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SYNOPSIS 

The increasing World population and the growth of once-developing 

economies are two of the major challenges that the present energy 

system needs to face. The increment of energy request is difficult to be 

supplied with traditional fossil fuels. Indeed, on the one hand although 

new reserves are found every year, they are usually more expensive to 

extract. In addition, the impact of global warming and climate change on 

our everyday life will soon be stronger and more expensive to be handled 

if there will be no change in the current energy mix. Nonetheless, shifting 

the current energy system from fossil-fuel based towards a renewable 

energy based is difficult. Some of the Renewable Energy Sources (RES), 

like geothermal, hydroelectric or tides, are predictable and can be 

adopted for a planned energy generation, required to match the request 

at any given time. However, the locations where they can be exploited 

are limited and their overall potential is not enough to supply the World 

energy demand. Other RESs, like Sun radiation and wind, present a 

greater potential in terms of power and energy that they can supply but 

feature also an intermittent and unpredictable behavior. This ultimately 

limits their application in the current energy system, designed to host a 

few, big, centralized power generation plants. The unpredictability of 

Solar and Wind power generation is an expensive issue for the current 

energy system because their potential lack of production requires on the 

one hand that backup generators are ready to feed energy into the grid, 

on the other hand the grid management increases its complexity. Indeed, 

the average Solar or Wind power generation plant is of small to medium 

scale, and they are numerous and distributed on the territory. Thus, the 

electricity grid changes from a one-way conduit to a network where 

several generators of different size are connected.  

A possible solution to allow a greater penetration of RESs in the power 

system, by means of a reduction of the detrimental effects caused by 
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their unpredictability, is offered by the Smart Grid. With the original 

Smart Grid is meant every technology or practice aiming at achieving 

improvements in the electricity grid in terms of: economy of operation, 

environmental friendliness, security and quality of supply. Because of 

their broad definition, the Smart Grid concept can be applied at different 

scales and to several components of the energy system. Not only the 

electricity grid itself, but also district heating and even the transport 

system. At its smallest scale, the Smart Grid features intelligent users, 

which adapt their power generation and usage depending on several 

inputs. Some of these inputs are external, e.g. the weather forecasts and 

energy prices, some other are internal, e.g. the energy request of an 

activity or process that is fundamental for the daily operation or comfort 

of the users. The lack of experimental data on Smart Grid in the literature 

is due to the complexity of performing tests on large-scale systems that 

involve several different stakeholders and to the intrusiveness of these 

tests on the everyday operation of the users of the power system. 

Nevertheless, on the smallest-scale actor of the Smart Grid, called in this 

Thesis work, “Smart User”, it is possible to carry out the tests required to 

validate the viability and effectiveness of the newer paradigm of energy 

system provided by the Smart Grid concept.  

This work focuses on the Smart User, in particular on its design and 

control, with the objective of providing an opportunity for a broader 

diffusion of RESs, a greater participation in the energy market of the small 

energy producers and a more convenient, secure and reliable supply of 

energy for the final user. The core of the Smart User designed is a co-

generation unit (CHP), an internal combustion engine of 25 kW rated 

electric power output, placed in an actual facility. The facility of choice 

for the installation of the plant is Pontlab, a laboratory carrying out 

research and tests for several industrial partners. The choice of this user 

as test-bench for the Smart User resides in the possibility of having 

different energy requests, both in qualitative terms (electric, thermal, 
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cooling) and in quantity. Indeed, the loads profile assured by this peculiar 

user are extremely variegated, because they depend on the type of tests 

that are led during each day. Moreover, Pontlab offers loads with 

different priority, thus allowing the chance to test Demand Side 

Management (DSM) strategies, a key aspect of the Smart Grid. The CHP 

is backed up on the thermal side by a conventional boiler and on the 

cooling side by a compression chiller. Furthermore, in the facility are 

installed also Photovoltaic panels with a power output of half the CHP 

one and a small Wind Turbine. Two thermal storages are fitted in the 

facility, one for cooling, the other for heating purposes; an electrical 

storage is going to be implemented as well, whereas at the moment it 

can be simulated thanks to the dedicated electric interface of the Smart 

User with the main plant grid. Because of its unique set of generators and 

manageable loads, Pontlab proves to be a versatile user that can be 

operated in several possible ways. The thermal layout of the plant is a 

compromise between the existing one and the ideal layout of the Smart 

User, where all the generators are in parallel to their respective storage. 

This latter configuration allows a greater flexibility of operation, which is 

desirable for the Smart User, but is also more complicated to manage and 

expensive to build. Thus, for this first test case it was avoided in favor of 

a more traditional and reliable configuration, which could always be 

switched to standard operation mode whenever desired by the owner of 

the facility. The most important device of the Smart User is what makes 

it “smart” i.e. its control system, composed of several temperature 

sensors and energy meters, a Programmable Logic Controller and a 

Supervisory Control And Data Acquisition (SCADA) system. Inside the 

SCADA run three algorithms: the Day Ahead Algorithm (DAA), the 

Advanced Dispatching Algorithm (ADA) and the Real Time Algorithm 

(RTA). The first two perform an optimization of the system management 

pursuing three possible objectives: the minimization of costs of 

operation, of primary energy consumption, or of carbon dioxide 

emissions. Conversely, the last algorithm serves as a link between the 
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optimized solution, defined as a series of generator and load set points 

and the control in real time of the system. This is carried out in a semi-

automated way for the thermal plant, which is controlled by the 

temperature of intervention of the auxiliary units and the temperature of 

the fluid exiting from the storages. On the other hand, the RTA itself 

performs the electric balance of the electric loads and generation.  

All the algorithms have been developed ad hoc during this Thesis project 

and present novelties compared to those currently used in the literature 

for the optimization of energy system operations. The DAA and ADA are 

alike in terms of structure although they act at different times: the former 

performs a first attempt of optimization of the operations of the plant 

considering the weather forecasts, energy prices and activities for the 

following day as they are known one day before operation. Along with 

the first optimized solution, the DAA provides also a power exchange 

profile with the grid that will be granted during the following day, despite 

of a possible change in load or weather condition. The latter has the 

important role of upgrading the optimized operation considering the 

updated inputs such as more reliable weather forecasts for the present 

day or possible load and price inputs variations. This allows the system to 

reduce the influence of errors in the weather or load forecasts, refining 

the optimization; in addition, it provides an instrument for the controller 

to answer to possible price input variations for ancillary services. Because 

of the need for this upgraded solution, the ADA runs once every fifteen 

minutes and dictates the maximum computational time allowed for the 

optimizers to reach convergence on an optimized solution. Finally, the 

RTA ensures not only the balancing of the electrical loads and generation, 

but also, by means of a dedicated small electric storage, the respect of 

the grid exchange profile promised the day before.  

The optimization algorithms are based on two different optimization 

strategies: genetic algorithm (GA) and shortest-path optimization. The 

first performs, for each time step and possible loads combination derived 
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from the storage usage, the optimization of the set points of the 

generators and the modulation of the loads. The employment of GA 

allows the controller to take into account non-linear aspects of the 

energy system, such as the CHP efficiency at partial load, in a fast and 

computationally light manner. Moreover, the limited number of variables 

optimized at the same time ensures that the solution found is close to the 

global optimum. On the other hand, the Shortest-Path optimization 

defines the best possible sequencce of system states (i.e. storage usage) 

to achieve the daily optimization of the energy system management. The 

daily optimization of the plant is indeed a higher level of optimization 

compared to the one that can be achieved considering one time-step at 

a time and optimizing each single step regardless of the value that the 

inputs assume during the whole day. Using the GA and the Shortest-Path 

algorithm in symbiosis it is possible to achieve an accurate and almost 

globally optimized solution within the fifteen minutes mark, which is 

essential for the ADA.  

In order to evaluate the solutions proposed by the optimization 

algorithms and assess the potential of the approach followed, two series 

of input sets were defined to test the algorithms offline. The first series 

of inputs were designed ad hoc to test the algorithms in specific 

conditions where a daily optimization would take greater advantages 

compared to the single step one. The inputs are therefore very specific, 

so to be able to know in advance what an appropriate management of 

the plant would be like. Moreover, they are simple, allowing a better 

readability of the results. In this first case, the grid exchange profile 

required is the virtual-island. The second series of inputs, conversely, 

takes advantage of the data acquisition system on the actual plant. Four 

summer days and five winter days were selected as typical days for the 

analysis of the algorithm performance on a real test case. With typical 

days, two scenarios are evaluated. The first is the present scenario, where 

there is no imposition of a grid exchange profile and the algorithms’ 
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performance can be judged with respect to the present standards in CHP 

operation and management. The second scenario is a future one where, 

according to Enel S.p.A., the Distribution or Transmission Service 

Operators will require to adapt the power exchange profile with the grid 

following a given a set of rules. These tests allow for the evaluation of the 

true potential of the algorithm when applied to a power system operating 

in an energy framework where the RESs penetration in the grid can be 

improved compared to the present situation. The RTA algorithm is tested 

on two different conditions. The first is an actual day where both the 

forecasts and the real time measured values come from the same day. 

The second is a fictional case created with the aim of stressing the RTA in 

harsh conditions, i.e. when the forecasts are considerably different from 

the real time values that the SCADA registers.  

The Thesis is composed of six chapters. The first chapter introduces the 

present energy framework, with an overview of the problems related to 

energy supply and climate change, thus providing the basic motivations 

for the research on Smart Grid topics. The second chapter presents a 

review of the state of the art regarding Smart Grid. First, the Smart Grid, 

Micro Grid, Virtual Power Plant and Smart User concepts are discussed, 

along with the proposed control strategies for the management of the 

grid, referring to the works presented by many authors in the literature. 

Then, the focus is moved to the optimization algorithms and their 

implementation in energy systems. The third chapter describes the Smart 

User plant in Pontlab, providing the specifications of each device that it 

includes and the thermal and electric layouts of choice among the 

possible alternatives. In addition, it treats the sizing of some components 

and the different approach required for their application within Smart 

Grids framework. The control algorithms are described in detail in the 

fourth chapter. The modeling of the system, the constraints set, the 

different techniques adopted and the benefits or downsides of each 

approach followed are discussed. The fifth chapter presents a detailed 
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description of the input sets employed for the algorithm tests. The 

motivations behind each test performed are made clear in advance and 

then each valuable result is presented and discussed in respect to the 

goals set. Finally, the conclusions are drawn in the sixth chapter, along 

with a brief listing of the future developments of the project. 
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1 INTRODUCTION 

The energy system of the whole World will soon face the need of a 

change. Because of many factors, such as the growth of population, 

wealth in developing countries and the effects on the atmosphere due to 

human activities in the last two centuries, the old paradigm of energy 

system is no longer functional nor feasible both energetically and 

environmentally. In this introductory chapter, the present power system 

and the challenges that the industrial and scientific sectors need to face 

are presented.  

1.1 Present environmental and energetic framework 

The present energy system has developed following the idea of 

centralized generation. This concept is in accordance with the tendency 

to produce electric energy far from cities and populated areas, or at least 

where the landscape favors the operation of power plants, like near 

major rivers. The exploitation of scale factors allows these power 

generators to be more efficient than smaller ones. In addition, the 

emissions of large-scale power plants is monitored and treated in a more 

effective way. Moreover, it is easier to manage a national electricity grid 

with a small number of big power plants rather than several smaller ones. 

For all of the above reasons, since when the electricity began to be a 

commodity diffused among the population, the national power 

production evolved in the power system that we know today.  

When electricity began to be produced, engineers, technicians and 

industrial men, developed various system and ideas to bring power to 

factories, public buildings, and, later on, to the population. It is not 

surprising to notice that most of the technologies that we see today 

moved their first steps during the early period of electrification. 

Depending on the most available resource in a precise area, different 
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ways to produce electricity were experimented. Indeed, in the beginning, 

there was no grid and the electricity was produced where the early 

adopters would use it. The first national grids came only afterwards, in 

the first decade of the 20th century.  

Electric energy production has always been strictly connected to the price 

of available resources, and therefore the energy mix of each nation, 

meant as the different natural resources that are exploited for the 

production of electric energy, depends on what is available at the lowest 

price. Thus, the development of technologies for power production also 

follows the same rule. Until the first power crisis in the ‘70, fossil 

resources were cheap to extract and use as fuels for power generators. 

At the same time, not much effort was placed towards the research of 

efficient generation solutions or differentiation of power technologies. 

The fuels of choice were oil, gas and coal. This led to the construction of 

big fossil fuel powered plants, located in industrial areas, far from city 

centers in order to avoid the emissions affecting the surrounding 

population. The effects on the atmosphere and the global costs of this 

behavior were rarely considered and facing these expensive issues was 

delayed to a future time. The energy demand kept growing along with 

the development of the economies and production capabilities of the 

most industrialized Countries. Energy was so cheap, that it was not even 

convenient to meter it, but rather let the users pay flat rates, depending 

on the nominal power of their connection to the grid. This did not help to 

promote a social awareness of both the economic and environmental 

costs of electricity production, until now. 

1.1.1 Today’s energy system paradigm 

The present energy system is based on the concept of “centralization”: 

big isolated power generation facilities that distribute the electricity 

produced by means of high voltage (HV) grids to several areas. The HV 

grid is required to transmit the electricity over long distances without 
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incurring in excessive energy losses. The electricity reaches 

transformation stations where the voltage is lowered to medium voltage 

(MV) and then it is dispatched directly to final users or low voltage (LV) 

transformation stations. The grid must always balance the production 

with the demand. In a centralized scheme, this is done exclusively by 

adapting the production to the demand in real time. The system is well 

represented by a one-way communication where there is no involvement 

of the demand in the management of the system itself. There are a few 

exceptions to this general rule, because, for some countries (e.g. 

Denmark and Norway) the territory and natural phenomena allow to 

produce most of the energy required by means of natural renewable 

resources which are often distributed on the territory. In a large system, 

such as the national grid of industrialized Countries, the contribution of a 

single user, as large as it can be, is irrelevant to the system operations 

themselves. A centralized scheme enhances this barrier between 

“actors” and “spectators” of the power system. The tariff schemes 

adopted reflect this separation: the typical tariff for electricity for 

centralized systems is fixed price per kWh consumed.  

Although being easier to manage and operate compared to distributed 

energy systems, centralized power plants have some drawbacks. They: 

 Require long time to start, warm-up and connect to the grid; 

 Do not operate at high efficiency during partial load; 

 Cannot follow highly variable loads; 

 Feature high investment and operation costs, therefore are 

sensible to scenario modifications. 

In the last 5 years, the situation began to evolve and differ with the 

diffusion of Renewable Energy Sources (RES) and especially those that 

since then had little fortune because of their high costs and 

unpredictability (i.e. Wind Turbines (WT) and Solar Photovoltaic Panels 

(PV)). Until 2009, the only RES actually exploited in the power system 
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were the hydroelectric and the geothermal. Indeed, among the different 

RES these two offer a great advantage, they are as clean as the other 

renewables but they also feature a steady and predictable power-output, 

at least in the medium term.  

1.1.2 Energy Crisis and Climate Change 

The increase of energy consumption in the World today is dominated by 

the high rate of growth of developing Countries (i.e. China, India and 

South-East Asia most of all). There are two important aspects to consider 

regarding the increase in energy consumption: the first is how the energy 

is produced, i.e. which are the reserves of fossil fuels and what 

alternatives are viable; the second is the impact on the environment 

related to this increase in demand. The World Energy Outlook 2013 from 

OECD/IEA [1] presents the expected primary energy demand in 2035 and 

the share of global growth in energy consumption for each area of the 

World, see Table 1. 

Table 1 - Energy demand growth in the World divided by area 

 OECD Eurasia Latin 
America 

Africa Middle 
East 

Non-
OECD 
Asia 

Primary energy 
demand in 2035 
[Mtoe] 

4340 1370 480 1030 1050 6600 

Share of global 
growth (2012-
2035) [%] 

4 5 8 8 10 65 

 

From the data reported it can be observed that energy supply in the near 

future is going to be a critical issue if the energy system is managed as it 

is now. The once developing Countries will then lead the worldwide 

energy demand. Indeed, with greater wealth and the adoption of an 
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western lifestyle, the energy demand will rise in Non-OECD Asia by 65% 

compared to 2012 values.  

Fossil fuels, such as coal, oil and natural gas, on which the current system 

is based, are a feasible solution only for a limited amount of time and are 

featured by energy prices that depend on their extraction cost. For a 

summary of global fossil fuel reserves, divided by fuel type, see Table 2, 

from the World Energy Council 2013 – World Energy Resources: A 

Summary [2]. 

Table 2 - Global reserve of fossil fuels   

 Reserves 
1993 
[Mt] 

Reserves 
2012 [Mt] 

Production 
1993 [Mt] 

Production 
2012 [Mt] 

2011 
Reserve/Production 
ratio 

Coal 891530 10131610 7520 4474 >100 
Crude 
Oil 

223454 140676 3973 3179 56 

Natural 
Gas 

209742 141335 3518 2176 55 

 

Therefore, even if theoretically there are enough fossil fuels to fulfill the 

whole demand for at least half a century, this is not a feasible nor 

economical solution for two main reasons:  

 Although new reserves are discovered regularly, the amount 

that can be extracted at today’s cost is marginal. Thus, as the 

reserves deplete, there are other energy supplies that become 

convenient economically; 

 Fossil fuels are not a clean energy solution, there are 

technologies that can limit emissions, but it is very unlikely that 

relying on them only or for the major part, will not have a great 

impact on the environment and ultimately in everyday life. 
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Climate change is something that has been debated for a long time by the 

scientific community. The major points of discussion were whether there 

was climate change, and if it was due mostly to human activities rather 

than natural phenomena. Nevertheless, in the last years some consensus 

grew at least on the first point, mostly thanks to different independent 

studies providing data on the average temperature of the atmosphere 

and other indirect observations that imply global warming. A single 

Celsius degree of increase of average temperature of the atmosphere 

indicates the presence of much more “energy” in the atmosphere itself. 

This can lead to stronger weather phenomena such as hurricanes, 

droughts, local hot and cold temperature spikes, whose costs are great 

on the communities and the nations but are rarely considered as costs 

associated to energy development strategies. This is because of the 

difficulty of prediction of these atmospheric phenomena and because 

they act on a global scale. Therefore, it is hard to associate a single 

nation’s energy strategy to phenomena taking place in the same area. 

The scientific community defined a limit value of average temperature 

increase that should not be crossed, and it is 2°C. If that limit is surpassed, 

the chances to invert or to slow down global warming would be reduced 

greatly, unless at very high expense to redesign the whole energy system.  

The emissions of pollutants and Green House Gases (GHG) are being 

reduced by most of the industrialized Countries trying to comply with 

agreements such as Kyoto Protocol (cite) and the European Horizon 2020 

targets. However, the targets set, although relevant, will prove 

inadequate if the entire World will not reduce significantly GHG 

emissions. If the developing Countries rely on the same energy mix that 

today is used in Europe or USA, then the amount of CO2 in the 

atmosphere will be too high to avoid reaching the 2°C limit. Thus, even if 

a consistent improvement has already taken place, greater efforts must 

be made by the scientific community, industrial system and World 
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population in general to redefine the way we satisfy our energy needs, 

both thermal and electrical.  

All this considered, the present scientific and industrial interest in RES 

development and implementation in the national grids is justified.  

1.1.3 The diffusion of Renewable Energy systems 

Since the early 2000s, renewable energy technologies other than 

hydroelectric and geothermal began to be introduced. According to 

studies such as Jacobson S. and Johnson A. (2001) [3] the diffusion started 

with the introduction of dedicated policies and thanks to environmental 

factors. The RES considered as “new” are WT, PV, solar thermal collectors 

and new types of Biomass. These technologies helped to diffuse RESs in 

the energy markets. Indeed hydro-electric and geothermal plants can be 

built only where the features of the landscape or of the underground 

generate favorable conditions, and although in developing Countries 

there is un-exploited potential, still it is not enough to cover the energy 

needs of the population. Wind and Sun on the other hand have a greater 

potential in terms of installed capacity but, as was mentioned above, they 

lack predictability and are expensive, and they struggled to find a place in 

an energy market dominated by “cheap and reliable” fossil fuel. A few 

studies, such as the one from Leijon M. et al. (2010) [4], define important 

parameters to evaluate RES like their degree of utilization and 

consequently the cost per kWh produced. The authors assert how WT 

and PV, due to their intermittent behavior, are consequently not suitable 

for energy production. The importance of RES for a sustainable 

development is stressed by J.P. Painuly (2001) [5], according to whom 

their potential to provide clean energy is not important only for 

industrialized countries, but also for developing ones, which can adopt 

them to supply with clean energy rural or isolated areas. Nonetheless, the 

growth rate of China and India pushed towards the installation of more 

traditional solutions when RES started to diffuse in OECD countries. A 
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trend that is now changing, with Non-OECD countries that have been 

leaders in the installed capacity of RES in the last two years.  

The IEA Tracking Clean Energy Progress report (2014) [6] provides useful 

data on RES diffusion from year 2000 to now, along with projections for 

the next 5 years and targets for the 2DS Energy Technology Perspective 

scenario. This scenario is related to an energy system that could give at 

least 50% chance of limiting the average global temperature increase to 

2°C, other scenarios considered are 4DS and 6DS, which respectively 

consider an average temperature increase of 4°C and 6°C. The data 

reported in Figure 1 demonstrate the diffusion of RES in the global energy 

sector. In the diagrams, for each RES the current status compared to the 

2025 targets is highlighted. It is worth noting that by the end of 2013, 

over 100 countries presented a backing scheme for RES support, which 

helped to create a spot market as well as increase their development with 

a consequent reduction of costs. 
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Figure 1 - RES productivity compared to the goals set for 2DS scenario - source: 
IEA Tracking Clean Energy Progress report 
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The energy price that can be achieved with a given technology is one of 

the greatest drivers for its diffusion, in Figure 2 the present price, 

projections and targets for different energy production technologies is 

presented. 

 

Figure 2 - Leveled energy price for RES compared to coal and combined cycle 
gas turbine technologies 

The study carried out by IEA involves also other sectors of the energy 

field, both in terms of production and usage, as well as in terms of 

management. They review the present status compared to the 2DS 

target, along with policies recommendation for each sector: RES, nuclear 

power, gas-fired power, coal-fired power, carbon capture and storage, 

buildings, industry, transport, electric vehicles (EV), biofuels, 

cogeneration district heating and cooling, smart grids. According to this 

study, the only sector on track with the goals assigned is the diffusion of 

RES, which still needs dedicated policies but complies with the objectives 

set. Of the other sectors, some have seen improvements but are urged 

to increase their effort, like: gas-fired power, industry, transport, EV, co-

generation and Smart Grids. On the contrary, the remaining sectors are 

far from their targets and actions are required in order to put them back 

on track. Regarding the Smart Grid sectors, IEA’s study notes a steady 

growth in research activity but also a lack of actual deployment data, 

deployment that is considered as insufficient. Therefore, they suggest 

policies that help to support the development of international standards 
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in order to accelerate research, development and deployment, new 

electricity regulations to enable a practical sharing of Smart Grid costs 

and benefits and finally promote the development metrics, national data 

collection and international data co-ordination.  

In 2011, the share of renewables generation was 20% on World scale. As 

can be noticed in Figure 1, the RES energy targets for 2DS scenario are 

well over twice today’s value for all but hydro-electric technology in OECD 

countries. This means that in order to meet the targets a higher share is 

required. The present power system is not capable to accept distributed 

and unpredictable power generators. Thus, new challenges need to be 

faced and a new concept of energy system is required.  

1.2 Current research challenges and goals 

In the last decade, several studies and researches have been carried out 

to address the impact of RES on the power system and, on the other 

hand, the benefits that they can bring. The first studies focused on small, 

isolated power systems, such as those of islands where high penetration 

of RES could be reached with a reasonable installed capacity. In most of 

the papers, the RES considered are WT and PV, with a power output 

strictly dependent on weather conditions. Some studies, like Duić N. and 

da Graça Carvalho M. (2004) [7] describe these so-called “renewable 

islands” case studies, islands where the RES are economically competitive 

ways to satisfy the energy demands. According to the authors, the issue 

of RES intermittency can be solved, at a relatively high cost, with 

hydrogen energy storage. In the paper, the model defined by the authors 

was tested on Porto Santo island data for two different cases: demand 

peak-shaving and 100% renewable power system with two possible 

configurations, WT alone or WT and PV mix. The results show that for 

peak shaving a mix of wind and solar energy is more effective whereas 

the only wind solution is preferable in case of 100% RES power supply. It 
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is evident that the results of this kind of studies often depend on the 

peculiar location and energy system analyzed. Within the same 

framework of the program “Renewislands” a similar study was presented 

in Chen F. et al. (2007) [8], with details of the work tasks and activities 

required to develop a RES, Fuel Cells (FC) and hydrogen storage 

infrastructure aiming to promote RES penetration in isolated power 

systems such as those of islands. The main results of each part of the 

activity are reported in the paper. Interest on the RES potential to supply 

clean energy to islands is proven also by the paper proposed by 

Oikonomou E.K. et al. (2009) [9]. The authors developed a methodology 

called EMERGENCE 2010 that allows them to improve the RES 

contribution in terms of regional sustainability thanks to the tools that it 

provides to different stakeholders to evaluate projects and plan their 

actuation. Still on the topic of RES potential in rural or isolated areas, 

Akella A.K. et al. (2009) [10] show the social, economic and environmental 

impact of RES for a case study in India consisting of a region with remote 

villages. This research proves several benefits of RES applied to the case 

study, among which: tangible reduction of emissions, clean development 

mechanism that favors sustainable development, in both India and other 

developing Countries and communities, reduction of end-users’ 

dependence on fossil fuel, a better power quality ensured by the deep 

connection between load and generator. Similarly, Praene J.P. et al. 

(2012) [11] present the status, achievements, policies and future 

objectives for the energy independence of Reunion Island.  

One of the key issues related to WT and PV diffusion in the grid is that the 

present energy system is not capable to fit them at high percentages of 

the total productive capacity. The fact that these RES can modify rapidly 

and in a difficultly predictable way their power output requires the power 

system to adopt reserve power that can quickly act as back up when for 

example the wind decrease its speed or the clouds shade a PV field. This 

is very expensive for Distribution Service Operators (DSO) and 
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Transmission Service Operators (TSO). The grid itself is not designed to fit 

a great number of electricity injection points in different areas and at 

different tension levels. The major problem is the lack of real-time 

communication among the energy producers and the DSO, which 

ultimately leads to difficulties in balancing services and risks of poor 

power quality. Hammons T.J. (2008) [12] presents shortcomings and 

issues of the present distribution grids and regulations in Europe. The 

effects of a high percentage of RES in the energy system are investigated 

by studies such as Brouwer A.S. et al. (2014) [13] who quantify the effect 

on the present-day power system of increasing Intermittent Renewable 

Energy Sources. It is found that at 20% penetration of wind power, the 

increase of the primary reserves is 0.6% of the installed wind capacity, 

whereas the size of all the other combined reserves grows up to 10% of 

the installed wind capacity. At the same time thermal generators are 

affected by a 4% efficiency reduction for an overall cost of the system 

associated to this equal to 1-6 €/MWh (i.e. almost 10% of electricity 

wholesale price). A similar research was performed by Nikolakakis T. and 

Fthenakis V. (2011) [14] for the test case of New York State grid and loads 

request. They determined which is the highest percentage of penetration 

of renewables in the grid itself, before serious energy dumping must be 

performed. It was found that the combination of both PV and WT allow 

the grid to accept a higher percentage of renewably produced energy 

compared to the option with WT alone. Nevertheless, the latter solution 

is still more economical even with the curtailment of a large fraction of 

the energy produced. According to the authors, the situation might 

change in the future due to the fast paced lowering of PV costs. The same 

analysis is carried out by Krajačić G. et al (2011) [15] who take into 

account the Croatian energy system as case study. The authors present a 

novel approach in the planning of the power system with a focus on the 

integration of a high share of RES in the system itself. A great interest is 

placed on the storage capacity of the system and the benefits that it can 

allow. A total independence of Croatia in the energy sector could not be 
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achieved in the simulation (performed on one-year time span) but the 

amount of RES still reached over 78% with important emission savings. 

The ultimate limit to RES penetration in the grid is envisioned by Battaglini 

A. et al. (2009) [17] who propose a roadmap towards a European and 

North African SuperGrid of 100% Renewable Energy Sources by 2050 as 

an effective and reasonably expensive way to address global warming and 

fluctuating renewable generation issues together. 

The potential of RES to reduce the impact of human energy supply 

activities on the climate is examined by Nagl S. et al. (2011) [17], with a 

feasibility study of a 95% reduction in GHG emission within 2050. Several 

scenarios are defined and the cost of such a shift towards renewable 

and/or clean solutions is evaluated. Although the cost for this 

transformation seems reasonable and makes it feasible, a few major 

conditions for success are indicated: an extension of the European 

electricity grid, an international climate protection agreement and a 

coordinated European policy on renewables. A similar research is 

proposed by Ludig S. et al (2011) [18]. In this case, the analysis performed 

by the authors on the long-term climate change mitigation allowed by 

RES in eastern Germany features a greater temporal resolution in respect 

of other studies. This results in a greater accuracy in the evaluation of 

costs and a reduction of share of inflexible technologies that can be 

admitted in the energy market. The time resolution used is 2 hours, 

whereas in the case of 1 hour the higher complexity of the simulation is 

not justified by the results, which are almost identical. In the paper are 

also presented a series of outlooks and points of interests onto which the 

future research needs to focus. The effects on the electricity market 

produced by RES is the focus of a research carried out by Schleicher-

Tappeser R. (2012) [19] who considers the fast-paced innovation and 

disruptive change that renewable resources-based power technologies 

can introduce in the electricity market, regardless of it being ready for 
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such a major change. The author suggests several modifications to 

policies and market initiatives to be adopted rapidly. 

How to integrate new RES in the power system is vital for the solution of 

the energy crisis and climate change issues discussed above. A possible 

solution is the definition of a new concept of transmission grid, where not 

only electricity but also information is shared among producers, users, 

and “pro-sumers” (i.e. those who produce and consume energy at the 

same time). Such a grid, managed in an optimized manner, has the 

potential of both allowing a greater share of energy in the system from 

RES and to enhance security of supply and power quality. This grid, for it 

is designed and managed in an intelligent way, has been called the “Smart 

Grid” and will be discussed in the following section. 
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2 THE STATE OF THE ART IN ENERGY 

PRODUCTION AND MANAGEMENT 

OPTIMIZATION 

The new proposed paradigm for the energy system, in contrast to the 

present centralized system, is Distributed Generation (DG) also referred 

as Distributed Energy Resources (DER) in the literature. There is no 

unique definition for DG, but most of the authors agree with the fact that 

a thermal or electric generator, in order to be classified as DG, should 

operate in close relation to the local grid into which they feed the energy.  

In the literature there are several works discussing this topic in different 

fashions and from several points of view. El-Khattam W. and Salama 

M.M.A. (2004) [20] present a survey of distributed generation types, 

technologies, definitions, and operational constraints and classify them 

according to different categories. The DG economical and operational 

benefits required to support the implementation of the DG in the 

distribution network are discussed. In Pepermans G. et al. (2005) [21], the 

authors survey existing small-scale generation technologies highlighting 

their major benefits. The best definition they provide for DG is “an electric 

power generation source that is connected directly to the distribution 

network or on the customer side of the meter”. Also Alanne K. and Saari 

A. (2006) [22] deal with the definitions of DERs and evaluate political, 

economic, social and technological aspects of regional energy systems 

considering their degree of decentralization. Distributed energy system 

characteristics are discussed in the context of their sustainability and the 

authors conclude that DERs are a good option for sustainable 

development. Lopes Peças J.A. et al (2007) [23] present a review of the 

key aspects and issues related to distributed generation. The aspects 

covered are the challenges to be won in order to increase the integration 

of DG in the transmission grid, the management policies required and the 
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opportunities related to DG. The presence of renewables in DG is also 

discussed. The paper focuses on the main drivers for DG growth and on 

the problems that need to be solved, especially switching from a “fit and 

forget” approach to an integrated one regarding power system planning 

and operation. The drivers for diffusion of DERs are divided among 

environmental, commercial and political such as: limiting Green House 

Gas (GHG) emissions, avoidance of building new transmission circuits and 

large power plants, uncertain electricity markets that favor small 

generation solutions, improved power quality and stability, higher 

security of energy supply and support for a competitive market. The 

challenges can be distinguished in technical, commercial and regulatory 

as well: increased power quality, protection and stability of the power 

system are a possible benefit of a higher penetration of DG in the main 

grid, but only if their management and operation follow a new paradigm. 

In order to support the development of DG, three approaches are 

possible in terms of commercial arrangements: recover costs of active 

management directly by means of mechanisms for price control, 

establish an incentive scheme to reward DG, define a market for 

electricity and sales of ancillary services related to DG. Nevertheless, the 

authors identify in the regulation of DG operation and connection to the 

grid a fundamental requirement for their development. The paper also 

features a first attempt to value different kinds of ancillary services that 

could be provided by non-intermittent DGs. The services more likely to 

take place in the short-medium term are: DNO security of supply, TSO 

frequency response and regulating/standing reserve. The modeling tools 

and practices play an important role in DG development. Manfren M. et 

al. (2011) [24] provide an analysis of the different models currently 

available for the planning and design of distributed generation aiming at 

gathering capability to sustain a shift in the energy paradigm of urban 

energy systems. The authors also define the features that such models 

should have and still lack, thus providing a guide for future research on 

the topic. The diffusion of DG technologies relies also on the interest of 
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the energy market on the benefits they offer, Poudineh R. and Jamasb T. 

(2014) [25] present a market-oriented point of view on the topic. It is 

clear then that the role of DERs in the future and the methods for their 

planning and optimization are critical research problems for the 

implementation of a new grid concept, the Smart Grid [26].  

One of the first examples of DG are Combined Heat and Power units 

(CHP) that supply both electricity and thermal energy to their users. 

Indeed, the DG concept comprises also isolated or rural energy supplies. 

Among RES, PV and WT are often installed directly where the electricity 

they provide is needed. Therefore they are considered DGs and their 

great growth in numbers in the last years promote interest on the design 

and operation optimization of DERs. Amor M.B. et al (2010) [27] show a 

LCA analysis of a distributed generation system including solar panels and 

wind turbines. Different scenarios (average, below and above average 

conditions) are evaluated and the outcomes are that although very 

climate-dependent, DERs show improvement for Northeastern American 

power grid when compared to centralized production.  

Distributed Generation can be considered as the hardware of a new 

model for the energy system. However, the hardware alone will not be 

sufficient to tackle the energy and climate issues. Communication 

between the different actors of the system is required, as well as an in-

depth optimization of each component of the grid, from the smallest 

building-scale up to the regional one. Ruiz-Romero S. et al. (2014) [28] 

analyze the results of DG integration in the electricity distribution 

network evaluating its effects most of all in terms of power quality. This 

demonstrates to be highly affected by DG. Therefore, the authors stress 

the importance of the development of a two-way communication 

infrastructure as well as hierarchical and distributed architectures to 

adjust and synchronize the voltage regulation of the distributed energy 

resources. Once these control and communications systems are ensured, 

RES can be optimally integrated into the distribution grid. Some studies 
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try to investigate the scenario of a 100% decentralized worldwide 

renewable-based energy system. Pleßmann G. et al (2014) [29] simulate 

the hourly electricity demand and renewables productivity of over 160 

countries. To ensure the matching of loads and production in each hour, 

three different storage technologies are considered. The results of the 

study are a global average cost for electricity of 142 €/MWh which is 

considered enough to make the shift feasible. 

2.1 The Smart Grid 

The concept of Smart Grid has been discussed and defined in several ways 

in the literature but a standardized definition is still missing. 

Nevertheless, considering the various definitions proposed it is possible 

to identify the Smart Grid as any combination of hardware and software 

technologies, as well as practices, meant to enhance the efficiency, 

security, economy of operation and environmental friendliness of the 

present energy system. The fundamental objectives of the Smart Grid can 

be listed as: 

 Allow the shift towards DG with a greater penetration in the 

power system of RES, thus achieving a reduction of the GHG 

emissions, see Phuangpornpitak N. (2013) [30]; 

 Increase the global energetic efficiency of the system with 

greater Primary Energy Savings (PES) compared to the 

centralized grid; 

 Reduce the costs of operation and maintenance for all the 

stakeholders of the energy systems, from energy service 

suppliers to DSO, TSO and final users as well; 

 Promote a greater participation of small energy producers and 

final users in the energy market and balancing services; 

 Enhance the security of energy supply and system reliability; 

 Improve the power quality of the energy system. 



State of the art in energy production and management optimization 

57 

To achieve these goals, the SG relies on several concepts, tools and 

components. The first important feature is its modular structure: the SG 

operates on a wide scale, i.e. national; it can be considered as composed 

of smaller, but still “smart” modules. From the largest to the smallest 

scale there can be identified energy hubs, Micro Grids (MG), Virtual 

Power Plants (VPP) and finally Smart Users (SU) or Smart Homes. Each 

component shares with the Smart Grid concept the same fundamental 

objectives. However, at different scales, the actual design and operation 

of the system may differ. In any scale considered there are three levels 

onto which the control system of the SG components operates: 

generation, demand and storage. Some authors extend the SG concepts 

to district heating, like in Lund H. et al. (2014) [31], where the authors 

believe the SG and Smart Thermal Grid to be complementary, an aspect 

which is also important for the research presented in this Thesis. 

Moreover, with the advent on the automotive market of an increasing 

number of Electric Vehicles (EV) and Plug-in Hybrids, researchers focused 

on their possible role and integration in the SG, Sousa T. et al (2012) [32], 

Hota A.R. et al. (2014) [33]. Research on SG is expanding rapidly in 

industrialized countries such as USA, Europe and Japan but, as 

demonstrated by reviews such as Fadaeenejad M. et al. (2014) [34], also 

in China, India and Brazil, Countries that are investing in the improvement 

of their national grids and recognize the strategic importance of SGs. 

Hereafter, for each scale and each operational level of the SG, a 

description along with references from the state of the art will be 

proposed. 

2.1.1 A smart system composed of smart components 

As mentioned before, the Smart Grid concepts are infused in all of its 

components. Different aggregation levels require the optimal 

management of different energy vectors. For instance, on the greater 

scale it is un-realistic to exploit the thermal energy, both at high or low 
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temperature because of the long distances that the thermal vector fluid 

would need to travel, therefore dissipating most of the energy it 

transports. Whereas, at a lower scale, like in cities, it is possible to 

consider district heating as one viable solution to pursue the goals of the 

SG. At building scale, even single loads can be taken into account into the 

optimization process. On the other hand, the greater scales allow the 

optimization of the whole generation system, considering the power 

production and requests of several smaller grids and the centralized 

power plants together. Mancarella P. (2014) [35] provides a review with 

a holistic approach on the SG components and possible tools for 

optimization. 

2.1.1.1 Micro Grids 

A Micro Grid can be defined as a network of generators and loads, 

typically with a high grade of DG presence, which can be operated in a 

twofold way: grid-connected, i.e. exchanging electric energy with the 

national grid, or, in isolated mode, disconnected from the main grid. They 

usually include both LV (≤ 1 kV) and MV (1-69 kV) tension levels and are 

a step towards SG implementation considering they act as the link 

between centralized generation and DG. Jiayi H. et al. (2008) [36] and 

Ustun T.S. et al. (2011) [37] present an overview of concepts, 

technologies and ongoing-research on MGs.  

In order to be able to operate both in island mode and grid connected, 

MGs require several tools and components. In terms of generation 

capabilities, a MG usually implements several generators of different 

kinds, whose sizing must take into account the possible operation of the 

MG isolated from the grid. Intermittent RES, such as PV and WT, can be 

deployed along with fossil or bio-fuel-alimented prime movers like Micro 

Gas Turbine (MGT) and Internal Combustion Engines (ICEs); innovative 

solutions and some case studies in the literature include Fuel Cells (FC) as 

well. Combined Cooling Heating and Power (CCHP) solutions are often 

very valuable within MG, for they offer the possibility to satisfy both 
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electric and thermal loads and thus increasing the system efficiency and 

PES, Wei G. et al (2014) [38] present a comprehensive review of the 

modeling, planning and energy management of the CCHP microgrid. The 

power range of these technologies is usually between 10-100 kWe, 

especially because of the flexibility of operation and fast time of response 

that are required in order to follow the load demands during island mode. 

Storage technologies, especially the electric ones, play a fundamental 

role inside MGs. Those featured by a quick response time and high power 

allow the management of quick transient phenomena occurring when 

the disconnection/connection from the main grid is actuated. On the 

other hand, slower storages featuring greater capacity, can improve 

greatly the penetration of RES among the DG mix of the MG. Palizban O. 

et al. (2014) [39-40] analyze the principles of MGs design that allow them 

to participate in active network management. The authors propose the 

application of IEC/ISO 62264 standards to both MG and VPP along with 

providing a review of MGs in terms of: advanced control techniques, 

energy storage systems and market participation during both island and 

grid-connected mode. The authors stress the importance of island-

detection methods, providing also a discussion about each method’s 

advantages and shortcomings.  

Thanks to the fact that it can be operated in island mode, the MG is a 

valuable asset of the SG. Indeed, from a grid perspective the MG can be 

considered as a single entity, a distinct producer or consumer of electric 

energy. This means that the grid itself does not need to balance loads and 

generators inside the MG but only among MGs. Because of this and the 

fact that the major part of the power generation is done within the MG 

boundaries, there is less need of energy transmission in the main grid, 

which implies that power losses and also the investments for the upgrade 

of the transmission grid are reduced. MG, being a smaller system, is 

easier to be controlled and managed and therefore there is the 

opportunity to improve also the Power Quality and Reliability (PQR) of 
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the energy system. Nonetheless, in order to be operated in island mode 

while guaranteeing PQR and balance within grid standards, MG must 

include three levels of operation optimization and controllers, each one 

maneuvers within different boundaries:  

 Local micro-source controller and load controller, which is in 

charge of controlling the voltage and frequency during transient 

conditions based on local information only. This controller 

interfaces the smaller scale optimizers and operation 

management devices with the MG; 

 Micro Grid Central Controller (MGCC), its roles span from 

monitoring the active and reactive power of the several 

generators interconnected to the optimization of the operation 

of MG. The control is performed sending set points to both 

generators and controllable points. It can be considered as the 

main controller of the MG; 

 Distribution Management System (DMS), which, conversely, 

interacts with the upstream network, i.e. the greater-scale 

system. 

