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INTRODUCTION 

Soccer is the most popular sport in the world and is performed by men 

and women, children and adults with different levels of expertise. Soccer 

performance depends upon a myriad of factors such as 

technical/biomechanical, tactical, mental and physiological areas. One of 

the reasons that soccer is so popular worldwide is that players may not 

need to have an extraordinary capacity within any of these performance 

areas, but possess a reasonable level within all areas. However, there are 

trends towards more systematic training and selection influencing the 

anthropometric profiles of players who compete at the highest level. As 

with other activities, soccer is not a science, but science may help improve 

performance. Efforts to improve soccer performance often focus on 

technique and tactics at the expense of physical fitness. During a 90-

minute game, elite-level players run about 10km at an average intensity 

close to the anaerobic threshold (80–90% of maximal heart rate). Within 

this endurance context, numerous explosive bursts of activity are 

required, including jumping, kicking, tackling, turning, sprinting, changing 

pace, and sustaining forceful contractions to maintain balance and control 

of the ball against defensive pressure. The best teams continue to increase 

their physical capacities, whilst the less well ranked have similar values as 

reported 30 years ago. Whether this is a result of fewer assessments and 

training resources, selling the best players, and/or knowledge of how to 

perform effective exercise training regimens in less well ranked teams, is 

not known. As there do exist teams from lower divisions with as high 

aerobic capacity as professional teams, the latter factor probably plays an 

important role. Distances covered at top level are in the order of 10–12km 

for the field players, and about 4km for the goalkeeper. Several studies 



report that the midfield players run the longest distances during a game 

and that professional players run longer distances than non-professionals. 

The exercise intensity is reduced and the distance covered is 5-10% less in 

the second half compared with the first. During a soccer game, a sprint 

bout occurs approximately every 90 seconds, each lasting an average of 2-

4 seconds. Sprinting constitutes 1-11% of the total distance covered 

during a match corresponding to 0.5-3.0% of effective play time. In the 

endurance context of the game, each player performs 1000-1400 mainly 

short activities changing every 4-6 seconds. Activities performed are 10-20 

sprints; high-intensity running approximately every 70 seconds; about 15 

tackles; 10 headings; 50 involvements with the ball; about 30 passes as 

well as changing pace and sustaining forceful contraction to maintain 

balance and control of the ball against defensive pressure. Withers et al. 

noted that the fullbacks sprinted more than twice as much as the central 

defenders (2.5 times longer), whilst the midfielders and the attackers 

sprinted significantly more than central-defenders (1.6 – 1.7 time longer). 

This is in line with Mohr et al. who reported that fullbacks and attackers 

sprinted significantly longer than central-backs and midfielders. Strength 

and power are equally as important as endurance in soccer. Maximal 

strength refers to the highest force that can be performed by the 

neuromuscular system during one maximum voluntary contraction (one 

repetition maximum [1RM]), whereas power is the product of strength 

and speed and refers to the ability of the neuromuscular system to 

produce the greatest possible impulse in a given time period. Maximal 

strength is one basic quality that influences power performance; an 

increase in maximal strength is usually connected with an improvement of 

power abilities. A significant relationship has been observed between 1RM 



and acceleration and movement velocity. This maximal strength/power 

performance relationship is supported by jump test results as well as in 

30m sprint results. By increasing the available force of muscular 

contraction in appropriate muscles or muscle groups, acceleration and 

speed may improve in skills critical to soccer such as turning, sprinting and 

changing pace. High levels of maximal strength in upper and lower limbs 

may also prevent injuries in soccer. Given this, by identifying some of the 

aspects affecting physiological traits in soccer (taken from a renowned 

review published in 2005) the purpose of this study is to highlight a new 

method of analyzing and evaluating soccer performance parameters from 

a match analysis point of view and from a training standpoint, based on a 

different study conducted by Prof. di Prampero on the Theory Model of 

metabolic power.  

1.1 Metabolic Demands 

Because of the game duration, soccer is mainly dependent upon aerobic 

metabolism. The average work intensity, measured as percentage of 

maximal heart rate (HRmax), during a 90-minute soccer match is close to 

the anaerobic threshold (the highest exercise intensity where the 

production and removal of lactate is equal; normally between 80–90% of 

HRmax in soccer players). It would be physiologically impossible to keep a 

higher average intensity over a longer period of time due to the resultant 

accumulation of blood lactate. However expressing game intensity as an 

average over 90 minutes, or for each half, could result in a substantial loss 

of specific information. Indeed, soccer matches show periods and 

situations of high-intensity activity where accumulation of lactate takes 

place. Therefore, the players need periods of low-intensity activity to 



remove lactate from the working muscles. In relative terms, there is little 

or no difference between the exercise intensity in professional and non-

professional soccer, but the absolute intensity is higher in professionals. 

No-one has yet managed to provide accurate and valid data when 

measuring oxygen uptake (VO2) during a soccer match. The values 

measured are probably underestimated, since the equipment most likely 

inhibited the performance. Ogushi et al. used Douglas bags (the 

equipment weighing 1200g), measuring VO2 in periods of about 3 minutes 

in two players. They found an average VO2 of 35 and 38 mL/kg/min in the 

first half and 29 and 30 mL/kg/min in the second. This corresponded to 

56–61% and 47–49% of maximal oxygen uptake (VO2max) for the two 

players in the first and second half, respectively, which is substantially 

lower than reported in other studies. The distances covered during the 

VO2 recordings were 11% shorter when compared with those not wearing 

the Douglas bags, which partly explain the low VO2 values observed. 

There is good reason to believe that the use of Douglas bags, due to their 

size (and limited time for gas sampling), reduced the involvement in duels, 

tackles and other energy-demanding activities in the match, and, thus, 

underestimated the energy demands in soccer. New portable gas 

analysers (~500g) allow valid results, but at present no such study has 

been performed. Establishing the relationship between heart rate (HR) 

and VO2 during a game allows accurate indirect measurement of VO2 

during soccer matches. Establishing each player’s relationship between HR 

and VO2 (the HR–VO2 relationship) may accurately reflect the energy 

expenditure in steady-state exercise. However, some authors question the 

HR–VO2 relationship in intermittent exercise. Static contractions, exercise 

with small muscle groups and psychological and thermal stresses, will 



elevate the HR at a given VO2; i.e. changing the HR–VO2 line. However, in 

soccer, with dynamic work with large muscle groups, one might expect the 

HR–VO2 line to be a good estimate of energy expenditure. Balsom et al. 

suggested that HR increases disproportionately to the VO2 after sprinting 

activities. This accounts only for a minor overestimation of the VO2 in 

soccer, since sprinting accounts for about 1% of the total game time. 

Bangsbo showed that HR–VO2 line is valid, in intermittent exercise, by 

comparing intermittent exercise and continuous exercise in a laboratory 

test on a treadmill. The same HR–VO2 relationship was found over a large 

range of intensities and is supported by recent data. If we assume that the 

HR–VO2 line may be used for an accurate estimation of VO2 in soccer, an 

average exercise intensity of 85% of HRmax will correspond to about 75% 

of VO2max. This corresponds to an average VO2 of 45.0, 48.8 and 52.5 

mL/kg/min for a player with 60, 65 and 70 mL/kg/ min in VO2max, 

respectively, and probably reflects the energy expenditure in modern 

soccer. For a player weighing 75kg this corresponds to 1519, 1645 and 

1772 kcal expended during a game (1L oxygen/min corresponds to 5 kcal) 

assuming the following values of 60, 65 and 70 mL/kg/min in VO2max, 

respectively. In a previous study, we found a difference of about 5 

mL/kg/min in running economy between seniors and cadets during 

treadmill running at 9 km/hour (unpublished data). Running economy is 

referred to as the ratio between work intensity and VO2. At a given work 

intensity, VO2 may vary considerably between subjects with similar 

VO2max. This is also evident in highly trained subjects. In elite endurance 

athletes with a relatively narrow range in VO2max, running economy has 

been found to differ as much as 20% and correlate with performance. The 

causes of inter-individual variations in gross oxygen cost of activity at a 



standard work-intensity are not well understood, but it seems likely that 

anatomical trait, mechanical skill, neuromuscular skill and storage of 

elastic energy are important. In practical terms, 5 mL/kg/min lower VO2 at 

the same exercise intensity means that the senior players exercised with 

approximately 10 beats/min less relative to individual HRmax compared 

with cadets. Alternatively, seniors could exercise at the same relative HR 

but at a higher absolute exercise intensity. The senior players reached the 

same relative HR (in percentage of HRmax) as cadets when exercising at 

approximately 10 km/hour. Thus, a change in exercise intensity of 1 

km/hour lead to a change in metabolism of about 5 mL/kg/min and 

increased the HR by approximately 10 beats/min to cope with the 

increased energy/oxygen demand. Translating the differences in running 

speed between seniors and cadets into differences in distance covered 

during a 90-minute game, yield a difference of about 1500m per player. 

