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1. Introduction	

1.1 Metals	in	biological	systems	

The importance of many metals in biological systems is now widely appreciated (1), (2). About 12 

different metals, found in living systems, are essential and support fundamental biological functions. 

These metals are sodium (Na), magnesium (Mg), potassium (K), calcium (Ca), molybdenum (Mo), 

tungsten (W), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), and zinc (Zn). The 

essential role of vanadium (V) has been unambiguously demonstrated only for certain organisms, 

such as ascidians, polychaete worms and Amanita mushrooms (3). There are also a number of non-

essential metals that however are present in biological systems and affect important physiological 

processes. Some of them interact with living systems and others have beneficial or pharmacological 

effects. Figure 1 shows the essential (highlighted in blue and green) and non-essential metals 

(highlighted in yellow). 

 

FIGURE 1. A PERIODIC TABLE OF METALS IN BIOLOGICAL SYSTEMS 

In course of the evolution essential metal ions have been selected on the basis of their “biological 

availability” within the environment. This means that ions must be in an easily extractable form and 

have to be relatively abundant. The cations of the first and second group (Na+, K+, Mg2+, Ca2+) are 

the most abundant metal ions in the environment and in the biological systems (4), (5). They are 

“bulk” biological elements and are required for a great variety of biochemical functions. Other 

metals are needed in very small amounts, hence called “trace” metals, despite of abundance in the 
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environment. Iron, for example, is the fourth most abundant element in the Earth’s crust but as it can 

be potentially toxic for the cells its homeostasis is carefully supervised and its distribution is tightly 

controlled. Although trace metals are present in only small quantities, they have important biological 

effects and their availability is crucial. 

For every organism there is a concentration range within which the requirement of the organism for 

a given essential metal is met. Within this range, organisms are able to regulate their internal 

essential metal concentration by means of homeostatic mechanisms without experiencing excessive 

stress. Below the concentration limit the organism experiences deficiency of the metal and above the 

limit the metal becomes toxic. In contrast, non-essential metals have a negligible effect on 

organisms at a below-threshold level but become increasingly toxic as the dose increases above this 

level (6). This is illustrated in Figure 2. 

 

FIGURE 2. THE QUALITATIVE EFFECT OF ELEMENT CONCENTRATION IN LIVING MATTER ON BIOLOGICAL ACTIVITY: 
(A) ESSENTIAL ELEMENTS; (B) NON-ESSENTAL ELEMENTS 

The specific role of essential metal ions within biological systems depends on their chemical and 

physical properties. For example, iron ions, which readily exchange electrons, may participate in 

reduction-oxidation reactions whereas zinc ions have a constant oxidation state (even if can it be 

involved in the catalysis of redox reductions, e.g. if there is an organic electron acceptor/donor). In 

biological systems metal ions exhibit a great variety of binding partners including biological 

macromolecules such as proteins, polynucleotides, and carbohydrates. These macromolecules are 

polymers consisted of basic building block units, some of which contain charged and polar groups 

that are capable of binding metals. 
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1.2 The	importance	of	metalloproteins	

Proteins that bind metals are called metalloproteins. Several facts indicate the importance of the 

roles covered by metal ions and by the metalloproteins associated with them. First, it is estimated 

that metalloproteins constitute more than half of the proteins used by living organisms and 

approximately 40% of enzymes with known structure bind metal ions in their active site and use 

them to catalyze reactions (7). Second, metalloproteins participate extensively in many essential 

biochemical processes, including respiration, nitrogen fixation and photosynthesis. Third, it is now 

generally accepted that deregulation of metal ions amount and usage in cells is associated with 

important diseases such as cancer and neurodegenerative disorders (8). Therefore, it is important to 

better understand the roles of metal ions in organisms and support the study of metalloproteins. 

1.3 Roles	of	metals	in	metalloproteins	

Metals contribute to biochemical and physiological properties of metalloproteins. This contribution 

depends on the interaction between metals and metalloproteins, the strength of which varies from 

very loose to very tight. Metals can be reversibly bound to metalloproteins, e.g. in case of metal 

transport, or can be firmly incorporated in a specific location. The classification of metals with 

regard to their function (9), (10) highlights the following roles that metals can play in 

metalloproteins: 

i. Structural metal ions stabilize the structure of folded proteins or help to create a particular 

physiologically active conformation of the protein. For example, zinc functions as structural 

element in zinc finger domains. Structural metal ions can also serve as a cross-linking agent 

binding together polymer chains, different parts of the same chain, or formation of protein-

protein interface. 

ii. Catalytic metal ions are located in sites at which enzyme catalysis occurs, e.g. copper ions in 

superoxide dismutase or cytochrome c oxidase, iron ions in mono- or di-oxygenases, or iron 

and molybdenum ions in nitrogenase. 

iii. Metal ions can play a regulation role in many various cell processes being first, second, or 

third messengers (11) or act as triggers for protein activity. For example, regulation of 

transcription is coupled with numerous intracellular signaling processes often mediated by 

second messengers, like calcium, which is one of the most versatile second messengers. In 
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addition, metals may induce conformation changes in enzymes or in other proteins which 

may themselves enhance or inhibit enzyme activity (12). 

iv. Transport of electrons or small molecules can occur with the help of metal ions. Transition 

metals that exist in multiple oxidation states serve as electron carriers – that is, iron ions in 

cytochromes or in iron–sulfur clusters or copper ions in blue copper proteins. Another 

important role is oxygen transport – that is, iron ions in hemoglobin or copper ions in 

hemocyanin. 

1.4 How	proteins	bind	metal	ions	

Metalloproteins can bind metals as individual ions or within metal-containing cofactors. 

Metalloproteins can bind more than one metal ion, not necessarily of the same nature. In such cases, 

the metals may either be distant from each other in space and can reasonably be regarded as 

independent or be assembled into polynuclear sites where the ions are close in space and often 

coordinated by bridging ligands. Metal-containing cofactors can be extremely diverse in their 

chemical complexity, ranging from organic ligands binding a single metal ion, such as porphyrins, 

to highly elaborate polymetallic clusters, such as the FeMoCo cofactors of nitrogenases. Figure 3 

shows several examples of the metal binding centers. 

 

FIGURE 3. EXAMPLES OF METAL BINDING CENTRES 
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In Figure 3 (a) mononuclear iron center in photosensitive nitrile hydratase; (b) mononuclear 

magnesium center in Ni-Fe hydrogenase; (c) dinuclear copper center in oxyhaemocyanin; (d) 

polynuclear iron-sulfur center; (e) haem iron coordination in haem-thiolate proteins; (f) 

molybdenum center in sulphite oxidase. 

Metals are bound to proteins via coordination bonds. Atoms directly involved in metal coordination 

are termed donor atoms. Donor atoms can be provided by the protein (endogenous ligands) or can 

be donated by exogenous ligands not derived from proteins, which range from organic compounds 

as oligopeptides, small organic molecules to small inorganic entities like anions, water molecules, 

and other convenient ions in the physiological environment (13). A ligand with one donor atom is 

termed monodentate. A polydentate ligand is attached to a central metal ion by bonds from two or 

more donor atoms. Proteins can be regarded as polydentate ligands, but it is often easier to think of 

the amino acid residues as separate ligands. The ligands surrounding the metals are also collectively 

called the first coordination sphere. The ensemble of atoms comprising the metal ion (complex or 

cluster of metal ions) and its ligands defines the metal-binding site. 

Figure 4 illustrates the structure of oxalate oxidase (2ET1) in the presence of glycolate molecule 

bound to the active site manganese ion. The magnesium ion is shown as a red sphere. Endogenous 

ligands are His 88, His 90, Glu 95, and His 137 shown as blue sticks. Light blue color highlights 

exogenous ligands: water and glycolate molecules. 

 

FIGURE 4. AN EXAMPLE OF A PROTEIN STRUCTURE CONTAINING METAL-BINGING SITE 



6 
 

Donor atoms can belong to the protein backbone or side chains/bases. Typical protein donor atoms 

are the oxygen, nitrogen, and sulfur. Backbone carbonyl groups can bind metal via oxygen. An 

analysis of the first coordination spheres of the available structures of metalloproteins has shown 

that about 65% of the various types of amino acid side chains are potential metal-binding groups 

(14). The most common metal-binding amino acid side chains in proteins are: the carboxylate 

groups of aspartic acid and glutamic acid, which have negatively charged oxygen atoms available 

for coordination; the imidazole ring of histidine, which can coordinate via its nitrogen atoms; the 

thiol group of cysteine, which can form a negatively-charged thiolate whose sulfur atom is available 

for coordination. Less frequently observed residues are tryptophan, which can bind via the indole 

group nitrogen, methionine, which can bind via the sulfur atom of its thioether group, and serine, 

threonine, and tyrosine, which can use the oxygen atom of their hydroxyl group. Asparagine and 

glutamine amide groups potentially coordinate metals via oxygen atom as well as lysine and 

arginine amino groups may interact with a metal ion via nitrogen atoms but do it relatively rarely. In 

rare cases, also the protein N- and C-termini can provide donor atoms to metal ions. 

The utilization of protein residues at the binding sites relates to a chemical property termed as 

“hardness” (”softness”). The word “hard” has been introduced to indicate a low polarizability so that 

the electron cloud is difficult to deform. By contrast “soft” means high polarizability so that the 

electron cloud is readily deformed (15). The metals of the first and second group (e.g. Ca and Mg) 

are “hard” and interact through electrostatic forces mainly with main-chain and side-chain oxygen 

atoms. On the other hand, most of the transition metals relevant to biological systems (e.g., Fe, Zn, 

Cu, Ni, Co) are “soft” or have intermediate hard-soft properties. Soft metal ions form stronger 

complexes and ligate mainly with nitrogen and sulfur atoms of amino acids side chains. 

1.5 How	the	metal	environment	tunes	metal	properties	and	functions	

The biological function of metals is related to the chemical properties of the metal and its 

environment, in the first place the metal-ligand interaction. The important aspect of the metal-ligand 

interaction is that once a ligand bound to a metal the reactivity of the ligand is modified. This 

happens due to the perturbation of the ligand-centered energy by the metal proximity (16). Ligand 

polarization effects resulting from the Lewis acidity of the metal increase the susceptibility of the 

ligand to nucleophilic attack. Conversely, binding of a ligand to a metal may enhance its 

susceptibility to electrophilic attack or its tendency to undergo solvolysis reactions. Metal ions with 

partially filled d-orbitals may provide a convenient "bridge" for electron transfer between the 
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ligands. Metal ions can greatly affect the conformational stability of proteins, and many proteins 

undergo conformational changes upon formation of the complex with metal ions. The opposite is 

also true as the energy levels, associated with a metal ion, are sensitive functions of its local 

chemical environment. The ligands often contribute to the stereochemistry required for reaction. 

There is an increasing number of examples which show clearly that various ligands can modulate 

the catalytic properties of metal ions (17). These factors contribute to a wide range in the functional 

properties of the metal-ligand complexes. 

The metal ion environment, beyond the first coordination sphere, is also very important in tuning the 

function of a metal, although a full description is more difficult. For example, there may be 

interactions of electrostatic charge with dipolar groups in neighboring molecules (18) or of the 

ligands with hydrogen-bonding groups of the protein main chain and side chain groups (19). Such 

interactions may result in small changes in coordination geometry around the metal, and hence in 

coordination energy, they may be critical to the formation and stabilization of the sites or facilitate 

interaction with substrate or ligands, or in other ways affect the protein function. In support of the 

role of the local environment, one also finds a strong evidence for the involvement of specific 

residues, not linked directly to metals, in the mechanisms of catalysis. 

Some specific cases have been investigated by structural and kinetic analysis of mutants designed to 

modify the metal environment. For instance, Ataie et al. (20) have studied the effect of substitution 

of conserved protein residues outside of the first coordination sphere on the activity of a zinc 

aminopeptidase. Dudev et al. (21) surveyed second shell ligands found in Mg, Mn, Ca and Zn 

proteins in the PDB database and carried out energy calculations. The second coordination shell can 

consist of ions (especially in charged complexes), molecules (especially those that hydrogen bond to 

ligands in the first coordination sphere) and portions of a ligand backbone. Authors found that the 

outer shell is apparently designed to stabilize and protect the inner-shell and complement and 

enhance its properties. Some studies have looked at neighboring groups as far as 3.5Å, but residues 

within distances up to 4–6Å may well be significant (22). 

1.6 Bioinformatics	studies	on	metalloproteins	

The detailed study of the structural, physicochemical, and functional properties of metal-binding 

proteins is an important and actual task. When a protein is synthesized its amino acid sequence is 

determined by DNA sequence, but the requirement for and position of any metal ions is not a part of 
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this information and must be determined independently. The structures of many metalloproteins are 

now available as a result of structural genomics efforts, while their function has to be fully 

characterized. Experimental methods for the identification and characterization of metalloproteins 

are expensive, time consuming and difficult to automate. Therefore, there is a great demand of 

computational methods for structural and functional studies of metalloproteins. 

In recent years a great deal of bioinformatics research was carried out at CERM (the University of 

Florence). This research has focused on the development of methods and tools specifically targeted 

to the study of metalloproteins, and ultimately aimed at facilitating knowledge discovery processes 

to advance our understanding of the interaction among metal ions and biological macromolecules. 

1.6.1 Bioinformatics	models	of	the	metal	environment:	the	state	of	the	art	

The concept of metal-binding site was extensively used to model the metal environment in 

metalloproteins and evaluate their functional properties. This model was shown as useful for the 

bioinformatic analysis of metalloproteins and, in particular, for the prediction of metalloproteins at 

the whole proteome level (23), (24), (25). 

Andreini et al. (25) used sequence information on metalloproteins to determine all known metal-

binding signatures. These signatures, termed Metal Binding Patterns (MBP), include the binding 

residues and their spacing along the sequence. Each MBP is used together with the primary 

sequence of the corresponding metalloprotein to browse any ensemble of sequences of interest. One 

of the limitations of this approach is that it requires identification of conserved spacing patterns 

between binding residues and these spacings are not always conserved. Hence, it is not possible to 

search for a binding residue that is far away in sequence from other binding residues, since the exact 

spacing can vary greatly among sequences. A further limitation is that unprecedented sites cannot be 

predicted. 

Many other methods are based on learning machines, such as SVM’s (26), (27), (28), (29). For 

instance, Lin et al. (30) operated on subsequences of proteins, under the assumption that metal 

binding residues are influenced by the surrounding environment in nature. The amino acid at the 

center of the fragment is the target amino acid, whereas the others are the “neighbors”. The fragment 

sequence is encoded to a feature vector, which contains information on the occurrence probability of 

the amino acid, the propensities of the secondary structure, and the metal-binding propensity of the 

amino acid. The feature vector is fed into a neural-network learning machine. The learning machine 
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decides whether the target amino acid binds metal or not. This process is repeated by shifting each 

time one position along the protein sequence, resulting in a new fragment. The limitation of this 

approach is that it predicts metal binding residues rather than metal binding sites. Therefore, it 

analyses the probability of each putative binding residue individually, instead of taking into 

consideration the combined context of all residues belonging to one unified site. 

Other approaches focused on a description of metal sites in proteins that would consider also the 

structural information of conformations of ligands in metal-binding site (31). Structural information 

on metal binding sites comes both from crystallographic and solution studies. It is derived from the 

coordinate files deposited in the PDB database (32). The metal-binding sites were described as 

three-dimensional (3D) templates of metal-binding ligands. Then a 3D search used to locate relative 

conformations of groups of residues in a given structure that closely match a specific metal-binding 

template. 

The crucial limitation of the approaches which use models that include only the metal ligands is that 

such model may not be sufficiently accurate to reproduce the biochemical function of metal site. As 

already mentioned, the functional properties associated with the occurrence of metal sites in 

biological macromolecules are not adequately described only on the basis of the metal coordination 

sphere (33), (21), (34). The interactions involving the protein atoms beyond the ligands play a role 

in tuning the chemical reactivity of metal (e.g. H-bonds, salt-bridges between ligands and 

neighboring atoms, effects of the three-dimensional conformation upon the local environment of a 

site) (34). Therefore, the model of metal sites should describe a composition of the metal and the 

local protein environment, whose properties as a whole are optimized for function. 

Consequently, there have been attempts to enhance the description of metal sites adding information 

about its local environment. One of the early approaches (35) is based on the finding that many 

metal sites in proteins share a common feature: they are cantered in a shell of hydrophilic ligands, 

surrounded by a shell of carbon-containing groups. Therefore, it is possible to measure the contrast 

between groups located at the center of the sphere (more hydrophilic), and groups located at the 

outer shell (more hydrophobic) within a radius of threshold distance. The contrast function is 

generally maximal when cantered at or near a metal binding site. However, this algorithm also 

identified regions of high contrast that were not associated with metal binding, such as charged 

surface residues and buried, positively-charged residues (36). 
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In this thesis we follow a novel model proposed by Andreini et al. (37). The model describes metal-

binding sites in metal-binding biological macromolecules, including metalloproteins. The model is 

aimed at increasing the strength of the relationship with functional properties. The model takes into 

account the surroundings of the metal-binding site and can be thought of as the minimal 

environment determining metal function, hence dubbed the “Minimal Functional Site” (MFS). An 

MFS is defined as the ensemble of atoms containing the metal ion or metal containing cofactor, all 

its ligands and any other atom belonging to a chemical species within 5Å from a ligand. A distance 

threshold of 5Å appears to be a reasonable compromise between the need of including all residues 

that interact with metal ligands and the need of describing metal sites only on in terms of their local 

structure (without exceeding too far from the metal). 

MFSs are extracted from coordinate files in the PDB format describing the three-dimensional 

structures of metal-binding biological macromolecules derived from the PDB database. In PDB 

structures macromolecules are often deposited in a complex with other biologically relevant 

molecules and ions such as water, metal ions, nucleic acids, ligands and so on, which can be also 

described in the PDB format. Availability of special coordinates of such complexes allows capturing 

the interaction between metal ion(s) and biological macromolecules as well as exogenous ligands at 

atomic level. The data deposited into PDB is validated against the unified format and so can be 

processed using automated computational protocols. 

 

FIGURE 5. AN EXAMPLE OF A STRUCTURE WITH TWO MINIMAL FUNCTIONAL SITES 
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The MFS describes the local 3D environment around the cofactor containing enough information on 

the functional properties of the site, independently of the larger context of the protein fold in which 

it is embedded. The usefulness of the MFS concept outlined above has its chemico-physical 

foundation in the fact that the local environment of the metal has a determinant role in tuning its 

properties and thus its chemical reactivity. Instead, the macromolecular matrix is instrumental to 

determine, e.g. substrate selection (38) or partner recognition (39). 

1.6.2 Bioinformatics	resources	and	metalloproteins:	the	state	of	the	art	

Nowadays hundreds of bioinformatics resources are available, which contain and make easily 

accessible various types of biological information. There are databases of protein sequences, for 

example, the Universal Protein Resource (UniProt) (40) that provides a comprehensive and freely 

accessible central resource of protein sequences and functional annotation (http://www.uniprot.org/). 

There are databases containing the solved structures of biological macromolecules. The principal 

resource for many bioinformatics studies is Protein Data Bank (PDB) (http://www.rcsb.org) (32) 

(managed by the RCSB, Research Collaboratory for Structural Bioinformatics). It contains the 

structural information resulting from X-ray diffraction structure determinations of protein crystals 

and from the nuclear magnetic resonance (NMR) structure determinations of proteins in solution. 

There are databases collecting the available knowledge on specific biological systems, e.g. 

BRENDA (http://www.brenda-enzymes.info/) that contains enzyme-specific data manually 

extracted from primary scientific literature and additional data derived from automatic information 

retrieval methods such as text mining. Resources such as CATH (41) or SCOP (42) are able to 

capture distant relationships between protein domains through the analysis of their 3D structures. 

They provide the notion of protein superfamily, which is the ensemble of all the protein domains 

with the same overall structural features. Proteins that share significant sequence similarity are 

organized in Pfam database (http://pfam.xfam.org/), which is a large collection of protein families, 

each represented by multiple sequence alignments and hidden Markov models (43). 

Despite of the swift development of resources and importance of metals in biology, bioinformatics 

has paid a little attention specifically to metalloproteins. Previously created databases of 

metalloproteins such as PROMISE (44) and MDB (45) were short-lived and are not currently 

updated. PROMISE was aimed at providing ample manual annotations for several groups of 

metalloproteins, but it lacked well-defined classification system and terminology, therefore it could 

not be easily queried. Its development was abandoned in 2002. MDB had the primary goal of 
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automatically extracting and collecting information on the geometry of metal sites from the known 

structures of metalloproteins. A limit was that MDB it classified the sites (and could be queried) 

only with respect to the type of metal and to the coordination number, and did not give any 

functional annotation. Also its development was abandoned, in 2001. 

Our work exploits the MetalPDB database (http://metalweb.cerm.unifi.it) that has been developed 

by Andreini et al (46). The database contains knowledge on metal-binding sites in biological 

macromolecules with known structure and is automatically updated monthly. The central objects of 

MetalPDB are Minimal Functional Sites, introduced in Section 1.6.1. To facilitate analysis, the 

MFSs in MetalPDB are automatically grouped into clusters of equivalent sites, i.e. sites found in the 

same position within similar structures and occupied by the same metal ion(s). Developing the 

MetalPDB database has reduced the existing gap between bioinformatics and systematic analysis of 

metalloproteins, although many central questions, such as those regarding the relationship between 

the structure of the metal site and the function of the metal ion, still remain unanswered. 
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2. Research	project	

My doctoral project within three years was focused on the development of computational tools and 

resources for the structural and functional analysis of metal sites in biological macromolecules. The 

main idea underlying all the approaches, developed in the course of the doctorate, is to make use of 

the metal-centered Minimal Functional Site model in order to get biological hints on metal-

containing macromolecules. MFSs have two advantages: they can be straightforwardly extracted 

from PDB structures and can be systematically compared via structural alignment. 

In the previous studies Andreini et al have demonstrated that proteins that are structurally and 

evolutionary unrelated, according to CATH (41) and SCOP (47) classifications, may contain similar 

metal sites (48), (37). Furthermore, it has been shown that MFS support meaningful structure-based 

functional analysis. For example, for non-heme iron sites at least 17% of the sites found in unrelated 

proteins were highly similar. In another study, the systematic structural comparison of MFSs of zinc 

proteins allowed a classification of 77% of a non-redundant ensemble of zinc sites into 10 clusters. 

Each represented a zinc-binding motif conserved across different protein superfamilies. MFSs can 

therefore be extensively grouped into MFS folds, i.e. MFSs that share similar structure contained in 

protein with different shapes. Often, metal ions found in MFSs with the same fold perform the same 

function, so a structure-based classification is tightly connected to the functional properties of each 

site. 

By the time the aforementioned analysis of zinc sites was performed, the authors did not have a 

computational tool specifically designed to compare MFSs. The analysis thus required extensive 

human intervention as existing tools for overall structural alignment often failed to align MFSs. This 

also hampers the reproducibility of the analysis as well as the application of the same approach to 

other metals and by other groups. The huge variability and diversity of metal sites indeed warrants 

the development of specific tools for their analysis. 

To address the above bottleneck, we developed the MetalS2 (Metal Sites Superposition) tool for the 

structural alignment of MFSs in any pair of metal-binding biological macromolecules. On the 

example data sets, that were used for an assessment, MetalS2 unveiled structural similarities that 

other programs for protein structure comparison did not consistently point out, and overall identified 

a larger number of structurally similar MFSs. MetalS2 supports the comparison of MFSs harboring 

different metals and/or with different nuclearity, and is available both as a web tool at 
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http://metalweb.cerm.unifi.it/tools/metals2 and a stand-alone software tool. The paper describing the 

tool was published in the Journal of Chemical Information and Modeling in 2013 (Andreini C, 

Cavallaro G, Rosato A, and Valasatava Y. MetalS2: a tool for the structural alignment of Minimal 

Functional Sites in metal-binding proteins and nucleic acids). The article is reported in Section 4.1. 

The availability of MetalS2 opened up several possibilities for further investigations. Our first efforts 

were dedicated to systematic comparison of all the content of the MetalPDB database. This analysis 

aimed at building a structure-based classification of all metal-binding sites with known structure. 

Such classification brings together structures of MFSs in distinct folds thereby revealing common 

structural motifs in structurally unrelated proteins. Conversely, it also highlights differences in the 

metal sites of proteins that have similar structure. In this regard we developed a computational 

protocol to systematically compare and classify metal-binding sites on the basis of the structural 

similarity of their MFSs. This protocol can be applied to analyze all the structures of MFSs. The 

protocol is based on MetalS2 by exploiting its ability to quantitatively compare a pair of MFSs, and 

uses the available organization of the MetalPDB database. In the submitted paper Hidden 

relationships between metalloproteins unveiled by structural comparison of their metal sites, 

reported in Section 4.3, the usefulness of the analysis exploiting the protocol has been demonstrated, 

e.g. by showing previously undetected similarities in multi-heme cytochromes. 

Another application that we pursued has been the use of MetalPDB as a dataset of MFSs with 

known function against which an MFS of unknown function (a query site) can be compared 

systematically. Detected structural similarities can indicate possible functional identity of the query 

site. Such analysis is useful to get functional hints for metals found in proteins of unknown function 

(e.g. newly determined structures of metalloproteins). In this regard we developed MetalS3 (Metal 

Sites Similarity Search), a database search tool that search for structural similarities within the 

MetalPDB database. MetalS3 uses a suitably adapted version of the algorithm implemented in 

MetalS2, and can be accessed through a web interface at http://metalweb.cerm.unifi.it/tools/metals3/. 

It systematically compares the structure of the query metal site to each MFS in MetalPDB, and 

keeps the best superposition for each MFS. All these superpositions are then ranked according to the 

MetalS3 scoring function and presented to the user in tabular form. The user can interact with the 

output web page to visualize the structural alignment or the sequence alignment derived from it. 

Options to filter the results are also available. Test calculations showed that the MetalS3 output 

correlates well with expectations from protein homology considerations. Furthermore, we provide 
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several usage scenarios that highlight the usefulness of MetalS3 to obtain mechanistic and functional 

hints regardless of homology. The paper describing MetalS3 was published in the Journal of 

Biological Inorganic Chemistry in 2014 (MetalS3, a database-mining tool for the identification of 

structurally similar metal sites. Valasatava Y, Rosato A, Cavallaro G, Andreini C.). The article is 

reported in Section 4.2. 

