for all

j = age, 1, . . . , k − 1, k + 1, . . . , n}
)

and

3.3 Transient measures 41

Lk(xage, ~x) = max
(
{−Bk,I∗k } ∪ {−B

k,I
∗j − xj for all

j = age, 1, . . . , k − 1, k + 1, . . . , n}
)

give the upper and lower bounds for the integral of Eq. (3.3) as a func-
tion of the variables xage, x1, . . . , xk−1, xk+1, . . . , xn, which can result in
a piecewise function with at most (n+ 1)(n+ 1) sub-zones.

Disabling. The times to fire of disabled transitions are discarded by inte-
grating f〈σage,~σ〉 over the domain of the corresponding variables, resulting
in the marginal PDF of times to fire of persistent transitions. The support
of this PDF is obtained through the DBM projection over the times to
fire variables of persistent transitions.

Newly enabling. The times to fire of newly enabled transitions are intro-
duced multiplying the PDF of persistent transitions by the PDF ft associ-
ated with each newly enabled transition t. The support D′〈τage ,~τ〉 of the re-

sulting PDF f ′〈τage ,~τ〉 is computed as the Cartesian product of the support

of the PDF of persistent transitions with the supports [EFT (t), LFT (t)]
of the times to fire of newly enabled transitions.

A detailed description of the computation of successor stochastic state
classes over partitioned DBM supports can be found in Carnevali et al.
(2009). In Vicario et al. (2009), an efficient technique is presented to en-
compass deterministic time to fire variables in the calculus. The closed-form
computation of expolynomial PDFs with piecewise representation over DBM
zone supports is implemented in the ORIS Tool, described in Bucci et al.
(2010).

3.3 Transient measures

Given an initial stochastic state class Σ0, a sequence of transition firings
γ1, γ2, . . . , γn, and a sequence of real intervals I1, I2, . . . , In for the absolute
firing times, the sequence of stochastic state classes

Σ0
γ1,I1,µ1
=====⇒ Σ1

γ2,I2,µ2
=====⇒ · · · γn,In,µn======⇒ Σn (3.4)

with Σi = 〈mi, Di, fi〉 for i = 1, . . . , n computes the probability µi of each
firing event, and the resulting markingmi and joint PDF fi (over the support
Di) for τage and for the times to fire ~τ after the firing. The probability
density functions fi, computed from the initial sampling PDFs of enabled
transitions, allow to derive important measures on the transient behavior of
the STPN along the sequence of transition firings.

42 3 Stochastic State Classes

From the definition of the successor relation (Definition 3.2), it follows
directly that, given an initial state distributed according to Σ0, the proba-
bility that the STPN will perform the sequence of firings γ1, γ2, . . . , γn at
times in the intervals I1, I2, . . . , In is given by

pseq(Σ0, γ1, I1, γ2, I2, . . . , γn, In) :=

n∏
i=1

µi (3.5)

if µi > 0 for i = 1, 2, . . . , n (and thus the sequence of Eq. (3.4) is defined),
or it is equal to zero otherwise.

To require the completion of the sequence of transition firings
γ1, γ2, . . . , γn within a maximum time t, thus reaching the stochastic state
class Σn within time t, we can set Ii = [0,∞) for i < n and In = [0, t] in
Eq. (3.5). We indicate the corresponding probability as

preach(Σn, t) := pseq(Σ0, γ1, [0,∞), γ2, [0,∞), . . . , γn, [0, t]) . (3.6)

Finally, we are interested in the probability that, given an initial state
class Σ0, the STPN has completed the sequence of firings γ1, γ2, . . . , γn
within time t without performing any subsequent firing. We first compute
the sequence of stochastic state classes as in Eq. (3.6) with Ii = [0,∞)
for i < n and In = [0, t]; then, given the last stochastic state class
Σn = 〈m,D〈τage ,~τ〉, f〈τage ,~τ〉〉, we restrict its support D〈τage ,~τ〉 to

Din,t
〈τage ,~τ〉 = {(xage , ~x) ∈ D〈τage ,~τ〉 | xi − xage > t for all i 6= age},

where the constraints xi − xage > t for all i 6= age impose that the absolute
time of next firing be higher than t. Then, the desired measure can be
computed as

pin(Σn, t) = preach(Σn, t)∫
Din,t
〈τage ,~τ〉

f〈τage ,~τ〉(xage , x1, x2, . . . , xn) dxage d~x . (3.7)

In Section 4.4, we will consider the transient tree of stochastic state classes
resulting from a finite set

S ⊂ {γ1, γ2, . . . , γk | k ∈ N and γi ∈ T for i = 1, 2, . . . , k}

of transition sequences: each edge of the tree is labeled with a fired transition
and each node is associated with the stochastic state class reached after firing
the sequence of transitions that label the edges from the root to the node
(without constraints on the absolute firing times). Given a time instant t,
we are interested in computing:

3.3 Transient measures 43

• the measure pin(Σinner , t) for each stochastic state class Σinner associated
with an inner node of the tree;

• the measure preach(Σleaf , t) for each stochastic state class Σleaf associated
with a leaf node of the tree.

On the one hand, the measures pin(Σinner , t) give the probabilities that
the system has performed all and only the firings in distinct, strict prefixes
of firing sequences in S; on the other hand, the measures preach(Σleaf , t)
give the probabilities that the system has completed maximal sequences in
S within time t (and possibly other subsequent transition firings). These
measures correspond to mutually exclusive events and give a full picture of
the system behavior at time t with respect to the firing sequences in S.

The measure preach(Σleaf , t) can be computed with Eq. (3.6) by consid-
ering the sequence of stochastic state classes from the root of the tree to
Σleaf . The measures pin(Σinner , t) for the inner nodes of the same sequence
can be computed by restricting the PDF support D〈τage ,~τ〉 of stochastic state
classes Σinner = 〈m,D〈τage ,~τ〉, f〈τage ,~τ〉〉 on the path to Σleaf as

Dinner ,t
〈τage ,~τ〉 = {(xage , ~x) ∈ D〈τage ,~τ〉 |

xi − xage > t for all i 6= age and − xage ≤ t}

and then computing pin(Σinner , t) as

pin(Σinner , t) =

∫
Dinner,t
〈τage ,~τ〉

f〈τage ,~τ〉(xage , x1, x2, . . . , xn) dxage d~x . (3.8)

With respect to Eq. (3.7), this approach avoids the repeated enumeration of
inner nodes of the transient tree. The stochastic state classes of the transient
tree are computed only once, and the integrals of Eq. (3.8) are then evaluated
on inner nodes for each value of t.

Example 3.1. Fig. 3.1 introduces a small sized running example inspired
by Martinez and Haverkort (2006) that represents a G/D/1/2/2 queue with
server breakdowns. Tokens in places free and buffer represent customers
in the idle state or inside the queue, respectively. Idle customers arrive in
series after times uniformly distributed over [1, 2] (transition arrival), while
service has a deterministic duration 1.5 (transition service) and requires the
server to be operational ; times to failure are exponentially distributed with
rate 0.1 (transition fail), and repairs are completed in a time uniformly
distributed over [1, 2] (transition restart). Fig. 3.2 presents the stochastic
state classes for the sequence of transition firings fail, restart, arrival,
service, without constraints on the absolute firing times, and from an initial
stochastic state class with marking 2free operational and zero enabling times
(all enabled transitions are newly enabled). The probability that the STPN
performs the sequence of transitions is given by the product of succession
probabilities (reported up to the fourth significant figure).

44 3 Stochastic State Classes

free bufferarrival
Unif([1, 2])

operationalservice
Det(1.5)

failed

fail
Exp(0.1)

restart
Unif([1, 2])

Fig. 3.1: STPN model of a G/D/1/2/2 queue with server breakdowns.

Marking: 2free operational

Product-form PDF
age ∼ Det(0)
arrival ∼ Unif([1, 2])
fail ∼ Exp(0.1)

Σ0

Marking: 2free failed

Joint PDF of (arrival,age)
f(arrival,age) = 0.7198 e0.1age

Darrival,age = {(arrival,age) |
−2 ≤ age ≤ 0, 0 ≤ arrival ≤ 2,
−2 ≤ age− arrival ≤ −1}

Product-form PDF
restart ∼ Unif([1, 2])

Σ1
fail, 0.1389

Marking: 2free operational

Joint PDF of (arrival,age)
f(arrival,age) =

61.5074− 67.9762 e0.1age

Darrival,age = {(arrival,age) |
−2 ≤ age ≤ −1,
0 ≤ arrival ≤ 1,
−2 ≤ age− arrival ≤ −1}

Product-form PDF
fail ∼ Exp(0.1)

Σ2

restart, 0.1170

Marking: free buffer operational

Product-form PDF
fage(age) = −627.2336 e0.1age+
69.6926age e0.1age + 630.6050
Dage = [−2,−1]
arrival ∼ Unif([1, 2])
service ∼ Det(1.5)
fail ∼ Exp(0.1)

Σ3

arrival, 0.9754

Marking: 2free operational

Product-form PDF
fage(age) = −1214.5693 e0.1age+
161.9426age e0.1age + 1261.2100
Dage = [−3.5,−2.5]
arrival ∼ Unif([0, 0.5])
fail ∼ Exp(0.1)

Σ4

service, 0.4304

Fig. 3.2: Stochastic state classes for the sequence of events fail, restart,
arrival, service in the queue of Fig. 3.1.

Chapter 4

Regenerative Transient Analysis

The evolution of a Markov regenerative process can be decomposed into
independent “epochs” delimited by an infinite sequence of random times
called regeneration points. The regeneration condition at each regeneration
point provides sufficient information to characterize the future evolution of
the system, which probabilistically “restarts”, oblivious of its previous his-
tory. As discussed in Section 2.4.2, this repetitive structure of the stochastic
process can be leveraged to compute transient probabilities as the solution
of a system of integral equations governed by a global and a local kernel.
The global kernel characterizes the duration of regenerative epochs and the
sequence of regeneration conditions; the local kernel provides the transient
probabilities of the process within a regenerative epoch, given the initial
regeneration condition.

Despite the large domain of applicability of Markov regenerative processes
and the availability of established techniques for their transient solution,
an automated approach to the analysis of systems modeled by this class
of stochastic processes presents considerable challenges. One must in fact
come up with an appropriate definition of regeneration condition, provide
an algorithm for the identification of regeneration points and corresponding
regeneration conditions, and devise a way to compute the local and global
kernels, at least numerically.

In this chapter, we provide a concept of regeneration condition which
extends the usual notion from the literature on stochastic Petri nets. The
time instants that we consider as regeneration points correspond to firings
after which all GEN transitions are either disabled or they have been enabled
for a deterministic time. This requirement is less strict than that of “newly
enabled” GEN transitions (for which the enabling time is zero), and it allows
to detect more regeneration points in STPNs including deterministic timers.

We discuss the properties of stochastic state classes reached after a regen-
eration point, and prove important results on the evolution of an STPN after
a regeneration point. We provide an algorithm for the detection of regenera-
tion points in the enumeration of stochastic state classes, and a solution for

46 4 Regenerative Transient Analysis

the numerical evaluation of the local and global kernels from the stochastic
state classes enumerated within a regenerative epoch. When regeneration
points are reached w.p.1 in a bounded number of transition firings, this so-
lution allows to combine the algorithmic approach of stochastic state classes,
computing closed-form PDFs of timers from the initial sampling PDFs, with
integral equations leveraging the results of Markov renewal theory for the
efficient evaluation of transient probabilities.

4.1 Regeneration conditions in STPNs

The definition of Markov regenerative process (Definition 2.10) allows for
considerable freedom in the construction of a Markov renewal sequence
{(Xn, Tn), n ∈ N} for the marking process {M(t), t ≥ 0}. On the one
hand, there must be a causal relation between the marking process and the
regeneration points Tn and regeneration conditions Xn:

• The occurrence of the nth regeneration point Tn within time t, corre-
sponding to the event {Tn ≤ t}, must be completely determined by
{M(u), 0 ≤ u ≤ t} for all t ≥ 0 and n ∈ N.

• The regeneration condition Xn must be completely determined by
{M(u), 0 ≤ u ≤ Tn}, for all n ∈ N.

On the other hand, the choice of the state space R for the regeneration con-
ditions Xn of the Markov renewal sequence {(Xn, Tn), n ∈ N} is arbitrary:
richer state-space representations can add more information into regenera-
tion conditions, allowing to summarize the past evolution in a larger class
of situations after a firing, and thus to detect more regeneration points.