Although this is a theoretical consideration, Hoff and Helgerud estimated 

that a 5% improvement in running economy could increase match 

distance by approximately 1000m. As can be seen from table I there is a 

large variation in distances covered at different intensities. There are also 

notable differences between leagues and playing divisions in different 

countries. This may partly be explained by vague definitions of the 

intensities described in some studies. To avoid this, game intensity should 

be expressed as a percentage of HRmax as well as by describing the 

number and duration of sprints performed and number of involvements 

with the ball per game, which should be reasonably easy to define 

regardless of the players’ level. To test each player’s HRmax, we 

recommend uphill running either on a treadmill or outdoor. The players 

should perform a thorough warm-up for about 20 minutes before running 



two to three 4-minute runs close to maximum effort; in the last run they 

should run to exhaustion starting from the second minute of submaximal 

running. The highest HR recorded, by a HR monitor, should be used as the 

individual’s HRmax. For us, this was achievable regardless of age (<12 

years) and sex. We highly recommend measuring each player’s HRmax, 

and don’t use different available equations as we frequently experience 

players >35 years and <20 years with HRmax >220 and <180 beats/min, 

respectively. Using the traditional formula, 220 – age, will in most cases be 

very misleading. Recently, Strøyer et al. reported that HRs during soccer 

matches were higher in young elite soccer players than in non-elite 

counterparts of the same age (12 years). The average HR during games 

was similar in young elite players in early puberty (177 beats/min in the 

first half vs 174 in the second half) and end of puberty (178 vs 173 

beats/min). Early puberty elite players had higher VO2 related to body 

mass (mb) [mL/kg/min] than non-elite players during both match halves. 

The elite players at the end of puberty showed higher absolute VO2 values 

during match play than young elite players, but identical relative aerobic 

loads. Finally, with respect to time–motion analysis, the main difference 

found was that the frequency of standing activity was significantly higher 

among the non-elite players compared with the elite players. There is a 

lack of studies addressing the issue of possible cultural and/or 

geographical differences in distance covered and time spent in different 

intensity zones, as most research published so far concerns European 

teams. In this context, Rienzi et al. reported that English premier league 

players covered about 15km more as a team compared with South 

American international players. Whether this reflected differences in 

aerobic capacity or in playing style/tactics is not known. Measuring the 



exercise intensity and distance covered in several teams from different 

continents during a world cup in soccer, as well as assessing teams at 

similar levels from different leagues, could add important knowledge to 

the physiology of international soccer. 

 

Table 1. Activity profile distances covered in different intensities in male soccer players 

 

1.2 External load 

Match-analysis studies reported that, during a competitive match, a 

referee can cover a mean distance of 11.5km, with ranges from 9 to 14Km.  

Of this distance, 16–17% is performed at high intensity or at speeds >15–

18 km/hour. Standing is reported to account for 14–22% of match 

duration. Distances performed sprinting have been shown to range from 

0.5% to 12% of total match distance covered by an elite-level soccer 

referee during actual match play. Analysis of between-halves distance 

coverage is of great interest as it can reveal the occurrence of fatigue 

and/or refereeing strategies With respect to this interesting aspect of 



soccer refereeing performance, there exist conflicting results in the 

available literature. D’Ottavio and Castagna reported a significant 4% 

decrease in total distance across halves in Serie A (Italy) soccer referees. In 

contrast, Krustrup and Bangsbo found no significant difference in total 

coverage between halves in Danish top-level referees. However, total 

distance should be considered as only a gross measure of match activity. 

In this regard, analysis of those activities performed at high intensity 

during the match may reveal more relevant information in the attempt to 

assess the likelihood of possible fatiguing processes during the game. 

High-intensity performance analysis revealed the occurrence of a sort of 

‘sparing behaviour’ in referees who officiated at high competitive level 

(Italian Serie A championship). In fact, in the study by D’Ottavio and 

Castagna, no between-half differences in high-intensity coverage were 

detected despite a significant decrease of total distance. This sort of 

‘sparing behaviour’ has been confirmed in longitudinal studies in the same 

population of elite-level soccer referees. In contrast, Krustrup and 

Bangsbo reported a second-half decrement in high-intensity activity, but 

no between-halves difference in total distance. These findings seem to 

show that referees officiating at elite level may use different refereeing 

strategies in order to conserve energy during the game. From a refereeing 

strategy point of view, it would be advisable to have referees with a well 

developed ability to perform at high intensity throughout the match. This 

ability is particularly important for soccer referees as it has been 

demonstrated that the most crucial outcome-related activities may be 

revealed at the end of each half, where the likelihood of mental and 

physiological fatigue is higher. Similar to what was reported for elite-level 

soccer players, elite-level soccer referees have been reported to change 



their motor behavior every 4 seconds, performing approximately 1270 

activity changes by the end of an average match. Recently, Helsen and 

Bultynck found that international-level soccer referees, in the attempt to 

regulate the behaviour of players, undertake 137 observable decisions per 

match. These results clearly show that elite-level soccer refereeing 

constitutes a demanding physical and cognitive task.  

 

A NEW MATCH ANALYSIS APPROACH 

2.1 Di Prampero’s Study: Sprint running: a new energetic approach 

Soccer is an activity involving both aerobic and anaerobic exercises; as 

such, the physiological demand imposed on soccer players during official 

matches and training sessions has been the subject of research for many 

years. Early assessments of metabolic demand, which were conducted 

through measurements of body temperature, demonstrated that the 

average metabolic load of a soccer player is close to 70% of VO2max. 

These results are confirmed by current energy expenditure estimates; 

however, they did not lead to the development of techniques for 

continuous body temperature monitoring owing to practical reasons and 

to the latency in body temperature changes. More recently, assessments 

of energy expenditure have been performed using continuous HR 

recording, allowing a detailed analysis of aerobic performance. However, 

this approach is not permitted during official matches. In addition, HR 

recordings do not yield information on high-intensity bouts. Likewise, 

direct measurement of oxygen uptake is not suitable to provide data on 

high-intensity exercise, and its use during training sessions or 

competitions is not feasible. Overall, all these methods show that the total 



estimated energy expenditure during a match ranges from 1200 to 1500 

kcal. The studies conducted so far on anaerobic energy expenditure are 

rather scant; furthermore, the current procedures are not applicable to 

official matches and are definitely not suitable for continuous recordings. 