Further analysis involved the integration of diverse data from multiple data sources. It is now widely 

appreciated that proteins can be organized into superfamilies of structurally related molecules with 

very similar or radically diverse functions. These, of course, include metalloproteins. At present, 

there is no systematic investigation of the occurrence and function of metal sites across known 

protein superfamilies. Indeed, bringing together metal sites and databases of structurally related 

proteins may provide insights on the structural and functional diversification of proteins e.g. in 

superfamilies including members both with and without metal sites. 

To this end, we planned a strategy to integrate data on protein superfamilies with MFSs. This was 

implemented as a new resource that currently manages biological data from three sources: CATH 

database, Metal-MACiE database (49), and the MetalPDB database (46). The CATH database 

contains structural domains derived from the Protein Data Bank, organized in superfamilies 

according to their Class, Architecture, Topology, and Homology. Proteins are clustered into 

evolutionarily-related families if they have high sequence similarity or high structural similarity and 

some sequence/functional similarity. Metal-MACiE is a resource that contains functional 

annotations for catalytic metal ions (i.e. about the role that metals or metal-containing cofactors play 

in the catalytic mechanism of metalloenzymes). Metalloenzymes are an important subclass of 

metalloproteins wherein the metallic cofactor is essential for the catalytic activity. The mechanisms 

of functional diversification of metalloenzymes have been extensively analyzed (50), (51), (52). 

Current resources either provide details on just a particular type of data or advance extensive 

detailed analysis on a relatively small number of enzymes (53), (54). Metalloenzymes catalyze 

numerous reactions of physiological importance utilizing a relatively small number of metallic 

cofactors. Giving an importance to catalytic metal sites in governing the function of enzymes, this 

work aimed at creating an overview of the differentiation of the functional properties of enzymes in 

connection with the differentiation in a local structure of their sites. Finally, MetalPDB contains 

detailed information on three-dimensional structures of metal-binding sites in proteins. 
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In this frame we analyzed CATH superfamilies that contain catalytic metal sites contained in Metal-

MACiE. For every member of such CATH superfamilies we obtained a metal-binding annotation. 

The annotation takes into account the conservation of metal-binding ligands over the sequence 

alignment based on the structural alignment of all superfamily members. The structural alignment is 

based on either the superimposition of a site (if the site is similar and occupies the same position as 

catalytic site) or the superimposition of the entire protein domain. The procedure of obtaining site-

based superimpositions inherits their principals from MetalS3 search. In practice, each superfamily 

is identified by a catalytic metal site. Then for each metal-binding domain in a given superfamily the 

number of MFSs is known and MetalS2 tool is used to find the most similar catalytic sites. This 

strategy also allows analyzing the proteins that do not contain metals but are structurally related to 

metal-containing molecules. 

To begin to understand in detail how enzymes depend on metals in the differentiation of their 

function we have initially deployed the strategy outlined above to the contents of the FunTree 

database (55), a public resource that brings together sequence, structure, phylogenetic, chemical and 

mechanistic information for structurally defined enzyme superfamilies, instead of using directly 

CATH. The structural information in FunTree is indeed originating from the CATH database, but is 

already preorganized to focus on the mechanistic aspects of enzyme families by including only the 

catalytic domains of enzymes. Metal-binding sites identified in MetalPDB as corresponding to a 

Metal-MACiE entry were thus mapped on FunTree sequence alignments. FunTree sequence 

alignments are derived from structural alignments of protein domains featuring the same CATH 

classification. In practice, each FunTree alignment represents a given CATH superfamily of 

enzymes. This allowed us to evaluate the conservation of the ligands within each enzyme 

superfamily. This work is described in more details in a paper that is in preparation at the moment 

and its draft is included in Section 4.4. 

  



17 
 

3. Methodological	aspects	

This section describes in detail some of the methods and algorithms we used for our research and the 

interpreting the data to obtain results. Section 3.1 describes the protocol to extract MFSs from PDB 

files. Section 3.2 contains a mathematical framework for structural comparison of MFSs. We 

combined the proposed method for structural comparison of MFSs with a hierarchical clustering 

approach to obtain a structure-based classification of MFS in Section 3.3. The analysis of CATH 

superfamilies required custom development of the procedure to create a multiple sequence 

alignment based on the structural alignments. The procedure, described in Section 3.4, operates on 

both the structural alignments of MFSs and protein domains. Finally, Section 3.5 provides the 

details on implementation of aforementioned approaches in Python. 

3.1. How	Minimal	Function	Site	is	defined	

In order to select atoms that comprise an MFS a simple distance-based protocol is applied to PDB 

files describing metal-containing macromolecules. For each MFS we first identify a metallic 

cofactor which can be an individual metal ion or a polymetallic complex. Metal ions are assembled 

in a cluster if they are separated by a distance smaller than 5Å or bridged together by a ligand. This 

allows identifying polynuclear sites, e.g. an iron-sulfur cluster in ferredoxins will be identified as an 

individual four-nuclear site. Then ligands are identified as residues having at least one non-hydrogen 

atom within 2.8Å from any metal ion. The ensemble of metal ions(s) and ligands identifies a metal-

binding site. Finally, a metal-binding site is extended by adding all atoms of residues that have at 

least one non-hydrogen atom within 5Å from any ligand. The latest assemble of metals ions and 

atoms from ligands and surrounding residues constitute the MFS and described in the PDB format. 

Figure 6 represents the process of assembling an MFS around a single metal ion (a red sphere) 

where ligands are shown in blue color and surrounding residues in green color. 

 

FIGURE 6. STEPS TO ASSEMBLE A MINIMAL FUNCTIONAL SITE 
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3.2. Structural	comparison	of	Minimal	Function	Sites	

We developed a new algorithm which allows comparing the structures of MFS via structural 

alignment based on rigid-body superimposition. Structural alignment is an alignment based on 

comparison of shapes. There are two main issues when dealing with structural alignment: (i) a 

pairing of atoms must be established. In the general structural alignment problem we have to 

compare different proteins having different length and potentially very different sequence. We 

therefore do not know in advance the correspondence between the atoms in the two structures we 

want to align; (ii) transformation must be found that superimposes the two structures with given 

pairing. The naive approach to the first problem would be to simply check all possible pairings of 

atoms resulting in O(n!) time complexity. Even if the number of atoms present in MFSs is smaller 

than in proteins an exhaustive search is undesirable. Consequently, we decided to rely on heuristics 

to tackle the determination of the best superimposition of two MFSs. 

In our previous work, we defined a MFS as an assembly of residues around a metal ion or a cluster 

of metal ions. This definition gives a pivotal role to the metal ion or the geometric center of 

polymetallic sites. It descends logically from this setting that when comparing the structures of the 

MFSs, the first step is to superpose these centers so that they coincide with the origin of coordinates. 

In the subsequent alignment, rather than looking through each possible combination of residues, the 

method generates a pool of possible candidate alignments (see Section 3.2.2). To accomplish this 

task the structures of MFSs are structurally superimposed in a number of relative orientations. The 

method used for structural superimposition is described in more detail in Section 3.2.3. In making an 

alignment, a one-to-one correspondence is set up between the sequences of MFSs. The residues are 

matched on a basis of special proximity of atoms in a reduced representation described in Section 

3.2.1. The atom pair coordinates are used to establish one-to-one correspondences between the 

residues of the two sites. The correspondence is established on the basis of the distance between 

atoms. The method used to match atoms is described in Section 3.2.4. The initial alignments are 

then ranked using the specially designed scoring function (see Section 3.2.5). Finally, the score of 

these structural alignments is optimized by allowing the geometric centers and the ligands to 

displace with respect to one another (the method for the final fitting is described in Section 3.2.6). 

During the final fitting, for each pose the atom matching procedure is repeated to update the atom 

correspondences and the similarity score is recalculated. Only the best scored alignment is retained 

in the end. 
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3.2.1. Minimal	Functional	Site	reduced	representation	

A special interest concerns the modeling of an MFS as a first approximation of its structure that is 

used by the algorithm for structural alignment which is further described. When aligning structures, 

we are interested only in a subset of the atoms of the given MFS structure. The model reduces an 

MFS to a set of points that corresponds to a metal ion (or a geometric center metals ions), donor 

atoms and atoms that represent each residue, in particular its backbone core and a side chain group, 

except for glycine that contains a hydrogen atom as its side chain. 

Donor atoms, the atoms that are directly bonded to a metal ion, are identified by a procedure 

described in Section 3.1. To identify the position in space of each amino acidic residue, we use the 

coordinates of two atoms: one backbone atom and one atom from a side chain. For amino acids 

residues, we use the Cα and Cβ atoms (only the C atom for glycine). For nucleic acids residues, the 

pair is formed by the C1 atom of the sugar and the N1 atom for pyrimidine bases or the N9 atom for 

purines was used. 

Figure 7 shows relative placement of representative atoms: metal ion (in red), donor atoms (in blue), 

atoms from backbone (in green), and side chain atoms (in dark green). 

 

FIGURE 7. A REDUCED REPRESENTATION OF A MINIMAL FUNCTIONAL SITE 

Using only the Cα atoms in order to determine the topology of a backbone trace is a relatively 

common approach. There is indeed extensive demonstration in the scientific literature that the 

knowledge of the Cα trace is sufficient to accurately reconstruct the full coordinate set for the 

backbone of a protein structure. For the present application, the additional information provided by 

the Cβ atoms is useful as the C-Cβ bond represents the direction of the side chain with respect to 
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the main chain. Cβ interactions provide additional information on fold energetics (56). By using 

only Cα and Cβ pairs, the calculation approach is essentially independent of the amino acidic 

sequence thus facilitating the comparison of highly different sites. 

3.2.2. Generating	candidate	alignments	

A candidate alignment is established based on proximity of residues after MFSs are relatively 

orientated. The position of one MFS is fixed (a query MFS) and the other MFS is respectively 

transformed (a target MFS). The initial relative orientations (or initial poses) are determined by the 

comparison of the positions of donor atoms. To accomplish this task, all possible local elementary 

patterns (LEP) are derived from the first coordination sphere for each structure of MFSs and 

superimposed in all-vs-all manner. 

A LEP corresponds to three points in 3D space: one point coincides with a metal (or geometric 

center of a cluster of metals) and two other points correspond to a pair of donor atoms. 

 

FIGURE 8. LOCAL ELEMENTARY PATTERNS 

As shown in Figure 8, each LEP is a triangle unless a site has only one monodentate ligand. A 

monodentate ligand has only one donor atom used to bind a metal ion and in this case LEPs in both 

structures are linear segments. Each segment is enclosed by two points in 3D space: a point 

coinciding with the metal (or geometric center of metal cluster) at one end and a point coinciding 

with the unique donor atom at the other end. 

Triangular LEPs are superimposed in a way that donor atoms are rotated around common origin and 

approach each other. The rotational matrix resulting from each superposition of LEPs is then applied 

to the whole site to define an initial pose. The initial poses are computed in a different way if LEPs 

are segments. To ensure alignment of donor atoms we switch from the superposition of triangles to 
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the superposition of segments (LEPs in both sites are considered as segments). Each superposition 

provides an initial rotation matrix. The number of initial rotational matrices is equal to the maximum 

number of donor atoms for two sites. Each initial rotation matrix implies rotation in two-

dimensional space. In order to take into account all degrees of freedom, a number of additional 

rotations are produced. Each additional rotation is made around the axis corresponding to the 

superposed segments. So for each pair of superposed segments we have 17 additional matrices 

which represent 20° rotations. 

3.2.3. Structural	superposition	

Optimal superposition of aligned sets of points (the correspondence between points is established) 

can be computed exactly and efficiently via analytical solution. To solve the rigid-body least-

squares superposition problem we apply the approach proposed by Kearsley (57) using the 

mathematical object called quaternions (58). Quaternions are generalizations of complex numbers 

with direct application to transformations in the three dimensional (3D) space. A quaternion is an 

element of a 4 dimensional vector-space. It has an x, y, and z component, which represents the axis 

about which a rotation will occur. It also has a w component, which represents the amount of 

rotation which will occur about this axis. Quaternion is defined as q=w + xi + yj + zk, where i, j and 

k are imaginary numbers. Specifically, a unit quaternion (a quaternion of norm one) is a way to 

compactly represent 3D rotations. 

The solution for the unit quaternion is shown to be the eigenvector of a symmetric 4x4 matrix N 

associated with the most positive eigenvalue. The elements of this matrix are simple combinations 

of sums of products of corresponding coordinates of the points. 
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Where xm denotes the component-wise difference (x’ - x) ( similarly ym and zm) and xp to denote the 

component-wise sum (x’ + x) (similarly yp and zp). Here (x’, y’, z’) and (x, y, z) are the coordinates 

of corresponding points in aligned sets. 
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Diagonalizing this matrix yields four eigenvalues and (corresponding) eigenvectors. The eigenvector 

corresponding to the smallest eigenvalue is a unit quaternion that corresponds to the rotation 

producing the least-squares error. For the unit quaternion (w, x, y, z) the corresponding rotation 

matrix M is defined as follows: 
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The computational effort that takes to solve the rigid-body superposition problem using Kearsley's 

quaternion approach is dominated by the computation of the N where each of 10 distinct terms in the 

matrix requires O(n) effort. The diagonalization of N is independent of n and shows a rapid 

convergence with numerical methods such as Jacobi's diagonalization algorithm (59). 

Quaternions are also used to make a rotation around a single axis. The formula for quaternion q in 

terms of an axis angle is: 
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Where x, y, and z represent the axis vector, about which the rotation occurs, and α is an angle that 

defines the amplitude of the rotation about the axis. 

3.2.4. Atoms	matching	

When finding corresponding points, there is the possibility to search the closest points using 

exhaustive (brute force) search. This method is very complex, because all points of one set (i) must 

be compared to all points of another (j). The complexity is valued as O(ni × nj) and so this approach 

is time-consuming. A high increase of the speed is achieved by using k-d trees and closest point 

caching. A k-d tree, or k-dimensional tree, is a data structure used for organizing some number of 

points in a space with k dimensions (in this work points refer to atoms and are stored in the 

Cartesian plane, in three-dimensional space) (60). Each level of k-d tree partitions the space into two 

parts, the partitioning is done along one dimension of the node at the top level of the tree, along 

another dimension in nodes at the next level, and so on, iterating through the dimensions. The 

partitioning proceeds in such a way that, at each node, approximately one half of the points stored in 

the subtree fall on one side, and one half fall on the other. The use of a k-d tree search permits 
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excluding big regions in the search space. At every decision in a tree node, one side of the hyper 

plane can be rejected. K-d trees allow efficiently performing searches like “all points at distance 

lower than d from p” or “k nearest neighbors of p”. When processing such query, we find points 

which correspond to p. Approximate time complexity is O(ni × log(nj)) for building a k-d tree and 

O(log(nj)) for performing a search. 

3.2.5. Calculating	similarity	score	

After the assignment of correspondences, it is possible to calculate the score that is used to rank the 

poses obtained for a pair of sites. For this purpose, we developed the scoring function that evaluates 

three different terms: 

1. A relative coverage term, which depends on the ratio between the number of atoms put in 

correspondence (c) and the maximum possible number of atom correspondences for the sites being 

compared (Cmax); Cmax, in practice, equals the total number of Cα and Cβ atoms of the site with the 

shortest sequence. For example, if a query site containing 10 residues is to be compared with a target 

site of 20 residues, Cmax is a fixed integer value given by the number of all Cα and Cβ atoms of the 

query structure. Instead, c is the number of matched atoms in the pose being scored. By definition, 

c/Cmax ≤ 1. Values close to 1 indicate that the large majority of the atoms in the smaller site have 

been matched to atoms in the larger site. We decided to implement this term as ln(Cmax/c). In this 

way, if all atoms in the smaller site have been matched, the contribution of the current term to the 

total score is zero. 

2. A sequence similarity term, depending on the ratio between the similarity score (S) 

computed using the BLOSUM62 matrix for the sequence alignment derived from the Cα 

correspondences and the similarity score that would be obtained if the two sites being aligned had 

identical sequences (Smax). To compute Smax, we consider the sequence giving the lowest similarity 

score to itself. For nucleic acids we used a simple scoring system that consists of a “reward” for a 

match (+5) and a "penalty" for a mismatch (-4). The term is formulated as 
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3. A fragmentation term, which takes into account how many fragments the alignment is 

broken into and how long each segment is. This term is formulated as follows: 
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Where F is the total number of fragments, nf is the length of (i.e. number of residues in) the f-th 

fragment and N is the total alignment length. N is used as a kind of normalization factor, as larger 

sites are less likely to overlap completely. Because MFSs are often discontinuous fragments of 

protein structure, this term is generally not null even for self-alignments. 

Each term describes quantitatively an essential property of the structural alignment. We believe it is 

preferable to rank MFS structural alignments on the basis of a small number of terms that are 

interpretable by the user. We therefore place emphasis on the physical and chemical interpretation of 

the terms in the scoring function. The implicit assumption is that by comparing two very similar 

sites one will obtain “good” scores for all terms. 

To give the total score, T, the three terms above were linearly combined as follows: 
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Where w1, w2, and w3 are the relative weight factors of the three terms, which were set equal to 1.5, 

1.0 and 2.5, respectively. With the current formulation the better solutions are those with the lower 

scores. The present scoring scheme allows metal sites in proteins to be compared with other metal 

sites in proteins as well as metal sites bound to nucleic acids to be compared with other metal sites 

in nucleic acids. “Cross-category” alignments are not possible. 

3.2.6. Final	fitting	

At the stage of the final fitting the atom correspondence is already established. The pairs of 

corresponding atoms, named matched atoms, are used for fitting. Fitting minimizes the RMSD of 

the coordinates of matched atoms by roto-translating the target MFS. The roto-translation matrix is 

calculated using Singular Value Decomposition (SVD) (61) of the covariance matrix of the 

coordinates of the abovementioned pairs. 

SVD is a method for writing an arbitrary matrix A as the product of two orthogonal matrices and a 

diagonal matrix: 
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Where the columns of U are the left singular vectors; S (the same dimensions as A) has singular 

values and is diagonal; and VT has rows that are the right singular vectors. Calculating the SVD 
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consists of finding the eigenvalues and eigenvectors of AAT and ATA. The eigenvectors of ATA make 

up the columns of V; the eigenvectors of AAT make up the columns of U. Also, the singular values in 

S are square roots of eigenvalues from AAT or ATA. The singular values are the diagonal entries of 

the S matrix and are arranged in descending order. Then the optimal rotation matrix is ܴ ൌ ܸ ∙ ்ܷ. 

The optimal translation T is computed as	ܶ ൌ 	 ݀̅ െ ܴ ∙ ഥ݉ , whereሼ݀ሽ, ሼ݉ሽ are the points sets to be 

mapped. 

3.3. Hierarchical	clustering	to	group	Minimal	Function	Sites	

The procedure of obtaining structure-based classification of Minimal Function Sites uses a 

hierarchical agglomerative clustering algorithm (62). In agglomerative clustering every individual 

object is initially considered as a singleton (i.e., a cluster containing only one member). Then the 

clusters are iteratively grouped by merging the two clusters at the shortest distance, i.e. the most 

similar pair. For the present work, the distance measure adopted was the global MetalS2 score, 

which increases with increasing structural diversity. Two merged clusters become one cluster, so 

after each iteration there is one less cluster. The iterations are repeated until all objects are collected 

into a single cluster. The result of hierarchical clustering is a nested sequence of partitions, with a 

single, all inclusive cluster at the top and singleton clusters at the bottom. Each intermediate cluster 

can be viewed as a combination of two clusters from the lower level or as a part of a split cluster 

from the higher level. Hierarchical clustering methods differ in the way they merge clusters. 

Although all methods merge the two “closest” clusters at each step, they determine differently the 

distance between clusters, i.e., have different metrics to compare one cluster to another. We used the 

complete and average linkage methods. For complete linkage the distance between a pair of clusters 

corresponds to greatest distance from any member of one cluster to any member of the other cluster. 

In other words, the distance between clusters Ci and Cj is defined as: 

   lkdCCd
ji ClCk
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In the average linkage method the distance between two clusters is the average of the distances 

between all the members in one cluster and all the members in the other. 
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The distance for the average linkage is defined as 
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Where |Ci| and |Cj| and are the numbers of members in the clusters Ci and Cj correspondingly. 

In both formulas k and l refer to members of the clusters Ci and Cj, d(k,l) is the distance between the 

k-th member and l-th member of Ci and Cj respectively (in practice the global MetalS2 score 

between the k-th and l-th MFSs). The minimum distance dc(Ci,Cj) among all the intra-cluster 

distances determines which pair of clusters is merged. 

The clustering results are influenced by the linkage type applied. Complete linkage tends to produce 

clusters that are more compact (tight) with respect to clusters produced by average linkage. When a 

cut-off value of a similarity measure is applied in order to determine the final partition, the clusters 

produced by the average linkage method allows some within-cluster distances to exceed the cut-off 

value whereas the complete linkage method ensures that no within-cluster distance exceeds the cut-

off. As a result, the complete linkage approach produces a higher number of more robust clusters 

while with average linkage the number of clusters is lower but within-cluster variability is higher. 

One of the weaknesses of the complete linkage method is its sensitivity to outliers, i.e. members that 

do not fit well into the global structure of the cluster. Such sensitivity may prevent the identification 

of even intuitive clusters, as outliers may pull similar members into different groups. 

3.4. Multiple	sequence	alignment	based	on	structural	superimposition	

Here we assume that a reasonable a multiple structural alignment is already known and provide a 

basis for computing a multiple sequence alignment (MSA). In a multiple sequence alignment, 

residues among a set of structures are aligned together in columns. A column of aligned residues 

occupy similar three-dimensional structural positions. Constructing MSA requires computing the 

pairwise alignments between all sequences and constructing an all-to-all matrix describing the 

similarity between each pair of sequences (the distance matrix). We compute pairwise alignments on 

a basis of predefined superimposition of structures. Then a multiple sequence alignment is built by 

“merging” these pairwise alignments. The algorithm iteratively proceeds through the distance matrix 

selecting a pairwise alignment having the best similarity score at each step. 
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The selected pairwise alignment can be (i) assigned to a new chunk, if none of the sequences from 

pairwise alignment has been assigned to any existing chunk; (ii) added to an existing chunk, if one 

of the sequences from pairwise alignment has been assigned to an existing chunk; (iii) used to merge 

two chunks together, if both of the sequences have been assigned to different chunks. 

 

FIGURE 9. SCHEME OF MERGING SEQUENCE ALIGNMENTS 

The iterations are performed until all the chunks are merged to encompass all sequences. Lastly, the 

pairwise comparisons, which were not used at the previous stage, are used to refine the MSA. 

3.5. Implementation	

3.5.1. Programming	language	

All the back-end scripts are implemented in Python 2.6 (http://www.python.org/) on a Linux 

platform. The reasons for choosing this language were: 

◦ The availability of p3d (63), an object oriented Python module for structural bioinformatics. In 

particular, the Protein class with a set of methods greatly simplifies handling PDB structures. 

◦ Multi-platform: runs on Windows, Linux/Unix, Mac OS X, and has been ported to the Java and 

.NET virtual machines. 

◦ Free to use, even for commercial products, because of its OSI-approved open source license. 
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By using the Python language, we could also exploit the following resources: SciPy 0.7.2, a library 

of scientific and numerical routines; NumPy 1.4.1, a language extension that adds support for large 

and fast, multi-dimensional arrays and matrices. 

The front-end was implemented using mako, a template library written in Python included by 

default with the Pylons web application framework, JavaScript, and CSS. 

3.5.2. Running	environment	

MetalS2 application is currently hosted on an 8-CPU (Intel(R) Xeon(R) CPU E5506 @ 2.13GHz) 

server. 

MetalS3 application is currently hosted on a 24-CPU (AMD OpteronTM 6234) server. 

The running time of the program comparing a pair of MFS structures on an Intel(R) Core(TM) i5 

CPU 650 @ 3.20GHz processor varies from seconds to a few minutes, depending on the size of the 

two structures. 

3.5.3. Input	specification	

MetalS2 and MetalS3 support input in PDB format. PDB format consists of lines of information in a 

text file. A PDB file generally contains several different types of records but only ATOM and 

HETATM records should mandatory be present. 

Example of PDB format is given below: 

ATOM   1058  N   ARG A 141      -6.466  12.036 -10.348  7.00 19.11           N 

ATOM   1059  CA  ARG A 141      -7.922  12.248 -10.253  6.00 26.80           C 

ATOM   1060  C   ARG A 141      -8.119  13.499  -9.393  6.00 28.93           C 

ATOM   1061  O   ARG A 141      -7.112  13.967  -8.853  8.00 28.68           O 

ATOM   1062  CB  ARG A 141      -8.639  11.005  -9.687  6.00 24.11           C 

ATOM   1063  CG  ARG A 141      -8.153  10.551  -8.308  6.00 19.20           C 

ATOM   1064  CD  ARG A 141      -8.914   9.319  -7.796  6.00 21.53           C 

ATOM   1065  NE  ARG A 141      -8.517   9.076  -6.403  7.00 20.93           N 

ATOM   1066  CZ  ARG A 141      -9.142   8.234  -5.593  6.00 23.56           C 

ATOM   1067  NH1 ARG A 141     -10.150   7.487  -6.019  7.00 19.04           N 

ATOM   1068  NH2 ARG A 141      -8.725   8.129  -4.343  7.00 25.11           N 

ATOM   1069  OXT ARG A 141      -9.233  14.024  -9.296  8.00 40.35           O 

TER 

HETATM 1071 FE   HEM A   1       8.128   7.371 -15.022 24.00 16.74          FE 
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HETATM 1072  CHA HEM A   1       8.617   7.879 -18.361  6.00 17.74           C 

HETATM 1073  CHB HEM A   1      10.356  10.005 -14.319  6.00 18.92           C 

HETATM 1074  CHC HEM A   1       8.307   6.456 -11.669  6.00 11.00           C 

HETATM 1075  CHD HEM A   1       6.928   4.145 -15.725  6.00 13.25           C 

The detailed description of a PDB format can be found in Protein Data Bank online documentation: 

http://www.wwpdb.org/docs.html. 

3.5.4. User	interface	

MetalS2 standalone application has a simple command line interface working as following: 

$python metalS2.py [--qp/--qs file] [--tp/--ts file] [--qm number] [--tm number] [-d 

distance] [output directory] 

It is mandatory to specify the input structures to start the alignment process. The following options 

allow specifying the types of input files: 

--qp  specifies a PDB structure containing a query metal site 

--tp  specifies a PDB structure containing a target metal site 

--qs  specifies a file containing a query metal-binding site alone 

--ts  specifies a file containing a target metal-binding site alone 

If the input is a PDB file with a number of sites and a metal atom of interest is known, it can 

explicitly specified by passing a residue sequence number of metal atom followed by the following 

options: 

--qm  specifies a metal atom of interest in a query structure 

--tm  specifies a metal atom of interest in a target structure 

All metals are considered by default. 