At each level, an optimization system is required in order to instruct the 

controller in the best operation to adopt. Each level of optimization 

shares similar goals, which are the same proposed by the SG concept: 

economy of operation, lesser emissions, greater power quality and 

reliability of the system. Furthermore, an optimization of the design of 

the MG itself is often required, e.g. how many generators and storages 

are required, their ideal size and so forth.  

In the literature can be found several researches concerning MGs. Baziar 

A. and Kavousi Fard A. (2013) [41] developed a modified Particle Swarm 

Optimization (PSO) used to solve an optimization problem regarding MG 

systems including RESs and storage devices. An example of the 

optimization of a generation system connected to a MG is provided by 
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Malakar T. et al. (2014) [42], who performed the optimization of a wind-

pumped storage hydro plant connected to the MG by means of an 

Artificial Bee Colony (ABC) algorithm. This heuristic algorithm is used to 

determine when it is better to charge or discharge the storage in order 

to maximize the profits or at least reduce the unscheduled interchange 

penalties that are applied following a frequency based pricing 

mechanism. A penalty applies when a deviation from the scheduled 

feeding of electricity in the MG is registered. The results of the simulation 

show that the algorithm not only reduces the penalties but can also be 

used to maximize the efficiency of the hybrid system. Zhou K. et al. (2014) 

[43] focus on the models for the optimization of load distribution in MGs. 

The authors reviewed several models, pinning their shortcomings. They 

state that traditional optimization methods are unsuitable for this kind of 

problem because they do not take into account important constraints, 

e.g. storage size, whereas genetic, particle swarm and bee colony type of 

algorithms are more promising. In their paper the authors propose a 

model, of generic type, which can lead to more effective and efficient 

solutions of the optimal load distribution problem compared to the 

models reviewed. This optimization results from a compromise among 

different aspects that need to be taken into account at the same time 

with a multi-objective optimization problem including six different 

functions: total operating costs, total emissions, interruption costs 

(reliability), total power line loss, power quality costs and power 

generation efficiency.  

In order to address correctly the problem of the optimization of both the 

design and management of the MG beforehand, it is useful to define 

several scenarios that are likely to occur during the operation of the MG 

itself. This is especially true for the design optimization, which in the 

present work is not performed by means of automated algorithms. 

Responding to this research quest, Mohammadi S. et al (2014) [44] 

propose to investigate the effects of uncertainty on the optimal 
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operation management of MGs. The method consists of two phases: a 

first one where several scenarios (both likely and unlikely to happen) are 

picked for the analysis by means of the optimization algorithm based on 

the Adaptive Modified Firefly Algorithm (AMFA), then, the actual 

optimization is performed. The results of the simulation demonstrate 

that the method applied to the MG with different types of generation 

units (WT, PV, Micro-Turbine, FC and storages) is satisfactory in terms of 

capability to investigate the different scenarios and thus reduces 

uncertainties.  

The new concept of local grid that is suggested by MGs opened the road 

for the discussion over established technologies and practices. In their 

paper Sechilariu M. et al. (2014) [45] define a multi-layer supervision 

control for a grid operating in Direct Current (DC), conversely to the 

standard Alternating Current (AC) ones. According to the authors, the 

main advantage of a DC grid, is that the different sources of electricity 

can operate together without any issue in terms of phase-matching, the 

transformation to AC being performed only at the connection with the 

main grid, therefore the system is generally simpler compared to the AC 

one. Moreover, several loads in urban buildings can be efficiently fed with 

DC rather than AC/DC converters. The energy system considered in the 

study comprises PV array and energy storage; in addition, some of the 

loads can be interrupted in order to ensure the balance along with 

production curtailment. The optimization of the system is carried out 

with the definition of a series of IF-THEN clauses, which leads the 

algorithm towards the most appropriate solution. The strategy adopted 

allows a very fast, real-time optimization of the system, but on the other 

hand the level of optimization is poorer compared to other approaches 

presented in the literature because of its simplicity. The advantages and 

disadvantages of DC grids are also investigated in Planas E. et al. (2013) 

[46]. 
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The research on MG is carried out worldwide, and several projects are 

active in different Countries. Still, the size of the problem and the 

importance of the systems involved often prevent researchers from 

carrying out a proper experimentation, thus most of the studies and 

projects consider real test cases and simulate the behavior of the MG 

applied to those test cases.  A review of the existing projects as well as 

the most significant simulations of MG networks is presented by Lidula 

N.W.A. and Rajapakse A.D. (2011) [47] as well as by Planas E. et al. (2013) 

[46]. 

2.1.1.2 Virtual Power Plants 

The concept of Virtual Power Plant has been around for over fifteen years 

now. The first definition of something similar to a VPP was proposed by 

Dr. Awerbuch in 1997. He defined the Virtual Utility as “a flexible 

collaboration of independent, market-driven entities that provide efficient 

energy service demanded by consumers without necessarily owning the 

corresponding assets” [48]. Indeed the definition of the Virtual Utility 

matches what is nowadays considered a Virtual Power Plant. VPP 

aggregate different types of DG units by means of an advanced system of 

optimization and communication in order to improve the performance of 

the VPP itself. The VPP concept differs from the MG one for three main 

reasons: 

 It is usually of a smaller scale, from hundreds of kWe to several 

MWe; 

 The generators inside the VPP do not need to be on the same 

local grid nor the same geographical area. E.g. a group of 

generators distributed in different geographical locations can 

act as a VPP from an electricity market perspective; 

 The intervention on the load side of the balancing equation is 

more sporadic. 
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The VPP is still a valuable concept for the deployment of the SG because 

of its peculiar characteristics of management, control and optimization of 

the generators it comprises. The benefits of its structure and design can 

be: 

 An increase of primary energy savings and therefore being a 

“greener” solution compared to a standard operation of the 

same collection of generators; 

 Reduction of energy losses due to transmission and distribution 

of the electricity; 

 Ease the integration of RESs in the power system thanks to a 

stabilization of their stochastic power output; 

 Allow the DSO and TSO to delay investments for grid upgrades, 

indeed VPPs do not require expensive hardware upgrades in 

order to be employed; 

 Thanks to its smart control system and high flexibility it can 

provide value-added functions such as ancillary services to 

enhance the reliability and security of the power supply; 

 Increase the participation of small producers into the electricity 

market, improving market competition and thus economy of 

energy services. 

In order to achieve these benefits the key is to be able to forecast the 

possible consumption and generation in advance. On the side of 

consumption one could rely on statistical or measured data for similar 

conditions, on the other hand for the generation some DG technologies 

allow the planning of the production and flexibility in operation (i.e. ICE 

and MGT). Storages as well enable a greater freedom in system 

operations. Some other DG generators, such as WT and PV have a limited 

flexibility thus the only way to “plan” their operation is to base on 

forecasts of their productivity based on meteorological data and models. 

In Tascikarouglu A. et al. (2014) [49] the evaluation of a hybrid system 

composed by RES, H2 and thermal power systems is performed. An 
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economic operation-based dispatching strategy that adapts interactively 

to the real measured wind and solar power production values is 

proposed. This strategy allows the authors to overcome the effects of the 

stochastic nature of wind and solar power generators and thus achieve 

higher benefits in the electricity market. The results obtained are an 

increase in the forecasting accuracy for RES productivity and the 

operation costs for the VPP is halved. If the productivity of stochastic RESs 

like wind and solar cannot be known in advance, or when the weather 

forecasts fail to provide a reliable prevision of their productivity, the 

flexibility of the other generation technologies inside the VPP can be 

exploited to achieve the goals of the VPP and gain a spot on the electricity 

market. In Yang Y. et al. [50] the authors take into account the concept of 

VPP and illustrate a real-time control strategy for dispatching active 

power among DG units in order to satisfy load variation and RES 

intermittency. The DG responds to the target determined by the 

upstream grid. From the simulations carried out, the proposed approach 

for real time control could achieve the active power control target with 

ease while reducing the generation costs. 

2.1.1.3 Smart Users and Smart Homes 

The smallest-scale system of the Smart Grid is the Smart User (SU) or 

Smart Home. It can be defined as the local system of the end user, 

comprising either flexible loads only or both generators and flexible loads. 

Along with the obvious presence of loads to be satisfied and the 

possibility of self-generation by means of different prime movers or RESs, 

storage devices of different types are often considered as fundamental 

for these applications. Depending on the type of plant and its 

components, the SU can provide several services from a SG perspective. 

The SU, like every single subsystem of the SG, shares with it its objectives 

and philosophy of design and operation. Hence, the SU can be defined as 

a local network of devices and generators, managed by a central 

controller, which can take into account several inputs, provided by the 
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user itself and/or the DSO along with data acquired by weather stations 

and other sensors. Typical goals of a SU are: 

 Reduction of energy supply costs for the user; 

 Greater efficiency of the energy supply and consequently an 

increase in the primary energy savings of the system; 

 Allow Standalone Operation (SO) or Virtual Standalone 

Operation (VSO), thus increasing the security and reliability of 

the energy supply; 

 Respect an energy exchange profile with the grid, especially 

when the SU includes intermittent RESs, hence allowing both a 

greater penetration of RESs in the power system and a 

reduction of the costs that energy producers, DSO and TSO 

must bear because of their unpredictability; 

 Enhance the PQR of the local network. 

If the SU does not feature any generator, the flexibility that it can achieve 

and therefore the benefits of a smart operation of the system are 

reduced. Nevertheless, mechanisms like Demand Side Management 

(DSM), which will be discussed in the following section, can be adopted 

to accomplish the goals set to some extent. It is easy to see how SUs 

including generators, renewable or fossil fuel alimented, allow a greater 

degree of flexibility of operation and eventually greater benefits for the 

user itself. At the present date, it is hard to foresee what SUs of the future 

will be like. However, considering the load-only case as a subcase of a 

more generalized system that includes generators, loads and storages of 

different kind, most of the works in the literature prefer to analyze this 

latter solution rather than the simpler one.  

The possibility to achieve the proposed objectives is given by the central 

controller of the SU, which relies on the data acquired by several sensors 

and smart meters within and outside the SU boundaries. These 

Information and Communication Technologies (ICT) along with the 
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central controller are the main difference between a standard pro-sumer 

system, designed and operated according to present standards (e.g. 

thermal load following operation for a CHP system), and the SU.  

In the literature there are a few research papers dealing with what can 

be considered as a first declination of the SU concept, still, most of them 

consider rather limited or simple cases, which do not exploit the full 

potential of the SU. One of the earliest studies related to such systems is 

found in Al-Ali A.R. et al. (2011) [51]. The authors of the paper present 

the design, small-scale implementation and testing of an embedded 

system that integrates RES (i.e. PV) and storage technologies into a smart 

home. The system schedules and arranges the power flow during the day 

from the RES or from the grid, achieving a 33% less expense compared to 

a base-line case. A simulation of a household managed through a Global 

Model Based Anticipative Building Energy Management System is 

described in Missaoui R. et al. (2014) [52]. The model developed by the 

authors is capable of finding a good compromise between economical 

savings and occupant comfort level taking into account physical 

constraints of the plant and price inputs. The simulation of the loads and 

behavior of the house is performed by a Simulink/MatLab© model. The 

whole system allows the house to save almost 18% of the energy and 

therefore expenses. A much more detailed and interesting study is the 

one of Tascikaraouglu A. et al. (2014) [53], which is also one of the very 

few considering a real experimental case, i.e. not simulated by a model 

but properly built and operated. The authors of this study investigate an 

experimental Smart Home as a basic component of the SG. The goal of 

the study is to address both the DSM issues (related to preserve the 

comfort of the inhabitants) and to reduce the problems related to the 

unpredictable generation of renewables, all within a domestic energy 

management strategy. The idea is to shift deferrable loads in order to 

avoid them being active during times when electricity is expensive or the 

production from renewables is limited. The smart meters in the house 
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allow the occupants to know the instant, daily and monthly consumption 

of each appliance; these data are also stored on a web-based application 

to allow the remote monitoring and management of the system. The 

household is featured by various RES and storage systems. The analysis is 

carried out in terms of in-home energy management, control of 

appliances and power flow. The control algorithm works from the 

assumption that better forecasts of the meteorological data allow a 

better efficiency of the grid-connected smart home, maximizing the local 

exploitation of the electric energy produced by the renewables installed 

on the site. The operation of the system is optimized considering both 

generation and load side, the latter divided in two groups: controllable 

and non-controllable, taking into account several inputs like time varying 

tariffs, RESs productivity, desired temperature inside the building, 

storages’ state of charge. The system relies mostly on a Fuzzy Logic 

decision controller, which is based on a set of rules. House users can 

override the system if they require one appliance to operate at a given 

time regardless of the optimization proposed. The algorithm, including 

the RES forecasting routine based on an Artificial Neural Network, can 

generate a solution within 28 seconds, fast enough for home appliances 

management. The improvements are present although not strong 

(around 3% for the whole year) but, according to the authors, could be 

improved with a greater network of smart homes. 

In conclusion of this brief literature review on the topic of Smart Users it 

is interesting to cite the work of Balta-Ozkan N. et al. (2013) [54] who 

present a review of interviews and studies on householders’ perception 

of smart metering and smart home in general technologies. The study 

allows the researcher to understand which are the prospects of future 

smart home appliances and tech markets.  
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2.1.2 Demand Side Management and Generators Management  

The Smart Grid requires each of its subsystems to be able to operate in 

compliance with the objectives that guide its design and operation. Each 

subsystem must then be able to respond quickly to several inputs, both 

from within and outside its boundaries. The typical inputs that are taken 

into account are divided in three categories: 

 Environmental conditions: temperature, solar irradiation and 

wind speed. These are usually considered for the forecast of the 

levels of thermal loads due to space conditioning and the 

productivity of intermittent RESs like WT and PV. These inputs 

are independent from the will of any of the stakeholders 

involved in the energy field. 

 Internal requests: what the users within the boundaries of the 

subsystem require. In this category can be found for example 

the electrical and thermal load profiles that result from the 

activities planned for a given amount of time or obtained from 

statistical analysis carried out over similar periods of the year. 

These inputs are a direct expression of the “comfort” of the 

end-users, i.e. the temperature level set inside a building or the 

expected production of goods for a factory in a given day. 

 External constraints: inputs that are provided or imposed from 

the outside of the subsystem. An example can be the electricity 

market prices, ancillary services rewards or power grid 

exchange profiles. These constraints might be in accordance or 

in contrast with the ideal operation of the system that the end-

users wish.  

For each subsystem, every category might include different inputs, or for 

example, one input that is considered internal from the point of view of 

the Micro Grid can turn to be external for the Smart User. Nonetheless, 
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these three categories are transversal and can be applied to each 

subsystem. 

All of the inputs concur to define a compromise of operation, which is 

one of the best possible solutions according to different perspectives e.g. 

economy of operation, primary energy savings, environmental 

friendliness and power quality. The core of the SG can be considered its 

network of communication between several controllers and optimizers. 

Nonetheless, it is important to stress that they must operate on the 

hardware of the system in order to apply their suggested operation. In 

general, two are the sides where the controllers can operate: demand 

side and generation side. Both of the interventions can take advantage of 

the presence of storages in the subsystem. Each of the possible control 

strategies is described in the following sections along with a brief review 

of relevant researches from the literature on the topic. 

2.1.2.1.1 Control strategies for loads 

Every form of management of consumer’s behavior or any action 

performed in order to modify the consumptions of a facility can be 

referred to as Demand Side Management or Demand Response (DR). The 

modification can occur either from the final user or from an external 

driver, e.g. the DSO. The diffusion of DSM schemes have already begun in 

the United States, Europe, China and other countries, although still in a 

way which is far from unlocking its full potential.  

Faria P. and Vale Z. (2011) [55] and Siano P. (2014) [56] all deal with this 

topic in their research papers. There are two categories of DR programs: 

price-based demand response and incentive-based demand response. 

Under the first category falls the modification of the consumption profiles 

carried out by the end users as response to a change in the price they pay 

for energy. The participation to such price-based DR programs is 

voluntary at present. The second category includes those DR programs 

that allow customers to receive fixed or time-varying incentives in 
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addition to their price of supply. Penalties for customers who fail to 

comply with a request of their contractor can also be applied, e.g. if a user 

cannot comply with a request of curtailment of a load because in that 

moment the load to be curtailed is vital for user’s operation. The most 

common price-based DR programs are: 

 Time Of Use tariffs (TOU), according to which, the price of 

electricity varies during different periods of one day length, 

depending on the cost for the generation and delivery of the 

electric energy during the same period; 

 Real Time Pricing (RTP), where the electricity price varies once 

every hour, in direct correlation with the trend of the wholesale 

price of electricity; 

 Critical Peak Pricing (CPP), which is based on TOU but there are 

high price modifiers during peak hours. 

These schemes rely on the actions that the end user will perform in order 

to exploit favorable conditions and avoid peak hours for its more energy-

heavy activities.  

On the other hand, the incentive-based DR programs include: 

 Direct Load Control (DLC), a program allowing an external 

operator to switch off or cycle customer’s electric loads. This 

kind of program is offered preferably to small residential or 

commercial customers; 

 Interruptible/Curtailable Service (ICS) where instead of 

switching off completely a load, the user can take advance of a 

rate discount on the bill if he accepts to reduce part of his loads 

during periods of contingencies, whereas he is penalized if he 

fails to modulate a load when requested to do so. This program 

suits better larger industrial customers with several big loads 



DIEF – Department of Industrial Engineering of Florence 
 

that can be modulated without affecting in a great way the 

productive process or the activities carried out by the user; 

 In Demand Bidding/Buyback (DBB), a program according to 

which a customer can offer curtailment capacity to the operator 

for him to exploit it in case of necessity. This program is 

preferred for large customers compared to small ones; 

 Emergency Demand Response (EDR) which can be considered a 

hybrid between DLC and ICS, is usually exploited by the DSO or 

TSO when the reserves are insufficient; 

 Capacity Market (CM) programs that consist of a customer 

offering load curtailment as a form of power reserve for the 

system, thus the customer acts as a virtual producer by 

reducing the load he would have required; 

 Ancillary Services Market (ASM) programs, similar to DBB 

programs but in this case the customers participate only in the 

ancillary service market. 

Research papers in the literature concerning different possible DSM 

strategies and contracts have been increasing in number in the last years, 

as a demonstration of the great interest on the exploitation of their 

theoretical potential. He X. et al. (2013) [57] present a concept of 

consumer-centered approach to DR tariffs, stressing the importance of a 

diversification in contract types. Diversification is required in order for 

demand response to be appealing to a large number of users. To tailor 

the contract to the contractor the authors propose the use of profiling 

criteria that could help to identify the preferences and priorities in loads 

and services required by each consumer. Goulden M. et al. (2014) [58] 

define two possible philosophies behind DSM, the first where end-users 

are strictly managed from the external grid and its operators. The other, 

where they are conscious of their choices energy wise and they are 

actively working towards DSM. The study does not expect the two visions 

to be mutually exclusive but rather that the final DSM will be performed 
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as a mix of both. Nikzad M. and Mazafari B. (2014) [59] propose a demand 

response model including penalties and incentives assigned to customers 

depending on their response to network requests. Their study focuses on 

the reliability enhancement of the system granted by the DR scheme 

presented. Dupont B. et al. (2014) [60] focus on the assessment of 

locational dynamic pricing potential, especially applied to residential 

sector. The authors point towards the definition of the correct amount of 

costs, which can be associated with every participant in the electricity 

distribution, final user included, by location and time dependence. 

According to the authors, once a correct estimate is performed, it would 

be possible to find a fair tariff as well as a more effective DR from the 

users themselves. Mahmoudi N. et al. (2014) [61] introduce a new DR 

scheme for electricity retailers and end-users. The scheme comprises 

different contracts and options at the same time. Several possibilities are 

proposed and evaluated on a real case study, with the feasibility of the 

proposed scheme and augmentation of the energy share coming from DR 

for the retailers as outcome.  

From an operative point of view, there are two actions that the 

controllers in charge of loads optimization can do in order to exploit DSM 

benefits: 

 Reduce the energy consumption of the user by modulating or 

switching off low-priority loads; 

 Shift energy consumption to a different time of the day; 

In both cases the potential of the response and the comfort (i.e. the non-

disturbance of the programmed activities) of the user, can greatly benefit 

from the presence of a storage system. Several studies in the literature 

propose different solutions for the optimization of the load management 

problem within the frame of DR, some of these include also prime movers 

for self-generation and energy storages. Moura P.S. and de Almeida A.T. 

(2010) [62] developed a multi-objective optimization model in order to 
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reduce the problems related to the intermittent nature of RES and their 

integration in the power system. DSM and DR are demonstrated to have 

a major role in the electricity system both for their ability to reduce the 

need of new intermittent production capacity (while still reducing the 

emissions of the whole system) and to adjust the consumptions in real-

time, therefore adapting them to the actual production. Aghaei J. and 

Alizadeh M.I. (2013) [63] in their paper aim to apply Mixed Integer Linear 

Programming (MILP) to a multi-objective self-scheduling optimization 

problem of a Microgrid including CHP, energy storages and DR scheme. 

The goals of the optimization are twofold: first, minimizing operation 

costs and secondly reducing emissions. The model defined was tested on 

a standard 24 bus achieving a 1.5% reduction of daily operational costs 

when not implementing the DR scheme and 9.1% when the DR scheme is 

applied, an evidence of DR optimization potential, along with an emission 

cost reduction of 4%. In Mahmood A. et al. (2014) [64] the authors 

propose an algorithm for the optimal distribution of loads over the day 

for several households. The algorithm allowed reaching a good demand-

side peak-shaving result as well as energy cost savings. In Zakeri G. et al. 

(2014) [65] the authors present an efficient linear programming 

formulation for the demand response of a consumer who must pay an 

additional peak demand price for energy supply during peak hours. 

Caprino D. et al (2014) [66] applied real-time scheduling techniques to 

the problem of household appliances management. The load features of 

each appliance considered were modelled in order to meet both timing 

and service constraints. The peak load is reduced by 8% on average basis, 

with a maximum of 41% reduction.  

The potential benefits of DSM are shared among different stakeholders 

of the energy system, from the energy service providers to the final user, 

even if he is not involved in any DSM program himself. The possible 

benefits are: 
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 DR program participant’s bill savings: those who participate 

actively to DR programs can take advantage of contingences or 

price volatility to save on their energy supply bills; 

 Bill savings for non-participants: customers not taking part in DR 

programs can save on their bills thanks to the reduction of 

wholesale costs of electric energy allowed by both a more 

competitive market and a general reduction of the operation 

and maintenance costs for both producers and operators; 

 Improved system reliability: undesired shortage and local black-

outs can be avoided with great advantages for customers, both 

in economic and comfort level terms; 

 Greater market dynamicity: the presence of more stakeholders 

on the market enhances the competition and therefore 

preventing the price from being controlled by a minor part of 

energy producers; 

 Improved choice: customers can tailor their electricity bills on 

their unique needs, choosing from different tariffs, incentives 

and penalties; 

 System security enhancement: the operators of the system deal 

with a much more flexible system, which can handle 

contingencies with more chance to success and lesser costs. 

In addition to the short review of papers focused on different approaches 

to the problem of DR optimization, a few published scientific works that 

analyze large-scale case studies in order to demonstrate the potential of 

DSM application are presented hereafter. Pina A. et al. (2012) [67] show 

the potential of demand side management policies in a system already 

heavy on renewable power such as the one of Flores Island in the Azores 

Archipelago. The outcomes of the study are that DSM application allow 

the operators to postpone investments on the grid and on new 

renewable resources as well, by 3 or 4 years, depending on the demand 

scenario considered. Thus, the authors demonstrate how DMS has the 
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double advantage of deferring new investments while making renewable 

energy more economically viable at the same time. In Moura P.S. and de 

Almeida A.T. (2010) [68] the authors present a study on DSM strategies 

to expand wind-power penetration in Portugal’s electricity grid. It is 

found that a 1% reduction in consumption would allow a reduced need 

of intermittent wind power by 11% with a cost lower than any other RES 

(0.023 €/kWh) whereas DSM strategies focusing on the reduction of peak 

load will instead reduce the issues related to intermittent wind power 

productivity during peak hours. 

2.1.2.2 Generation planning and curtailment 

The operations of the Smart Grid can be optimized not only by managing 

the loads that are required by the users at different scales but also by 

directing the power generation. Indeed, power generators, both the 

renewable and the fossil fuels ones, provide a further degree of control 

over the energy system. Fossil fuels generators or non-intermittent RESs 

allow the manager of the plant to increase or decrease the power output 

in order to respond to the several inputs that drive the operation and 

optimization of the grid considered. On the other hand, the intermittent 

RES generators can only decrease their power output compared to the 

maximum they can provide in a given weather condition. Moreover, the 

intermittent RESs usually rely on incentives that reward the energy they 

produce, thus it is very unlikely that a user might desire to modulate them 

at any time. Therefore, the possibility of intervention on these generators 

is very limited. Any other solution, like load modulation or energy storage, 

is preferred. Conversely, the non-intermittent RES (like hydroelectric, 

geothermal and biomass) as well as fossil fuel-powered prime movers 

offer greater margin for intervention. For example, their power output 

can be modified in order to satisfy local loads when intermittent RES 

reduce their productivity due to a temporary decrease of wind speed or 

clouds shading the solar generators. This is true especially for small-scale 

systems where the size of the conventional power generators still permits 



State of the art in energy production and management optimization 

77 

quick response times and great modulation capabilities. As the power 

system scale grows, the same happens with power generators and with 

their increase in size, thermal inertial effects and lack of modulation 

become relevant issues. At the regional or national scale, the present 

energy system cannot be considered flexible. In order to ensure power 

balance it relies on power reserves and back up plants that are ready to 

be grid connected when the load grows or the RESs productivity 

decreases. As has been introduced in the previous section, this limitation 

can be overcome with DGs, allowing the central power plants to focus on 

providing the base load and operate at maximum efficiency. Reddy K.S. 

et al. (2014) [69] present a review about the methods for Integration, 

Control, Communication and Metering inside a Smart Grid, including 

some DR programs for operation scheduling of energy sources and loads.  

2.1.2.3 Peak Shaving with storages 

There is one more degree of freedom to employ for the achievement of 

Smart Grid goals and it is the time shift between the moment when the 

energy is produced by the generators and the one when it is consumed 

by the users. This shift in time can be performed, for example, by using 

storage devices. Storages can be of different kind and adopt various 

technologies that ultimately determine their costs and the role in the 

energy system that better suits them. Depending on the scale considered, 

thermal and/or electrical storages can be present within the energy 

system. Usually, thermal storages are implemented in small to medium 

size systems because it is hard to store a great amount of heat while 

limiting the thermal losses. Electrical storages on the other hand can span 

from very small capacities (like capacitors) to medium capacity (like 

batteries) or very high capacity like water basins at different heights. The 

rated power obtainable can vary as well, from the relatively low power 

usually released by lead acid or Lithium batteries, to the high power 

outputs allowed by the electric capacitors. Some thermal storages like 

molten salt ones can be adopted in electric power generation. It can be 
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said that the higher the variability over time of the loads and RESs 

production and the greater is the opportunity to use energy storage. The 

role of storages in allowing a greater percentage of RES in the power 

system and their potential as components of the SG is dealt with by 

Zamora R. and Srivastava A.K. (2010) [70]. In their paper, they present a 

review of microgrid concepts, projects and optimization with focus on the 

role of energy storage. A case study simulation is performed and 

presented, showing the improvement capabilities of the microgrid in 

terms of grid reliability. Moreover, Denholm P. and Hand M. (2011) [71] 

analyze the upgrades (in terms of storage capacity, minimum un-flexible 

generation and curtailments) required in order to allow a greater 

penetration of RESs in an insulated power grid (i.e. Texas one as 

considered in their case study). It is found that penetrations of up to 50% 

can be achieved with curtailments as little as 10% if the must-run base 

load generators are eliminated in favor of fast ramping-up ones. 

However, in order to achieve penetrations of 80%+ while keeping 

curtailments at 10%, storages and load shifting affecting one day of 

average demand are required. Bussar C. et al. (2014) [72] push the 

boundaries of storage potential imagining a 100% renewable production 

of electric energy covering the whole European demand; the authors 

seek to optimize the type, size and location of the required energy 

storages. The model used was called GENESYS and it is a Genetic 

Optimization Algorithm. The outcomes of the study show that for a 2500 

GW RES rated power installed in total, the storage capacity required is 

240 TWh (6% of the total energy demand). The model defines the 

preferred RESs and the mix for each Nation, as well as the short-term / 

mid-term and long-term required.  

A different “form” of electric storage, which has been receiving more and 

more attention in the last years is represented by Plug-in Hybrid Electric 

Vehicles (PHEV) and Electric Vehicles (EV). PHEVs and EVs are expected 

to grow in number within the transport systems and car pools of firms. 
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From the point of view of the energy system, they can be considered as 

loads and generators, like with every other kind of storage. Their role can 

be important for two main reasons:  

 Unlike other kinds of storage they can move and therefore shift 

the energy not only in time but also in space (for example from 

home to office or vice-versa); 

 Especially in the case of small households or enterprises, the 

power they exchange with the system is relevant and the 

energy stored can be of the same order of magnitude of the 

whole needs of the user itself.  

The correct scheduling of this peculiar type of storage is the focus of the 

study proposed by Khayyam H. et al. (2013) [73]. The model created by 

the authors was applied to a realistic case study in order to assess its 

benefits: vehicle charge-discharge cycle optimization as well as forecast 

of parking lots and grid load demand. The possible benefits and limits of 

Vehicle-to-Grid (V2G) concept as a viable option for DSM programs and 

as energy storage are presented by Mullan J. et al (2012) [74]. The 

concept is tested on Western Australia’s isolated grid, particularly small 

and with a landscape preventing the adoption of common storage 

technologies. According to the authors of the study the, V2G is not an 

economically feasible solution to apply peak shaving and other DSM 

practices. Other solutions, like battery banking, present overall similar 

benefits but lower infrastructure costs.  

Like with DSM and Generation curtailment, in order to achieve the goals 

set for the Smart Grid, the operation of storages in the energy system 

must be accurately modeled and optimized. Some research papers 

focusing on storage optimization are reported hereafter. Levron Y. and 

Shilovitz D. (2012) [75] defined a first order approach to the problem by 

the definition of a graphical analytic method for storage sizing and 

management in order to achieve the maximum possible peak shaving. 
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The limits of this approach are found in its simplicity, which is also its 

strength in terms of computational weight. The model proposed can be 

adopted correctly only if power losses are minimal compared to the 

energy stored and power output of the storage system and, anyway, it 

can optimize only the behavior of the storage system, without 

considering any other variable at the same time. A simulation of a Battery 

Electric Storage System (BESS) for five households in different regions of 

Canada is performed by Leadbetter J. and Swan L. (2012) [76] based on 

synthetic data. Each household presents peculiarity in terms of loads, 

therefore different results are achieved for each case. On average, the 

scored peak shaving potential features values around 42%-49% reached 

by using small storages (5 kWh/ 2.6 kW). Nevertheless, areas where heat 

demand is handled mostly with electricity-based solutions, like heat 

pumps in Quebec, performed worse, with only 28% of peak shaving 

achieved even when using bigger storages (22 kWh / 5.2 kW). Several 

algorithms dedicated to peak shaving by means of electrical batteries are 

proposed and compared by Johnson M.P. et al. (2011) [77]. In this work 

both the case of lossless batteries and battery losses are taken into 

account and the model can also suggest, offline, the optimal battery size 

for system design. Nottrott A. et al. (2013) [78] carry out the optimization 

of a PV-BESS operation by means of a linear programming routine in 

order to minimize demand charges of the battery system. The 

optimization exploits a MILP technique and different kinds of batteries 

are evaluated. The study demonstrates that Lithium-ion ones are still too 

expensive to result in an economically feasible solution and highlights the 

importance of an effective planning of the batteries management and 

dispatch schedule, which allows an increment of the Net Present Value 

(NPV) of the system.  

All of the studies reviewed demonstrate the importance of storages in SG 

system and their potential to flatten the power demand. Each one of the 

proposed strategies represent a step forward towards the goal set by the 
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SG concept. Nonetheless, their real potential is found only when they act 

all together. In order to do so, a great effort is required for the 

optimization of a system with great flexibility such as one that includes 

quick responding generators, modulation of loads and storages for both 

electrical and thermal energy. The greater the extension of the system, 

the higher the number of variables to be considered simultaneously. In 

the following section the key aspects of energy systems optimization, the 

issues to overcome and the state-of-the-art of optimization algorithms 

will be presented.   

2.2 Optimization of design and operations planning  

The optimization of the design and operation of an energy system is a 

twofold problem. On the one hand, there is the problem related to the 

description of the system itself: which equations are chosen for the 

description of each component, what are the constraints, the linear or 

non-linear behavior of the system and the time discretization that is 

considered. On the other hand, there is the optimization of design and/or 

operation of the system and how to perform this task. These two aspects 

are deeply interconnected, for example, some algorithms for the 

optimization of a problem can be applied only if the problem description 

features some hypothesis, e.g. linearity. Moreover, it is important to 

determine which depth of analysis of the system and its simulation is 

required to have significant and reliable results. An overly approximated 

problem might indeed lead to solutions that are not as good as expected 

or even completely unfeasible for the actual system. There is not a 

universal solution or a one-fits-all approach; therefore, depending on the 

scale, the components, the objectives of the optimization and the level 

of detail that is required, the best practice can be different. The literature 

reflects this abundance of concepts, approaches and optimization 

techniques. Indeed, there are works sharing similarities in terms of 

problem description and optimization but there are many other unique 
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research works. It is out of the scope of this Thesis to compare every 

possible approach presented in the literature; nonetheless, it is 

important to provide an insight on the most used ones, outlining their 

pros and cons, thus giving solid basis to the present research work.  

First of all it is important to define the difference between a linear and 

non-linear description of the problem, what kind of constraints are non-

linear and which components are more influenced by the linearization of 

a non-linear problem.   

2.2.1 Linear problems 

Before venturing in a short analysis of the state-of-the-art optimization in 

the energy field, it is important to provide a reminder about what a linear 

problem is and some examples of linear problems applied to an energy 

system.  

A linear problem (LP) is represented by a set of linear equations and linear 

inequalities that bound the feasible solutions of a linear objective 

function of a given number of real variables. This feasible region, in the 

case of a linear problem, is a convex polyhedron that represents the 

space of the solutions of the problem complying with the constraints: 

each inequality of the constraints set defines a semi-space that limits the 

extension of the polyhedron itself. One of the most important features of 

linear problems is that every optimal solution is a global optimum of the 

problem: this makes the optimization of the variables set much easier 

compared to any other possible family of problems. Indeed, a 

methodology or an algorithm defined to search one optimum of a linear 

problem ends up finding its global optimum. 

The standard mathematical definition of a linear problem is: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝒄𝑻𝒙 
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑨𝒙 ≤ 𝒃, 

𝒙 ≥ 𝟎 
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Where c and b are vectors and A is a matrix of real values. The objective 

function can be either maximized or minimized. The optimization of 

linear problems is known as linear programming. Linear programming has 

several fields of application, from business to engineering problems. 

An example of a linear problem, applied to the energy field, is the 

optimization of the operation of a heat storage coupled with a CHP in 

order to satisfy a thermal load.  

 

Figure 3 - CHP and Storage simplified plant layout 

Let us consider a system like the one depicted in Figure 3. Let us assume 

for the sake of simplicity that the thermal load can always be satisfied by 

the CHP thermal power output and that the storage can be charged or 

discharged at any rate. Let us consider also the storage to be big enough 

to be operated in any possible way (i.e. no limits on capacity are required) 

during a single day, composed by three different time-steps of 8 hours 

each. The function to be optimized can be a cost function for the plant, 

such as: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑃𝐶𝐻𝑃(𝑡𝑖)𝑐𝐶𝐻𝑃(𝑡𝑖) + 𝑃𝑠𝑡(𝑡𝑖)𝑐𝑠𝑡(𝑡𝑖)

2

𝑡𝑖=0

+ 𝑃𝑡ℎ(𝑡𝑖)𝑐𝑡ℎ(𝑡𝑖) 

 
Eq. 1 
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Where cCHP, cst, cth, are respectively the unitary costs of operation of CHP, 

storage and thermal load, and they depend on time. The power balance 

of the system, valid for each time step, is described by the Equation 2: 

𝑃𝑡ℎ(𝑡) = 𝑃𝐶𝐻𝑃(𝑡) + 𝑃𝑠𝑡(𝑡) 
 

Eq. 2 
 

Where Pth is the thermal power demand, PCHP is the power provided by 

the CHP and Pst is the power provided or accepted by the storage. The 

thermal power output of the CHP and the thermal power of the storage 

are the unknown variables that determine the optimized operation of the 

plant, along with the charge of the storage at each time-step. The state 

of charge of the storage at time step t is provided by the Equation 3: 

𝐿𝑐(�̃�) = 𝐿𝑐,𝑖 + ∑𝑃𝑠𝑡(�̃�)∆𝑡

�̃�

𝑡=1

 

 
Eq. 3 
 

 

Where Lc,I is the initial state of charge of the storage. If a daily 

optimization is desired, three time-steps need to be considered and the 

equation system describing the plant can be written as Ax=b: 
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It is clear that the problem has a linear formulation thanks to the fact that 

the constraints are linear (can be written as Ax=b) and the objective 

function is linear as well.  

From the canonical form of a linear problem, depending on the type of 

variables involved, two different subclasses of problems and optimization 

can be introduced: Integer Linear Programming (ILP) and Mixed Integer 

Linear Programming (MILP). An ILP problem differs from the standard LP 

because all of its variables are integers. MILP problems, on the other 

hand, accept some of their variables xi to be non-integer. In order for ILP 

and MILP to be employed, the objective function and all the constraints 

must be linear. To solve a MILP problem several algorithms and methods 

have been developed, which can be adopted depending on some 

particular mathematical features of the problem itself. Regardless of the 

method used to solve this type of problem, thanks to their linearity, the 

algorithms employed to find the solution are very fast and capable of 

reaching a solution whose distance from the global one is known in 

advance. Indeed the shape of the solution surface is convex and therefore 

it features only one optimum solution and this allows the algorithms used 

to take into account very high numbers of variables and constraints at the 

same time, up to hundred of thousands, while still being computationally 

light. The limits of this approach are in the description of the problem 

itself. Not all the problems can be written in linear form nor be linearized 

without trading in precision of the solution. 

2.2.2 Non-linear problems 

A problem becomes non-linear as soon as the objective function or one 

of the constraints is non-linear. There are several classes of non-linear 

problems and some of them can be solved with ad hoc algorithms in an 

efficient manner. As example, if the objective function to be maximized 

is the ratio of a concave and a convex function and the constraints are 

convex, then the problem can be transformed to a convex optimization 
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problem by means of fractional programming techniques and solved 

quickly. Nonetheless, typical engineering problems rarely fall under these 

special classes of non-linear problems. In some cases they can be NP-hard 

problems (Non-deterministic Polynomial-time hard), and thus require 

much greater computational effort to be solved. Simple examples of non-

linear constraints are polynomial equations obtained by regression 

methods to describe the experimental characteristic curve of a 

component and if clauses that are required to describe the different 

behavior of the system depending on some input values. A system 

described by non-linear equations and involving several variables can 

have several local optima, of which, only one might be the global 

optimum of the problem. Depending on the shape of the solutions 

surface, the search for the global optimum can be very difficult; 

moreover, it can be impossible to assess the actual distance of a solution 

found from the global optimum. There are several techniques and 

algorithms dedicated to the solution of non-linear optimization problems, 

these methods can be divided in two great families: analytical and 

heuristic. The first category includes several programming techniques 

like: Newton’s method-based algorithms like sequential quadratic 

programming or gradient methods-based ones, like Interior point 

methods, Gradient Descent, Ellipsoid Methods. The analytical optimizers 

often rely on special characteristics of the objective function or the 

constraints to find the solution. Therefore, they cannot be applied to any 

non-linear problem. On the other hand, the heuristic algorithms are less 

problem-constrained, even though each algorithm can perform better or 

worse on a single problem, depending on the problem itself. None of the 

heuristic algorithms can ensure the global optimality of the solution 

found neither they can define how close to the global solution is the 

optimum they find. Nevertheless, they trade their accuracy in favor of 

speed, and they can perform very well when non-linear analytical 

techniques would fail to find a solution in a reasonable (useful) time. 

Heuristic algorithms, as the name suggests, are based on experience. The 
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experience they refer to is the knowledge of the solution obtained with 

previously investigated sets of values for the problem variables. Allen 

Newell and Herbert A. Simon in their Turing Award acceptance speech, 

discuss the Hypothesis for Heuristic Search saying that a physical symbol 

of a given system will repeatedly generate and modify known symbol 

structures until they match the structure of the solution [79]. Therefore, 

at any iteration of the heuristic search, these algorithms modify the input 

variables of the problem in a manner that leads the set of variables 

towards the problem solution. Heuristic-based optimization algorithms 

are often inspired by natural phenomena and usually referred to as Meta-

heuristic algorithms. They can be further categorized depending on the 

techniques they adopt, e.g. evolutionary processes, trajectory correction, 

if they are population based or not, whether they have memory of the 

previous iterations or not and so forth. To cite a few of the most used 

ones: Genetic Algorithms (GA), Ant Colony Optimization Algorithm 

(ACOA), Particle Swarm Optimization (PSO), Simulated Annealing (SA), 

Covariance Matrix Adaptation Evolution Strategy (CMA-ES), Stochastic 

Local Search (SLS). Each of these algorithms can be further modified 

starting from the basic concepts underlying them in order to adapt to a 

particular problem. Indeed, in the literature, it is hard to find the same 

exact implementation of a Meta-heuristic algorithm twice.  