An example of this approach is the study by Krustrup et al. which 

measured creatine-phosphate concentration on biopsies taken from 

muscular tissue of athletes immediately after high-intensity exercise bouts 

during a soccer match. Blood lactate concentration (LA) has also been 

considered as a marker of anaerobic energy expenditure by several 

researchers; the results of these studies show that its level during matches 

ranges from 2 to 10 mmol∙L-1. All things considered, the methods 

described above are sufficiently reliable in estimating the total energy 

expenditure during a match. However, no method is currently available to 

either measure or estimate instantaneous metabolic load, and this is 

particularly true in relation to high-intensity bouts (including 

accelerations), which are actually the crucial moments in a match. During 

the last few years, an increasing number of studies have been devoted to 

video analysis of soccer matches and to subsequent computer-assisted 

analysis of the imaging thus acquired. This method has lead to a significant 

progress in the physical assessments of individual players and is currently 

being used by many high-level professional soccer teams all over Europe. 

The most up to-date techniques of video match analysis allow close 

observation of the movements of players, referees, and ball on the soccer 

pitch throughout the 90 min of the game. The so-obtained data yield 

distances covered and relative speeds, football control, and distance from 

fellow players and from the other pitch areas. The results of these studies 

show that: 



1. The total distance covered in a match (TD) ranges from 10 to 13 km, 

with differences related to rank and role. 

2. The distance covered in the first half of the match is usually 5%–10% 

greater than that covered in the second half. 

3. On average, players spend 70% of the total match duration performing 

low-intensity activities such as fast walking and jogging, whereas in the 

remaining 30%, they are engaged in approximately 150–250 actions of 15–

20 m of high-intensity exercise. 

4. ‘‘Sprinting,’’ which, in the different studies, is defined as a running 

speed above a lower limit ranging from 19 to 25 kmIhj1, amounts to 5%–

10% of the TD covered during a match, thus corresponding to 1%– 3% of 

the match time; average sprint duration is 2–4 s, and average sprint 

occurrence is 1 in 90 s. However detailed, such analyses do not take into 

account an essential element of soccer, e.g., accelerations and 

decelerations. As a matter of fact, a massive metabolic load is imposed on 

players not only during the maximally intensive phases of the match 

(intended as high running speed) but every time acceleration is elevated, 

even when speed is low. The scientific literature provides a significant 

number of studies on the energetics and biomechanics of constant speed 

running, although the number of studies on accelerated (or decelerated) 

running are very scant because of the difficulty in using an energy 

approach in evaluating this kind of exercise. The few works available on 

the subject focus exclusively on specific mechanical features of sprinting 

or consider indirect estimates of its energetics. However, a new 

interesting approach is provided by a recent study of Di Prampero et al., 



which shows elements that can be integrated in video match analysis 

system. 

The Study  

Since the second half of the 19th century, the energetics and 

biomechanics of running at constant speed have been the object of many 

studies, directed towards elucidating the basic mechanisms of this most 

natural form of locomotion; but the results of these studies have also had 

direct practical applications, e.g. for the assessment of the overall 

metabolic energy expenditure, or for the prediction of best performances 

(e.g. see Alvarez-Ramirez, 2002; Lacour et al., 1990; Margaria, 1938; 

Margaria et al., 1963; Péronnet and Thibault, 1989; Di Prampero et al., 

1993; Ward-Smith, 1985; Ward-Smith and Mobey, 1995; Williams and 

Cavanagh, 1987). In contrast to constant speed running, the number of 

studies devoted to sprint running is rather scant. This is not surprising, 

since the very object at stake precludes reaching a steady state, thus 

rendering any type of energetic analysis rather problematic. Indeed, the 

only published works on this matter deal with either some mechanical 

aspects of sprint running (Cavagna et al., 1971; Fenn, 1930a,b; Kersting, 

1998; Mero et al., 1992; Murase et al., 1976; Plamondon and Roy, 1984), 

or with some indirect approaches to its energetics (Arsac, 2002; Arsac and 

Locatelli, 2002; van Ingen Schenau et al., 1991, 1994; di Prampero et al., 

1993; Summers, 1997; Ward-Smith and Radford, 2000). The indirect 

estimates of the metabolic cost of acceleration reported in the above-

mentioned papers are based on several assumptions that are not always 

convincing. In the present study we therefore propose a novel approach 

to estimate the energy cost of sprint running, based on the equivalence of 



an accelerating frame of reference (centred on the runner) with  the 

Earth’s gravitational field. Specifically, in the present study, sprint running 

on flat terrain will be viewed as the analogue of uphill running at constant 

speed, the uphill slope being dictated by the forward acceleration (di 

Prampero et al., 2002). Thus, if the forward acceleration is measured, and 

since the energy cost of uphill running is fairly well known (e.g. see 

Margaria, 1938; Margaria et al., 1963; Minetti et al., 1994, 2002), it is a 

rather straightforward matter to translate the forward acceleration of 

sprint running into the corresponding up-slope, and thence into the 

corresponding energy cost. Knowledge of this last and of the 

instantaneous forward speed will then allow us to calculate the 

corresponding metabolic power, which is presumably among the highest 

values attainable for any given subject. 

Theory 

In the initial phase of sprint running, the overall acceleration acting on the 

runner’s body (g′) is the vectorial sum of the 

 

Fig.·1. Simplified view of the forces acting on a runner. The subject is accelerating forward while running 
on flat terrain (A) or running uphill at constant speed (B). The subject’s body mass is assumed to be 
located at the centre of mass (COM); af=forward acceleration; g=acceleration of gravity; g′=(af

2+g2)0.5 is 
the acceleration resulting from the vectorial sum of af plus g; T=terrain; H=horizontal; α (=arctan g/af) is 
the angle between runner’s body and T; the angle between T and H is α′=90–α. (Modified from di 
Prampero et al., 2002.) 



forward acceleration (af) and the Earth’s acceleration of gravity (g), both 

assumed to be applied to the subject’s centre of mass (COM; Fig.∙1A): 

g′ = (af
2 + g2)0.5.  (1) 

To maintain equilibrium, the angle α between g′ (which is applied along a 

line joining the point of contact foot–terrain with the runner’s body COM) 

and the terrain must be given by: 

α = arctan g / af.  (2) 

 

This state of affairs is analogous to that applying if the subject were 

running uphill at constant speed, in which case the overall average 

acceleration (g′) is assumed to be applied vertically (Fig. 1B). Indeed, if g′ is 

tilted upwards, so as to render it vertical, to maintain constant the angle 

of g′ with the terrain (α), the latter must also be tilted upwards, with 

respect to the horizontal, by the same amount. Inspection of Fig.1 makes 

it immediately apparent that the angle between the horizontal and the 

terrain (α′), due to the forward acceleration yielding the angle α between 

g′ and the terrain, is given by: 

α′ = 90 – α = 90 – arctan g / af .  (3) 

The slope equivalent to the angle α′ (equivalent slope, ES) is therefore 

given by the tangent of the angle α′ itself: 

ES = tan (90 – arctan g / af).  (4) 

In addition, during sprint running, the average force exerted by active 

muscles during the stride cycle (F′=equivalent body weight) is given by: 



F′ = Mbg′,  (5) 

where Mb is the runner’s body mass. When running at constant speed, the 

average force (F) corresponds to the subject’s body weight: 

F = Mbg .  (6) 

The ratio of Eq.·5 to Eq.·6 

F′ / F = g′ / g   (7) 

shows that, during sprint running, the equivalent body weight (F′=the 

average force generated by the active muscles) is equal to that required to 

transport, at constant speed on the Earth, the same mass (Mb) multiplied 

by the ratio g′/g. This ratio will here be called ‘equivalent normalised body 

mass’ (EM). Thus, from Eq.∙1: 

EM = g′ / g = (af 
2 / g2 + 1)0.5 .  (8) 

Summarising, sprint running can be considered equivalent to constant 

speed running on the Earth, up an equivalent slope ES, while carrying an 

additional mass ΔM=Mb(g′/g–1), so that the overall equivalent mass EM 

becomes EM=ΔM+Mb. Both ES and EM are dictated by the forward 

acceleration (Eq.·4, 8); therefore they can be easily calculated once af is 

known. The values of ES and EM so obtained can then be used to infer the 

corresponding energy cost of sprint running, provided that the energy cost 

of uphill running at constant speed per unit body mass is also known. It 

should be pointed out that the above analogy is based on the following 

three simplifying assumptions, which will be discussed in the appropriate 

sections.  Fig. 1 is an idealized scheme wherein the overall mass of the 

runner is assumed to be located at the centre of mass. In addition, Fig. 1 



refers to the whole period during which one foot is on the ground, as such 

it denotes the integrated average applying to the whole step (half stride).  