The user can adjust a distance cutoff value for atoms alignment procedure by setting the following 

option: 

-d sets a distance cutoff value, in Angstroms, that allows controlling the upper 

bound of the area where two atoms may be considered as aligned 
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The cutoff value can be any non-negative floating point number. The default value is 2.0 Å. A value 

of 0 prevents the program from running at all. 

The user can set the location where she wants to store the results of calculations by adding a relative 

output path: 

/relative/path/to/the/output/directory 

If the output directory is omitted the results will be stored in a directory where the script is current 

running. 

The following options give the user a summary of the usage and available options. 

-h   --help prints a brief reminder of command line usage and all available options 

-u   --usage prints a usage summary 

Graphical User Interfaces of MetalS2 and MetalS3 are presented in Sections 0 and 4.1 respectively. 
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4. Results	

The published, submitted papers and papers that are in preparation are listed in the following 

sections in a chronological order. 
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ABSTRACT: We developed a new software tool, MetalS2, for
the structural alignment of Minimal Functional Sites (MFSs) in
metal-binding biological macromolecules. MFSs are 3D templates
that describe the local environment around the metal(s)
independently of the larger context of the macromolecular
structure. Such local environment has a determinant role in
tuning the chemical reactivity of the metal, ultimately
contributing to the functional properties of the whole system.
On our example data sets, MetalS2 unveiled structural similarities
that other programs for protein structure comparison do not
consistently point out and overall identified a larger number of structurally similar MFSs. MetalS2 supports the comparison of
MFSs harboring different metals and/or with different nuclearity and is available both as a stand-alone program and a Web tool
(http://metalweb.cerm.unifi.it/tools/metals2/).

■ INTRODUCTION

Bioinorganic or biological inorganic chemistry is the discipline
dealing with the interaction between inorganic substances and
molecules of biological interest.1−3 It is a rather wide field,
because it addresses the role, uptake, and fate of elements
essential for life, the response of living organisms to toxic
inorganic substances, the function of metal-based drugs, the
synthetic production of functional models, and so on. Within
this scientific domain, the interaction between metal ions or
metal-containing cofactors and biological macromolecules is
often addressed at the 3D structural level, with atomic detail.
These studies constitute an intersection between bioinorganic
chemistry and structural biology.4 The availability of the atomic
coordinates of metal-macromolecule adducts allows a deeper
understanding of the mechanisms by which the inorganic and
protein or nucleic acid moieties influence the biochemical
function of one another.5

Metal ions are bound to biological macromolecules via
coordination bonds. The bonds are made by so-called donor
atoms that can belong to either the polymer (protein or nucleic
acid) backbone or side chains/bases. Additional donor atoms
may belong to nonmacromolecular ligands, such as oligopep-
tides, small organic molecules, anions, water molecules. The
ensemble comprising a metal ion (or cluster of metal ions)
together with its donor atoms defines the metal-binding site.
Metal-binding sites are occasionally extended to include all of
the atoms in the amino acid or nucleotide. Such sites can be
structurally characterized in high detail through X-ray
crystallography and X-ray absorption spectroscopy.6−8 Data-
bases reporting on the geometric properties of metal-binding
sites in proteins9 or nucleic acids10 are available. They are

derived from the coordinate files deposited in the Protein Data
Bank11 (PDB) resulting from the structural biology studies
mentioned in the previous paragraph. Metal-binding sites have
been shown to be useful for the bioinformatic analysis of metal-
binding proteins (metalloproteins) and, in particular, for the
prediction of metalloproteins from whole proteome sequen-
ces.12−14 However, the functional properties associated with the
occurrence of metal sites in biological macromolecules are not
adequately described only on the basis of the metal
coordination sphere.15−17 For example, models of metal sites
in proteins that include only the metal ligands may not be
sufficiently accurate to reproduce biochemical functions. To
increase the strength of the relationship with functional
properties, the surroundings of the metal-binding site must
also be taken into account. This larger ensemble can be thought
of as the minimal environment determining metal function,
which in previous work we dubbed the “minimal functional
site” (MFS).18 In practice, we defined an MFS in a metal-
macromolecule adduct as the ensemble of atoms containing the
metal ion or cofactor, all its ligands, and any other atom
belonging to a chemical species within 5 Å from a ligand. The
MFS describes the local 3D environment around the cofactor,
independently of the larger context of the protein fold in which
it is embedded. The systematic structural comparison of MFSs
of zinc proteins allowed a structure-based classification to be
developed that is tightly connected to the functional properties
of each site.18 Indeed, the usefulness of the MFS concept
outlined above has its chemico-physical foundation in the fact
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that the local environment of the metal has a determinant role
in tuning its properties and thus its chemical reactivity. Instead,
the macromolecular matrix is instrumental to determine, e.g.
substrate selection19 or partner recognition.20 A database of
MFSs extracted from the structures deposited in the PDB is
available.21

Here, we report the development of a software tool, called
MetalS2 (Metal Sites Superposition), which allows two MFSs to
be structurally aligned. Because MFSs are fragments of 3D
macromolecular structures, this task is not possible with several
of the available programs for structure comparison. In addition,
by design MetalS2 starts its procedure to determine the best
alignment of two MFSs with the superposition of the metal
ions (or of the geometric center of polymetallic cofactors) and
the comparison of the position of donor atoms. Consequently,
the metal sites are always at the center of the structural
alignment. This intrinsically reflects the philosophy underlying
the construction of MFSs. MetalS2 is available both as a stand-
alone program and a Web tool.

■ METHODS

Determining the best global 3D alignment of two proteins is an
NP-hard22 problem. Even though the number of atoms in metal
sites is somewhat smaller than in proteins, explicit methods are
still not appropriate to tackle the determination of the best
superposition of two metal sites. Consequently, we decided to
rely on heuristics for this task.
In short, the basic idea underlying the MetalS2 program is to

perform the superposition between two metal sites using a
multistep approach. First, MetalS2 systematically computes
initial poses built by superposing the geometric centers of the
two metal cofactors and all the possible pairs of donor atoms
from the two sites. Second, the poses are ranked on the basis of
the MetalS2 score and the best 50% retained. Finally, the score
of these structural alignments is optimized by allowing the
geometric centers and the ligands to displace with respect to
one another. Only the best scoring superposition is retained.
The score that is optimized consists of three terms accounting
respectively for the biochemical similarity of the amino acids
put in correspondence, the ratio between the total length of the
sequence alignment and the length of the smallest site (i.e., the
fractional coverage of the smallest site), and the number and
length of consecutive sequence segments in the superposition.

The whole procedure is detailed in the following paragraphs (a
flow diagram is provided in Supplementary Figure S1).
In our previous work, we defined a metal-binding site as an

assembly of residues around a metal ion or a cluster of metal
ions.18 This definition gives a pivotal role to the metal ion or
the geometric center of polymetallic sites. It descends logically
from this setting that when comparing the structures of the
metal sites, the first step is to superpose these centers so that
they coincide with the origin of coordinates (step 2 in Figure
S1). Then, a number of initial poses are generated. To
accomplish this task, all possible local elementary patterns
(LEPs) are derived from the first coordination sphere for each
structure (called qLEP for the query MFS and tLEP for the
target MFS). For metal sites with at least two donor atoms,
each LEP corresponds to three points in 3D space: one point
coincides with the metal (or geometric center of metal cluster)
and two other points correspond to two donor atoms. In
practice, each LEP is a triangle whose vertices are the metal (or
geometric center of metal cluster) and two of its donor atoms
(step 3 in Figure S1). Consequently, for a site with N ligands,
N(N-1)/2 LEPs can be identified (for example, a site with four
ligands has six LEPs). However, the comparison between a
given tLEP and a given qLEP must be performed twice, as there
there are two possible ways to put the two pairs of donor atoms
in correspondence. We do this by creating a permuted version
of each tLEP in which the two donor atoms are swapped (step
4 in Figure S1). Thus, for two sites with N and M ligands
respectively, a total of N(N-1) × M(M-1)/2 initial poses are
created. For metal sites with a single monodentate ligand a LEP
corresponds to two points in 3D space; in practice the LEP
becomes a segment closed by a point coinciding with the metal
(or geometric center of metal cluster) at one end and a point
coinciding with the unique donor atom at the other end.
To generate one pose, MetalS2 superimposes a given tLEP to

a given qLEP by rotating the former so that the sum of squared
distances between the corresponding LEP vertices is mini-
mized. The coincident vertex that corresponds to the
superimposed metal ions is the rotation center (Supplementary
Figure S2 and step 5 of Figure S1). The problem of finding the
rotation matrix has been solved analytically using Kearsley’s
method23 by means of an eigenvalue determination using
quaternion algebra. In practical terms, to compute the rotation
matrix we, first, construct the symmetric matrix from the
coordinates of vertices in the LEPs
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where each sum runs over the two pairs of corresponding
vertices in the tLEP and the qLEP, xm = (x′ − x), xp = (x′ + x),
(x′, y′, z′) and (x, y, z) being the coordinates of the tLEP and
the qLEP vertices. Analogous definitions hold for ym, yp, zm, and
zp. The next step is to find eigenvalues and eigenvectors of the
matrix. The eigenvector corresponding to the smallest positive
eigenvalue gives a unit quaternion representing the rotation

that minimizes the sum of the distances between all

corresponding points. For the unit quaternion (x, y, z, w) the

corresponding rotation matrix M is defined as follows:

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci400459w | J. Chem. Inf. Model. 2013, 53, 3064−30753065



=

− − + −

− − − +

+ − − −

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
M

y z xy wz xz wy

xy wz x z yz wx

xz wy yz wx x y

1 2 2 2 2 2 2

2 2 1 2 2 2 2

2 2 2 2 1 2 2

2 2

2 2

2 2

(2)

The matrix computed in this way is then applied to all the
atoms in the target site (step 10 in Figure S1), generating the
new coordinate set that defines one pose. The procedure is
repeated for each possible qLEP and tLEP pair, including
permuted tLEPs.
This approach needs an extension to deal with cases where at

least one of two sites has only a monodentate ligand. To ensure
alignment of donor atoms we switch from the superposition of
triangles to the superposition of segments (LEPs in both sites
are now considered as segments). MetalS2 carries out a
superposition of segments in all-versus-all fashion. For each
qLEP and tLEP pair, we calculate a first rotation matrix (step 7
in Figure S1) that aligns the two corresponding segments.
Then, MetalS2 performs a number of additional rotations (step
8 in Figure S1) around the axis corresponding to the
superposed segment, achieving a complete sampling in 20°
steps, i.e. for a total of 17 rotations. Quaternions are used to
make a rotation around a single axis. The formula for
quaternion q in terms of an axis angle is
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2
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2
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2
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where x, y, and z represent the axis vector about which the
rotation occurs, and α is an angle that defines the amplitude of
the rotation about the axis. Quaternions are used to compute
rotation matrices as described before for the general case of two
sites with multiple donor atoms. The initial rotation matrix is
then multiplied by each of the 17 subsequent rotation matrices
(step 9 in Figure S1) to obtain as many complete rotations that,
applied to the target site, generate 17 different initial poses for
each pair of qLEP and tLEP (step 10 in Figure S1).
The above initial poses are then ranked using the MetalS2

score. It is first necessary to assign correspondences between
the atoms in the two structures being compared (atom
matching). To identify the position in space of amino acidic
residues, we used the coordinates of the Cα and Cβ atoms (for
Gly we used only the Cα atom). Using only the Cα atoms in
order to determine the correspondence between residue pairs is
a relatively common approach that has been successfully
exploited in the widely used programs for structural alignment
like MAMMOTH, CE, TM-align, FATCAT, and FAST. There
is indeed extensive demonstration in the scientific literature that
the knowledge of the Cα trace is sufficient to accurately
reconstruct the full coordinate set for the backbone of a protein
structure. For the present application, the additional
information provided by the Cβ atoms is useful as the Cα-
Cβ bond represents the direction of the side chain with respect
to the main chain. Cβ interactions provide additional
information on fold energetics.24 By using only Cα and Cβ
pairs, the calculation approach is essentially independent of the
amino acidic sequence, except for Gly, thus facilitating the
comparison of highly different sites. For nucleic acids, the pair
formed by the C1 atom of the sugar and the N1 atom for
pyrimidine bases or the N9 atom for purines was used. Thus,
our representation of MFSs takes into account not only the

positions of residues along the main chain but also the
orientation in space of amino acidic side chains and nucleic
bases. Atomic coordinates are used to establish one-to-one
correspondences between the residues in the two sites being
superposed. Atoms are matched based on their distance. For
each Cα atom from the first site (query site) we assign a
correspondence to the Cα atom in the second (target) site that
is closest in space. When looking for the closest atom from the
target site, we restrict the search within a radius of 2 Å around
the atom of the query site. If there is no atom of the target
structure in this range, the atom of the query structure will
remain unmatched. If both atoms in a Cα-Cα (or C1−C1) pair
are bound to a Cβ (or N1/N9) atom, we also compute the
distance between the two Cβ atoms and use it to assign a
correspondence between them with the same criterion. Ligand
residues are handled separately and can only be put in
correspondence to ligand residues in the other MFS. A less
restrictive threshold of 5 Ǻ is applied for ligands in order to
enhance coverage. In order to perform an efficient search, the
atoms from the target structure are organized in a kd-tree. After
the assignment of correspondences, it is possible to calculate
the score that is used to rank the poses obtained for a pair of
sites. For this purpose, we evaluate three different terms:
1. A relative coverage term, depending on the ratio between

the number of atoms put in correspondence (c) and the
maximum possible number of atom correspondences for the
sites being compared (Cmax); Cmax, in practice, equals the total
number of Cα and Cβ atoms of the site with the shortest
sequence. For example, if a query site containing 10 residues is
to be compared with a target site of 20 residues, Cmax is a fixed
integer value given by the number of all Cα and Cβ atoms of
the query structure. Instead, c is the number of matched atoms
in the pose being scored. By definition, c/Cmax ≤ 1. Values close
to 1 indicate that the large majority of the atoms in the smaller
site have been matched to atoms in the larger site. We decided
to implement this term as ln(Cmax/c). In this way, if all atoms in
the smaller site have been matched, the contribution of the
current term to the total score is zero.
2. A sequence similarity term, depending on the ratio

between the similarity score (S) computed using the
BLOSUM62 matrix for the sequence alignment derived from
the Cα correspondences and the similarity score that would be
obtained if the two sites being aligned had identical sequences
(Smax). To compute Smax, we consider the sequence giving the
lowest similarity score to itself. For nucleic acids we used a
simple scoring system that consists of a ″reward″ for a match
(+5) and a ″penalty″ for a mismatch (−4). The term is
formulated as

−
⎛
⎝⎜

⎞
⎠⎟

S
S

1
max (4)

3. A fragmentation term, which takes into account how
many fragments the alignment is broken into and how long
each segment is. This term is formulated as follows

∑ =

N

f
F

n1
1

f

(5)

where F is the total number of fragments, nf is the length of
(i.e., number of residues in) the f-th fragment, and N is the total
alignment length. N is used as a kind of normalization factor, as
larger sites are less likely to overlap completely. Because MFSs
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are often discontinuous fragments of protein structure, this
term is generally not null even for self-alignments.
Each term describes quantitatively an essential property of

the structural alignment. We believe it is preferable to rank
MFS structural alignments on the basis of a small number of
terms that are interpretable by the user. We therefore place
emphasis on the physical and chemical interpretation of the
terms in the scoring function. The implicit assumption is that
by comparing two very similar sites one will obtain “good”
scores for all terms.
To give the total MetalS2 score, T, the three terms above

were linearly combined as follows
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where w1, w2, and w3 are the relative weight factors of the three
terms, which were set equal to 1.5, 1.0, and 2.5, respectively.
Note that with the current formulation the better solutions are
those with the lower scores. The present scoring scheme allows
metal sites in proteins to be compared with other metal sites in
proteins as well as metal sites bound to nucleic acids to be
compared with other metal sites in nucleic acids. “Cross-
category” alignments are not possible.
After ranking all the poses generated for a pair of MFSs,

those having a score in the best 50% of the observed score
range are retained for optimization. In this stage, the atom
correspondences already established are used to minimize the
RMSD of the coordinates of the two sites
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where xi
A − xi

B is the distance between the i-th atom pair, and
C*max is the number of matched Cα, Cβ atom pairs to which we
added the pair of the metal ions (or of the geometric centers of
polymetallic sites). The RMSD is minimized by roto-translating
the target site; the roto-translation matrix is calculated using
Singular Value Decomposition of the covariance matrix of the
coordinates of the above-mentioned pairs. After roto-trans-
lation, for each pose the atom matching procedure is repeated
to update the atom correspondences and the MetalS2 score is
recalculated. Poses are then reranked. If the new best scoring
pose has a total score worse than the best scoring pose before
RMSD minimization, then the change is rejected. Otherwise
the new best scoring pose is retained as the final solution.
For the final solutions, the correlation between the various

terms was examined on the basis of the simple Pearson
correlation coefficients. Pearson coefficients were used to
discriminate different sets of weights, with the aim of finding
the set balancing the different terms with respect to one
another and also with respect to their contribution to the total
score.
Implementation. All scripts are implemented in Python

(http://www.python.org/) on a Linux platform. The reasons
for choosing this language were as follows:
• The availability of p3d,25 a Python module for structural

bioinformatics. In particular, the Protein class with a set of
functions greatly simplifies handling structures.
• Multiplatform: runs on Windows, Linux/Unix, Mac OS X

and has been ported to the Java and .NET virtual machines.
• Free to use, even for commercial products, because of its

OSI-approved open source license.

The running time of the program comparing a pair of metal
site structures on an Intel(R) Core(TM) i5 CPU 650 @ 3.20
GHz processor varies from seconds to a few minutes,
depending on the size of the two structures.

Calculations with Other Programs for Structural
Alignment. We used the following structure alignment
programs to compare their results with MetalS2, on a statistical
basis: FAST,26 MAMMOTH,27 and TM-align.28 These tools
were chosen among the relevant programs included in a recent
review,29 because they are able to handle protein fragments
despite being designed for the alignment of entire structures.
The only exception was the program MUSTANG,30 which can
align protein fragments. However, we were not able to exploit
it, because its output score, which includes the RMSD of the
superposition and the number of atoms superimposed, was not
readily applicable to discriminate positive and negative
alignments; in addition, no indications of thresholds were
available from the authors. FAST was not included in the
aforementioned review29 but was successfully used by some of
us in the past for similar applications.18,31 All the programs
were run with default parameters. The thresholds used to
identify reliable alignments were as follows: > 1.5 for FAST; >
4.0 for MAMMOTH; > 0.5 for TM-align.

Data Sets Used. To test the results of MetalS2 we used two
data sets previously analyzed by some of us. The first one (Fe-
data set) consists of 86 MFSs containing nonheme iron,31

whereas the second one (Zn-data set) consists of 367 MFSs
containing zinc.18 The small size of the Fe-data set allowed us
to inspect results manually. For the sake of performance
characterization, we classified MFS pairs that all the programs
for structural alignment used in this work aligned with a poor
score (i.e., lower than one-third of the recommended threshold
for meaningful alignments given by each program’s authors) as
negative examples. For positive cases, we adopted pairs of
MFSs that at least one program could align with a score better
than the program’s recommended threshold. For the Fe-data
set, all positive examples were manually checked to remove
instances where the metal ions were not superimposed in the
structural alignment.
The performance of MetalS2 in the analysis of the above test

sets was evaluated using the following parameters

= × − ×
+ + + +

TP TN FP FN
TP FP TP FN TN FP TN FN

Matthews correlation coefficient (MCC)

( )( )( )( )
(8)

=
+

TP
TP FP

Precision
(9)

= +
+ + +

TP TN
TP FP TN FN

Accuracy
(10)

MetalS2 as well as all other programs were further run to
structurally align all possible MFS pairs from both the full Fe-
and full Zn-data sets. To check whether there was a statistically
significant difference between the results of MetalS2 and those
of each other program, we applied the Wilcoxon rank sum test
using its Matlab implementation.
For functional analysis, we took the functional assignments

available from the articles describing the two data sets.18,31 Zinc
MFSs were assigned one function among catalytic, structural,
regulatory, substrate, and unknown; nonheme iron MFSs were
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assigned one function among catalytic, structural, electron
transfer, sensing, and unknown. Unknown-unknown matches
were not taken into account.

■ RESULTS

MetalS2 has been implemented and made available both as a
stand-alone program and via a Web portal within our
MetalPDB platform (Figure 1). The metal sites to be compared
by MetalS2 are identified in the input protein structures using a
previously described approach.21 In practice, the ligands to each
metal atom in each structure are first identified, as having at
least one non-hydrogen atom at a distance smaller than 2.8 Å

(this threshold can be adjusted by the user) from the metal.
They can be residues in a polypeptide or a polynucleotide chain
(endogenous ligands) as well as different ions or molecules
such as water, sulfide, acetate (exogenous ligands). Organic
cofactors such as heme are considered exogenous ligands. Each
pair of metal atoms that have at least one common ligand, such
as a bridging amino acidic side chain or exogenous anion, or
whose distance is lower than 5 Å is included into a single
polynuclear site. This procedure is iterated such that if metal A
and metal B are to be included into a single site and then metal
B and metal C are also to be included in a single site, eventually
a three-nuclear site is formed that contains all three metal ions.

Figure 1. Input form on the MetalS2 Web page. Top: Selection of PDB entry/upload of PDB file. (1) PDB code fields; (2) Button to upload a PDB
file from the local disk (alternative to 1); (3) Distance from the metal used to identify donor atoms; (4) Comma-separated list of chemical elements
not allowed to be donor atoms; (5) Selection of specific metal elements for MFS identification (optional). Bottom: selection of an individual MFS
within each structure. Each record in the Tables (6) represents an MFS contained in one of the input PDB files. The two MFSs to be aligned are
selected by checking the corresponding radio buttons in the “Select” columns (7). The number of MFSs shown per page can be adjusted from the
default value of 10 (8), while the different pages can be navigated using the Next/Previous links (9). The threshold for the assignment of
correspondences between the atoms of the two MFSs can be adjusted (10). The field (11) can be used to provide an e-mail address to which the link
to the results will be sent.
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This procedure allows e.g. Fe4S4 clusters found in ferredoxins to
be defined as an individual four-nuclear site. The neighbors of
all the ligands are then identified as containing at least one non-
hydrogen atom at a distance smaller than 5.0 Å from any ligand.
The ensemble of the neighbors, the ligands, and the metal
atom(s) constitute the MFS.18,21 The MetalS2 portal can
automatically search structures deposited in the PDB for MFSs,
taking as input the corresponding PDB code. The MFSs are
presented to the user in a table, from which it is possible to
select one of the MFSs for superposition (Figure 1). Thus,
there is no need for the user to download/upload metal-
containing structures that are available from the PDB, whereas
it is mandatory for structures not publicly available. For each
superposition, the user is presented with information on the
values of the different components of the score, the RMSD
value of the best solution, and the superposition-derived
sequence alignment (Figure 2). In addition, the tool allows the
superposition to be visualized and manipulated, using Jmol.
The MFSs coordinates rotated in the same Cartesian reference
frame can be downloaded in PDB format and visualized e.g.
with Pymol, using a script output by the program. A link to the
results is optionally sent by e-mail (Figure 1).
The program has been tested using two data sets containing

respectively proteins binding nonheme iron ions (Fe-data set)
and zinc ions (Zn-data set), which were described in previous

publications by some of us.18,31 The Fe-data set contains 86
proteins; its relatively small size allowed us to manually analyze
the results. The Zn-data set contains 367 proteins, resulting in
67161 pairwise comparisons, which constitute a large enough
basis for statistical analysis. Both data sets are nonredundant,
i.e. for all proteins belonging to the same SCOP32 or CATH33

superfamily only one representative was kept. In this way, we
minimized the number of homologous proteins in the data set,
whose structures are expected to be very similar34 and thus
would result, if included, in a less stringent testing of the
program.
We systematically aligned all the MFSs in the two data sets

with different programs: FAST,26 MAMMOTH,27 and TM-
align.28 Among these, the FAST program was already shown by
some of us to have an acceptable performance when applied to
similar analyses.31 When analyzing the Fe-data set with default
parameters, the programs produced a number of reliable (i.e.,
having a score for the structural alignment better than the
threshold indicated by the program’s authors) superpositions
between 3 (MAMMOTH) and 23 (FAST). However, we
observed that in some cases (e.g., five FAST superpositions)
despite the good score, the metal ions and the ligands were not
structurally aligned. After removing these instances, we
obtained a total of 21 superpositions classified as reliable by
at least one of the programs, which we took as our test set of

Figure 2. Results of the MFS comparison shown on the MetalS2 output page Top: table of scores and download button; (12) shows the RMSD
calculated over the atoms paired in the two MFSs. Cells (13)−(15) display the MetalS2 score components; the total score appears in (16). An
archive containing all output files can be downloaded by clicking on the arrow in the “Download” column (17). Middle: Interactive display of the
MFS superposition. Bottom: sequence alignment derived for the superposition of the MFSs. The alignment is visualized as follows: the first line of
the description gives a reference to the chain (18) containing the aligned residues; the second line displays the number of each aligned residue within
its chain (19); the third line shows the aligned residues using the one-letter code (20). Ligands (21) are highlighted by an asterisk.
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positive examples. For negative examples, we used MFS pairs
whose superpositions were classified very poorly (i.e., lower
than one-third of the indicated threshold) by all programs (16
instances). With these assumptions, we could test the
performance of MetalS2 as a function of the selected threshold
for its total score (Table 1). Based on the Matthews correlation
coefficient, the optimal threshold lies between 2.75 and 3.0. A
similar reasoning could be applied to the Zn-data set, resulting
in a somewhat larger test set of 964 positive examples and 1637
negative examples. For these, the Matthews correlation
coefficient is maximum between 2.5 and 2.75. Combining the
two test sets derived from the Fe- and Zn-data sets results in a
broad maximum at 2.75 (Table 1), which can therefore be
taken as the threshold below which the MetalS2 total score
indicates a good structural alignment. With this threshold, the
precision of MetalS2 on the combined test set is 91.6% and its
accuracy is 92.7%; at a threshold of 2.25 the precision of
MetalS2 is 99%.
Over the entire Fe-data set, 27 MFS pairs could be

superimposed by MetalS2 with a score lower than 2.25 (as
compared with 21 for the three other programs tested
altogether). Over the entire Zn-data set, 4072 MFS pairs
could be superimposed by MetalS2 with a score lower than 2.25
(as compared with 964 for the three other programs tested
altogether). The complete output is given in Supplementary
Tables S1 and S2. Altogether, at the 2.25 threshold the ratio
between the number of alignments produced by MetalS2 and by
the other programs is 4.16 (Table 2). The ratio increases with
increasing threshold for the MetalS2 score. The MetalS2 score
of the top 1,000 structural alignments of MFS pairs from the
Zn-data set (excluding self-alignments) ranges from 0.271 to

1.675. These include 362 reliable alignments from FAST as well
as 240 instances where instead FAST was unable to produce an
output. TM-align, instead, produced only 44 reliable super-
positions with no failures and MAMMOTH featured no
reliable superpositions as well as two failures. According to the
authors’ criteria, 35 of these MFS pairs would be dubbed as
having no similarity by TM-align, with a MetalS2 score ranging
between 0.997 and 1.673. We used the Wilcoxon rank sum test
to check whether there was a statistically significant difference
between the results provided by MetalS2 and by the other
methods over the entire data sets. The test demonstrated that
this was actually the case (Supplementary Table S3).
We then checked whether the MFS pairs that MetalS2 could

align with a score below a given threshold were functionally
related (Table 3). To this end, we exploited the functional
assignments already published.18,31 At the threshold of 2.25,
which defines high-quality structural alignments, the percentage
of functional matches was as high as 96.1%. The percentage of

Table 1. Analysis of the Output Produced by MetalS2 on the Test Sets Derived from the Fe- and Zn-Data Setsa

threshold

1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4

Fe-Data Set
TP 2 7 9 12 16 18 18 20 21 21
TN 16 16 16 16 16 15 10 9 5 3
FP 0 0 0 0 0 1 6 7 11 13
FN 19 14 12 9 5 3 3 1 0 0
MCC 0.209 0.422 0.495 0.605 0.762 0.788 0.500 0.574 0.453 0.340
Zn-Data Set
TP 418 546 696 795 857 888 920 944 951 961
TN 1637 1637 1629 1609 1557 1436 1211 880 520 223
FP 0 0 8 28 80 201 426 757 1117 1414
FN 546 418 268 169 107 76 44 20 13 3
MCC 0.570 0.672 0.780 0.839 0.845 0.782 0.671 0.525 0.364 0.228
Cumulative
TP 420 553 705 807 873 906 938 964 972 982
TN 1653 1653 1645 1625 1573 1451 1221 889 525 226
FP 0 0 8 28 80 202 432 764 1128 1427
FN 565 432 280 178 112 79 47 21 13 3
MCC 0.564 0.667 0.774 0.834 0.844 0.782 0.669 0.526 0.365 0.230
Performance Metrics
precision 100.0% 100.0% 98.9% 96.6% 91.6% 81.8% 68.5% 55.8% 46.3% 40.8%
accuracy 78.6% 83.6% 89.1% 92.2% 92.7% 89.3% 81.8% 70.2% 56.7% 45.8%

aTP: True positives (number of MFS pairs aligned by MetalS2 with a total score below the selected threshold, and aligned by at least one of the other
programs tested with a satisfactory score), TN: True negatives (number of MFS pairs aligned by MetalS2 with a total score above the selected
threshold, and aligned by all the other programs tested with a poor score), FP: False positives (number of MFS pairs aligned by MetalS2 with a total
score below the selected threshold, and aligned by all the other programs tested with a poor score), FN: False negatives (number of MFS pairs
aligned by MetalS2 with a total score above the selected threshold, and aligned by at least one of the other programs tested with a satisfactory score),
MCC: Matthews correlation coefficient.