2.2.3 Multi-objective optimization 

In a general power plant or energy system, the most common goals are 

the minimization of: operation costs, emissions, primary energy 

consumption. Sometimes other aspects are relevant and introduced as 

variables to be optimized, e.g. power quality, some other times there are 

specific targets for the optimization process, which may vary from study 

to study, e.g. the number of switch on/off cycles of a given device. Dealing 

with more than one objective function at a time requires the 

implementation of specific strategies, which are referred indistinctively 

in the literature as multi-objective optimization, multi-objective 
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programming, vector optimization, multi-criteria optimization, multi-

attribute optimization or Pareto optimization. These strategies aim at the 

simultaneous optimization of different objective functions. It is easy to 

understand that in multi-objective optimization there cannot be a single 

global optimum, as a set of values improves one of the objectives, it will 

worsen other ones.  

2.2.4 Analytical optimization in energy systems 

Considering an energy system, typical objective functions to be 

maximized or minimized are: economy of operation and design, pollutant 

and/or carbon dioxide emissions towards the environment, primary 

energy savings. These objective functions are typically linear, e.g. 

regarding cost functions, the overall cost for the day is usually composed 

of the specific costs of operation of each component of the plant (that 

are constant values), multiplied by the variables describing the operation 

of the system, like power outputs. The set of constraints on the other 

hand, depending on the depth of the analysis, can be linear or not. 

However, the real physics of the energy system or plant is strictly non-

linear. Therefore, a linear description of the problem, although being 

possible most of the time, leads to an error in the evaluation of the 

problem solutions and, perhaps, to a wrong optimal set of values for the 

variables describing the system. Nevertheless, LP optimization presents 

several advantages, which justify, in some cases, the linearization of the 

problem describing the physics of the real system. For example, for the 

simulation of particularly large systems, an approach based on energy 

balances between components is often the most appealing and there are 

several works in the literature dealing with linear or linearized 

approximations of grids (thermal or electrical or both) featuring hundreds 

of components.  

In order to model correctly a system heavily influenced by non-

deterministic behavior of some of its components, such as intermittent 
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RES, Handschin E. et al (2006) [80] developed a stochastic extension of a 

basic MILP algorithm for the optimization of the operation of a DG 

network featuring also renewable resources. The algorithm itself is 

computationally hard to solve as a whole; therefore, a decomposition 

algorithm was defined and applied. This allows the solver to reach a 

reasonably accurate solution in an acceptable time. Ren H. et al (2010) 

[81] present a multi-objective optimization by means of linear 

programming of a DER system. Both economic and environmental goals 

are pursued, the outcomes of the study point out how considering 

environmental optimization shifts the generation towards DER 

equipment.  The multi-objective optimization changes the scheduling of 

the system and gas-engine based DERs are found to be more sensitive to 

optimization goal change than are Fuel cells. The study carried out shows 

also that carbon taxes are ineffective in changing the scheduling unless 

they are very expensive. On the other hand, fuel switching towards biogas 

has a great effect in terms of both system operation and sensitivity to 

different optimizations approaches. In another study, Ren H. and Gao W. 

(2010) [82] present a MILP model to improve the planning and design of 

a DER system comprising also energy storages. The model defines the 

optimal mix of generators and their scheduling during each hour of the 

year. The benefits in terms of annual improvement of costs, emissions 

and PES are 13.4%, 4.5% and 17% respectively.  

Stochastic system analysis along with RESs optimization is important 

especially when the system is being simulated to address the problem of 

its design, hence with a very long time-scale. Buoro D. et al. (2014) [83] 

present a MILP optimized model that seeks the minimization of total 

annual costs of a CHP plant with district heating as well as solar thermal 

plant, standard boilers and heat storage. The plant needs to satisfy the 

requests of nine industrial facilities in northern Italy. The model allows 

the calculation of both the economic and environmental benefits as well 

as the share of thermal load demand satisfied by means of renewable 
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energy. The outcomes depend on whether the solar thermal plant is 

allowed or not in the system. In the first case the savings on the annual 

costs are 5% whereas without it are slightly lower, 4.5%. The optimal size 

of the solar field covers 60% of the thermal load and a weekly storage is 

suggested (4000 m3). If heat dissipation is not admitted, the ideal size of 

the storage is greater and reaches the values of seasonal storages. A 

straightforward MILP optimization is carried out in Omu A. et al. (2013) 

[84] for a six-building district located in UK and, in Erdinc O. (2014) [85], 

for a Home Energy Management system that includes PV, Electric Storage 

System (ESS) and a V2G option. The pricing of electric energy changes on 

real-time basis whereas the sell price is considered constant. Several test 

cases are examined achieving economic benefits of 35% compared to  the 

base-line case when adding PV and ESS units. DR strategies aiming to 

reduce peak power are also applied. 

Pandžić H. et al. (2013) [86], who present a MILP model that evaluates 

different scenarios to address the uncertainties of pricing and RESs 

productivity, use an approach similar to the one used in Handschin E. et 

al (2006) [80]. The scenarios are modeled on historical data and the 

model performs this optimization on a realistic case study in order to 

draw conclusions. Again, like in the similar study cited, the model is 

computationally heavy because of its stochastic component, which 

imposes the evaluation of several cases in order to be reliable. A similar 

research was carried out by Sowa T. et al. (2014) [87] who model a CHP 

system as a component of a VPP in order to allow a higher share of 

renewable energies in the electricity market and provide ancillary 

services. The operational strategies proposed by the algorithm are 

evaluated in terms of economic, technical aspects and uncertainties in 

both generation and load forecast. The optimization technique used is 

again a stochastic mixed integer linear programming one that takes into 

account the whole portfolio of decentralized units, comprising in the 

present case: WT, PV, CHP, ESS, and EV. The stochastic part of the model 
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allow the researchers to consider different possible scenarios to 

overcome the issues of uncertainties not only regarding RES productivity 

but also those of market price and load demand. A purely deterministic 

approach is indeed proved to be worse, compared to the stochastic one. 

The main reason of the poorer performance of the first approach is the 

lack of information, which ultimately leads to the proposal of unfeasible 

solutions, which receive the penalties applied for unfeasibility. Likewise, 

Zapata J. et al. (2013) [88] perform a research on the possibility to reduce 

the imbalance created by RESs intermittency as well as load 

unpredictability by means of a CHP optimized via MILP. Nonetheless, 

instead of relying on stochastic scenario analysis, the optimizer performs 

a day ahead guess of operation that is modified (re-scheduling) during 

the present day in order to guarantee that the imbalance is reduced once 

the updated weather and load forecasts are known. The optimization 

method applied is not useful for design purposes, therefore in this case 

only the operation of the system is taken into account. Two kinds of 

solutions can be provided: one that maximizes the reduction of the 

imbalance, whereas the other seeks the best economic solution while 

reducing the imbalances. For an ICE CHP the authors determined that the 

economic benefits of reducing imbalance are minimal because of the 

small efficiency of the prime-mover of choice (25%) and a large heat to 

power ratio. Thus, imbalance cost reduction cannot cope with the extra 

primary energy costs. A further example of optimization of a medium-

scale energy system is found in Aghaei J. and Alizadeh M.I. (2013) [88]. 

Their research aims to apply MILP to a multi-objective self-scheduling 

optimization problem of a MG including CHP, ESSs and DRS. The goals of 

the optimization are, in order, minimizing operation costs and secondly 

reducing emissions. According to the researchers, the novelties of the 

work compared to the previous literature are MILP optimization of the 

self-scheduling problem of a CHP-based MG, the presence of two 

contrasting objectives (maximization of MG benefits and minimization of 

emissions), the use of lexicographic optimization and hybrid augmented-
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weighted ε-constraint method to solve the multi-objective optimization 

problem. All the non-linear equations of the problem are linearized and 

two distinct objective functions are defined for costs and emissions. Both 

consider a one-day period and the model allows to find the optimized 

operation for the whole day. Even though the research tries to perform a 

proper multi-objective optimization of the system, one of the 

disadvantages of the approach adopted is the non-optimization of the 

range of the objective function over the efficient set. Another 

disadvantage is the absence of guarantee to find a pareto-optimal 

solution efficient or non-dominated1. The model defined was tested on a 

standard IEEE 24 bus achieving a 1.5% reduction of daily operational costs 

when not implementing DRS and 9.1% when DRS is applied. Conversely, 

the emission cost reduction is 4%. In Wakui T. et al. (2014) [90], the 

optimization of the design and operation of a multiple CHP system for a 

residential building is investigated. The target for the energy system is to 

satisfy the loads of a MG of residential CHP without feeding electric 

energy to the grid. MILP optimization model was used for operations 

planning, nevertheless the hot water distribution network and the piping 

design are non-linear problems. Thus, the authors introduced a linearized 

approximation that allows them to implement the MILP solver for the 

optimization of the system. The results show the energy-saving effect 

achievable with power interchange and that the savings reduce with the 

increase in the number of residence units connected through the hot 

water supply network. The problem of linearization of system behavior 

description in order to exploit MILP is faced also by Bischi A. et al. (2014) 

[91] whose research relates to a state-of-the-art MILP model for the 

optimization of the operations of a CCHP system. The model can take into 

account different prime-movers, variable price of the electricity, tariffs 

                                                           
1 A solution is called non-dominated, Pareto optimal, Pareto efficient or non-
inferior, if none of the objective functions can be improved in value without 
degrading some of the other objective values. 
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and ambient conditions. The authors identify also two different 

approaches to the energy problem. The first is a data-driven black box 

approach where each component is described by its performance curve 

obtained by real data interpolation. The second is a first principle 

thermodynamic approach where the energy system is divided into simple 

elements whose performance curves are known and mass/energy 

balances are imposed to the optimization problem to define the plant 

best operating conditions. The model was tested on several plant test 

case and proved to be fast and reliable enough, although achieving only 

sub-optimal solutions because of the approximation introduced by using 

a linear set of equations instead of the required non-linear ones. The 

objective function is the sum of all the costs associated to each 

component for maintenance, operation and for energy sold/bought to 

and from the grid. The total time span is daily and each day is divided in 

24 smaller periods of analysis of one hour each. The problem size reaches 

at maximum 6000 variables and 4227 constraints. With 20 intervals of 

piecewise linearization of non-linear functions the execution time is in the 

order of 10 minutes. 

When the linearization of the problem cannot be performed without 

losing the physical soundness of the outcome, or there is a need for a 

more accurate solution, the MILP technique cannot be used. Before the 

advent of meta-heuristic algorithm, the only option was to adopt MINLP 

approaches. Although they lose most of the benefits of the MILP 

techniques, such as the capability of analyzing a high number of variables 

at the same time with very low computational times, they are still used in 

the literature, also for energy systems optimization. 

An example of MINLP optimization is proposed by Tveit T.M. et al. (2009) 

[92], who, in their study present a MINLP model for the analysis of long-

term thermal storage investment along with CHP solutions. The model 

proposed can take into account non-linear behavior of the system but 

due to its non-convexity it is prone to find local optima if it is not solved 



DIEF – Department of Industrial Engineering of Florence 
 

many times with variable starting values. The limitation of MINLP is 

evident in this study and the size of the system considered cannot match 

those listed above because of the long time required for a complete run 

of the algorithm. An approach analogous to the one of Zapata et al. 

(2013) [88] but featuring MINLP is performed by Ghadikolaei H.M. et al. 

(2012) [93]. The study deals with a two-stage optimization of DG 

operation in order to minimize costs and CO2 emissions penalties. The 

first stage is a day-ahead optimization performed by means of a MINLP 

optimizer with the aid of Benders decomposition method. The second 

stage has an hour-ahead time frame which takes as inputs the scheduling 

suggested by the first-stage optimization and operates on the spinning 

reserve in order to ensure the power balance. The proposed method was 

tested on two fictional yet realistic case studies with acceptable results. 

Pruitt K.A. et al. (2013) [94] present a MINLP optimization of the sizing 

and operation of a CHP system for a large hotel case study. A comparison 

with a MILP procedure on the same test case is performed as well. The 

difference between the linear and non-linear (solved with heuristic 

techniques) in terms of time to optimize the operation of the system 

considered as test case, is huge: 2 seconds compared to over 10 hours. 

Nevertheless, even if the linear approach grants a proximity to global 

optimality (of the linear problem) below 1% and the non-linear one is at 

10% from its own global optimum, the global optimum is still better than 

the local one, both in terms of performance of the plant and feasibility of 

the solution. The study allows researchers to understand in which cases 

the simpler optimization is enough and in which it is not satisfactory. A 

mixed approach is adopted by Fazlollahi S. and Maréchal F. (2013) [95], 

who, in their article present a novel method for the preliminary design of 

an integrated urban energy system. The optimization involves several 

periods of 24 hours, each representative of different typical days and 

both the economic and environmental aspects are considered in the 

multi-objective analysis. The optimization model used relies on 

evolutionary algorithms and MILP at the same time. With this paper, the 
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researchers propose to fill the lack in the literature providing a 

simultaneous consideration of a multi-period and multi-objective 

optimization of an energy system design. This is done with a MILP model 

along with a multi-objective evolutionary algorithm (EMOO). The 

procedure proposed evaluates the total costs and CO2 emissions at the 

same time, decomposing the model into a master and slave optimization. 

The energy system analysis is divided into two main steps: sizing and 

design optimization goes first, whereas operation optimization is 

performed afterwards. The master optimization algorithm (the 

evolutionary one) provides a set of decision variables (type and size of 

equipment). Then, a thermo-economic simulation model generates the 

inputs for the MILP optimizer for the system operation, which ultimately 

feeds back the output to the master optimizer again until a Pareto set of 

solutions is found. A distinctive feature of the evolutionary algorithm of 

choice is that it works with continuous variables, not binary genes as is 

usually done. The time span of the optimization is one year. The 

assumptions made for the linear part of the problem are those common 

in the literature when solving the optimization problem with MILP 

techniques (e.g. no partial load consideration). Moreover, distribution 

network constraints both for heat and electricity are not considered. 

To conclude this brief review of analytical methods for energy system 

analysis, the importance of taking into account non-linear phenomena is 

evident when considering the quality of the solution that the optimizer 

finds. If the linear approximations of the problem are relevant, as proved 

by some of the authors cited, the solution can turn out to be completely 

unfeasible for the actual system. Moreover, in many of the works 

described, the physics of the actual system tends to be hidden by the 

requirements of the equations that should describe the system in order 

for these optimizers to actually work. From an engineering point of view, 

this is a relevant aspect because it makes it harder to keep contact with 

the real system. Indeed, optimization methods should always be “aware” 



DIEF – Department of Industrial Engineering of Florence 
 

of the actual needs of the system they describe. When considering an 

energy system it is important to understand not only which are the actual 

specifications and performance of its components but also how they are 

managed in the real system, e.g. considering whether they can be 

controlled directly or their operation is semi-automated. Nonetheless, 

due to the complexity of a deterministic analysis of non-linear 

phenomena, the linear approach can be very valuable when the size of 

the system, or total number of variables considered is particularly high. 

For example, with the simulation of entire districts, especially if the 

analysis carried out is a preliminary one and thus it does not require high 

levels of detail. Solving in an analytical way a non-linear problem becomes 

hard in terms of both problem description and computational time with 

ease.  

2.2.5 Meta-heuristic algorithms in energy systems 

The meta-heuristic algorithms are an alternative and very attractive 

solution for energy system analysis when the modeling of non-linear 

phenomena must be considered. As introduced before, they lack the 

precision of the deterministic approach. Still, if the problem proves to be 

highly non-linear, they are faster and more reliable than their analytical 

counterpart. Several authors in the literature adopted them for the 

optimization of energy systems. It is rare to find applications to large 

systems or for long periods (i.e. yearly or monthly optimization) though. 

This is reasonable considering that non-linear systems are definitely 

computationally heavier than linear systems to be optimized. Some of the 

authors performed comparisons among different algorithms in order to 

assess the best for the case considered. It is worthy to notice that the 

performance of meta-heuristic algorithms are strictly related to the 

tuning of their parameters and it is realistic to believe that there is no 

algorithm performing better than all the others in every possible 

situation. Actually, in many cases, the differences are marginal.  
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Recurring meta-heuristic algorithms in the literature, in several forms, are 

Particle Swarm Optimization (PSO) and Genetic Algorithm (GA). Silva M. 

et al. (2012) [96] present a GA for the assessment of the optimized short-

term scheduling of a distributed energy resources power system. Three 

time-frames for the ahead scheduling are considered: day ahead, hour 

ahead and five minutes ahead, each time the reliability of the wind speed 

forecasts increases and therefore the value and quality of the solution 

proposed. The model is tested on a 33-bus distribution network with high 

penetration of renewable generation and consumers with demand 

response contracts. One of the key aspects of the algorithm is its fast run-

time, which allows adapting the solution in a brief period and thus 

reacting to updates on forecasts. In Shi R. et al. (2011) [97] the authors 

performed a comparison study on a distributed Micro-Grid case study 

between Elitist Genetic Algorithm (EGA) and PSO. EGA and PSO 

performed better than the original GA with EGA scoring just slightly 

better than PSO. Chanda S. and De A. (2014) [98] as well adopted a PSO 

algorithm for the purpose of their study: an optimization model to 

enhance both social welfare and improve the dynamic stability of power 

markets where Smart Grid concepts are applied. The model was tested in 

the IEEE 30 bus system and compared to standard curtailment-based 

optimization methodologies, achieving promising results. The model 

operates on market clearing price in order to find the solutions with 

better results. The simulations results demonstrated that the proposed 

model and methodology is effective. In order to correctly plan the 

expansion phase of the distribution network it is vital for operators to be 

able to evaluate both costs and reliability indexes of the choices taken. 

Gitizadeh M. et al. (2013) [99] developed a hybrid algorithm (including 

both PSO and Shuffle Frog Leap (SFL)) to achieve the simultaneous 

optimization of both aspects (costs and reliability) and confronted the 

results obtained with those of standard PSO and SFL algorithm. The 

hybrid algorithm designed behaved better both in terms of quality of the 

solution and computational time compared to the single algorithms 
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alone. In Motevasel M. et al. (2013) [100] the authors presented an 

Intelligent Energy Management System to find the most economical and 

environmentally friendly way to operate a CHP-based microgrid including 

renewables and storages. The scheduling of the plant and each of its 

generators productivity is based on the optimized outputs provided by a 

Modified Bacteria Foraging Optimization algorithm. Its results are 

compared then to those provided by a GA and a PSO and found to be 

better both as value and variance of the solution. The thermal storage 

operation is scheduled considering that if the heat recovered is more 

than the thermal load demand then the storage is charged. Conversely, if 

the heat recovered is lower, then the storage and the boiler will 

compensate. The modeling of the system is strictly connected to the plant 

itself. However, in this way, the operation of the storages is not optimized 

for the whole period but rather for the single time-step considered. 

Having a multi-objective optimization the model seeks a pareto-front of 

optimal solutions. As could be expected, the weighted sum of different 

objective functions is not a very efficient way because it needs a great 

number of runs to find non-dominated solutions. The best solution is 

chosen by means of a fuzzy satisfactory method for multi-conflicting 

objectives. Soares J. et al. (2012) [101] proposed a modified Particle 

Swarm Optimization (PSO) approach called Signaled PSO. The goal of the 

authors was to address the optimization of a great number of variables 

(thousands) in a short time. In Evolutionary PSO the start values, like 

inertia, velocity limits, memory and cooperation weights, are modified 

during the simulation. This allows a greater exploration of the search 

space. The optimization algorithm was tested against a MINLP technique 

and other heuristic algorithms such as GA, PSO, EPSO and New-PSO on a 

short-term energy resource-scheduling problem. For the MINLP 

competitor in the algorithm comparison, the objective function 

minimizes the cost associated to dispatching and energy production in 

each time-period, therefore not performing a true optimization along the 

whole period but rather the sum of optimized time-steps. MINLP 
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execution time is 20 times more than GA and 35 more than Signaled-PSO 

with comparable fitness with the latter and slightly better than GA. MINLP 

discharged all the storages within the first hour, demonstrating to be 

unable to effectively optimize the operation of the system for the whole 

period considered. According to the authors, the algorithm presented 

performs well both in terms of results and execution times making it an 

optimal candidate for large number of variables optimization.  
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3 A REAL TEST CASE 

The Smart Grid concepts, since their definition, have been tested only 

little on real systems. The reasons are the difficulties and potential risks 

of such tests on large, expensive plants, which, most of the time are not 

property of a single owner but rather tens, hundreds or thousands, 

depending on the size of system considered. The systems involved in the 

tests always need to ensure their performance in terms of power balance, 

control of tension, frequency and reactive power management at all 

times, also during experimental tests. This is not an easy task, especially 

for large systems, where it is greatly impractical and expensive to carry 

out such activities, if not unfeasible. Therefore, it is hard to find in the 

literature records of experimental campaigns meant to address the 

concrete capabilities and performance of the Smart Grid concepts on the 

actual power grid. As was pointed out in the previous section, dedicated 

to the review of the state-of-the art of the SG in all its aspects and scales, 

most of the analysis executed so far are either simulations, on realistic 

systems modeled on software or experimental tests made on micro-scale 

simulacra of the power systems they should be installed on. One of the 

closest examples of a real test case is found in Ferrari M.L. et al (2014) 

[102]. The study involves a distributed generation test rig comprising two 

prime movers (gas turbine and ICE) for co-generation and a manageable 

thermal load, although the load requests are fictional and set for test 

purposes. The plant layout and controlling scheme are similar to those 

that an actual plant could have. Nevertheless, the scale of the application 

is likely to be larger than the one experimental rig proposes. Indeed, in 

the paper, three possible generalized layout for district heating systems 

are presented, depending on the level of flexibility that is desired.  
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The double loop layout (i.e. one hot temperature and one cold 

temperature loop), ideal for large heat distribution networks, is the one 

of the proposed test rig. Two different software were used to optimize 

plant operation due to the different goals that are pursued when 

operating online and offline. The online optimization tool is based on a 

cost ranking criteria to be fast enough to control the actual energy system 

in real time. Nonetheless, due to its great dependence on the initial 

conditions of the system and the speed performance that are required 

for real-time management of the system, it is not capable of finding 

globally optimized solutions. The offline optimizer, on the other hand, is 

based on a GA. It can be used only for prediction but cannot operate the 

system in real-time and its role is to define an optimized sizing of the 

system and strategy for its operation. It is interesting to notice how this 

study shares some similarities with the one proposed in the present 

Thesis, although being completely independent. For example, in terms of 

choice of controlling algorithm and their diversification for optimal 

management of the actual plant, which is something often lacking in 

those studies not taking into account the actual operation of the physical 

devices. During the off-line tests [103], carried out hypothesizing a 

certain industrial load with two thermal peaks during the day, it was 

found a 6% daily operation costs reduction and the great importance of 

the role of the thermal storages. In addition, the online optimizer 

demonstrated that it was capable of reducing daily costs on the actual 

system, even with the limitations just mentioned. The study 

demonstrates not only the validity of the SG concepts on the small scale 

systems like Smart Users and Smart Homes but also the importance of 

tests performed on tools capable of managing an actual plant in order to 

shorten the distance between conceptualization and commercial 

diffusion of the technologies related to SG. The application-oriented and 

engineering approach to the energy management problem have been 

always considered fundamental during the research presented in this 

work, and stand-out from those described in the literature. 
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The research goal of the activity conducted by the Department of 

Industrial Engineering of Florence (DIEF) in collaboration with Yanmar 

Research Europe, Enel SpA and s.d.i. automazione, was not only to 

propose a possible solution for the adoption of SG concepts on small scale 

applications but also to demonstrate with tests on a real test case, the 

real potential of such solution. Thus, the first step of the activity was to 

analyze several possible users, like farms, commercial and industrial firms 

of different typology in order to find one that could be suitable for the 

research activity. The fundamental requirements were the opportunity 

to have a varied combination of loads, electric, thermal and cooling and 

the presence of intermittent renewable generators (or the possibility for 

their installation). Other features of interest were the chance to pay for 

electric energy with a RTP scheme rather than TOU or CPP and to be able 

to carry out tests during the normal activity of the firm where the plant 

would have been installed both managing generators and loads. The ideal 

test case was identified in Pontlab facility, a structure dedicated to 

research for industrial partners, located in Pontedera (PI), Italy. Pontlab 

laboratories carry out several kinds of tests, both chemical and 

mechanical on materials and components. Tests performed span from 

durability on injectors for automotive to thermal stress evaluation of 

components, from spectrometry to innovative fuels exploitation in mass 

transport. The test rigs require mostly electrical energy, which is also 

used to produce on board the thermal energy needed in several 

situations. The refrigerating capacity needed for some tests is provided 

thanks to a cold circuit that satisfies the needs of the whole structure. 

Electrical energy is also required for illumination and auxiliaries in 

addition to the thermal and refrigeration energy needed for air-

conditioning. The number and different types of test rigs and 

combination of tests carried out within the facility, depending on the 

requests of the clients, allows Pontlab to feature an extremely variable 

set of load profiles. Moreover, the presence of previously installed PV 
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plant and a micro-WT made it a perfect candidate for the purposes of the 

study. 

In this section a description of the plant representing the Smart User in 

the Pontlab facility will be presented, along with possible layout and 

specification of its components, its control system and data acquisition. 

Furthermore, two scenarios of operation will be described: the present 

one with RTP but no restrictions from TSO/DSO in terms of electricity grid 

exchange profile, and a future one, were possible constraints imposed by 

the TSO/DSO are implemented in the analysis.  

3.1 Plant description 

The installation of the CHP within Pontlab facility has been carried out by 

DSF group, representing the official dealer of Yanmar micro-CHP in Italy. 

The Pontlab facility is divided in three floors: basement, ground and first 

floor. The layout of the floors is presented in Figure 4, Figure 5, Figure 6, 

Figure 7 and Figure 8. In the basement are located the climatic chambers; 

at the ground floor there are the workshop, durability test benches, the 

3d scanner laboratory and part of the administrative office; finally, at first 

floor is where the laboratories and remaining offices are located. There 

is also an external terrace used as technical room for the installation of 

space conditioning equipment. Because the plant should be able to 

operate in a conventional manner, if desired, when not required for 

Smart User tests, the initial projects, both thermal and electrical, were 

developed considering the option to operate the CHP in either Thermal 

Load Following (TLF) or Electric Load Following (ELF) modes. Due to the 

limit that the thermal requirements of the facility are only for room 

heating, the cogenerator is coupled to an absorption chiller, ensuring a 

greater exploitation of the CHP for cooling production in the summer 

period for both space conditioning and loads supply. Indeed, the 

absorption chiller allows the exploitation of the thermal energy 
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recovered by the engine also during the summer period, when space 

heating is not necessary. The traditional design and sizing of plants 

including a CHP is performed to operate it in either TLF or ELF mode. In 

the first case, the sizing maximizes the use of the thermal energy 

produced, implying that electricity production is a secondary beneficial 

effect of CHP operation, which can indifferently be sold to the main grid 

or consumed by local users. In the latter case, the sizing is carried out 

maximizing the exploitation of the electric energy, but this is 

economically and energetically convenient only if most of the thermal 

energy produced is not wasted. TLF and ELF modes do limit the flexibility 

of the plant required by the SU concept. Therefore, the conventional 

layout illustrated in Figure 9 was modified in order to increase the 

flexibility of operation required by the research activity.  

 

Figure 4 - Cold temperature loop and users in the basement floor 
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Figure 5 – Cold temperature loop and users at the ground floor 

 

Figure 6 - Cold temperature loop and users at the first floor 
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Figure 7 - Hot temperature loop and users at the ground floor 

 

Figure 8 - Hot temperature loop and users at the first floor 
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Figure 9 - Conventional Tri-generation Plant Layout 

3.1.1 Loads to serve 

The loads requests of Pontlab are of three different kind: electricity, 

heating and cooling. Their variability, granted by the numerous 

machineries and test rigs involved in every-day activity, as already 

mentioned, is a very attractive feature of this test case. The electric plant 

features nine electric panels: 

 General panel: located at ground floor, close to ENEL power 

meter; 

 Panel “1”: located at ground floor, close to the general panel, 

inside which the ampere-meter of the three phases is placed; 

 Panel “2”: located at ground floor, to which are connected the 

machineries in the workshop; 
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 Panel “3”: located at ground floor, which feeds the large 

climatic chamber, the oil-dynamic facility and both lights and 

air conditioning systems of the workshop; 

 Panel “4”: located in the basement, supplying energy to the 

remaining climatic chambers, the ozone-meter, the xenon-test 

machine and the system for the corrosion resistance tests in 

salty fog; 

 Panel “5”: located at the ground floor, dedicated to the 

durability test benches, the compression chiller, one of the 

three air compressors, the air treatment units and the fire 

alarm system; 

 Panel “6”: located next to panel “5”, which supplies electricity 

to the remaining air compressors and the pumps for the 

heating and cooling circuits; 

 Panel “7”: located at the first floor, dedicated to the equipment 

in the analysis laboratory; 

 Panel “8”: feeding all the offices loads.  

A comprehensive list of all the loads installed is presented in Table 3 and 

Table 4 

Table 3 - List of installed machinery and test equipment 

Device Electric 
power 
[kWe] 

Heating 
power 
[kWe] 

Production 
mode 

Cooling 
power 
[kWc] 

Production 
mode 

Durability Test Benches 
DS1 4.5 0 On-board 0 - 
DS2 4.5 0 On-board 0 - 
DS3 4.5 0 On-board 0 - 
DS4 50 0 On-board 10 Compression 

chiller 
DS5 50 0 On-board 10 Compression 

chiller 
DS6 150 20 On-board 25 Cooling 

Tower + 
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Compression 
chiller 

DS8 50 0 On-board 10 Compression 
chiller 

Climatic Chambers 
CST27/2T 19 0 On-board n.d. Cooling 

Tower 
CST157/2T 27 0 On-board 15 Cooling 

Tower 
DCTC600P 2.5 0 On-board 0  
CH1200 24 0 On-board 15 Cooling 

Tower 
SU250 19 0 On-board 0  
Xenon-test 5 0 On-board 0  
Ozone-meter 3.6 0 On-board 0  
Workshop 
Oil-dynamic 
facility 

50 0 - 30 Cooling 
Tower + 
Compression 
chiller 

Working 
Station 

10 0 - 0 - 

Milling cutter n.d. 0 - 0 - 
Lathe n.d 0 - 0 - 
Drillers n.d. 0 - 0 - 
Laboratory 
DSC 4.5 0 - 0 - 
DMA 0.6 0 - 0 - 
ICP 4.75 0 - 0 - 
TGA 4.5 0 - 0 - 
Spectrometer 
IR 

1 0 - 0 - 

Chemical 
imaging 

1 0 - 0 - 

GC 2.6 0 - 0 - 
Microwave 
oven 

3.2 0 - 0 - 

Heater 1.5 0 - 0 - 
Analyzer C-S 3.45 0 - 0 - 
SEM 3 0 - 0 - 
Metaliser 1 0 - 0 - 
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Cutting 
machine 

1.5 0 - 0 - 

Polisher 0.3 0 - 0 - 
Compressors 
Back-up 5.5 0 - 0 - 
Back-up 5.5 0 - 0 - 
Operating 17 0 - 0 - 

 

Table 4 - List of all air-conditioning and room heating equipment 

Device Model Heating 
power 
[kWe] 

Cooling 
power 
[kWc] 

Flow rate 
[m3/h] 

Quantity 

Workshop and laboratories 
Workshop 
Heater 

Euroklimat 
UTK.T L675H 

57 37 8000 1 

Workshop 
Heater 

Euroklimat 
UTK.M001 

8 5 900 2 

Air 
Treatment 
Unit 

Euroklimat n.d. 35.7  1 

Fan Coil Ferroli FCS 
4T 

3.8 1.8  9 

Offices 
Fan Coil Ferroli FCF 

VBM15 
2.4 0.98  1 

Fan Coil Ferroli FCF 
VBM30 

4.55 1.85  6 

Fan Coil Ferroli FCF 
VBM40 

5.45 2.45  2 

Fan Coil Ferroli FCF 
VBM50 

6.6 3.01  2 

Fan Coil Ferroli FCF 
VBM60 

7.9 3.55  1 

Water 
heater 

 1.5   3 

 

The sum of all the loads show a great unbalance towards electricity, 

mostly because many test benches, even when requiring heat for their 
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operation, generate the heat by means of electric resistance. Considering 

the electric-to-heat ratio of the CHP, it cannot be dimensioned in order 

to satisfy the electric needs of the whole plant. Nonetheless, the plant 

can be split, electrically wise, in two portions, one that acts as the Smart 

User and includes the CHP, and the remaining part, which is left 

unchanged and operated conventionally. The electrical loads included in 

the SU are listed in Table 5 

Table 5 - Smart User electric loads 

Device Rated electric power [kWe] 

Test Bench DS3 4.5 
Atlas Compressor 7 
Electric chiller 25 
Climatic chamber CH1200 24 
Climatic chamber 
DCTC600P 

2.5 

Climatic chamber SU250 7.7 
Workshop heater 1.8 
Oven 2 
Office lights (1st floor) 1.1 
Fan coils 1.8 

 

From the point of view of the SU application, each load category, electric, 

thermal or refrigeration, includes loads that can have three different 

priorities: 

 Privileged Loads: that can be neither modulated nor 

interrupted; 

 Adjustable Loads: that can be modulated but not interrupted; 

 Not privileged Loads: these can be further divided in deferrable 

and interruptible. In the first case, the load once activated must 

finish its operative cycle; in the latter, the load can be 

interrupted as long as it operates for a given cumulated time 

during the day. 
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Depending on the type of load, and the value of the activity related to its 

usage, a cost for its modulation or interruption can be determined. This 

categorization of loads allows the SU to optimize its operation working 

not only on the generators, modulating their power output when 

necessary but also on the Demand Side of the loads-generation equation. 

This is of great importance both in terms of research and SU final 

application, providing a further degree of freedom for the management 

of the plant, thus allowing to exploit better the contingent operating 

conditions.   

The next paragraph deals with the generators of choice for the SU and 

provides insights on their sizing. The topic is relevant but not at the core 

of the Thesis presented, therefore the level of detail of the description is 

limited for the sake of brevity. 

3.1.2 Electricity, heat and cooling generators of choice 

The facility is connected to the electricity grid by a LV electric connection 

with a maximum power exchange of 180 kWe. This connection, 

considered the contemporaneous factor of usage of all the equipment 

installed, can ensure the satisfaction of the electric loads both before the 

intervention to upgrade the energy system to SU configuration and in the 

present SU configuration. Before the modification of the plant, the 

heating and cooling loads, were satisfied, respectively, by means of a 

Riello gas boiler with a rated power of 34 kWth and a Euroklimat RAK.E-

0262 compression chiller of 61.8 kWc along with a cooling tower of 25 

kWc. The heat required for air-conditioning is distributed in the building 

by means of a medium temperature loop. The cold water circuit, on the 

other hand, ensures the distribution of the refrigerated fluids, the cooling 

tower can take the water temperature down to 25°C whereas the 

compression chiller can cool it further to 13°C. Both hot and cold circuits 

involve two manifolds, one for the delivery and one for the return of the 

water. Regarding RESs, Pontlab features a PV plant on the rooftop with a 
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rated power of 13.6 kWe and a micro-wind turbine with a rated power 

output of 3 kWe.  

The solution sponsored by Yanmar to pursue the goals of the future Smart 

Grid is to insert a CHP generator along with the RESs in an energy plant. 

Theoretically, for their quick response time and good efficiency in off-

design, CHPs (especially ICE driven of small size) are an ideal solution to 

counter the effects of RESs intermittency or sudden load change from the 

foreseen values. On the contrary, traditional large-scale power plants 

suffer more when asked to regulate in order to address a new load 

condition. Indeed, in the SG concept, the role envisioned for these power 

plants is often to provide the base load only, letting the DG deal with the 

balancing of the system. In the literature, there are examples of similar 

solutions, where CHP are operated in unconventional modes (not TLF or 

ELF) in order to provide a stable power profile with the electricity grid 

[104-106]. In the case of an energy system operating as SU, the sizing of 

the CHP should take into account more parameters than is done for 

standard TLF or ELF cases. For example, the rated power of the RESs 

becomes relevant and should be inferior to CHP potential in order for it 

to be able to cope with their oscillation. Moreover, in the case where VSO 

is required, the electric power output of the plant should match the 

maximum electric power request from the loads. It can be noticed how 

the sizing of such a system should take into account all of the components 

together, which cannot be done in a system where most of the 

equipment is already installed. Indeed, in the test case considered, the 

electric load is considerably higher than the RESs maximum power 

output. Moreover, upon request of the Pontlab managers, the CHP 

should be able to operate in standard mode when tests are not being 

carried out on the system or if desired for any reason. Hence, even if the 

sizing of the CHP in a proper SU should follow a dedicated procedure, in 

this case, a compromise between SU and standard sizing had to be 

adopted.  
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Considering the loads during typical days of operation and loads 

contemporaneous factors, the CHP was sized considering the thermal 

request duration curve. As anticipated in the previous paragraph, on the 

basis of the duration curve of thermal loads, it was clear that the CHP 

should have had a rated power considerably lower than the minimum 

electric power request of the whole plant, which is rarely below 100 kWe. 

If the CHP were sized for the satisfaction of the base electric load, then 

most of the heat provided by the cogenerator would have been wasted, 

even considering the installation of an absorption chiller for the supply of 

the cooling power required. This would have greatly reduced the 

efficiency of the plant and its economic convenience. For these reasons, 

the options for the SU plant were to equip it with one or two Yanmar 

CP25 CHP, with rated electric and thermal output of 25.1 kWe and 38.6 

kWth respectively; the efficiency of the cogenerator are: 31.5% for the 

electric part and 53.5% for the thermal one. The solution with two CHPs 

would allow a greater coverage of the electric requests of the SU and 

during the summer period would be able to grant a greater part of the 

cooling load. Nevertheless, during the winter period, the thermal energy 

request is minimal compared to the potential of the two CHPs combined: 

part of the heat would need to be wasted even considering to switch one 

of the CHP to summer operation mode and fuel the absorption chiller. All 

this considered the single CHP solution is to be preferred for it is 

optimized from the thermal point of view. Furthermore, the electric 

power output of a single CHP well suits the potential of the RESs installed, 

making it an interesting solution for the SU sizing and operation. The CHP 

is currently installed on a skid on the terrace outside the first floor of 

Pontlab, on the same skid are installed: the absorption chiller Yazaki WFC-

SC5 to allow tri-generation, and the Programmable Logic Controller (PLC) 

for the control and data acquisition from the sensors acquiring data from 

plant components. In Figure 10 and Figure 11 can be found the skid 

scheme and photograph. 
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Figure 10 - Skid layout and views 

 

Figure 11 - Skid assembly on Pontlab terrace 

The main characteristic parameters of the devices constituting the skid 

are reported in Table 6. 
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Table 6 - Specification of equipment installed on skid 

Parameter Unit Value 

CHP 
Electric power kWe 25,0 
Output V/-/Hz 400/3phase/50 
Inlet power kWth 74,6 
Natural gas volume flow Nm3/h 7,77 
Natural gas minimum pressure mbar 15,0 
Natural gas maximum pressure mbar 35,0 
Average temperature °C 15,0 
Hot water circuit 
Thermal power kWth 38,4 
Warm water return temperature °C 78,0 
Warm water delivery temperature °C 83,0 
Water volume flow m3/h 6,6 
CHP pressure drop mbar 25,0 
Absorber pressure drop mbar 90,4 
Other pressure drops mbar 26,6 
Overall pressure drop mbar 142,0 
Absorption chiller circuit 
Cooling power kWc 66,8 
Cooling water return temperature °C 31,0 
Cooling water delivery temperature °C 34,1 
Cooling water volume flow m3/h 18,4 
Cooling tower pressure drop mbar 20,3 
Absorber pressure drop mbar 85,3 
Other pressure drops mbar 34,4 
Overall pressure drop mbar 155,0 
Cold power kWc 28,5 
Cold water return temperature °C 12,0 
Cold water delivery temperature °C 7,0 
Cold water volume flow m3/h 4,9 
Absorber pressure drop mbar 56,0 
Other pressure drops mbar 24,0 
Overall pressure drop mbar 80,0 
Efficiencies  
Electric efficiency % 33,5 
Thermal efficiency (heating) % 51,5 
Thermal efficiency (cooling) % 38,5 
Overall efficiency (heating) % 85,0 
Overall efficiency (cooling) % 72,0 
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3.1.3 Storages 

Although in commercial applications of co-generation and tri-generation 

thermal storages are not widely diffused, they have a great potential in 

terms of performance and economical improvements on the energy plant 

and this is demonstrated in several research papers. Haeseldonckx D. et 

al. (2007) [107] outlined the significant benefits that can be achieved by 

means of thermal storage together with a CHP system. Indeed, the 

storage allows a de-coupling of the request and the supply with both 

economical and system efficiency improvements. The correct sizing 

technique and the obtainable emissions savings are presented in the 

paper. Other studies deal with larger systems and the implementation of 

storages that can span from daily to seasonal size. A year-long 

optimization of the storage sizing and operation for a large district 

heating case study, based on MILP technique, is performed by Christidis 

A. et al. (2012) [108]. The study and optimization performed allowed the 

authors to prove the effectiveness of heat storages to both enhance the 

overall efficiency of the system and increase economic savings. A first 

analysis of the importance of coupling a CHP with a thermal storage when 

including RESs in the energy system considered is presented by Chesi A. 

et al. (2013) [109]. In the paper, the authors evaluated the influence of 

storage size on a Smart User running several generators (fossil fuel and 

RESs) with a VSO operation towards the grid. The study refers to a plant 

installed in Navicelli (PI), whose layout differs significantly from the one 

assembled in Pontlab. The storage allows a de-coupling of loads request 

and thermal production. Therefore, it is possible to limit the intervention 

of the auxiliary boiler and increase the exploitation of CCHP system. The 

system was modeled in TRNSYS© taking as input load profiles from the 

literature. The outcomes of the study show how the adoption of the 

storage greatly enhances the flexibility of the system, which is a key 

requirement for a plant that is meant to be operated within a Smart Grid. 
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In order to operate within a SG, the SU needs to include several storage 

devices. Assessing the ideal type of storages or their size is out of the 

scope of this thesis. Nonetheless, a description of the components 

installed or whose installation is expected in Pontlab is provided 

hereafter. Ideally, for greater flexibility of operation, each of the kind of 

energy required in the power system should be stored in a dedicated 

storage. Therefore, for the load requests of Pontlab, either three 

(electricity, hot water and cool water) or at least two (electricity and hot 

water) storages should be considered. In case of two storages, the hot 

water can be used either to directly satisfy the thermal loads or to provide 

the absorption chiller with the heat it requires. Whereas, with three 

separated storages, the cold water and hot water can satisfy their 

respective loads directly. The electric storage is important for two main 

reasons: during operation planning, in order to have one more degree of 

freedom in the optimization process, and in real-time management, 

where the storage is in charge for the compensation of sudden load 

variation from the expected values. In this latter case, the bigger the 

storage, the slower/less frequent can be the correction of the CHP 

electric power output in order to respect a given grid power exchange 

profile. The real-time operation of the system will be discussed in a 

dedicated section.  