In STPNs, memory after a firing is due to persistent GEN times to fire,
whose distribution depends on the time elapsed in previous states; in con-
trast, persistent EXP transitions always have independent times to fire with
exponential distributions, thanks to the memoryless property of exponen-
tial random variables of Eq. (2.6). Therefore, a simple class of regeneration
points is that of transition firings after which all GEN transitions are either
disabled or newly enabled. In this case, the marking reached after the firing
has sufficient information to determine the times to fire PDF: each enabled
transition t has a time to fire independently distributed according to its
sampling PDF ft.

For this class of regeneration points, the set of regeneration conditions
R is thus a subset of the reachable markings M. In particular, for each
regeneration point Tn, the regeneration condition is Xn = M(Tn), and the
independence of the future evolution of M(t) from its past history given Xn

corresponds to the Markov property. This class of regeneration points has
been investigated, for example, in the seminal works of Ciardo et al. (1994),
Choi et al. (1994) and Puliafito et al. (1998).

4.2 Regenerative stochastic state classes 47

A more general class of regeneration points can be defined observing that,
when a GEN transition t has been enabled for a deterministic amount of time
d, its time to fire is always an independent random variable with PDF

f(x) = ft(x+ d)

(∫ LFT (t)

max{d,EFT (t)}
ft(u) du

)−1

(4.1)

on the support [max{0, EFT (t)−d}, LFT (t)−d]. This condition can occur
immediately after the firing of a deterministic transition enabled together
with t, or enabled after (or before) a deterministic delay with respect to the
enabling of t. When each GEN transition has been enabled for a determinis-
tic time, the PDF of the times to fire ~τ after the firing is uniquely identified
by a vector ~d of enabling times, where di is the deterministic enabling time
of the ith enabled GEN transition. Therefore, we consider, for the space of
regeneration conditions R, pairs of the form (m, ~d) where:

• The marking m identifies the set E(m) of enabled transitions, and the
probability density functions of EXP and IMM transitions (which are
always equal to their sampling PDFs).

• The enabling times ~d identify the supports and probability density func-
tions for the times to fire of enabled GEN transitions.

Regeneration points in which all the GEN transitions are newly enabled
correspond to regeneration conditions of the form (m,~0), in which each GEN
transition has been enabled for a deterministic time equal to zero.

Note that, in order to have a causal relation between the marking process
{M(t), t ≥ 0} and the regeneration points Tn and regeneration conditions
Xn (as required by Definition 2.10), the marking process must be extended to
represent not only the current marking, but also the information required to
detect regenerations. In the following, we avoid to do so explicitly by detect-
ing regeneration points through the analysis of sequences of state transitions
in the underlying general state-space Markov chain (which causes both the
marking process and the Markov renewal sequence of the MRP).

4.2 Regenerative stochastic state classes

A stochastic state class reached through the transition firing associated with
a regeneration point is said to be regenerative.

Definition 4.1 (Regenerative stochastic state class). The stochastic
state class Σn in a sequence

Σ0
γ1,I1,µ1
=====⇒ Σ1

γ2,I2,µ2
=====⇒ · · · γn,In,µn======⇒ Σn

48 4 Regenerative Transient Analysis

is regenerative if, for each GEN transition t enabled in Σn, the time elapsed
from its enabling until the firing of γn is equal to some deterministic value
d ∈ R>0, which we call enabling time of t in Σn.

Regenerative stochastic state classes have the characteristic property that
the random variables of the vector 〈τage , ~τ〉 are all independent. Their joint
PDF is in product form, and it can be constructed from the sampling PDFs
of the STPN, given the PDF of τage and the deterministic enabling times of
GEN transitions.

Lemma 4.1 (PDF and support of regenerative classes). Let Σ =
〈m,D〈τage ,~τ〉, f〈τage ,~τ〉〉 be a regenerative stochastic state class, and let
{t1, . . . , tn}, {tn+1, . . . , tm} and {tm+1, . . . , tl} be the sets of enabled GEN,

EXP, and IMM transitions, respectively. Then, if ~d = (d1, . . . , dn) ∈ Rn>0

gives the enabling time di of each enabled GEN transition ti, the support
D〈τage ,~τ〉 and the probability density function f〈τage ,~τ〉 of 〈τage , ~τ〉 in Σ are
given by

D〈τage ,~τ〉 = Dage ×
n∏
i=1

[max{0, EFT (ti)− di}, LFT (ti)− di]

×
m∏

i=n+1

[0,+∞)×
l∏

i=m+1

[0, 0]

and

f〈τage ,~τ〉(xage, ~x) = fage(xage)

n∏
i=1

fti(xi + di)∫ LFT (ti)

max{di,EFT (ti)} fti(u) du

m∏
i=n+1

λtie
−λtixi

l∏
i=m+1

δ(xi)

respectively, for some PDF fage of τage with support Dage .

The lemma allows to uniquely identify a regenerative class by

1. its marking m,
2. the vector ~d of enabling times for enabled GEN transitions, and
3. the PDF fage and support Dage of τage immediately after the last firing,

which corresponds to a regeneration point.

We represent regeneration conditions of the marking process by pairs (m, ~d).
This information is in fact sufficient to determine the stochastic evolution
of the STPN, and thus of the marking process {M(t), t ≥ 0}, after a re-
generation point. To prove this result we consider an infinite transient tree
encoding the succession relations

4.2 Regenerative stochastic state classes 49

Σ0
γ1,[0,+∞),µ1
=========⇒ Σ1

γ2,[0,+∞),µ2
=========⇒ · · · γn,[0,+∞),µn

=========⇒ Σn

among stochastic state classes for all the sequences γ1, γ2, . . . , γn of fired
transitions and for all n ∈ N. The stochastic state classes in the transient
tree correspond to the state PDF of the STPN after each feasible sequence
of transition firings, and thus characterize its transient evolution.

In the following, we omit the firing time interval I in the notation Σ
γ,I,µ
===⇒

Σ′ whenever I = [0,+∞), which corresponds to the case that no constraint
is imposed on the absolute firing time of γ.

Definition 4.2 (Transient tree). The transient tree from an initial class
Σ0 is a tuple 〈N,E, n0,Σ〉 where:

• the set N is a countable set of nodes;
• n0 ∈ N is the root node;
• the function Σ associates each node n ∈ N with a stochastic state class

Σ(n), with Σ(n0) := Σ0;
• the labeled edges E ⊆ N × T × (0, 1]×N represent the (unconstrained)

successions of stochastic state classes associated with transition firings,

so that (n, t, µ, n′) ∈ E if and only if Σ(n)
t,µ
==⇒ Σ(n′).

A node n associated with a regenerative class Σ(n) is said to be regenerative.
The following lemma guarantees that two regenerative nodes reached at
different times, but associated with the same regeneration condition (m, ~d),
enable, in the subtrees subsequent to the regeneration points, the same firing
sequences with the same probabilities.

Lemma 4.2. Let nk and nh be two regenerative nodes associated with re-
generative stochastic state classes Σ(nk) and Σ(nh) that have the same re-

generation condition (m, ~d) in a transient tree with initial stochastic state
class Σ0. Then, the succession sequences feasible from nk and from nh are
the same, have the same probability, and end up in nodes associated with the
same marking and PDF for times to fire ~τ of enabled transitions.

Proof. The proof runs by induction on the length of the succession sequences
originating from the nodes nk and nh, and leverages the fact that the two
classes have the same marginal distribution of times to fire ~τ , so that they
will allow the same set of feasible behaviors with the same probabilities.
According to Lemma 4.1, Σ(nk) and Σ(nh) have the same support and dis-
tribution for ~τ : the former condition implies that they accept the same set of
feasible behaviors (sequences of firable transitions), and that equal succes-
sion sequences result in the same final markings and times to fire supports
(due to the underlying non-deterministic model); the latter condition im-
plies that the probabilities of these firing sequences are also the same, and
that they end up in classes with the same times to fire PDF.

50 4 Regenerative Transient Analysis

The next lemma completes the picture by focusing on the advancement
of τage after a regenerative node, and it fully exploits the properties of the
product-form PDF of regenerative stochastic state classes to show that the
amounts of time elapsed before and after a regeneration point are indepen-
dent random variables.

Lemma 4.3. Let nk be a regenerative node in a transient tree 〈N,E, n0,Σ〉
from an initial class Σ0, nj be the node reached from nk through the firing of
transitions γ0, . . . , γn, and fkage and f jage be the marginal PDFs of the τage
variable in Σ(nk) and Σ(nj), respectively. Then,

f jage(xage) =

∫ ∞
−∞

fkage(u) f̂ jage(xage − u) du (4.2)

where f̂ jage is the marginal PDF of τage for the node n̂j reached through the
same sequence of firings γ0, . . . , γn in the transient tree 〈N ′, E′, n′0,Σ′〉 from
an initial class Σ′0 = 〈m,D〈τage ,~τ〉, f〈τage ,~τ〉〉 such that m is the same marking
of Σ(nk),

f〈τage ,~τ〉(xage , ~x) = δ(xage)f
k
~τ (xage)

and
D〈τage ,~τ〉 = [0, 0]×Dk

~τ ,

so that ~τ has the same marginal PDF and support, but τage = 0.

Proof. According to Lemma 4.2, the time spent in the execution of the
sequence γ0, . . . , γn from Σ(nk) or from Σ′0 is the same as it only depends
on the marginal PDF of the times to fire ~τ , which is the same in the two
stochastic state classes. Moreover, the PDF of this time is given by f̂ jage, since

τage is equal to zero in Σ(n′0). Since nk is regenerative, fkage is in product form
with respect to the marginal PDF of times to fire (Lemma 4.1), and thus the
evolution from nk is independent of the time at which the node is reached;
the age in nj is then the sum of the independent random variables associated
with the age in nk and with the duration of the sequence γ0, . . . , γn, and it
is thus distributed as the convolution of Eq. (4.2).

Note that in Lemma 4.2 the assumption that nk and nh are regenerative
nodes is used only to guarantee that they have the same marginal PDF for
the vector of times to fire ~τ . In Lemma 4.3, the assumption of regeneration
is also used to guarantee that the PDFs of τage and ~τ are in product form.

4.3 Detection of regeneration points

Regeneration points as defined in Section 4.1 can be detected on-the-fly dur-
ing the computation of sequences of stochastic state classes. Our goal is to

4.3 Detection of regeneration points 51

verify, after each firing, whether the enabled GEN transitions {t1, t2, . . . , tn}
have been enabled for a deterministic amount of time; in this case, the de-
terministic enabling times {d1, d2, . . . , dn} form, together with the marking

m reached after the firing, the regeneration condition (m, ~d) associated with
the regeneration point.

We observe that, immediately after the firing of a transition t, a newly
enabled GEN transition ti has been trivially enabled for a deterministic time
di = 0. Whereas, if ti is persistent, the time from its enabling until the firing
of t is deterministic if and only if

• t is IMM or DET, and
• ti was enabled together with t, or with a deterministic delay (or advance)

with respect to the enabling of t.

In this case, the time from the enabling of ti to the firing of t is equal to the
deterministic time to fire associated with t in the STPN definition, reduced
by the deterministic delay of the enabling of ti with respect to that of t.

Therefore, to detect regeneration points we keep track of synchro-
nizations between the enabling time of GEN transitions and DET or
IMM transitions. To this end, each enabled DET or IMM transition td
is associated with a set of GEN transitions Sync(td) and with a func-
tion Enabling-Delay(· , td) : Sync(td) → R>0 that are constructed so
as to guarantee the following invariant: at the firing of td, the time
elapsed since the newly enabling of ti is deterministic if and only if ti ∈
Sync(td); in this case, the deterministic enabling time of ti is given by
Enabling-Delay(ti, td), and ti is said to be renewed.

To assert and maintain the invariant, at the firing of each transition t:

• If the new stochastic state class includes some newly enabled DET or
IMM transition td with deterministic time to fire xd, every newly enabled
or renewed GEN transition ti is added to Sync(td) with

Enabling-Delay(ti, td) = xi + xd,

where xi is the deterministic enabling time of ti, equal to zero if ti is
newly enabled, or equal to Enabling-Delay(ti, t) if ti was renewed at
the firing of t.

• For every DET or IMM transition td that persisted after the firing of t, dis-
abled GEN transitions are removed from Sync(td), while persistent tran-
sitions ti in Sync(td) keep the same value of Enabling-Delay(ti, td).

• For every DET or IMM transition td disabled by the firing of t, Sync(td)
is emptied and Enabling-Delay(· , td) is discarded.