The calculated ES and EM values are those in excess of the values applying 

during constant speed running, in which case the subject’s body is not 

vertical, but leans slightly forward (Margaria, 1975). 

Aims 

The aim of the present study was that to estimate the energy cost and 

metabolic power of the first 30·m of an all-out run from a stationary start, 

from the measured forward speed and acceleration. 

Methods and calculations 

The experiments were performed on an outdoor tartan track of 100·m 

length, at an average barometric pressure and temperature of about 

740·mmHg and 21°C, using 12 medium-level male sprinters. The subjects 

were informed on the aims of the study and gave their written consent to 

participate. The instantaneous speed of the initial 30 m of an all-out run 

from regular starting blocks was continuously determined by means of a 

radar Stalker ATS System™ (Radar Sales, Minneapolis, MN, US) at a 

sampling frequency of 35 Hz. Raw speed data were filtered (by a fourth 

order, zero lag, Butterworth filter) using the ATS System™ acquisition 

software. The radar device was placed on a tripod 10 m behind the start 

line at a height of 1 m, corresponding approximately to the height of the 

subject’s center of mass. To check the reliability of the radar device, the 

12 subjects performed an entire 100 m run. The times obtained on each 

10 m section (tradar) were compared to those obtained over the same 

sections by means of a photocell system (tcells). The two sets of data were 

essentially identical:  



tradar = 1.01tcells – 0.06; r2 = 0.99; N=120; P<0.01,   (9) 

thus confirming a previous validation carried out by Chelly and Denis 

(2001) on moving objects. The speed–time curves were then fitted by an 

exponential function (Chelly and Denis, 2001; Henry, 1954; Volkov and 

Lapin, 1979): 

s(t) = smax * (1–e – t/τ),   (10) 

where s is the modelled running speed, smax the maximal velocity reached 

during the sprint, and τ the time constant. Typical tracings of the 

measured or modelled speeds so obtained are reported in Fig. 2 as a 

function of time. Since the exponential model described the actual 

running speeds accurately (see Discussion and Fig. 3), the instantaneous 

forward acceleration was then calculated from the first derivative of Eq. 

10: 

af(t) = ds / dt = [smax – smax * (1–e –t/τ)] / τ .   (11) 

This is plotted in Fig.·4 as a function of the distance (d, m) of the run, as 

obtained from the time integral of Eq. 10: 

d(t) = smax * t – [smax * (1–e –t/τ)] * τ .   (12) 

The individual values of speed and acceleration were calculated for each 

subject over one run. The values so obtained were then pooled and the 

means calculated. Values are reported as means ± 1 standard deviation 

(S.D.), where N=12. The individual values of ES (Eq. 4) and EM (Eq. 8) were 

also obtained for all subjects from the forward acceleration. This allowed 

us to calculate the energy cost of sprint running with the aid of the data of 

literature. Indeed, as reported by Minetti et al. (2002) for slopes from –



0.45 to +0.45, the energy cost of uphill running per unit of distance along 

the running path C (J kg–1 m–1), is described by: 

C = 155.4x5–30.4x4 – 43.3x3 + 46.3x2 + 19.5x + 3.6,   (13) 

where x is the incline of the terrain, as given by the tangent of the angle α′ 

with the horizontal (see Eq. 3 and Fig. 1B). Thus, the estimated energy cost 

of sprint running (Csr) can be calculated replacing x in the above equation 

with the calculated values of ES (Eq. 4) and multiplying the sum of the 

indicated terms by EM (Eq. 8): 

Csr = (155.4ES5 – 30.4ES4 – 43.3ES3 + 46.3ES2 + 19.5ES + 3.6)EM.   

(14) 

It is also immediately apparent that, when ES=0 and EM=1, Csr reduces to 

that applying at constant speed running on flat terrain, which amounted 

to about 3.6 J kg–1 min–1 (Minetti et al., 2002), a value close to that 

reported by others (e.g. see Margaria et al., 1963; di Prampero et al., 

1986, 1993). 

 

 

Fig.·2. Actual (gray, thick line) and modelled (black, thin line) forward speed s (m s–1) as a 
function of time t (s) at the onset of a typical 100 m run for subject 7. Actual speed was 
accurately described by: s(t)=10.0*(1–e–t/1.42). The maximal speed (smax) was 10.0·m s–1. 

 



 

 

Fig.·3. Running velocity as calculated by the exponential model, as a function of the actual 
running speed for Subject 7. The linear relationship is reported in the figure (N=234); identity 
line is also shown. 

 

 

 

 

 

Fig.·4. The instantaneous forward acceleration af (m s–2), obtained as described in the text, is 
plotted as a function of the distance d (m) for subject 7. 

 

 

 



Result 

The speed increased to attain a peak of 9.46±0.19 m s–1 about 5 s from the 

start. The highest forward acceleration was observed immediately after 

the start (0.2 s): it amounted to 6.42±0.61 m s–2. The corresponding peak 

ES and EM values amounted to 0.64±0.06 and to 1.20±0.03 (Table·2). The 

behavior of ES and EM, throughout the entire acceleration phase for a 

typical subject, as calculated from af (see Fig. 4) on the bases of Eq. 4 and 

8, is reported in Fig. 5, which shows that, after about 30 m, ES tended to 

zero and EM to one, which correspond to constant speed running. The 

energy cost of sprint running (Csr), as obtained from Eq. 13 on the basis of 

the above calculated ES and EM, is reported in Fig. 6 for a typical subject. 

This figure shows that the instantaneous Csr attains a peak of about 50 J 

kg–1 m–1 immediately after the start; thereafter it declines progressively 

 

Table·2. Grand averages of peak values of speed (s), forward acceleration (af), equivalent slope 
(ES) and equivalent body mass (EM) 

 

to attain, after about 30 m, the value for constant speed running on flat 

terrain (i.e. about 3.8 J kg–1 m–1). This figure shows also that ES is 

responsible for the greater increase of Csr whereas EM plays only a 

marginal role. Finally, Fig. 6 also shows that the average Csr over the first 

30 m of sprint running in this subject is about 11.4 J kg–1 m–1, i.e. about 

three times larger than that of constant speed running on flat terrain. The 



product of Csr and the speed yields the instantaneous metabolic power 

output above resting; it is reported as a function of time for the same 

subject in Fig. 7, which shows that the peak power output, of about 100 W 

kg–1, is attained after about 0.5 s and that the average power over the first 

4 s is on the order of 65 W kg–1. 

 

Fig. 5. Equivalent body mass (EM; A) and equivalent slope (ES; B), as a function of the distance 
d (m) for subject 7. 

 

 

Fig. 6. Energy cost of sprint running Csr (J kg–1 m–1), as calculated by means of Eq. 14, as a 
function of the distance d (m) for subject 7. Energy cost of constant speed running is indicated 
by the lower horizontal thin line. Black and hatched distances between appropriate lines 
indicate effects of EM and ES, respectively. Upper horizontal thin line indicates average Csr 
throughout the indicated distance. 



 

 

Fig. 7. Metabolic power Pmet (W kg–1), as calculated from the product of Csr (see Fig. 6) and the 
speed, as a function of time t (s) for subject 7. Average power over 4 s is indicated by horizontal 
thin line. 