Table 2. Number of Structural Alignments for Which the
MetalS2 Score Was below the Threshold and Its Ratio to the
Number of Positive Cases Identified by the Other Programs

thresh
old

no. of structural alignments below
the threshold

ratio of MetalS2 vs all other
programs combined

1.75 1268 1.29
2.0 2362 2.40
2.25 4099 4.16
2.5 6590 6.69
2.75 9901 10.1
3.0 14,945 15.2
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matches is threshold-dependent and decreases with increasing
threshold, reaching 92.5% at a threshold of 2.75.

■ DISCUSSION
In the present work, we present a tool that has been developed
specifically for the structural comparison of pairs of MFSs.
MFSs extend beyond metal-binding sites as the latter include
only the metal ion (or polymetallic cluster) and the ligands to
it, whereas MFSs additionally include ligand neighbors, i.e.
other residues or chemical species in contact with the ligands.18

Focusing on MFSs allows functional linkages between different
proteins of known structure to be made with greater confidence
than with metal-binding sites. This is because the ligand
neighbors play a crucial role in tuning the properties of the
metal-binding site and, in particular, the reactivity of the metal
ion. The systematic comparison of MFSs thus is quite
informative on the functional features of metallloproteins and
metalloprotein families.18 Therefore, the availability of a
dedicated tool for the structural comparison of MFSs is of
interest to bioinorganic chemists. A crucial feature of such a
tool must be that it takes explicitly into account the fact that
MFSs are built around metal sites. Consequently the structural
comparison should start from there. Even approaches aimed at
the structural comparison of protein binding sites, a task
conceptually similar to ours, often include various other
features in addition to “simple” 3D structure (e.g., surface
structural patches35 or shape descriptors36) but without taking
into account the metals explicitly. Programs designed to
compare protein structures at the entire chain level also do
not exploit the presence of the metal sites and sometimes are
actually unable to manage MFSs altogether. Out of a list of
seven widely used tools whose performance was recently
analyzed,29 CE,37 DALI,38 TOPMATCH,39 and SALIGN40 do
not yield any result when MFSs are used as input.
As its first step, MetalS2 identifies and extracts the portion of

the metal-bound structure of interest (i.e., the MFSs), through
a relatively simple distance-based protocol. Then, differently
than any other program for global or local structure comparison
we apply a metallo-centric view by immediately superposing the
centers of the metal ions or polymetallic cofactors contained in
the two MFSs. This and the subsequent alignment of metal
ligands drive the rest of the structure comparison, thus
effectively pruning configurations in which the two metal
sites are not well superposed. All possible superpositions that
do not fulfill this precondition are in practice never explored.
This philosophy is unique among programs for either local or
global macromolecular structure comparison and has to be
taken into account when comparing the results of MetalS2 to
the results of other programs. A notable implication of these
considerations is that MetalS2 is unable to identify config-
urations in which traditional programs would obtain a
satisfactory superposition of e.g. the backbone of the

polypeptide chain at the expense of putting the metal sites
far apart.
MetalS2 was tested by systematically performing pairwise

superpositions of all MFSs in two data sets of respectively 86
nonheme iron-binding proteins and 367 zinc-binding proteins
that did not contain homologues. The three contributions to
the total score of MetalS2 have different relative importance in
determining its output: the size term spans the largest range
(from 0 to 3.42), the biochemical similarity term spans the
smallest range (from 0 to 1.28), and the fragmentation term
spans an intermediate range (from 0.01 to 2.35). The range
spanned by the total score is from 0.271 to 6.64. The three
terms do not have a statistically significant correlation (the
Pearson coefficients between them being all lower than 0.4).
The size part term is relevant to penalize superpositions where
only a minor portion of one of the two MFSs can be matched
to the other. This is important as MFSs are a shell of relatively
small thickness around the metal center and thus it is unlikely
that superpositions in which only a minority of the atoms is
overlapped can reveal meaningful relationships. This is at
variance with the case of protein structures, where, for example,
the superposition of a relatively small motif or domain to a full
structure can provide insightful indications. As a reference, 80%
coverage corresponds to a value of the size term of 0.33
whereas 50% coverage corresponds to 1.04. The chemical
similarity term is presumably limited by the fact that the
present data set does not contain sequences with particularly
unbalanced aminoacidic composition. The fragmentation term,
finally, penalizes cases where extensive coverage of the MFSs
being aligned could be obtained by combining many small,
nonconsecutive regions of the sites, e.g. by overlapping two β-
sheets in a crossed manner.
The benchmark used to assess the performance of MetalS2

recruited only about 2,500 out of the 70,816 MFS pairs (3.5%)
resulting from the complete Zn- and Fe-data sets. The full set
of MFS pairs could thus be meaningfully used as a basis to
compare the outputs of three different programs for structural
alignment. This analysis indicates that for each MFS pair there
is typically no consistency between the programs (Supple-
mentary Tables S1 and S2). In particular, FAST is the program
that provides, according to its own scoring measures, the largest
number of potentially meaningful structural alignments, even
though it is also the program that fails to provide an output in
the largest number of cases. This lack of consistency may partly
be due to the fact that the scoring functions of the programs
and their corresponding confidence thresholds have been
calibrated for the alignment of full protein structures. Indeed,
this may prevent the user from discriminating good and bad
alignments, especially when analyzing large structural data sets.
MetalS2 on the other hand is consistently capable of aligning
MFSs and its total score can be used as an indicator of the
quality of alignment. Specifically, we expect that nearly all of the
alignments having a score lower than 2.25 are meaningful. With
this threshold, MetalS2 identifies a number of MFS pairs that
can be superposed well more than four times larger than the
other programs (Table 2). This does not imply that some of
these MFS pairs cannot be well aligned also by another tool,
rather that MetalS2 provides a better way to recognize them.
Still, by inspecting MetalS2 alignments close to the 2.25
threshold also in comparison with the output of the other
programs, it was possible to identify various cases where
MetalS2 was the only program that could produce a good
quality alignment; some examples are given in Figure 3. The

Table 3. Number of Matching Functional Assignments for
MFS Pairs Aligned by MetalS2 As a Function of the Total
Score

MetalS2 score matches mismatches % of matches

<2.0 1637 44 97.4%
<2.25 2838 115 96.1%
<2.5 4562 245 94.9%
<2.75 6574 549 92.3%
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analysis of MCC’s as a function of the threshold suggests that
2.75 is the best value in terms of trade-off between the number
of additional true and false positives introduced by raising the
threshold with respect to 2.25. We thereby identify scores
between 2.25 and 2.75 as a “shadow zone” where alignments
are often meaningful, but some care in interpreting the results is
needed and the alignments should be closely inspected. MFS
pairs that are aligned by MetalS2 with scores even higher than
2.75 are in the majority of cases not structurally similar.
However, it is possible that potentially informative alignments
fall in this range of scores (see the false negative rows in Table
1). These are commonly cases where the superposition requires
the metal ions (or the geometric centers of polymetallic
cofactors) not to be exactly coincident. MetalS2 is in fact unable
to identify elements of structural similarity in sites where the
relative position of the metal cofactors with respect to the
protein frame is different. There is merit in both metal-driven
structural alignments and traditional protein/nucleic acid-
driven alignments and thus both should be examined.
Nevertheless, the concept of MFS, in its various but related
forms, is of primary and central concern to the bioinorganic

chemist.41−43 Hence, the need for an approach to 3D structure
comparison that incorporates the underlying philosophy of
MFSs such as MetalS2. On the other hand, structural similarities
that do not take into account or do not highlight metal site
similarity can be retrieved by a wide portfolio of software
tools.29,44

As a general procedure, one would presumably rely on a
combination of traditional protein-centered and metal-centered
structural alignments to obtain functional hints from 3D
structures. The correlation between the quality of the MFS
alignments produced by MetalS2 and the percentage of
functional matches (Table 3) suggests that MFS alignments
alone are already useful indicators of the functional properties
of the metal site. Thus, they can be exploited in cases where the
sites are found within different protein folds. For example, the
iron MFS in 1dmh, a catechol dioxygenase, was identified by
MetalS2as being structurally similar to that of 2b5h, a cysteine
dioxygenase, even though the protein folds are different (Figure
4). The EC numbers of these two enzymes differ only at the
fourth level. The same MFS was also identified as being similar
to one in 2fiy, a structure solved within a structural genomics

Figure 3. Comparison of selected structural alignments by MetalS2 and the other programs tested in this work. The absence of the image indicates
that the program did not produce any output. Site names in the first column correspond to those adopted in the MetalPDB database.21
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initiative for which there is no experimentally validated
functional assignment. One can thus hypothesize that the
iron site of 2fiy is similarly involved in redox catalysis. Also
1dmh and 2fiy have unrelated folds, preventing functional
predictions on the basis of structural domain analysis.
It is also relevant to mention here that even though in this

contribution we focused on examples of MFSs derived from
metalloproteins, MetalS2 can handle also sites where some or all
of the ligands are provided by nucleic acids. As an example,
Supplementary Figure S3 shows the structural alignment of two
sites containing respectively one Mn2+ ion in an octahedral
coordination environment that includes three protein ligands,
one DNA ligand and two water molecules, and one Zn2+ ion in
a tetrahedral coordination environment that includes three
protein ligands and one DNA ligand.

■ CONCLUDING REMARKS
In this paper we developed a new software tool, which we
called MetalS2, for the comparison of two metal-binding
biological macromolecules of known 3D structure. To facilitate
its use and make it readily available to the scientific community,
MetalS2 is available both as a stand-alone program and a Web
tool (http://metalweb.cerm.unifi.it/tools/metals2/) within our
MetalPDB platform.21 MetalS2, by design, does not take into
consideration the entire structure. Instead, it focuses on the
MFSs contained in the structures. Each MFS is an ensemble of
atoms built around and incorporating a metal site in a metal-
binding macromolecule. As such, it contains all the structural
information on the metal site itself and its surroundings while
discarding all the information related to higher-level structural
features, such as the overall protein fold. In this way, each MFS
embeds the major part of the structural determinants of the
functional properties of the metal site.18 At the same time, this
approach prevents possible biases in the structural comparison
due to the larger (in terms of number of atoms) macro-
molecular chains. We believe that the MetalS2 strategy supports
well one of the intellectual attitudes of bioinorganic chemists
dealing with 3D structural data, i.e. understanding how the
macromolecular environment tunes the metal site properties
and, conversely, how the presence of the metal site defines the

functional properties of the system. Of course, MetalS2 is meant
to complement and not replace the large variety of available
tools for the comparison of whole 3D structures, as the latter
kind of comparison will provide insight that is exquisitely
complementary to that of MetalS2. For systems having high
structural similarity, such as pairs of homologous proteins, the
two approaches will likely provide essentially the same
information.
To provide an indication of a possible threshold to identify

high-quality structural alignments, we relied on a benchmark
generated in a semiautomated manner, which contained
proteins binding nonheme iron ions and zinc ions. We could
identify a safe threshold of 2.25 for the MetalS2 total score,
below which alignments are essentially always of high quality
and a range between 2.25 and 2.75 where the superpositions
are good in the majority of cases. The score of MetalS2 allows
users to more easily identify good alignments than with other
programs, whose thresholds and scoring functions have been
optimized for application to entire protein structures. In
addition, there were several MFS pairs for which MetalS2

generated high quality alignments, whereas other programs
did not perform satisfactorily. Conversely, in a few cases
MetalS2 could not reproduce the good alignments provided by
other tools. This happened typically when some displacement
of the metal cofactors was needed. Globally, at the safe
threshold of 2.25, the balance was in favor of MetalS2, which
could identify a much larger number of structurally related MFS
pairs in our example data sets (Table 2). Regarding possible
usage scenarios, MetalS2 can be exploited to define the
variability of MFS structure within a superfamily of metal-
loproteins or to analyze structural changes upon ligand/
inhibitor binding. Additionally, MetalS2 can constitute the basis
for innovative MFS classification essentially by conveniently
replacing FAST within approaches similar to those we
previously applied.31
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*S Supporting Information
Tables S1 (Scores of all-versus-all alignments calculated by
MAMMOTH, FAST, TM-align, and MetalS2 on the Fe-data

Figure 4. An example of functionally relevant MFS alignments. 1dmh is a catechol dioxygenase; 2b5h is a cysteine dioxygenase; 2fiy is a protein of
unknown function. Fold classification according to three different databases is reported in the CATH, SCOP, and Pfam columns. The EC column
specifies the Enzyme Commission classification, where known. Site names in the first column correspond to those adopted in the MetalPDB
database.21
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set), S2 (Scores of all-versus-all alignments calculated by
MAMMOTH, FAST, TM-align, and MetalS2 on the Zn-data
set), and S3 (Wilcoxon rank sum test for aligned MFS pairs).
Figures S1 (Flowchart of MetalS2), S2 (Superposition of
different LEPs for a given MFS pair), and S3 (Alignment of the
Zn1138 site of 2xqc and of the Mn1133 site of 2vju). This
material is available free of charge via the Internet at http://
pubs.acs.org.
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Abstract We have developed a database search tool to

identify metal sites having structural similarity to a query

metal site structure within the MetalPDB database of

minimal functional sites (MFSs) contained in metal-bind-

ing biological macromolecules. MFSs describe the local

environment around the metal(s) independently of the lar-

ger context of the macromolecular structure. Such a local

environment has a determinant role in tuning the chemical

reactivity of the metal, ultimately contributing to the

functional properties of the whole system. The database

search tool, which we called MetalS3 (Metal Sites Simi-

larity Search), can be accessed through a Web interface at

http://metalweb.cerm.unifi.it/tools/metals3/. MetalS3 uses a

suitably adapted version of an algorithm that we previously

developed to systematically compare the structure of the

query metal site with each MFS in MetalPDB. For each

MFS, the best superposition is kept. All these superposi-

tions are then ranked according to the MetalS3 scoring

function and are presented to the user in tabular form. The

user can interact with the output Web page to visualize the

structural alignment or the sequence alignment derived

from it. Options to filter the results are available. Test

calculations show that the MetalS3 output correlates well

with expectations from protein homology considerations.

Furthermore, we describe some usage scenarios that high-

light the usefulness of MetalS3 to obtain mechanistic and

functional hints regardless of homology.

Keywords Metalloprotein � Metalloenzyme �
Bioinorganic chemistry � Structural biology � Zinc � Iron

Introduction

Bioinorganic or biological inorganic chemistry is the dis-

cipline dealing with the interaction between inorganic

substances and molecules of biological interest [1–3]. It is

a wide scientific field that addresses the role, uptake, and

fate of elements essential for life, the response of living

organisms to toxic inorganic substances, the function of

metal-based drugs, the synthetic production of functional

models, and so on. The interaction between metal ions or

metal-containing cofactors and biological macromolecules

can be studied in atomic detail through 3D structural

studies, thus providing a connection between bioinorganic

chemistry and structural biology [4].

Metal ions are bound to biological macromolecules via

coordination bonds. The bonds are made by so-called

donor atoms that can belong to either the polymer (protein

or nucleic acid) backbone or side chains/bases. Additional

donor atoms may belong to nonmacromolecular ligands,

such as oligopeptides, small organic molecules, anions, and

water molecules. The ensemble comprising a metal ion (or

cluster of metal ions) together with its donor atoms defines

the metal-binding site. Metal-binding sites are occasionally

extended to include all of the atoms in the donor amino

acid or nucleotide. Databases reporting on the geometric

properties of metal-binding sites in proteins [5] or nucleic

acids [6] are available. They are derived from the
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coordinate files deposited in the Protein Data Bank (PDB)

[7]. Metal-binding sites have been shown to be useful for

the bioinformatic analysis of metal-binding proteins

(metalloproteins) and, in particular, for the prediction of

metalloproteins from genome sequences [8–10]. We have

described how the inclusion of the surroundings of the

metal-binding site in structure-based analyses strengthens

the relationship of the sites with functional properties [11,

12]. This larger ensemble can be thought of as the minimal

environment determining metal function, which in previous

work we dubbed the ‘‘minimal functional site’’ (MFS). In

practice, we defined an MFS in a metal–macromolecule

adduct as the ensemble of atoms containing the metal ion

or cofactor, all its ligands, and any other atom belonging to

a chemical species within 5 Å from a ligand [11, 13]

(Fig. S1). The MFS describes the local 3D environment

around the cofactor, independently of the larger context of

the protein fold in which it is embedded. The usefulness of

the MFS concept outlined above has its chemicophysical

foundation in the fact that the local environment of the

metal has a determinant role in tuning its properties and

thus its chemical reactivity [14, 15]. Instead, the macro-

molecular matrix is instrumental in determining, e.g.,

substrate selection [16] or partner recognition [17].

To make MFS analyses available to the scientific com-

munity, we developed two different resources: (1) Metal-

PDB [18], a database of all MFSs contained in the PDB,

which is automatically updated, providing access to struc-

tural and functional information, including atomic coordi-

nates, for each MFS in any metal-binding macromolecule of

known 3D structure; (2) MetalS2 (Metal Sites Superposition)

[12], a tool for the metal-centered superposition of MFS

pairs, applicable to structures already in the PDB or to

structural files belonging to the user. In the present work, we

present MetalS3 (Metal Sites Similarity Search), a new tool

that bridges the two aforementioned resources by allowing

researchers to input the coordinates of one MFS and perform

a systematic search of the entire MetalPDB database to

identify structurally similar sites, regardless of overall fold

similarity or protein homology. MetalS3 is based on the same

conceptual approach of MetalS2, with some minor modifi-

cations. However, its implementation as a tool for a database

search makes possible a completely different usage scenario,

with a main focus on knowledge discovery through the

unbiased exploration of the structural space of metal sites.

Methods

The MetalS3 algorithm

MetalS2 performs the superposition of two MFSs by per-

forming the following steps [12]: (1) computing and

overlapping the geometric centers of the metal atoms

contained in each MFS; (2) systematically computing a set

of initial configurations (poses), in each of which the

geometric centers of the metals and two different pairs of

donor atoms from the two sites are used to superimpose the

MFSs (Fig. S2); (3) ranking all the poses on the basis of a

specifically designed scoring function; (4) optimizing a

subgroup of the poses (by default, those in the best 40 % of

the entire score range) by allowing the geometric centers

and the ligands to be displaced with respect to one another.

The MetalS2 score consists of three terms that account,

respectively, for the biochemical similarity of the amino

acids put in correspondence (sequence similarity term), the

ratio between the total length of the sequence alignment

and the length of the smallest site (i.e., the fractional

coverage of the smaller site) (fractional coverage term),

and the number and length of consecutive sequence seg-

ments in the superposition (fragmentation term). Amino

acid correspondences are established on the basis of Ca–

Ca and Cb–Cb distances. In step 4 of the procedure, the

root mean square deviation (RMSD) of the coordinates in

the superposition is optimized and amino acid correspon-

dences are reevaluated. Note that atoms from exogenous

(i.e., nonprotein, non-nucleic acid) ligands are not included

in the computation neither of the RMSD nor of the score.

The reason for this is that, especially in the context of

MetalS3, we want to identify and quantify similarities

among the macromolecular components of the MFSs.

Exogenous ligands contribute to the definition of each MFS

geometry as well as to the calculation of the set of initial

poses, which is based purely on geometrical considerations.

Thereafter, and especially for the purpose of scoring the

solutions, such ligands are no longer taken into account.

This makes the final ranking dependent only on the simi-

larities between the macromolecular structures, as desired,

and avoids possible biases due to common arrangements of

the ligands around the metal ion, e.g., as for chelators such

as hydroxamic acid derivatives in zinc enzymes, which

maintain a fixed geometry in most or all structures.

For the present work, we implemented a new Web

interface, MetalS3, that allows a user to upload a metal-

containing macromolecular structure (or select it from the

MetalPDB database) in PDB format, select any MFS

(automatically detected) contained in it, and systematically

compare it against all MFSs in MetalPDB using the MetalS2

algorithm. A list of hits is returned by MetalS3, sorted by the

corresponding score. We introduced some minor modifi-

cations to the MetalS2 procedure and scoring function

described in the previous paragraph. In MetalS3, the frac-

tional coverage term always refers to the input (query) MFS

rather than to the smallest site of the pair being superposed.

In addition, the optimization step is iterated as long as the

superposition score keeps decreasing.

938 J Biol Inorg Chem (2014) 19:937–945

123



To reduce the computational effort, we imposed some

limitations on the difference in the number of donor atoms

between the query MFS and any MFS from MetalPDB,

which are recapitulated by the following formula:

a ¼ N

4
; if,

N

4
[ 2; else 2

b ¼ 4N; if 4N\20; else 20

8
<

:
ð1Þ

where a and b are, respectively, the smallest and largest

number of donor atoms that an MFS from the database can

have for it to be included in the search set and N is the

number of donor atoms in the query. In practice, any MFS

in MetalPDB with a number of donor atoms outside the

[a; b] range is excluded from the search. For example, a

query MFS with four donor atoms will be compared only

with MFSs from MetalPDB having between two and 16

donors. We believe that the application of the above-

mentioned restriction does not reduce the usefulness of the

results, as it seems reasonable to assume that any structural

similarity between MFSs with a disparity in the number of

donor atoms beyond the limits imposed by Eq. 1 does not

have functional relevance.

Implementation of MetalS3

All back-end scripts are implemented in Python 2.6.6

(http://www.python.org/) on a Linux platform. The front

end was implemented using Mako, a template library

written in Python included by default with the Pylons Web

application framework, JavaScript, and Cascading Style

Sheets. By using the Python language, we could also

exploit the following resources: SciPy 0.7.2, a library of

scientific and numerical routines; NumPy 1.4.1, a language

extension that adds support for large and fast, multidi-

mensional arrays and matrices; and p3d [19], a Python

module for structural bioinformatics. The MetalS3 server is

currently hosted on a 24-CPU (AMD OpteronTM 6234)

server.

The MetalS3 Web interface

The Web interface of MetalS3 allows the user to run que-

ries against all representative MFSs of the equistructural

MFS clusters defined in MetalPDB. Each of these MFSs

represents a group of sites that are found in proteins with

the same fold, as judged from sequence similarity and

Pfam [20] domain assignments, and occur at the same

spatial location within that fold. For example, a single

representative MFS represents all the sites of rubredoxins

from various organisms and with different metalation.

MetalPDB currently contains 17,936 clusters of equi-

structural MFSs. As mentioned previously, the dataset of

representative MFSs against which the query is actually

compared is the subgroup of all 17,936 sites that satisfies

Eq. 1. Thus, the size and the characteristics of the subgroup

depend on the input query MFS, and particularly on the

number of donor atoms it contains. In turn, this influences

the overall calculation time.

After a calculation is finished, the user is presented with

a list of hits having structural similarity to the query,

ordered by the total MetalS3 score (the list can be resorted

according to different parameters, such as individual score

components). It is then possible to select a specific hit, i.e.,

a specific representative MFS, and run a refinement cal-

culation in which the query is compared with each indi-

vidual site in the corresponding equistructural MFS cluster.