Example 4.1. In order to illustrate the concept of regeneration points, we
highlight in Fig. 4.1 the regenerative classes and regeneration conditions for
the sequence of transition firings fail, restart, arrival, service in the
STPN of Fig. 3.1 from the initial marking 2free operational . In regenerative

52 4 Regenerative Transient Analysis

stochastic state classes Σ0, Σ3, Σ4, the absolute time of the last event and
all the times to fire of enabled transitions are independent random variables
with product-form PDF; notably, the GEN variable arrival in Σ4 is not
newly enabled, but it does not carry memory given its deterministic enabling
time 1.5.

Regeneration
Marking: 2free operational
Enabling times: {arrival→ 0}

Product-form PDF
age ∼ Det(0)
arrival ∼ Unif([1, 2])
fail ∼ Exp(0.1)

Σ0

Marking: 2free failed

Joint PDF of (arrival,age)
f(arrival,age) = 0.7198 e0.1age

Darrival,age = {(arrival,age) |
−2 ≤ age ≤ 0, 0 ≤ arrival ≤ 2,
−2 ≤ age− arrival ≤ −1}

Product-form PDF
restart ∼ Unif([1, 2])

Σ1
fail, 0.1389

Marking: 2free operational

Joint PDF of (arrival,age)
f(arrival,age) =

61.5074− 67.9762 e0.1age

Darrival,age = {(arrival,age) |
−2 ≤ age ≤ −1,
0 ≤ arrival ≤ 1,
−2 ≤ age− arrival ≤ −1}

Product-form PDF
fail ∼ Exp(0.1)

Σ2

restart, 0.1170

Regeneration
Marking: free buffer operational
Enabling times:
{arrival→ 0, service→ 0}

Product-form PDF
fage(age) = −627.2336 e0.1age+
69.6926age e0.1age + 630.6050
Dage = [−2,−1]
arrival ∼ Unif([1, 2])
service ∼ Det(1.5)
fail ∼ Exp(0.1)

Σ3

arrival, 0.9754

Regeneration
Marking: 2free operational
Enabling times:
{arrival→ 1.5}

Product-form PDF
fage(age) = −1214.5693 e0.1age+
161.9426age e0.1age + 1261.2100
Dage = [−3.5,−2.5]
arrival ∼ Unif([0, 0.5])
fail ∼ Exp(0.1)

Σ4

service, 0.4304

Fig. 4.1: Regeneration points and regeneration conditions for the sequence
of events fail, restart, arrival, service in the queue of Fig. 3.1.

4.4 Computation of the kernels 53

4.4 Computation of the kernels

The identification of regeneration points allows one to limit the enumeration
of each transient tree to a single regenerative epoch, so that the leaves of the
tree are regenerative stochastic state classes corresponding to regeneration
points. The stochastic state classes from the root to a leaf node give the
marking and times to fire PDF after each firing in a sequence that leads to
some regeneration condition. As presented in Section 3.3, transient measures
based on stochastic state classes can evaluate

1. the probability preach(Σleaf , t) of reaching the last class Σleaf of the se-
quence within time t, and

2. the probability pin(Σinner , t) that, at time t, the STPN has fired all and
only the transitions leading to some intermediate class Σinner .

If i and k are the regenerative conditions of the root and leaf node, re-
spectively, the former measure contributes to the entry Gik(t) of the global
kernel, which is the probability of reaching regeneration condition k from i
within time t. On the other hand, the latter measure, when computed on
intermediate classes with marking j, contributes to the entry Lij(t) of the
local kernel, which is the transient probability of marking j at time t given
the initial regeneration condition i.

By fixing a time bound tmax for the transient analysis of the marking
process, these measures for all t ≤ tmax completely characterize regenerative
epochs with initial regeneration condition i. For each regeneration condition
k which is encountered in a leaf node and has not been previously discovered,
a new transient tree can be enumerated from k limited to a regenerative
epoch. Under the hypothesis that

• the number of distinct regeneration conditions is finite, and
• the number of classes enumerated between any two regeneration points

is finite and bounded,

this procedure can be repeated until the transient trees from all the regen-
eration conditions—and limited to the first regenerative epoch—have been
enumerated. Then, the marking process {M(t), t ≥ 0} is completely char-
acterized by a finite set of transient trees, each associated with a different
initial regeneration condition. The inner nodes of the trees give the tran-
sient probabilities within a regenerative epoch, while the leaf nodes give
the probabilities of the next regeneration condition and the PDFs of epoch
durations.

More formally, let R be the set of (reachable) regeneration conditions, and
denote by Inner(i) and Leaves(i) the stochastic state classes associated
with inner nodes and leaf nodes, respectively, in the transient tree enumer-
ated from a regenerative stochastic state class with regeneration condition i
(as defined in Lemma 4.1) and limited to the first regenerative epoch. Then,
for each t ≤ tmax , the (i, j)th entry of the local kernel L(t) is given by

54 4 Regenerative Transient Analysis

Lij(t) =
∑

Σ∈Inner(i) s.t.
Σ has marking j

pin(Σ, t)

for all i ∈ R and j ∈M, while the (i, k)th entry of the global kernel G(t) is
given by

Gik(t) =
∑

Σ∈Leaves(i) s.t.
Σ has reg. cond. k

preach(Σ, t)

for all i, k ∈ R.
The numerical evaluation of the local and global kernel enables the solu-

tion in the time domain of the generalized Markov renewal equations

P(t) = L(t) +

∫ t

0

dG(u) P(t− u)

where
Pij(t) = P{M(t) = j | X0 = i}

for all t ≤ tmax , regeneration conditions i ∈ R, and markings j ∈ M. By
discretizing the time domain [0, tmax] in n+1 equidistant points t0, t1, . . . , tn
with tm = (tmax/n)m for m = 0, 1, . . . , n, Newton–Cotes formulas define
the system of linear equations

P(tm) = L(tm) + G(0) P(tm) +

m∑
u=1

(G(tu)−G(tu−1)) P(tm−u)

in the unknowns Pij(tm) for all i ∈ R, j ∈ M and m = 0, 1, . . . , n. The
system can be solved by forward substitution if the unknowns are computed
in the order P(t0),P(t1), . . . ,P(tn) as

P(tm) = (I −G(0))
−1

(
L(tm) +

m∑
u=1

(G(tu)−G(tu−1)) P(tm−u)

)
(4.3)

for m = 0, 1, . . . , n.
Overall, the global and local kernels need to be evaluated at n time in-

stants. Leveraging the transient measures presented in Section 3.3, each
evaluation requires to recompute the stochastic state classes of the leaves
and inner nodes of the transient trees enumerated from all regeneration con-
ditions in R. If C is the number of stochastic state classes in all of the |R|
transient trees, the number of classes to enumerate is C

(
tmax

h + 1
)
, where

h = tmax/n is the step size used in the time discretization.

Example 4.2 (Transient analysis of a G/D/1/2/2 queue). The STPN model
of the G/D/1/2/2 queue of Fig. 3.1 encounters 5 distinct regeneration con-
ditions:

4.4 Computation of the kernels 55

• r0 =
(
2free operational , {arrival→ 0}

)
;

• r1 =
(
2buffer operational , {service→ 0}

)
;

• r2 =
(
2buffer failed , {restart→ 0}

)
;

• r3 =
(
free buffer operational , {arrival→ 0, service→ 0}

)
;

• r4 =
(
2free operational , {arrival→ 1.5}

)
.

The transient trees enumerated from these regenerations and limited to the
first regenerative epoch include 69, 3, 2, 15 and 20 stochastic state classes,
respectively. The set M of reachable markings includes 6 markings:

• m0 = 2free operational ;
• m1 = 2buffer operational ;
• m2 = 2buffer failed ;
• m3 = free buffer operational ;
• m4 = 2free failed ;
• m5 = free buffer failed .

Note that marking m0 is encountered in two distinct regeneration condi-
tions (r0 and r4), while markings m4 and m5 are never encountered at a
regeneration point.

For each t ≥ 0, the global kernel G is a 5×5 matrix, while the local kernel
L is a 5×6 matrix. From the supports of stochastic state classes, we can verify
that the measures of Eq. (3.6) and Eq. (3.8) contributing to the elements of
G and L converge to a constant value after time 8. As a consequence, for any
time bound tmax > 8, a transient analysis with step h = 0.1 requires the enu-
meration of 109 (8/0.1 + 1) = 8829 stochastic state classes. Fig. 4.2 reports
the transient probabilities for four conditions in the G/D/1/2/2 queue from
the initial regeneration condition r0 =

(
2free operational , {arrival→ 0}

)
:

• “buffer = 0”, which corresponds to Pr0,m0(t) + Pr0,m4(t),
• “buffer = 1”, which corresponds to Pr0,m3(t) + Pr0,m5(t),
• “buffer = 2”, which corresponds to Pr0,m1

(t) + Pr0,m2
(t), and

• “operational = 1”, which corresponds to Pr0,m0
(t)+Pr0,m1

(t)+Pr0,m3
(t).

Each transition probability Pij(t) with i ∈ R and j ∈ M was evaluated for
t = 0, 0.1, 0.2, . . . , 20.0 using Eq. (4.3).

56 4 Regenerative Transient Analysis

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12

P
ro
b
ab

il
it
y

Time

buffer = 0
buffer = 1
buffer = 2

operational = 1

Fig. 4.2: Transient probabilities for the buffer occupation and server status
in the G/D/1/2/2 queue with server breakdowns.

Chapter 5

Verification of an Interval Until Operator

Probabilistic model checking is a formal method for the analysis of quan-
titative properties of stochastic systems: given a probabilistic model of the
system, quantitative properties expressed in a formal logic are checked auto-
matically. This formal approach is analogous to model checking of temporal
logics in transition systems: both the system model and the required prop-
erty are specified formally, and the model checking algorithm can prove
whether the property is satisfied or not. In addition, probabilistic model
checking can also provide a probability value of the property satisfaction,
and reward structures can enrich probabilistic temporal logics with “costs”
or “rewards” associated with selected state transitions, or accumulated dur-
ing sojourns with state-specific rates. Not only the system is modeled with
a high-level formalism such as stochastic Petri nets, queueing networks,
stochastic process algebras or stochastic activity networks, which avoid com-
plex and error-prone model definitions in the state-space (an introduction
to the latter formalisms can be found in Clark et al. (2007) and Sanders
and Meyer (2001), for example); also the performance measures of interest
can be expressed in a well-defined language and evaluated automatically,
enabling an early assessment of design choices and regression verification
during model refinement and evolution.

As reported in Grunske (2008), empirical evidence indicates that most
probabilistic requirements occurring in the industrial practice can be formu-
lated through a limited set of property specification patterns: among these,
the fundamental patterns for the specification of transient properties are
based on the probabilistic interval until operator P∼p[ϕ1 U [α,β]ϕ2], which
imposes an upper or lower bound p on the probability that the model will
be in a “goal” state satisfying ϕ2 at some time in the interval [α, β] after
visiting only a subset of “safe” states that satisfy ϕ1.

When the underlying stochastic process of the model is a continuous-
time Markov chain (as in stochastic time Petri nets with only EXP or IMM
transitions), this problem can be reduced to transient analysis through the
approach of Baier et al. (2003). In particular, transient analysis can be per-

58 5 Verification of an Interval Until Operator

formed independently before and after α on instances of the original CTMC
modified so as to turn goal states after α and illegal states into absorbing
ones. This solution is justified by the fact that the system is memoryless and
α is always a regeneration point. In contrast, when the underlying stochastic
process can accumulate memory over time, as in the case of semi-Markov
and Markov regenerative processes, the system evolution before and after α
cannot be analyzed independently.

The problem could still be reduced to transient analysis by adding a
deterministic timer in parallel to the model so as to represent the elapse of
α and record the corresponding event in the logic state (the marking of the
STPN). Unfortunately, this solution crucially affects regenerative transient
analysis: it is now the deterministic timer that carries memory, destroying
all regeneration points of the model before time α.

In this chapter, we present a solution based on a renewal argument spe-
cific to the interval until operator, which results in a bivariate formulation of
Markov renewal equations. We provide algorithms for the evaluation of the
parameters of these integral equations through the enumeration of stochas-
tic state classes limited to the first regenerative epoch (as in regenerative
transient analysis). The solution allows the verification of Boolean combi-
nations of interval until operators on stochastic time Petri nets in which
multiple GEN transitions can be started or stopped independently, but re-
generation points are always encountered w.p.1 after a bounded number of
firings. The repetitive structure of the underlying Markov regenerative pro-
cess is exploited also before the lower bound α, providing crucial benefits
for large time bounds.

A case study is also presented through the probabilistic formulation of Fis-
cher’s mutual exclusion protocol, a well-known real-time verification bench-
mark.