 

Discussion: Critique of methods 

The instantaneous values of forward acceleration were obtained from the 

first derivative of exponential equations describing the time course of the 

speed. Linear regressions between measured and modelled speed values 

(Fig. 3) were close to the identity line for all 12 subjects (r2>0.98; P<0.01), 

showing the high accuracy of this kind of speed modelling during sprint 

running (Chelly and Denis, 2001; Henry, 1954; Volkov and Lapin, 1979). 

Even so, it should be noted that: (i) at the start of the run the centre of 

mass is behind the start line and (ii) whereas the centre of mass rises at 

the very onset of the run, the radar device does not; as a consequence, 

(iii) the initial speed data are slightly biased. However, after a couple of 

steps this effect becomes negligible, as such it will not be considered 

further. Finally, it should also be pointed out that filtering the raw speed 

data, while retaining the general characteristics of the speed vs time curve 

(Fig. 3), leads to substantial smoothing of the speed swings that occur at 



each step and are a fundamental characteristic of locomotion on legs. The 

number of subjects of this study (12) may appear small. However the 

coefficients of variation of peak speeds and peak accelerations for this 

population (0.02 and 0.095) were rather limited, and the subjects were 

homogeneous in terms of performance (Tables 1, 2). Finally, the present 

approach is directed at obtaining a general description of sprint running, 

rather than at providing accurate statistical descriptions of specific groups 

of athletes. The main assumptions on which the calculations reported in 

the preceding sections were based are reported and discussed below. (1) 

The overall mass of the runner is assumed to be located at the centre of 

mass of the body. As such, any possible effects of the motion of the limbs, 

with respect to the centre of mass, on the energetics of running were 

neglected. This is tantamount to assuming that the energy expenditure 

associated with internal work is the same during uphill running as during 

sprint running at an equal ES. This is probably not entirely correct, since 

the frequency of motion is larger during sprint than during uphill running. 

If this is so, the values obtained in this study can be taken to represent a 

minimal value of the energy cost, or metabolic power, of sprint running. 

(2) The average force applied by the active muscles during the period in 

which one foot is on the ground is assumed to be described as in Fig. 1B, 

thus neglecting any components acting in the frontal plane. In addition, 

the assumption is also made that the landing phase (in terms of forces and 

joint angles) is the same during uphill as during sprint running at similar 

ES, a fact that may not be necessarily true, and that may warrant ad hoc 

biomechanical studies. (3) The calculated ES and EM values are assumed 

to be in excess of those applying during constant speed running, in which 

case the subject’s body is not vertical, but leans slightly forward (Margaria, 



1975) and the average force required to transport the runner’s body mass 

is equal to that prevailing under the Earth’s gravitational field. Indeed, the 

main aim of this study was to estimate the energy cost and metabolic 

power of sprint running, and since our reference was the energy cost of 

constant speed running per unit body mass, the above simplifying 

assumptions should not introduce any substantial error in our 

calculations. (4) The energy cost of running uphill at constant speed, as 

measured at steady state up to inclines of +0.45, was taken to represent 

also the energy cost of sprint running at an equal ES. Note that the energy 

cost of running per unit of distance, for any given slope, is independent of 

the speed (e.g. see Margaria et al., 1963; di Prampero et al., 1986; 1993). 

Thus the transfer from uphill to sprint running can be made regardless of 

the speed. Even so, the highest values of ES attained by our subjects 

(about 0.70) were greater than the highest slopes for which the energy 

cost of uphill running was actually measured (0.45). Thus the validity of 

our values for slopes greater than 0.45 is based on the additional 

assumption that, also above this incline, the relationship between Csr and 

ES is described by Eq. 14. Graphical extrapolation of the Minetti et al. 

(2002) equation does seem to support our interpretation of their data; 

however, stretching their applicability as we did in the present study may 

seem somewhat risky. We would like to point out, however, that the 

above word of caution applies only for the peak Csr and metabolic power 

values, i.e. to the initial 3 m (Fig. 5), which represent about 1/10 of the 

distance considered in this study. Thus, the majority of our analysis 

belongs to a more conservative range of values. (5) Minetti et al. (2002) 

determined the energy cost of uphill running from direct oxygen uptake 

measurements during aerobic steady state exercise. In contrast, the 



energy sources of sprint running are largely anaerobic. It follows that the 

values of Csr and metabolic power (Pmet), as calculated in this study,  

should be considered with caution. Indeed, they are an estimate of the 

amount of energy (e.g. ATP units) required during the run, expressed in O2 

equivalents. The overall amount of O2 consumed, including the so-called 

‘O2 debt payment’ for replenishing the anaerobic stores after the run, may 

well be different, a fact that applies to any estimate of energy 

requirement during ‘supramaximal exercise’. Finally, the calculated values 

of Csr and Pmet represent indirect estimates rather than ‘true’ measured 

values. However, the actual amount of energy spent during sprint running 

cannot be easily determined with present day technology, thus rendering 

any direct validation of our approach rather problematic. However, in 

theory at least, computerised image analysis of subjects running over 

series of force platforms could be coupled with the assessment of the 

overall heat output by means of thermographic methods. Were this 

indeed feasible, one could obtain a complete energetic description of 

sprint running to be compared with the present indirect approach. 

Metabolic power of sprint running 

The peak metabolic power values reported in Table 3 are about four times 

larger than the maximal oxygen consumption (VO2max) of elite sprinters 

which can be expected to be on the order of 25 W kg–1 (70 ml O2 kg–1 min–

1 above resting). This is consistent with the value estimated by Arsac and 

Locatelli (2002) for sprint elite runners, which amounted to about 100 W 

kg–1, and with previous findings showing that, on the average, the maximal 

anaerobic power developed while running at top speed up a normal flight 

of stairs is about four times larger than VO2max (Margaria et al., 1966). The 



same set of calculations was also performed on one athlete (C. Lewis, 

winner of the 100 m gold medal in the 1988 Olympic games in Seoul with 

the time of 9.92 s) from speed data reported by Brüggemann and Glad 

(1990). The corresponding peak values of ES and EM amounted to 0.80 

and 1.3, whereas the peak Csr and metabolic power attained 55 J kg–1 m–1 

and 145 W kg–1. The overall amount of metabolic energy s pent over 100 

m by C. Lewis was also calculated by this same approach. It amounted to 

650 J kg–1, very close to that estimated for world record performances by 

Arsac (2002) and Arsac and Locatelli (2002). However, these same authors, 

on the basis of a theoretical model originally developed by van Ingen 

Schenau (1991), calculated a peak metabolic power of 90 W kg–1 for male 

world records, to be compared with the 145 W kg–1 estimated in this study 

for C. Lewis. The model proposed by van Ingen Schenau is based on 

several assumptions, among which overall running efficiency plays a major 

role. Indeed, the power values obtained by Arsac and Locatelli (2002) 

were calculated on the bases of an efficiency (η) increasing with the 

speed, as described by ηt=0.25+0.25. vt/vmax where ηt and vt are efficiency 

and speed at time t, respectively, and Vmax is the maximal speed. However, 

Arsac and Locatelli point out that, if a constant efficiency of 0.228 is 

assumed, then the estimated peak metabolic power reaches 135 W kg–1, 

not far from that obtained above for C. Lewis. Thus, in view of the widely 

different approaches, we think it is the similarity between the two sets of 

estimated data that should be emphasized, rather than their difference. 

 



 

Table 3. Peak and mean energy cost of sprint running and metabolic power for the 12 subjects. 