A link to the results of the search is e-mailed to the user at

the end of each of these two stages.

Results

A brief description of the input and output interfaces of

MetalS3 is available as electronic supplementary material

(text and Figs. S3 and S4). We conducted various experi-

ments to assess our implementation of MetalS3 with respect

to its capability to identify relevant hits within the Metal-

PDB database as well as with respect to the typical times

required to obtain the results of a calculation.

Because MetalS3 searches are initially performed only

against representative MFSs and not the entire content of

the MetalPDB database, it is important to assess whether

this approach consistently returns relevant functional

information. To do this, we used an example dataset of 100

different MFSs randomly picked from deposited PDB

structures (Table S1). These examples, which differed in

metal content as well as coordination number and geome-

try, were used as input queries to MetalS3. Crucially, the

examples were selected in order to avoid including any

representative MFS as defined in MetalPDB. In this way,

we could straightforwardly classify the output of MetalS3

depending on whether the best-scoring hit corresponded to

the representative of the cluster to which each query MFS

was known to belong. In fact, even though the clustering

procedure implemented in MetalPDB does not directly

compare the structure of the different MFSs assigned to a

cluster, in the large majority of cases the MFSs within a

cluster should be similar to each other because the proteins

in the cluster can be assumed to be homologous. In 75 % of

cases, this was indeed observed. Notably, if we optimize all

the poses, instead of a well-scoring subgroup, the above-

mentioned result increases only to 76 %. We then analyzed

manually the 25 cases for which the best hit identified by

MetalS3 was not the representative MFS of the cluster to

which the query belongs in the MetalPDB database. For 20

of them we observed that the result obtained depended on
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the clustering within MetalPDB being incomplete, i.e.,

failing to group together MFSs that indeed are bound to

homologous proteins. In turn, this is due to missing Pfam

assignments or, often, to a given protein superfamily being

mapped to multiple Pfam domains [21]. Instead, in five

cases MetalS3 identified a structural similarity between a

pair of MFSs (the query and the returned hit) that was

higher than that between the query and the representative

MFS of its equistructural cluster in MetalPDB. These are

cases where either highly similar MFSs are embedded in

different folds (three) or the MFS representative does not

adequately represent the cluster (two). The representative

MFS of a cluster is chosen solely on the basis of the res-

olution (i.e., quality) of the corresponding 3D structure

[18]. Consequently, the representative MFS cannot be

regarded as a sort of ‘‘average’’ MFS, and there is no

specific property regarding its structural similarity to the

other MFSs in the cluster. A third option is that the

assignment of the query MFS to the MetalPDB cluster,

which was performed automatically, did not reflect the

large structural variability of the MFSs within the cluster.

This was not observed here. An additional consideration is

that, because of the way the score is constructed, smaller

query MFSs tend to be less discriminative and therefore

may more easily provide high-scoring hits also to MFSs

not closely related (but still structurally similar).

If one looks at the five best scoring hits, then in only ten

cases from the 100 examples run was the MFS represen-

tative of the cluster of the query site not included. As

already mentioned, in two instances we observed that the

specific representative MFS did not reflect the ‘‘consensus’’

coordination geometry of its cluster. However, in most

cases, the reason for the observed behavior was an

incomplete clustering of the structures, in turn typically

resulting from problems in the mapping of Pfam domains.

This caused structures highly similar to the query not to be

included in the same equistructural cluster.

The calculation times are dependent on the number of

donor atoms (N) in the query MFS, as the number of poses

that need to computed and compared scales with N(N - 1)

[12] (Fig. 1). For a given number of atoms, calculations are

faster the higher the number of donor atoms from exoge-

nous ligands (such as small metal-binding molecules or

ions) because these are not considered in amino acid

matching and RMSD computations (see ‘‘Methods’’). The

calculation times are less than 2 h for sites with up to four

protein donor atoms, whereas, owing to the parabolic

increase of calculation times, they are as long as 10 h for

sites with nine donor atoms (if all are from protein ligands)

and within 24 h for multinuclear sites with 12 donor atoms

from the protein moiety. Of all representative MFS sites

collected in MetalPDB, 95.1 % have nine donor atoms or

fewer. Under the assumption that MetalPDB adequately

describes the diversity of MFSs occurring in nature, the

data given above may suggest that users will most often

submit queries that can be dealt with in 10 h or less. In any

case, results are always sent to the users via e-mail, as even

the simplest calculations require at least a few minutes.

Discussion

MetalS3 is a Web interface that allows the user to sys-

tematically compare an MFS of interest (query) with the

contents of the MetalPDB database [18], i.e., with an

ensemble representing the diversity of known MFSs. This

is achieved through a suitably modified implementation of

the MetalS2 algorithm [12]. Typically, the hits returned for

a query will comprise sites that are contained within a

protein homologous to the protein containing the query

MFS as well as sites from unrelated proteins. The presence

in the output page of one or the other type of hit, as well as

their relative abundance, will depend on the cutoffs defined

to exclude hits from the visualization (Fig. S3). The cutoffs

Fig. 1 Calculation times for MetalS3 queries as a function of the

number and type of donor atoms. Dashed lines are the best fit to a

second-order polynomial
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can be adjusted also after the calculation has finished,

through the ‘‘Filter Results’’ button on the output page

(Fig. S4). Increasing the cutoff values will result in a

longer list of hits being displayed.

Our test calculations show that the top position in the list

of the hits is highly likely to be occupied by an MFS

contained within a homolog of the query protein; when the

top five hits are considered, this is verified for as many as

90 % of the examples that we run. According to the defi-

nition of the MetalPDB database, on which MetalS3 builds,

this situation corresponds to the query and hit MFSs

belonging to the same equistructural cluster. For MFSs in

MetalPDB to be clustered, it is actually requested that the

sites occupy the same position within the fold after the

entire protein structure has been superimposed, and the

structures of the MFSs belonging to a given cluster are not

compared with one another. The approach of MetalS3 is

entirely different, as it operates only on the MFSs, disre-

garding the rest of the protein structure. The very good

correlation between the fold-based clustering results and

the MetalS3 output points to the high similarity of the local

3D structure around the metal site being a possible indi-

cator of metalloprotein homology. This is supported also

by the fact that in 20 of the examples, MetalS3 indicated

that the clustering within MetalPDB was incomplete.

Incomplete clustering typically results from the homology

relationship between metalloproteins bearing structurally

similar MFSs being hidden by the fact that the Pfam

domain assignments we use in the definition of equistruc-

tural clusters are fine-grained and may occasionally sepa-

rate a single superfamily into multiple domain definitions.

To address this issue, the user can verify if the Pfam

domains of interest belong to the same Pfam clan [21]. One

can possibly further speculate that if the MFS properties

must be defined tightly to make possible the correct protein

function [i.e., to correctly define the reactivity of the metal

ion(s) in the MFS], then conservation of the 3D structure of

the MFS will be particularly strict among homologous

proteins. Consequently, the intracluster variability of the

MFS structure may be informative on the requirements

imposed by the catalysis on the MFS features or, in other

words, on how the functional and mechanistic properties of

the system are encoded in the structure.

A practical application of MetalS3 is to detect MFS

structural similarities that are not associated with a

homology relationship among the proteins harboring the

MFSs (indicated by the MFS mapping to a shared Pfam

domain or domain clan). These situations may be indica-

tive of the occurrence of common functional properties that

are endowed by the MFS itself. Such observations can

provide useful hints for experimental work. In this usage

scenario, the best hit returned by MetalS3 is often unin-

teresting (i.e., when it is bound to a protein with the same

domain composition as the protein containing the query

MFS), and one should focus on worse-scoring hits. Oper-

atively, the domain composition of a hit MFS can be

immediately obtained by looking up that MFS in the

MetalPDB database [18]. Below, we briefly discuss some

examples not included in the 100 test dataset.

As a first example, we took one of the two equivalent

Fe3S4 clusters in the PDB structure of fumarate reductase

from Wolinella succinogenes (PDB ID 1QLB [22]), which

is identified as site 1qlb_4 in MetalPDB (hereafter, we will

use the PDB code in lowercase letters followed by an

underscore and a number to indicate a specific MFS within

the MetalPDB database, whereas we will use the PDB code

in uppercase letters to indicate the PDB entry). This site is

located with a ferredoxin-type domain, and it is likely to be

part of the electron transfer pathway. MetalS3 returns as the

fifth hit, with a total score of 1.98, a site harboring an Fe3S4

cluster in the D subunit of the structure of the DNA-

directed RNA polymerase from Sulfolobus solfataricus P2

(PDB ID 2PA8 [23]). Despite a sequence identity between

these two MFSs of only 13 % over 15 amino acids, the

superposition is good (RMSD 0.799 Å) (Fig. 2).

The latter cluster, which is possibly an Fe4S4 cluster

in vivo, is found in the corresponding subunits of the

polymerases from various species of Archaea and Eukarya,

but not of Bacteria [24]. The domain containing the MFS

within subunit D is not present in all archaeal RNA poly-

merases, but it is actually characteristics of a specific

evolutionary lineage of Archaea. Here we observed that the

binding mode of the Fe3S4 cluster within subunit D of S.

solfataricus P2 polymerase actually bears some similarity

to an unrelated episilonproteobacterial system.

A second example is provided by the MFS containing

the magnesium(II) ion identified as residue 9,018 (Metal-

PDB entry 1g0u_1) within the structure of the core particle

of the yeast proteasome (PDB ID 1G0U [25]). This MFS is

interfacial, as it contains protein ligands from subunits I

and Y. MetalS3 returns hits also to sites containing metal

ions other than magnesium. One of these is the MFS

defined around the calcium(II) ion identified as residue 501

in the structure of human calcium and integrin binding

protein 1 (PDB ID 1Y1A [26]), with a total score of 2.427

and, in particular, a sequence identity of 0 % (Fig. 3). This

MFS is located within an EF-hand motif. Such a structural

similarity would be extremely hard to identify by any other

method, especially a sequence-based method. Magne-

sium(II) and calcium(II) are known to compete for binding

in EF-hand sites [27]. The similarity between the two

MFSs may thus underlie commonalities in the atomic

mechanism by which the metal affinity is tuned.

3ZFJ is a recently solved NMR structure of a PhtD

domain from Streptococcus pneumoniae that binds a single

zinc(II) ion [28]. At the time of writing, it is not yet
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included in the MetalPDB database and therefore simulates

well the situation of a real user. MetalS3 identifies the 2CS7

structure [29] as the second best hit. In fact, both proteins

contain the Pfam domain ‘‘Strep_his_triad,’’ and have

23 % sequence identity. This is a case where the next

update of MetalPDB would put the two in the same equi-

structural cluster. The above-mentioned proteins have a

role in the uptake of zinc(II), by scavenging zinc(II) ions

and then providing them to the extracellular membrane-

anchored AdcAII transporter at the surface of S.

Fig. 2 Output result page for a calculation performed using the 1qlb_4 site as the query. The inset shows the structural alignment to the fifth hit,

2pa8_1

Fig. 3 Output result page for a calculation performed using the 1g0u_1 site as the query. The inset shows the structural alignment to the seventh

hit, 1y1a_1
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pneumoniae. The first hit is an iron-binding MFS from

Escherichia coli galactose 1-phosphate uridylyltransferase

(structure 1GUP [30]). This iron ion plays a structural role

and is not essential to the enzyme activity [31]. It is useful

to compare the hits returned by using either 3ZFJ or 2CS7

as queries. Among the shared top-scoring zinc proteins, one

finds an MFS from structure 4HHJ [32], identified by the

zinc ion with residue number 1,001. This ion has been

proposed to have a structural and/or regulatory role for the

activity of this RNA-dependent RNA polymerase [33].

Another common hit is from PDB entry 2E26 [34], iden-

tified by the zinc ion with residue number 603, which

describes the structure of mouse reelin, a secreted glyco-

protein. This ion is observed in the structures of both reelin

alone and reelin in complex with apolipoprotein E receptor

2 [35], where it has fractional occupancy. Finally, MetalS3

identifies the zinc-containing MFS of the ZinT protein

(PDB ID 1TXL; S. Eswaramoorthy and S. Swaminathan,

unpublished) as a further hit to the MFS in 2CS7; the MFSs

of 3ZFJ and 1TXL also display good structural similarity

(Fig. 4). ZinT is a periplasmic zinc transporter that facili-

tates metal recruitment during zinc shortage by binding

zinc(II) with high affinity and subsequently transferring it

to the ZnuA component of the ZnuABC membrane trans-

porter [36, 37]. Intriguingly, in the zinc(II)-specific ABC

uptake system AdcABC of S. pneumoniae, the AdcA pro-

tein, which does not interact with PhtD domains (see

above), is a fusion between a ZnuA-like protein and a

ZinT-like protein [38]. In summary, the present MetalS3

analysis identified a minimal zinc-binding structure as

being associated with reversible metal ion binding in zin-

c(II) transport, where different protein systems for zinc(II)

uptake contain structurally similar MFSs, and in (hypoth-

esized) zinc(II)-dependent regulation of intermolecular

interactions.

An additional example is provided by the 4NAO struc-

ture, a homodimer that contains a single iron(II) ion per

subunit [39], which was released in the PDB on January 15,

2014, and is not yet included in MetalPDB. This enzyme is

an iron(II)/2-ketoglutarate-dependent dioxygenase that

hydroxylates an N-(D-lysergyl-aminoacyl) lactam in the

ergot fungus Claviceps purpurea. MetalS3 identifies simi-

larities to various other dioxygenases that are active against

different substrates. In particular, the best hit is the iron(II)

site of the 2CSG structure, an uncharacterized protein

addressed by the Midwest Center for Structural Genomics,

with 17 % sequence identity between the sites. Both

structures feature organic ligands (2-ketoglutarate for

4NAO; succinate, which is a reaction product, and isoci-

trate for 2CSG) bound to the metal ion in corresponding

positions (Fig. 5a). The second hit is a isopenicillin N

synthase from Emericella nidulans (PDB ID 1ODM) [40].

This site has lower RMSD and higher sequence similarity

to the query, and also features an organic ligand chelating

the iron(II) ion in a manner relatively similar to that of

2-ketoglutarate of 4NAO (Fig. 5b). Notably, isopenicil-

lin N synthase is not dependent on 2-ketoglutarate, whose

functional role is performed by the tripeptide substrate

[41]. The third hit contains a group of dioxygenases more

closely related to 4NAO, which includes human phytanoyl-

CoA dioxygenase (PhyH; PDB ID 2A1X). The article

describing 4NAO provides a detailed comparison with

PhyH and its homolog PhyHD1, which are actually the best

results returned by a Dali [42] search based on the entire

structure [39]. The 2-ketoglutarate molecules present in the

4NAO and PhyH structures chelate the metal ion in a

closely similar manner (Fig. 5c). Finally, the fourth hit is a

manganese(II) site in the 2-ketoglutarate-dependent diox-

ygenase AlkB (PDB ID 4JHT) [43] (Fig. 5d). AlkB is an

iron(II)/2-ketoglutarate-dependent dioxygenase that cata-

lyzes the oxidative demethylation of nucleic acids and

histones [44]. It can bind manganese(II) in its catalytic site,

yielding an inactive enzyme. Indeed, the aforementioned

4jht_1 site is the representative of a relatively large equi-

structural cluster in MetalPDB that contains the other

structurally characterized AlkB MFSs. The cluster con-

tains, for example, also the 3O1T structure [45], where the

iron(II) ion is chelated by succinate, again in a position

close to that of 2-ketoglutarate in 4NAO. The systems

described in this paragraph map to three different, but

Fig. 4 Selected high-scoring zinc sites among the search results for a

zinc-containing minimal functional site (MFS) from 3ZFJ. The 3ZFJ

query structure is always in blue and in the same orientation. The

superpositions to the sites a 2cs7_1, b 4hhj_1, c 2e26_5, and d 1txl_1

are displayed. Only protein ligands are shown; ZN(603) in 2E26 is

additionally coordinated by two water molecules; ZN(216) in 1TXL

is additionally coordinated by a water molecule
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related to the same superfamily, Pfam domains: DUF1479

(2CSG), 2OG-FeII_Oxy (1ODB, 4JHT), and PhyH

(4NAO, 2A1X). The results include also a case of a system

where the physiological iron(II) ion was substituted

in vitro. Thus, even for a large and widely studied protein

superfamily such as that of iron(II)/2-ketoglutarate-depen-

dent dioxygenases, MetalS3 proves useful in the analysis of

a newly solved structure to identify relationships across

different subgroups in a manner that is independent of

overall fold similarity.

Concluding remarks

MFSs in metal-binding biological macromolecules con-

stitute a novel viewpoint for the elucidation of the

mechanisms of function in these systems [11]. In this

frame, we have developed the MetalPDB database [18].

MetalPDB contains a systematic analysis of all known

MFSs. In particular, within the database all MFSs were

grouped into so-called equistructural clusters. Each cluster

contains all MFSs located at corresponding positions

within the fold of homologous proteins. Recently, we

developed the MetalS2 program and Web server to per-

form pairwise structural superpositions of MFSs, provid-

ing a ground for the quantitative evaluation of MFS

similarity [12]. MetalS3, which is described in this work,

is a Web-based tool (http://metalweb.cerm.unifi.it/tools/

metals3/) that adopts the MetalS2 algorithm to perform

searches in the MetalPDB database. This is implemented

as a first coarse-grained search against the ensemble of

the MFSs representing MetalPDB equistructural clusters,

followed by a refinement step in which the query MFS is

compared with all the MFSs in a user-selected cluster.

Although algorithmically very similar, MetalS2 and Met-

alS3 have somewhat different usage scenarios and make

possible access to distinct information. MetalS2 requires

the user to have prior knowledge of the structures to be

compared, either a pair or a group of related metallo-

proteins. In contrast, MetalS3 constitutes an unbiased

approach to seeking structural similarities between metal

sites, independently of the user’s prior knowledge. The

hits returned by MetalS3 can be a combination of rela-

tively obvious ones (e.g., homologs of the query metal-

loprotein) and unexpected ones. The latter can be

identified only through the present approach, whereas

MetalS2 is a tool to quantify structural similarities within

groups of sites already familiar to the user.

The MetalS3 approach may help researchers in the field

of bioinorganic chemistry to assess the relationships or

evaluate possible evolutionary links between different

groups of metalloproteins and may help guide experimen-

talists’ work in understanding the function of uncharac-

terized metalloproteins. Overall, this contributes to

achieving a better comprehension of the role of metal ions

in living systems.
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Italiano dell’Università e della Ricerca through the FIRB project

RBFR08WGXT and by the European Commission through the Bio-

MedBridges project (grant no. 284209). We gratefully acknowledge

the technical help of Enrico Morelli.

References

1. Frausto da Silva JJR, Williams RJP (2001) The biological

chemistry of the elements: the inorganic chemistry of life. Oxford

University Press, New York

2. Bertini I, Sigel A, Sigel H (2001) Handbook on metalloproteins.

Dekker, New York

3. Bertini I, Gray HB, Stiefel EI, Valentine JS (2006) Biological

inorganic chemistry. University Science Books, Sausalito

4. Bertini I, Rosato A (2003) Proc Natl Acad Sci USA

100:3601–3604

5. Hsin K, Sheng Y, Harding MM, Taylor P, Walkinshaw MD

(2008) J Appl Crystallogr 41:963–968

6. Schnabl J, Suter P, Sigel RKO (2012) Nucleic Acids Res

40:D434–D438

7. Rose PW, Beran B, Bi C, Bluhm WF, Dimitropoulos D, Goodsell

DS, Prlic A, Quesada M, Quinn GB, Westbrook JD, Young J,

Yukich B, Zardecki C, Berman HM, Bourne PE (2011) Nucleic

Acids Res 39:D392–D401

8. Andreini C, Bertini I, Rosato A (2009) Acc Chem Res

42:1471–1479

9. Andreini C, Bertini I, Rosato A (2004) Bioinformatics

20:1373–1380

10. Shu N, Zhou T, Hovmoller S (2008) Bioinformatics 24:775–782

11. Andreini C, Bertini I, Cavallaro G (2011) PLoS ONE 10:e26325

Fig. 5 The four top-scoring sites among the search results for the

iron(II)-containing MFS in the A chain of 4NAO. The 4NAO query

structure is always in blue and in the same orientation. The

superpositions to the sites a 2csg_1, b 1odm_1, c 2a1x_1, and

d 4jht_1 are displayed. The organic iron(II) ligands present in the

various MFSs are shown as sticks. Water molecules are not shown

944 J Biol Inorg Chem (2014) 19:937–945

123

http://metalweb.cerm.unifi.it/tools/metals3/
http://metalweb.cerm.unifi.it/tools/metals3/


12. Andreini C, Cavallaro G, Rosato A, Valasatava Y (2013) J Chem

Inf Model 53:3064–3075

13. Andreini C, Bertini I, Cavallaro G, Najmanovich RJ, Thornton

JM (2009) J Mol Biol 388:356–380

14. Maret W, Li Y (2009) Chem Rev 109:4682–4707

15. Choi M, Davidson VL (2011) Metallomics 3:140–151

16. Banci L, Bertini I, Calderone V, Della Malva N, Felli IC, Neri S,

Pavelkova A, Rosato A (2009) Biochem J 422:37–42

17. Bertini I, Fragai M, Luchinat C, Melikian M, Venturi C (2009)

Chem Eur J 15:7842–7845

18. Andreini C, Cavallaro G, Lorenzini S, Rosato A (2013) Nucleic

Acids Res 41:D312–D319

19. Fufezan C, Specht M (2009) BMC Bioinform 10:258

20. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell

C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L,

Sonnhammer EL, Eddy SR, Bateman A, Finn RD (2012) Nucleic

Acids Res 40:D290–D301

21. Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich

V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R,

Eddy SR, Sonnhammer EL, Bateman A (2006) Nucleic Acids

Res 34:D247–D251

22. Lancaster CR, Kroger A, Auer M, Michel H (1999) Nature

402:377–385

23. Hirata A, Klein BJ, Murakami KS (2008) Nature 451:851–854

24. Hirata A, Murakami KS (2009) Curr Opin Struct Biol

19:724–731

25. Groll M, Bajorek M, Kohler A, Moroder L, Rubin DM, Huber R,

Glickman MH, Finley D (2000) Nat Struct Biol 7:1062–1067

26. Blamey CJ, Ceccarelli C, Naik UP, Bahnson BJ (2005) Protein

Sci 14:1214–1221

27. Malmendal A, Linse S, Evenas J, Forsen S, Drakenberg T (1999)

Biochemistry 38:11844–11850

28. Hastie KM, Kimberlin CR, Zandonatti MA, MacRae IJ, Saphire

EO (2011) Proc Natl Acad Sci USA 108:2396–2401

29. Riboldi-Tunnicliffe A, Isaacs NW, Mitchell TJ (2005) FEBS Lett

579:5353–5360

30. Thoden JB, Ruzicka FJ, Frey PA, Rayment I, Holden HM (1997)

Biochemistry 36:1212–1222

31. Geeganage S, Frey PA (1999) Biochemistry 38:13398–13406

32. Noble CG, Lim SP, Chen YL, Liew CW, Yap L, Lescar J, Shi PY

(2013) J Virol 87:5291–5295

33. Yap TL, Xu T, Chen YL, Malet H, Egloff MP, Canard B, Va-

sudevan SG, Lescar J (2007) J Virol 81:4753–4765

34. Yasui N, Nogi T, Kitao T, Nakano Y, Hattori M, Takagi J (2007)

Proc Natl Acad Sci USA 104:9988–9993

35. Yasui N, Nogi T, Takagi J (2010) Structure 18:320–331

36. Petrarca P, Ammendola S, Pasquali P, Battistoni A (2010) J

Bacteriol 192:1553–1564

37. Ilari A, Alaleona F, Tria G, Petrarca P, Battistoni A, Zamparelli

C, Verzili D, Falconi M, Chiancone E (2014) Biochim Biophys

Acta 1840:535–544

38. David G, Blondeau K, Schiltz M, Penel S, Lewit-Bentley A

(2003) J Biol Chem 278:43728–43735

39. Havemann J, Vogel D, Loll B, Keller U (2014) Chem Biol

21:146–155

40. Elkins JM, Rutledge PJ, Burzlaff NI, Clifton IJ, Adlington RM,

Roach PL, Baldwin JE (2003) Org Biomol Chem 1:1455–1460

41. Roach PL, Clifton IJ, Fulop V, Harlos K, Barton GJ, Hajdu J,

Andersson I, Schofield CJ, Baldwin JE (1995) Nature 375:700–704

42. Holm L, Sander C (1995) Trends Biochem Sci 20:478–480

43. Hopkinson RJ, Tumber A, Yapp C, Chowdhury R, Aik W, Che

KH, Li XS, Kristensen JBL, King ONF, Chan MC, Yeoh KK,

Choi H, Walport LJ, Thinnes CC, Bush JT, Lejeune C, Rydzik

AM, Rose NR, Bagg EA, McDonough MA, Krojer TJ, Yue WW,

Ng SS, Olsen L, Brennan PE, Oppermann U, Muller S, Klose RJ,

Ratcliffe PJ, Schofield CJ, Kawamura A (2013) Chem Sci

4:3110–3117

44. Yu B, Edstrom WC, Benach J, Hamuro Y, Weber PC, Gibney

BR, Hunt JF (2006) Nature 439:879–884

45. Yi C, Jia G, Hou G, Dai Q, Zhang W, Zheng G, Jian X, Yang CG,

Cui Q, He C (2010) Nature 468:330–333

J Biol Inorg Chem (2014) 19:937–945 945

123



58 
 

 



59 
 

4.3. Hidden	relationships	between	metalloproteins	unveiled	by	structural	

comparison	of	their	metal	sites	

Yana Valasatava1, Claudia Andreini 1, 2, and Antonio Rosato 1, 2,* 

1Magnetic Resonance Center (CERM) – University of Florence, Via L. Sacconi 6, 50019 Sesto 

Fiorentino, Italy 
2Department of Chemistry – University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, 

Italy 

Submitted 

  



60 
 

 



61 
 

Abstract 

Metalloproteins account for a substantial fraction of all proteins. They incorporate metal atoms, 

which are required for their structure and/or function. Here we describe a new computational 

protocol to systematically compare and classify metal-binding sites on the basis of their structural 

similarity. These sites are extracted from the MetalPDB database of minimal functional sites (MFSs) 

in metal-binding biological macromolecules. Structural similarity is measured by the scoring 

function of the available MetalS2 program. Hierarchical clustering was used to organize MFSs into 

clusters, for each of which a representative MFS was identified. The comparison of all 

representative MFSs provided a thorough structure-based classification of the sites analyzed. As 

examples, the application of the proposed computational protocol to all heme-binding proteins and 

zinc-binding proteins of known structure highlighted the existence of structural subtypes, validated 

known evolutionary links and shed new light on the occurrence of similar sites in systems at 

different evolutionary distances. The present approach thus makes available an innovative viewpoint 

on metalloproteins, where the functionally crucial metal sites effectively lead the discovery of 

structural and functional relationships in a largely protein-independent manner. 