5.1 Probability space and cylinder sets

In the formulation of the probabilistic model checking problem, we will need
to refer to the probability measure of selected sets of execution paths of
an STPN model. We thus formalize the concept by defining the probability
space (Ωm0

,Fm0
,Prm0,f~τ0

) induced by the semantics of STPNs for a given
initial marking m0 and initial times to fire PDF f~τ0 .

The outcomes Ωm0
of the probability space are all (finite or infinite) paths

ω = s0
γ1−→ s1

γ2−→ s2
γ3−→ · · ·

originating from a state s0 = 〈m0, τ0〉 with marking m0, where γi ∈ T is
the ith transition fired along the path and si = 〈mi, ~τi〉 is the state reached
after the firing of γi.

5.1 Probability space and cylinder sets 59

To identify a σ-algebra Fm0
of events over the paths Ωm0

, let
C(m0, γ1, I1, γ2, I2, . . . , γn, In) denote the cylinder set including all the paths
with initial marking m0 that fire the sequence of transitions γ1, γ2, . . . , γn
at absolute times contained in the intervals I1, I2, . . . , In, respectively:

C(m0, γ1, I1, γ2, I2, . . . , γn, In) := {ω ∈ Ωm0 | |ω| ≥ n and

∀ 0 < k ≤ n.(ω[k] = γk and T (k, ω) ∈ Ik) }

where |ω| is the number of firings in ω (which is finite if s|ω| is an absorbing
state), ω[k] = γk for all 0 < k ≤ |ω| is the kth transition fired along ω, and
T (k, ω) is the absolute time of the kth firing in ω, for all k:

T (k, ω) :=

{∑k−1
i=0 mint∈E(mi) ~τi(t) if k ≤ |ω|,

+∞ if k > |ω|.

Note that, in contrast with the usual definition of cylinder sets for CTMCs,
constraints refer to absolute firing times rather than sojourn times in visited
states. This formulation allows a simpler treatment of the dependence among
subsequent sojourn times in models with underlying stochastic processes
beyond the limits of semi-Markov processes.

The set of events Fm0
is defined as the smallest σ-algebra on Ωm0

that
contains all the cylinder sets C(m0, γ1, I1, γ2, I2, . . . , γn, In) for n ∈ N,
γ1, γ2, . . . , γn ranging over all the sequences of n transitions in T and
I1, I2, . . . , In ranging over all the sequences of n non-empty real intervals
of the form [a,∞) or [a, b] with a, b ∈ Q.

Proposition 5.1. Fm0
is countable and closed with respect to intersection

and complement operations.

Proof. The elements of Fm0 are uniquely identified by finite strings alter-
nating transitions and firing intervals [a,∞) or [a, b] with a, b ∈ Q: pairs
of rational numbers and finite strings from a finite alphabet are count-
able sets, and thus Fm0

is also countable. The intersection of two cylinder
sets C(m0, γ1, I1, γ2, I2, . . . , γn, In) and C(m0, γ

′
1, I
′
1, γ
′
2, I
′
2, . . . , γ

′
m, I

′
m) with

n ≤ m is non-empty only if γi = γ′i for i = 1, . . . , n, and it corresponds to
the cylinder set

C(m0, γ1, I1 ∩ I ′1, γ2, I2 ∩ I ′2, . . . , γn, In ∩ I ′n, γ′n+1, In+1, . . . , γ
′
m, I

′
m),

which belongs to Fm0 .
Finally, the complement of a cylinder set C(m0, γ1, I1, γ2, I2, . . . , γn, In)

corresponds to the finite union of all cylinder sets of the form
C(m0, γ

′
1, I
′
1, γ
′
2, I
′
2, . . . , γ

′
n, I
′
n) such that either

• there exists i ≤ n such that γi 6= γ′i and I ′i = [0,∞), or
• for all i ≤ n, γi = γ′i and I ′i = [0, inf Ii] or I ′i = [sup Ii,∞).

60 5 Verification of an Interval Until Operator

The probability measure Prm0,f~τ0
on cylinder sets can be evaluated

through the transient measures on stochastic state classes described in Sec-
tion 3.3. Moreover, when GEN timers of the model are distributed according
to piecewise expolynomial PDFs (on bounded or unbounded supports), these
measures can be computed numerically using the Sirio package of the ORIS
tool described in Carnevali et al. (2011).

Proposition 5.2 (Measure of cylinder sets). The probability measure of
a cylinder set C(m0, γ1, I1, γ2, I2, . . . , γn, In) is equal to the product

∏n
i=1 µi

of succession probabilities for the sequence of stochastic state classes

Σ0
γ1,I1,µ1
=====⇒ Σ1

γ2,I2,µ2
=====⇒ · · · γn,In,µn======⇒ Σn,

or equal to 0 if the sequence is not defined (i.e., ∃i ≤ n.µi = 0).

Proof. The event C(m0, γ1, I1, γ2, I2, . . . , γn, In) for n ∈ N can be expressed
as E0 ∩ E1 ∩ · · · ∩ En, where E0 = Ωm0

and, for each i > 0,

Ei = {ω ∈ Ωm0
| |ω| ≥ i, ω[i] = γi and T (i, ω) ∈ Ii }

is the constrained set of paths imposing an absolute time only on the ith
transition; thus, by the chain rule,

Prm0,f~τ0
{E0 ∩ E1 ∩ · · · ∩ En} = Prm0,f~τ0

{E0} Prm0,f~τ0
{E1 | E0}

Prm0,f~τ0
{E2 | E0, E1} · · · Prm0,f~τ0

{En | E0, E1, . . . , En−1}

where Prm0,f~τ0
is the probability measure over STPN paths. By induction

on the definition of succession relation, for all i ≤ n, the class Σi in

Σ0
γ1,I1,µ1
=====⇒ Σ1

γ2,I2,µ2
=====⇒ · · · γn,In,µn======⇒ Σn

represents the joint PDF of the absolute time and current state given the
events E0, E1, . . . , Ei, and µi = Prm0,f~τ0

{Ei | E0, E1, . . . , Ei−1}. Then

Prm0,f~τ0
{E0 ∩ E1 ∩ · · · ∩ En} =

∏n
i=1 µi if µi > 0 for all i ≤ n; if some

event Ei has null probability given E0, E1, . . . , Ei−1 (i.e., Σi−1 has no suc-
cessor through γi at some time in Ii and thus µi = 0), the measure of the
cylinder set is zero.

5.2 Probabilistic temporal logic

We specify quantitative properties of STPNs with a probabilistic temporal
logic based on an interval until operator with predicates over the markings
of the net. The logic allows to express bounds on the probability that the
marking of the STPN satisfies a goal predicate ϕ2 at some time in the interval

5.2 Probabilistic temporal logic 61

[α, β] without violating a safety predicate ϕ1. The syntax of the logic is

ψ ::= true | ap | ¬ψ | ψ ∧ ψ | P∼p[ϕU [α,β]ϕ]

ϕ ::= true | ap | ¬ϕ | ϕ ∧ ϕ

where ∼ ∈ {<,>}, p ∈ [0, 1] is a probability value, α, β ∈ Q>0, and the
atomic predicates are defined as ap ::= g ./ x where ./ ∈ {<,≤,=, 6=,≥
, >}, x ∈ R and g : NP → R is a real-valued function over markings (e.g.,
“free > 1” for the net of Fig. 3.1).

Note that the interval until operator P∼p[ϕ1 U [α,β]ϕ2] imposes also a
lower bound α on the time for the satisfaction of ϕ2, in contrast with the
bounded until operator P∼p[ϕ1 U ≤βϕ2] solved in Infante-López et al. (2001)
for semi-Markov processes and in Martinez and Haverkort (2006) for Markov
regenerative processes under enabling restriction.

As in Bryans et al. (2003), the logic allows the Boolean composition of
interval until operators, each evaluated from a random initial state s0 =
〈m0, ~τ0〉 in which m0 is a marking and ~τ0 is a times to fire vector sampled
according to f~τ0 . Without loss of generality, we assume that all enabled
transitions E(m0) = {t1, t2, . . . , tn} are newly enabled in the initial state,
and thus ~τ0 is distributed according to f~τ0(x1, x2, . . . , xn) =

∏n
i=1 fti(xi).

Definition 5.1 (Logic semantics). Given a stochastic time Petri net
〈P, T,A−, A+, A◦, EFT, LFT, f, w〉 with initial marking m0 and times to
fire ~τ0 initially distributed according to f~τ0 , the relations 〈m0, f~τ0〉 |= ϕ and
〈m0, f~τ0〉 |= ψ are defined inductively by

〈m0, f~τ0〉 |= true ⇐⇒ always satisfied

〈m0, f~τ0〉 |= ap ⇐⇒ ap is satisfied by m0

〈m0, f~τ0〉 |= ¬ϕ ⇐⇒ 〈m0, f~τ0〉 6|= ϕ

〈m0, f~τ0〉 |= ¬ψ ⇐⇒ 〈m0, f~τ0〉 6|= ψ

〈m0, f~τ0〉 |= ϕ1 ∧ ϕ2 ⇐⇒ 〈m0, f~τ0〉 |= ϕ1 ∧ 〈m0, f~τ0〉 |= ϕ2

〈m0, f~τ0〉 |= ψ1 ∧ ψ2 ⇐⇒ 〈m0, f~τ0〉 |= ψ1 ∧ 〈m0, f~τ0〉 |= ψ2

and

〈m0, f~τ0〉 |= P∼p[ϕ1 U [α,β]ϕ2] ⇐⇒
Prm0,f~τ0

{ω ∈ Ωm0
| ω |= ϕ1 U [α,β]ϕ2} ∼ p (5.1)

where, for any path ω = s0
γ1−→ s1

γ2−→ · · · with si = 〈mi, ~τi〉, mi ∈ NP and

~τi ∈ RE(mi)
>0 for all i,

62 5 Verification of an Interval Until Operator

ω |= ϕ1 U [α,β]ϕ2 ⇐⇒ ∃n ≤ |ω| such that mn |= ϕ2

∧
(
∀k < n.(mk |= ϕ1)

)
∧
(
T (n, ω) ∈ [α, β]

∨ (T (n, ω) < α ∧ T (n+ 1, ω) ≥ α ∧ mn |= ϕ1)
)
.

(5.2)

Example 5.1 (G/D/1/2/2 queue). In the G/D/1/2/2 queue of Fig. 3.1, the
property

P<0.4[(buffer < 2)U [0,7](failed = 1)]

∧ P<0.2[(buffer < 2)U [2.5,7](failed = 1)]

is satisfied if the probability of the server being down without ever reaching
its full capacity is lower than 0.4 in the interval [0, 7] and lower than 0.2 in
the interval [2.5, 7].

The following proposition shows that, for every pair of marking predicates
ϕ1, ϕ2, and α, β ∈ Q>0, the set of paths satisfying the interval until operator
is an event of Fm0

. Concretely, this means that the value of Prm0,f~τ0
{ω ∈

Ωm0 | ω |= ϕ1 U [α,β]ϕ2} is well-defined and the semantics of Definition 5.1
can be computed.

Proposition 5.3. For each ϕ1, ϕ2 ∈ NP and α, β ∈ Q>0, the set {ω ∈
Ωm0 | ω |= ϕ1 U [α,β]ϕ2 } of paths satisfying the corresponding interval until
operator is a countable union of elements of Fm0

.

Proof. The cylinder sets that end on a ϕ2-marking reached only through
ϕ1-markings are countable. Each cylinder set is in fact uniquely identified
by the sequence of transitions γ1, γ2, . . . , γn fired from m0, which are strings
on a finite alphabet. For each cylinder set C(m0, γ1, I1, γ2, I2, . . . , γn, In)
that ends on a ϕ2-marking only through ϕ1-markings, we consider (1) the
cylinder set imposing only an absolute time In = [α, β] for the nth transi-
tion, and (2) if the marking reached after γn satisfies also ϕ1, the cylinder
sets C(m0, γ1, I1, γ2, I2, . . . , γn, In, γn+1, In+1) for each γn+1 ∈ T imposing
a bound In = [0, α) for the firing of γn and a bound In+1 = [α,∞) for the
firing of γn+1. The countable union of these cylinder sets is an event of Fm0

including all and only the successful paths.