 

Energy balance of sprint running 

It is now tempting to break down the overall energy expenditure of 650 J 

kg–1 needed by C. Lewis to cover 100 m in 9.92 s, into its aerobic and 

anaerobic components. To this end we will assume that the maximal O2 

consumption (VO2max) of an élite athlete of the caliber of Lewis amounts to 

25 W kg–1 (71.1 ml O2 kg–1 min–1) above resting. We will also assume that 

the overall energy expenditure (Etot) is described by: 

Etot = Ans + VO2maxte – VO2max(1–e –te/τ)τ ,   (15) 

where te is the performance time, Ans is the amount of energy derived 

from anaerobic stores utilisation and τ is the time constant of the VO2 

response at the muscle level (Wilkie, 1980; di Prampero, 2003). The last 

term of this equation is the O2 debt incurred up to the time te, because 

VO2max is not reached instantaneously at work onset, but with a time 

constant τ; therefore, the overall amount of energy that can be obtained 

from aerobic energy sources is smaller than the product VO2maxte, by the 

quantity represented by the third term of the equation. In the literature, 

the values assigned to τ range from 10 s (Wilkie, 1980; di Prampero et al., 

1993) to 23 s (Cautero et al., 2002). So, since in case of C. Lewis, Etot=650 

J kg–1 and VO2max=25 W kg–1; Ans (calculated by Eq. 15) ranged from about 



560 J kg–1 (for τ=10 s) to about 600 J kg–1 (for τ=23 s). Thus, for an élite 

athlete to cover 100 m at world record speed the anaerobic energy stores 

must provide an amount of energy on the order of 580 J kg–1. 

Unfortunately we cannot partition this amount of energy into that 

produced from lactate accumulation and that derived from splitting 

phosphocreatine (PCr). However, we can set an upper limit to the maximal 

amount of energy that can be obtained from Ans as follows. Let us assume 

that the maximal blood lactate concentration in an élite athlete can attain 

20 mmol l–1. Thus, since the accumulation of 1 mmol l–1 lactate in blood is 

energetically equivalent to the consumption of 3 ml O2 kg–1 (see di 

Prampero and Ferretti, 1999), the maximal amount of energy that can 

obtained from lactate is about: 

20 X 3 X  20.9 �≈� 1250 J kg–1,    (16) 

(where 20.9 J ml–1 is the energetic equivalent of O2). The maximal amount 

of PCr that can be split from rest to exhaustion in an all-out effort can be 

estimated to be about 22 mmol kg–1 of fresh muscle (see Francescato et 

al., 2003). We can assume that the muscle mass involved in the all-out 

effort in question, for an élite sprinter, is about 25% of his body mass (e.g. 

about 25 kg of muscle). If this is so, and since to spare 1 mmol O2 the 

amount of PCr that needs to be split is about 6 mmol, which corresponds 

to a P/O2 ratio of 6.0, the amount of energy yielded per kg body mass by 

complete splitting of PCr in the maximally active muscles can be calculated 

as:  

0.25 X 22 X 1/6 X 22.4 • 20.9  ≈  430 J kg–1,    (17) 



where 22.4 is the volume (ml, STPD) of 1 mmol O2. Thus the maximal 

amount of energy that can be obtained at exhaustion from the complete 

utilization of anaerobic stores amounts to:  

1250 + 430 = 1680 J kg–1.    (18) 

It can be concluded that the amount of energy derived from Ans during a 

100 m dash in a top athlete is about 1/3 of the total, which is consistent 

with the fact that longer events (200 m or 400 m) are covered at 

essentially the same, largely anaerobic, speed. 

Conclusion 

The above analysis and calculations allow us to condense the factors 

affecting the instantaneous energy cost of sprint running into one 

comprehensive formula: 

Csr = (155.4ES5–30.4ES4–43.3ES3 + 46.3ES2+19.5ES+3.6)EM + k′v2,  

 (19) 

where all terms have been previously defined. The corresponding 

metabolic power (Pmet) is described by the product of Eq. 19 and the 

ground speed (s): 

Pmet = Csr * s = (155.4ES5–30.4ES4–43.3ES3 + 46.3ES2+19.5ES+3.6)EMs + 

k′v2s. (20) 

When, as is often the case, the sprint occurs in calm air and hence v=s, 

these two equations can be easily solved at any point in time, provided 

that the time course of the ground speed is known. 

 

 



2.2 Energy Cost and Metabolic Power in soccer 

Given what I mentioned above, Di Prampero’s equipe have enlarged and 

improved their study on soccer performance analysis by comparing it with 

traditional match analysis video footage. Data were gathered from 56 

matches of the Italian ‘‘Serie A’’ (first division) in the 2007–2008 season, 

using a multiple camera match analysis system in Meazza Stadium (Milan) 

and Franchi Stadium (Florence). Altogether, 399 players from 20 teams 

were evaluated (age = 27 T 4 yr, mass = 75.8 T 5.0 kg, and stature = 1.80 T 

0.06 m), all ‘‘guest’’ playing against the three ‘‘host’’ teams in the home 

stadium of which the video match analysis devices were installed. 

Consequently, each player can appear a maximum of three times. 

Substitutes and goalkeepers were excluded from the analysis. The 

experimental protocol was approved by the Ethical Committee of the 

University of Udine (Italy). Before the study began, the purpose and 

objectives were carefully explained to each subject. Written informed 

consent was obtained from all subjects. 

Match Analysis 

The players’ movements on the soccer pitch were monitored using a 

semiautomatic system supplied by SICS® (Bassano del Grappa, Italy) with 

four 25-Hz sample frequency cameras. Rampinini et al. determined the 

reliability of this device with a typical error of 1.0% for TD. Coordinates 

given by the system and referred to the position of each athlete on the 

pitch were processed as described below. 

 

 



Match Activities 

Performance of each athlete was assessed through three parameters: 

speed, acceleration, and estimated metabolic power.  

Speed. The following six speed categories were used: walking (from 0 to 8 

km h-1), jogging (from 8 to 13 km h-1), low-speed running (LSR; from 13 to 

16 km h-1), intermediate-speed running (ISR; from 16 to 19 km h-1), high-

speed running (HSR; from 19 to 22 km h-1), and max speed running (MSR; 

>22 km h-1). Unlike most studies, we voluntarily replaced the category 

‘‘sprinting,’’ which is normally used for maximal intensities, with a merely 

quantitative evaluation of running speed (MSR). As a matter of fact, 

maximal metabolic intensity in ‘‘sprinting’’ occurs even when running 

speed is not necessarily elevated or maximal. For each of the speed 

categories, time and distance were quantified.  

Acceleration. The following eight acceleration categories were used: max 

deceleration (MD; <-3 m s-2), high deceleration (HD; from -3 to -2 m s-2), 

intermediate deceleration (ID; from -2 to -1 m s-2), low deceleration (LD; 

from -1 to 0 m s-2), low acceleration (LA; from 0 to 1 m s-2), intermediate 

acceleration (IA; from 1 to 2 m s-2), high acceleration (HA; from 2 to 3 m s-

2), and max acceleration (MA; >3 m s-2). For each of these acceleration 

categories, time and distance were quantified.  

Power. The following five power categories were used: low power (LP; 

from 0 to 10 W kg-1), intermediate power (IP; from 10 to 20 W kg-1), high 

power (HP; from 20 to 35 W kg-1), elevated power (EP; from 35 to 55 W kg-

1), and max power (MP; >55 W kg-1). For each of these power categories, 

time, distance, and estimated net energy expenditure (above resting) 

were quantified. 



Energy Cost and Metabolic Power 

The described analysis allowed us to estimate EC and metabolic power, as 

described in the Theoretical Model section. However, the data provided 

by Minetti et al. and considered by di Prampero et al.  refer to running on 

a treadmill. For this reason, the values of EC obtained by equation 4 were 

multiplied by a constant (KT = 1.29) to take into account the fact that 

running on a football field is approximately 30% more costly than running 

on compact homogeneous terrain. Besides distance, speed, acceleration, 

metabolic power, and energy expenditure, to reach a better 

understanding of the performance of soccer players, the following 

parameters were also calculated.  