 

 

Keywords: metalloprotein; metalloenzyme; bioinorganic chemistry; structural biology; cytochrome; 

heme; multiheme 
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Metal ions are bound to biological macromolecules via coordination bonds. The bonds are formed 

by the so-called donor atoms, which can belong to either the backbone or side chains/bases of the 

macromolecule (protein or nucleic acid). Additional donor atoms may belong to non-

macromolecular ligands, such as oligopeptides, small organic molecules, anions, water molecules. 

The metal ion (or cluster of metal ions) together with its donor atoms constitute the metal-binding 

site. To achieve a satisfactory understanding of the biochemical properties of metal sites through the 

analysis of 3D structural features it is important to go beyond metal-binding sites by taking into 

account the surrounding macromolecular environment 1-6. Altogether, this larger ensemble of atoms 

defines the minimal environment determining metal function, i.e. the “minimal functional site” 

(MFS). In practice, we defined an MFS in a metal-macromolecule adduct as the ensemble of atoms 

containing the metal ion or cofactor, all its ligands and any other atom belonging to a chemical 

species within 5 Å from a ligand (Supplementary Figure S1)7. The MFS describes the local 3D 

environment around the cofactor, independently of the larger context of the protein fold in which it 

is embedded. The MetalPDB database, which is derived in an automated manner from the Protein 

Data Bank (PDB)8, collects all known MFSs9. Recently, we have developed a computational 

approach, implemented in the MetalS2 program, to quantify the structural similarity of MFSs in 

metalloproteins10. 

Structure-based as well as domain-based classifications of protein structures are well established. 

Resources such as CATH11 or SCOP12 are able to capture distant relationships between protein 

domains through the analysis of their 3D structures. They provide the notion of protein superfamily, 

which is the ensemble of all the protein domains with the same overall structural features. In 

MetalPDB we exploited such classifications to assign MFSs to so-called equistructural groups9. 

Such groups contain the MFSs that are found in proteins with the same fold and occur at the same 

position within that fold. This is evaluated by superimposing the entire domain containing the MFS 

in the protein structures under consideration and then computing the distance between the metal 

centers. MFSs whose metal centers are within a threshold of 3.5 Å from one another are assigned to 

the same equistructural group. This approach is simple and intuitive, but can potentially overlook 

structural variations occurring within each metalloprotein family. 

In this work we implemented and evaluated an approach based on the MetalS2 program to perform 

systematic, quantitative comparisons of MFS structures with the final aim of producing a 

classification of metal sites. This is achieved by organizing MFSs into clusters in such a way that 

each cluster contains sites that are structurally similar to each other and differ from sites of the other 
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clusters. The resulting classification is independent of the overall metalloprotein fold and can 

capture the fine structural variability of sites even within the same metalloprotein family. In 

addition, it provides unbiased indications on relationships between different metalloprotein families 

harboring the same metal cofactors. This contribution provides an unprecedented approach in 

bioinorganic structural biology that puts metal sites, the true center of research in bioinorganic 

chemistry, at the center of structural analysis. In fact, our new protocol innovatively recombines 

available algorithms to support out-of-the-box thinking about relationships among metalloproteins. 

The box we are referring to here is that constituted by the conventional tools based on global 

sequence or structural domain similarity. The present protocol is not meant to replace this kind of 

analysis, which has been successfully applied to metalloproteins13-18, but to provide an additional, 

new tool to the portfolio of the structural biologist with an interest in bioinorganic chemistry that has 

been specifically designed for the specific challenges of the latter field of research. 

We demonstrate the protocol using two test cases, namely heme-binding and zinc-binding proteins. 

Heme is one of the most abundant and widely used biological metalloporphyrins. As a protein 

cofactor, heme shuttles electrons between different redox centers in aerobic and anaerobic 

respiration as well as photosynthesis, or transports and stores O2 as with the globins. Furthermore, 

numerous heme-dependent enzymes are known, which can catalyze both reductive and oxidative 

chemistry. MetalPDB shows that the iron coordination geometry in heme-containing MFSs is quite 

constant, being either square pyramidal or octahedral in the vast majority of cases, with four donor 

atoms out of a maximum of six provided by the porphyrin moiety. This makes it difficult to exploit 

the features of the iron coordination for functional or structural classification. Zinc proteins are one 

of the largest groups of metalloproteins within MetalPDB. Estimates of zinc proteomes in various 

organisms indicated that the amount of genes encoding zinc proteins varies from 4% to 10% of the 

genome 19,20. Zinc enzymes in which zinc plays a catalytic role are present across all living 

organisms and constitute the largest share of prokaryotic zinc proteins. The main reason for the 

selection of zinc as a catalytic cofactor lies in its distinctive chemical properties, which combine 

Lewis acid strength, lack of redox reactivity, and fast ligand exchange 21. The coordination geometry 

of the zinc(II) ion and the number of cysteine ligands can be quite informative on function, both for 

enzymes 7,22 and non-catalytic systems such as zinc fingers 23. The application of our newly 

developed protocol can provide means to verify structure similarities beyond the first coordination 

sphere, and their relationship to functional properties. 
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Results 

Analysis of equistructural groups of MFSs (first stage) 

The present new computational protocol highlights local structure features that may distinguish 

members within a given metalloprotein family or reveal similarities across different families. To do 

so, the protocol leverages the organization of sites in equistructural groups (EGs hereafter) that is 

already provided by the MetalPDB database. These are groups of corresponding sites in the 

structures of metalloproteins belonging to the same family. Comparisons are first done within EGs, 

i.e. within metalloprotein families. Then representative MFSs are defined for the various structural 

subtypes occurring within a family. Finally, representative MFSs are exploited to systematically 

compare sites across different subtypes and, most importantly, across different metalloprotein 

families. 

For heme-containing MFSs (hMFSs hereafter), we started from 187 EGs that had more than one 

member. The procedure yielded 344 clusters of hMFSs, of which 17 clusters did not contain hMFSs 

and thus were discarded. Our approach readily separated sites that bind individual metal ions from 

hMFSs, such as in the case of the EG containing the sites corresponding to the interfacial heme of 

bacterioferritins. This EG additionally includes various, possibly adventitious, sites from Dps-like 

proteins binding cations such as iron(II), copper(II), nickel(II). The complete separation achieved 

upon structural comparison of these two kinds of sites is not surprising given the difference in size 

and interactions with the protein of the cofactor. On the other hand, the Fe-coproporphyrin III site of 

Desulfovibrio desulfuricans bacterioferritin was clustered together with all other bacterioferritin 

hMFSs, in keeping with its structural and functional similarity to the typical heme site24. Another 

example is that of the separation of the interfacial hMFS of Haemophilus ducreyi superoxide 

dismutase25 from adventitious metal sites in other superoxide dismutase structures. The 327 clusters 

that contained hMFSs (or other MFS binding heme analogs such as metal-substituted 

protoporphyrin IX, Supplementary Table S1) included 21 clusters with at least 100 sites, whereas 23 

clusters contained a single hMFS. We manually inspected how the larger EGs were split into 

clusters. Typically, the clustering reflected defined structural features of the hMFSs. For example, in 

the EG corresponding to animal heme-dependent peroxidases, the two major clusters, which 

cumulatively accounted for 96% of the EG sites, contained myeloperoxidases together with 
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lactoperoxidases (92 hMFSs), and prostaglandin synthases (113 hMFSs) (Figure 1). Another 

example is given by tryptophan 2,3 dioxygenases, which formed two clusters (18 and 23 members 

respectively) differing for the presence or absence of the substrate bound in the cavity (with one 

exception, Figure 2). In a few instances the clustering procedure generated an apparently too fine-

grained separation of hMFSs. For example, the EG of cytochrome P450s, which contains 992 

members, was split in as many as 22 clusters, containing 8 to 151 hMFSs. Here it is difficult to 

rationalize the outcome of the procedure as well as to correlate it to specific structural features. 

Notably, EGs including even more than 100 hMFSs constituted a single cluster when the structural 

similarity of the sites was sufficiently high; this was, for example, the case of the 531 hMFSs of 

mammalian nitric oxide synthases. 

For zinc-binding MFSs (zMFSs hereafter), we started from 1752 EGs with more than one member 

(for a total of about 19,500 zMFss) and obtained 2263 clusters. In addition, 1640 zMFSs did not 

belong to any EG, and were carried on directly to the second stage of the procedure. 19 first-stage 

clusters included 100 sites or more. The largest cluster comprised all 335 zMFSs of the EG of 

alcohol dehydrogenases. As described above for hMFSs, in several cases EGs were split into two or 

more clusters. An interesting example is that of an EG containing 61 zMFSs from various 

aminoacyl-tRNA synthetases and closely related enzymes, which is gave rise to four distinct 

clusters. Among these, the two larger clusters contained respectively 28 and 29 sites, differing for 

the size and binding mode of the substrate analogues present in the structure (Figure 3). 

We quantified the structural deviation within clusters by computing the root-mean-square-deviation 

(RMSD) of the Cα and Cβ atoms of the sites. We observed that the largest average RMSD within a 

cluster was of only 1.5 Å. Nearly 95% of the clusters had an average RMSD smaller than 1.0 Å and 

the median value for the average RMSD was 0.75 Å. The very high degree of structural similarity 

within clusters supports the usefulness of defining a single representative hMFS for each of them. 

 

Comparison of representative MFSs (second stage) 

In the second stage of our procedure we compared representative MFSs to one another, 

independently of EG assignments, thus avoiding possible biases due to domain assignments. We 

tried different clustering approaches (complete vs. average linkage) and different thresholds (T) to 

evaluate the stability of the outcome (note that a higher threshold indicates lower similarity). 
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Depending on the above factors, representatives hMFSs were grouped in a number of clusters 

ranging from 51 (average linkage clustering, T=3.5) to 199 (complete linkage clustering, T=2.25), 

whereas zMFSs were grouped in a number of clusters ranging from 840 (average linkage clustering, 

T=2.75) to 1661 (complete linkage clustering, T=2.25). Hereafter, we will use the following 

notation: CC or AC to indicate complete vs. average linkage, respectively, followed by the value of 

the threshold used (e.g. CC2.75 is the result of the clustering of representative hMFSs using 

complete linkage clustering and T= 2.75). 

At the second stage of the computational procedure, there are three possible causes for 

representative MFSs to get clustered. (i) The first reason is that sites with very high structural 

similarity and found in different metalloprotein families are identified. (ii) The second cause 

becomes relevant when MetalPDB did not group metalloproteins of the same family, typically 

because of missing domain information, and consequently assigned them to different EGs. In this 

case, our second stage analysis puts together sites that should have been clustered already at the first 

stage, but actually were not compared because of the inconsistent EG assignments. (iii) The MFSs 

representing two clusters originating from the same EG may be regrouped because the distance 

between a pair of representative MFSs is shorter than the distance assigned by the CC algorithm to 

the corresponding clusters, as the latter equals the largest distance between any possible pair of 

cluster members. The representative MFS approximates a “central” position within the cluster it 

represents. This effectively reduces the distance between first stage clusters. It is possible to draw an 

analogy here to the use of consensus sequences to represent multiple sequence alignments, which 

hides some of the existing diversity. The aforementioned three causes may simultaneously concur to 

the formation of a second stage cluster of representative MFSs. The first and third causes should 

become more and more effective with reduced stringency of the clustering approach applied, 

whereas the relevance of the second cause is limited by the number of incomplete EG assignments 

and presumably declines, in relative terms, with increasing threshold. 

The most stringent CC2.25 approach, which is the same approach implemented for the first stage 

clustering, yielded a total of 199 clusters out of 389 input hMFSs (327 representative hMFSs plus 62 

singletons), each containing between 1 and 9 hMFSs. The largest clusters were formed by 

representative hMFSs belonging to the same EG that were re-grouped (reason iii), e.g. for some, but 

not all, representatives of cytochrome P450s. The representative hMFSs of tryptophan 2,3 

dioxygenases (Figure 2) were also clustered together; in addition, the same cluster included the 
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representative hMFS of the related indoleamine 2,3-dioxygenase. Example of clusters formed only 

at the second stage because of missing domain assignments (reason ii) in MetalPDB were that of the 

sirohemes in the catalytic sites of sulfite reductases, or of dye peroxidases (DyP). For the latter case, 

the appropriate domain is not identified within the sequence of DyP2 from Amycolatopsis sp. ATCC 

39116 (PDB entry 4G2C 26) but our approach correctly identified the similarity between DyP 

hMFSs. Finally, the cluster containing heme 4 of the cytochrome c subunit of Rhodopseudomonas 

viridis photosyntethic reaction center and the cysteine-coordinated heme of SoxA (heme 1263 in the 

1H32 structure27) is an example of a cluster formed with CC2.25 for reason (i), i.e. because highly 

similar hMFS occurred in proteins with unrelated fold. With increasing threshold or passing from 

the CC to the AC approach, the number of clusters diminished as the reduced stringency allowed 

more dissimilar sites to be clustered together than for CC2.25. In particular, 110 clusters were 

formed with AC2.75 (Supplementary Table S2). We previously showed that 2.75 is a reasonable 

threshold for the MetalS2 score10 to identify meaningful structural similarities. At this level all 

cytochrome P450s were clustered together but one (PDB entry 3R9C 28), due to the presence of a 

sodium(I) ion within the latter hMFS. Other metalloprotein families remained split even at this level, 

such as the family of ABM monooxygenases, which include various heme-degrading enzymes, 

reflecting their different modes or stoichiometries of heme binding29. When applying the AC2.75 

approach, clusters formed with CC2.25 can merge. This occurred, for example, for the 

aforementioned cluster of tryptophan and indoleamine 2,3-dioxygenases, which additionally 

included the heme site of proteins related to PnrB, the second enzyme in the pyrrolnitrin 

biosynthesis pathway. Thus, our approach recomposed the full group of related dioxygenase folds, 

which eventually comprised proteins from three different EGs of MetalPDB. 

For zMFSs, we analyzed in detail the output of the AC2.5 clustering, which provided 1083 clusters 

(of which 763 with more than one member; Supplementary Table S3). Our analysis focused instead 

on the ten largest clusters, which ranged in size between 25 and 382 members. The superpositions 

corresponding to two of these clusters are shown in Figure 4. In Figure 4A, cluster 820 encompasses 

66 representative zMFSs of different types of related peptidases, largely from the metallopeptidase 

MA clan 30. The cluster further includes the active sites of the anthrax toxin lethal factor31 and, 

curiously, the zinc-substituted catalytic site of iron-dependent tyrosine 3-monooxygenase (PDB ID 

2XSN, unpublished). The superposition clearly reveals that the local structural similarity extends to 

the region of substrate binding. Figure 4B instead refers to cluster 193 (31 members), which mainly 

includes zinc-finger-type sites from a variety of systems. These zMFSs are identified in proteins 
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from prokaryotic as well as eukaryotic organisms and their functional role has not always been 

ascertained. Whereas interaction with DNA seems the most obvious role32, also because the majority 

of these systems are involved in DNA recognition and/or modification and repair, there are other 

possibilities, such as ubiquitin-binding33. In previous articles, the zMFS of Figure 4B has been 

described as unique to a specific system34 or not relevant to function35. Instead, the present data 

show that it is relatively widespread and thus likely to have functional relevance. This highlights the 

usefulness of the present approach as a knowledge discovery tool in bioinorganic chemistry. Finally, 

cluster 877 (Figure 5) contains 25 zMFSs from enzymes, mostly di-nuclear metal sites formed by 

zinc(II) and another divalent cation. The zinc ion is the catalytic center of these enzymes, whereas 

the second metal ion might be bound to the substrate (e.g. Mg- cytidine diphosphate for 2C-methyl-

d-erythritol-2,4-cyclodiphosphate synthase36) or can be bound to the protein independently of the 

presence of substrate/cofactors (e.g. Mn(II) in yeast Pop2p37). The site is found either in 2C-methyl-

d-erythritol-2,4-cyclodiphosphate synthases or in DNA polymerases with exonuclease activity as 

well as other nucleases (Figure 5). These groups of enzymes share a similar architecture but 

different topologies, according to the CATH38 classification. Intriguingly, despite the different fold, 

the substrate binding site is closely located in these two groups. The same zMFS is exploited to 

perform a phosphorus-oxygen lyase reaction by the synthases, with respect to the hydrolysis of a 

phosphodiester bond in the nucleases. 

 

A detailed analysis of multiheme c-type cytochromes  

Multiheme c-type cytochromes (MHCs), which are proteins that bind several heme groups to a 

single polypeptide chain via a pair of thioether bonds, are of particular interest in the context of the 

present work. For these systems fold assignments tend to be less informative, also because their 3D 

structure is largely determined by cofactor-protein hydrophobic interactions rather than by protein-

protein interactions in the hydrophobic core39. Our protocol provided a complete picture of 

structural similarities among the various hMFSs contained in MHCs, from di-heme to sixteen-heme 

proteins (Figure 4). It is possible to immediately identify two major blocks of related MHCs, namely 

those linked to (or, in evolutionary terms, presumably derived from) the four hMFSs of the tetra-

heme cytochrome c3 and those linked to the sites of NrfA. The first block includes cytochrome c3, 

cytochrome c7, nona-, dodeca- and exadeca-heme cytocromes. In the first block, all hMFSs can be 

related to one of the hMFS of cytochrome c3, with two exceptions. One is a unique site present in 
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nonaheme cytochromes that acts as a connector between two cytochrome c3 domains40. A search of 

the MetalPDB database using this site as input to the MetalS3 search tool 6 revealed a weak 

similarity to one hMFS of NrfB (not shown). The other exception was within the structure of 

dodecaheme cytochromes, which have been described as a combination of four cytochrome c7 

domains41. Our analysis indicated that this is true for two out of three hMFSs, whereas the other 

hMFS is structurally diverse and gave rise to a separate cluster (Figure 6 and Supplementary Figure 

S2). The second block includes NrfA (a five-heme nitrite reductase), NrfB (a five-heme electron 

donor to NrfA), eight-heme nitrite reductase, hydroxylamine oxidase (a eight-heme enzyme), 

tetrathionate reductase (a eight-heme enzyme) and tetra-heme cytochrome c554. Here all hMFSs can 

be related to one of the sites of NrfA, with one or two specific exceptions for NrfB as well as the 

various eight-heme enzymes. Furthermore, we indentified a tight relationship between the hMFSs of 

two of the simplest MHCs, namely the di-heme proteins NapB, a subunit of periplasmic nitrate 

reductase, and Geobacter sulfurreducens DHC2 cytochrome c. The analysis summarized by Figure 

4 provides an objective guidance to comparison at the whole structure level for pairs of MHCs with 

different folds. Indeed, after superposition of the hMFSs of the two proteins contained in the same 

clusters MetalS2 provides roto-traslational matrices that can be applied to the entire structure. 

Cluster assignments indicate how to combine various hMFSs to obtain a single overall matrix that 

yields a best fit for all of them simultaneously. The global structural superposition obtained in this 

way can indicate relationships also between sites not clustered together, based on the spatial 

proximity of the heme groups (Supplementary Figure S3). As an example, Figure 7 provides an 

overview of the hMFS correspondences obtained by superposing various MHCs to the structure of 

eight-heme nitrite reductase (PDB entry 3GM6 42) as indicated above. The known 43 relationships 

between the sites of these proteins are independently re-discovered. Notably, the catalytic sites of 

nitrite reductase, hydroxylamine oxidase, NrfA and cytochrome c554 are related by spatial proximity 

after superposition in addition to their belonging to the same cluster. For cytochrome c554, a NO 

reducing activity has been reported 44; its structural correspondence to hydroxylamine oxidase, 

including the then unknown catalytic site, had already been highlighted 45. A less obvious 

relationship is that between three sites of fumarate reductase and three sites of the small tetraheme 

cytochrome c from Shewanella. (Figure 7)  

 

Discussion 
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In this work, we developed a methodology to perform a systematic comparison based on structural 

similarity of metal sites extracted from metalloproteins. Our definition of metal site extended 

beyond the metal ion and its aminoacidic ligands by involving all the chemical species (aminoacids, 

nucleotides, exogenous ligands) containing at least one donor atom (shown in blue in 

Supplementary Figure S1) as well as all any other chemical species within a radius of 5.0 Å (shown 

in green in Supplementary Figure S1). We previously defined this as the minimal functional site of a 

metalloprotein (MFS), and showed that its characteristics are related to the metalloprotein 

function3,7. The present methodology leverages the MetalS2 algorithm, whose total score provides a 

quantitative measure of structural similarity between pairs of MFSs10. We used this measure to build 

clusters of structurally similar MFSs using a hierarchical clustering algorithm. The proposed 

computational strategy is a two-stage procedure, mainly for the sake of simplicity and calculation 

speed. In the first stage, predefined groups of MFSs contained in corresponding regions of 

metalloproteins having the same fold (equistructural groups, EGs) are retrieved from the MetalPDB 

database9. Then, all MFSs in each EG are systematically compared to one another. After the 

application of a complete linkage clustering algorithm with a very restrictive threshold (2.25) each 

EG gave rise to one or more clusters characterized by a low degree of internal structural variability 

(less than 1 Å backbone RMSD in more than 90% of the cases). The different clusters resulting from 

a given EG provide a thorough view of homogeneous structural features across the members of the 

group. Because each EG corresponds to a specific metalloprotein family, the first stage clusters 

recapitulate systematically the known structural variants of the metal-binding site of that family. 

These variants can be associated to biochemical events such as ligand binding (Figure 2 and Figure 

3) or reflect the structural features of different subfamilies (Figure 1). The low structural variability 

within clusters enabled us to meaningfully define a single representative MFS for each cluster. 

Representative MFSs allow the comparison of the sites of different metalloprotein families (second 

stage clustering), at the level of their structural subtype, in an innovative manner that is independent 

of the global sequence or structural similarity of the metalloproteins containing the MFSs. Indeed, 

the clusters obtained after the second stage often grouped MFSs from metalloproteins with different 

but related folds (e.g. as defined by so-called clans in the Pfam database of domains46). This 

supports the idea that the 3D structures of the whole metalloprotein and of its metal site differentiate 

at comparable rates. The detection of structural similarity between MFSs can thus be taken as good 

an indication of homology as overall structural similarity is for proteins not binding metal cofactors. 

This result provides also a means to assign potential biological functions to the so-called domains of 
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unknown function, when they contain MFSs structurally similar to sites of functionally 

characterized metalloproteins. Finally, discovering structural similarities among representative 

MFSs also allows establishing relationships involving completely unrelated protein domains.  

We demonstrated a practical implementation of the proposed procedure for heme-binding proteins 

as well as for zinc-binding proteins. The unique usefulness of the present tool resides in its 

capability to address comprehensively relationships among different metalloprotein families, i.e. in 

systems with different folds. As observed for MHCs, such relationships can be related to 

evolutionary patterns (Figure 6) but can also correct or shed a different light on previously proposed 

such patterns (Supplementary Figure S2). Furthermore, our approach identified common 

occurrences of zinc-binding sites across different protein folds, showing how the same local 

structure is harnessed by different systems to perform different metal-based catalysis (Figure 5). 

In conclusion, we showed here for the first time that the structures of MFS, i.e. of small portions of 

the larger 3D structures of metalloproteins and metalloenzymes centered around the metal cofactor, 

can be systematically compared and clustered to obtain useful insight into the structural, functional 

and evolutionary features of metalloproteins. This kind of analysis complements the information that 

can be gained through more conventional approaches, such as sequence or fold comparison13-18. The 

present protocol constitutes a unique, innovative tool in the portfolio of computational tools of 

bioinorganic chemists. Its unicity stems from the concept of centering structural comparisons at the 

metal center itself, which is crucial to define the cellular role of metal-binding proteins. By 

performing comparisons at the level of the whole MetalPDB database, users can achieve a 

systematic view of metalloproteins based on the structural properties of the metal-sites rather than 

on the structural properties of the protein fold in which the site is embedded, as afforded by 

currently available approaches. This is a dramatically different viewpoint on metalloproteins, which 

only now becomes available. 

 

Materials and Methods 

Background 

In our previous work9 we organized MFSs into groups of equistructural sites. Such sites are 

extracted from metal-binding polypeptide chains that have similar fold, using the approach 
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summarized below. After superimposing all the chains with the same fold, the distance between the 

metal ions (or the geometric center of all metal ions for polymetallic cofactors) is measured. MFSs 

whose metal ions are separated by a distance shorter than a predefined threshold (3.5 Å) are put in 

the same group, regardless of the chemical identity of the ions. This leads to e.g. all sites of the same 

metalloprotein after different metal replacement experiments belonging to the same equistructural 

group. Broadly speaking, the condition described above identifies sites that occupy the same 

location within a given protein fold. At the computational level, a single linkage clustering approach 

has been implemented to build the groups. A practical implication of this is that for any given MFS 

in a group the aforementioned condition will be fulfilled by at least another group member, but not 

necessarily by all. By construction, the structural similarity that is described by equistructural groups 

is mainly the result of overall fold similarity. Conversely, structurally similar MFSs that are bound 

to proteins with different fold were associated with different equistructural groups. Here, we 

combine the use of our MetalS2 algorithm, which provides a quantitative approach to the structural 

comparison of pairs of MFSs10, with a hierarchical clustering method to cluster MFS structures 

independently of the overall metalloprotein fold. 

Datasets used 

The datasets used for this study consist of the three-dimensional structures of all MFSs present in 

the MetalPDB database (http://metalweb.cerm.unifi.it/) as of April 2014 that were members of an 

equistructural group containing at least one heme-binding site or at least one zinc ion. 

The number of heme sites in the dataset was 8891, separated into 249 EGs. Of these, 14 contain at 

least 100 members, with the largest one having more than 2000, whereas 62 are singletons, i.e. 

contain only one site. To achieve the greatest coverage and potentially gain more information, the 

above included also sites that harbor chemically or biosynthetically modified heme cofactors as well 

as inorganic complexes mimicking the heme moiety (Supplementary Table S1). 