In Pontlab plant, two storages are currently installed: the hot 

temperature storage, used during winter operation mode, and the cold 

temperature storage, which, conversely is employed during summer 

operation mode. The electric storage, although being very important for 

the operation of the system as a proper SU, will be installed in the near 

future. Nonetheless, at the moment, its presence in the plant can be 

simulated because the whole SU is connected in a sub-grid whose 

exchange with the main one of Pontlab is known and the presence of the 

storage can be simulated at the connection between the two.  
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The sizing of the thermal storages was carried out by means of a 

computational model developed with LMS AMESim© software, a 1-D 

simulation tool based on the bond-graph methodology. The software 

allows the simulation of transient conditions, whose impact on the 

performance of the system is relevant considering the thermal inertia of 

the system. Thanks to a Design Of Experiments (DOE) approach, with the 

final goal of:  

1. Minimize the energy consumption of the plant;  

2. Maximize the revenues. 

For the scope, several simulations were performed in order to assess the 

optimal size of the cold and hot storages. The optimal size resulted from 

the analysis carried out was 3 m3 for the hot temperature storage and 2 

m3 for the cold temperature one. A detailed description of the approach 

followed can be found in [110]. The devices chosen for the application 

are insulated stratified storages, therefore they supply the thermal-

vector fluid always at the same temperature, which is the maximum 

admitted by the CHP in the case of the hot storage, 85°C and the lowest 

produced by the absorption chiller for the cold storage, 4°C. The storages 

are provided with thermocouples to measure their temperature. 

Nevertheless, during actual operation it is hard to verify the perfect 

stratification of the fluid contained within. Thus, there could be an error 

in the evaluation of the actual temperature of the fluid coming out of the 

tank, although in terms of average power in a 15 minutes period, the 

error does not have a strong impact on the performance of the plant.  

3.1.4 Possible Layouts and adopted layout 

Here are presented the electric and thermal layout of the SU. In Chapter 

2, dedicated to the state of the art on Smart Grids, their components and 

key technologies, many papers describe possible layouts for applications 

of different genre. The plant designed, especially the thermal one, is the 

result of a compromise. Indeed, the SU plant in Pontlab was realized 
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modifying the existing one and some modifications could not be 

performed because of an excessive discomfort and interference of the 

procedure with the activities carried out in the facility. Therefore, the 

ideal plant for the SU, which would require the greatest grade of flexibility 

of operation, was discarded in favor of a less intrusive and more 

traditional solution, which would have allowed the plant to be operated 

both as a “less flexible” SU and in standard ELF-TLF modes. Indeed, some 

solutions, potentially better performing, had to be modified considering 

that the plant installed in Pontlab does not represent only a test rig for 

research, but must be able to operate in a steady, safe and economically 

convenient way at all times.  

The electric layout of the SU, apart from the connection points of the 

generators, both renewable and fossil, is a standard one. A simplified 

scheme is presented in Figure 12.   

 

Figure 12 - Simplified Electric Layout 

The connection point of the generators were set so that theoretically the 

plant could operate in VSO, therefore they are all connected inside the 
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local power network. Their meters are interfaced with the SU electrical 

switchboard along with all the loads included in the SU portion of the local 

electric grid. The SU electrical switchboard is then connected to the grid 

power meter and measures the electric energy exchange of the SU with 

the main grid. According to the common installation practice, all the RESs, 

except the PV plant, should be connected directly to the main distribution 

grid so as to benefit of the “Tariffa Omnicomprensiva”, the All-inclusive 

feed-in tariff granted for renewable energy production. On the other 

hand, the connection point of the PV plant is next to the energy meter in 

order to take advantage of the “Scambio sul Posto”, the Local Energy 

Exchange incentive that goes along with the Energy Account system for 

solar electric energy production.  

For the thermal layout, three different options can be considered when 

designing the plant: 

1. Two thermal storages, one dedicated to the cooling system, one 

to the heating system, in parallel with their respective 

generators (CHP and boiler or absorption chiller and 

compression chiller) and with the users (Figure 13); 

 

Figure 13 - Parallel Generators Smart User Layout with two thermal storages 

2. A single hot water storage, in parallel with the CHP, the boiler 

and the hot users, connected by means of two three-way valves 
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to the absorption chiller, which is in cascade with the 

compression chiller and the cooling users (Figure 14); 

 

Figure 14 - Parallel Generators Smart User layout with one thermal storage 

3. Two thermal storages, one for heating and the other for 

refrigeration, which can be charged only by CHP and absorption 

chiller respectively. In this plant the hot storage, the boiler and 

the heat users are in cascade, likewise for cold storage 

compression chiller and cooling users. Two bypasses, one for 

the hot section and one for the cold section of the energy 

system, allow the fluid returning from the users to go directly to 

the auxiliary generator (boiler or compression chiller) without 

entering the storage (Figure 15). 

 

Figure 15 - Auxiliary Units in cascade layout with two thermal storages 
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Let us examine the advantages and disadvantages of the proposed 

layouts. The first plant (Figure 13) maximizes the flexibility of operation 

and it is therefore the ideal solution for the SU. In this case, both the 

boiler and the CHP, or the absorption chiller and the compression chiller, 

can charge their respective storage. During winter operation this is not 

expected to happen frequently, being the CHP and the boiler both fueled 

with natural gas, and being the CHP much more efficient because of the 

production of both electricity and heat at the same time. On the contrary, 

during summer operation, the absorption chiller is supplied with the heat 

produced by the CHP, hence by natural gas, whereas the compression 

chiller employs electricity. Therefore, there might be occasions when the 

CHP should be kept turned off but it is convenient to charge the storage 

by means of the compression chiller. This solution is therefore of great 

interest because of the flexibility of operation that it allows. Nonetheless, 

it presents some drawbacks that ultimately led to the choice of a different 

one for the plant in Pontlab. First of all the plant is more complicated, and 

presents more components, thus it was harder to realize over an existing 

plant. It also requires greater control over the auxiliary units, e.g. if the 

optimized operation requires the boiler and the CHP to supply different 

powers to the storage, then there must be a way to control the amount 

of power. Theoretically, this can be done by modifying either the 

temperature (very impractical) or the mass flow rate. Moreover, usually 

both boiler and compression chiller cannot provide the same 

temperature level as output independently from the inlet temperature. 

Therefore, even if modifying the flow rate is feasible, it is not easy to 

ensure in all conditions that the desired power is actually respected. 

Another issue is the temperature of the storage, indeed the lack of 

control of the outlet temperature from either the CHP or the boiler might 

result in the loss of stratification in the storage; unless the fluid injection 

is performed at the height corresponding to the outlet temperature of 

the generator. However, this solution is usually expensive. Therefore, the 
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plant might not ensure the desired temperature level to the user, which 

can be critical for some loads, e.g. duration test benches.  

The second plant proposed has less flexibility because the compression 

chiller cannot charge the storage, for obvious reasons. Therefore, one 

degree of freedom in the possible operation of the plant is missing, 

compared to the first solution. Nonetheless, the plant presents less 

components and in the cold loop it is easier to control the temperature 

level of the water provided to the cold users, whereas on the hot side, 

the issues described for the first solution cannot be avoided.  

On the bases of these considerations, the plant adopted in Pontlab is the 

third one of those proposed. Indeed, in this case it is possible to 

guarantee that the thermal fluid (hot or cold) is provided to the users at 

the right temperature. If the storages charge is not sufficient to provide 

the correct temperature level then either the boiler or the compression 

chiller can be activated in order to establish the correct temperature in a 

relatively small time. This layout is also easier to be managed using 

conventional devices like commercial boilers and compression chillers, 

which are usually controlled by temperature set-points, thus in a semi-

automated way.  

3.1.5 The control system 

The control system of the plant consists of a series of thermocouples and 

energy meters, which act as sensors, a control system (PLC+SCADA) that 

receives inputs from the sensors and evaluates the modifications to 

apply. In addition, it comprises inner and outer controllers of the devices 

installed (i.e. the bypass valves and the control systems based on 

temperature measurements of boiler and compression chiller). The 

control system can also operate on the CHP, reducing its set point, on the 

renewables, reducing the power they feed in the local grid, if necessary, 

and on the modulable/interruptible/deferrable loads. It is important to 

notice that the control system, conversely from the optimization system 
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that considers time-steps of fifteen minutes, operates based on the 

inputs received by the sensors in the plant in real time, hence it can 

change its operation several times during a single time-step of 

optimization. This should always be kept in mind during both plant 

operation and its optimization. Whereas the first has a quick response 

time and it is featured by several aspects typical of the components of 

these energy plants (e.g. hysteresis in the operation of chiller and 

storage) and transient conditions, the latter can only consider mean 

values during the time-frame analyzed. This is why it is to be preferred to 

address the optimization and the real time operation of the system with 

different procedures, as will be discussed in the next section related to 

the control algorithms.  

Depending on the temperature levels of the storages and the fluid 

returning from the users, the bypass can be either opened or closed. The 

bypasses are an important feature of the thermal layout and are operated 

as follows: if the temperature of the fluid at the outlet of the hot storage 

(cold storage) is lower (higher) than the temperature of intervention of 

the boiler (absorption chiller) then the bypass opens and excludes the 

storage from the users’ loop. This solution does not prevent completely 

the mixing of fluid at different temperature at the inlet port of the 

storage. Nonetheless it has two great advantages: 

 The loss of perfect stratification, given also the mass of the 

storages compared to the inlet and outlet mass flow rates, 

involves only the bottom (upper) part of the storage itself; 

 The control temperature for bypass operation at the storage 

outlet ensures that the user is fed with at least the required 

level of temperature at all times. When it can be done by the 

storage the bypass is closed, conversely, the boiler 

(compression chiller) intervenes and the bypass excludes the 

storage. 
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The control logic operates as described hereafter.  

 Summer period, storage used (Figure 16): The heat recovered 

from the CHP is deviated to the absorption chiller by switching 

the three-way valves SW1 and SW2. The absorption chiller 

charges the storage and the bypass is kept closed by three-way 

valves SBP1 and SBP2. Therefore, the cold fluid is delivered to 

the compression chiller and, if its temperature is low enough, 

sent to the users without intervention from the compression 

chiller, vice versa otherwise. Depending on the cooling load 

demanded by the users, the temperature at the users outlet can 

differ. The bypass is kept closed as long as the temperature at 

the storage outlet is lower than the temperature of intervention 

of the compression chiller. 

 

 

Figure 16 - Summer operation, bypass closed 

 Summer period, storage by-passed (Figure 17): in this case the 

bypass valves SBP1 and SBP2 keep the bypass opened while the 

absorption chiller, if active, charges the storage. The users load 

is satisfied only by means of the electric chiller. This condition is 

maintained until the outlet temperature of the storage is higher 

than the compression chiller intervention. 
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Figure 17 - Summer operation, bypass opened 

 Winter period, storage used (Figure 18): During winter period 

the three-way valves SW1 and SW2 are set so to connect the 

CHP to the hot storage instead of the absorption chiller. The 

two three-way valves controlling the bypass (WBP1 and WBP2) 

in this case connect the upper port of the storage to the boiler 

and the heat users. As described for the summer period when 

the storage is used, as long as the temperature of the storage 

delivery port is higher than the boiler intervention temperature 

this does not activate, the bypass valves WBP1 and WBP2 keep 

the bypass closed and only the loads are supplied through the 

storage. 
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Figure 18 - Winter operation, bypass closed 

 Winter period, storage by-passed (Figure 19): In this case, the 

valves WBP1 and WBP2 keep the bypass open, being the 

temperature of the fluid at storage outlet, lower than the 

intervention temperature of the boiler. When the bypass is 

opened, the boiler is in charge of providing the heat required by 

the users while the CHP can recharge the storage. 

 

Figure 19 - Winter operation, bypass opened 

The SCADA system is a fundamental component of the SU, indeed, it can 

be considered the brain of the system. All the data acquisition, 

management of operation and communications are handled by the 
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SCADA. Its first role is the acquisition of the inputs for the next day such 

as load profiles, weather forecasts and energy prices, in order to perform 

the optimization of the operation for the day ahead. This is done by 

means of an ad hoc algorithm, developed within this research project, 

which runs directly in the SCADA and will be described in the next 

chapter. For the “present” day, on the basis of the optimization algorithm 

outputs, the SCADA defines the set points of power output for the co-

generator, the possible curtailment of renewables and of low-priority 

loads. The algorithm provides these set points as constant values for a 

period of 15 minutes, therefore the SCADA needs also to ensure that 

within this time-frame the actual loads (that may vary during the 15 

minutes) are always satisfied. The electric loads are managed thanks to a 

real-time algorithm, which ensures also the compliance with the power 

exchange profile with the grid. Conversely, the thermal loads are 

managed as described before depending on the temperatures measured 

along the piping of the system. In order to minimize the difference 

between real-time and foreseen operation, every 15 minutes, the SCADA 

performs an update of the optimization of the energy system operation, 

which is referred to as advanced dispatching. The different algorithms 

that run on the SCADA and their variations will be described in the next 

chapter. The SCADA system has two more fundamental roles: the storage 

of all the data acquired during the day into a database that can be 

accessed also in remote and serves as Human Machine Interface, both 

locally and from remote. A detailed description of the SCADA system is 

provided by [110]. 

3.1.6 Data acquisition from the plant for later analysis  

One of the advantages of this research compared to what is found in the 

literature regarding SG, is the possibility to work on an actual system, 

whose operation is monitored every day. The monitoring and reporting 

capabilities provided by the SCADA system installed in Pontlab, ultimately 

allow the researchers to test the controlling algorithms not on expected 
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values for a given user, but on real data acquired from the system. 

Therefore, it is possible to test the upgraded versions of the algorithms 

offline, while reducing the mismatch between the expected and the 

actual performance of the plant as much as possible. Considering the 

importance of the data acquired for the tests carried out on the control 

algorithms, a list of the data measured and the structure of the daily 

reports is provided hereafter. 

Every 15 minutes the average value of the following parameters is stored 

in the daily report: 

 Active power: 

o Total, CHP, PV, WT, L1 loads, L4 loads, Chiller, Simulated 

Load, Oven, Total loads, Total Gen, Pontlab overall; 

 Electric power required by loads, in detail: 

o Bench DS3; CH1200, Compressor, DCT600, Fan-coil, 

Heater, Lights, SU250 

 Heat power (produced and requested): 

o CHP, boiler, L1 loads; 

 Cooling power (produced and requested): 

o L1 loads, Absorption chiller, Compression chiller; 

 CHP set point from SCADA 

 GME electric price 

 Operation mode (Summer/Winter) 

 CHP gas consumption 

 Temperature measurements: 

o CHP Outlet, CHP Inlet, Absorption chiller Outlet, 

Absorption chiller Inlet, Hot Manifold, Cold Manifold, 

Hot Storage, Cold Storage, Boiler Outlet, Boiler Inlet, 

Cooling Tower Outlet, Cooling Tower Inlet; 

 Water flow-rates:  
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o Cold bypass flow, hot bypass flow, CHP water flow, 

Absorption chiller water flow; 

 Weather station: 

o External temperature, Wind speed, Wind direction, 

External humidity, Solar radiation, Rain Intensity; 

 Weather forecasts: 

o Solar radiation, Wind Speed, External temperature. 

During offline tests, the input files of the algorithms, will be based on 

these measurements. The daily report contains additional information, 

which is calculated from the data acquired. As an example, there are 

calculated the costs for the operation of the system during the day 

analyzed if the system were operated: 

 In a conventional way, i.e. electric energy from the grid, boiler 

and electric chiller dedicated to the heating and cooling load; 

 With just a CHP operated in TLF or ELF modes; 

 With the CHP and the absorption chiller, once again operated in 

TFL or ELF modes.  

These simple calculations provide a useful comparison between a 

standard operation mode and the one proposed by the day-ahead 

optimization algorithm and actually performed during the day in 

examination. 

3.2 Present operation scenario 

The Smart User described in this chapter is indeed a valuable test bench 

for Smart Grid technologies and approaches on a real system. 

Nonetheless, it is required to operate efficiently and economically in the 

present conditions, i.e. the present tariff and incentive scheme as well as 

the unconstrained renewables interface with the grid. It is a fact that the 

Italian energy system is already in a stressful condition in terms of 
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economy of operation of standard centralized power plants because of 

the increasing presence of renewables with dispatching priority. 

Nevertheless, it still does not include incentives or regulations to promote 

a different approach, which might allow a greater presence of RESs 

feeding electricity to the grid while limiting the detrimental effects 

caused by their natural intermittent behavior.  

3.2.1 Tariffs, incentive schemes 

The present tariff scheme adopted in Pontlab falls under the Real Time 

Pricing category introduced in the chapter dedicated to the state of the 

art. Each hour of the day, Pontlab pays the electricity at its price in the 

Italian electricity market (IPEX). The Unified National Price (PUN) varies 

greatly in a single day and during the year. Just to give a numerical 

example, the minimum price paid for energy in 2013 was 0 €/MWh 

whereas the maximum was 151.88 €/MWh. This dynamic pricing of 

electric energy offers great opportunities for the optimized operation of 

the SU, especially when this optimization involves daily management of 

the storages. The gas price conversely is stable during the day but it would 

be incorrect to think that the thermal management of the system is not 

influenced by the electric price. Indeed the production of electricity and 

thermal power is strictly connected when considering a CHP inside the 

energy system. Therefore, there can be effective strategies for CHP 

operation that can maximize, for example, the economy of management 

of the system. The incentives considered for the Smart User as configured 

are mainly of three different kinds: 

 Incentives from electric solar power production: 403 €/MWh for 

the energy produced, this incentive is granted from the Energy 

Account incentive scheme granted by the Italian government. 

Considering that the plant was already existing, the value of the 

incentive depends on the type of PV plant (on ground, on roof, 
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roof-integrated) and from the year of the beginning of 

operation of the plant itself.  

 White Certificates (TEE) granted for the production of electric 

energy with high efficiency: granted by the Authority for Electric 

Energy and Gas (AEEG) for the primary energy savings (PES) 

obtained from projects that reduce the natural gas 

consumption. In the present case, the SU featuring a CHP, if 

operated correctly, can be enlisted for receiving the incentive. 

 Natural Gas discount: a discount on the price paid for natural 

gas used for electric energy production is granted if the co-

generation is carried out at high levels of efficiency and the PES 

value is greater than 0.  

Theoretically, the use of a wind turbine could enlist the plant for Green 

Certificates remuneration; nevertheless, the energy produced by the WT 

installed in Pontlab is negligible and therefore this incentive is always 

disregarded.  

3.2.2 Constraints to be met 

The operation of the SU must ensure compliance with several constraints. 

The most obvious, yet important, is the balance between demand and 

generation. Regarding heating and cooling, Pontlab is independent and 

by means of CHP/Absorption chiller and Boiler/Compression chiller it can 

satisfy its loads completely. For electricity, due to the high needs, Pontlab 

cannot rely only on its own generators, therefore the balance between 

loads and supply is met taking into account the electricity grid and 

exchanging power with it. Nonetheless, the portion of Pontlab onto which 

the SU operates presents a smaller amount of electric load, therefore the 

power balance with the grid does not always imply that the grid is 

powering the plant. When considering the actual system operation, the 

way it is controlled by the PLC+SCADA system needs to be considered, 

especially the fact that the plant is operated with fixed flow rates and 
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controlled by temperature measurements. This is a fundamental aspect 

to consider when designing a control algorithm for an energy plant. Not 

all the assumptions that one can think of might be reasonable for the 

plant itself, even if, theoretically, they are effective and efficient ways to 

manage the system. For example, the black-box approach, where all the 

components are described by energy and mass balances is very common 

in the literature. Nevertheless, if the real system is controlled by 

temperature, some solutions may be feasible, whereas others may not, 

depending on the plant layout and operating conditions. Moreover, a 

desirable constraint to system management is the cyclic operation of the 

storages, i.e. at the end of the day, the energy stored is the same they 

had at the beginning of the day. Indeed, when considering a daily 

optimization, this is highly recommendable in order to avoid a day “taking 

an advantage” at the expense of the following one; nonetheless, this is 

not mandatory.  

3.3 Future operation scenario 

The literature presents several examples of scenarios, many different 

energy policies, incentive schemes, tariffs and regulations. In our case, 

the definition of a possible future scenario was done in collaboration with 

Enel S.p.A., one of the most important energy producers in Italy and 

partner of the project. It is important to notice that the future operation 

scenario is considered only when evaluating the performance of the 

optimization algorithms in offline mode, although in the future, ad hoc 

tests on the real system might be performed. Defining a completely new 

set of prices, tariffs and incentive schemes would have been out of the 

purpose of the study. Therefore, when evaluating the future scenario, 

only one, yet very important constraint was added: a fixed grid exchange 

profile. 
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3.3.1 Fixed Grid Exchange Profile 

The fixed energy exchange profile with the grid is based on Enel’s 

suggestion regarding a possible future regulation starting from 2016. 

According to this regulation, the energy fed in to the grid by generation 

plants should be known and granted in advance of one day. At the 

moment there are no limits in terms of maximum shift from average 

value or total energy taken or fed from/to the grid during one day. The 

only constraint is that during each hour of the day, the energy exchange 

profile should be kept constant and communicated during the day before 

its occurrence, see Figure 20. It is likely that in the future there will be 

incentives and penalties in case of compliance or not compliance to the 

grid exchange profile communicated. Moreover, a band of compliance 

might be as well implemented in the place of a single value. Nonetheless, 

the values of these incentives and penalties are hard to assess at the 

moment. Therefore, in the future operation scenario considered in this 

study, no incentive is granted for compliance with the profile defined the 

day before, whereas there is a penalty in case of non-compliance. The 

penalty is set at 0.4 €/kWh, this value is high enough in order for the 

optimizer to ensure that it is respected most of the time: indeed, its 

weight on the economy of operation is relevant.  
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Figure 20 - Comparison between unconstrained and constrained electric 
energy exchange profile with the Grid 
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4 THE MANAGEMENT OF THE PLANT 

The previous chapter dealt with the hardware components of the plant 

and introduced the control system. The focus of the present research is 

to define the optimal controlling strategies for the real plant. This chapter 

deals with this topic providing a detailed description of the algorithms 

running inside the SCADA system and controlling the system. The 

algorithm currently implemented in Pontlab presents some drawbacks 

which have been faced during the study and for which an effective 

solution was found. Nonetheless, the upgraded algorithm has been 

studied and tested only offline until now, whereas its implementation in 

the actual plant is planned for the near future.  

4.1 Algorithm structure 

As was mentioned in earlier chapters, the controlling system must 

operate in three different moments. The first optimization of the 

operation of the system is performed during the day before of the 

planned operation and it is performed by the “Day Ahead Algorithm” 

(DAA). The second optimization occurs during the present day, and it is 

done in order to update the solution to the new values of the input 

variables that are provided by the energy market, the weather forecasts 

and the desired activities for the day. The algorithm in charge for this 

optimization is called “Advanced Dispatching Algorithm” (ADA) and it 

runs once every 15 minutes. The final, yet very important, part of the 

controlling algorithm is the “Real-Time Algorithm” (RTA); its role is to 

ensure that the loads are satisfied regardless of their average value within 

the 15 minutes time frame that was considered by both DAA and ADA. A 

diagram representing the sequence of algorithms operating on the SU is 

presented in Figure 21. Before venturing in a precise analysis of each 

procedure created to control and optimize the management of the 
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energy system a brief description of the intents and roles of each 

algorithm is presented hereafter. 

4.1.1 The Day Ahead Algorithm 

The Day Ahead Algorithm is the basis of the whole optimization system, 

it operates on time-steps of 15 minutes each. Its scope is to receive the 

inputs required for the assessment of the optimized operation for the 

next day and to deliver a solution, possibly the global optimum, for the 

optimization problem. The inputs are provided both manually, like the 

activities planned for the next day (i.e. loads to satisfy) and automatically, 

like weather forecasts and energy prices for the next day. Some other 

inputs do not vary from day to day because they are related to the 

hardware installed, not the way it is operated. Once all the inputs are 

defined, the algorithm performs an optimization. The algorithm output is 

a file containing all the set points for the controllable devices for each 

period of 15 minutes considered. Along with these set points, the output 

file includes the expected value of several other variables, as well as the 

foreseen costs and emissions of each time step. The time scales of choice 

are very important. If the data of a single day is considered for the 

optimization of the plant then, at maximum, a period of one day is 

optimized. Thus, the operation cannot be planned for a whole week in 

advance; it would not make sense because the time-frame considered in 

each run of DAA is still one day. This decision also limits the size of the 

storage, which can have at maximum a daily cycle of operation and 

therefore, the amount of energy they exchange with the system typical 

for one day of operation. The second relevant time scale is the duration 

of each time-step: 15 minutes is a smaller window than those of most of 

the algorithms that are found in the literature. However, as will be clear 

when considering the loads profile measured in the plant, a bigger time 

step would have both lost great part of the details of the operations and 

increased more than necessary the corrections applied by the RTA. On 

the other hand, a smaller time step, considering the cycle of operations 
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of the devices installed, especially the climatic chambers that feature the 

highest frequency of load variation, would have implied longer 

computation times at a cost of little benefits. 

It is worth to notice that the DAA provides a suggestion for the optimized 

operation of the SU, which is strictly dependent on the inputs provided. 

Neither a stochastic analysis of the probability of occurrence of those 

inputs, nor a scenario analysis, were set for two reasons. First, because 

the optimization considers a short period, one day, and it is run the day 

before the one considered in the algorithm. Thus, the inputs provided are 

expected to be sufficiently accurate, where “sufficiently” means that the 

solution proposed is not supposed to be ineffective for the next day in 

any case. The second reason is the presence of the ADA and the RTA. 

These ensure that the solution is updated when more reliable inputs are 

known and that the solution is respected within the 15 minutes of 

operation considered.  

4.1.2 The Advanced Dispatching Algorithm 

The Advanced Dispatching Algorithm fulfills the important duty of 

updating the solution suggested by the DAA according to the latest 

information available. Indeed, between the moment when the DAA and 

the ADA are launched, there might be a variation of the planning of the 

activity (uncertainty of loads profile), of weather conditions and forecasts 

(uncertainty related to RESs productivity and expected thermal or cooling 

loads) as well as a change in the energy prices or costs. As was mentioned 

above, the variations, although enough to justify the presence of the ADA 

are not expected to disrupt completely the suggested operation 

performed by the DAA because the period considered for the 

optimization is relatively small. The ADA works in a similar way to the 

DAA, indeed it takes the same kind of inputs, performs a similar 

optimization (i.e. using the same techniques) and provides similar 

outputs. Nonetheless, due to the way it is employed, it imposes a strict 
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limit in terms of computational time required to achieve an optimal 

solution. Considering it must upgrade the simulation once every time-

step, the maximum computation time allowed for it to run is shorter than 

15 minutes. Theoretically, only the ADA must comply with this limited 

time for the run, but, being extremely similar to the DAA in terms of 

inputs, outputs and procedure, it imposes the same constraint also on 

DAA.  

4.1.3 The Real Time Algorithm 

The Real Time Algorithm conversely to the DAA and ADA does not 

perform any optimization, but acts in a twofold way: it always serves as a 

link between the ADA and the real system and, in the future scenario, it 

ensures that the promised power exchange profile with the grid is 

respected at all times. Moreover, differently from the DAA and the ADA, 

it manages only the electrical part of the SU. The thermal plant is 

managed in real-time by the SCADA thanks to the information provided 

by the temperature sensors and energy meters in the plant. In addition, 

due to the inertia of the thermal plant itself, a proper real-time operation, 

i.e. with almost instantaneous intervention, is not required. The RTA 

takes as inputs the energy requested by the electrical loads and the 

planned set point of the CHP. In order to maintain the power exchange 

communicated to the DSO the day before, it exploits an electric storage. 

The size of the storage depends on the length of the time step, the 

variability of CHP set point allowed and most importantly by the 

difference between the expected operation provided by the DAA and the 

ADA and the actual values of loads and RESs productivity in real-time. 

Thus, once again, the importance of the ADA is clear: performing an 

update of the solution provided by the DAA it allows both a minimization 

of the energy capacity of the storage employed by RTA and of the 

minimum time for CHP set point upgrade. This last aspect is especially 

important because a continuous variation of the CHP power output 
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means that the engine operates in transient conditions for the whole 

time, with lower efficiency and reliability. 

 

Figure 21 - Algorithms sequence diagram 

4.2 The daily optimization of the plant during the day before 

This section is dedicated to a detailed analysis of the algorithm designed 

to achieve the goals described in the state of the art for the Smart Grid 

and its components. There are several versions of the DAA that are 

considered and tested in the present Thesis. The first one that will be 

discussed here is the one called “Single Step” (SS from now on). This 

version of the algorithm was the first one developed and it is the only one 

that could be tested both offline and online so far. For the way it is 

designed, it cannot optimize the operation of the SU for the day as a 

whole, but only considering one time-step at a time. Hence, the algorithm 
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has been modified in order to ensure that the solution proposed could be 

closer to the global optimum solution for the day. The modification on 

the DAA demonstrated also the importance and greater flexibility 

proposed by some plant layouts compared to others. Because of the time 

required between the test of the new versions of the algorithm, written 

in MatLab© code, and their implementation on the SCADA, which must 

be done with a fast computing executable written in C++, these updated 

versions have been tested offline. The offline tests, as it will be clear from 

the chapter dedicated to the results, showed the potential of the updated 

approach, nevertheless, dedicated tests on the SU will be performed in 

the near future. 

The core of the optimization algorithm is a Genetic Algorithm. The choice 

to use a meta-heuristic algorithm comes from what it was highlighted in 

the chapter dedicated to the state-of-the-art. They can deal with non-

linear constraints or objective functions. Thus, there is no need to 

linearize the problem, which ultimately leads to errors or unfeasibility of 

the proposed solution, not to mention the risk of losing the relation with 

the actual system, in terms of both equations and their readability from 

an engineering point of view.   

4.2.1 The Genetic Algorithm 

The optimization software is based on an Evolutionary Algorithm, in 

particular on a Genetic Algorithm (GA). Among the different meta-

heuristic algorithms, it was chosen because of its renown capability to 

solve complex optimization problems in a short amount of time and for 

its simple mathematical form that permitted a good tuning of its working 

parameters and control of the algorithm features.  

The development of this kind of algorithms started from Alan Turing’s 

proposal of a “learning machine” based on the principles of evolution in 

1950, whereas the simulations on computer of evolutionary processes 

started in 1954 with the works of Nils Aall Barricelli. This kind of 
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simulations continued with other authors employing artificial evolution 

methods in their research by Alex Fraser, Burnell and Crosby. The basis of 

modern genetic algorithms was set by a series of papers published by 

Hans-Joachim Bremermann in the 1960s, but the approach became 

popular through the work of John Holland only in the early Seventies.  

GAs are based on Darwin’s Evolutionary Theory, which considers that in 

a population of individuals, the reproduction tends, in the long term, to 

give birth to individuals with improved characteristics compared to those 

of their parents and ancestors. Indeed, the better the individual fit into 

their environment, the greater are the chances they will survive to it and 

reproduce. The evolutionary process is influenced by three aspects:  

• Chance of reproduction: based on their adaptation to the 

environment, some individuals are more likely to reproduce 

than others, both because they might survive longer, or 

because they might be more appealing to their partners 

thanks to their characteristics; 

• Mixing of features by means of mating: two individuals with 

different genotypes will have offspring whose genotype will 

be a mix of those of their parents; 

• Introduction of new genotypes: occasionally, a gene may 

undergo a mutation, changing a particular feature of the 

individual. The mutation introduces new features inside the 

population, therefore the process has a great potential but 

can be also highly disruptive.  

GAs try to resemble these natural processes at a computational level. In 

particular, each individual represents a possible solution to the problem, 

randomly chosen within the search space of all the possible solutions. The 

chromosomes of the single person represent the variables of the 

problem. The algorithm falls under the category of population based 

meta-heuristic algorithm. In fact it requires a set of individuals onto which 
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it operates in order to refine the solution. The set of individual is called 

population; the first generation of the population is usually randomly 

generated. Each variable, representing a chromosome of an individual is 

assigned a random value within the constraints set. Chromosomes are 

often represented by binary numbers, expression of the value of the 

variable they embody. Continuing the evolutionary metaphor, the genes 

are represented by the single bits of the binary number. There are 

examples of GAs adopting real values instead of binary ones to describe 

a chromosome, although they are not common because the binary 

representation is definitely easier to handle. The population is usually 

kept constant in number in most of the variation of GAs; still, there are 

implementations of GAs with a dynamic population where the total 

number of individuals changes during the evolutionary process. The 

“global characteristics” of each of the individuals are evaluated on the 

basis of a fitness function, which in the theory of evolution represents the 

adaptability of the individual to its environment. In the computational 

case, the fitness function represents the objective function.  

Once that all the individuals are assigned with a fitness value, the worsts 

of them are rejected because less interesting for their partners and less 

likely to survive in their environment. The best ones, in a fixed 

percentage, take their place; this process is called selection and gives a 

higher chance of reproduction to worthy individuals. At the end of the 

replacement of the individuals, the reproduction process called crossover 

starts, which resembles the mating of two individuals and the generation 

of their offspring. The analogous chromosomes of the mating individuals, 

representing the same variable, are crossed: a part of a single 

chromosome is substituted with the same one of the same chromosome 

of the other parent, in order to change its value. Depending on the kind 

of crossover (single point, double point, random masking) the values of 

the variable in the children are going to be more or less similar to the 

values in the parents. At the end of the crossing, the population has 
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changed in quality but not quantity because the offspring are in the same 

number of the original parents and substitute them.  

 

Figure 22 - Single point crossover process representation 

The next operation performed on the population is the mutation, which 

acts on a minimal number of the total genes of the population, but in a 

randomized way. Mutation introduces new genotypes, which were not 

present in the original population. After the crossover and mutation 

phase the fitness of each individual in the population is evaluated again. 

To summarize, one iteration of the GA is represented by: 

1. The evaluation of each individual (i.e. possible solution to 

the problem) by means of the fitness function (i.e. the value 

that the objective function assumes); 

2. The substitution of a fixed percentage of the population (the 

worst individuals) with the best ones, in order to carry out 

an evolution of the population itself; 
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3. The reproduction, consisting in the crossing between the 

chromosomes of adjacent individuals, in order to create a 

new generation of population; 

4. The mutation of some genes introduces new structures in 

the population, increasing the chance to find a peculiar new 

feature that enhances the fitness of the population to its 

environment.  

The cycle is repeated several times, with the stopping criterion that can 

be of two types: when the difference between the value of the best 

individual of the population at the n-th step and the corresponding for 

the n+1-th step is under an established tolerance, or upon reaching a 

prescribed number of cycles.  

When talking about the solution provided by meta-heuristic algorithms, 

the quality of the solution cannot be based on the proximity to the global 

solution of the problem, because most of the times, it is unknown and 

the algorithm itself does not provide any means to determine how far the 

solution found is from the ideal one. Therefore, from now on with 

“quality of the solution” will be meant its value compared to the solution 

provided by a different algorithm, which is assumed as reference, or, in 

the few cases when it can be calculated analytically, the global solution 

of the problem. Part of the quality of the solution in a meta-heuristic 

algorithm is also its steadiness, i.e. the variance between the solutions 

found when running the algorithm several times on the same inputs. A 

good algorithm is stable and therefore a good solution must be reliable.  

From the analysis of the literature it was clear that hardly one 

implementation of a meta-heuristic algorithm is exactly the same of 

another, even among algorithms of the same kind (like among GAs). This 

work is no exception and further details about the peculiar GA adopted 

are provided in the following section. 
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4.2.1.1 Algorithm description  

The core script for the DAA is written in C++ language. This allows a single 

run of the GA to be fast (500 times more than MatLab©) as is required 

by the limit on the computational time due to the adoption of a similar 

version of the same script in the ADA. The algorithm takes four sets of 

inputs of different kinds and these are organized in .csv files that are read 

by the algorithm upon launch: 

 Vectorial inputs: containing values of input parameters that can 

change for each time-step considered. These inputs must be 

supplied once a day to the DAA because they are strictly related 

to the activities carried out inside Pontlab, the information 

about energy prices coming from the energy market and the 

weather forecasts. Thus they are likely to change every day and 

must be supplied to the DAA before each day considered; 

 Scalar inputs: this file must be supplied each day to the DAA as 

well but it contains variables that do not change for the entire 

day, e.g. the operation mode of the plant (summer or winter) 

and the levels of charge at the beginning of the day for each 

storage; 

 Technical inputs: a file that allows the algorithm to know the 

specifications of the plant onto which it operates. E.g. the file 

contains information about the rated power of several 

components, the coefficients used to correlate the thermal 

power output of the CHP to its electric power, the maximum 

power that the storages can exchange with the system, their 

capacity, the costs of O&M of the devices installed and any 

other parameter that the DAA needs to know in advance in 

order to simulate the system; 

 Algorithm inputs: this last file includes the settings of the GA, 

i.e. the size of the population, the resolution (in bit) of each 

variable, the number of variables, crossover and mutation 
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percentages, the number of selected individuals for the 

selection process, the values of stopping criteria as well as 

several options that can be activated or de-activated. Some of 

these options include: the presence of an initial not-randomized 

seed in the population and the choice of the objective function. 

The variables on which the algorithm operates are the set points of the 

generators or loads that can be controlled by the SCADA, which are: 

 The CHP electric power output: to which corresponds either a 

heating power output or a cooling power output, depending on 

the mode selected (summer or winter operation). The 

maximum value is the rated power of the CHP, whereas the 

minimum value is the minimum power output that the 

manufacturer suggests for the engine; 

 The actual exploitation of RESs (PV and WT): in this case the 

maximum value depends on the availability of the renewable 

source, whereas the minimum value is zero, i.e. the curtailment 

of power produced by the PV or WT is total; 

 The modulation of the low priority loads: for each kind of 

energy request (electric, thermal or cooling), there can be a 

modulable fraction. The maximum value of each of the three 

variables depends on the kind of activities expected for the next 

day and therefore on the devices used. 

Thus, for each time-step there are six variables, each variable is 

represented in the GA by an 8-bit binary number, that can assume 256 

different values, from 0 to 255. The total number of possible 

combinations is around 1014 different solutions for each time step.  

The simplified series of steps composing the main function of the 

algorithm currently implemented on the SCADA reads as follows: 

1. All the variables required are initialized; 
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2. Depending on the number or rows in the vectorial input files, 

the total number of time-steps to analyze is defined; 

3. All the input files are read and the values contained are 

assigned to the respective variables; 

4. For a number of times equal to the total number of time-steps: 

a. The initial population is created, in a random manner or 

including some individuals that for example are 

representative of TLF or ELF operation modes; 

b. While the variance of the fitness among the population 

is higher than the value of tolerance or the iteration 

number is lower than the limit value (both set in 

Algorithm inputs file): 

i. The iteration number is increased by 1; 

ii. The fitness of each individual in the population 

is calculated; 

iii. The selection process takes place; 

iv. If the related option is activated: the probability 

of mating of the best performing individuals is 

increased by temporarily increasing their 

occurrence in the population; 

v. The crossover process is executed; 

vi. The mutation process is performed; 

vii. A visual output is sent to console, it contains: 

number of the time-step, current iteration, 

fitness variance, minimum fitness value, 

maximum fitness value; storage temperature; 

c. The computational time for a single run of the GA is 

evaluated; 

d. The output variables of the last member of the 

population evaluated (at convergence) are saved as a 

row of the output matrix; 
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5. The output matrix is copied on the output file containing all the 

values of the output variables for each time-step which is 

created as .csv file.  

It is worth mentioning the peculiarities of the GA adopted in this case, 

especially regarding its key functions: selection, crossover and mutation. 

These functions are the core of the GA and the way they are 

“personalized” can have a great impact on the performance of the 

algorithm. The selection process is performed copying the best individual 

onto the desired number of worst individuals, called selection number, 

therefore at the end of the process there will be “selection number” plus 

one identical individuals in the population. A possible variation could be 

to copy the best individuals on the same number of worst individuals. In 

this case, each valuable member of the population would have double 

chances to mate. Both possibilities were tested, during the design of the 

algorithm, but the first option was chosen for its greater stability and 

faster convergence to solution. The crossover, as explained in the 

previous section, mates two random individuals of the population and 

generates two new individuals. In the algorithm designed, to allow the 

GA to explore better the solution surface, the fitness of the children is 

neither evaluated nor compared to their parents in order to decide 

whether the parents or the children should survive to the next 

generation. The newer individuals always replace the old ones, ensuring 

that the features contained in the genome of the population are crossed 

in a higher number of ways. Therefore, there will be more chances for 

one individual to reach a different, and possibly better, solution both at 

the beginning, when the population is spread on the solution space, and 

later during the optimization when it is approaching a minimum. Finally, 

the mutation process acts selecting random genes in the whole 

population, instead of a single gene in a random individual. Again, this is 

done in order to boost the exploration skills of the GA, allowing it to 

potentially modify more genes of a single individual or more individuals 
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in a milder way. The number of selected individuals for the selection 

process is not the only important parameter for a tuning of the algorithm, 

other parameters that have a great influence on GA’s performance are 

the crossover and mutation rate, as well as the population size and the 

number of iterations allowed.  