Equivalent distance (ED). This represents the distance that the athlete 

would have run at a steady pace on grass using the total energy spent 

over the match: 

 

where ED is the equivalent distance (m), W is the total energy expenditure 

(J kg-1), ECC is the EC of running at a constant pace on flat compact terrain 

assumed to be 3.6 J kg-1Imj1, and KT is the grassy terrain constant.  

Equivalent distance index (EDI). This represents the ratio between ED and 

TD in the period considered: 

 

where ED is the equivalent distance (m) and TD is the total distance (m).  



Anaerobic index (AI). This represents the ratio between the energy 

expenditure above a certain metabolic power threshold (TP) selected by 

the investigator (e.g., power output corresponding to VO2max or to 

anaerobic threshold) and the total energy expenditure over the whole 

match or in the period considered: 

 

where AI is the anaerobic index, WTP is the energy expenditure over the 

selected TP (J kg-1), and W is the total energy expenditure (J kg-1). In this 

study, TP was considered equal to 20 W kg-1, thus corresponding to a VO2 

of approximately 57 mL kg-1 min-1, above resting. 

Result 

The mean match time of the players was 95 min 5 s ± 1 min 40 s compared 

with the standard duration of an official match (90 min). The average 

distance covered during the matches (all players) was 10,950 ± 1044 m; 

minimal and maximal distances were 8683 and 13,533 m, respectively. 

Speed. Total time (T) and distances covered (D) in each speed category 

(averages for all players) are shown in Table 4 (absolute values) and Figure 

8 (%). 

Acceleration. Total time (T) and distances covered (D) together with 

corresponding average EC during accelerated and decelerated running in 

each category (averages for all players) are shown in Table 5 (absolute 

values) and Figure 9 (%). 

Power. The product of the instantaneous speed and the corresponding EC 

of running allowed us to estimate the instantaneous values of metabolic 



power, which, as mentioned above, were grouped into five categories. 

Total time (T), distance covered (D), and estimated energy expenditure 

(EEE) for each power category are shown in Table 6 (absolute values) and 

Figure 10 (%). 

Additional parameters. The mean equivalent distance (ED), that is, the 

distance that the athlete would have run at a steady pace on grass using 

the same energy spent in the entire match, was 13,166 ± 1415 m, minimal 

and maximal distances being 10,067 and 16,845 m, respectively. This 

corresponds to a mean equivalent distance index (EDI; i.e., the ratio 

between ED and actual distance covered over the entire match) of 1.20 ± 

0.03, the minimal and maximal figures amounting to 1.13 and 1.33, 

respectively. Finally, mean anaerobic index (AI), that is, the ratio between 

an energy expenditure exceeding a TP of 20 W kg-1 and total energy 

expenditure over the entire match, was 0.18 ± 0.03, with minimal and 

maximal figures of 0.11 and 0.27, respectively. 

 

 

 

 

 



 

Table 4. T (s) and D (m) during the entire match in each speed category (mean T SD). 

 

 

Table 5. T (s), D (m), and corresponding EC (J kg-1 m-1) during the entire match in each 
acceleration category (mean T SD). As detailed in the Theoretical Model section, the EC of 
accelerated and decelerated running was obtained from the individual acceleration values, and 
the corresponding ES and EM was obtained with equation 4; the so-obtained results were then 
multiplied by the grassy terrain constant (KT = 1.29). 

 

 

Table 6. T (s), D (m), and EEE (kj kg-1 or kcal kg-1) during the entire match in each power 
category (mean T SD). 



 

Fig 8. T and D (%) during the entire match in each speed category. 

 

FIGURE 9.  T and D (%) during the entire match in each acceleration category. 

 

Figure 10. T, D, and EEE (%) during the entire match in each power category. 



Discussion 

The main aim of this study was to propose a new approach in the analysis 

of soccer player performance taking into account also the phases of 

accelerated and 

 

 

FIGURE 11—Isopower relationships calculated as function of speed (y-axis) and acceleration (x-axis). A speed of 9 
kmIhj1 (horizontal sketched line) yields different power outputs depending on acceleration. For example, at a 
constant speed (9 kmIhj1), the metabolic power would amount to approximately 13 WIkgj1, whereas at the same 
speed, but with an acceleration of 1 or 2.4 mIsj2, the metabolic power would increase to 20 or to 35 WIkgj1. 
Conversely, decelerated running would bring about a reduction of metabolic power. 

 

decelerated running, which constitute a large and crucial fraction of every 

match. The study of di Prampero et al., with proper adaptations, is 

suitable to be integrated in a video match analysis system. Indeed, the so-

obtained results, such as those of numerous other studies have shown 

that the average energy expenditure over a match is 61.12 ± 6.57 kJ kg-1 

(14.60 ± 1.57 kcal kg-1). However, compared with the traditional video 

match analysis, which estimates distances covered at different speeds, the 

present approach provides a new perspective on player performance on 

the basis of instantaneous power output. As a matter of fact, the 



metabolic power output at speeds that are usually classified as high 

intensity or sprinting is fairly elevated (e.g., when running at a constant 

speed of approximately 14 km h-1 on grass, the metabolic power is 

approximately 20 W kg-1). However, a similar power can also be achieved 

with low running speeds whenever the acceleration is elevated. As an 

example, a running speed of 9 km h-1 would be classified as a ‘‘low-

intensity’’ activity by traditional video match analysis. By contrast, our 

approach reveals that this running speed can generate different metabolic 

demands depending on the acceleration (e.g., Fig. 11). 

As a result of this state of affairs, the present approach yields higher 

performance intensities in soccer than traditional video match analysis. 

This can be shown as follows. Consider a speed threshold of 16 km h-1. In 

this study, as well as in many others, the distance covered at speeds 916 

km h-1 amounts to approximately 18% of TD (Table 4). The metabolic 

power when running on a soccer field at 16 km h-1 amounts to:  

P = ECvKT = 3.6 X 4.44 X 1.29  =˜ 20 W kg-1 

where P is expressed in watts per kilogram (W kg-1), v is expressed in 

meters per squared second (m s-2), EC is expressed in joules per kilogram 

per meter (J kg-1 m-1), and the factor 1.29 is introduced to take into 

account the terrain characteristics (soccer field vs compact terrain). If, as 

is the case in our approach, instead of the speed threshold as such (16 km 

h-1), the corresponding metabolic TP (20 W kg-1) is considered (thus 

including also the acceleration and deceleration), then the TD covered at a 

power exceeding this threshold amounts to 26% and the corresponding 

energy expenditure to approximately 42% of the total (Table 6). 

Furthermore, the profile of a soccer player can be profitably analyzed 



using the additional parameters identified above rather than the 

traditional ones. The total energy expenditure can be expressed as ED 

instead of TD because ED depends both on TD and on ‘‘how’’ TD was 

performed. Although different players could have covered the same TD, 

the use of ED allows the identification of different metabolic energy 

expenditures, thus allowing us to assess the ‘‘true’’ overall energy 

expenditure regardless of the actual distance covered. As shown in Figure 

12, on average, ED is linearly related to TD, being approximately 20% 

higher. However, upon closer inspection of Figure 12, it becomes apparent 

that the EDI, that is, the ratio between ED and TD (isopleths of Fig. 12), for 

a given TD varies substantially among players, the ‘‘lazy players’’ being 

characterized by EDI ; 1.15, their more dynamic fellow mates reaching EDI 

values of approximately 1.30 (Fig. 13). Finally, the AI can also be rather 

informative. In the present study, we defined AI as the ratio of the overall 

energy expenditure above the threshold of 20 W kg-1 (corresponding to a 

VO2 of approximately 57 mL kg-1 min-1 above resting). So defined, AI ranged 

from 0.15 to 0.25 (Fig. 14), thus indicating that from 15% to 25% of the 

overall energy expenditure, it was derived at a very high metabolic power. 