5.3 Markov renewal equations for the interval until operator

Given the predicates ϕ1 and ϕ2, a real interval [α, β] with α, β ∈ Q>0, and

a regeneration condition i = (m, ~d), we define

Ωi(α, β) := {ω ∈ Ωm | ω |= ϕ1 U [α,β]ϕ2 }

5.3 Markov renewal equations for the interval until operator 63

to be the set of paths that start from the marking of the regener-
ation condition i and satisfy the until operator, and we denote by
pi(α, β) := Pri{Ωm(α, β) } its probability measure in the probability space
(Ωm,Fm,Prm,~d) for the paths with initial marking m when times to fire
are initially distributed according to a PDF f~τ0 with the product-form de-

scribed in Lemma 4.1 for enabling times ~d and τage equal to zero (i.e., with
fage(xage) = δ(xage) and Dage = [0, 0]).

For each path ω = s0
γ1−→ s1

γ2−→ · · · in Ωi(α, β), with sn = 〈mn, ~τn〉,
mn ∈ NP and ~τn ∈ RE(mn)

>0 , we indicate as

reg(ω) := min{n ∈ N | sn−1
γn−→ sn is a regeneration }

the index of the first regeneration along the path, and we indicate as

ok(ω) := min{n ∈ N | n ≤ |ω| ∧ (mn |= ϕ2)∧(
∀k < n.(mk |= ϕ1)

)
∧
(
T (n, ω) ∈ [α, β]∨

(T (n, ω) < α ∧ T (n+ 1, ω) ≥ α ∧ mn |= ϕ1)
)
}

the index of the first conclusive state satisfying the until operator. Moreover,
we indicate with treg(ω) := T (reg(ω), ω) the time of the first regeneration

in ω, and with (mreg(ω), ~dreg(ω)) the corresponding regeneration condition.
The probability pi(α, β) can then be decomposed so as to separately ac-

count for paths in Ωi(α, β) that satisfy the until operator under different
timings of the first regeneration. To this end, we distinguish paths that
satisfy the until operator before reaching a regeneration from those that en-
counter the first regeneration before α, or between α and β, and then satisfy
the until operator:

ΩLi (α, β) := {ω ∈ Ωi(α, β) | ok(ω) < reg(ω) },
ΩGi (α, β) := {ω ∈ Ωi(α, β) | ok(ω) ≥ reg(ω) ∧ treg(ω) < α }, and

ΩHi (α, β) := {ω ∈ Ωi(α, β) | ok(ω) ≥ reg(ω) ∧ treg(ω) ∈ [α, β] } .

Given these sets of successful paths, the following result holds.

Proposition 5.4. For any regeneration condition i and α, β ∈ Q>0, we have
pi(α, β) = Pr i{ΩLi (α, β)}+ Pr i{ΩGi (α, β)}+ Pr i{ΩHi (α, β)}.

Proof. The sets ΩLi (α, β), ΩGi (α, β), ΩHi (α, β) comprise a partition of the
set of paths Ωi(α, β): on the one hand, they are clearly disjoint; on the
other hand, to prove that they cover Ωi(α, β) it is sufficient to consider that
∀ω ∈ Ωi(α, β), treg(ω) > β implies ok(ω) < reg(ω).

The probability measure of the three sets ΩLi (α, β), ΩGi (α, β) and
ΩHi (α, β) can be expressed in terms of three kernels that depend on the
behavior of the stochastic process within the first epoch of regeneration.

64 5 Verification of an Interval Until Operator

The measure of ΩLi (α, β) is directly defined as the local kernel
Lϕ1,ϕ2

i (α, β) := Pr{ΩLi (α, β) }, which evaluates the probability measure of
paths that satisfy the until operator before reaching a regeneration. In con-
trast, the measures of ΩGi (α, β) and ΩHi (α, β) are not limited to a regener-
ative epoch and require the following propositions.

Proposition 5.5. The measure Pri{ΩGi (α, β) } is equal to∑
k

∫
x∈[0,α)

dGϕ1

ik (x) pk(α− x, β − x) (5.3)

where k = (m, ~d) ranges over all reachable regeneration conditions and the
global kernel Gϕ1

ik (x) is defined as

Gϕ1

ik (x) := Pri{ω ∈ Ωi | treg(ω) ≤ x
∧ (mreg(ω), ~dreg(ω)) = k ∧ (∀j < reg(ω)).(mj |= ϕ1) } . (5.4)

Proof. For each ω ∈ ΩGi (α, β), it must be ok(ω) ≥ reg(ω) and treg(ω) < α
(i.e., ω encounters a goal state after reaching a regeneration point before time
α). According to Lemmas 4.2 and 4.3, the process evolution after the regen-

eration point depends only on the regeneration condition (mreg(ω), ~dreg(ω)),
and the remaining time for satisfying the until operator is reduced by
treg(ω); since the only condition required by Eq. (5.2) for states 〈mj , ~τj〉
with j < ok(ω) is mj |= ϕ1, and ok(ω) ≥ reg(ω) for ω ∈ ΩGi (α, β), the
measure Pri{ΩGi (α, β) } is equal to∫

X(α)

p(mreg(ω),~dreg(ω))

(
α− treg(ω), β − treg(ω)

)
dPri(ω) (5.5)

where X(α) := {ω ∈ Ωi | treg(ω) < α ∧ (∀j < reg(ω)).(mj |= ϕ1) }.
In Eq. (5.5), the measure of each path reaching its first regeneration point
before α without violating ϕ1 is multiplied by the probability that the until
operator will be satisfied from the regeneration in the remaining time. By
conditioning on all reachable regeneration conditions (mreg(ω), ~dreg(ω)) = k
and times treg(ω) = x < α of the first regeneration, we obtain Eq. (5.3),
where the global kernel represents the probability of reaching a regeneration
within time x with regeneration condition k, always satisfying ϕ1 in previous
states.

Proposition 5.6. The measure Pri{ΩHi (α, β) } is equal to∑
k

∫
x∈[α,β]

dHϕ1,ϕ2

ik (α, x) pk(0, β − x) (5.6)

where k = (m, ~d) ranges over all reachable regeneration conditions and the
conditional global kernel Hϕ1,ϕ2

ik (α, x) is defined as

5.3 Markov renewal equations for the interval until operator 65

Hϕ1,ϕ2

ik (α, x) := Pri{ω ∈ Ωi | treg(ω) ∈ [α, x] ∧ (mreg(ω), ~dreg(ω)) = k

∧ (∀j < reg(ω)).
(
mj |= ϕ1 ∧ (mj |= ϕ2)⇒ T (j, ω) < α

)
} . (5.7)

Proof. For each ω ∈ ΩHi (α, β), it must be that ok(ω) ≥ reg(ω) and
treg(ω) ∈ [α, β] (i.e., ω encounters a conclusive state after reaching a re-
generation point at some time in [α, β]). The proof is analogous to the case
of Proposition 5.5: in this case, states (mj , ~τj) with j < reg(ω) must sat-
isfy ϕ1, but not ϕ2 when reached after time α, in order to guarantee that
ok(ω) ≥ reg(ω).

Propositions 5.5 and 5.6 comprise an important result, as they apply renewal
arguments on the satisfaction of the interval until operator and distinguish
the properties that must be satisfied by paths before a regeneration point in
[0, α) or in [α, β]. We can now present our main result, which follows directly
from Propositions 5.4 to 5.6 and shows that the measure p(m0,~0)(α, β) of
paths satisfying the until operator from the initial regeneration condition
(m0,~0) can be computed from the measures pi(α, β) for all possible i, α, β.

Theorem 5.1. The measures pi(α, β) for all i = (m, ~d), each correspond-
ing to the probability that the model satisfies the interval until operator
ϕ1 U [α,β]ϕ2 from the initial marking m with PDF of GEN timers given by the
deterministic enabling times ~d, are given by the system of integral equations

pi(α, β) = Lϕ1,ϕ2

i (α, β)

+
∑
k

∫
x∈[0,α)

dGϕ1

ik (x) pk(α− x, β − x) (5.8)

+
∑
k

∫
x∈[α,β]

dHϕ1,ϕ2

ik (α, x) pk(0, β − x)

where i and k range over all reachable regeneration conditions.

The theorem comprises a bivariate generalization of Markov renewal equa-
tions with three kernels that result from a renewal argument specific to the
interval until operator: the model can satisfy ϕ2 between α and β either

• without regenerations,
• reaching the first regeneration before α, or
• reaching the first regeneration in [α, β].

As illustrated in Fig. 5.1, ϕ1 must be always satisfied; additionally, also ¬ϕ2

must be satisfied between α and the first regeneration point in paths that
satisfy the until operator only after a regeneration.

The bivariate unknowns pi(α, β) allow to take into account both a mini-
mum and maximum time for the satisfaction of ϕ2; after a regeneration at
time x with regeneration condition k, the success probability is given by the
solution from k with reduced time constrains: pk(α− x, β − x) if x < α and

66 5 Verification of an Interval Until Operator

t
0 α β

i ϕ2

tok

ϕ1

(a) Paths contributing to Lϕ1,ϕ2

i (α, β).

t
0 treg x

i kϕ1

(b) Paths contributing to Gϕ1

ik (x).

t
0 α treg x

i kϕ1 ϕ1 ∧ ¬ϕ2

(c) Paths contributing to Hϕ1,ϕ2

ik (α, x).

Fig. 5.1: Constraints on paths contributing to the kernels.

pk(0, β − x) if x ≥ α. In the next section, we will show that the numerical
solution of the integral equations for pi(α, β) requires a number of unknowns
pk(x, y) that grows linearly with respect to β, similarly to the required val-
ues of Lϕ1,ϕ2

i and Gϕ1

ik ; in contrast, the number of required values of Hϕ1,ϕ2

ik

grows linearly with the product α(β − α), as illustrated in Fig. 5.2.

5.4 Numerical integration and kernels evaluation

The kernels can be evaluated through the enumeration of stochastic state
classes limited to the first regeneration along sequences of discrete events;
Eq. (5.8) can then be solved numerically in the time domain through tech-
niques such as Newton–Cotes formulas or Runge–Kutta methods described
in Brunner and van der Houwen (1986). Given a step size h and discretizing
the temporal domain [0, β] into points tn = nh, with α = āh and β = b̄h,
Newton–Cotes formulas define the linear system

~p(ta, tb) = ~Lϕ1,ϕ2(ta, tb)

+

a∑
m=0

wm dG
ϕ1(tm) · ~p(ta−m, tb−m) (5.9)

+

b∑
m=a

wm dH
ϕ1,ϕ2(ta, tm) · ~p(0, tb−m)

5.4 Numerical integration and kernels evaluation 67

0 tb
0

ta

tb̄−ā tb̄

tā

Lϕ1,ϕ2

i

Hϕ1,ϕ2

ik

Fig. 5.2: Required values of Lϕ1,ϕ2

i (ta, tb) and Hϕ1,ϕ2

ik (ta, tb).

in the unknowns ~p(0, tb) for b = 0, . . . , b̄−ā, and ~p(ta, ta+b̄−ā) for a = 1, . . . , ā,
where, for first degree formulas (trapezoidal rule), wm = h/2 for m = 0,
m = a, or m = b, and wm = h otherwise. For regular MRPs dG(0) = 0
and dH(0, 0) = 0, and Eq. (5.9) can be solved by forward substitution; in
particular,

~p(0, tb) = ~Lϕ1,ϕ2(0, tb) +

b∑
m=1

wm dH
ϕ1,ϕ2(0, tm) · ~p(0, tb−m)

for b = 0, . . . , b̄− ā, and

~p(ta, tb) = ~Lϕ1,ϕ2(ta, tb)

+

a∑
m=1

wm dG
ϕ1(tm) · ~p(ta−m, tb−m) (5.10)

+
b∑

m=a

wm dH
ϕ1,ϕ2(ta, tm) · ~p(0, tb−m)

for a = 1, . . . , ā and b = a + b̄ − ā. By evaluating the unknowns ~p(ta, tb)
in this order, the solution ~p(tā, tb̄) can be computed as a direct sum that
requires:

• local kernel values ~Lϕ1,ϕ2(0, tb) for b = 0, . . . , b̄− ā and ~Lϕ1,ϕ2(ta, tb) for
a = 1, . . . , ā, b = a+ b̄− ā;

• global kernel values dGϕ1(tm) for m = 1, . . . , ā;
• conditional global kernel values dHϕ1,ϕ2(ta, tm) for a = 0, . . . , ā and m =
a, . . . , a+ b̄− ā.