4.2.1.2 The simulation of the SU plant: the fitness function  

Inside the algorithm, assigning a fitness value to each individual in the 

population is performed by the fitness function. This function is where 

the plant behavior is evaluated in order to assess the costs, the emissions 

and the primary energy savings associated with the management of the 

energy system. This function therefore serves also as a link between the 

physics of the system and the optimization problem. Whereas most of 

the other functions (crossover, mutation, selection) can be implemented 

in different optimization processes, once they are defined, the fitness 

function must be adapted to the specific plant onto which the algorithm 

operates. It is to be noticed that the fitness function, although including 

the equations describing the energy system, is not capable of simulating 

the actual behavior of the plant itself within the time-frame considered. 

This would not even be possible, because the inputs are provided as 

average values within the period analyzed. Therefore, time-dependent 

and transient phenomena that act in the scale of seconds or even a 

couple of minutes, cannot be taken into account. An example is 

represented by thermal inertia phenomena of storages, piping and 

devices: every single one of them is assumed to be able to provide the 

required power when needed. This is a reasonable assumption which 

does not add errors to the analysis because the inaccuracy is inherently 

included in the way the loads and all the variables are described, i.e. 

steady for 15 minutes, which is not necessarily true on the actual plant. 

Indeed, the closer the simulation is to the real behavior of the system the 

lower will be the errors in the fitness evaluation performed. Nevertheless, 

the purpose of the model included in the fitness function is to ensure that 
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the proposed plant operation takes into account the physical constraints 

of the real system, therefore reducing the chance to suggest unfeasible 

solutions. There is no intent to be extremely accurate though, nor any 

need for it, considering the optimization process is always updated to the 

present working conditions by the Advanced Dispatching Algorithm on 

the actual plant. Moreover, the Real Time Algorithm, along with the 

controller of the auxiliary units, will manage the system in a safe and 

appropriate way, regardless of the suggested operations provided by the 

optimization algorithms. Every effort has been made in order to allow the 

employment of the defined algorithm to the highest number of cases 

possible. Nonetheless, some configurations of the energy plant feature 

different constraints from the others and therefore require a dedicated 

set of equations in order to be described and simulated. Hereafter, the 

fitness function implemented in the GA running on the SCADA system of 

the SU is described. This version of the algorithm performs the 

optimization of one time-step (i.e. 15 minutes) at a time, with the 

suggested operation resulting from the sequence of optimized time-

steps. As will be highlighted in the next sections, this version presents 

limitations that do not allow it to achieve a proper daily optimization of 

the plant. The fitness function described hereafter takes into account one 

individual at a time, then, another function ensures that all the individuals 

are evaluated. 

The analysis of the system starts from the assessment of the values of the 

algorithm variables contained in the individual: the power produced by 

PV, WT, the modulation of electric, heating, cooling loads and the electric 

power produced by the CHP. Depending on the season, the thermal 

power recuperated from the CHP or the cooling power produced by the 

absorption chiller is calculated as follows: 

𝑃𝑡ℎ,𝐶𝐻𝑃 = 𝑎 + 𝑏𝑃𝑒,𝐶𝐻𝑃 + 𝑐𝑃𝑒,𝐶𝐻𝑃
2 + 𝑑𝑃𝑒,𝐶𝐻𝑃

3  Eq. 5 
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𝑃𝑐,𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑟 = 𝐶𝑂𝑃𝑎𝑏𝑠(𝑎 + 𝑏𝑃𝑒,𝐶𝐻𝑃 + 𝑐𝑃𝑒,𝐶𝐻𝑃
2

+ 𝑑𝑃𝑒,𝐶𝐻𝑃
3 ) 

 

Eq. 6 

Where a, b, c, d are numerical coefficients obtained by the regression of 

the experimental curve between electric power and thermal power 

produced by the CHP. These coefficients are provided in the technical 

inputs file. These equations are the first example of non-linear behavior 

of the system. The CHP is considered turned on only if the electric power 

production is assigned to it during the random generation, the crossover 

or mutation processes in the GA is greater than its minimum value, as 

defined in the technical input file. If the time-step considered is the first 

one, the temperatures for the storages Tc,strg,previous and Tth,strg,previous are set 

to their initial value, defined in the scalar input files. Otherwise, the values 

are obtained from an auxiliary matrix created during the analysis of the 

previous time-step. Then, depending on the season, the model of the 

plant takes two slightly different directions, coherently to the use of one 

side or the other of the plant (see, Figure 16, Figure 18). Considering the 

thermal layout described in the previous chapter, during summer 

operation mode the heating load is satisfied by the boiler, whereas the 

CHP works along with the absorption chiller to supply refrigeration and 

electricity to Pontlab. Conversely, during winter operation mode, the 

cooling load is assumed to be satisfied by the compression chiller only, 

whereas the heating and electricity needs are satisfied by the CHP. For 

brevity sake, only the summer case is examined. The winter case is 

symmetrical apart from the fact that the storage is considered fully 

charged when the temperature inside it is the maximum one and empty 

when the temperature reaches the minimum value allowed, the opposite 

of the cold temperature storage.   

For the summer operation, the following power balance is evaluated: 

∆𝑃𝑐,𝑎𝑡𝑡𝑒𝑚𝑝𝑡 = 𝑃𝑐,𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑟 + 𝑃𝑐,𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛 − 𝑃𝑐,𝑙𝑜𝑎𝑑 

 

Eq. 7 
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Equation 7 calculates the cooling power that is in excess or deficit 

considering the set point of generators and the load. Note that the 

modulation of the loads can be listed among the generators. The energy 

stored inside the cold storage is determined as well: 

𝑐𝑠𝑡𝑟𝑔,𝑙𝑒𝑣𝑒𝑙,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 =
𝑚𝑐,𝑠𝑡𝑟𝑔𝑐𝑝,𝐻2𝑂(𝑇𝑐,𝑚𝑎𝑥 − 𝑇𝑐,𝑠𝑡𝑟𝑔,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠)

3600
 

 

Eq. 8 

Where the factor 3600 is required to transform the energy calculated 

from kJ to kWh.  

Successively, a series of if-then clauses defines the behavior of the system 

when charge and power constraints for the storages have to be met. 

These represent another non-linearity of the problem because, 

depending on a given condition, the plant does not behave in the same 

way. The first evaluation is performed on ΔPc,attempt, if it is lower than zero, 

i.e. there is more request from the loads than the generators are 

supplying, then the power that the storage must supply is equal to the 

deficit of power found. 

𝑃𝑐,𝑠𝑡𝑟𝑔,𝑎𝑡𝑡𝑒𝑚𝑝𝑡 = ∆𝑃𝑐,𝑎𝑡𝑡𝑒𝑚𝑝𝑡 

 

Eq. 9 

The power that the storage should supply can or cannot be in compliance 

with the maximum power output of the storage. The storage power of 

charge/discharge is a function of the mass flow provided by the 

recirculation pump in the users’ loop, the user maximum power request, 

and the level of charge of the storage, which depends on the start value 

imposed and the evolution of the charge level during the day. First, the 

power assigned to the storage is compared to the maximum that can be 

provided. If the power assigned to the storage complies with its maximum 

value, then the energy level at the end of the time-step is estimated as: 

𝑐𝑠𝑡𝑟𝑔,𝑙𝑒𝑣𝑒𝑙,𝑎𝑡𝑡𝑒𝑚𝑝𝑡 = 𝑐𝑠𝑡𝑟𝑔,𝑙𝑒𝑣𝑒𝑙,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 − 𝑃𝑐𝑠𝑡𝑟𝑔,𝑎𝑡𝑡𝑒𝑚𝑝𝑡∆𝑡 

 

Eq. 10 



Management of the plant 

157 

If the level of charge is higher than the minimum level allowed then the 

attempt values of the storage charge level and power assigned to the 

storage are finalized. Moreover, because the storage could provide all the 

power mismatching in the power balance between loads and generators, 

there is no reason to activate the compression chiller nor to dissipate 

cooling energy in excess. In addition, the temperature inside the storage 

is calculated according to equation 11: 

𝑇𝑐,𝑠𝑡𝑟𝑔 = 𝑇𝑐,𝑚𝑎𝑥 −
3600𝑐𝑠𝑡𝑟𝑔,𝑙𝑒𝑣𝑒𝑙

𝑚𝑐,𝑠𝑡𝑟𝑔𝑐𝑝,𝐻2𝑂
 

 

Eq. 11 

If the attempt value of the energy level, considering the attempt value of 

the power supplied by the storage, were too low compared to the 

minimum level allowed, then the final level of charge is imposed at the 

minimum value allowed and the attempt value of the power of the 

storage is finalized as: 

𝑃𝑐,𝑠𝑡𝑟𝑔 =
(𝑐𝑠𝑡𝑟𝑔,𝑙𝑒𝑣𝑒𝑙,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 − 𝑐𝑠𝑡𝑟𝑔,𝑙𝑒𝑣𝑒𝑙,𝑚𝑖𝑛)

∆𝑡
 

Eq. 12 

 

Then the temperature inside the storage is calculated. This temperature, 

in the case of the cold storage is at its maximum value. In addition the 

following are calculated: the power that must be dissipated (none) and 

the power that the auxiliary unit, i.e. the compression chiller, must 

supply, which is simply: 

𝑃𝑐,𝑐ℎ𝑖𝑙𝑙𝑒𝑟 = 𝑃𝑐,𝑠𝑡𝑟𝑔,𝑎𝑡𝑡𝑒𝑚𝑝𝑡 − 𝑃𝑐,𝑠𝑡𝑟𝑔 

 

Eq. 13 

Instead, in the case where the power requested to the storage by the 

power balance described in equation 7 is higher than the maximum value 

allowed, then the power that it will provide is set to its maximum value 

and the level of charge is verified again following equations from 9 to 12. 
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A similar procedure is followed for the case when the power balance is in 

favor of generation side. In this case the storage will need to be charged, 

if possible, by the same amount that the power of the generators is in 

excess compared to the loads. If the power charging the storage is less 

than the maximum value allowed then the energy contained in the 

storage at the end of the time-step is evaluated and finally the values of 

power and charge of the storage are finalized. Conversely, the power is 

limited to the maximum value and again the final level of charge is 

evaluated and modified if not in compliance with the maximum value set.  

There is also a third case, unlikely but to be considered, when the power 

balance between generators and loads is respected from the beginning, 

i.e. the attempt value for the storage power is zero. In this case the 

storage is not required, as well as the auxiliary compression chiller or the 

heat dissipater. When all the three power balance cases are analyzed, the 

power required by the thermal loads, which the boiler must provide, is 

calculated.  

As mentioned above, a similar procedure is followed for the case of 

winter operation. The only difference being that the generator is not the 

absorption chiller but the CHP itself, the auxiliary unit is the boiler and 

the storage is a hot one. Therefore, the storage is at full charge when its 

temperature is at the maximum level, conversely it is empty when its 

temperature reaches the minimum value. In the case of summer 

operations, the power that the boiler must supply for thermal loads is 

calculated at the end of the procedure just described.  

A power balance is evaluated also for electric loads, in this case though 

there is no proper storage but the electricity grid, therefore: 

𝑃𝑒,𝑔𝑟𝑖𝑑 = 𝑃𝑒,𝑙𝑜𝑎𝑑 + 𝑃𝑒,𝑐ℎ𝑖𝑙𝑙𝑒𝑟 − 𝑃𝑒,𝐶𝐻𝑃 − 𝑃𝑒,𝑃𝑉 − 𝑃𝑒,𝑤𝑖𝑛𝑑

− 𝑃𝑒,𝐿2 
 

Eq. 14 
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The thermal power that the CHP requires to produce its electric power 

output is calculated by means of a cubic correlation of the electric power 

output, the coefficients were provided by the manufacturer: 

𝑃𝑖𝑛,𝐶𝐻𝑃 = 𝑎1 + 𝑏1𝑃𝑒,𝐶𝐻𝑃 + 𝑐1𝑃𝑒,𝐶𝐻𝑃
2 + 𝑑1𝑃𝑒,𝐶𝐻𝑃

3  

 

Eq. 15 

The total efficiency of the CHP is calculated considering both the electric 

power and thermal power, actually exploited for either the heating or 

cooling supply. 

𝜂𝑒,𝐶𝐻𝑃 =
𝑃𝑒,𝐶𝐻𝑃

𝑃𝑖𝑛,𝐶𝐻𝑃
 

 

Eq. 16 

𝜂𝑡ℎ,𝐶𝐻𝑃 =
(𝑃𝑡ℎ,𝐶𝐻𝑃 − 𝑃𝑡ℎ,𝑤𝑎𝑠𝑡𝑒) +

(𝑃𝑐,𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑟 − 𝑃𝑐,𝑤𝑎𝑠𝑡𝑒)
𝐶𝑂𝑃𝑎𝑏𝑠

𝑃𝑖𝑛,𝐶𝐻𝑃
 

 

 
Eq. 17 

𝜂𝑡𝑜𝑡,𝐶𝐻𝑃 = 𝜂𝑒,𝐶𝐻𝑃 + 𝜂𝑡ℎ,𝐶𝐻𝑃 

 

Eq. 18 

With the resulting PES being therefore: 

𝑃𝐸𝑆 = 1 − (
1

(
𝜂𝑡ℎ,𝐶𝐻𝑃

𝜂𝑡ℎ,𝑏𝑜𝑖𝑙𝑒𝑟
+

𝜂𝑒,𝐶𝐻𝑃

𝜂𝑒,𝑔𝑟𝑖𝑑
)
) 

 

 
Eq. 19 

Then, all the costs and emissions related to the defined operation of the 

system are calculated. The operating and maintenance costs for the CHP 

are calculated in the case that it is turned on in the present time-step, 

conversely a penalty for its unemployment is derived. In addition, during 

summer operation, for the absorption chiller a similar cost for O&M or 

non-exploitation is defined. The same costs are evaluated for each 

generator in the system: PV, WT, boiler and compression chiller. All O&M 

costs are defined in terms of €/h. The possible discount on the natural 
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gas cost and eligibility for TEE certificates is evaluated based on the 

efficiency level and PES value reached compared to the values defined by 

the legislator for the achievement of High Efficiency Co-Generation (CAR, 

from the Italian “Cogenerazione ad Alto Rendimento”) certification of the 

plant. In case the evaluation is positive, a discount of 30% is allowed on 

the cost of natural gas used for electricity production, which means that 

for the boiler the price paid remains the same. From the input thermal 

power required by the CHP and the boiler, and the Lower Heating Value 

of natural gas, it is possible to calculate the total expenses for the fuel 

supply. For the case of Pontlab, the TEE certificates are omitted because 

the connection of the SU with the grid is virtual and therefore all of the 

electricity produced is always absorbed by the facility; nonetheless, the 

algorithm allows to consider them when defining the total cost of the 

daily operation of the system. Another incentive calculated is the one 

related to PV electricity production granted within the frame of Energy 

Account incentive scheme. Depending on the sign of Pe,grid the costs or 

profits derived from the electricity exchange with the grid are calculated. 

The modulation costs are calculated based on the power modulated and 

the cost associated with each activity not performed or limited due to the 

modulation, which is expressed in €/kW. Similarly, a possible penalty for 

noncompliance with the proposed grid power exchange profile can be 

determined when a profile, or a rule to define it based on the optimal one 

obtained when the algorithm is run without penalty on the grid profile, 

are provided. Finally, based on the power set points of each generator 

(grid included) the total primary energy supply and emissions produced 

by the operation of the SU in the present time-step are calculated.  

One out of three possible fitness values, i.e. objective functions, can be 

selected, to be minimized by the GA: cost function, primary energy 

consumption and emissions produced.  



Management of the plant 

161 

𝐶𝑡𝑜𝑡 = 𝐶𝐶𝐻𝑃,𝑓𝑢𝑒𝑙 + 𝐶𝐶𝐻𝑃,𝑛𝑒 + 𝐶𝐶𝐻𝑃,𝑂&𝑀 − 𝐶𝐶𝐻𝑃,𝑇𝐸𝐸

− 𝐶𝑃𝑉,𝐸𝐴 + 𝐶𝑃𝑉,𝑂&𝑀 + 𝐶𝑊𝑇,𝑂&𝑀

+ 𝐶𝑏𝑜𝑖𝑙𝑒𝑟,𝑓𝑢𝑒𝑙 + 𝐶𝑏𝑜𝑖𝑙𝑒𝑟,𝑂&𝑀

+ 𝐶𝑐ℎ𝑖𝑙𝑙𝑒𝑟,𝑂&𝑀 + 𝐶𝑎𝑏𝑠,𝑛𝑒 + 𝐶𝑎𝑏𝑠,𝑂&𝑀

+ 𝐶𝑒,𝑓𝑟𝑜𝑚𝑔𝑟𝑖𝑑 − 𝐶𝑒,𝑡𝑜𝑔𝑟𝑖𝑑

+ 𝐶𝑝𝑟𝑜𝑓𝑖𝑙𝑒,𝑔𝑟𝑖𝑑,𝑝𝑒𝑛𝑎𝑙𝑡𝑦 + 𝐶𝑒,𝐿2 + 𝐶𝑡ℎ,𝐿2

+ 𝐶𝑐,𝐿2 
 

Eq. 20 

𝐸𝑝𝑟,𝑡𝑜𝑡 = 𝐸𝑝𝑟𝐶𝐻𝑃 + 𝐸𝑝𝑟,𝑏𝑜𝑖𝑙𝑒𝑟 + 𝐸𝑝𝑟,𝑔𝑟𝑖𝑑  

 

Eq. 21 

𝐶𝑂2,𝑡𝑜𝑡 = 𝐶𝑂2,𝐶𝐻𝑃 + 𝐶𝑂2,𝑏𝑜𝑖𝑙𝑒𝑟 + 𝐶𝑂2,𝑔𝑟𝑖𝑑  

  

Eq. 22 

Because the GA takes into account one time-step at a time, the selected 

objective function is minimized in each time-step and then the values are 

summed to define the total value for the day. As will be discussed in the 

following sections, this is one of the most important limitations of the 

approach followed for the design of the first version of the algorithm 

running on the SCADA system in Pontlab. 

4.2.1.3 Tuning of the algorithm 

The importance of the tuning of the parameters involved in the 

optimization process performed by the GA is well known in the literature. 

An early example of the improvement that can be achieved by an 

appropriate tweaking of their values is provided by Grefenstette J. J. 

(1986) [111]. Ideally, the most of the meta-heuristic algorithms, the GA 

would need to accomplish two different tasks in order to reach the global 

optimum of the problem:  

 Explore the solution space; 

 Once the best solution is approached, converge into it. 

Nonetheless, GAs and other meta-heuristic algorithms are known to be 

unable to find the exact global optimum of the problem, nor to know how 

far the global optimum from the solution onto which they converge is. 
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This does not even depend only on the algorithm itself but also on the 

shape of the solution space. Just to provide a visual example, let us 

imagine that the algorithm should find the highest peak on a map, see 

Figure 23 and Figure 24  

 

Figure 23 - Four clear peaks on Mars’ surface 

 

Figure 24 - A portion of Mars' surface with numerous small peaks and large 
plains 

If the map is mostly plain apart from a few big mountains with only a 

single peak, clearly defined and with one definitely higher than the 

others, the algorithm is likely to find the global optimum, or at least get 



Management of the plant 

163 

close enough to it. On the other hand, if the map is a very rough surface 

with no clear peaks apart from very narrow and isolated few, the 

algorithm is unlikely to find the highest one. Moreover, depending on 

how narrow the peaks are compared to the solution space, it might as 

well be unable to find a peak at all. Not only, ideally, the solution found 

should be the global optimum but also it would be preferable to reach it 

in the shortest possible time. It is clear that finding the global optimum, 

thus exploring the whole search space, and small computational times 

are discording goals. Hence, the choice of the parameters is to be done 

trying to achieve the best compromise between the two aspects.  

Depending on the tailoring of the key procedures adopted by the GA, i.e. 

selection, crossover and mutation process, and the value of the tuning 

parameters, the exploration capabilities and convergence on a good 

solution of the algorithm can be modified. For example, a constantly high 

mutation rate boosts exploration skills of the GA but it is risky because it 

makes it hard for the algorithm to converge due to the disruption of any 

cluster of good solutions found after some iterations. On the other hand, 

a variable mutation rate at different times, such as a higher one during 

the initial phase when the solutions are dispersed on the search space, 

and a lower one in the later phases when a possibly good solution is about 

to be found can improve both the exploration and the convergence. It is 

up to the programmer and the engineer to define, based on the 

peculiarities of the case study, which modifications to apply in order to 

achieve an optimal result. Similarly, in some works presented in the 

literature, the population may vary depending on the number of 

iterations or the fitness VS iteration curves, as well as the crossover rate 

and the number of individuals chosen for the selection process. When 

considering only one time-step at a time in the optimization process, 

repeating the optimization for each time-step until all of them have been 

examined, the size of the problem is not an issue. Hence, there is no need 

to adopt such expedients in order to achieve a solution which is stable 
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and good enough compared to those obtained with a standard ELF or TLF 

operation of the CHP.  

The tuning of the SS algorithm was performed by means of a Design Of 

Experiment (DOE) technique, which is a common approach to the design 

of an experimental campaign that allows the systematical analysis of the 

influences of the tuning parameters on the solution and their influence 

on one another. The number of experiments required by DOE depends 

on the number of parameters and the number of levels, which is the 

number of possible values that each parameter can assume. For a general 

case, the number of experiments is defined by the following equation: 

𝑛 = 𝑙𝑝 
 

Eq. 23 

Where, n, is the number of experiments that must be performed, l, is the 

number of levels and p is the number of parameters. Being an 

exponential function of parameters, the number of experiments 

increases at high rates when many parameters are selected. It is always a 

good practice to keep the number of parameters as low as possible, 

selecting only those that are expected to be heavily influencing the 

solution. 

The algorithm version tested is the Single Step one, written and compiled 

in C++ for faster execution speed. For the tuning of the parameters, the 

SS algorithm was tested on a single day representing a sample of a 

realistic operation of the SU; the input values are not reported here for 

sake of brevity. The parameters for the tuning process were selected 

based on their well-known influence on the algorithm performance 

according to the literature studies: 

 Population size: the higher the number of individuals in the 

population, the better will be the exploration capabilities of the 

algorithm. On the other hand, each iteration is going to be 
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longer computationally wise because of the higher number of 

processes to perform; 

 Crossover rate: an increase of the rate enhances the exploration 

skills of the algorithm at the cost of higher computational times 

due to the increased number of mating processes to perform at 

each iteration; 

 Mutation rate: a bigger rate introduces a greater number of 

new genes in the population but the algorithm becomes 

unstable because good solution clusters are often disrupted by 

the mutation process if the rate is too high; 

 Maximum number of iterations: allowing more iterations to 

take place means giving more opportunities for the algorithm to 

explore by means of mutation and refine the solution with 

crossover; on the other hand, computational time increases 

linearly for the worst case (when convergence does not reach 

the imposed tolerance). 

The optimization process can still be interrupted by reaching the 

tolerance value for the fitness variance. Nevertheless, this value was set 

low compared to what was done in the offline tests, in order to ensure 

that the desired number of iterations could be reached unless the 

solution found was extremely well defined. Two are the measures of 

optimality of the parameters selected: fitness value achieved and time of 

execution. Thus, the quality of the solutions obtained is evaluated by a 

multi-objective function. For both the time of execution and the fitness, 

two values, expected to be the maximum and minimum that can be 

achieved are set. It is not important that these values are exactly the 

minimum and maximum registered during the experiments, what 

matters is that the highest value is higher than the highest value scored 

in the experiments and vice versa for the lowest. Therefore, tmax and tmin 

were set equal to 100 s and 0.5 s respectively, whereas, €max and €min were 

set to 35 € and 30 €. The values of computation time and fitness value 
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need to be non-dimensional to be comparable. Indeed what is evaluated 

is the difference between the maximum value and the one of the current 

experiment, divided by the difference between the maximum and 

minimum value set for the variable:  

𝑡𝑎𝑑𝑖𝑚 =
𝑡𝑚𝑎𝑥 − 𝑡𝑒𝑥𝑝

𝑡 − 𝑡𝑚𝑖𝑛 
 

Eq. 24 

 

€𝑎𝑑𝑖𝑚 =
€𝑚𝑎𝑥 − €𝑒𝑥𝑝

€𝑚𝑎𝑥 − €𝑚𝑖𝑛
 

 

Eq. 25 

With these, the simplest objective function that can be written is formed 

by the sum of the two. In our case, considering that the variability on the 

time of execution was greater compared to the one of the fitness value, 

a weighted sum was defined, with a 0.7 coefficient set for the tadim and 

0.3 for €adim. The output function can assume a maximum value of 1 and 

a minimum of 0. 

𝑌 = 0.7 ∗ 𝑡𝑎𝑑𝑖𝑚 + 0.3 ∗ €𝑎𝑑𝑖𝑚 
 

Eq. 26 

The values for each level of each parameter are set as follows in Table 7. 

Table 7 - Parameters and Levels employed in the DOE 

Population Crossover Rate Mutation rate Iterations 

128 20% 0.5% 500 
512 60% 1% 1500 

 

The set of parameters for each experiment are listed in Table 8. In order 

to reduce the effects due to the natural variability of the algorithm 

results, each run is repeated five times and the results considered are the 

average of the values in each run. 
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Table 8 - Experiments list of the DOE 

Experiment Population Crossover Rate Mutation rate Iterations 

1 128 20% 0.5% 500 
2 512 60% 1% 1500 
3 128 20% 1% 500 
4 128 20% 0.5% 1500 
5 128 60% 0.5% 500 
6 512 20% 0.5% 500 
7 512 20% 1% 500 
8 512 20% 0.5% 1500 
9 512 60% 0.5% 500 

10 512 60% 0.5% 1500 
11 512 60% 1% 500 
12 512 20% 1% 1500 
13 128 60% 1% 1500 
14 128 60% 0.5% 1500 
15 128 20% 1% 1500 
16 128 60% 1% 500 

 

Another parameter, which is relevant during the optimization process, is 

the number of individuals selected for the selection process. The first 

tests performed suggested that this value should have been kept as a 

fixed percentage of the population, therefore it assumes different values 

for the experiments featuring a population of 128 or 512 individuals. The 

value to assign as the percentage of selected individuals was defined out 

of the DOE for two reasons. The first is to reduce the number of 

parameters of the DOE and therefore the number or experiments (adding 

one would have meant to double the experiments). The second is that 

the number of individuals selected is assumed not to interfere with the 

values of the other tuning parameters, thus it could be set beforehand 

for all the experiments. The test to assess its ideal value was performed 

on the same test case used for the DOE, with the tuning parameters being 

those of experiment number 14, see Table 9. The diagram in Figure 25 

shows the fitness value obtained as a function of the number of selected 

individuals that varies in the range of 1% to 50% of the population.  
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Figure 25 - Influence of selection process on the fitness value 

It can be observed how the best values are scored for a number of 

individuals of about 15% of the total population. Thus, this is the value 

assumed for all the experiments performed in the DOE. The results 

obtained are reported in Table 9, where the best experiments, #10 and 

#14 are highlighted in bold. Considering experiments #6 and #7 or #13 

and #14 it is evident how influential is the mutation rate on the 

computational time. When the other parameters have the same value, 

an increase in mutation rate is followed by an increment of computation 

time. On the other hand, the effect on the fitness is much less relevant, 

therefore the exploration is sufficient with a value of 0.5%. A factor of 

four in population size turns into an almost doubled computation time 

(see #1 and #6 or #10 and #14) which is also followed by minor 

improvements in the value of the fitness function. A higher crossover rate 

usually leads to better fitness values without a relevant increase in 

computation time, because the time required to run the crossover 

process is relatively low in a single run, with the heaviest process being 

the evaluation of the fitness of all the individuals in the population. The 
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effect of the number of iterations on the output function depends also 

on the values assumed by the other parameters, i.e. it interferes with the 

other parameters. The greatest interferences are found between: 

population size and number of iterations; population size and mutation 

rate; mutation rate and number of iterations.  

Table 9 - DOE results 

Experiment Time [s] Fitness [€] Y 

1 0.8258 31.7870 0.8905 
2 95.9622 31.3986 0.2445 
3 11.9746 31.9830 0.8003 
4 0.8332 31.6116 0.9010 
5 0.7942 31.7070 0.8955 
6 1.6266 31.2142 0.9192 
7 28.7856 31.5746 0.7065 
8 1.6106 31.2174 0.9191 

9 1.6164 31.2596 0.9166 
10 1.7782 30.9022 0.9369 
11 31.8892 31.4286 0.6935 
12 87.7942 31.6204 0.2886 

13 37.8958 31.9864 0.6177 

14 0.8014 31.2008 0.9258 
15 35.5564 32.0104 0.6327 
16 12.7640 31.7768 0.8071 

From Table 9 it can be seen that the best performing sets are #10 and 

#14. The first is the best in terms of fitness value achieved, the latter is 

the second best in terms of computation time. Nonetheless, considering 

that the difference in terms of time is 100% between the two 

experiments, whereas the difference in fitness is just 1%, the set of 

parameters of choice for all the runs of the GA onwards is the one of the 

14th experiment. Furthermore, the set of parameters of choice allowed a 

very stable solution in several runs of the algorithm, which is very 

important if it is desirable to perform a single run of the GA on each time-

step in order to avoid repetition and reduce the computational time. 
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4.2.1.4 Daily optimization VS Single Step optimization 

The first approach used to optimize the daily operation of the SU was to 

analyze the whole day at once with the GA. Indeed, the variables of the 

optimization were, in the worst case, 100 times more than in the case of 

the analysis of a single step at a time. The total number of quarters of 

hour in an average day is 96 and this is the number of time-steps usually 

considered in the tests performed. Nonetheless, when the time is 

switched from legal to solar, the day lasts 25 hours, which means 100 

quarter of hours; in the same way, when the time is switched from solar 

to legal, the day lasts 23 hours. At computational level, there are two 

problems when considering such an increase in problem dimension: 

 The dimension of the solution space increases exponentially 

with the number of variables, from 2566 to 256600; 

 The number of parameters concurring to the definition of the 

fitness function increases by a factor of 100. 

The first issue has a dramatic impact on both the computational time and 

the quality of the solution. The size of the solution space, 2566*96 has a 

similar order of magnitude to 101387. The size of the problem is extremely 

wide, greater than most of the functions onto which GAs and other 

optimization algorithms are theoretically tested in the literature, see A. 

Ghosh et al. 2011 [112], T. Chen et al. 2012 [113], S.W. Leung et al, 2012 

[114]. To give an idea of the number of possible solutions among which 

the GA has to find the global optimum let us indulge a second in an 

astronomic comparison. The mass of ordinary matter in the Universe is 

estimated in the order of 1053 kg, the mass of an atom of Hydrogen, the 

smallest and most common in the Cosmos, is 1.67372*10-27 kg. That 

means that if the whole mass of ordinary matter in the Universe were 

made of Hydrogen, the total number of atoms would be “just” 1081. 

Problems of this size can be solved in reasonable times and with accuracy 

only by MILP techniques, which exploit the properties of linear problems 
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to execute extremely fast procedures to find the minimum (or maximum) 

of the problem, which is unique for problems of this kind (see 2.2.1).  

The second issue influences the roughness and shape of the solution 

space. Each parameter adds a minimal contribution to the objective 

function. If we imagine the solution space as a 2d surface, it is likely to be 

very rough, with narrow peaks with noise-like shape, as well as few 

depressions, wide compared to noise but still narrow compared to the 

total size of the problem, representing local minima, one of which is also 

the global one.  

On the early tests performed on the GA to assess its capability to optimize 

more steps at a time, the results were not promising for the whole day 

version. Three different versions were compared: 

 Whole day on 96 time-steps of fifteen minutes each; 

 Whole day on 48 time-steps of half an hour each; 

 Single-step analysis of the whole day, 96 time-steps in total. 

The inputs onto which the three versions were tested are the same apart 

from the size of the time step in the second case. With half the steps, 

their duration must double to reach the same time of the day. Therefore, 

the values of the parameters of two consecutive time-steps were 

averaged in order to be assigned to the algorithm as inputs. The tests 

proved that the single-step analysis was the quickest with a 

computational time lower than 3 minutes on MatLab© and with an 

almost steady fitness value of 70€. The whole day algorithm with 48 time-

steps took over 2 hours to perform 15000 iterations, achieving a fitness 

value of 125€. Even worse were the performance of the whole day 

algorithm including 96 time-steps: calculation times of over 12 hours to 

reach 20000 iterations and a fitness value around 240€ for the same 

exact day of the single step version. Considering that the whole day global 

optimum must be equal or better than the one of the single step, which 

represents a subcategory of the problem, it is clear that the approach 
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adopted was completely ineffective. Indeed the time of execution can be 

greatly enhanced translating the code from MatLab© to C++. 

Nonetheless, the fitness values obtained by the whole day algorithm 

were not satisfactory in any way.  

From this early analysis, it is clear that the optimization of the whole day 

at once cannot be done with the Genetic Algorithm alone. Nevertheless, 

its importance is relevant for the study. Indeed the potential to exploit 

some advantageous condition at a time depends on the conditions during 

a different time of the day, which is something that the SS algorithm 

cannot take into account. When considering, and optimizing, one time-

step at a time, it is impossible to achieve a true optimization of the whole 

day. What can be achieved is an optimized operation of all the devices 

within the fifteen minutes period. The difference between the two 

optimizations is the same between “the sum of the optimums” or “the 

optimum of the sum”, the latter being a better optimum compared to the 

first. Obviously, using a GA, there is no guarantee to reach the global 

optimum in either ways, for it is the meta-heuristic algorithm itself that is 

not able to guarantee convergence on the global optimum. Nonetheless, 

a proper daily optimization should consistently score better results than 

the single step one in every situation, in order to be considered effective. 

This is the goal pursued with the design of the optimization algorithm: 

achieve the daily optimization of the plant while keeping it light at a 

computational level.  

How to achieve that goal has been an exciting part of this research. 

Although there might be quicker algorithms compared to GAs, as well as 

better performing ones in terms of quality of the optimized solution, 

considering the difference between the results obtained by the SS 

algorithm and the whole day one, it is hard to imagine a single algorithm 

that can close the gap by using its “brute force”. A more clever approach 

would be to determine which components of the plant are responsible 

for the difference between a daily and a single step optimization. Once 
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these components have been identified, it is fundamental to define a 

possible strategy to “detach” their optimization from the one of those 

that could be optimized in the single step without reducing the quality of 

the solution. The next section deals with this topic and provides insight 

on the shortcomings of a SS algorithm when applied to a generic plant 

and in particular to the one in Pontlab. 

4.2.1.5 Components requiring an extended view over the day in order 

to be optimized 

At an energy level, all the components of a plant fall under one or both 

of two different categories: generators and loads. Considering Pontlab SU 

plant, among generators we can list: the CHP, the auxiliary boiler, the 

absorption chiller, the compression chiller, the PV and the WT as well as 

the electricity grid and the thermal storages. Among the loads, on the 

other hand, each device that absorbs energy, from the actual loads to the 

power grid and again the thermal storages. Those components that can 

be inserted in both categories can all be considered as energy storages. 

Before assessing which of these components have a fundamental role in 

differentiating the solution representing the sum of the optimums and 

the one, which is the optimum of the sum, let us assume that a plant 

without any storage device is obliged to work in standalone mode. In this 

case, at any given time, the sum of the energy provided by the generators 

must be equal to the sum of all the energy required by the loads. The 

optimization that can be performed on plant operation is therefore 

limited to the choice of which generator supplies more energy or, if there 

are several, which loads to modulate at any time. There is no room for a 

daily strategy because there is no way to store energy, the system is 

constrained to produce and absorb the same quantity of energy. Thus, 

this is an example of a case where the whole day optimization and the 

single step one would achieve the same exact result.  

If we allow some of the loads to start at a variable time instead of a fixed 

one then the chance to decide when to increase the load (activating one 
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of those that can be shifted) leads to the need for considering the whole 

day. Indeed, otherwise it is impossible to assess the best moment to 

activate the loads that can be shifted. In Pontlab at the moment these 

loads are not managed yet, and the activities to carry out are defined 

beforehand. Nonetheless, an algorithm for an ideal Smart User should 

include these kind of loads in the optimization. The addressing of this 

aspect is expected for the future, as will be described in the chapter 

dedicated to conclusions and future developments.  

The other elements, which for their behavior, introduce the need for a 

daily sight on the problem are the energy storages. In the case of the 

present plant installed in Pontlab, there are three storages, two proper 

that are the hot and cold thermal storages, one virtual, which is the 

electricity grid. The electricity grid is considered a virtual storage for two 

reasons:  

 The costs associated to its usage vary over time, which is not 

true in general for a normal storage. Indeed storing energy into 

the grid has a negative cost (usually) which is the sale price of 

the electric energy to the grid, and this may vary during the day. 

In the same way, withdrawing energy from the grid has a 

different cost depending on the time when the energy is 

purchased.  

 The grid, theoretically has no limit of charge, or at least, the 

limit is too high to be taken into account when considering a 

single power plant, no matter how big, connected to it.  

Moreover, the idea of relying on the grid as electricity storage is in 

contrast with the goals and philosophy of the Smart Grid. That is why, 

although it practically acts as a storage, in this study it will not be 

considered as such, at least when dealing with the problem of daily 

optimization.  
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Each storage allows at any time to increase the generators’ power output 

creating an additional load, due to the request of charge of a storage, or, 

conversely it can also decrease it, when it discharges and therefore acts 

as a generator itself. From what has been said, it becomes evident that in 

order to achieve the daily optimization of the plant, the storages’ 

operation during the day must be optimized.  

4.2.2 The storages’ management  

In the previous paragraphs the importance of daily optimization was 

introduced as well as the components that are most influencing the 

difference between an optimized management of the system considering 

one time-step at a time or the whole day at once. Apart from loads that 

can be shifted or interrupted during the day, a key role in the need for a 

daily optimization is played by storages of any kind of energy. It was also 

demonstrated, by referring to tests carried out on the GA, how difficult it 

is to reach a refined and daily optimized solution for the operations of the 

SU. As was shown in the chapter dedicated to the state-of-the-art, many 

authors dedicated their researches on the topic of storage optimization. 

Some of them linearized the simulation of the physical model and 

therefore were able to implement very fast and reliable linear solvers; 

some others designed and composed different algorithms for the scope. 

This section presents one of the possible solutions to the problem of 

storage optimization for energy systems whose description involves 

several non-linear aspects. This can be considered one of the greatest 

achievements of the present research. 

4.2.2.1 Goal of the optimization 

As previously stated, when talking about the performance of evolutionary 

algorithms, the quality of their solution can be evaluated only by 

comparing it with those found by other algorithms in terms of value of 

the objective function, stability of the solution and the computational 

time required to find it. For most of the optimization problems requiring 
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an evolutionary algorithm are too hard to solve analytically and thus it is 

difficult or impossible to find the global solution to compare with those 

suggested by the other algorithms. Therefore, the goal of the 

optimization performed is to find a solution with the following 

characteristics: 

 Value of the objective function: equal or better of the one 

provided by the single step algorithm when both are tested in 

several conditions, either fictional or realistic; 

 Stability of the solution: several runs of the algorithm should 

provide similar or equivalent results, this also suggests that the 

solution found is likely to be the global optimum of the 

problem; 

 Feasibility: the solution should be feasible for the energy system 

considered; 

 Coherence: the solution proposed should prove to be 

“intelligent”, demonstrating an ability to take advantage of 

peculiar costs/loads condition during the day. 

The ideal solution should have all of the above characteristics. The second 

and the third one are general requirements, which should be met 

regardless of the optimal use of the storages. On the other hand, the first 

and the fourth imply the optimal usage of the storages.  

4.2.2.2 Approaches adopted 

The approach envisioned is to optimize the storage operation without 

optimizing at the same time all the other variables; this would allow a 

great reduction of the size of the search space. To understand whether 

this approach can be adopted, let us consider a generic energy system 

including different storages, during each time-step, several of its 

components are either producing or consuming energy. The actions of 

producing and consuming energy are not representative of the system 

during the period considered but rather the actions it performs to go 
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from a state to another. Once the layout of the energy system considered 

is fixed, the state of the system is defined by only a few variables, i.e. the 

charge level of its storages, the current time step and the possible 

configuration of the energy system (e.g. if a given valve is opened or 

closed). This concept is not different from the fact that Temperature is a 

variable of state for a system, whereas the heat the system receives or 

releases from/to the environment is not. Moreover, all the information 

required to take decisions in terms of charge/discharge cycles of the 

storages are known in advance and available in the same input files that 

the GA adopts. Therefore, it should be possible to define an optimized 

strategy for the storage, resulting in a power curve of the storage usage 

during the day, separating it from the optimization performed by the SS 

algorithm. This means to find an optimized sequence of states for the 

whole day, whereas, the way the system passes from one state to the 

other is optimized separately.  

Because storages can operate as both loads and generators, in terms of 

energy balances in the time-step, the following assumption is reasonable: 

the storage discharge can be represented by an increase of generation or 

decrease of the load, vice versa, charging the storage is energetically 

equivalent to increasing the load or decreasing the generation. Because 

the definition of the set points for the generators is up to the GA, the 

choice is to modify the load profiles according to the storage usage. By 

“energetically equivalent” is meant that whereas in terms of average 

power produced or consumed the assumption is physically sound, it 

might not be in terms of plant control, i.e. the suggested operation may 

differ from the one actually feasible on the plant, depending on its layout 

and control system. This is always to be taken into account when dealing 

with optimization algorithm applied to actual systems, in this case, a small 

power plant, as will be stressed in the following sections.  
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4.2.2.3 Limits of the early approaches 

In this section are briefly described two of the early logics imagined to 

define the ideal storage power and charge profiles to be supplied to the 

SS algorithm. In addition, their shortcomings are highlighted with the 

intent of providing to the reader useful information to avoid following 

proved-wrong paths. 

Some of the early attempts to define an optimized strategy for the 

storage operation include: 

 Definition of rules for storage charge/discharge based on 

possible control logics (e.g. common sense); 

 Definition of rules for storage charge/discharge automated via 

fuzzy-logic. 