For zinc-binding sites, we firstly removed all sites with less than 10 amino acids as well as all sites 

where the zinc ion had only aminoacidic ligand will all other ligands being water molecules. The 

number of zinc sites was 21483, of which we kept 20478. After the first stage, we obtained 2263 

clusters, plus 1640 singletons. 
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Clustering procedure 

Our procedure was based on a hierarchical agglomerative clustering algorithm47. In agglomerative 

clustering every individual object is initially considered as a singleton (i.e. a cluster containing only 

one member). Then the clusters are iteratively grouped by merging the two clusters at the shortest 

distance, i.e. the most similar pair. For the present work, the operative distance measure adopted was 

the global MetalS2 score, which increases with increasing structural diversity10. Two merged 

clusters become one cluster, so after each iteration there is one less cluster. The iterations are 

repeated until all objects are collected into a single cluster. The result of hierarchical clustering is a 

nested sequence of partitions, with a single, all inclusive cluster at the top and singleton clusters at 

the bottom. Each intermediate cluster can be viewed as a combination of two clusters from the lower 

level or as a part of a split cluster from the higher level. Hierarchical clustering methods differ in the 

way they merge clusters. Although all methods merge the two “closest” clusters at each step, they 

determine differently the distance between clusters, i.e. have different metrics to compare one 

cluster to another. We used the complete and average linkage methods. For complete linkage the 

distance between a pair of clusters corresponds to greatest distance from any member of one cluster 

to any member of the other cluster. In other words, the distance between clusters Ci and Cj is defined 

as 

   lkdCCd
ji ClCk

jic ,max,
, 

  

In the average linkage method the distance between two clusters is the average of the distances 

between all the members in one cluster and all the members in the other. The distance for the 

average linkage is defined as 
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where |Ci| and |Cj| and are the numbers of members in the clusters Ci and Cj correspondingly. 

In both formulas k and l refer to members of the clusters Ci and Cj, d(k,l) is the distance between the 

k-th member and l-th member of, respectively, Ci and Cj (in practice the global MetalS2 score 

between the k-th and l-th MFSs). The minimum distance dc(Ci,Cj) among all the intra-cluster 

distances determines which pair of clusters is merged. 
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The clustering results are influenced by the linkage type applied. Complete linkage tends to produce 

clusters that are more compact (tight) with respect to clusters produced by average linkage. When a 

cut-off value of a similarity measure is applied in order to determine the final partition, the clusters 

produced by the average linkage method allows some within-cluster distances to exceed the cut-off 

value whereas the complete linkage method ensures that no within-cluster distance exceeds the cut-

off. As a result, the complete linkage approach produces a higher number of more robust clusters 

while with average linkage the number of clusters is lower but within-cluster variability is higher. 

One of the weaknesses of the complete linkage method is its sensitivity to outliers, i.e. members that 

do not fit well into the global structure of the cluster. Such sensitivity may prevent the identification 

of even intuitive clusters, as outliers may pull similar members into different groups. 

For the analysis of our dataset, we used the algorithm described above within a multi-step 

procedure, which included: (i) dividing existing equistructural groups into smaller clusters (first, 

intra-group stage); (ii) defining a representative MFS for each cluster; (iii) building broader clusters 

by comparing the representative MFSs from clusters built at the first level (second, inter-group 

stage). 

First stage 

This stage of analysis is designed to capture the structural variations possibly occurring among the 

MFSs in each group of equistructural sites of MetalPDB. For each group we systematically 

compared all possible pairs of MFSs, using the MetalS2 algorithm10. The result was a matrix of all-

versus-all comparison scores for each group. The matrix was then used as the input to perform 

hierarchical clustering within the equistructural group, applying a cut-off value of 2.25 for the 

MetalS2 similarity score to build the clusters. At this stage we applied a complete linkage clustering 

approach, so that two MFSs whose structural superposition results in a MetalS2 score greater than 

2.25 are always associated to different clusters. As we described previously10, the 2.25 threshold is 

quite stringent, i.e. corresponds to a high level of structural similarity. The first-stage procedure thus 

resulted in a fine-grained clustering of each EG, which highlighted intra-group structural variations. 

For each cluster obtained that contained more than one MFS, we defined a single representative 

MFS as the most similar on average to all other members of the cluster. In practice the 

representative MFS was defined as the MFS minimizing the sum of the MetalS2 global scores 

resulting from its pairwise comparisons to all other MFSs in the same cluster. All the MFSs that did 
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not cluster at the first stage or that formed an equistructural group (singleton) by themselves were 

taken as a representative. Clusters that did not contain heme-binding sites were removed, together 

with their corresponding representatives. 

Second stage 

The second stage of comparison aims to obtain a set of clusters, each representing a distinct MFS 

shape, independently of overall protein fold. The dataset used for this analysis included all 

representative structures of MFSs from the first level clustering. Similarly to the first stage 

procedure, we generated a single all-versus-all similarity matrix. Both complete and average linkage 

clustering algorithms were then applied to generate clusters at this stage. Different cut-off values, 

from 2.25 to 3.5, were tested. 

 

Multi-heme c-type cytochromes 

To investigate the full network of structural relationships across multi-heme c-type cytochromes 

(MHCs) we compiled a list of all clusters that included sites from different MHCs (we excluded 

MHCs containing multiple single-heme mitochondrial-type cytochrome c domains 14). For each 

protein we then added the clusters containing only hMFSs specific to it in order to cover its entire 

set of sites (either common to other MHCs or unique to that MHC). This was done for all proteins in 

the MHC list, so that the set of selected clusters eventually contained all MHC sites present in the 

MetalPDB database. 
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Figure Legends 

Figure 1. Comparison of the structures of the hMFSs contained in the two major clusters 

originating from the equistructural group of animal heme-dependent peroxidases. Left: 

myeloperoxidases and lactoperoxidases; right: prostaglandin synthases. 

Figure 2. Comparison of the structures of the hMFSs contained in the two clusters originating 

from the equistructural group of tryptophan 2,3 dioxygenases. In the most populated cluster a 

molecule of substrate (L-tryptophan) is contained in the enzyme cavity (left). 

Figure 3. Comparison of the structures of the zMFSs contained in the two largest clusters 

originating from the equistructural group of aminoacyl-tRNA synthetases and closely related 

enzymes. The zMFSs in the two clusters differ because of the size and binding mode of their 

organic ligands. 

Figure 4. Example clusters of representative zMFSs. A) superposition of 66 representative 

zMFSs of different related metallopeptidases; the common position for substrate binding, as 

indicated by the binding of ligands (hidden for clarity) in the 3D structures of the cluster, faces the 

reader; B) superposition of 31 representative zMFSs of non-standard zinc fingers. 

Figure 5. A cluster formed by zMFS from DNA polymerases with nuclease activity and 2-C-

methyl-D-erythritol 2,4-cyclodiphosphate synthases. The ligands or substrates present in the 

structures are also shown. The right panel depicts a selection of two synthases (blue structures), two 

exonuclease sites of polymerases (yellow structures) and of the fission yeast Pop2p exonuclease 

(orange). 

Figure 6. Structural relationships between the hMFSs of multi-heme cytochromes. The number 

of hMFSs for a given MHC (rows) included in a given cluster (columns) is reported. Each column 

corresponds to a cluster of Supplementary Table S2. Each row corresponds to a different MHC 

family. The first column reports the PDB entry corresponding to the structure of a typical member of 

the family (not necessarily the one from which representative hMFSs are derived). The last column 

reports the number of hemes in the MHC. The last row reports the number of hemes in each cluster. 

Figure 7. hMFS relationships in eight-heme, NrfA and related MHCs derived from cluster-

guided structural superpositions. Top: Superpositions of the heme groups of selected MHCs 

resulting from the simultaneous overlay of the protein part of the hMFSs of each MHC to the sites 
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of eight-heme nitrite reductase (PDB entry 3GM6) belonging to the same AC2.75 clusters (2K3V, 

cyan; 2P0B, magenta; 2CZS, gray; 3ML1, dark green; 3GM6, blue; 1QDB, light green; 1FGJ, 

yellow; 1BVB, red; 1SP3, orange; 1Q9I, brown). Residue numbering for the heme groups is shown 

for structure 3GM6. Bottom: summary of the relationships, color coded according to the cluster 

assignments of Figure 4 (green: cluster 65; blue: cluster 68; magenta: cluster 64; yellow, cluster 55; 

pink, cluster 61). Heme sites are labeled by their residue numbers in the PDB structure. 

Relationships are derived from spatial proximity after superposition and all refer to the sites of 

nitrite reductase. Only clusters containing hMFSs from different MHCs have been highlighted. A 

star indicates sites that fulfill the requirement of spatial proximity but are not satisfactorily 

superimposed (e.g. iron ligands do not overlay or the heme orientation is somewhat different). The 

heme groups 802 of structure 1SP3 and 804 of structure 1Q9I have been omitted for clarity. The 

figure independently re-discovers the known 43 relationships between between hemes I-VIII of 

nitrite reductase and hemes I-VIII of hydroxylamine oxidase, between hemes IV-VIII of nitrite 

reductase and hemes I-V of NrfA, or between seven out of the eight groups of nitrite reductase and 

tetrathionate reductase. 
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Figure 1. Comparison of the structures of the hMFSs contained in the two major clusters 

originating from the equistructural group of animal heme-dependent peroxidases. Left: 

myeloperoxidases and lactoperoxidases; right: prostaglandin synthases. 
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Figure 2. Comparison of the structures of the hMFSs contained in the two clusters originating 

from the equistructural group of tryptophan 2,3 dioxygenases. In the most populated cluster a 

molecule of substrate (L-tryptophan) is contained in the enzyme cavity (left). 
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Figure 3. Comparison of the structures of the zMFSs contained in the two largest clusters 

originating from the equistructural group of aminoacyl-tRNA synthetases and closely related 

enzymes. The zMFSs in the two clusters differ because of the size and binding mode of their 

organic ligands. 
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Figure 4. Example clusters of representative zMFSs. A) superposition of 66 representative 

zMFSs of different related metallopeptidases; the common position for substrate binding, as 

indicated by the binding of ligands (hidden for clarity) in the 3D structures of the cluster, faces the 

reader; B) superposition of 31 representative zMFSs of non-standard zinc fingers. 
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Figure 5. A cluster formed by zMFS from DNA polymerases with nuclease activity and 2-C-

methyl-D-erythritol 2,4-cyclodiphosphate synthases. The ligands or substrates present in the 

structures are also shown. The right panel depicts a selection of two synthases (blue structures), two 

exonuclease sites of polymerases (yellow structures) and of the fission yeast Pop2p exonuclease 

(orange). 

 



88 
 

 Figure 6. Structural relationships between the hMFSs of multi-heme cytochromes. The 

number of hMFSs for a given MHC (rows) included in a given cluster (columns) is reported. Each 

column corresponds to a cluster of Supplementary Table S2. Each row corresponds to a different 

MHC family. The first column reports the PDB entry corresponding to the structure of a typical 

member of the family (not necessarily the one from which representative hMFSs are derived). The 

last column reports the number of hemes in the MHC. The last row reports the number of hemes in 

each cluster. 

 60 63 66 70 69 84 53 54 59 73 65 68 64 55 74 61 58 67 83 71 57 75 105 108  

1GWS 4 4 4 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Exadecaheme cytochrome c 

1DUW 2 2 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Nonaheme cytochrome c 

1UP9 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Cytochrome c3 

1EHJ 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Cytochrome c7 

3OV0 0 4 4 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Dodecaheme cytochrome c 

3U99 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 Diheme cytochrome DHC 

3PMQ 0 0 4 0 0 0 0 0 2 1 0 0 0 0 2 0 1 0 0 0 0 0 0 0 Decaheme cytochrome MtrF 

3UFK 0 0 4 0 0 0 2 1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Undecaheme cytochrome UndA 

2K3V 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 Small tetraheme cytochrome c 

2P0B 0 0 1 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 NrfB 

2CZS 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 Dhc2 

3ML1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 NapB 

3GM6 0 0 0 0 0 0 0 0 0 0 2 3 1 1 1 0 0 0 0 0 0 0 0 0 Eight-heme nitrite reductase 

1QDB 0 0 0 0 0 0 0 0 0 0 1 2 1 1 0 0 0 0 0 0 0 0 0 0 NrfA 

1FGJ 0 0 0 0 0 0 0 0 0 0 0 3 3 1 0 0 1 0 0 0 0 0 0 0 Hydroxylamine oxidoreductase 

1BVB 0 0 0 0 0 0 0 0 0 0 0 2 1 1 0 0 0 0 0 0 0 0 0 0 Tetraheme cytochrome c554 

1SP3 0 0 0 0 0 0 0 0 0 0 2 3 1 0 0 0 0 1 0 0 0 0 0 1 Octaheme tetrathionate reductase  

1Q9I 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 Fumarate reductase 

1H21 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 Split-Soret cytochrome c 

2VR0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 NrfH 

Total 8 12 23 6 2 4 2 1 5 2 15 17 7 4 3 2 2 2 1 1 1 1 1 1  
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Figure 7. hMFS relationships in eight-heme, NrfA and related MHCs derived from cluster-

guided structural superpositions. Top: Superpositions of the heme groups of selected MHCs 

resulting from the simultaneous overlay of the protein part of the hMFSs of each MHC to the sites 

of eight-heme nitrite reductase (PDB entry 3GM6) belonging to the same AC2.75 clusters (2K3V, 

cyan; 2P0B, magenta; 2CZS, gray; 3ML1, dark green; 3GM6, blue; 1QDB, light green; 1FGJ, 

yellow; 1BVB, red; 1SP3, orange; 1Q9I, brown). Residue numbering for the heme groups is shown 

for structure 3GM6. Bottom: summary of the relationships, color coded according to the cluster 

assignments of Figure 4 (green: cluster 65; blue: cluster 68; magenta: cluster 64; yellow, cluster 55; 

pink, cluster 61). Heme sites are labeled by their residue numbers in the PDB structure. 

Relationships are derived from spatial proximity after superposition and all refer to the sites of 

nitrite reductase. Only clusters containing hMFSs from different MHCs have been highlighted. A 

star indicates sites that fulfill the requirement of spatial proximity but are not satisfactorily 

superimposed (e.g. iron ligands do not overlay or the heme orientation is somewhat different). The 

heme groups 802 of structure 1SP3 and 804 of structure 1Q9I have been omitted for clarity. The 

figure independently re-discovers the known 29 relationships between between hemes I-VIII of 

nitrite reductase and hemes I-VIII of hydroxylamine oxidase, between hemes IV-VIII of nitrite 

reductase and hemes I-V of NrfA, or between seven out of the eight groups of nitrite reductase and 

tetrathionate reductase. 
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Introduction 

A number of metal ions are essential to life [1;2]. A major determinant of their functional relevance 

in living systems is that a substantial fraction of enzymes require metals for their catalytic activity 

and are thus called metal-dependent enzymes or metalloenzymes. If only enzymes of known 

structure are taken into account, then metal-dependent enzymes constitute about 40% of all enzymes 

[3]. Metals can bind to enzymes as individual ions or within metal-containing cofactors. The latter 

can be extremely diverse in their chemical complexity, ranging from organic ligands binding a 

single metal ion, such as porphyrins, to highly elaborate polymetallic clusters, such as the FeMoCo 

cofactors of nitrogenases. Metal ions as well as metal-containing cofactors can play either a catalytic 

or a structural role. When the metal is catalytic, its interaction with the protein and the substrate are 

crucial to determine the details of the mechanism of catalysis. Importantly, the relevant interaction 

with the protein extends beyond the first coordination sphere of the metal ion (i.e. the nature and 

distribution along the sequence of protein ligands) [4;5]: so-called second sphere interactions play a 

role in defining features such as substrate recognition and selectivity, or the structure of the 

transition state during the reaction [6]. In addition, the protein part contributes to the catalytic 

mechanism also through residues that are not interacting with the metal-containing cofactor. 

The diversity of enzymatic reactions is absolutely remarkable, both in terms of the variety of 

substrates processed and of the chemical reactivity deployed. Such diversity is much more extensive 

than the variety of the folds of enzymes. Resources such as CATH [7] or SCOP [8;9] are able to 

capture distant relationships between protein domains through the analysis of their three-

dimensional atomic structures and thus recapitulate their structural variety. A very useful outcome 

of such classifications is the notion of protein superfamily, which is the ensemble of all the protein 

domains with the same overall structural features. By construction, enzymes with the same structural 

features belong to the same protein superfamily. The next question is how the chemistry performed 

by the various enzymes is differentiated within a given superfamily and what are, if any, the aspects 

that are common to the various superfamily members. Indeed, many studies have shown that there is 

often conservation of some aspects of chemistry between relatives in enzyme superfamilies; at the 

same time, there are examples of relatives which have diversified to perform very different functions 

(as defined by the overall reaction they perform), and/or to use different chemical mechanisms (the 

method by which the substrates transform), and/or act with different specificity [10]. In many cases 

evolution has managed to significantly modify the chemistry performed by an enzyme through 
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small-scale local changes, rather than by remodeling the entire structure [11;12]. In multi-domain 

enzymes, functional changes may also arise from the combination of different domains within a 

single protein chain [11;13]. 

In the present work we aimed at gathering a complete overview of the differentiation of the 

functional properties of metal-dependent enzymes and of the underlying mechanisms. Metal-

dependent enzymes require a specific focus because the presence of the metal-containing cofactor 

enables mechanisms for functional differentiation that are not operative in the other enzymes. The 

present analysis is also useful to investigate the interplay of the local structure of the metal-binding 

site and of the remainder of the protein active site in the determination and evolution of the enzyme 

reactivity [4]. In particular, individual metals can feature broad, overarching mechanisms of 

catalysis [3], which can be exploited by different enzymes to achieve different chemistry. We 

observed that the functional landscape of metal-dependent enzymes is significantly more complex 

and diversified than simple gain/loss of a metal-binding site or replacement of metal ligands. 

 

 

Materials and methods: 

Our starting point was Metal-MACiE, a database of catalytic mechanisms for metalloenzymes of 

known 3D structure [14]. Hereafter, Metal-MACiE entries will be labeled as MM# followed by the 

corresponding database identifier (e.g. MM#0137). All catalytic metals in Metal-MACiE were 

selected and mapped to the MetalPDB database [15]. The latter is a database of metal-binding sites 

automatically generated from the Protein Data Bank (PDB, [16]). For each metalloenzyme in Metal-

MACiE, the EC number is known. The latter is used to describe the reaction catalyzed by an enzyme 

and consists of a hierarchical classification system developed and maintained by the Enzyme 

Commission (EC). It is of a four-level descriptor, with the first three levels broadly categorising the 

overall chemistry and the fourth level being a serial number that is assigned to differentiate the 

substrate specificity. There is no correlation between the differences between the reactions catalysed 

and the numerical identifiers in the EC classification; so for example EC number 1.1.1.1 is no more 

similar to 1.1.1.2 than it is to 1.1.1.25. 
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Each metal-binding site identified in MetalPDB as corresponding to a Metal-MACiE entry belongs 

to a group of equivalent sites, i.e. sites bound at the same location within a common fold. The latter 

were mapped to the sequences in Funtree [17] alignments in order to identify the positions of the 

protein residues acting as metal ligands. FunTree alignments are sequence alignments derived from 

structural alignments of protein domains featuring the same CATH classification. In practice, each 

FunTree alignment represents a given CATH superfamily [17]. This allowed us to evaluate the 

conservation of the ligands within each superfamily. 

 

When it was not possible to map a metal-binding site within the FunTree alignment of a given 

superfamily, e.g. because the corresponding PDB structure of the holo-protein was not included in 

the FunTree selection, the PDB structure of the original Metal-MACiE was added by aligning it to 

the underlying FunTree structural alignment. For this we used the program TM-ALIGN [18]. The 

newly obtained structural superposition allowed us to derive a sequence alignment containing the 

metal-binding site of interest. 

 

After mapping a metal-binding site within a FunTree sequence alignment, each sequence in the 

alignment was inspected for the occurrence of the metal ligands and then labeled as “metal-binding” 

if it conserved at least 50% of the ligands. For sites with only two ligands, the label was assigned to 

sequences conserving the entire site. 

 

For each CATH superfamily, we performed an analysis based on the EC numbers associated with its 

members. In particular, we separated the superfamily into groups with the same EC number. This 

grouping was used first to derive statistics about the metal-binding capability within each group, and 

then to compare the metal-binding capabilities across different groups belonging to the same 

superfamily (i.e. across enzymes with different EC number but the same fold). For each family of 

enzymes, functional and structural details were manually extracted from various sources, which 

typically included: the publications describing the structures deposited in the PDB; MetalPDB [15]; 

Metal-MACiE [14]; PDBSprotEC [19]; BRENDA [20]. The metal-binding sites were structurally 

superimposed with MetalS2 [21]. 
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Results 

The Metal-MACiE resource contains an annotation for 174 catalytic metal ions (i.e. metals or metal-

containing cofactors that play a role in the catalytic mechanism), which map to 88 CATH 

superfamilies. Of these, we were able to analyze the conservation of the first sphere residues (or 

ligands) within CATH domains for just 106 catalytic metals. The causes of this are: for 21 catalytic 

metals there is no structural information and thus, the metal coordinating residues are unknown; 26 

catalytic metals bind to a region of the structure that is not associated to any superfamily; 21 

catalytic metals are bound to superfamilies that are not in FunTree data. The remaining 106 catalytic 

metal sites fall within 65 CATH superfamilies. Of these, just nine superfamilies contain enzymes all 

associated with the same EC code. In these superfamilies, the metal site is present on average in 

96% of the enzymes. These metal sites, according to the Metal-MACiE annotation, bind always the 

same metal. The remaining 56 superfamilies include metal-dependent enzymes with different EC 

numbers, and thus correspond to instances where the same protein fold is adopted to perform 

different catalytic functions. To assess the extent to which the function is dependent on the 

occurrence and features of metal sites, we undertook a systematic analysis of all of them. Any pair 

of functionally diverse enzymes within each superfamily can (i) harbor the same metal-binding site, 

(ii) harbor metal-binding sites with differences in their first coordination spheres, (different number 

or identity of metal ligands), (iii) harbor sites with varying nuclearity (i.e. number of metal ions 

bound); (iv) use different catalytic metal ions and finally (v) some members can miss metal-binding 

capability altogether. For each of the 56 superfamilies, we identified one or more of these five types 

of behavior, resulting in a total of 82 instances. 

 

In superfamilies that contain multiple EC numbers, the metal sites are most commonly conserved 

(45% of all instances) (Figure 1). The second most frequent case is that of variations of the first 

coordination sphere while leaving the same metal ion(s) (27% of the instances). Changes in 

nuclearity or changes in the identity of the bound metal ion(s) are comparatively less common (4% 

and 8% respectively). 16% of the instances, finally, correspond to cases of loss/gain of metal-

binding capabilities. However, in some of these (6% of all instances) the metal site is only 

apparently lost/gained, as it is actually shifted within the protein fold. In the rest of this section we 

present a more detailed analysis of the characteristics of the 56 superfamilies, by separating them 
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according to their specific behavior in terms of metal-binding properties in order to identify 

common trends. 

 

 

Superfamilies containing enzymes with different EC numbers and conserved metal sites 

 

In these instances (45% of the total, Figure 1), the first coordination sphere provided by the 

polypeptide chain to the metal cofactor is conserved across members of each superfamily having 

different EC numbers. This behavior was observed in 37 superfamilies, and it is the dominant one 

when the functional diversification is little (Figure 2). We then focused on the instances with the 

largest functional diversity, as evaluated from the level of change in the EC numbers. Typically, the 

functional changes in these superfamilies are the result of modifications in the local structure of the 

active site, as the overall fold is maintained, e.g. leading to different or a different number of 

cofactors or co-substrates being bound in the enzymes with different EC numbers. Within this 

context, the specific contribution of the metal cofactor to the overall catalytic mechanism is 

essentially unaltered. 

 

As an example, superfamily 2.60.120.330 contains a variety of oxidoreductases, including as many 

as 14 different EC numbers. Two of these are described in Metal-MACiE i.e. 

deacetoxycephalosporin-C synthase (EC number 1.14.20.1, MM#M0137) and isopenicillin-N 

synthase (EC number 1.21.3.1, MM#M0145). The former enzyme binds three different substrates: 

penicilin N, 2-oxoglutarate and O2 [22]; instead, isopenicillin-N synthase operates on two substrates: 

delta(L-2-aminoadipyl)-L-cysteinyl-D-valine and O2 [23]. In both enzymes, O2 binds directly to the 

catalytic iron(II) ion, producing a peroxo intermediate which then converts to oxo-iron(IV). The 

latter is the oxidizing species that acts on the penicillin or delta(L-2-aminoadipyl)-L-cysteinyl-D-

valine substrate. This mechanism is maintained for all the oxidoreductases of the superfamily 

[24;25], thus the iron(II) function is the same across the various EC numbers. 
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The only exception to the generally observed trend of the function of the metal site being conserved 

despite the changes in EC number within each superfamily is that of superfamily 3.40.50.280, which 

contains enzymes harboring different cobalamin-based cofactors. In these enzymes, the contribution 

of the protein to the coordination sphere of the cobalt ion is limited to a single His. In addition, the 

coordination sphere of the catalitically relevant form of the metal-containing cofactor is completed, 

besides the macrocycle ring, by either a methyl (methylcobalamin) or an adenosyl 

(adenosylcobalamin) group. Methylcobalamin is produced in the active site of methionine synthase 

(EC number 2.1.1.13, MM#0268) from the reaction of cobalt(I) with methyl-tetrahydrofolate; the 

cobalt-carbon bond undergoes a heterolytic cleavage to transfer the methyl group to homocysteine, 

releasing methionine. Adenosylcobalamin is found in various mutases (EC number 5.4.99.2, 

MM#0062; EC number 5.4.99.1, MM#0063). Here the cofactor serves as a source of reactive free 

radicals that are generated by homolytic scission of the coenzyme’s cobalt–carbon bond. Bond 

homolysis is promoted by the electrostatic interaction between the ribose and the protein [26]. Thus 

in superfamily 3.40.50.280, the cobalt ion performs different roles in the catalytic mechanism 

mainly as a function of its ligation within the cofactor and the interactions between the organic part 

of the cofactor itself and the protein chain. 