Values of Lϕ1,ϕ2

i (ta, tb), dG
ϕ1

ik (tm), and dHϕ1,ϕ2

ik (ta, tm) can be derived from
the transient stochastic tree enumerated from the regeneration condition
i, halting on either (1) regenerative nodes, (2) nodes not satisfying ϕ1,
(3) nodes with minimum reaching time τage greater than β w.p.1. In the

68 5 Verification of an Interval Until Operator

enumeration, the successors of a class Σ, indicated as Successors(Σ), are
derived according to the calculus of stochastic state classes described in
Chapter 3. In particular, each class Σn derived through the successions

Σi−1
γi,µi
===⇒ Σi for i = 1, . . . , n is associated with the probability measure

η(Σn) =
∏n
i=1 µi of the cylinder set of paths that perform the sequence of

discrete events γ1, . . . , γn. Additional constraints on paths can be imposed
by restricting the set of values of the times to fires of classes; in particu-
lar, given a transient stochastic state class Σ = 〈m,D, f〉 and the intervals
I1 and I2, we indicate as Σin∈I1,out∈I2 = 〈m,Din∈I1,out∈I2 , fin∈I1,out∈I2〉,
where

Din∈I1, out∈I2 :=
{

(xage , ~x) ∈ D | −xage ∈ I1
and

(
min

i 6=age,∗
xi
)
− xage ∈ I2

}
,

η(Σin∈I1, out∈I2) := η(Σ)

∫
Din∈I1, out∈I2

f(xage , ~x) dxage d~x , and

fin∈I1, out∈I2(xage , ~x) := f(xage , ~x)
η(Σ)

η(Σin∈I1, out∈I2)
,

the class Σ conditioned to event imposing that the last firing happened
at some time in I1 and the next firing will happen at some time in I2.
Correspondingly, η(Σin∈I1, out∈I2) represents the measure of the cylinder set
of paths where the firings that enter and leave Σ occur in the intervals I1 and
I2, respectively. In the following, the superfluous restrictions in ∈ [0,+∞)
and out ∈ [0,+∞) will be omitted in the notation.

Local kernel values Lϕ1,ϕ2

i (ta, tb). The algorithm in Fig. 5.3 evaluates
Lϕ1,ϕ2

i (α, β) by enumerating the transient tree from regeneration condition
i. Specifically, Γ is the frontier set containing classes to be processed and
p accumulates the value of Lϕ1,ϕ2

i (α, β). For each non-regenerative class Σ
selected from Γ, three cases are possible, depending on the satisfaction of
ϕ1 and ϕ2:

• A state in a class ¬ϕ1 ∧ ϕ2 (line 8), contributes to the probability p if
and only if it is reached in [α, β]; according to this, p is incremented by
the measure of the subset of Σ restricted with the constraint in ∈ [α, β].

• A state in a class ϕ1 ∧ ¬ϕ2 (line 10) does not contribute to p, but its
successors can, provided that they are reached within β; therefore, the
successors of Σ that are reached within β are added to Γ.

• A state in a class ϕ1∧ϕ2 (line 12) can contribute to either p or the frontier
Γ: p is incremented by the measure of the states in Σ that are reached
within [α, β], or reached before α and left after α; the successors of Σ are
added to Γ if and only if they are reached before α.

5.4 Numerical integration and kernels evaluation 69

In the derivation of the values of Lϕ1,ϕ2

i (ta, tb) needed for the integration,
the algorithm is executed for each pair (0, tb) with b = 0, . . . , b̄−ā and (ta, tb)
with a = 1, . . . , ā and b = a+ b̄− ā.

Global kernel values dGϕ1

ik (tm). The values dGϕ1

ik (tm) for m = 1, . . . , ā can
be derived from the transient tree enumerated from regeneration condition
i, stopping on any regenerative class, or on any (¬ϕ1)-class, or after the time
bound α. The value dGϕ1

ik (tm) can then be obtained by summing up, over
each regenerative class n reached in the transient tree with regeneration k,
the PDF value fnage(−tm) of the absolute reaching time multiplied by η(n),
i.e., dGϕ1

ik (tm) =
∑
n η(n) fnage(−tm).

Conditional global kernel values dHϕ1,ϕ2

ik (ta, tm). The values dHϕ1,ϕ2

ik (ta, tm)
can be computed as (Hϕ1,ϕ2

ik (ta, tm)−Hϕ1,ϕ2

ik (ta, tm−1))/h, where the values
Hϕ1,ϕ2

ik (α, x) are derived from the transient tree enumerated from regenera-
tive condition i stopping on regenerations, on (¬ϕ1)-classes, and on classes
reached after β. The evaluation also discards states in ϕ2 classes that are left
after α, since Hϕ1,ϕ2

ik (α, x) provides the measure of the set of paths that end
on regeneration condition k after visiting only ϕ1-states and without visit-
ing any ϕ2-state after α. The algorithm in Fig. 5.4 evaluates Hϕ1,ϕ2

ik (α, x)
for all k by enumerating the transient tree from regeneration condition i;
similarly to Fig. 5.3, Γ is the frontier set and pk accumulates the value of
Hϕ1,ϕ2

ik (α, x). For each state class Σ selected from Γ:

• A state in a regenerative class with regeneration condition k (line 6),
contributes to the probability pk of Hϕ1,ϕ2

ik (α, x) if and only if it is reached

Evaluate-Lϕ1,ϕ2

i (α, β)

1 Σ0 = initial state class with regeneration condition i
2 p← 0
3 Γ← {Σ0 }
4 while Γ 6= ∅
5 do select and remove a class Σ = 〈m,D, f〉 from Γ
6 if m |= ¬ϕ1 ∧ ¬ϕ2 or Σ is regenerative
7 then discard Σ
8 elseif m |= ¬ϕ1 ∧ ϕ2

9 then p← p+ η(Σin∈[α,β])
10 elseif m |= ϕ1 ∧ ¬ϕ2

11 then Γ← Γ ∪ Successors(Σout∈[0,β])
12 elseif m |= ϕ1 ∧ ϕ2

13 then p← p+ η(Σin∈[α,β])
14 + η(Σin∈[0,α),out∈[α,+∞))
15 Γ← Γ ∪ Successors(Σout∈[0,α))
16 return p

Fig. 5.3: Algorithm evaluating Lϕ1,ϕ2

i (α, β).

70 5 Verification of an Interval Until Operator

Evaluate- ~Hϕ1,ϕ2

i (α, x)

1 Σ0 = initial state class with regeneration condition i
2 pk ← 0 for each regeneration condition k
3 Γ← {Σ0 }
4 while Γ 6= ∅
5 do select and remove a class Σ = 〈m,D, f〉 from Γ
6 if Σ is regenerative with regeneration condition k
7 then pk ← pk + η(Σin∈[0,x])
8 elseif m |= ϕ1 ∧ ¬ϕ2

9 then Γ← Γ ∪ Successors(Σout∈[0,x])
10 elseif m |= ϕ1 ∧ ϕ2

11 then Γ← Γ ∪ Successors(Σout∈[0,α))
12 return ~p

Fig. 5.4: Algorithm evaluating ~Hϕ1,ϕ2

ik (α, x).

before time x; according to this, pk is incremented by the measure of the
subset of Σ restricted with the constraint in ∈ [0, x].

• A state in a class ϕ1 ∧ ¬ϕ2 (line 8) does not contribute to any pk, but
its successors can, provided that they are reached within x; therefore, the
successors of Σ that are reached within x are added to Γ.

• The successors of a state in a class ϕ1 ∧ ϕ2 (line 10) can contribute
to Hϕ1,ϕ2

ik (α, x) if the state is left before time α; according to this, the
successors of Σ that are reached before α are added to Γ.

In the derivation of the values of Hϕ1,ϕ2

ik (ta, tm) needed for the integration,
the algorithm is repeated for each pair (ta, tm) with a = 0, . . . , ā and m =
a− 1, . . . , a+ b̄− ā.

Overall, for each regeneration condition i, the transient tree enumeration
is performed:

• α
h + 1 times for the evaluation of Lϕ1,ϕ2

i (ta, ta+b̄−ā) with a = 0, 1, . . . , ā;
• once for the evaluation of the global kernel values dGϕ1

ik (tm) for m =
1, . . . , ā and all k;

• (αh + 1)(β−αh + 2) times for the evaluation of the conditional global kernel
values Hϕ1,ϕ2

ik (ta, tm) for a = 0, 1, . . . , ā, m = a− 1, . . . , a+ b̄− ā, and all
k.

If |R| is the number of reachable regeneration conditions, the number of
transient tree enumerations is thus O

(
α
h
β−α
h |R|

)
. The advantage with re-

spect to Horváth et al. (2011), where model checking is performed with a
single transient tree enumeration, lies in the reduced depth of these tran-
sient trees: the computation of successors for the leaves of the tree now
halts not only on ¬ϕ1 classes, but also on regenerative ones. Notably, both
the worst-case space and time required for the computation of a successor

5.5 Eliminating the lower bound α 71

class grow exponentially with the depth of the predecessor in the tree, as
discussed in Carnevali et al. (2009); when the time bound β is large and re-
generations are reached in a limited number of discrete events, the repeated
enumeration of shallow trees becomes extremely beneficial. With respect to
regenerative transient analysis of Chapter 4 and Horváth et al. (2012), which
is based on univariate Markov renewal equations that require O

(
β
h |R|

)
tran-

sient tree enumerations (or equivalent operations), the bivariate formulation
of Eq. (5.8) requires a higher number of repetitions in order to explicitly ac-
count for the minimum time bound α. Nonetheless, this approach preserves
regenerations before α that would be destroyed by a simple reduction to
transient analysis, as discussed in the next section.

5.5 Eliminating the lower bound α

The availability of deterministic transitions in STPN models can be lever-
aged to remove the lower bound α for the satisfaction of ϕ2 and reduce
the evaluation of an interval until operator to a first-passage problem. We
present this alternative approach by discussing the effect of α = 0 on
Eq. (5.8), and then the consequences of extending the model with an addi-
tional transition with duration equal to α.

The complexity of Eq. (5.8) is largely reduced if the until operator does
not restrict the minimum time for the acceptance of the conclusive condition
ϕ2, i.e., if α = 0. In this case, both Eq. (5.8) and its kernels are simplified:
the local kernel Lϕ1,ϕ2

i (α, β) becomes the probability that, starting from the
regenerative state i, a ϕ2-state is encountered before the first regeneration
and not later than β. Moreover, the second term of Eq. (5.8) gives a null
contribution. Finally, the conditional global kernel Hϕ1,ϕ2(α, x) becomes the
probability that a regeneration k is reached before x after visiting only states
that satisfy ϕ1 ∧ ¬ϕ2.

The two kernels Lϕ1,ϕ2

i (0, β) and Hϕ1,ϕ2(0, x) can be derived from the
transient trees rooted in regenerative classes reached within the first regen-
erative epoch, not later than β and through executions that visit only classes
satisfying ϕ1 ∧ ¬ϕ2: the local kernel Lϕ1,ϕ2

i (0, β) is derived from the tran-
sient tree rooted in a class with regeneration condition i and limited to the
first regeneration, or to time β, or to the first conclusive state that satisfies
ϕ2 or ¬ϕ1; finally, Hϕ1,ϕ2

ik (0, x) is derived through the analysis of behaviors
that reach the first regeneration within time β and visiting only states that
satisfy ϕ1 ∧ ¬ϕ2.

This construction basically comprises an application of the strategy of
Baier et al. (2003) to the context of non-Markovian processes. In fact, re-
strictions made in the enumeration of transient trees correspond to manip-
ulations performed on the underlying stochastic process to turn any state
that satisfies ϕ2 or ¬ϕ1 into an absorbing state.

72 5 Verification of an Interval Until Operator

The case [0, β] can be lifted to solve the case [α, β] by exploiting the abil-
ity of STPNs to represent DET transitions. Following the same principle
of techniques such as Donatelli et al. (2009) and Chen et al. (2009), which
reduce probabilistic model checking to the analysis of a synchronous compo-
sition of the model with a specification automaton, the STPN model can be
extended with a DET transition t with static density ft(x) = δ(x−α) and ϕ2

can be restricted to ϕ′2 = ϕ2∧{t has fired}. In so doing, regenerations before
α are not exploited, since the added DET transition t is enabled and carries
memory. Only after the firing of t at time α, the regenerative approach will
be fully exploited in the analysis. This approach based on transient analysis
is thus well-suited only for cases with a small α with respect to the duration
of regenerative epochs.

Example 5.2 (G/D/1/2/2 queue). The property of Example 5.1 is not sat-
isfied. In fact, the measure of paths that satisfy ϕ1 U [α,β]ϕ2 from the initial
marking 2freeoperational with ϕ1 = (buffer < 2) and ϕ2 = (failed = 1)
corresponds to 0.3313 < 0.4 for α = 0 and β = 7, and to 0.2359 > 0.2 for
α = 2.5 and β = 7. In the latter case, when limited to ϕ1-markings, the
model can reach only 3 distinct regenerations before time β = 7 and the
corresponding transient trees include a total of 44 classes. In contrast, if a
transition with deterministic value α = 2.5 is added to the model, a total of
130 classes need to be enumerated. In particular, the transient tree enumer-
ated from the initial regeneration includes 115 classes: this larger number
is a consequence of the deterministic timer added to the initial state, which
results in a higher number of transition firings required to reach the first
regeneration.