Indeed, it is logical to think that a good employment of the storage is to 

produce more than necessary and stock energy when it is cheap to 

produce, conversely, to discharge the storage when producing energy is 

expensive. Therefore, based on the average value assumed during the 

day by selected inputs and evaluating the same inputs in a given time-

step can provide a hint regarding an optimized operation of the storage. 

This was the idea behind the first early attempts. The parameters that 

were considered as most influential in the definition of power profiles for 

the storages were: the electric and thermal loads considered (heating 

during winter and cooling during summer), the electricity costs and the 

natural gas costs. In order to take into account also the specifications of 

the equipment installed in the plant, two more parameters were 

relevant: the maximum electric and thermal power output of the CHP. 

Based on these inputs a set of rules was designed using, in the first case, 

logic and common sense, in the second attempt, a fuzzy-logic controller. 

In the first case, the set of rules was defined as if the storage were 

operated manually and therefore thinking about the optimized solution 

for each specific situation. The set of rules already presented the first 
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issue of this approach. The rules were specified as Charge, Discharge, 

Charge more, Discharge more or none of the above. Therefore, an 

important role in the definition of the final profile was played by chaos 

and the way the generic rule; e.g., “Charge” was translated in a random 

value of power within a specified range. The higher the randomness 

allowed by the set of rules, the worse the results achieved. In every test, 

the set of rules performed worse than the SS algorithm that was assumed 

as baseline. This leads to the second issue, which is the definition of the 

rules themselves: in order to reduce the randomness, new inputs for the 

evaluation of the present conditions must be introduced, the number of 

cases to define grows exponentially being equal to the number of 

possible combination of inputs. Moreover, as the definition of the cases 

increases it becomes very hard to define a reasonable rule that is always 

true in the case considered. As the process of cases definition became 

more and more intricate and complex it was clear that the procedure 

proposed was not feasible.  

A way to reduce the randomness of the solution without the need to 

specify a high number of cases (i.e. rules), “by heart”, was to apply an 

automated procedure that could lead from a set of inputs to the ideal 

output using a small set of rules. A fuzzy-logic controller would have been 

an ideal tool for the purpose. One of the fundamental hypothesis 

underlying fuzzy-logic controllers is that the rules set should be always 

valid within the range of inputs for which they are specified. If this 

hypothesis fails then it is impossible to define a unique output given a set 

of inputs, because the rules are no longer certain and unique themselves. 

Once the possible combinations of the inputs were defined, from an 

analysis carried out that in some cases, it emerged that the rule could not 

be distinctive because, depending on the exact value of each input and 

the relationships between them it was possible to have different ideal 

behaviors. It could be debated whether the ambiguity could have been 

removed with a different set of inputs or increasing the number of inputs 
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and consequently the number of cases to analyze and thus rules to 

define. The first option looked improbable, considering that the set of 

inputs selected was certainly very influential on the solution. The second 

option, conversely, could have potentially increased by several times the 

number of cases to define, without granting, at the same time, the 

absence of any ambiguity.  

For the reasons illustrated in the present section, the early approaches 

were discarded in favor of a different concept. The basic idea was still the 

assumption that the information regarding the storage usage could be 

optimized separately and transmitted indirectly, in the form of a modified 

load, to the SS algorithm, but it relied on a completely different method 

for optimization to define the ideal storage operation for the whole day.  

4.2.3 The shortest-path algorithm and its capabilities 

In the previous section it was discussed how the states of the system were 

defined in terms of storage charges and time-step considered, suggesting 

that the optimization of the daily operation of the SU could be achieved 

by finding the best sequence of states during the day. There are 

algorithms that perform very well when they seek the best possible 

sequence of states that leads from a starting state to an arrival one. As a 

family, these algorithms are referred to as shortest-path algorithms. They 

are renowned for their reliability, speed and accuracy. Because of this, 

they are used in every-day devices such as navigation systems when the 

user is looking for directions (preferably the shortest or fastest route) 

from a place to another. These algorithms work on structures, defined 

graph, which are an abstraction of the system and represent the possible 

connections between different system states. In the case of the ideal 

route finding, each state represents a location and each connection a 

possible route from one location to another. Continuing with the example 

of the navigation system, the states of the system are not influenced by 

the weight of the car, the speed at which it is travelling, whether there is 
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wind or rain; the only variable defining the state of the car is its position. 

These variables may influence the costs associated to the transformation 

from one state to another, which in the graph are represented by the 

connections between states. Therefore, it can be noticed how the 

description of the system, and thus its optimization, can be divided in two 

parts 

 The description of the physics of the system, which can be 

performed with the desired degree of detail and is adopted to 

define how the system can evolve from one state to another; 

 The definition of all the possible states that the system can 

assume. 

Once the states of the system are defined and the transformation from 

one another can be simulated by means of an ad hoc model, which in our 

case is the SS algorithm, the shortest-path algorithm can be adopted to 

optimize the sequence of states. Recently, other researchers, such as 

Facci et al. (2014) [115], have employed similar approaches for the 

description of energy systems. There are several algorithms dedicated to 

the search of the shortest path within a graph, e.g. Dijkstra, Bellman-Ford, 

A*, Floyd-Marshall, Johnson. Each one requires the graph to have specific 

properties in order to be used. A brief introduction on graph theory is 

provided hereafter with no intent to be complete. It should be meant as 

a quick reminder or introduction to the topic for the interested reader.   

4.2.3.1 Brief introduction to Graph Theory 

A graph is a set of elements, defined nodes or vertexes of the graph, which 

can be connected one another by means of lines called edges. A graph 𝐺 

is defined as a couple (𝑉(𝐺), 𝐸(𝐺)), where, 𝑉(𝐺) is a finite, non-empty 

set of nodes and 𝐸(𝐺) is a finite, non-empty set of edges, and is defined 

as the set of edges of 𝐺 such that the elements of 𝐸 are couples of 

elements of 𝑉. There can be two families of graphs: oriented and non-

oriented graphs. An oriented graph contains oriented edges, meaning 
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one-way edges from the first node of the couple to the second, i.e. it is 

possible to go from node 𝑖 to node 𝑗 but not the opposite. In a non-

oriented graph, on the other hand, it is always possible to go both from 

node 𝑖 to 𝑗 and from 𝑗 to 𝑖. A path in a graph is a sequence of nodes, 

reached one after the other. A great part of graph theory is related to the 

study of the paths and the way to optimize these paths in graphs with 

different features. There are several ways to represent the edges of a 

graph, a convenient way for programming is what is called the adjacency 

matrix: if a graph 𝐺 is composed of the set of nodes {𝑣1, … , 𝑣𝑛}, the 

adjacency matrix of 𝐺 is a 𝑛 × 𝑛 matrix 𝐴 = (𝑎𝑖𝑗) where, each element 

𝑎𝑖𝑗  can be defined as follows: 

𝑎𝑖𝑗 = { 
1 𝑖𝑓 𝑒𝑑𝑔𝑒 (𝑖, 𝑗) ∈ 𝐸,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             

 

 

Eq. 27 

 

Figure 26 - Oriented graph and its adjacency matrix 

Figure 26 presents an example of oriented graph and its adjacency matrix, 

where each row represents the starting node of a given edge and each 

column the arrival node, e.g. element 𝑎12 has value “1”, which means 

that there is an edge in the graph starting from node 1 and arriving in 

node 2. On the other hand, a different element, such as 𝑎42 has value 

“0”, meaning that there is no edge in the graph connecting node 2 to 

node 4. Being an oriented graph, whereas it is possible to reach node 2 

from node 1, the opposite is not allowed (to do so there should be one 
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more edge aiming from node 2 to node 1), therefore 𝑎12 is equal to one, 

whereas 𝑎21 is equal to zero. If the graph in Figure 26 were non-oriented 

the following would be always true: 

𝑎𝑖𝑗 = 𝑎𝑗𝑖  

 

Eq. 28 

Thus, the adjacency matrix would be symmetrical. The adjacency matrix 

can also provide information on the “costs” associated to each edge. With 

cost or weight, it can be meant a proper monetary value, such as the 

expenses to travel from a city representing node A to another 

representing node B, just like any measurable value that is associated to 

the transformation of a physical system that leads it from state A to state 

B. For example, citing again the problem of navigation systems, the 

distance to travel from a location to another. In the case when the matrix 

with the information on the connections between nodes, presents the 

costs of the existing connections, the matrix is called weighted adjacency 

matrix, an example is showed in Figure 27 

 

Figure 27 - Weighted graph and weighted adjacency matrix 

In graphs theory, with the terms “shortest-path” is meant the solution of 

the problem seeking the less expensive route between to nodes, i.e. the 

sequence of edges linking two desired nodes whose sum of the costs is 

the lowest possible in the graph. Let 𝐺 = (𝑉, 𝐸) be an oriented graph 

with a cost function 𝑤: 𝐸 → ℝ, which associates to each edge a value 

from the Real numbers set. Given a path, 𝑝 = 〈𝑣0, 𝑣1, … , 𝑣𝑘〉, the cost of 
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the path is the sum of the weights of each edge that constitute the path 

itself: 

𝑤(𝑝) =  ∑ 𝑤(𝑣𝑖−1

𝑘

𝑖=1
, 𝑣𝑖) 

Eq. 29 

 

The weight of the shortest path from 𝑢 to 𝑣 is thus defined as: 

𝛿(𝑢, 𝑣) = {
min{𝑤(𝑝) ∶ 𝑢 ↝𝑝  𝑣} ,   𝑖𝑓 𝑎 𝑝𝑎𝑡ℎ 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑢 𝑎𝑛𝑑 𝑣 𝑒𝑥𝑖𝑠𝑡𝑠  

∞,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         
 

The shortest path between node 𝑢 and node 𝑣 is therefore each path 𝑝 

with a weight 𝑤(𝑝) =  𝛿(𝑢, 𝑣). 

In the present case, because the starting state, i.e. the state of charge of 

the thermal and electrical storage, is known in advance, the shortest-path 

problem is of the “single source” kind. For this type of problem, one of 

the best performing algorithms is the one developed by Edsger Dijkstra, 

which takes his surname.   

4.2.3.2 Dijkstra algorithm description 

Dijkstra algorithm can efficiently find the shortest path between a 

starting node and all other nodes in an oriented and weighted graph 

featuring only positive costs. The search is performed updating the values 

of the costs from the starting node to every other node at each passage, 

so that when a lower weight path is found, the total cost to reach a given 

node is updated. The cost associated with reaching a given node is 

finalized, i.e. it is the lowest possible, when its cost is the minimum of all 

the nodes already reached. Let us formalize the concepts that underlie 

this algorithm: 

Lemma 1: Given an oriented and weighted graph 𝐺 = (𝑉, 𝐸) with 

weights 𝑤:𝐸 → ℝ let 𝑝 = 〈𝑣1, 𝑣2, … , 𝑣𝑘〉 be a shortest path between 

vertex 𝑣1 and vertex 𝑣𝑘 and, for each 𝑖 and 𝑗 such that 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘 let 



Management of the plant 

185 

𝑝𝑖𝑗 = 〈𝑣𝑖 , 𝑣𝑖+1, … , 𝑣𝑗〉 be the sub-path of 𝑝 from vertex 𝑣𝑖 to 𝑣𝑗. Then 𝑝𝑖𝑗  

is the shortest path between vertexes 𝑣𝑖 and 𝑣𝑗. 

Demonstration: Decomposing the path 𝑝 as 𝑝 = 〈𝑝1𝑖 + 𝑝𝑖𝑗 + 𝑝𝑗𝑘〉 then 

𝑤(𝑝) = 〈𝑤(𝑝1𝑖) + 𝑤(𝑝𝑖𝑗) + 𝑤(𝑝𝑗𝑘)〉. Let us suppose that a path  𝑝𝑖𝑗′ 

with weight 𝑤(𝑝𝑖𝑗′) ≤ 𝑤(𝑝𝑖𝑗) might exist. Then, 𝑝′ = 〈𝑝1𝑖 + 𝑝𝑖𝑗′ + 𝑝𝑗𝑘〉 

would be a path between  𝑣0 and 𝑣𝑘 shorter than 𝑝, but this is in 

contradiction with the hypothesis made, therefore impossible. □ 

Corollary 1: Let 𝐺 =  (𝑉, 𝐸) be an oriented and weighted graph with 

weights 𝑤:𝐸 → ℝ. Let us assume that the shortest path 𝑝 from a source 

𝑠 to a destination vertex 𝑣 might be divided in 𝑠 ↝𝑝′  𝑢 → 𝑣 for some 

vertex 𝑢 and path 𝑝′. Then the weight of the shortest path between 𝑠 and 

𝑣 is 𝛿(𝑠, 𝑢) + 𝑤(𝑢, 𝑣). 

Demonstration: Known Lemma 1, the sub-path 𝑝′is a shortest path 

between the source 𝑠 and the vertex 𝑢, therefore: 

𝛿(𝑠, 𝑣) = 𝑤(𝑝) = 𝑤(𝑝′) + 𝑤(𝑢, 𝑣) = 𝛿(𝑠, 𝑢) + 𝑤(𝑢, 𝑣)  Eq. 30 
 

Considering a graph 𝐺 = (𝑉, 𝐸) and 𝑠 the source or initial node with 𝑠 ∈

𝑉, the representation of the shortest paths is carried out associating to 

each vertex 𝑣 ∈ 𝑉 a predecessor vertex 𝜋(𝑣). Let us define then 𝐺𝜋 =

 (𝑉𝜋, 𝐸𝜋) as the sub-graph predecessor of 𝐺 with:  

𝑉𝜋 = {𝑣 ∈ 𝑉: 𝜋[𝑣] ≠ 𝑁𝐼𝐿} ∪ {𝑆} 

𝐸𝜋 = {(𝜋[𝑣], 𝑣) ∈ 𝐸: 𝑣 ∈ 𝑉𝜋 − {𝑆}} 

A sub-graph predecessor of 𝐺𝜋 is a tree of the shortest paths for 𝐺 if: 

 𝑉𝜋 is constituted by all the vertexes of 𝐺 that can be reached 

from vertex 𝑠; 

 𝐺𝜋 forms a tree with root in 𝑠; 
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 The simple path from 𝑠 to 𝑣 in 𝐺𝜋 coincides with the shortest 

path between 𝑠 and 𝑣 in 𝐺. 

The representation of the tree can be done using an array 𝜋 with the 

same dimension of the number of nodes, such that 𝜋[𝑢] includes the 

node from which, in the path, 𝑢 is reached. For each vertex 𝑣 the 

algorithm keeps the following attributes: 

 𝑑[𝑣] which represents an estimate of 𝛿(𝑠, 𝑣); 

 𝜋[𝑣] which represents the predecessor of 𝑣 in the path with 

weight 𝑑[𝑣] from 𝑠 to 𝑣 

The Dijkstra algorithm utilizes a technique defined as relaxation of the 

edges. This allows it to update the values of 𝑑[𝑣] and 𝜋[𝑣] during the 

search for the shortest path: when an edge (𝑢, 𝑣) is relaxed, it is verified 

whether it is possible to find a path from 𝑠 to 𝑣 with a cost minor then 

𝑑[𝑣] when using the edge (𝑢, 𝑣). At each step, the algorithm considers a 

set 𝑆 including the vertexes whose weights when walking on the shortest 

path, have already been finalized, i.e. 𝑆 includes the vertexes 𝑣 ∈ 𝑆 such 

that 𝑑[𝑣] = 𝛿(𝑠, 𝑣). The adjacent vertexes to those in 𝑆 for what is called 

a boundary between the vertex whose shortest path from the source is 

known, and all the other vertexes. Inside the array 𝑑, at each step of the 

Dijkstra algorithm, the weight of the best path for each node which was 

found until that step is saved. Among the nodes forming the boundary of 

the set 𝑆, the algorithm seeks the vertex 𝑢 ∈ 𝑉 − 𝑆  featuring the 

minimum weight from 𝑠 and when it is found, it is added to the set 𝑆 and 

relaxes, i.e. updates, all the edges connected to the node 𝑢. If the total 

costs to reach the nodes reached during the relaxation is lower than the 

previous value they were assigned, then the value is updated and the 

predecessor of those nodes is 𝑢, otherwise they remain un-modified both 

in terms of cost and predecessor. To understand better the procedure, a 

pseudo-code of the algorithm is provided hereafter: 

1. The first node 𝑠 is included in the set 𝑆; 
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2. All the vertexes adjacent to 𝑠 are relaxed, i.e. the cost to reach 

them from 𝑠 is updated; 

3. Among the vertexes adjacent to 𝑠, the one with the shortest 

path is: 

a. Added to set 𝑆; 

b. The weight of the path from 𝑠 to it is finalized; 

c. Its predecessor is set to 𝑠; 

4. All the vertexes adjacent to the node just included in 𝑆 are 

relaxed; 

5. Continues repeating step 3 and 4 until all the nodes have been 

evaluated and included in 𝑆 or the desired node is included in 𝑆. 

Figure 28 shows a visualization of the algorithm steps during a full run. 

The source is the node with cost 0 in the diagram on the top left, the costs 

of the shortest path from that node to any other node of the graph are 

encircled inside the node. The weight of each edge is on the arrow from 

one node to another. The nodes in black are those that are included in 

the set 𝑆, the grey one is the one that is being included in 𝑆 at the 

considered step. The red edges are those followed to reach the 

predecessors of each node in their shortest path from the source. As can 

be seen, in the second step (diagram on the top right), the nodes adjacent 

to the source are relaxed with values 10 and 5 which are the costs of the 

paths to reach them from the source. The node selected is the one whose 

path-weight is 5 being the minimum among those relaxed. Therefore, 5 

is finalized and the node is added to the set 𝑆. The weight of each path 

reaching a node adjacent to the one just added to S is relaxed, and among 

them, the one with the minimum weight is selected. It can be noticed 

that the node that at the second step had cost equal to 10 receives an 

update of its cost, which is now equal to 8. All the other nodes that can 

be reached from the node of cost 5 are evaluated and the one with the 

minimum path, which is the one with cost 7 is added to 𝑆. The algorithm 
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proceeds until all the nodes are finalized, as it can be seen in the bottom 

right diagram.  

 

 

Figure 28 - Visualization of Dijkstra algorithm procedure 

One of the most important characteristics of this algorithm, when applied 

to physical systems, is that the computational time it requires is 𝑂(𝑉2) 

which means that adding states of the system to evaluate, i.e., variables 

does not exponentially increase the complexity of the problem, which 

grows “just” in a quadratic way. In the next section, the application of 

Dijkstra algorithm to the problem of daily optimization of the storages is 

described in detail. 
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4.2.3.3 Application of Dijkstra algorithm to the Smart User 

Before detailing the algorithm designed, it is useful to describe the way 

the storages are modelled and how the graph for the analysis of the daily 

operations is created. The total number of storages that can be active at 

any given time is two: the cold and the electric one during summer or the 

hot and electric one during winter. If the thermal storage is divided in 

𝑡 levels of charge and the electric storage in 𝑒 levels, considering the 

number of time-steps of a single day, 𝑛, the maximum number of system 

states is: 

𝑉 = 𝑡 ∙ 𝑒 ∙ 𝑛 
 

Eq. 31 
 

Therefore, the graph to be created has 𝑉 nodes. Going from one state 

(i.e. a combination of levels of charge of the thermal and the electric 

storage) to another, implies a given amount of power to be either 

supplied or absorbed by the storages. Thanks to the energetic 

equivalence between the energy absorbed or released by the storage and 

the energy produced by a generator or requested by a load, the 

information regarding the power usage of the storage can be passed to 

the SS algorithm by means of a modification of the corresponding load 

profile. The power of the storage must respect the maximum and 

minimum power constraints set for it. This check must be performed each 

time the original input is modified. On the other hand, once the maximum 

and minimum charge levels for the storages are defined at the beginning 

of the algorithm, there is no need to perform a check to verify whether 

the power considered to reach a node from another might charge or 

deplete the storage over the limits imposed. Indeed the constraint of 

charge level is always verified by the way the graph is defined, see Figure 

29 for reference. The first node of each time step represents the 

maximum level of charge of both the storages (electric and thermal). On 

the other hand, the last node of each time-step represents the state 

where both the storages are at their minimum charge. 
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Figure 29 - Example of hot thermal storage representation with seven levels of 
charge 

The number of possible combinations of sequences in the graph is still 

high, (𝑡 × 𝑒)𝑛, but here is where the Dijkstra algorithm comes in aid, 

thanks to its computational complexity equal to 𝑉2. Let us consider an 

example with 100 time-steps and 10 possible levels of charge for each 

storage, for a total number of combinations of 100100 = 10200, the 

computational complexity is only in the order of 108! The downside of this 

approach, is that the SS algorithm needs to assess the costs to pass from 

a combination of levels of charge in a time-step to another combination 

in the next time-step. In order for the Dijkstra algorithm to work, each 

connection between a combination and another should be evaluated.  

The number of maximum runs of the SS algorithm, nonetheless, is not 𝑛 ∙

(𝑡 ∙ 𝑒)2, but, in the worst case: 

𝑚 = (2𝑡 − 1) ∙ (2𝑒 − 1) ∙ 𝑛 
 

Eq. 32 
 

The reason is that, in order to provide different results, the SS algorithm 

must receive different inputs, which means, in this case, different values 

of the power exchanged with the system by the thermal and electric 
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storage. Actually, for similar decrement or increment of the charge level 

of the storages, the value of power exchanged with the storage itself is 

the same, and therefore all the edges in the graph that feature the same 

power exchanged with the storages will have identical costs. In Figure 30 

an example of a graph is reported for five time-steps and three levels of 

charge for both the thermal and electric storage. It can be noticed that 

for each storage, divided for example in 𝑙 levels, to go from one time-step 

to the successive one, the possible steps of power are 𝑙 − 1 positive ones, 

from the minimum level of charge up to the maximum, the same number 

of negative ones and one associated to null power. The total number is 

indeed 2 ∙ (𝑙 − 1) + 1 = 2𝑙 − 1. Which, considering 𝑡 thermal levels and 

𝑒 electric levels leads to equation 32. 

As will be illustrated in the following chapter, dedicated to the analysis of 

the results, the number of subdivisions of the levels of charge of the 

storages is very influential on the benefits that can be achieved with this 

algorithm compared to the SS one. Indeed the latter defines each variable 

with an 8 bit resolution, thus 256 different levels, whereas a reasonable 

number of subdivisions of the storage charge is in the order of 20 to 30, 

depending on the maximum power output and capacity of the storage 

itself. Indeed, when the storage is large, and its maximum power output 

is small, many of the possible connections between nodes will be 

impossible, and therefore the actual resolution of the analysis for the 

storage might be insufficient to achieve good results. Because of this, the 

future developments for the algorithm include different ways to create 

the graph for the problem, which will reduce the number of unfeasible 

edges in the adjacency matrix. 
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Figure 30 - Example of Graph with 5 time steps, 3 charge subdivisions for both 
Thermal and Electric storage. The storage is allowed to charge up or discharge 

down of only one level for time-step 

The algorithm designed to optimize the storage operation consists of 

three different parts: 

1. The computation of the modification to apply to each 

type of load involved in the analysis.  At the end of this 

phase an appropriate input file for the SS algorithm is 

produced;  

2. The execution of the SS algorithm, used to assess the 

costs of the transformation from one state to another; 

3. The execution of Dijkstra algorithm to find the 

optimized sequence of states, i.e. storage charges, 

during the day. 

Although it is meant to be translated in C++ language in order to be faster 

and lighter, the above algorithm was first developed in MatLab©. 
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Depending on the thermal layout of the Smart User plant, the operations 

of the system itself differ. This happens because some devices or layouts 

can add further constraints to plant operations. Although there is plenty 

of possibilities for the thermal layout of the SU plant, these options 

ultimately fall in two categories, mentioned in the previous chapter: all 

generators in parallel with the storage, or auxiliary generators in cascade 

to their respective storage and the user. The advantages and 

disadvantages of each scheme have already been discussed in the 

chapter dedicated to the design of the Smart User. Hereafter a 

description of the different algorithms used for the two general layouts 

illustrated in Figure 13 and Figure 15 is provided. 

4.2.3.4 Generators in parallel with their storages 

The first algorithm presented here was designed to work with the plant 

where all the generators can charge their respective storage, whereas the 

loads are satisfied directly only by the storages themselves. The layout 

considered is the one presented in Figure 13. 

In order to build the graph required for the daily optimization performed 

by the Dijkstra algorithm, the storages charge are divided in a desired 

number of levels. Depending on the size (capacity) and the power of 

charge/discharge allowed by the storages, the number of ideal 

subdivisions may differ. For most of the tests carried out offline the 

choice was to subdivide the thermal or the electrical storages in 30 levels 

when they were optimized alone. On the other hand, when both were to 

be optimized at the same time, the number of subdivisions of choice was 

8 for each storage due to computational limits. The higher the ratio 

between capacity and power that the storage can provide the higher is 

the number of subdivisions recommended. Indeed, if the number of 

subdivisions is too low, the power of charge/discharge required making 

one step up or one step down in terms of storage charge could be too 

high compared to the power specifications of the storage itself, see 

Figure 31.  
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Figure 31 - Reachable storage charge levels when considering a maximum 
power exchange with the storage, nodes representation. 

The algorithm begins receiving from the SCADA (online tests) or from the 

user (offline tests) the level of charge of the storages at the beginning of 

the day. Once these two values are known, it is possible to identify the 

starting node on the graph. Other inputs required are those illustrated 

for the GA. Indeed, the first part of the shortest-path algorithm needs to 

define the inputs for the SS algorithm (used in the version described in 

4.2.1.1) whose output is required to define the costs of the edges in the 

graph. For each time-step considered, the original electric and thermal 

(or cooling) load is modified (2𝑒 − 1)(2𝑡 − 1) times which corresponds 

to the total combinations of possible thermal and electric power of 

charge/discharge of the storages. Thus, the GA will receive a number of 

time-steps, which is no longer corresponding to the duration of a day but 

depends on the number of edges’ costs to calculate. As previously stated, 

the number of combinations to analyze is well below the total number of 

edges of the graph, because only those featuring different power 

exchange with the storages actually matter and will have different values. 

From Figure 30 it can also be noticed that some edges are missing 
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because the connection between nodes is unfeasible in terms of power. 

This reduces even further the total number of edges to calculate. 

Nonetheless, to speed up the process, each case is evaluated only once. 

Therefore, the tuning of the algorithm is vital to ensure that the solution 

found in the first run is stable and reliable. When the generators are all 

capable of charging their storages, the constraints on storage power are 

limited to the maximum power of charge and discharge, both depending 

on technical limitations of the storage or the plant. Therefore, the 

constraints are set just referring to a possible maximum power for charge 

and discharge of the storages: 

𝑃𝑚𝑎𝑥,𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 < 𝑃𝑠𝑡𝑟𝑔 < 𝑃𝑚𝑎𝑥,𝑐ℎ𝑎𝑟𝑔𝑒 

 

Eq. 33 
 

The cost of the edge corresponding to the 𝑃𝑠𝑡𝑟𝑔 imposed is evaluated 

only if it complies with the constraint, otherwise the corresponding time-

step in the GA is skipped and a fictionally high value for the fitness 

function (i.e. edge costs) is provided as output. This imposes the GA to 

avoid running for cases that are not feasible in the actual plant, thus 

reducing the overall computational time. Once the cost of all the edges is 

known, it is possible to write the weighted adjacency matrix. This is done 

calculating, for each edge, the corresponding electric and thermal 

storage power, which is the key to writing the correct value of the fitness 

contained in the output of the GA inside the weighted adjacency matrix. 

In the case where some values of the fitness are negative, which can 

happen for the economic objective function when the production from 

renewables is greater than the loads to satisfy, these values must be 

transformed to positive in order for the Dijkstra algorithm to work. This 

is done simply by adding the absolute value of the most negative fitness, 

increased by 1 to avoid having zeros, to all the fitness values. The final 

results are not influenced by this modification for two reasons. First of all 

it is evenly applied to the whole matrix, therefore the preferred path will 

still be the same. Secondly, the final costs of the shortest-path followed 
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are recovered directly from the original output file, where they are not 

modified.  

When the weighted adjacency matrix is complete, Dijkstra algorithm runs 

finding the shortest-path between the starting node (i.e. the initial 

storages charge condition) to all the other nodes in the graph. Thus, when 

run, it is possible to find the best path to reach every possible charge 

levels combination during each time-step. This may turn particularly 

advantageous for the Advanced Dispatching algorithm, where the final 

condition of the storages might be preferred, during the day, different 

from the one initially thought.  

4.2.3.5 Auxiliary units in cascade between storage and loads 

In the case of thermal layouts similar to the Pontlab one, the previously 

defined procedure would lead to unfeasible solutions. Indeed, the 

previously described algorithm considers every thermal energy generator 

to be able to charge the thermal storage. Therefore, it might choose to 

charge it using the CHP or the auxiliary unit or a mix of both, depending 

on the optimization performed by the GA. This is no longer true for the 

more traditional or conservative plant layouts where the auxiliary units 

act as back-ups and thus, are installed between the storage and the load. 

Moreover, these units are controlled by temperature set-points, hence it 

is not possible to impose their power output in advance, even though it 

is possible to know which will be their average power output during a 

time-step, once their actual control system is reproduced. To do so, and 

yet employ the daily optimization algorithm developed, a greater number 

of constraints must be imposed on the algorithm. The challenge is to 

provide the correct inputs for plant operation in terms of average power, 

whereas the plant itself is controlled by temperature inputs, incurring the 

smallest error possible. Hereafter, an explanation of the assumptions and 

the hypothesis made in order to achieve this goal is proposed.   
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The first aspect to take into account is the way the bypasses operate on 

the plant. The bypasses are controlled by temperature inputs, in 

particular the bypass opens if the temperature of the fluid coming out of 

the storage is lower than the temperature of boiler activation (winter), 

or, higher than the temperature of chiller activation (summer). The 

storage is assumed as perfectly stratified; therefore, the temperature at 

the outlet is always the maximum inside the hot storage and the 

minimum in the cold one. This hypothesis is reasonable because although 

some mixing at the inlet of the storage might occur, seldom the fluid near 

the outlet would be influenced by the process, given the storage size and 

the mass flow entering or exiting the storage. If these assumptions hold, 

then the storage can actually be employed until the back-up boiler 

activates. At any lower temperature, even if the bypass were still closed, 

the CHP could not supply the load directly, and therefore it could be used 

to charge the storage and let the boiler follow the load. Another 

important assumption is made in the algorithm: the temperature coming 

out of the storage is proportional to its energy level. According to this, for 

the hot storage, whose total mass of fluid is 3000 kg, it means that to 

increase the temperature at the outlet of 1 °C 3.48 kWh are required, 

whereas on the actual storage the amount required could be less. Indeed, 

it depends on the temperature profile inside the storage itself, see Figure 

32. The hypothesis made means also that the temperature profile inside 

the storage never changes. The actual system is controlled by 

temperature and thus it is required to know in advance the actual 

temperature at the storage outlet. On the contrary, the algorithm 

operates on average values during 15 minutes, therefore an energetic 

approach is to be preferred for the storage. 
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Figure 32 - Different thermal storage charge depending on the temperature 
profile within the stratified storage 

The hypothesis introduced is a safe one though, indeed it may reduce the 

actual energetic capacity of the storage, considering it full when there 

might be still room to store more energy. All that said, the temperature 

corresponding to the maximum charge of the storage is the cut-off 

temperature for the CHP, 85 °C, for the hot storage, and the cut-off 

temperature of the absorption chiller, 4 °C, for the cold one. On the other 

hand, the minimum levels are those corresponding to the intervention 

temperature of the boiler and the compression chiller, respectively 60°C 

and 13°C. Let us consider the hot storage as example, the minimum 

temperature is the one of intervention of the boiler because until the 

boiler does not turn on, it means that the temperature at the storage 

outlet is at least 60 °C. If the boiler turns on, then the bypass is opened 

and therefore the storage is isolated from the plant. In this case, even if 

the CHP is turned off, the stratification of the storage is maintained and 

anyway the storage is kept isolated until the temperature at the outlet is 

higher than the one of intervention of the boiler. There is a limit 

temperature for which the behavior of the storage is harder to match 
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when considering an energetic point of view on the one hand and the 

temperature profile in it on the other hand. This temperature is not 

unique. Actually, it depends on the temperature difference between the 

inlet and outlet of the user, which is a function of the power demand of 

the user and the mass flow rate in the piping. When the temperature 

inside the storage is lower than the temperature of intervention of the 

boiler summed to the temperature difference between user inlet and 

outlet, then the thermal fluid from the user enters the storage at a 

temperature lower than the temperature of boiler intervention at the 

previous time-step.  

𝑇𝑙𝑖𝑚𝑖𝑡 = 𝑇𝑏𝑜𝑖𝑙𝑒𝑟,𝑂𝑁 + ∆𝑇𝑙𝑜𝑎𝑑,𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 

 

Eq. 34 
 

If this happens, there can be cases where the CHP actually sends to the 

top of the storage fluid at a temperature lower than the one at the 

storage outlet. Similar reasoning can be done for the cold storage.  

Depending whether the bypass is opened or closed the operation of the 

system changes, therefore there is a need to understand when the 

bypass will actually be opened, closed or both during one time-step, 

when assessing the cost of an edge in the shortest path algorithm. All the 

cases analyzed here consider the example of the hot storage. The bypass 

is surely closed when: 

 Trivial case: the storage is charged over the limit temperature 

and at the end of the time-step the temperature in the storage 

is still higher than the limit one. In this case the water returns 

from the users at a temperature higher than the boiler 

intervention, therefore all the fluid in the storage is at a 

temperature higher than 𝑇𝑏𝑜𝑖𝑙𝑒𝑟,𝑂𝑁, the bypass is hence closed; 

 Limit case: the temperature at storage outlet at the end of the 

time-step is lower than the limit temperature but still not the 

minimum of the storage. In this case, the temperature at the 
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bottom of the storage is lower than the temperature of 

intervention of the boiler. Nonetheless, the bypass is still closed 

because the average power balance does not need the boiler to 

intervene because the final charge of the storage is higher than 

the minimum value, therefore the storage cannot be depleted, 

which means the temperature at the outlet is still higher than 

the temperature of intervention of the boiler; 

 Time-step successive to a limit case, still with a storage 

temperature greater than the minimum: in this case three 

possible situations can occur: 

o If the storage is charging it means that 𝑃𝐶𝐻𝑃 > 𝑃𝑙𝑜𝑎𝑑 

therefore for Pontlab, where the recirculation pump of 

the loads has a greater mass flow rate than the one of 

the CHP, ∆𝑇𝐶𝐻𝑃 > ∆𝑇𝑙𝑜𝑎𝑑. The bypass will stay closed 

because at the bottom of the storage the fluid enters at 

a temperature higher than the one it had in the 

previous time step;  

o If the storage charge level remains constant then 

𝑃𝐶𝐻𝑃 = 𝑃𝑙𝑜𝑎𝑑 therefore, in Pontlab ∆𝑇𝐶𝐻𝑃 > ∆𝑇𝑙𝑜𝑎𝑑 is 

still valid. Again, the storage receives water at a higher 

temperature then the one it had at the previous time 

step and thus the bypass is still closed; 

o If the storage is discharging, then 𝑃𝐶𝐻𝑃 < 𝑃𝑙𝑜𝑎𝑑. In this 

case it is likely to happen that ∆𝑇𝐶𝐻𝑃 < ∆𝑇𝑙𝑜𝑎𝑑 

therefore the temperature at the bottom of the storage 

will be still lower than the boiler intervention 

temperature. Thus, the CHP might send to the top of 

the storage fluid at a temperature lower than the one 

of boiler intervention, inducing the bypass to open. 

Nonetheless, because the average power balance for 

the time-step is 𝑃𝑙𝑜𝑎𝑑 = 𝑃𝐶𝐻𝑃 + 𝑃𝑠𝑡𝑜 and there is no 

need for a boiler intervention energetically wise (the 
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storage is not empty yet) then the bypass will 

eventually close. Indeed, the possible mixing occurring 

in the storage, which has an energy charge greater than 

the minimum level, will eventually increase again the 

temperature at the storage outlet and thus keeping the 

bypass closed.  

Indeed in the last of the cases listed, or whenever ∆𝑇𝐶𝐻𝑃 < ∆𝑇𝑙𝑜𝑎𝑑 is valid 

in similar conditions for a general plant, then there is an error in the 

evaluation of the bypass condition if it is considered as closed for the 

whole time-step. Nonetheless, given that from the energetic point of 

view the storage is not empty, thus its average temperature is greater 

than the one of bypass opening, there is no reason to believe that for 

most of the time the bypass will stay closed.  

The bypass is definitely opened in one condition, if the power balance in 

equation 35 is verified. 

𝑃𝑙𝑜𝑎𝑑 − 𝑃𝑠𝑡𝑜 > 𝑃𝐶𝐻𝑃,𝑚𝑎𝑥 
 

Eq. 35 
 

This is clearly explained considering that if the CHP thermal output is not 

capable to supply the load along with the storage then it means that the 

boiler must intervene to fill the gap, but the boiler can intervene only if 

the temperature at the storage outlet is lower than its intervention set 

point and thus the bypass is opened. This also means that when this 

happens, the storage must be depleted, it is not possible to reach a 

charge level higher than the minimum one when the condition in 

equation 35 is verified. If it were possible, it would mean that the boiler 

could not turn on and therefore the load would not be satisfied. When 

the storage is depleted and the bypass opens, it is possible to know the 

percentage of time of opening of the bypass compared to the total time 

of the time-step. Indeed, it will be proportional to the value of 𝑃𝑏𝑜𝑖𝑙𝑒𝑟 
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compared to 𝑃𝑠𝑡𝑜, the greater the first compared to the second, the 

higher the amount of time of bypass opening.  

The algorithm, both in the initial part where the input file for the GA is 

generated and within the GA fitness function itself, must be modified in 

order to take into account what has been just described. The 

modifications applied in the phase of input generation are described 

henceforth. In the case of generators in parallel to the storage, the input 

file of the GA included a total of 𝑛(2𝑒 − 1)(2𝑡 − 1) rows, which 

represented all the possible cases of different connections between two 

nodes in the graph describing the energy system. In this case, on the 

contrary, the number is doubled in order to take into account that the 

behavior of the system changes depending whether the bypass is opened 

or closed. Therefore, for each possible combination of time-step, electric 

storage power and thermal storage power, two cases are considered: 

option one and option two. The option one case describes the behavior of 

the system when the arrival node of an edge, is the one corresponding to 

the minimum thermal charge level of the storage, option two, for every 

other case. When defining the input file, the power associated to the 

storage is an assigned variable, as the load. On the other hand, the CHP 

power output can be either free to be an optimization variable of the GA 

or must receive an imposed value, depending on the situation. This is 

done in order to avoid the GA suggesting unfeasible solutions. The 

possible cases list is: 

 If 𝑃𝑙𝑜𝑎𝑑 + 𝑃𝑠𝑡𝑜 > 𝑃𝐶𝐻𝑃,𝑚𝑎𝑥 , where 𝑃𝑠𝑡𝑜 is positive for charge 

and negative for discharge: 

o If the node of arrival in an edge is one corresponding to 

the minimum thermal charge level, then: 

 If the storage is charging, which is impossible 

because it is reaching its minimum value, then 

the GA will be skipped. Indeed, 𝑃𝑠𝑡𝑜 can be 
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either negative or zero when reaching the 

minimum level of charge; 

 If the storage is maintaining its original charge 

or it is discharging, then the GA is allowed to 

run with 𝑃𝐶𝐻𝑃 as an optimization variable. 

Indeed, because the storage is reaching its 

bottom level of charge, regardless of the power 

output of the CHP itself, the boiler will be used, 

therefore the CHP is still an independent 

variable; 

o If the node of arrival in an edge does not correspond to 

the minimum thermal charge level, then: 

 Regardless of the storage charging or 

discharging the plant is obliged to deplete the 

storage if 𝑃𝑙𝑜𝑎𝑑 + 𝑃𝑠𝑡𝑜 > 𝑃𝐶𝐻𝑃,𝑚𝑎𝑥 is verified, 

otherwise the boiler is not turned on and the 

load will not be satisfied. Therefore this case is 

impossible and the GA skips this case; 

 If 𝑃𝑙𝑜𝑎𝑑 + 𝑃𝑠𝑡𝑜 < 𝑃𝐶𝐻𝑃,𝑚𝑎𝑥, which means that the CHP is 

capable of providing the power requested by the combination 

of load and storage, then: 

o If the node of arrival in an edge is one corresponding to 

the minimum thermal charge level, then: 

 If the storage is charging, the situation is 

unfeasible as in the previous case, because it is 

impossible to charge the storage and reach its 

minimum level of charge, the GA is skipped; 

 If the storage is discharging, again, because the 

charge level reached is the bottom one of the 

storage, then the CHP power output can be an 

optimization variable, the amount of power not 
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provided by the CHP will be supplied by the 

boiler; 

o If the node of arrival in an edge does not correspond to 

the minimum thermal charge level, then: 

 Because in this case the boiler will not activate 

and the CHP is capable of satisfying both the 

load and the storage request, its power output 

is no longer an optimization variable, but must 

be imposed by the power balance 𝑃𝐶𝐻𝑃 =

𝑃𝑙𝑜𝑎𝑑 + 𝑃𝑠𝑡𝑜 . If the power output of the CHP 

were kept free, then its value could have been 

lower than the required one to fulfill the 

request of storage and load. Thus, the boiler 

should have covered the remaining power 

request, which is impossible on the plant 

because the boiler activates only when the inlet 

temperature of the fluid reaches the value of 

the lowest charge of the storage.  

Once the input file is created and the GA produces its output thanks to 

the SS algorithm, the next step is to compile the weighted adjacency 

matrix in the correct way, which means, choosing the right value of 

fitness between option one and option two. In the algorithm, this is 

achieved considering for each couple of node (i.e. row and column of the 

adjacency matrix) the temperature of the storage corresponding to the 

node of arrival, and thus selecting the appropriate fitness value. 