 

 

Superfamilies containing enzymes with different EC numbers and variations in the coordination 

sphere of the catalytic metal ions 

 

In these instances (27% of the total, Figure 1), the commonly located active site of different metal-

dependent enzymes in a given functionally diverse superfamily provides different ligands to the 

same metal ion. This behavior occurred in 22 superfamilies. The variations that are relevant to the 

present discussion are different number and/or different identity of the protein ligands in the first 

coordination sphere of the metal ion, whose identity is nevertheless maintained. Such variations 

generally affect one or two ligands, and never more than 50% of the protein ligands, i.e. involve a 

minor portion of the entire site. We observed this behavior in superfamilies with any degree of 

functional diversity (Figure 2), similarly to what observed for superfamilies with conserved sites. 
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Superfamily 3.90.245.10 contains enzymes whose EC numbers differed only at the fourth level, 

namely 3.2.2.1, 3.2.2.3, 3.2.2.8. These enzymes are all nucleosidases and differ only in the substrate 

they recognize [27]. Their metal binding sites differ only by the identity of one protein ligand, which 

binds to the catalytic calcium(II) ion through its oxygen atom of the main chain. Therefore, the 

replacement of the amino acid did not alter the metal coordination environment directly and, 

similarly, did not alter the enzyme mechanism appreciably. Nevertheless, the different side chain 

may impact on the second coordination sphere, possibly contributing to the variation of EC number. 

 

A more complex example is that of superfamily 3.40.50.970, which contains enzymes spanning as 

many as 12 different EC codes, including oxidoreductases, transferases and lyases. They all use a 

magnesium(II) ion to bind the thiamine diphosphate cofactor and properly orient it within the active 

site. Similarly to the previous example, the residues whose identity is different in the various 

magnesium(II)-binding sites interact with the metal ion through their backbone oxygen atoms. The 

reaction mechanism always starts with the formation of a carboanion upon deprotonation of the 

thiamine cofactor. The carboanion then performs a nuclophilic attack on the substrate. The rest of 

the reaction, which is different in the different enzymes, does not depend on the metal, and is the 

result of other structural properties of the active site and/or of the presence of additional cofactors. 

 

The present type of variation of the metal-binding site is somewhat less common in sites that contain 

only donor atoms from protein side chains. Such coordination environments are typical of metals 

softer than magnesium(II) or calcium(II), such as transition metal ions. Despite this tendency to be 

quite strictly conserved, which in the past we showed to be useful for the prediction of metal-

binding properties [28;29], we could identify in our dataset some relevant instances. The protein 

ligands that are replaced within the superfamily are often conservatively substituted, so that the 

changes in the structure of the metal-binding site still leave the mechanism largely unaffected. As an 

example, superfamily 3.40.225.10 contains L-ribulose-5-phosphate 4-epimerase (EC number 

5.1.3.4, MM#0273) and L-fuculose-phosphate aldolase (EC number 4.1.2.17, MM#0072), as well as 

various other related enzymes (4.1.2.19, 4.2.1.109). In 4.1.12.17 and 4.1.12.19 the catalytic zinc(II) 

ion is bound by the enzyme in its resting state through the side chains of three His and one Glu. In 

5.1.3.4, the latter is replaced by Asp, which however is not involved in zinc(II)-binding. Notably, 
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the catalytic mechanism of 4.1.12.17 involves breaking the Glu-zinc(II) coordination bond upon 

substrate binding, leaving the free Glu side chain to play a role in proton shuttling [30]. A 

corresponding role is played by an unrelated Asp residue in aldolases [31]. The role of the metal ion 

in catalysis is maintained, as it promotes the deprotonation of the substrate. 

 

 

Superfamilies containing enzymes with different EC numbers and different nuclearity of the metal 

site 

 

These instances (4% of the total, Figure 1) feature a change of the number of metal ions forming the 

polymetallic unit that constitutes the catalytic center. Such a change is associated to a variation in 

the number of amino acidic ligands recruited in the formation of the site, in order to provide the 

adequate number of ligands given the number of metal ions involved. Variations in nuclearity are 

relatively uncommon, as they were observed in only three of the functionally diverse superfamilies 

analyzed. 

 

As an example, superfamily 3.20.20.150 contains enzymes that bind one, two or even three divalent 

cations to perform their function. Three divalent, either zinc(II) or manganese(II) ions, are present in 

the active site of deoxyribonuclease IV [32] (EC number 3.1.21.2, MM#M0011) (Figure 3). The 

various isomerases that are present in this superamily bind two (xylose isomerase, EC number 

5.3.1.5; L-rhamnose isomerase EC number 5.3.1.14) or one divalent metal ion (hydroxypyruvate 

isomerase, EC number 5.3.1.22). Xylose isomerase is the best characterized enzyme of this group 

(MM#0308) and binds two manganese(II) ions [33]. 3NGF is the only available structure for EC 

number 5.3.1.22 (unpublished); the structure binds one manganese(II) ion but its structural 

alignment to xylose isomerase reveals that it is endowed also with the putative ligands to the second 

ion. Finally, among lyases mannonate dehydratase (EC number 4.2.1.8), binds one manganese(II) 

ion (e.g. PDB ID 4EAC [34]). Instead, the structure of a putative myo-inosose-2 dehydratase (EC 

number 4.2.1.44), PDB code 3CNY (unpublished), is devoid of metals but actually contains all the 

ligands of the dinuclear site. The single metal ion of mannonate dehydratase is structurally 
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equivalent to the second one of deoxyribonuclease IV, whereas the two ions of isomerases are 

equivalent to the second and third ions of deoxyribonuclease IV (Figure 3). In all systems, at least 

one of the metal ions directly binds the substrate, and activates it by increasing the electrophilicity of 

the atom bound to the donor oxygen atom. Additionally, the metals in the sites with higher 

nuclearity also bind and activate water, by increasing its acidity and/or enhancing its nucleophilicity. 

The single metal ion of mannonate dehydratase corresponds to the one ion of the two of xylose 

isomerase that is involved in substrate binding, thus highlighting a functional correspondence 

beyond the structural one. A similar correspondence is not obvious to draw for deoxyribonuclease 

IV as here all the zinc ions bind to the substrate.  

 

 

Superfamilies containing enzymes with different EC numbers and different catalytic metal ions 

 

In these instances (8% of the total, Figure 1), different metal-dependent enzymes that share the same 

fold bind in their commonly located active site different catalytic metal ions. The coordination 

sphere of the metal ion is typically modified to only a minor extent. These seven superfamilies 

featured the more profound levels of variation of the EC number (Figure 2). We observed two 

different effects on the reaction mechanism. One possibility is that the different metals perform a 

similar or even essentially identical function, such as substrate activation through an increase in 

acidity. However, the different structures of the enzyme cause the reaction to proceed to different 

degrees, hence the variation of EC code. Alternatively, the different metal ions play a different role 

in the catalytic mechanism, e.g. because of the different redox properties, thereby leading to widely 

different reactions. 

 

Superfamily 1.20.1090.10 includes family III metal-dependent polyol dehydrogenases, such as 

glycerole dehydrogenase (EC number 1.1.1.6) or 1,3-propanediol dehydrogenase (EC number 

1.1.1.202), as well as dehydroquinate synthase (EC number 4.2.3.4). The latter is a zinc(II)-

dependent enzyme, whereas the polyol dehydrogenases can depend on either zinc(II) or iron(II). All 

these enzymes share the same catalytic mechanism, regardless of the bound metal. In fact, the metal 
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ion binds to the substrate, often in a bidentate manner, and increases the acidity of one of the 

hydroxyl groups, favoring proton dissociation followed by oxidation of the alcoholate to a carbonyl 

via the transfer of a hydride to NAD+. Thus, the different redox properties of zinc(II) and iron(II) do 

not matter: both metals are acting only as Lewis acids. Dehydroquinate synthase builds upon the 

same mechanism, which actually constitutes the first step of the complex reaction catalyzed. The 

oxidation of the alcohol is followed by beta-elimination of the phosphate group of the substrate, 

which is promoted by the presence of a phosphate-binding pocket in the enzyme. The third step is a 

reversal of the first step, as the ketone initially formed is reduced by NADH. Notably, 

dehydroquinate synthase does not effectively uses the zinc(II) ion in the reaction mechanism after 

the step, other than to keep the substrate in the binding pocket.  

 

The superfamily of metallo beta lactamases (CATH code: 3.60.15.10) contains enzymes belonging 

to two distinct EC classes: hydrolases (glyoxalase II, EC number 3.1.2.6; beta-lactamases, EC 

number 3.5.2.6 and tRNase Z, EC number 3.1.26.11) or oxidoreductases involved in the response to 

nitrosative and/or oxidative stress. While hydrolases are most commonly zinc(II)-dependent 

enzymes (only glioxalase II is active also in the presence of other metals than zinc, such as iron(II) 

and manganese(II)), oxidoreductases strictly require iron to perform the catalytic reaction. The 

metal-binding sites are located in corresponding positions and are structurally similar in the two 

groups of enzymes (Figure 4), and the metal cofactor is generally dinuclear (with the exception of 

type B2 metallo beta lactamases). The metal ions bind directly to the substrate, properly orienting it 

within the active site. However, during the catalytic cycle the function of the metals is completely 

different in the hydrolases vs. the oxidoreductases. In the latter enzymes, each iron(II) ion transfers 

an electron to the substrate, thus providing two electrons in total upon formation a di-iron(III) site 

that is subsequently reduced by a FMNH2 molecule. On the other hand, the zinc(II) site of 

hydrolases is responsible for the activation of a water molecule for the nucleophylic attack on the 

substrate. This type of mechanism is commonly observed in zinc-dependent hydrolases, as zinc(II) 

is a strong Lewis acid. Interestingly, the only metal ligand that appears to change between the two 

classes of enzymes is a Glu residue in the di-iron(II) sites replacing a conserved His in the 

hydrolytic di-zinc(II) sites (Figure 4). It has been hypothesized that this Glu residue is able to 

suppress any possible hydrolytic cross-reactivity in the oxidoreductases. 
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Superfamilies containing enzymes with different EC numbers and gaining/losing a catalytic metal-

binding site 

 

In these instances (16% of the total, Figure 1), the structure-based sequence alignment of FunTree 

indicates that the metal ligands observed in the starting Metal-MACiE entry are not conserved in all 

superfamily members. However, a closer manual inspection of these enzymes revealed that in a 

subset (6% of the total of instances) a metal-binding site with a catalytic role is still present, but 

differently located within the fold. In practice, each of these alignments contained two groups of 

metal-dependent enzymes with the same fold but different ligands. Thus, within the present 

instances we identified eight superfamilies containing both metal-dependent and non-metal-

dependent enzymes, and five superfamilies containing only metal-dependent enzymes whose site is 

in different positions within the fold. For the first group of superfamilies, the presence or absence of 

a catalytic metal cofactor has a deep impact on the catalytic mechanism and thus it is not surprising 

that these superfamilies are characterized by the largest functional diversity. On the other hand, the 

impact on the mechanism is smaller for the enzymes whose metal site is simply shifted within the 

structure. 

 

As an example of a superfamily containing both metal-dependent and non-metal-dependent 

enzymes, we describe superfamily 3.30.1130.10, which includes the enzyme GTP cyclohydrolase 

IA (MM#0038). The latter is a zinc-dependent hydrolase (EC number 3.5.4.16). In addition, the 

same superfamily includes two non-metal dependent enzymes: PreQ0 reductase (EC number 

1.7.1.13) and dihydroneopterin aldolase (EC number 4.1.2.25). For all these enzymes, a 3D structure 

in complex with the substrate or a substrate analog is available (Figure 5). The substrates are 

dicyclic compounds, either functionalized purines or pteridines, both containing a 2-amino-

pyrimidine ring. The different functionalizations occur on the other ring, which is either a imidazole 

or a pyrazine. The latter ring is also the region which the enzyme acts upon. The three enzymes in 

object indeed interact very similarly with the common 2-amino-pyrimidine ring, through the 

formation of H-bonds with the side chain of a conserved Glu (Figure 5), whereas the interaction is 

substantially different on the other side of the substrate. In GTP cyclohydrolase IA, the zinc(II) ion 
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faces the imidazole ring of the substrate and activates a water molecule that acts as a nucleophile. 

The intermediate generated after the nucleophilic attack is proposed to remain bound to the zinc(II) 

ion, also on the basis of a structure in presence of a substrate analogue, eventually leading to 

formation of zinc-bound formate as one of the reaction products. Instead, PreQ0 reductase catalyzes 

the reduction of a nitrile group to a primary amine, whereas dihydroneopterin aldolase is a lyase that 

catalyzes the release of glycoaldehyde from the substrate, 7,8- dihydroneopterin. Intriguingly, PreQ0 

reductase forms a covalent thioimide, a putative intermediate in the reaction, using the side chain of 

a Cys residue that is structurally equivalent to one of the zinc(II) ligands in GTP cyclohydrolase IA 

(Figure 5). 

 

Instead, superfamily 3.40.630.10 is an example for the superfamilies whose metal-binding site 

shifted to a different position within the fold thus resulting in an apparent gain/loss of the site, as 

judged from ligand conservation in sequence alignments. This superfamily contains two different 

enzymes: bacterial leucyl aminopeptidase, EC number 3.4.11.10 (MM#0167), and carboxypeptidase 

A, EC number 3.4.17.1 (MM#0171). The EC number thus changes only at the third level. The 

rationale for the shift in the position of the site is due to the substrates having to penetrate within the 

protein structure to different depths. Indeed, the substrates are cleaved in a more or less exposed 

position in exo- vs. endo-peptidases. This, in turn, determines the need for the active site to 

accommodate, respectively, a smaller or larger portion of the polypeptide chain. Aminopeptidases 

contain a di-zinc(II) site, whereas carboxypeptidase A contains a mononuclear zinc(II) site. The two 

enzymes adopt the same mechanism, i.e the metal site binds the substrate and activates a water 

molecule to act as the nucleophile eventually leading to the cleavage of the peptide bond. After 

structural alignment, it appears that the two binding sites are located in different positions within the 

protein fold, with the site of carboxypeptidase A having shifted toward the protein core with respect 

to aminopeptidase. In fact, the sequence alignment derived from the structural alignment indicates 

that only one ligand is shared between the two sites, namely D293 of aminopeptidase A corresponds 

to E72 of carboxypeptidase. 
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Discussion 

We have identified five different patterns of conservation/change of the catalytic metal-binding site 

within CATH superfamilies containing metal-dependent enzymes. Such patterns affect the structural 

properties of the site to an increasing extent, from complete conservation to complete loss (or gain) 

of the site, through variations in the number and/or chemical identity of the priotein ligands, 

variations in site nuclearity and variations in metal identity. On the basis of the analysis presented in 

the Results section and the data summarized in Figure 2, we can postulate the existence of a 

relatively clear-cut correlation between structural change in the site and functional diversity. Indeed, 

the wider-scale changes in the structure of the metal site occur in superfamilies where the observed 

diversity affects the first or the second level of the EC number of its member enzymes (Figure 6). In 

particular, changes in catalytic metal and gain/loss of the metal-binding site always affected, in our 

dataset, the first level of the EC number, i.e. were associated to changes in the enzyme class. The 

aforementioned relationship cannot be reversed: superfamilies with large functional diversity can 

maintain their catalytic metal-binding sites completely or largely unchanged (Figure 2). In these 

cases thus enzymes with the same fold catalyze significantly different reactions, as gauged by the 

different EC numbers, using essentially the same metal-binding site. At the mechanistic level, this 

functional diversity is seldom caused by an appreciable variation of the role of the metal cofactor 

within the catalytic cycle. In fact, the role of the metal in catalysis tends to be somewhat conserved. 

Typically, the metal is involved in substrate binding and thus determines substrate orientation and 

activation within the active site. These can be the first steps of the overall catalytic mechanism, 

common to various enzymes of a given superfamily regardless of their specific EC numbers. So the 

specific reactivity of a metal-dependent enzyme can actually be tuned by the protein moiety not via 

rearrangements of the metal coordination sphere but through the interaction of the protein with the 

(metal-bound) substrate, i.e. second sphere interactions, or by mutating other residues involved in 

the catalytic mechanism, or, in systems with larger modifications of the protein fold, by binding 

additional cofactors and/or co-substrates. In other words, while the metal-containing cofactor is 

responsible for getting the reaction started, it is the last part of the catalytic cycle that decides the 

fate of the reaction, under the main influence of the protein contribution to the structure of the 

substrate-binding pocket. Of course, this is not a strict rule. As an example, cobalamin-dependent 

enzymes can exploit different catalytic mechanisms as a consequence of the exact coordination of 

the cobalt ion. 
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When the first coordination sphere of the metal cofactor changes while the identity of the metal ion 

bound is retained, the mechanism of reaction typically does not change much. This is more 

commonly observed for the harder magnesium(II) or calcium(II) ions, whose first coordination 

sphere contains a number of oxygen atoms from the protein main chain, thus making some positions 

relatively insensitive to the replacement of the corresponding side chains. Consequently, this kind of 

variations is compatible also with the absence of change in EC numbers. In other words, enzymes in 

a given superfamily can catalyze the same reaction, i.e. have the same EC number, despite the 

occurrence of changes in the first coordination sphere of their common catalytic metal. On the other 

hand, changing the identity of the metal ion bound may have a larger impact on the functional 

properties (Figure 2). This is likely to happen when the metals differ in having or lacking redox 

activity under biologically relevant conditions (i.e. zinc(II) vs. iron(II) as shown in Figure 4). 

However, even under these conditions, it is still possible that the catalytic mechanism is maintained 

to some extent, e.g. as for alcohol dehydrogenases. Although not explicitly addressed in this work, 

when different enzymes sharing the same EC number and belonging to the same superfamily bind 

different metal ions, the catalytic mechanism is typically conserved. An extreme example of this 

behavior is that of cambialistic superoxide dismutases, which, depending on bioavailability, can 

incorporate different metal ions in their active site and retain catalyitic activity. 

Changes in site nuclearity and loss/gain of entire metal-binding sites require larger changes in the 

structure of the active site, by recruiting (or dismissing) various metal ligands. Such structural 

changes are accommodated while maintaining the overall protein fold, indicating that metalloprotein 

design by nature sometimes exploits an existing fold to add or modify metal-binding properties 

similarly to the artificial metalloprotein engineering concept. As already mentioned these types of 

variations are likely to be associated to larger functional variations (Figure 2). Yet, the impact at 

mechanistic level can be quite different. Within a given superfamily, sites with different nuclearity 

can share similar roles during the catalytic cycle. A possible rationale for the presence of additional 

metal ions in one enzyme with respect to another of the same superfamily is that the former needs to 

activate additional co-substrates or that its substrate is more inert. On the other hand, gain/loss of the 

metal-binding site leads necessarily to a drastic change in the catalytic mechanism. 

A final consideration regards the “forces” that drive the evolution of catalytic metal-binding sites in 

enzymes. Successful sites, i.e. sites that are catalytically efficient at least for some specific steps, are 

maintained and re-used in different contexts to expand the enzymatic portfolio available in nature. 
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The modulation of second-sphere or protein-substrate and protein-cofactor interactions constitutes a 

crucial factor to support this expansion, which can be as important as the composition of the 

coordination sphere of the metal. On the other hand, some metal-binding sites are uniquely 

associated to a given enzymatic activity. This might happen because of their comparatively recent 

appearance, or because mutations around the metal site would be too detrimental for metal affinity, 

or because the substrate (and related compounds) is relatively uncommon. There are two possible 

reasons why the evolution of the metal site, especially in the cases with the largest structural 

changes and the highest impact on functional properties (Figure 6), is not accompanied by a 

significant variation of the protein fold. One possibility is that the protein moiety provides a suitable 

environment for binding metal ions with good affinity. This can be particularly relevant e.g. when 

different divalent cations replace one another in the active site, where the exact identity of the metal 

ion incorporated in the enzyme may be linked to the biosynthetic process also through the action of 

specific metallochaperones. The kinetics of metal release from the active site and the stability of the 

protein structure represent other factors that may warrant reuse of the same fold. A second argument 

is that the protein fold allows the substrate to be recognized with appropriate specificity. In this case, 

changing the identity of the metal or the nuclearity of a metal-binding site or introducing a novel site 

allows an organism to carry out different chemistry on the same substrate or, upon modifications of 

the protein moiety, on chemically related substrates (e.g. Figure 3). Beyond the need for evolving 

and differentiating the enzymatic repertoire of an organism, the above mechanisms may also 

contribute to coping with changes in the bioavailability of specific metal ions. 
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Figures 

 

Figure 1: Pie chart showing the changes of metal sites observed in the 56 superfamilies that contain 

multiple EC numbers. One superfamily can be associated with more than one type of change, 

resulting in a total of 82 cases. 
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Figure 2: Histogram showing the changes of metal sites in the 56 superfamilies that contain 

multiple EC numbers. The changes were grouped according to the level of EC classification at 

which EC numbers in the superfamily differ. One superfamily can be associated with more than one 

type of change. 
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Figure 3: A superfamily (3.20.20.150) containing enzymes with different EC numbers and different 

nuclearity of the metal site. The aligned protein structures (top), the aligned metal site structures 

(middle, metal ions are depicted as red spheres), and the structure-based alignment of the metal 

ligands (bottom, different colors indicate the ligands of individual metal ions) are shown. 
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Figure 4: A superfamily (3.60.15.10) containing enzymes with different EC numbers and different 

catalytic metal ions. The aligned protein structures (top), the aligned metal site structures (middle, 

metal ions are depicted as red spheres), and the structure-based alignment of the metal ligands 

(bottom, different colors indicate the ligands of individual metal ions) are shown. 
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Figure 5: A superfamily (3.30.1130.10) containing enzymes with different EC numbers and 

gaining/losing a catalytic metal-binding site. The aligned protein structures (top), the aligned active 

sites with substrate-analogues bound (middle, the metal ion is depicted as a red sphere), and the 

structure-based alignment of the metal ligands (bottom) are shown. 
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Figure 6: The relationship between the change in the structural properties of the catalytic metal site 

and the variation of the catalytic mechanism. 
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5. Conclusions	

In summary, the main contribution of my Ph.D. project is the development and the application of a 

novel approach to the study of metals in biology. The approach is based on the alignment of three 

dimensional structures of Minimal Functional Sites (MFSs) in metal-binding biological 

macromolecules. MFSs constitute a novel viewpoint of metal sites that facilitates elucidating their 

mechanisms of function. The first part of my Ph.D. project was dedicated to development of a tool 

for systematic comparison of MFSs. The second part of the project was devoted to application of the 

method to address several scientific problems and scenarios with the aim at exemplifying use-cases 

and demonstrating the potentiality of the approach. 

The tool for the pairwise comparison of MFSs was called MetalS2 

(http://metalweb.cerm.unifi.it/tools/metals2/). We specifically designed a scoring function that 

quantitatively assesses the similarity of two MFSs (the better the alignment, the less is the value of 

scoring function). The tool performs rotational and translational transformation of an MFS with 

respect to another MFS to minimize a scoring function composed by three terms that relate to basic 

physical and biochemical concepts. As an extension of MetalS2, we developed MetalS3 

(http://metalweb.cerm.unifi.it/tools/metals3/), a tool that allows searching for similar sites among 

the ensemble of MFSs in MetalPDB. The core of the tool is the algorithm of MetalS2 with some 

minor modifications to adjust the scoring function for the database search. MetalS3 is a client-server 

application that may help researchers in the field of bioinorganic chemistry to assess the 

relationships or evaluate possible evolutionary links between different groups of metalloproteins as 

well as help experimentalists’ work in understanding the function of uncharacterized 

metalloproteins. In fact, we previously demonstrated that if two metalloproteins (also having 

different folds) have similar MFSs, then the metal ions perform the same general function within 

these sites. Overall, this contributes to achieve a better comprehension of the role of metal ions in 

living systems. Although algorithmically very similar, MetalS2 and MetalS3 have somewhat 

different usage scenarios and enable access to distinct information. MetalS2 requires the user to have 

prior knowledge of which structures are to be compared, either a pair or a group of related 

metalloproteins. It allows highlighting subtle similarities and/or differences in the local structure of 

the metal site. On the contrary, MetalS3 constitutes an unbiased approach to seek structural 

similarities between metal sites, independently of the user’s prior knowledge. The hits returned by 
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MetalS3 can be a combination of relatively obvious (e.g. homologs of the query metalloprotein) and 

unexpected ones, making it a true knowledge discovery tool. 

To further assess the usefulness of the developed approaches we applied them to get interesting 

biological hints on metalloproteins. In this frame, we exploited MetalS2 as a part of a newly 

developed computational protocol to obtain a completely MFS-based classification of 

metalloproteins. By applying the protocol to all heme-binding proteins in the MetalPDB database 

we obtained a thorough view of structural variation across these systems. In addition, we unveiled 

structural relationships across different families in a manner that is unbiased by homology 

considerations. Indeed, the approach was able to highlight undetected similarities in multi-heme 

cytochromes. The obtained classification was shown to be complementary to and more inclusive 

than the existing structure-based and domain-based classifications of metalloproteins. In fact, the 

protocol can be used in data reduction with respect to existing fold-based classifications (e.g. 

obtained with a use of CATH, SCOP), since metal sites in proteins of different superfamilies and 

with different folds can share MFSs. In perspective, a new fold-independent classification of MFSs 

will provide an organized source of information to be embedded into the MetalPDB database. 

Finally, we applied the MFSs comparison method to obtain hints on the evolution of 

metalloenzymes. This analysis was performed by exploiting a strategy planned for a new resource 

that integrates the information from three sources: CATH database, Metal-MACiE database, and the 

MetalPDB database. This resource was designed to functionally characterize metal sites in 

structurally related protein superfamilies. We have initially deployed the strategy outlined above to 

the contents of the FunTree database, a public resource containing the information on structurally 

defined enzyme superfamilies, in order to understand how enzymes depend on metals in the 

differentiation of their function. We have identified five different patterns of conservation/change of 

the catalytic metal-binding site within superfamilies containing metal-dependent enzymes. Such 

patterns affect the structural properties of the site to an increasing extent, from complete 

conservation to complete loss (or gain) of the site, through variations in the number and/or chemical 

identity of the protein ligands, variations in site nuclearity and variations in metal identity. When the 

metal site is conserved or the first coordination sphere of the metal cofactor changes while the 

identity of the metal ion is retained, the mechanism of reaction typically does not change much. On 

the other hand, changing the identity of the metal ion may have a larger impact on the functional 

properties, and the gain/loss of the metal-binding site leads necessarily to a drastic change in the 
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catalytic mechanism. By mapping such changes onto the tree of life, evolutionary hints are obtained. 

This strategy is generally applicable beyond metalloenzymes, to obtain hints on the evolution of 

systems such as electron transfer chains or metal homeostasis and transport machineries. 
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