5.6 Case study: Fischer’s mutual exclusion protocol

We illustrate the proposed technique with reference to a stochastic model
of n concurrent processes P1, P2, . . . , Pn accessing a critical section with
Fischer’s protocol, discussed in Lynch and Shavit (1992). The protocol en-
sures mutual exclusion using atomic read and write operations on a shared
communication variable id taking the values 0, 1, . . . , n. When id = 0, each
process Pi can attempt the access to the critical section. To this end, it
performs the (time-consuming) write operation id ← i, waits for a time not
lower than a given tmax > 0, and then reads id again: if id = i, it can access
the critical section, and write id ← 0 on exit; whereas, if id 6= i, it has to
wait until id = 0 to attempt again.

Fischer’s protocol is a typical benchmark for real-time model checking,
as it neatly illustrates the interaction between concurrency and firm timing:
mutual exclusion is guaranteed provided that the waiting time tmax is not
lower than the maximum time required by the write operation of any pro-
cess. This condition inherently requires a model with multiple concurrent

5.6 Case study: Fischer’s mutual exclusion protocol 73

id

idle1 ready1arrival1
exp(0.1)

writing1readEmpty1
?id = 0

waiting1write1
unif(0,1)

id ← 1

reading1wait1
det(1.1)

readOther1
?id 6= 1

cs1readSelf1
?id = 1

completed1service1
unif(0,2)

reset1
id ← 0

idle2 ready2arrival2
exp(0.1)

writing2readEmpty2
?id = 0

waiting2write2
unif(0,1)

id ← 2

reading2wait2
det(1.1)

readOther2
?id 6= 2

cs2readSelf2
?id = 2

completed2service2
unif(0,2)

reset2
id ← 0

idle3 ready3arrival3
exp(0.1)

writing3readEmpty3
?id = 0

waiting3write3
unif(0,1)

id ← 3

reading3wait3
det(1.1)

readOther3
?id 6= 3

cs3readSelf3
?id = 3

completed3service3
unif(0,2)

reset3
id ← 0

Fig. 5.5: STPN model of three processes accessing a critical section with
Fischer’s mutual exclusion protocol.

timers with upper and lower bounds. While the protocol has been verified
in the qualitative perspective using real-time model checkers such as Kronos
of Daws et al. (1996) and Uppaal of Bengtsson et al. (1996), randomized ver-
sions have been analyzed in closed-form in Gafni and Mitzenmacher (2001)
or through simulation in Katoen et al. (2004); Deavours et al. (2002) only
with timed activities modeled through exponential or gamma distributions.
In this case, due to unbounded PDF supports, mutual exclusion can be
violated with probability greater than zero.

We analyze quantitative properties in a stochastic model of the proto-
col allowing concurrency among GEN timers with bounded supports, thus
enforcing with certainty the requirement of mutual exclusion. Fig. 5.5 illus-
trates an STPN model with three processes P1, P2, P3 (the same scheme
can be extended to any number of processes). The shared variable is en-
coded by the marking of place id (initially equal to zero). Each process Pi
eventually leaves the idle condition with transition arrivali (EXP with
rate 0.1), and enters the contention by reaching place writing i as soon as
id = 0 (IMM transition readEmptyi with enabling function ?id = 0); it
then sets the shared variable to its own identifier (as specified by the update
function id ← i) at the end of a write operation (transition writei, with
duration uniformly distributed over [0, 1]), and sojourns in a waiting state
(place waiting i) for a time higher than the maximum time that any process
can spend writing to id (transition waiti, DET equal to 1.1). When the
wait completes, process Pi reads id again to ensure that its write was the
last one (place reading i): if id 6= i, the control goes back to the initial state

74 5 Verification of an Interval Until Operator

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12

P
ro
b
ab

il
it
y

β

mA
mB
mC

Fig. 5.6: The probability measure of paths satisfying true U [0,β](cs1 =
1) as a function of β, for markings mA = ready1 idle2 idle3 , mB =
3id ready1 idle2 waiting3 , mC = 3id ready1 writing2 waiting3 .

of contention ready i (IMM transition readOtheri); whereas, if the shared
variable is still equal to the process identifier (i.e., id = i), Pi enters the criti-
cal section csi (IMM transition readSelfi), performs its service (transition
servicei, uniform over [0, 2]), and then resets the shared variable (IMM
transition reseti), returning to the idle state.

To illustrate the analysis, we consider a deadline requirement prescribing
that the latency for the access of P1 to the critical section be (1) not higher
than β (which we call base deadline) with probability greater than p, and
(2) not higher than βr > β (which we call relaxed deadline) with proba-
bility greater than pr > p. This property can be encoded as the Boolean
conjunction of two probabilistic existence properties

P>p[true U [0,β](cs1 = 1)] ∧ P>pr [true U [0,βr](cs1 = 1)] . (5.11)

Fig. 5.6 reports the measure

Pr (m,~0){ω ∈ Ωm | ω |= true U [0,β](cs1 = 1)}

as a function of β, for m ∈ {mA,mB ,mC} where: mA = ready1 idle2 idle3

(which occurs when P1 becomes ready while the other processes are idle),
mB = 3id ready1 idle2 waiting3 (which occurs when P1 becomes ready and
P3 has just set the shared variable, closing the access to the contention),
mC = 3id ready1 writing2 waiting3 (which occurs when P1 becomes ready
while both P2 and P3 are in the contention, with P2 writing to id and
P3 waiting to check id after a write operation that closed the access to

5.6 Case study: Fischer’s mutual exclusion protocol 75

the contention). As intuitive, the latency of P1 increases when the initial
condition is changed from mA to mB , and then from mB to mC . Properties
in the form of Eq. (5.11) are decided by comparing the probability measure
computed for a given value of β with the threshold p. For example, with the
initial condition mA, for β = 2, p = 0.90, βr = 6 and pr = 0.95, we have
that

P>p[true U [0,β](cs1 = 1)] = false

and
P>pr [true U [0,βr](cs1 = 1)] = true.

This indicates that the relaxed deadline is met with the required probability,
but the base deadline is not.

Additional until properties allow to evaluate the probability measure of
subsets of paths, so as to help the understanding of the role of different
design parameters in the overall distribution of latency. For instance, the
probabilistic until pattern

P>p[(
∑
i 6=1 csi = 0) U [0,β](cs1 = 1)] (5.12)

evaluated from the initial marking mA formulates a requirement on the
measure of probability of the set of behaviors where P1 is the first process
accessing the critical section. In a practical perspective, this property ex-
presses a bound p on the probability that P1 is not overtaken in the access
to the critical section by some process that was initially idle. The corre-
sponding probability measure is determined by the trade-off between the
rapidity of P1 in completing the write operation (and thus preventing the
access to contention by other processes) and the number n − 1 and rate λ
with which other processes enter the ready state. Results of the evaluation
show that the probability of no-overtaking depends on the total offered load
(n−1)λ, but it is relatively immune to the number of processes that produce
this offered load. For instance: if (n− 1)λ is kept equal to 0.2 (to 0.1) while
varying n− 1 from 2 to 8, the probability of no-overtaking remains equal to
0.93 (to 0.96) with a variation lower than 0.001 (lower than 0.001).

When P1 is overtaken, the service time of the overtaking process plays
a twofold role: it determines the time that P1 must wait before the next
attempt, and it also determines the probability that more processes can en-
ter the contention. The latter effect suggests that service times should be
sufficiently low with respect to the total load of the system. For a quan-
titative assessment of the concept, we can formulate a requirement on the
maximum probability that at least k processes enter the contention during
the first failed attempt of P1:

P<p[(cs1 = 0) U [0,β](
∑n
i=2 completedi = 1 ∧∑n

i=2 readyi ≥ k)] . (5.13)

76 5 Verification of an Interval Until Operator

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 1 2 3 4 5 6 7 8 9 10 11 12

P
ro
b
ab

il
it
y

β

unif([0, 2])

unif([0, 4])

unif([2, 4])

Fig. 5.7: The probability of paths satisfying the until operator (cs1 =
0) U [0,β](

∑n
i=2 completed i = 1 ∧ ∑n

i=2 ready i ≥ k) as a function of β,
from marking mA = ready1 idle2 idle3 and for service times uniform on
[0, 2], [0, 4] and [2, 4], respectively.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

P
ro
b
ab

il
it
y

β

f(x)

g(x)

Fig. 5.8: The probability measure of paths satisfying true U [0,β](cs1 =
1) from m0 = idle1 idle2 idle3 when write1 is distributed according to
truncated Erlang PDF f(x) = xe−20x/400 over [0, 1] (mean value 0.1) or its
symmetrical g(x) = f(1− x) (mean value 0.9).

Fig. 5.7 reports the probability measure associated with this property (as a
function of β, from the initial state mA) for three service time distributions
when n = 3 and k = 1.

While the impact of service times is intuitive, the role of writing time
distributions is subtle: due to the last-write-wins policy of Fischer’s protocol,
a shorter writing time favors P1 in keeping concurrent processes out of the

5.6 Case study: Fischer’s mutual exclusion protocol 77

contention, but, in case of contention, a longer writing time will favor P1

in being the last process that completes its write to id , and thus the first
one entering the critical section. To give a quantitative insight into this
mechanism, we consider a setting in which the writing times of P2 and P3

are distributed uniformly over [0, 1] (mean value 0.5), while the writing time
of P1 has either a truncated Erlang PDF f(x) = xe−20x/400 over [0, 1] (mean
value 0.1) or its symmetrical g(x) = (1− x)e−20(1−x)/400 over [0, 1] (mean
value 0.9). Fig. 5.8 shows that, for β < 7, a faster writing time PDF f(x)
results in a higher probability that P1 will reach the critical section from
the initial marking m0 = ready1 ready2 ready3 , while the slower PDF g(x)
is advantageous when β > 7. This result captures the following intuition:
while the shorter mean value of f favors process P1 in the first attempt,
the longer mean value of g makes P1 more competitive in trials subsequent
to an initial overtaking; until time 7, the gain in the first attempt prevails,
but after time 7, the competitive advantage in subsequent trails becomes
more relevant. In this interpretation perspective, it is worth noting that the
unbiased distribution with mean value 0.5 is always worse than one of the
two biased distributions f and g.

As a last example, we evaluate the probability that process P1 is in the
critical section within a given time window [α, β] after an execution in which
P3 has never accessed the critical section. This property might be of interest
in a problem of real-time testing where the system can be observed only
within an interval [α, β] and the test case requires P1 in the critical section
without prior accesses of P3. The requirement can be formulated as the
probabilistic interval until

P>p[(cs3 = 0) U [α,β](cs1 = 1)] (5.14)

and verified for given values of α, β and p so as to determine at which
time α it is best to start the observation, or what is the minimum du-
ration of β − α to obtain a probability of conclusive execution higher
than a given threshold p. Fig. 5.9 plots the probability measure of paths
satisfying (cs3 = 0) U [α,β](cs1 = 1) for different values of α and du-
ration β − α of the observation window. For each of the window sizes
β − α ∈ {0.1, 0.5, 1.0, 1.5, 2.0}, the probability measure p(m0,~0)(α, β) :=

Pr (m0,~0){ω ∈ Ωm0 | ω |= (cs3 = 0) U [α,β](cs1 = 1)} is evaluated in Fig. 5.9
for α = 0, 0.1, . . . , 4 so as to select an optimum time α to start the obser-
vation. Note that, for each value δ of β − α, the measures p(m0,~0)(α, α + δ)
for α = 0, 0.1, . . . , 4 are computed as the by-product of a single solution
of Eq. (5.8) for the evaluation of p(m0,~0)(4, 4 + δ) with step 0.1. For this
measure, using a preliminary implementation, we report 17 distinct regen-
eration conditions reachable under ϕ1 = (cs3 = 0), whose transient trees
(limited to the first regeneration point) include 904 stochastic state classes.
For α = 4 and δ = 1, adopting a step size h = 0.1, the enumeration of each

78 5 Verification of an Interval Until Operator

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4

P
ro
b
ab

il
it
y

α

β − α = 0.1
β − α = 0.5
β − α = 1.0
β − α = 1.5
β − α = 2.0

Fig. 5.9: The probability measure of paths satisfying (cs3 = 0) U [α,β](cs1 =
1) from marking m0 = idle1 idle2 idle3 .

tree is repeated 4
0.1 + 1 = 41 times for the evaluation of Lϕ1,ϕ2

i , once for the
evaluation of dGϕ1

ik (tm), and (4
0.1 + 1)(1

0.1 + 2) = 492 times for the evalua-
tion of Hϕ1,ϕ2

ik , resulting in 482, 736 enumerated classes. As a comparison,
the reduction to transient analysis through a deterministic timer α = 4 de-
scribed in Section 5.5 requires more than 8 million classes to be enumerated;
of these, more than 99% belong to the enumerations of the initial transient
tree, in which a regeneration is reached only after the elapse of α. Fig. 5.10
reports the total number of classes enumerated with the two approaches as
a function of α for β − α = 1.