4.2.3.6 The modified fitness function 

The SS algorithm employed to return the costs of the edges of the graph 

is a different version compared to the first one developed that was 

described earlier in this chapter. The main difference is found in the 

function that assess the average power output of the devices in the plant, 

their costs and emissions, and calculates the value of the fitness of each 
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individual. Indeed, the power exchanged by the storage is no longer the 

result of the power balance between generators and loads, but it is 

imposed by the graph itself. Therefore, the fitness function has been 

modified in order to take into account the different way the system is 

controlled. Two slightly different versions are employed depending on 

the type of plant considered: generators in parallel or auxiliary unit in 

cascade. Let us introduce first the version for the plant with all the 

generators connected to their respective storage. 

The fitness function is altered in the initial part, where in the original 

version the power supplied or absorbed by the storages was calculated. 

The cooling (or thermal) balance illustrated in equation 7 is still valid. The 

way the balance is verified is simpler though: if the power generated is in 

excess, it must be dissipated (there is no way to store it because the load 

has already imposed the power of the storage), if the power generated is 

lower than the load, then the auxiliary unit must activate. The 

information regarding the storage management is now provided by the 

MatLab© script implementing the Dijkstra algorithm, from which, 

knowing the nodes travelled, it is possible to define the evolution of 

storage power exchange during the day.  

The same function must be further adapted to deal with plants similar to 

Pontlab. In particular, the GA receives as input three additional 

parameters: one that allows it to know which case it is examining, the 

imposed CHP thermal power output (or absorption chiller power output) 

if it is required by the case considered and the power absorbed or 

released by the storage. The possible cases to examine are three: if the 

input parameter called Cpp_version has value “1” then the CHP electric 

power output is one of the six optimization variables of the GA, if it has 

value “2” then the CHP receives the imposed value and it is no longer an 

optimization variable, if the value is “3” then the time-step is skipped, 

because unfeasible on the physical plant.  
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The algorithms designed offer a broad range of applications and can be 

implemented in plants featuring different thermal layouts. Both the 

versions have been tested off-line first. This has the advantages of a 

greater freedom in the definition of test cases to experiment and greater 

potential to stress the algorithm in order to evaluate its behavior even on 

unrealistic situations. Moreover, as it will be discussed in the next 

chapter, thanks to the daily data acquisition on Pontlab plant, it is possible 

to test off-line the actual working conditions that the algorithm would 

face once implemented on the physical plant.  

4.3 The advanced dispatching algorithm 

At the beginning of this chapter the role of the Advanced Dispatching 

Algorithm was briefly introduced as well as its importance, which has 

been also highlighted in several papers presented in the state-of-the-art 

chapter. Although it shows very little differences with the Day Ahead 

Algorithm, it is a fundamental component of the control system of the 

Smart User, especially when considering the future Smart Grid scenario 

where the DSO/TSO might constrain the electric power exchange of those 

plants feeding energy to the grid.  

4.3.1 Goal of the Advanced Dispatching Algorithm 

The main goal of the ADA is to update the optimization of the SU 

performed by the DAA, when a newer set of inputs or updated forecasts 

are presented. The presence of the ADA on the SU reduces the 

importance of possible scenario evaluations and stochastic analysis of 

weather and load data in order to achieve an accurate forecast during the 

day ahead. Indeed, the early optimization performed by the DAA can be 

updated “on the fly” according to the updates received. The inputs that 

might change from the time when the DAA and the ADA are launched 

include: the weather forecasts and therefore the productivity of RESs and 

the thermal loads, the desired activity to perform inside the SU, which 
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might change the thermal or electric loads. Moreover, a sudden request 

for ancillary services from the DSO/TSO might be rewarded if answered 

by the plant. Therefore, it is very important that the suggested operation 

for the SU during the day before is updated often, in this case every 

fifteen minutes, to take into account any possible modification that 

occurs with the set of inputs during the day. The update of the suggested 

operation is even more important when considering the possible future 

Smart Grid scenario where the DSO/TSO might impose restrictions on the 

power exchange profile of the user with the grid. In this case, the analysis 

performed by the ADA becomes fundamental in order to reduce the 

stress on the Real Time Algorithm that is in charge of ensuring the 

compliance of the actual power exchange profile with the grid to the one 

proposed to the DSO during the day before. The requirement of an 

updated solution at the end of each time-step imposes a limitation on the 

computational time allowed for the run of the ADA algorithm; a complete 

run, from input assignment to output production and storage into the 

SCADA system, should take less than fifteen minutes.  

4.3.2 Algorithm description 

Because the ADA receives the same kind of inputs of the DAA and it 

returns the same outputs, the structure of the two algorithms is identical. 

Thus, once the version of the SS algorithm and the respective shortest-

path one are defined according to the plant layout, then the same 

algorithm should be used as ADA in the present day. The main difference 

is that after each run, the number of time-steps considered is reduced, 

because the final time-step of the optimization is not 24 hours ahead of 

the beginning but the end of the present day, therefore each time it gets 

closer.  

The limitation in the resolution of the shortest-path algorithm when used 

as ADA is the computational time, although this is a temporary issue, 

because new and better performing hardware is released every year. It is 
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very important to limit the computational time required by it. In this 

sense, the fact that the algorithm presently written in MatLab(C) for 

offline test is meant to be translated in C++ for its application on the 

actual plant is a great advantage. By the time it will be implemented in a 

commercial controller, the algorithm designed is believed to be able to 

run well below the fifteen minutes mark. Indeed, at present, written in 

MatLab© code, it is already near the 30 minutes when considering both 

thermal and electric storages at the same time with eight subdivisions of 

the charge for each one of them. The reduction of the number of edges 

costs to evaluate achieved by an optimal definition of the graph and 

schematization of the energy system reduces the number of evaluations 

by a factor: 

𝑅 =
(2𝑒 − 1)(2𝑡 − 1)

(𝑒𝑡)2
 

 

Eq. 36 
 

In the same way, avoiding running the GA for unfeasible cases improves 

the computational time even more. The benefits are greater as the 

number of subdivisions of the electrical and thermal storages increases, 

which is desirable in order to improve the resolution of storage 

subdivision and ultimately achieve better results, as will be demonstrated 

in the next chapter.  

4.4 The real time management of the plant 

The Real Time Algorithm is a key component of the SU. Conversely from 

the DAA and the ADA, the RTA is not an optimization algorithm, its role is 

to ensure the correct operation of the plant once the suggested 

management has already been defined. A description of the operations 

performed by the RTA is provided in this section.  
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4.4.1 Goals of the Real Time Algorithm 

The main goal of the RTA is to make sure that the electric plant is 

operated correctly within the 15 minutes window, which is the length of 

a time step in both the DAA and the ADA. Two are the main aspects that 

it needs to take into account: 

 It must ensure that the actual load assigned to the CHP is satisfied 

in each moment; 

 It must make sure that the power exchange profile with the grid 

promised the previous day is respected. 

Both the optimization algorithms assume that each variable involved 

remains stable for the whole duration of the time step considered. It is 

easy to understand that this simplification must be adopted in the DAA 

and ADA in order to provide a valuable result in a reasonable time and 

because it is unlikely to know precisely the load profile one day in 

advance. Nonetheless, it is evident that this hypothesis finds no match in 

reality, where loads and renewables’ availability change in a continuous 

manner over time. Hence, there is a need for a link between the 

operation proposed by the optimizers and the actual plant operation. The 

RTA achieves its goals modifying the original set point of the CHP defined 

by the DAA first and then rearranged by the ADA. In order to avoid the 

CHP to continuously follow the load, which would be detrimental for its 

performance and reliability, the RTA employs also an electrical storage, 

which operates in parallel with the CHP generator. The electrical storage 

size depends on the difference between the operation of the CHP defined 

by the ADA and the actual one requested during the time-step 

considered. The greater the differences between the actual and the 

forecasted operation and the time during which the CHP operates in 

steady conditions, the greater the electric storage size must be. If the 

generator set point seldom changes, then the actual load following must 

be performed at a greater extent by the electric storage, which therefore 
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needs to feature a higher capacity. Indeed, the promised profile of energy 

exchange with the grid, which must be ensured the next day regardless 

of the differences in terms of loads and weather, depends on the 

forecasted operation. The ADA has a great influence on the RTA because 

with its updated optimization it can reduce the gap between the 

operation suggested by the DAA based on the forecasts of the day before 

and the real-time loads’ condition and RES’s generation. If only the DAA 

were used, the electrical storage required for load following would be 

definitely bigger than in the case where also the ADA is implemented to 

update the DAA solution. In detail, the algorithm operates as follows: 

1. The required inputs are loaded, the inputs are: 

a. The real time electrical load of the user is acquired 

directly from the plant in the online tests. 

Conversely, during offline tests it is provided 

manually, and is based on the average load expected 

in the day before but modified by means of a noise 

function; 

b. The real time electric energy production of PV and 

WT, acquired from the plant or treated in the same 

way as the electrical load for the offline tests; 

c. The promised energy exchange with the grid profile, 

which is one of the outputs of both the DAA and ADA; 

d. The initial storage charge, which, in the online tests 

is acquired from the plant. During offline tests 

instead it has a default value of zero and it is allowed 

to assume both positive and negative values, for it 

gives a valuable help to designers to decide which is 

its correct size. In the offline tests it does not 

correspond to a real charge level (where negative 

values would have no meaning); 
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e. The step length of the SCADA acquisition; 

f. The suggested CHP power output obtained by the 

DAA first and the ADA later; 

g. The time period that the algorithm can use to correct 

the power output of the CHP so that it can adapt to 

the new load and weather situation (called “time to 

pair”); 

2. Those inputs provided as vectors with 96 elements are 

modified in order to match the size of the real-time data, 

which is acquired once every 5 seconds; 

3. If the day tested is a fictional one then the real load applied 

to the CHP must be calculated starting from: the electrical 

load requested in real time by the user, the promised grid 

exchange profile and the power production of the 

renewables in real time; 

4. The correction to be applied to the CHP operation in order to 

be in compliance with the promised grid exchange profile is 

calculated. The power output of the CHP conforms to the 

specifications of the actual generator installed at the SU 

facility, therefore the maximum power output is 25 kW and 

the minimum before turning off the CHP is 2.5 kW. The 

correction can be applied in two different ways: 

a. Both the CHP and the storage set-points are updated 

once every 5 seconds; 

b. Only the storage set-point is updated every 5 

seconds, whereas the CHP one is updated once every 

given period of time (e.g. 5 minutes) allowing it to 

work better avoiding continuous transient 

conditions. 
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5. The correction is applied to the CHP power output of the ADA 

and it is based on the storage level at the previous time step: 

if the storage charges or discharges quickly the correction is 

strong, whereas it is moderate if the storage is slowly 

changing its level of charge. Another important set up 

parameter is the time to pair, the bigger this time period the 

bigger the storage size required. Indeed, if the time allowed 

for correction of the CHP set point is larger, the storage has 

to ensure that the gap between real-time loads and expected 

ones is covered for a longer time. Thus, it requires more 

capacity. Conversely, if the time to pair is small, then the CHP 

changes its set point more frequently, adapting itself to the 

load variation within the time-step; in this case the storage 

needs to provide less energy because the gap to fill will be 

smaller on average.  

The algorithm was tested only offline on ad hoc test cases because of the 

need for an electric storage to be installed on the SU plant in Pontlab in 

order to perform an experimental campaign online. The offline tests will 

be verified online in the near future, upon electric storage installation on 

the plant. The results of the tests will be described in the next chapter. 
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5 TESTS PERFORMED 

This chapter presents the results achieved by the algorithms described in 

the previous one. The tests were performed on two different kind of sets 

of inputs: benchmark inputs and actual days. The benchmark profiles 

were defined in order to highlight the behavior of the algorithm. These 

inputs present very distinctive load/costs combinations in a period of one 

day. Therefore, the results that the algorithm provides are very easy to 

read. Nonetheless, simple profiles as those designed for this purpose 

cannot provide useful information regarding the actual capabilities and 

performance of the algorithms on the actual SU. For this reason, the 

second set of inputs is composed of a collection of actual measurements 

carried out during the regular operation of the SU. Using the measured 

data for the off-line tests provides a greater degree of confidence 

regarding the correct behavior of the algorithms proposed on the actual 

plant. The optimization algorithms are not meant to perform an accurate 

simulation of the system but rather to take inputs averaged in the time-

step and define a possible strategy for the optimized management of the 

SU. Therefore, they do not need a proper experimental validation. 

However, an online test is required in order to be fully confident of the 

solidity of the approach followed and the tools developed for the 

optimization of the operations in the SU. The possible mismatch between 

the expense of operation resulting from the optimizers and the actual 

costs of operation of the plant are caused by: 

 Differences between the averaged inputs provided to the 

optimizers and the precise, real-time value of the same 

parameters during plant operation; 

 Incorrect or over-simplified modeling of the system behavior in 

the optimizers; 
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In the first case, if the mismatch is caused by poor forecasts of the actual 

loads or weather conditions, then it can be corrected partly by the ADA 

algorithm, and partly by more accurate forecasts. On the other hand, if 

the difference is due to a great variability of the actual values in real-time, 

compared to their average value considered, then the error is systematic 

and can be evaluated only by online-tests. In the second case, the error 

can be fixed if it is caused by phenomena influencing the average value 

of a given input or output during the 15 minutes frame. Conversely, if the 

phenomenon acts repeatedly with a much smaller time-scale, then it 

cannot be avoided without increasing the time resolution of the 

optimization. Again, this can only be assessed with online-tests. In the 

early online tests of the SS algorithm, run without the ADA and RTA on 

the plant, the small mismatch observed was mostly due to the difference 

of operations performed by the user, compared to the one foreseen in 

the day before. Thus, the error can be fixed regardless of the algorithm 

implemented partly by the ADA and partly by the user itself. The error 

experienced is not due to the lack of resolution in the fifteen minutes 

time step. The thermal plant has its own inertia, therefore it is not 

affected by high-frequency load variations. On the other hand, the 

electric part of the plant is capable of following rapidly varying loads, but 

if their average value during the 15 minutes period is the same as the one 

considered by the optimizers, then the mismatch between the costs (or 

emissions or energy consumption) of operation is minimized. This 

happens because the interface of the system is the grid, and the costs 

associated to the exchange of power with it are constant for periods of 

one hour. Moreover, as was explained when discussing the RTA in the 

previous chapter, the CHP set point is not changed every 5 seconds as the 

SCADA receives the new measurements, but rather every 2-5 minutes; 

hence its operation (and associated costs) is actually an averaged one, 

although with a smaller period than the one considered by the 

optimizers. 
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In order to be reliable, the online tests require all of the three algorithms, 

DAA, ADA and RTA to be implemented on the SCADA system. Thus, they 

will be carried out as soon as all them are translated in C++ language and 

loaded on the SCADA. In this chapter, first the input sets employed in the 

tests will be presented. Then, the results obtained by the Single Step and 

the Shortest-Path Algorithm (DJ from now onwards) on both benchmark 

and typical days profiles are presented. In these first tests, the DJ 

algorithm is tested in the Smart User configuration, i.e. with all the 

generators capable of charging their respective storages. Then the focus 

is shifted on the different plant layouts and the advantage they offer 

when compared to the standard operation of CHP plants. Finally, the last 

part of the chapter is related to the offline tests performed on the Real 

Time Algorithm to assess the accomplishment of the goals set. 

5.1 Tests on benchmark profiles 

A real system is often featured by working conditions that can vary 

significantly during the day. The resulting optimized operation can be 

very complex and hard to read. Because of this, and the need to verify 

the coherence between the suggested operations proposed by the 

algorithms and the logic of control of the system, a set of simplified inputs 

representing different situations was designed. These are referred to as 

benchmark profiles. In all the benchmark profiles the power exchange 

profile with the grid is assigned as the VSO (i.e. zero net exchange with 

the grid at every time) and a penalty of 0.1 €/kW is applied for non-

compliance to it. Although the VSO is an unlikely imposition, even in a 

future energy scenario, this is done in order to verify the algorithms’ 

suggested operation in an easily readable and yet demanding condition.  

5.1.1 Benchmark profiles intent and definition 

In total, thirteen different profiles were designed in order to test the 

algorithms on non-real data. These profiles do not need to be realistic. 
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The important requirement is to be able to test different situations that 

the algorithm could deal with during operation on the actual plant, but 

proposed in a clear and easily readable way. All of the benchmark profiles 

are to be tested in summer operation mode, which means there is no 

thermal load request in any case. Because of the symmetry of behavior 

between the cold and hot storages, the algorithms provide analogous 

results if tested in winter operation mode. In the first three input sets, 

the storage optimization is considered as a plus, because the intent is to 

address the behavior of the algorithms when different loads and RESs’ 

availability combinations are found. On the other hand, the sets of inputs 

named “Ad hoc #e” are specifically design to determine whether the 

correct management of the storage is obtained or not. For all this set of 

test cases, only the thermal storage is considered as part of the energy 

system, thus allowing a better readability of the results. Nonetheless, the 

approach is general and the lack of the electric storage is not restrictive.  

The input profiles are: 

 Constant Figure 34: as the name suggests, in this case all the 

inputs are constant throughout the whole day, even the sun 

radiation availability is kept constant also during the night. The 

electric power requested by the load is high enough to demand 

the whole power of the CHP at all times, even considering to 

employ both PV and WT at their maximum. The thermal load is 

zero (the input is to be tested with summer operation mode) 

whereas the cooling load is the one produced by the absorption 

chiller when the CHP is producing the electric power required to 

fulfill the electric load. The prices of electricity and natural gas 

are constant as well, see Figure 33. This is a very peculiar case; 

there is only one optimized solution, which is easy to be 

calculated because of the inputs. The CHP is expected to stay at 

maximum power the whole time as well as the RESs, no 

modulation occurring at any given time. The algorithms, when 
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tested here, are expected to find this unique solution; the more 

they shift from it, and the worse they are performing. It is 

interesting to notice that because of the unique optimized 

solution, which rapidly worsens when an optimization variable 

changes its value from the optimized one even slightly, all the 

algorithms, because of their GA core take a lot of time to 

identify the best solution, if they reach it; 

 

Figure 33 - Supply prices for electric energy and natural gas for cases: 
Constant, No RESs and With RESs 

 

Figure 34 - Benchmark profile "Constant": loads and renewables 
availability 
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 No RESs (Figure 35): variable electric and cooling loads with no 

renewables’ availability feature this set of inputs. The price for 

both electricity and natural gas is constant during the day. Every 

ten time steps the configuration of loads changes, therefore all 

of the possible situations are present. The combinations are 

composed considering that each load can be: 

o Zero; 

o Lower than the maximum power output of the 

respective generator; 

o Match the maximum power output of the respective 

generator; 

o Higher than the power output of the respective 

generator. 

 

Figure 35 - Benchmark profile "No RESs": loads and renewables 
availability 

 With RESs (Figure 36): This case has the same electric and 

cooling loads profile of the “No RESs” case but it adds the 

renewables’ availability in the analysis; therefore, the number of 

possible situations tested during the day increases. Indeed, not 

only each load can be zero, lower, higher or matching the 

power output of its respective generator but also PV and WT 
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availability can be: zero, lower or higher than the electric load. 

As in the “No RESs” case, prices are constant throughout the 

day; 

 

Figure 36 - Benchmark profile "With RESs": loads and renewables 
availability 

 Ad hoc 1e (Figure 38): all “Ad hoc e” cases feature a variable 

electricity price during the day, which is always the same for all 

cases and constant natural gas price. The price profile (Figure 

37) presents, besides the periods when the price is at its 

average value, four distinct periods: 

o A first one where the electricity price is one-sixth higher 

than the average value; 

o A second where the electricity price is two-thirds higher 

than the average value; 

o A third one where the electricity price is one-sixth lower 

than the average value; 

o A fourth one where the electricity price is one-third 

lower than the average value; 
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Figure 37 - Supply prices of electricity and natural gas for all "Ad hoc 
e" cases 

When the load are on their average value, the cooling load is 

the one matching the productivity of the absorption chiller 

when the CHP is providing the exact electric power output 

required by the electric load. Each period lasts ten time-steps, 

i.e. two and a half hours, so that it is possible to completely 

charge or discharge the storage when a given situation occurs.  

If the algorithm exploits this chance correctly, the advantage is 

greater; on the other hand, if the algorithm suggests a wrong 

solution (e.g. decides to discharge the storage too soon) there is 

no room for making up in the following period. This specific ad 

hoc case presents constant loads during the whole day. 

Therefore, the different price is the only driver for an optimized 

solution of storage management, which can theoretically differ 

when considering the SS or the DJ Algorithm; 
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Figure 38 - Benchmark profile "Ad hoc 1e": load profiles 

 Ad hoc 2e (Figure 39): In this case, the cooling load is constant, 

whereas the electric one presents two “spikes” the first one is 

an increment of two-thirds, the second a reduction of two-

thirds, compared to the average value. Both the spikes occur 

when the price modifier is greater. Both the price and the load 

input drivers tend to charge the storage in the first half of the 

day and to discharge it in the second half. Indeed, when the 

electricity price is higher, it is desirable to use the CHP to fulfill 

the electric load. Thus, if the electric load increases when the 

prices are higher and the cooling load remains the same, then 

the storage is charged while the CHP electric power outputs 

increases to follow the electric load increment; 
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Figure 39 - Benchmark profile "Ad hoc 2e": load profiles 

 Ad hoc 3e (Figure 40): Like in the previous case, only one of the 

loads changes during the day and presents two “spikes”. 

Conversely to the previous case though, the load changing here 

is the cooling one: the first change is a reduction of the load of 

one-third occurring when the electricity price increases by two-

thirds, the second is an increase of one-third taking place when 

the electricity price is two-thirds lower than its average value. 

Like in the previous case, the storage should charge at first and 

then discharge. Both the “Ad hoc 2e” and “Ad hoc 3e” cases do 

not present significant “traps” for either the SS or Shortest-Path 

Algorithm. Indeed, the load driver occurs only when the greater 

price modifier is applied, therefore the suggested operation is 

straight-forward; 
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Figure 40 - Benchmark profile "Ad hoc 3e": load profiles 

 Ad hoc 4e (Figure 41): This case is similar to the “Ad hoc 2e” but 

the electric load increases two times and then decreases two 

times compared to the average value. Both for the positive and 

negative spikes, one of the spikes coincides with the minor price 

modification, whereas the other occurs when the price change 

is greater. This is the first “trap” for the SS algorithm, indeed, 

because it does not take into account the inputs other than in 

the time-step it is analyzing, it could suggest the same kind of 

operation when the electric load increases or decreases. 

Nonetheless, considering the limited size of the storage, the 

optimal operation would be to charge when the load and price 

drivers are both maximum, therefore when the second and 

fourth load spike occurs; 
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Figure 41 - Benchmark profile "Ad hoc 4e": load profiles 

 Ad hoc 5e (Figure 42): Similar to “Ad hoc 4e”, but in this case it 

is the cooling load that varies whereas the electric one is 

constant. As in case “Ad hoc 3e”, when the price rises the 

cooling load decreases, inducing a charge of the storage; 

 

Figure 42 - Benchmark profile "Ad hoc 5e": load profiles 

 Ad hoc 6e (Figure 43): Like in case “Ad hoc 4e”, the only load 

changing is the electric one, this time though the storage 

operation suggested by the electric load and the electricity price 

is no longer of the same kind. The minor price increment 
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coincides with the minor increase of electric load, whereas the 

major increase corresponds to the major decrease in electric 

load. In the second half of the day the opposite happens. Thus, 

the first and last load modifications tend to charge the storage, 

conversely the second and the third; 

 

Figure 43 - Benchmark profile "Ad hoc 6e": load profiles 

 Ad hoc 7e (Figure 44): Similar to “Ad hoc 6e” but the driver is 

the cooling load instead of the electric one; 

 

Figure 44 - Benchmark profile "Ad hoc 7e": load profiles 
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 Ad hoc 8e (Figure 45): Here both the electric and cooling load 

change during the day. The electric one changes when a minor 

price modification occurs. Conversely, the cooling load changes 

when a major price variation takes place. In this case the 

algorithm needs to decide which driver to follow for charging or 

discharging the storage, or at what extent adopt one or the 

other; 

 

Figure 45 - Benchmark profile "Ad hoc 8e": load profiles 

 Ad hoc 9e (Figure 46): Similar to “Ad hoc 8e”, in this case 

though, the electric load variations occur corresponding to a 

major price modification, conversely for the cooling load 

variations; 
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Figure 46 - Benchmark profile "Ad hoc 9e": load profiles 

 Ad hoc 10e (Figure 47): In this case all the drivers (electric and 

cooling loads, electricity price) act at a different time of the day. 

Hence, the algorithms are required to find the best storage 

management among different possible combinations of loads 

and price. 

 

Figure 47 - Benchmark profile "Ad hoc 10e": load profiles 
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5.1.2 Algorithms performance comparison on benchmark 

profiles 

For all the cases analyzed, the results presented here include: the CHP 

power output along with the power exchanged with the grid, the auxiliary 

unit power output (compression chiller when in summer operation mode, 

boiler otherwise), temperature of the thermal storage and charge of the 

electric storage when present, cost of each time step, modulated power, 

cumulative cost during the day. The first case analyzed is the constant 

inputs one, the results are shown in Figure 48. 

 

Figure 48 - Results of the comparison between DJ and SS on the "Constant" case 
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This is a unique case, where the SS performs better than the DJ in terms 

of overall costs. It can be seen that the CHP power output for the SS is 

more often at the maximum level compared to the DJ algorithm. Being 

the loads and generator balanced when used at their maximum, if the 

CHP is not exploited at its best by the algorithm, there is also a need of 

electric modulation, which leads to a cost increase, as happens for the DJ 

algorithm. The SS performs better than DJ because the constant case has 

a unique and narrow optimum solution, which is difficult to find for both 

meta-heuristic algorithms, but can be pursued more intensely by the SS 

thanks to its speed. Indeed, the SS algorithm took advantage of the fact 

that it needs to run only once the C++ program in order to provide a 

solution. Therefore it could be set to spend more time exploring the 

solution surface, something that it is not possible at the same extent for 

the DJ which has to run the C++ program several times. Moreover, in this 

case, there is no gain performing a daily optimization compared to the 

single-step one, because the ideal solutions are identical. 

The second fictional day tested in the benchmark is the case of no 

renewables whose results are displayed in Figure 49. 
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Figure 49 - Results of the comparison between DJ and SS on the "No RESs" case 

In this case it can be noticed how the different load conditions occurring 

during the day, even with constant price of both natural gas and 

electricity, allow the DJ to perform better than the SS algorithm by means 

of a daily optimized storage usage. Indeed, the difference in terms of 

storage operation is relevant. The SS algorithm charges the storage 

completely during the first period when only some electric load is 

present, maintains the level up until the 30th time-step and then starts to 

discharge it as soon as the cooling load becomes higher than the 

maximum one the absorption chiller can provide. By doing so, it misses 
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the chance to exploit the storage in any of the following time-steps 

because it is not capable of anticipating the loads conditions and prepare 

(i.e. charge) the storage in order to use it later. On the other hand, the DJ 

algorithm performs several charge/discharge cycles that by the end of the 

day allow it to achieve a result that is over 10% better. 

Introducing renewables in the system adds variability to the daily 

operations and the storage usage proposed by the algorithms, see Figure 

50. 

 

Figure 50 - Results of the comparison between DJ and SS on the "With RESs" 
case 



DIEF – Department of Industrial Engineering of Florence 
 

In this case the DJ algorithm performs even better than in the previous 

case, achieving a result which is over 20% better than the SS algorithm in 

terms of daily costs of operation. Because of the high availability of 

renewables, the CHP is used seldom at full power, and, from the diagram 

of the auxiliary unit power output it can appreciated the fact that the DJ 

uses the auxiliary unit more than the SS algorithm. Sometimes the 

auxiliary unit is used to charge the storage, which cannot be done with 

every possible thermal plant layout, indeed it can be done when the 

auxiliary unit is installed in parallel on the storage with the CHP. For 

Pontlab layout, this is not possible and therefore the solution proposed 

by the DJ algorithm gives a precious hint regarding the design of a SU that 

is capable to take fully advantage of the optimization proposed. From the 

results just illustrated it can be inferred that the higher the variability of 

the inputs during the day, the greater is the margin for daily optimization 

compared to the single step one. Nevertheless, as was anticipated when 

describing the inputs set used to test the algorithms, it is hard to 

appreciate the way the optimization operates because of the numerous 

different conditions that occur during the day considered. The next series 

of results examined do not show such great variability of conditions, but 

they focus on typical situations that are simple enough to understand 

whether the solution proposed is reasonable from an engineering point 

of view and the behavior of the optimizer. The first is case “Ad hoc 1e”, 

whose results are presented hereafter in Figure 51. Considering the 

absence of modulated loads, in all Ad hoc tests, the diagram representing 

the modulation is omitted.  
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Figure 51 - Results of the comparison between DJ and SS on the "Ad hoc 1e" 
case 

Being all the loads constant and balanced there is little or no chance to 

optimize the storage operation in order to take advantage of the variable 

costs. This happens because as the CHP set point is changed to charge or 

discharge the storage, the optimizer incurs penalties for lack of 

compliance with the zero-net power exchange with the grid. The 

operations suggested and the related economic performance of the 

system are therefore similar between the two algorithms. One thing that 

can be observed is that the DJ algorithm, as in the previous cases, allows 
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the storage to return in the exact state of charge it had at the beginning 

of the day; whereas the SS algorithm cannot.  

The situation is different for “Ad hoc 2e” input, see Figure 52. 

 

Figure 52 - Results of the comparison between DJ and SS on the "Ad hoc 2e" case 

Two observations can be made, the first is that the DJ algorithm allows a 

little discharge of the system during the early part of the day, thus later 

it can charge more. This allows it to reduce the price it pays between the 

35th and 40th time-step compared to the SS algorithm. The second 

observation is that in order not to incur penalties due to grid profile non-
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compliance, the DJ algorithm adopts the auxiliary unit. By its usage, it 

reduces the discharge of the storage and is able to return the storage at 

its original charge level by the end of the day. Nonetheless the load and 

price variation occur at the same time, therefore there is little margin to 

distinguish the DJ from the SS algorithm in terms of “smartness”. The 

third Ad hoc profile, “Ad hoc 3e”, where it is the cooling load that is 

changing instead of the electric one, is simlar and the results are not 

shown here for the sake of happens.  

The operations suggested by the algorithms begin to differ significantly in 

the situation represented in Ad hoc 4e, see Figure 53. In this case there 

are four periods when the load shifts from its average value. These 

changes coincide with the electricity price changes. Still, the first price 

increment during the day is the smallest one, as well as the first reduction 

from the original value. Therefore, due to the limited storage capacity, 

the right way to operate the system would be to exploit at maximum the 

biggest price variations while being more conservative on the smallest 

ones. From the diagrams describing the system operation in this case it 

can be noticed how the DJ algorithm correctly takes advantage of the 

situation. Whereas the SS algorithm, which is unable to see over the 

boundaries of the time-step it is analyzing, fails to provide a clever 

solution. Thus, the economic performance shows an increased cost for 

the SS compared to the DJ algorithm by almost 10%.  
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Figure 53 - Results of the comparison between DJ and SS on the "Ad hoc 4e" case 

An interesting observation can be done for the following case, “Ad hoc 

5e”, which, although being similar in scope to Ad hoc 4e, features a 

peculiar behavior. The diagrams are reported in Figure 54. The 

unexpected suggestion of plant operation is found during the first 

charging period, where the storage suddenly discharges almost to its 

minimum level. During the single time step where this happens, there is 

a minor cost increase of the time step, as demonstrated by the diagram 

“Time step cost”, but it can be also noticed that it allows the optimizer to 

charge more the storage during the high price period, therefore saving 

money. The interesting fact is that the optimizer is suggesting to dissipate 
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part of the storage charge, in order to be able to charge the storage 

further later on. This is obviously an energetic non-sense, but 

economically wise it is reasonable as demonstrated by the better results 

achieved by the DJ algorithm compared to the SS algorithm that does not 

feature this kind of behavior. The usage of dissipaters to increase the 

economic revenues of the system, although making sense from the 

algorithm point of view, is not to be considered as a good design option. 

The algorithm can be instructed to avoid dissipating the heat contained 

in the storages, for example introducing a penalty for heat wasted. 

 

Figure 54- Results of the comparison between DJ and SS on the "Ad hoc 5e" case 
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The use of penalties influences the shape of the solution surface and can 

lead to poorer economical results; therefore, their use should be 

evaluated from case to case, system to system, depending on the number 

of times and with which intensity the heat should be dissipated according 

to the algorithm. If the number is minimal, then it is better to let the DAA 

introduce the heat waste and then allow the ADA to make up for the 

optimization once the storage charge is found to be higher than expected 

because the dissipation could not be done in the real system. Some 

thermal waste is also inherently connected with the way the DJ 

discretizes the storage charge. Once the power exchanged with the 

storage is assigned, either the generators could be obliged to produce 

more than necessary or part of the heat needs to be dissipated, due to 

the “roughness” of discretization in storage power level that cannot 

match the ideal value.  This problem can be partially solved with an 

increase in the number of storage charge subdivisions, at a cost of higher 

computational times.  

In cases Ad hoc 6e and Ad hoc 7e the cost difference between the 

solutions proposed by the DJ algorithm and the SS one is minimal, 

although the suggested operations of the storage vary slightly. For this 

reason they will not be presented here for the sake of brevity. On the 

other hand, some differences can be recognized in the operations 

proposed by DJ and SS on the “Ad hoc 8e” case, as illustrated in Figure 

55. 
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Figure 55 - Results of the comparison between DJ and SS on the "Ad hoc 8e" case 

As in the previous cases analyzed, it can be noticed how the great part of 

the gain in economic terms is obtained during the second charging 

period. Indeed theoretically, a similar gain should happen during the 

second discharge period. However, because the storage is to be returned 

to its original charge level, there is no chance to fully discharge it for the 

DJ algorithm, whereas the SS one takes an advantage in these terms. If 

both the algorithms could leave the storage empty by the end of the day, 

the difference between the costs of each one would have been greater. 

Similar advantages are achieved in case “Ad hoc 9e”, even though with a 
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different storage operation, in accordance with the fact that the load 

condition is different.  

The last case of the series, “Ad hoc 10e”, features several different 

conditions and it is up to the algorithm to define an optimized strategy of 

storage management in order to maximize the benefits. From the 

diagrams presented in Figure 56, it can be observed that the Shortest-

Path Algorithm performs better than the Single-Step once again. In this 

case, most of the difference is built during the period where the price is 

on its average value and the difference between the electric load and the 

cooling one reaches the maximum value. During the discharge phases, 

the gap is not increased even with different storage management. The SS 

algorithm continues to discharge between the 40th and 50th time-step 

until it exhausts the storage. The DJ algorithm on the other hand avoids 

to deplete the storage completely (loosing part of the possible gain). 

Then, it repeatedly charges and discharges the storage before keeping it 

stable at its final level.  
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Figure 56 - Results of the comparison between DJ and SS on the "Ad hoc 10e" 
case 

5.1.3 Discussion of the results 

The tests illustrated were designed in order to understand the operations 

suggested by the algorithms, what kind of strategies they adopt to reach 

their optimized results and what is the actual use they propose for each 

generation device. Two observations can be made, the first is that apart 

from the constant case, where the SS algorithm is advantaged by the fact 

that it can invest much more time to find the same exact solution as the 

DJ algorithm, DJ performs equally or better in every situation. This 



DIEF – Department of Industrial Engineering of Florence 
 

complies with an improvement of quality of the solution. The second 

observation is that the operations suggested by the DJ algorithm as 

tested cannot be performed on every energy system, for they depend on 

the thermal layout that it implements. In particular, the adoption of the 

auxiliary unit to charge the storage when convenient is something that 

can be done only if the auxiliary unit is installed in parallel with the 

storage along with all the other generators.  

5.2 Tests on actual days 

The benchmark profiles, proved useful to judge the quality of the 

solutions proposed by the algorithms, especially when addressing the 

coherence of the solution with the physics of the energy system and 

whether its suggested operation are reasonable. Nevertheless, these 

profiles do not give an accurate indication of the possible savings allowed 

by the algorithm’s implementation in a real system. To answer this 

question, a series of real profiles chosen from the data actually gathered 

by the SCADA on Pontlab plant, were defined. Two possible scenarios are 

evaluated. The first is the present scenario, where the DSO/TSO do not 

interfere with the operation of the user and thus it is possible to define 

an optimized scheduling of the operations of the plant without any 

constraint but the physical ones (e.g. the balancing of the power or the 

capacity of the storages). The second scenario considered is the future 

one, where instead the DSO/TSO requires the power exchange profile 

with the grid to comply with given rules. In this case, the rule defined in 

accordance with Enel S.p.A. is that the power exchanged with the grid 

must be equal to the average value assumed every hour by the 

unconstrained one proposed by the DAA the day before.  

5.2.1 Days selected description 

The days chosen as test ground for the algorithms show different 

combinations of loads and pricing conditions. The test days are nine in 
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total. Four of them were selected for tests in summer-operation mode, 

whereas the other five in winter-operation mode. The operation mode 

for the test is the same adopted during the actual day when the data were 

acquired. In this way it is also possible to compare the results of the 

algorithms with the actual operation of the system.  

The real days selected as test cases for summer operation mode are: 

 July 28th, 2013 (Figure 57): A sunny day featuring a solar power 

availability at high levels, almost constant 10 kWe electric load 

with +/- 50% differences between consecutive time-steps. The 

cooling load is nearly five times the electric load, with the first 

part of the day showing an average 40 kWc request with shifts 

of +/- 25% from the average value. The price of the natural gas 

is constant and the electricity price varies once every hour with 

the minimum price paid in the early afternoon (42 €/MWh) and 

the highest at 21:00 (85 €/MWh); 

 

Figure 57 - Loads, renewable availability and supply prices for typical day "28-
07-2013" 

 September 9th, 2013 (Figure 58): Variable weather during the 

day, with the PV plants producing more than the electric loads 

require in some cases. The electric load is around 10 kWe in the 

first half of the day, whereas in the second half its average value 

is less than 5 kWe. The cooling load is high and, likely because of 

the operation of the climatic chambers, extremely variable from 
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one time-step to the following (+/- 50%). The electricity prices 

vary less from one hour to the following one compared to the 

previous case. Nonetheless the difference between the 

minimum and the maximum price is higher, with the maximum 

being three times more than the minimum;  

 

Figure 58 - Loads, renewable availability and supply prices for typical day "9-
09-2013" 

 September 18th, 2013 (Figure 59): Almost sunny day. The 

electric load is higher than in the previous cases, with a nearly 

constant value averaging around 20 kWe. The cooling load is 

lower than in the previous cases but still featuring several lower 

and higher peaks, especially after the early morning. The price 

of electricity presents two valleys at 50 €/MWh (in the last part 

of the night and in the early afternoon) and two peaks, a minor 

one (80 €/MWh) in the late morning and a major one (90 

€/MWh) during the evening; 
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Figure 59 - Loads, renewable availability and supply prices for typical day "18-
09-2013" 

 September 29th, 2013 (Figure 60): Cloudy day and very low 

electric load (5 kWe) with a cooling load more constant 

compared to the previous test-days averaging around 36 kWc. 

The electricity price is steady for most of the day around 60 

€/MWh (probably because of the cloudy day all over the 

country which reduced the PV productivity peaks) until the 

evening when again the price rises to 90 €/MWh. 

 

Figure 60 - Loads, renewable availability and supply prices for typical day "29-
09-2013" 

The real days selected as test cases for winter operation mode are: 

 January 11th, 2014 (Figure 61): A sunny winter day where the PV 

productivity peak scores almost 8 kWe. During winter operation 

it is easy to identify the load demand of the climatic chambers. 

This varies during the day once every half an hour with a very 
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distinctive pattern. The average value of the cooling load is 

about 10 kWc. The electric load is very small and present only 

until 15:00, then it turns to almost zero for the rest of the day. 

The thermal load on the other hand is consistent yet unsteady 

both during the day and from hour to hour. The highest peaks 

reach 40 kWt whereas the lowest value is zero, registered at 

15:45. The electricity price profile is different from the typical 

summer ones, with a more stable value featuring two “flat 

peaks” at 80 €/MWh (during the early morning and early 

evening) and two “flat valleys” at a little less than 60 €/MWh; 

 

Figure 61 - Loads, renewable availability and supply prices for typical day "11-
01-2014" 

 January 13th, 2014 (Figure 62): A cloudy winter day with low PV 

power availability. The cooling load is still driven by the climatic 

chambers demands. This time the electricity load is at a steady 

value of 10 kWe for the whole day except for a window of 4 

hours in the afternoon, where the value is lower and near to the 

turn-off of the CHP. The thermal load presents a very unsteady 

profile featuring numerous high and low spikes varying +/- 100% 

from the average value of 19 kWt. During an extended window 

of time compared to the one of the electric load, the thermal 

load decreases to an almost constant value of 10 kWt. The 

electricity price shows its lowest value in the late night (32 
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€/MWh) and a high price period for the whole working day 

(from 8:00 to 20:00) with an average price of 70 €/MWh;  

 

Figure 62 - Loads, renewable availability and supply prices for typical day "13-
01-2014" 

 March 17th, 2014 (Figure 63): This sunny spring day features a 

high PV productivity as well as a considerably lower thermal 

load request. The electric load is constant at 12 kWe, whereas 

the cooling load changes once every 15 minutes to +/-70% of its 

average value of 10 kWf. As usually happens on sunny days, the 

electricity price varies greatly during the day, with two distinct 

peaks: one in the early morning (70 €/MWh) and one in the 

evening at 90 €/MWh. The lowest value is registered during the 

night at 25 €/MWh;  

 

Figure 63 - Loads, renewable availability and supply prices for typical day "17-
03-2014" 

 March 22nd, 2014 (Figure 64): A day characterized by variable 

weather. The electric load presents two steady zones, one 
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lasting until the evening at 7 kWe whereas the second one is at 

20 kWe. The cooling load varies with high frequency due to the 

operation of the climatic chambers. The thermal load instead is 

very low and unsteady for the whole day. The electricity price is 

variable from the lowest value of 18 €/MWh to the highest 

value of 80 €/MWh; the variation from the minimum and 

maximum price is registered in less than 5 hours;  

 

Figure 64 - Loads, renewable availability and supply prices for typical day "22-
03-2014" 

 March 23rd, 2014 (Figure 65): This day presents a variable PV 

production due to different weather conditions during the day, 

typical of spring. The electricity load registers nearly 20 kWe 

until the evening when it drops to 7 kWe. Both the cooling and 

thermal loads feature high frequency variations of +/- 70% 

around the average value. The electricity price presents a single 

high peak during the evening of 80 €/MWh, whereas the 

average value during the rest of the day is near to 25 €/MWh. 
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Figure 65 - Loads, renewable availability and supply prices for typical day "23-
03-2014" 

5.2.2 Comparison of algorithms performance on actual days 

(present scenario) 

The tests performed allowed to understand the expected performance 

that the different algorithms would have on the actual system. Given the 

number of tests and the difficult readability of the behavior of the system 

from the data output, a detailed description of the results will be 

provided only for those presenting peculiarities or distinctive features. In 

addition, a summary table presenting the overall performance of both 

algorithms in every test performed will be presented and discussed at the 

end of the section.  