5.6 Case study: Fischer’s mutual exclusion protocol 79

0

1M

2M

3M

4M

5M

6M

7M

8M

9M

0 0.5 1 1.5 2 2.5 3 3.5 4E
n
u
m
er
at
ed

cl
as
se
s
(β
−
α
=

1)

α

Transient analysis with DET α

Bivariate regenerative solution

Fig. 5.10: Enumerated classes in the computation of the measure of paths
satisfying (cs3 = 0) U [α,β](cs1 = 1) from marking m0 = idle1 idle2 idle3 .

Chapter 6

Conclusion

Markov renewal theory is the key to the analysis of non-Markovian stochastic
systems over large time periods. We presented a solution for the transient
analysis of systems in which multiple generally distributed timers can be
started or stopped independently, but regenerations are encountered in a
bounded number of discrete events. Notably, the approach introduced a
novel concept of regeneration, extending the class of models amenable to
state-of-the-art analytical or numerical techniques.

Although related to transient analysis, the verification of an interval un-
til operator ϕ1 U [α,β]ϕ2 in regenerative stochastic systems presents major
challenges, both theoretical and practical, that cannot leverage existing ap-
proaches for CTMCs nor established results of Markov renewal theory.

Stochastic models with concurrent GEN timers accumulate memory over
time: the state at time α does not summarize, in general, the past evolution
of the system, and the process cannot be verified independently before and
after α, in contrast to CTMCs (in which every time instant, and thus α, is
a regeneration point). On the other hand, the reduction to a first-passage
analysis problem requires the introduction of a deterministic timer in order
to account for the minimum time α for the satisfaction of ϕ2. Unfortunately,
this approach crucially affects regenerative transient analysis: it is now the
deterministic timer that carries memory until its elapse, in order to char-
acterize the state distribution of the system at time α. Regeneration points
before α are thus inevitably lost, forcing the enumeration of all sequences of
discrete events before α.

To tackle this problem, we provided a solution based on the bivariate ex-
tension of Markov renewal equations, explicitly accounting for a satisfaction
interval [α, β]. The result is based on the formal definition of the probabil-
ity space of STPN paths, which allowed to establish the theoretical relation
between cylinder sets of paths and stochastic state classes; enumeration of
stochastic state classes was in turn the basis for algorithms computing the
kernels of bivariate Markov renewal equations.

82 6 Conclusion

The computation of the kernels requires to repeat the enumeration of
stochastic state classes from each regeneration point for a number of times
linear in α(β − α), but each enumeration is limited to the first regenerative
epoch and regeneration points are exploited also before α: since the number
of feasible events grows exponentially with the time bound, repeating the
analysis of a fixed number of shallow trees can produce considerable benefits
when the time bound is large. Moreover, the enumeration is always restricted
to paths satisfying the safety condition ϕ1, and the underlying stochastic
process is required to encounter regeneration points w.p.1 in a bounded
number of events only on paths that always satisfy ϕ1.

The benefits of the approach were demonstrated by a preliminary imple-
mentation in the analysis of a probabilistic model of Fischer’s mutual exclu-
sion protocol, a typical benchmark for real-time model checking. Notably,
quantitative properties were analyzed in a stochastic model that guaran-
tees the correctness of the protocol due to generally distributed timers with
bounded supports. The construction of these results highlighted important
problems of the probabilistic model checking of transient properties in regen-
erative systems, and can serve as the basis for further analysis techniques.

References

Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., and Franceschinis,
G. (1995). Modelling with Generalized Stochastic Petri Nets. Wiley Series
in Parallel Computing. John Wiley and Sons.

Ajmone Marsan, M., Conte, G., and Balbo, G. (1984). A class of general-
ized stochastic Petri nets for the performance evaluation of multiprocessor
systems. ACM Trans. Comput. Syst., 2(2):93–122.

Baier, C., Haverkort, B., Hermanns, H., and Katoen, J.-P. (2003). Model-
checking algorithms for continuous-time Markov chains. IEEE Trans.
Softw. Eng., 29(6):524–541.

Ballarini, P., Bertrand, N., Horváth, A., Paolieri, M., and Vicario, E. (2013).
Transient Analysis of Networks of Stochastic Timed Automata using
Stochastic State Classes. In QEST’13, volume 8054 of LNCS, pages 355–
371. Springer.

Bengtsson, J., Larsen, K., Larsson, F., Pettersson, P., and Yi, W. (1996).
UPPAAL tool suite for automatic verification of real-time systems.
Springer.

Berthomieu, B. and Diaz, M. (1991). Modeling and Verification of Time
Dependent Systems Using Time Petri Nets. IEEE Trans. Softw. Eng.,
17(3):259–273.

Bobbio, A., Puliafito, A., and Telek, M. (2000). A modeling framework
to implement preemption policies in non-Markovian SPNs. IEEE Trans.
Softw. Eng., 26(1):36–54.

Brunner, H. and van der Houwen, P. (1986). The numerical solution of
Volterra equations, volume 268. North-Holland Amsterdam.

Bryans, J., Bowman, H., and Derrick, J. (2003). Model checking stochastic
automata. ACM Trans. Comput. Logic, 4(4):452–492.

Bucci, G., Carnevali, L., Ridi, L., and Vicario, E. (2010). Oris: a tool for
modeling, verification and evaluation of real-time systems. Int. J. on
Softw. Tools for Techn. Transfer, 12(5):391–403.

84 References

Carnevali, L., Grassi, L., and Vicario, E. (2009). State-density functions over
DBM domains in the analysis of non-Markovian models. IEEE Trans.
Softw. Eng., 35(2):178–194.

Carnevali, L., Ridi, L., and Vicario, E. (2011). A framework for simulation
and symbolic state space analysis of non-Markovian models. In SAFE-
COMP’11, volume 6894 of LNCS, pages 409–422. Springer.

Çinlar, E. (1975). Markov renewal theory: A survey. Management Science,
21(7):727–752.

Chen, T., Han, T., Katoen, J., and Mereacre, A. (2009). Quantitative Model
Checking of Continuous-Time Markov Chains Against Timed Automata
Specifications. In LICS’09, pages 309–318.

Choi, H., Kulkarni, V. G., and Trivedi, K. S. (1994). Markov regenerative
stochastic Petri nets. Perform. Eval., 20(1-3):337–357.

Ciardo, G., Blakemore, A., Chimento, P. F., Muppala, J. K., and Trivedi,
K. S. (1993). Automated Generation and Analysis of Markov Reward
Models Using Stochastic Reward Nets. In Linear Algebra, Markov Chains,
and Queueing Models, volume 48 of The IMA Volumes in Mathematics
and its Applications, pages 145–191. Springer.

Ciardo, G., German, R., and Lindemann, C. (1994). A characterization of
the stochastic process underlying a stochastic Petri net. IEEE Trans.
Softw. Eng., 20(7):506–515.

Clark, A., Gilmore, S., Hillston, J., and Tribastone, M. (2007). Stochastic
process algebras. In Formal Methods for Performance Evaluation, volume
4486 of LNCS, pages 132–179. Springer.

Daws, C., Olivero, A., Tripakis, S., and Yovine, S. (1996). The Tool KRO-
NOS. In Hybrid Systems III, pages 208–219. Springer.

Deavours, D. D., Clark, G., Courtney, T., Daly, D., Derisavi, S., Doyle, J. M.,
Sanders, W. H., and Webster, P. G. (2002). The Mobius framework and
its implementation. IEEE Trans. Softw. Eng., 28(10):956–969.

Dill, D. L. (1990). Timing assumptions and verification of finite-state con-
current systems. In AVMFSS’89, volume 407 of LNCS, pages 197–212.
Springer.

Donatelli, S., Haddad, S., and Sproston, J. (2009). Model checking timed and
stochastic properties with CSLTA. IEEE Trans. Softw. Eng., 35(2):224–
240.

Gafni, E. and Mitzenmacher, M. (2001). Analysis of timing-based mutual
exclusion with random times. SIAM Journal on Computing, 31(3):816–
837.

German, R., Logothetis, D., and Trivedi, K. (1995). Transient analysis of
Markov regenerative stochastic Petri nets: a comparison of approaches. In
International Workshop on Petri Nets and Performance Models (PNPM),
pages 103–112.

Gross, D. and Miller, D. R. (1984). The randomization technique as a model-
ing tool and solution procedure for transient Markov processes. Operations
Research, 32(2):343–361.

References 85

Grunske, L. (2008). Specification patterns for probabilistic quality proper-
ties. In ICSE’08, pages 31–40.

Haas, P. (2002). Stochastic Petri Nets: Modelling, Stability, Simulation.
Springer.

Haas, P. J. and Shedler, G. S. (1986). Regenerative stochastic Petri nets.
Perform. Eval., 6(3):189–204.

Haas, P. J. and Shedler, G. S. (1989). Stochastic Petri net representation of
discrete event simulations. IEEE Trans. Softw. Eng., 15(4):381–393.

Horváth, A., Paolieri, M., Ridi, L., and Vicario, E. (2011). Probabilistic
model checking of non-Markovian models with concurrent generally dis-
tributed timers. In QEST’11, pages 131–140. IEEE CS.

Horváth, A., Paolieri, M., Ridi, L., and Vicario, E. (2012). Transient analysis
of non-Markovian models using stochastic state classes. Perform. Eval.,
69(7-8):315–335.

Infante-López, G., Hermanns, H., and Katoen, J.-P. (2001). Beyond Mem-
oryless Distributions: Model Checking Semi-Markov Chains. In PAPM-
PROBMIV’01, volume 2165 of LNCS, pages 57–70. Springer.

Katoen, J.-P., Bohnenkamp, H., Klaren, R., and Hermanns, H. (2004). Em-
bedded software analysis with MOTOR. In Formal Methods for the Design
of Real-Time Systems, pages 268–293. Springer.

Kulkarni, V. (1995). Modeling and analysis of stochastic systems. Chapman
& Hall.

Lynch, N. and Shavit, N. (1992). Timing-based mutual exclusion. In Real-
Time Systems Symposium, 1992, pages 2–11. IEEE.

Martinez, J. M. and Haverkort, B. R. (2006). CSL Model Checking of Deter-
ministic and Stochastic Petri Nets. In MMB’06 13th GI/ITG Conference,
pages 1–18. IEEE CS.

Puliafito, A., Scarpa, M., and Trivedi, K. S. (1998). Petri nets with k si-
multaneously enabled generally distributed timed transitions. Perform.
Eval., 32(1):1–34.

Sanders, W. H. and Meyer, J. F. (2001). Stochastic activity networks: Formal
definitions and concepts. In Lectures on Formal Methods and Performance
Analysis, pages 315–343. Springer.

Stewart, W. J. (1995). Introduction to the Numerical Solution of Markov
Chains. Princeton University Press.

Vicario, E. (2001). Static analysis and dynamic steering of time-dependent
systems. IEEE Trans. Softw. Eng., 27(8):728–748.

Vicario, E., Sassoli, L., and Carnevali, L. (2009). Using stochastic state
classes in quantitative evaluation of dense-time reactive systems. IEEE
Trans. Softw. Eng., 35(5):703–719.

	Introduction
	Organization

	Stochastic Time Petri Nets
	Definition
	Probabilistic semantics
	The marking process
	Transient analysis of the marking process
	Markovian marking process
	Markov regenerative marking process

	Stochastic State Classes
	Definition
	Calculus of successor classes
	Transient measures

	Regenerative Transient Analysis
	Regeneration conditions in STPNs
	Regenerative stochastic state classes
	Detection of regeneration points
	Computation of the kernels

	Verification of an Interval Until Operator
	Probability space and cylinder sets
	Probabilistic temporal logic
	Markov renewal equations for the interval until operator
	Numerical integration and kernels evaluation
	Eliminating the lower bound
	Case study: Fischer's mutual exclusion protocol

	Conclusion
	References