The first case discussed is the “28-07-2013”, a summer day where the 

system was tested in summer-operation mode. Therefore, the cooling 

load is provided by means of the absorption chiller and, when required, 

the auxiliary unit. The storage managed by the Shortest-Path Algorithm is 

the cold one. From the diagrams in  Figure 66 it can be observed that the 

CHP is exploited at maximum power in both cases. This is reasonable and 

happens in most of the summer days because the amount of cooling load 

to provide is always high, thus modulating the power output of the CHP 

would be detrimental. Nonetheless, the Shortest-Path Algorithm and the 

Single Step one provide two unique solutions for storage operations. 

Given that the cooling load is always high, the Single Step algorithm 
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immediately uses the charge accumulated in the storage at the beginning 

of the day.  

 
Figure 66- Results of the comparison between DJ and SS on the "28-07-2013 

present scenario" case 

It performs only a few, minor charges during the day, always followed by 

an immediate discharge. The downside of this behavior is that the system 

is often required to modulate part of the cooling load in order to avoid 

buying more electricity from the grid. On the other hand, the Shortest-

Path Algorithm performs several charge-discharge cycles during the day, 

allowing the system to avoid modulating part of the cooling load. From 
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the auxiliary unit power output diagram it can be noticed how the DJ 

algorithm, especially between time-steps 40 to 80, employs the auxiliary 

unit more often. Indeed, those are the time steps featuring a greater 

RESs’ power production and, between time steps 50 to 60 also the lowest 

electricity price. These are favorable moments to charge the storage, 

selected by the DJ algorithm in such a way to avoid buying electricity from 

the grid at high costs and, on the other hand, avoid the modulation of the 

cooling load. This way of operating the storage results in an economic 

performance improvement of almost 6% for the DJ compared to the SS 

algorithm. The electricity exchange profile with the grid resulting from 

the two algorithms is slightly different and therefore, when the same day 

is tested in the future scenario, the two sets of inputs are indeed 

different.  

The next case presented is a day operated in winter mode, “17-03-2014”. 

This day is one of those featuring the greatest difference between the SS 

algorithm and the DJ one. The first thing that can be observed looking at 

the diagrams in Figure 67 is that usage of the CHP is much more limited 

compared to what happens during summer days. This is reasonable 

considering that the average heating load is several times smaller than 

the cooling load. To a different use of the CHP corresponds also a 

different grid exchange profile with the grid. It is interesting to notice how 

the peaks in CHP usage are located in correspondence with the peaks of 

electricity price, especially in the case of the DJ algorithm. The Shortest-

Path Algorithm builds its advantage over the Single Step one in a series of 

single time steps between the 30th and the 90th, most of the times when 

the CHP is employed. The final difference between the two suggested 

operations is nearly 12% less expense for the DJ algorithm compared to 

the SS one.  
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Figure 67 - Results of the comparison between DJ and SS on the "17-03-2014 
present scenario" case 

During most of the winter days analyzed an interesting behavior is 

observed: the waste of thermal energy. This heat dissipation is suggested 

during both charge and discharge of the storage. As was suggested in the 

previous chapter, this happens for two reasons: 

 The resolution of power steps of the storage is poor, thus 

leading to the choice of a bigger discharge power than the one 

required at a cost of wasting part of it to achieve the energy 

balance of the thermal loads; 
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 It is adopted if the CHP is set to a higher point in order to satisfy 

the electric load while the thermal storage is full and thus 

cannot be charged more.  

It is possible to exclude the heat dissipation from the proposed solution 

directly in the GA, applying a penalty to the amount of heat dissipated. 

However, as highlighted in the previous chapter, the result of this 

modification is detrimental for the system economic performance. A test 

to demonstrate this has been carried out and the results are illustrated in 

Figure 68. The penalty applied effectively eliminates the thermal energy 

dissipation, but from the diagrams in Figure 68 it can be inferred how it 

heavily interferes with the solution proposed. Indeed, the use of the CHP 

is greatly limited and also the management of the storage is very different 

from the original solution proposed. These differences ultimately lead to 

a worsening of the operation economy of 20% compared to the Single 

Step suggested operation. It is clear that this is not the right way to 

prevent the thermal energy from being wasted. A different solution, 

which is to be preferred but has a greater computational cost, is to 

increase the number of subdivisions of the thermal storage charge (i.e. 

increase the number of nodes in the graph). 
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Figure 68 - Results of the comparison between DJ and SS on the "17-03-2014 
present scenario waste penalty" case 

A test has been performed in order to observe the different behavior in 

terms of thermal waste when performing the same test with a greater 

number of thermal storage charge subdivisions. From Figure 69 it can be 

appreciated that increasing the number of subdivisions effectively 

decreases the amount of heat dissipated. Moreover, an increase in the 

resolution of storage charge leads to a further improvement of the 

economic performance. Nonetheless, the number of subdivisions 

required to impede completely this phenomenon is the one that allows 

the storage to have the same power resolution of the variables in the GA. 
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With the hardware adopted for the tests, this value is too high nowadays. 

Therefore, the thermal dissipation suggestion must be accepted. It is 

worth noticing that on the actual plant there are no means to actively 

dissipate heat from the storage, thus the suggested operation cannot be 

matched perfectly. This is where the ADA comes in aid, allowing the 

minimization of the error in storage charge prevision during the day 

thanks to its update of the initial inputs once every 15 minutes. With a 

greater number of subdivisions the gap between the SS and the DJ costs 

of operation increases as well, reaching over 16% with 80 subdivisions, 

up from almost 12% when adopting only 30. 

 

Figure 69 - Effect of the increment of thermal storage charge levels on the 
amount of heat wasted 

5.2.3 Comparison of algorithms performance on actual days 

(future scenario) 

In order to highlight the differences between the present and the future 

scenario, the tests described hereafter will be the same presented in the 

previous section. Hence, one summer case, “28-07-2013”, and one 

winter case, “17-03-2014”.  
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The first thing to notice in these two cases is the shape of the power 

exchange profile with the grid, which in the future scenario is imposed as 

input. These profiles are different for the SS and the DJ algorithms 

because the original profiles from which they are obtained are different. 

A downside of the way these profiles are derived is that the rule applied 

to generate them actually changes the input sets of the original problem. 

Thus, the original optimized solution suggested by an algorithm could be 

worsen greatly whereas one of a different one could be less influenced.  

The operations suggested for the summer day are presented in Figure 70. 

The top-left diagram shows both the CHP power output and the grid 

profile exchange suggested by both algorithms. What featured a 

continuously changing profile now is almost steady for periods of one 

hour. When the curves illustrated in the top-left diagram present a spike 

in the grid power exchange profile, it means that the algorithm could not 

find a less-expensive solution to comply with the profile assigned, thus 

accepting a penalty for the shift from the resulting profile. The advantage 

granted in this case by the use of the Shortest-Path Algorithm compared 

with the Single Step is evident in the bottom-right diagram presenting the 

cumulative costs during the day. The gap between the two algorithms is 

now increased to over 31%. This results from the greater flexibility of 

operation allowed by the DJ algorithm compared to the SS one. It can be 

noticed how different is the storage management between the two 

solutions and also the greater use of the compression chiller performed 

by the DJ algorithm. This allows the definition of a solution featuring a 

better compliance with the profile assigned and a lesser need for load 

modulation to respect the promised profile, which leads to a reduction of 

costs of operation. The greater flexibility of management can be observed 

also in the center-right diagram, where the curve associated to the time-

step costs of the solution proposed by the DJ algorithm is smoother than 

the one featured by the SS algorithm.  
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Figure 70 - Results of the comparison between DJ and SS on the "28-07-2013 
future scenario" case 

Similar considerations can be done from the analysis of the winter day, 

whose outputs are presented in Figure 71. In this case, the benefits due 

to the adoption of the Shortest-Path Algorithm increase up to 26% 

compared to the Single Step. In this test, given the segmented nature of 

the cooling load, it is inconvenient for either of the algorithms to respect 

the promised grid exchange profile. This is evident from the top-left 

diagram where the grey and yellow curves show numerous spikes during 

the whole day. However the DJ algorithm presents a minor number of 

non-compliances and this leads to the better result achieved by this 
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solution. This is achieved by a dedicated management of the storage, 

which is used to back-up the CHP when it is not convenient to modulate 

its power output. 

In the following section, a summary of the results obtained in the various 

test cases is presented, along with a discussion of the results themselves. 

 

Figure 71 - Results of the comparison between DJ and SS on the "17-03-2014 
future scenario" case 
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5.2.4 Discussion of the results 

The analysis carried out shows the potential benefits that the 

introduction of an evolved algorithm for the plant management brings. 

The plant considered presents several energy generators, from RES to 

ICE, modulated loads and energy storages. Figure 72 illustrates the 

summary of the economic comparison between four different 

management strategies for the plant considered. All the economic 

performance are related to the costs of a conventional operation of the 

plant (i.e. buying electricity from the grid to supply the electric and 

cooling load, natural gas to supply the thermal loads). Two standard 

operation modes are added to the comparison, Thermal Load Following 

and Electric Load Following. On the other hand, the evolved strategies 

are those suggested by the Single Step and the Shortest-Path Algorithm. 

Considering that the standard operations (ELF and TLF) are not meant for 

the management of the plant in the future scenario, the comparison is 

done only considering a free power exchange profile with the grid. 

Indeed, it is evident how ELF and TLF would be ineffective to grant 

compliance with a profile promised in the day before operation. The 

comparison is further divided in: summer, winter and overall. From Figure 

72 it can be noticed how the improvements allowed by the SS and DJ 

algorithms are just slightly better than those allowed by TLF and ELF 

during summer days. The reason is that a single CHP unit is under-

dimensioned for the cooling loads during the summer season. Hence, the 

CHP is at maximum power most of the time. With the CHP power output 

maxed out at every time-step it is hard for the evolved strategies to take 

an advantage over the standard ones. The situation is different during 

winter days, where the thermal load is not persistent and its average 

value is lower than the maximum thermal capacity of the CHP. The 

diagram in Figure 72 clearly shows the ineffectiveness of standard 

operation of the CHP during winter period, where the improvement 

granted by the TLF is minimal and ELF strategy is detrimental. On the 
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other hand, both the Single Step and Shortest-Path algorithms achieve a 

cost reduction, of 19% and 27% respectively, in respect of the 

conventional operation. The overall values consider the average benefit 

registered in the 9 test days considered. From this, the potential of the 

evolved strategies is evident, even in the present scenario. 

 

Figure 72 - Summary of economic performance of different operation 
strategies compared to the conventional supply in the present scenario 

It is also interesting to analyze which evolved strategy performs best 

when the future scenario is considered. Figure 73 illustrates an economic 

performance comparison of DJ and SS algorithms in the future scenario, 

compared to the results obtained by the SS algorithm with the present 

scenario. As reference, also the performance of the Shortest-Path 

Algorithm in the present scenario are provided. The DJ algorithm achieves 

better results compared to those of the SS algorithm both in summer and 

winter period. On average the gap is 4% during summer and 11% during 

winter. When the rules of the possible future scenario are applied, the 

Single Step algorithm performance falls, reaching a cost increase of 
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almost 35% overall, with one test case scoring over 100% cost increase. 

The expenses rise also for the Shortest-Path Algorithm, although this 

happens only in the winter period. The overall performance is worse by 

14%.  

 

Figure 73 - Summary of economic performance between the Single Step and 
Shortest-Path optimization strategies in the future (Grid) scenario 

From the analysis carried out it is evident that the evolved strategy 

proposed by the algorithm performing a proper daily optimization is 

preferable and more reliable. The algorithm proved to be versatile and 

capable of adapting the solutions proposed to the different test 

conditions.  

5.3 Plant layout comparison 

Once the Shortest-Path Algorithm demonstrated to be the best solution 

to adopt in the Smart User, another series of tests was performed; again, 

both in the present and future scenario. In the chapter dedicated to the 
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description of the plant, it was pointed out how the thermal layout of the 

plant influences the choice of the algorithm and therefore the 

performance that can be obtained. In order to assess the influence of the 

plant itself on the performance achieved by the control strategy a 

comparative offline study was performed. Hereafter two thermal layouts 

are compared: the one defined as Smart User (Figure 13), where all the 

generators are connected in parallel to their respective storage, and the 

more traditional one featuring Pontlab (Figure 15), where the auxiliary 

units are in cascade between user and storage. In addition, for each of 

these two layouts, the influence of the storage on the performance was 

evaluated. In particular, the aim is to address which storage (electric or 

thermal) introduces the greater benefits in the test cases analyzed. Thus, 

for each case, first the solution without any storage is evaluated, then 

two equivalent tests, one featuring a thermal storage, one an electric 

storage are performed. The storages of choice in the tests are: the actual 

thermal storages installed in Pontlab for the thermal case; an electric 

storage that was evaluated appropriate for the Smart User plant by 

Yanmar Research Europe, in the electric case. Table 10 recaps the 

different storages features.  

Table 10 – Storages’ energetic figures 

 Capacity 
[kWh] 

Max charge 
power [kW] 

Max 
discharge 
power 
[kW] 

Minimum 
state of 
charge 
allowed 

Maximum 
state of 
charge 
allowed 

Thermal hot 
storage 

87.2 38.6 76.8 60 °C     85 °C 

Thermal cold 
storage 

20.9 27.1 53.2 13 °C     4 °C 

Electric storage 15 12 28 1.5 kWh     13.5 kWh 

5.3.1 Pontlab thermal layout 

Figure 74 presents the beneficial effects of the thermal and the electric 

storages implementation in a Pontlab-like plant. The comparison is 
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performed against the results achieved on all the typical days test cases 

examined without employing any kind of energy storage. The first 

observation that can be made is that the convenience of one storage or 

the other depends on both the season and the scenario considered. The 

thermal storage, in the case of Pontlab thermal layout, can be operated 

in a limited manner because of the way the auxiliary units are controlled 

and the impossibility to directly manage the storage power output. Thus, 

given the low resolution of storage power exchange and the cooling load 

intensity, the cold storage does not introduce any real benefit in the 

plant. When a grid exchange profile with the grid is assigned, the 

influence of the cold thermal storage is even detrimental, although this 

result is closely dependent on the number of subdivisions imposed on the 

storage charge. If these were high enough, then it is likely that the 

negative effect of the storage would change into a null effect. On the 

other hand, the hot storage employed during the winter period has a 

clear positive effect when there is no profile defined by the DSO/TSO. This 

is due also to the heating load itself, which is lower than the CHP potential 

most of the time and therefore allows a better management of the 

storage operation. Regarding the electric storage, its importance is 

always greater during winter rather than summer. In the present 

scenario, the benefits are little during both summer and winter. However 

its importance is evident when a given grid profile must be respected, as 

the benefit of over 18% proves. The reason is clear as it provides a 

versatile tool to achieve a greater flexibility of operation to the plant. 

Considering both the summer and the winter period, it could be said that 

in the present scenario it is preferable to include a thermal storage, 

whereas in the future scenario it is definitely better to introduce an 

electric storage.  
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Figure 74 - Summary of economic performance for different storage solutions 
in both present (no Grid) and future (Grid) scenario with Pontlab thermal 

layout. Comparison against absence of storages. 

5.3.2 Smart User layout 

A similar series of tests was performed also considering the Smart User 

layout. The summary of the results is presented in Figure 75. The electric 

storage shows a trend similar to the Pontlab layout, although there is less 

difference between the performance of the plant without storages and 

the one featuring the electrical one. The likeness of the trend is explained 

considering that the only difference between the two plants is in the 

thermal layout. The minor difference, on the contrary, is due to two 

aspects. Firstly, the natural randomness of the optimization process, 

which is hardly to provide the exact same result in different evaluations 

of the same case. Secondly, to the fact that the DJ algorithm designed to 

operate on Pontlab plant can exclude the cyclic operation of the storages 

if required to reach the optimization goal. However, where the Smart 

User layout differs from the Pontlab one is the way the thermal storage 
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is managed. The summary in Figure 75 highlights that, overall, the 

thermal storage implementation grants an average improvement of 9% 

both in the present and the future scenarios. In both cases the greater 

advantage is reached during the winter period, but the gap between 

winter and summer operation is reduced when considering an imposed 

power exchange profile with the grid. This is due to the electric energy 

consumption of the auxiliary unit, a compression chiller, during the 

summer period. Hence, the adoption of an actively manageable cold 

thermal storage can be used also to regulate the power exchange profile 

with the grid, activating or deactivating the compression chiller 

accordingly.  

 

Figure 75 - Summary of economic performance for different storage solutions 
in both present (no Grid) and future (Grid) scenario with Smart User thermal 

layout. Comparison against absence of storages. 

5.3.3 Plant comparison 

An overall comparison among the conventional energy supply, CHP 

standard operation and the Shortest-Path algorithm applied both to 
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Pontlab and the Smart User layout is presented in Figure 76. The 

comparison is made considering only the operation in the present 

scenario, for the standard strategies will perform poorly in the future 

scenario. 

 

Figure 76 - Summary of economic performance for different operation 
strategies and storage solutions. Comparison against the conventional supply 

without any storage 

As was also pointed out when discussing the difference between the 

performance obtained by the SS and the DJ algorithm, the margin of 

improvement in comparison to a TFL approach during summer is minimal. 

Again, this is due to the high cooling load and an under-sizing of the CHP 

in relation to the summer loads. On the other hand, during winter, the 

possible improvement is relevant, up to 25% compared to the best 

traditional strategy (TFL). In general, for both kinds of plant layouts, at 

present, it is better to employ a thermal storage rather than an electric 

one.  

Further tests were performed in order to assess the potential of the 

exploitation of both thermal and electric storages at the same time. For 

both thermal layouts, but especially for the one with the auxiliary units in 
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cascade, this is expected to provide a further improvement in the 

economy of daily operations of the plant. Nonetheless, the improvement 

is not necessarily the sum of the two contributions of the storages when 

considered alone. Again, the plant behavior is non-linear, thus the effects 

of the two storages cannot be added one to the other. The problem 

highlighted during the test is that because of the limited computational 

resources when using the DJ algorithm written in MatLab© code, the 

number of storages level of charge subdivisions is limited to 8 for each 

one. As was pointed out earlier, the resolution of storage level of charge 

is a key aspect for achieving a good quality of the optimized solution. With 

only eight levels at our disposal, the resolution is poor, and thus the plant 

operation suggested by the optimizer could not reach economic 

performance equal or better to those measured when considering only 

one storage. Indeed, 8 levels for each storage are insufficient and further 

tests will be carried out on the same algorithm translated into C++ code.  

5.4 Real Time Algorithm tests and discussion 

This section covers the resulting operation obtained by means of the Real 

Time Algorithm. Two main sets of inputs were used: the first set refers to 

the actual day, 23rd of October. In this case, both the data needed for the 

forecasting and the real time algorithm come from real time data 

measurements of a single day. The second set is referred to as “fictional 

day”. This second set of inputs was created in order to test the real time 

algorithm on harsher conditions compared to those featuring the actual 

day.  

The fictional day was created as follows: 

 The real time data come from the 23rd of October 2013; 

 The weather forecasts are those of the 9th September 2013; 

 The load and costs are those from 18th September 2013; 
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 The penalty for not complying with the grid exchange profile was 

set to 0.1 euro/kW and the profile to be respected was the one 

provided as output by the single step forecasting algorithm, to 

which was applied the rule defined with Enel S.p.A. 

Both the loads and the weather forecasts were chosen considering their 

similarities with those provided in real time for October 23rd. Thus, the 

real time data used could still be those of the 23rd of October. However, 

the weather forecasts and load planned result moderately wrong, which 

is an ideal condition for RTA test. If the difference between loads in the 

forecasts and the real day or between the weather forecasts and the real 

day were too high then the test would not have been appropriate for the 

real time algorithm, because it would have tested it on a very harsh and 

unlikely to happen situation.  

In respect of the grid exchange profile chosen, many possible 

combinations of profiles and penalties were tested: the zero exchange 

profile (VSO) appeared not to be feasible for the actual plant with the 

given inputs, thus the need to find a profile that could be both: 

reasonable and not too specific. This led to the definition of the grid 

exchange profile based on what the forecasting algorithm suggested 

without any penalty assigned. The profile was then modified in order to 

shave the peaks and fill the valleys.  

Actual day test 

The actual day is featured by the weather and electrical load forecasts 

depicted in Figure 77, as well as the suggested CHP output profile for the 

day provided by the DAA. 
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Figure 77 - Day ahead relevant input and outputs for the actual day 

The real time data acquired by the SCADA for the same day are showed 

in Figure 78. 

 
Figure 78 - Real time data acquired by the SCADA system in the actual day 
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Compared to the forecasts the differences are small, as should happen 

when the forecasts are accurate. The other main differences is the 

presence of numerous spikes in the real time load, which are not present 

in the day ahead input data because there the time step is 15 minutes. 

Thus, the input data are an average of the real ones.  

 
Figure 79 – Adjusted power output of the CHP and power output of the storage 

in the actual day 

The real time algorithm provides the results shown in Figure 79 and 

Figure 80. The first diagram illustrates the CHP power output once 

adjusted to take into account the variability during the real time 

operation and the power output that the dedicated electric storage 

should provide. The algorithm also ensures that the maximum CHP power 

output is not overcome. The second diagram shows the required 

management of the electric storage. From the diagram, the 

recommended size and power output of the storage can be inferred.  
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Figure 80 - Storage power exchanged and state of charge for the actual day 

The maximum difference in terms of charge inside the electrical storage 

is around 0.6 kWh (+0.56 / -0.06 kWh), suggesting that the minimum 

needed size for the actual case tested is small. If it were not for the high 

power spike in the last third of the day the difference would have been 

less than 0.1 kWh. The power output required instead is compatible with 

the maximum power of the CHP.  

As previously stated, the actual day tested is not very stressful for the 

system. Hence, alone, it is inadequate to test the RTA. For this reason the 

“fictional day” described in the following section was set up.  

Fictional day tests 

The input PV and electrical load forecasts used inside the forecasting 

algorithm are shown in Figure 81. It can be noticed that the CHP 

operation is no longer steady, there is some modulation. This happens 

because a grid profile to be respected was assigned to the forecasting 

algorithm along with a penalty in case of non-compliance. It can also be 
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noticed that compared to the real time data, the PV productivity differs 

by some extent and that there is no expected load drop in the middle of 

the day. The promised grid profile can be seen in Figure 82. In this 

particular case the profile promised derives from the grid exchange 

profile that the SU would have done if there were no penalties applied 

for grid profile. 

 
Figure 81 - Day ahead relevant input and outputs for the fictional day 

 
Figure 82 - Promised grid exchange profile for the fictional day 



Tests performed 

275 

The real time load that the CHP must supply is calculated from the 

balance between the total user load, the grid profile to be respected and 

the renewables productivity. In the diagram in Figure 83 the real time 

requested load to the CHP, the total load and the PV productivity are 

depicted. All the hypotheses considered, for this particular kind of load 

profile the situation for the CHP is hard to handle. The load it should 

provide is as high as 36 kW, well over its capabilities. This will reflect on 

the real time operation, especially on the electrical storage size.  

 
Figure 83 - Real time data for the fictional day 

Given the presented inputs, the results provided by the real time 

algorithm are shown in Figure 84 and Figure 85. 
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Figure 84 - Adjusted power output of the CHP and power output of the storage 

in the fictional day 

The corrected power supplied by the CHP here is changed once every 5 

minutes in order to prevent the CHP from operating in transient 

conditions at all times. In the latter part of the day, when the load 

requested to the CHP is high at all times the CHP is always on and at 

maximum power output. 

 
Figure 85 - Storage power exchanged and state of charge for the fictional day 
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The power requested from the CHP is often higher than its maximum 

potential because of the difference between the forecasted and the 

actual loads/renewables availability. The size of the storage required is 

around 4.5 kWh, less than the battery pack of a small electric car. On the 

other hand, the maximum power that the storage must supply is less 

influenced by a completely wrong forecast. Indeed, it is of the same order 

of magnitude of the CHP in most of the situations.  

Fictional day modifications: limited load 

The first modification applied to the fictional day was to reduce the 

electrical load to a value closer to the maximum CHP power output. The 

set of inputs for the forecasting algorithm is the same, in terms of loads, 

costs, renewables availability and grid profile imposed, therefore the 

expected CHP profile for the day is the same. The differences can be 

observed in the real time data, Figure 86, and in the algorithm results, 

see Figure 87 and Figure 88.  

From Figure 88 it can be immediately noticed that having lowered the 

whole measured real time load, the almost zero electric load in the 

middle of the day leads to a completely different storage management. 

Nevertheless, the maximum size of the storage in this case is almost 

unchanged because it depends on the difference between the forecasted 

and actual load and renewables availability and the time the discrepancy 

lasts. Anyway, to assess the correct storage size for RTA, the best 

approach is to perform an extended campaign on the real time measured 

data for different days and situations. On the other hand, the offline tests 

performed are useful to test the correct behavior of the real time 

algorithm and perform sensibility analysis on the different parameters 

beforehand. 
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Figure 86 - Real time data for the fictional day with limited load (CHP set point 

changes every 5 minutes) 

 
Figure 87 - Adjusted power output of the CHP and power output of the storage 
in the fictional day with limited load (CHP set point changes every 5 minutes) 
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Figure 88 - Storage power exchanged and state of charge for the fictional day 

with limited load (CHP set point changes every 5 minutes) 

Fictional day modifications: unsteady operation of the CHP 

The previous test was repeated changing the way the correction had to 

be applied to the CHP, instead of deciding a set point every 5 minutes 

here it was set to every 5 seconds. As already said this is not an ideal way 

of operating the CHP because it makes the engine change load very 

frequently, therefore reducing its efficiency and stressing more the 

engine itself. The test aims at evaluating the difference in terms of 

storage size depending on the way the CHP is operated. If the difference 

results negligible then there is no reason to assign the set point of the 

CHP once every 5 seconds. The inputs adopted are the same as for the 

previous run and the related diagrams are not reported. From the 

diagrams in Figure 89 and Figure 90, representing the results of the real 

time algorithm tested in this condition, it can be noticed that the storage 

is about the same size of the previous case, around 4.5 kWh. Therefore, 

there is no need to work in unsteady conditions at all times. Indeed, it is 
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better to assign to the storage the duty to follow the load and 

compensate the difference with what it was promised rather than to the 

CHP.  

 
Figure 89 - Adjusted power output of the CHP and power output of the storage 
in the fictional day with limited load (CHP set point changes every 5 seconds) 
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Figure 90 - Storage power exchanged and state of charge for the fictional day 

with limited load (CHP set point changes every 5 seconds) 

Fictional day modifications: Time to pair comparison 

The last test carried out was performed to assess the effect of the 

parameter “time to pair” which represents the number of time steps that 

occur before the correction is successfully applied on the forecasted CHP 

output so that it matches the actual request. All the inputs are the same 

as for the previous case but the value of the time to pair, was reduced to 

two minutes, down from five. The effect of this modification can be 

noticed considering Figure 91 and Figure 92.  
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Figure 91 - Adjusted power output of the CHP and power output of the storage 

in the fictional day with limited load (CHP set point changes every 5 seconds 
and Time to pair set to 2 minutes). 

 
Figure 92 - Storage power exchanged and state of charge for the fictional day 
with limited load (CHP set point changes every 5 seconds and Time to pair set 

to 2 minutes). 
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The storage power exchanged and charge level diagram suggests that to 

a smaller time to pair corresponds a smaller storage (3.5 kWh) but has 

almost no effect on the power exchanged by the storage. Indeed, a lower 

time to pair means that the CHP will correct its power output faster, thus 

limiting the energy that the storage must provide in the meanwhile. 
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6 CONCLUSIONS 

The increasing energy demand by industrialized and developing 

Countries is becoming a critical issue both in terms of how to supply the 

demand and effects on the World’s climate. Renewable Energy Sources 

could serve as a powerful mean to inject more energy in the power 

system but those featuring the greatest potential in terms of power 

production are also affected by unpredictability. Because of their innate 

intermittency due to the possible rapid changes of weather conditions, 

solar and wind power are difficult to handle by the energy system, 

especially when their penetration in the grid reaches over the 30% of 

total rated power installed. A possible solution to allow a further increase 

in solar and wind power in the global energy mix is to ensure that their 

power output can be predicted and managed in the short-term. Thanks 

to their versatility and extended metering, monitoring and control 

system, Smart Grids show a great potential regarding the increase in 

economy of operation, environmental friendliness, security and reliability 

of the power system. Smart Grid are large-scale systems, typically 

regional or national, composed of smaller scale actors that share the 

same philosophy of construction, control, and purpose. The fundamental 

part of the Smart Grid is represented by intelligent users, which are 

capable of answering to different drivers so as to minimize the costs or 

environmental impact of their operation. Whereas the greatest asset of 

the traditional power system is its hardware, the most important tool of 

the Smart Grid is its control system and thus the strategies proposed for 

its operation. This Thesis project proposes to define an optimized 

strategy for the management of the end-user connected to the broader 

Smart Grid, its base component, the Smart User.  

The control and optimization strategies are always connected with the 

physical plant, thus the first part of the project dealt with the definition 

of the Smart User design and its installation in an actual facility in order 
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to carry out tests on actual data. This is rarely found in the literature, 

where most of the works rely on fictional data or are based on scenario 

evaluations from historic data. Nonetheless, the presence of an actual 

plant on which to base the tests, compared to the common practice, 

allows a deeper connection between the optimization strategy and the 

actual plant and thus enhances the fallback of the research on the final 

application.  

The Smart User experimental plant is located in Pontlab facilities, sited in 

Pontedera (PI). Inside Pontlab facilities are carried out several tests of 

different kinds for industrial partners. This specific user was chosen 

among different candidates because of the chance to adopt both 

Demand Side Management strategy, thanks to its modulated loads, and 

generation curtailment strategies. Several different generators are 

installed in the facility, including: a PV field, a small wind turbine, two 

auxiliary thermal units (a boiler for heating and a compression chiller for 

cooling) and a co-generation unit coupled with an absorption chiller for 

the supply of cooling power during summer. Two thermal storages, one 

for the hot loop and another for the cold loop are installed and an electric 

storage can be virtually simulated. The tests carried out demonstrate the 

positive influence of storages on plant performance, thanks to the 

flexibility of operation that they allow. Regarding the electric plant layout, 

every generator and load is connected to a main switchboard, which is 

linked to the energy meter towards the grid and controlled by the SCADA 

system. On the other hand, two possible thermal plant layouts can be 

adopted for a Smart User. The most flexible one features all the 

generators installed in parallel to their respective storages. It allows the 

plant to achieve the best performance but it is also harder to control and 

operate with commercial equipment. The other possible layout is closer 

to the conventional thermal plants in tri-generation application; indeed, 

in this case the auxiliary units are in cascade between the storage and the 

load. Because the Smart User experimental plant is installed in an actual 
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facility, for which all the technical and safety standards must be met, and 

because the Smart User was installed on a previously existing plant, the 

layout of choice for Pontlab was the latter. The SCADA system receives all 

the inputs from the temperature sensors and energy meters in the plant, 

as well as the price inputs from the electricity market and the weather 

forecasts. In addition, it receives from the user the activities planned for 

the following day. Thanks to the inputs provided, three algorithms run 

inside the SCADA: two dedicated to the optimization that provide as 

output the set points for the generators and the non-prioritized loads, 

one to the real-time balancing of loads and generators.  

All of the algorithms were designed ad hoc for Smart User application 

during the Thesis project and introduce a new strategy for the 

management of energy systems in the literature. The two optimization 

algorithms act at different times, the Day Ahead Algorithm (DAA) during 

the day before operations, conversely to the Advanced Dispatching 

Algorithm (ADA) that runs every fifteen minutes during the day it 

optimizes. The DAA allows the user to prefigure its operations depending 

on the activities planned for the day ahead, the weather forecasts and 

cost conditions. In addition it communicates to the Distribution or 

Transmission Service Operator (DSO/TSO) the grid exchange profile it will 

grant during the following day, modified according to the rules set by the 

DSO/TSO. On the other hand, the ADA is required to refine the optimized 

solution depending on a possible modification of the actual weather 

conditions or forecasts, the planned activities or the possible request of 

ancillary services to the user. The role of the ADA is fundamental in order 

to avoid major errors in the plant management due to inaccurate 

forecasts and to help the Real Time Algorithm to ensure the compliance 

with the grid profile promised after the DAA has concluded its 

optimization. The Real Time Algorithm (RTA) does not perform any 

optimization. Instead, it corrects the expected electric power output of 

the co-generator once every few minutes, depending on the setup. To do 
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so, it relies on a small electric storage that precisely follows the load and 

ensures that the promised grid exchange profile is respected at all times.  

The optimization algorithms are designed aiming at reducing the 

contemporaneous number of variables to optimize at the same time 

while retaining a solution close to the global optimum of the problem, 

which is the daily optimization of the plant. For the purpose, there are 

two different optimization strategies working together. The optimization 

of the generator set points and loads curtailment during a 15 minutes 

period is performed by a Genetic Algorithm (GA), chosen for its 

computational speed and reliability when solving non-linear optimization 

problems. On the other hand, the daily optimization is performed by a 

Shortest-Path Algorithm. The difference between a daily optimization 

and the one allowed by the optimization of the generators and 

modulated loads set point every fifteen minutes resides in the presence 

of the energy storages. Indeed, a daily optimization makes sense if it is 

possible to increase/decrease the generation compared to the load (or 

vice-versa) or if it is possible to define when to activate some of the loads 

during the day. The first opportunity is provided by the energy storages, 

the second by some particular loads that are referred to as deferrable. In 

these cases, a daily optimization is capable to achieve better performance 

compared to one optimizing the operations of the various devices in a 

single time-step. In Pontlab, the greatest opportunity is offered by the 

presence of the thermal storages; therefore, to achieve a daily optimum, 

their management had to be optimized. Nevertheless, performing the 

optimization of the whole day at once greatly increases the dimension of 

the problem, up to a point where it is no longer possible to adopt the 

same strategy that is employed for the optimization of a single period of 

15 minutes. Indeed, if the same GA is to be adopted, the search space 

would grow exponentially, from 1014 to 101387; optimization problems of 

this size can be tackled efficiently only by linear solvers. Nonetheless, the 

adoption of linear solvers on a non-linear system inevitably leads to errors 
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that sometime can make the solution practically unfeasible. The use of 

separated optimization strategies for the generators and loads during a 

time-step and the storage management is allowed by the way the system 

is described. The Shortest-Path algorithm’s application to the energy 

system is permitted by the representation of the storages charge 

combinations (one value for the electric, one for the thermal storage) as 

system states that can be reached by different paths, whose cost can be 

assessed by the genetic algorithm. Once all the generators set points and 

loads curtailments are optimized for each passage from one state of the 

system to another, the Shortest-Path algorithm seeks the less expensive 

path among the possible ones. The approach used, which finds no match 

in the literature, allowed the optimizer to run within the 15 minutes limit 

defined by the ADA during the offline tests carried out. Upon algorithm 

translation into C++ code, the computational time required for the 

optimization can be reduced further.  

The first tests were meant to assess the different performances that can 

be achieved with either the Single-Step algorithm (i.e. the Genetic 

Algorithm alone) or the Shortest-Path Algorithm. Two series of test cases 

were employed. The first is a collection of fictional load and price profiles 

defined ad hoc in order to test the algorithms capabilities and different 

behavior suggested by the time-step optimization and the daily one. This 

series of inputs provides easily readable output, ideal for the purpose of 

evaluating the physical coherence of the solution proposed on a complex 

plant. The second series on the other hand is based on the actual data 

measured by the SCADA in Pontlab. This set of inputs allowed the 

understanding of the true potential of the approach in examination. The 

days of choice are different from one another and display a wide range 

of possible weather, price and load combinations. Four days were 

selected for the tests in summer-operation mode, whereas five different 

days were chosen for the winter-operation mode. The tests on actual 

days were performed considering two different scenarios: the first is the 
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present scenario, where there is no restriction on the power exchange 

with the grid; the second, conversely, introduces a penalty for non-

compliance with the profile promised during the day before. The rule set 

to constrain the power exchange profile with the grid was defined 

considering the suggestion of Enel S.p.A. This allowed introducing the rule 

that is most likely to be implemented in the near future on an actual 

plant.  

Regarding the tests on the fictional days, the results show a clear 

advantage of the Shortest-Path Algorithm in most of the situations, with 

a few cases where it reaches the same result of the Single-Step and a 

single case where its performance is worse than that reached by the 

simpler algorithm. The peculiar case is the constant profile for the whole 

day, where no improvement is registered, a situation impossible to 

happen during the actual operation of the plant.  

Regarding the tests on the actual days, because of the intensity of the 

cooling load during the summer period, which exceeds the potential of 

the absorption chiller during most of the time, the advantage of the 

proposed strategy is limited during summer, if compared to the 

traditional Electric Load Following (ELF) and Thermal Load Following 

(TLF). On the other hand, the advantage over the conventional operation 

or the TLF management of the CHP are of 19% and 26% for the Single-

Step and Shortest-Path Algorithm respectively. None of the new 

strategies defined is compared in the future scenario against the 

traditional operation, indeed, the conventional ELF or TFL approaches are 

not adequate to respect an assigned profile with the grid, because they 

simply respond to a load condition, without considering any other 

variable in determining the set-point of the CHP. Thus, the comparison of 

the two algorithms in the future scenario is done in respect of the 

performance of the Single-Step in unconstrained grid exchange. The 

results evidence how the Shortest-Path Algorithm minimizes the overall 
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decrement of performance at about 14%; whereas, when the penalty is 

applied to the Single-Step the performance decrement is of almost 35%.  

Another comparative test is made, on the same actual days, between the 

two possible thermal layouts and, for each of them, among the choice of 

a thermal or an electric storage, both considering the present and the 

future scenario. The results show that for the Pontlab plant, where the 

operation of the thermal storage is less flexible compared to the ideal 

Smart User layout, there is an advantage in employing a thermal storage 

rather than an electric one in the present scenario. Conversely, when the 

grid profile becomes a constraint, the potential benefits of electric 

storage are greater than those allowed by the thermal storage during 

both winter and summer. Indeed, the overall improvement of the 

economy of operation when using a thermal storage is of 8% and -1% (i.e. 

it is detrimental) in the present and future scenario respectively. On the 

other hand, with the electric storage the benefit is lower in the present 

scenario, less than 4% but almost 14% in the future scenario. With the 

Smart User layout, being the management of the thermal storage more 

versatile, the gap between the two conditions (present and future 

scenario) is lower. The thermal storage achieves an overall benefit of 9% 

in both situations, whereas for the electric storage the improvement is 

2% in the present scenario and 11% in the future scenario. Finally, a 

comparison is made between the conventional operation strategies and 

all the possible layouts and storage combinations in the present scenario. 

The improvements allowed by the ideal thermal layout are minimal 

compared to the more traditional plant in Pontlab in the present 

scenario. Thus, the improvements in respect of the conventional supply 

are almost the same for both layouts. It should be noticed though that 

the situation would change if the scenario considered were the future 

one, where the compliance with the promised power exchange profile 

with the grid requires the greatest versatility of operation possible. 
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The Real Time Algorithm was tested as well, on two different conditions 

that were considered sufficient to evaluate its performance offline the 

plant. One condition is an actual measurement performed on the plant, 

meaning that both the forecasts and the measured data during the day 

come from the same day of operation. In this case the RTA balanced the 

plant and respected the promised grid exchange profile employing a 

storage of low capacity (600Wh) and a power output close to the one of 

the CHP, 24 kW. The correction required in order to both balance the 

plant and ensure the power exchange profile with the grid was small 

because of the accuracy of weather and load forecasts. Hence, a more 

stressful test was prepared, creating a fictional day whose real-time data 

came from the same day of the actual-day test but the weather and load 

forecasts of the day before were artificially wrong. For reasonable errors 

(i.e. a possible shift between real-time load and weather conditions and 

forecasted value), the size of the storage required to accomplish the goals 

set for the RTA is higher than in the actual-day case. Indeed, the storage 

capacity rises to between 3.5 and 4.5 kWh, depending on the type of 

correction applied by means of the CHP and the storage. On the contrary, 

the power output remains in the range of the CHP maximum power 

output, or, in some of the cases tested, reduces to 15 kW.  

All the algorithms tested performed as expected and achieved the 

objectives set for the project. 
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7 FUTURE DEVELOPMENTS 

The activity carried out during the research project that this Thesis deals 

with is an ongoing process. The next steps will be the implementation of 

the optimization strategies tested offline onto the SCADA in the actual 

plant. This will allow the algorithms’ performance to be evaluated when 

operating online. Further on, the optimization of the deferrable and 

interruptible loads will be tackled and added to the functionalities of the 

present optimizers. For now, it is unclear how their optimization will 

effect the computational time required to achieve an optimized solution. 

Thus, it is still to be assessed whether the optimization of these particular 

loads will be carried out only during the day-ahead or also in advanced 

dispatching on the actual plant. Another step ahead would be the 

implementation of an effective multi-objective optimization strategy, 

that would allow to consider all of the three possible objective functions 

(economic, environmental and energetic) at the same time. Finally, it is 

desirable to test the Smart User concepts and solutions developed in this 

work, onto different plants other than Pontlab, possibly featuring a 

diversification of generation solutions, storages and thermal layout 

configurations. 
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