Although, in this study, we assumed a threshold of 20 W kg-1 to define AI, 

ideally, this parameter ought to be ‘‘customized’’ according to the 

endurance profile of each athlete, thus allowing the coach to evaluate 

each player individually. Figure 14 also shows that, in all groups of players, 

the increase of total energy expenditure was brought about by a greater 

use of the anaerobic sources, as shown by the fact that AI becomes 

progressively larger with increasing overall energy expenditure.  



Limits of original method. As reported in the original study, the approach 

used in the present study is based on the following simplifying 

assumptions: 

1. The overall mass of the runner is assumed to be located at the center of 

mass of the body. As such, any possible effects of the motion of the limbs 

on the energetics of running were neglected. This is tantamount to 

assume that the energy expenditure associated with internal work is the 

same during uphill running as during sprint running at an equal ES. This is 

probably not entirely correct because the frequency of motion is larger 

during sprint than during uphill running. If this is the case, the values 

obtained in this study represent a minimal value of the EC or metabolic 

power during the match. 

2. For inclines greater than +0.45, there are no data on the EC of uphill 

running. In this study, we did not observe acceleration greater than 5 m s-

2, corresponding to ES = +0.50. Therefore, also because values above this 

incline were <1.0% of the time of the match (Table 5), we assumed that 

the same algorithm used for estimating EC was also applicable for ES 9 

+0.50. 

Neglected variables. As specified in various sections of the study, this 

approach considers only the running performance during the match. 

Therefore, many other typical activities, such as jumping, kicking the ball, 

tackling, conducting the ball, and so on, have been neglected. 

Furthermore, the energy spent against air resistance has been neglected. 

However, the air resistance increases with the square of the speed, 

amounting to approximately 10% of total EC for a running speed of 

approximately 21 km h-1. Because the time spent above this speed 



represented on average less than 2 min during the whole match, 

neglecting the fraction of EC because of air resistance cannot be expected 

to introduce substantial errors. It is also difficult to evaluate climatic and 

environmental variables: weather and field conditions may influence 

players’ work rate. Incidentally, a value of KT higher than 1.29 (running on 

grass) may be used for calculating the EC in matches played on fields in 

bad conditions (muddy, snowy, etc.). Finally, the algorithm used in this 

study represents the EC above resting metabolism. The evaluation of this 

last is not straightforward; however, it cannot be expected to play a 

substantial role. 

 

 

 

 

FIGURE 12—ED is plotted as a function of TD. Players who complete the whole match are 
symbolized in black circles, whereas substitutes are symbolized in gray circles. Every straight 
line represents a constant ratio between ED and TD defined as EDI. 

 

 

 

 

 



 

 

FIGURE 13—EDI is plotted as a function of TD. Players who complete the whole match are 
symbolized in black circles, whereas substitutes are symbolized in gray circles. 

 

 

 

 

 

 

FIGURE 14—Energy expenditure above TP is plotted as a function of total energy expenditure. 
Players who completed the whole match are symbolized in black circles, substitutes who played 
from 60 to 90 min are symbolized in gray crosses, substitutes who played from 30 to 60 min are 
symbolized in gray dashes, and substitutes who played from 0 to 30 min are symbolized in gray 
asterisks. Every straight line represents a constant ratio between total energy expenditure and 
energy expenditure above TP defined as AI.  

 

 

 

 



Applications to sports other than soccer. The present approach for 

evaluating the EC and metabolic power in soccer could be also suitable in 

other sports characterized by running, such as American and Australian 

football, rugby, basketball, baseball, field hockey, etc. It goes without 

saying that the specific characteristics of these sports (e.g., scrums in 

American football and rugby) should be duly considered to obtain 

meaningful data. In addition, this approach could be particularly 

interesting during official competitions in sports where wearing any kind 

of device is not allowed. When this is not the case (e.g., in Australian 

football), global positioning system (GPS) technology could be used 

instead of video match analysis: athletes could wear a GPS receiver 

defining their position at a frequency of 1 Hz (or 5 Hz with the most recent 

systems). Further studies will be necessary to investigate whether the 

temporal accuracy of GPS with the present frequency of acquisition is 

sufficient to estimate accelerations. Assuming this technology to be 

reliable, use of GPS could prove very useful during training of all sports on 

the basis of running. So, ideally, the present approach should be based on 

two pillars: video match analysis for official competitions and GPS for 

trainings. Finally, it should be pointed out that, always, it will be 

mandatory to identify a specific KT defining the effect of the terrain and of 

the type of shoes worn by athletes on the EC at constant speed. In 

conclusion, the approach used in this study allowed us to estimate elite 

soccer energy expenditure by a video match analysis device also taking 

into account accelerations and decelerations during the various phases of 

the match. Energy expenditure (above resting) for a player with an 

average mass of 75.8 kg turned out to be 4633 T 498 kJ (1107 T 119 kcal), 

comparable to that found by other authors. The TD covered is only a 



partial index of the overall energy expenditure. Indeed, because the 

acceleration and deceleration phases, the variability in energy expenditure 

for the same TD is approximately 15%. Therefore, we propose the use of 

ED (the ratio between total energy expenditure and EC at a constant pace 

on a flat grassy terrain) as a more appropriate index of overall energy 

expenditure. Furthermore, the present approach allowed us to assess the 

metabolic power exerted by the athlete at any instant, thus redefining the 

concept of ‘‘high intensity.’’ The results show that top-class players 

covered approximately 18% of TD at high speed (exceeding 16 km h-1), 

although they spent more than 42% of the total energy at high-power 

output (920 W kg-1). Other parameters make it possible to customize the 

players’ evaluations. A TP can be defined for each player, and the energy 

derived above this threshold, presumably from anaerobic sources, can be 

assessed. The use of the same TP for the 399 players involved in this study 

(20 W kg-1) shows that the anaerobic energy yield ranges from 11% to 27% 

of total energy output. The EC running on grass was assumed to be 29% 

higher than that on treadmill. However, further data are needed to 

establish a more precise value of this coefficient, particularly so to take 

into account the widely different types of terrain. Moreover, as 

aforementioned, we have only considered the EC of running, excluding 

any other action typical of soccer. 

 

 

 

 

 



NEW PARAMETERS IN SOCCER PERFORMANCE ANALYSIS: 

IMPLEMENTATION OF GPS 

It has been widely argued that in a game ( or training ) there are many 

accelerations and decelerations , followed or preceded by phases of 

walking or running at medium - low speed , but we have never been able 

to quantify the power  generated by these variations.  Unfortunately, 

traditional Match analysis does not yet take into account, accelerations 

and decelerations . To overcome this problem ,a new approach has been 

identified to estimate the energy cost of running in acceleration based on 

the equivalence of an accelerated frame of reference , with the Earth's 

gravitational field . In this case , running in acceleration on level ground is 

considered similar to running at a constant speed uphill , where the slope 

is set by the acceleration in an anteroposterior direction . Up until now , it 

continues to make reference to km performed , or to how much distance 

an athlete performs once he goes over 22 km / h . To reinforce this theory 

these indices were used to evaluate the overall performance of the player 

himself : therefore the more meters you do at that speed , the fitter you 

are. In fact for a player to reach this speed from a standing point it takes 

nearly two seconds and his maximum power get developed between 10 

and 16 km / h . So if for some tactical reason he reached 21 km / h , for 

two seconds he would have developed the equivalent metabolic power of 

more than 50 watts / kg or about 3 times its VO2max , but nobody would 

have noticed it because he did not exceed 22 km / h . As we can see from 

Figure 15 , data gathered on the individual player during a sprint show 

that he tends to have the same acceleration measured by Di Prampero ( in 

the legend : DP ) on sprinters , but after 10 meters he is quite unable to 

increase the sprint because he rarely reaches peaks as high throughout a 



match, as his acceleration is held on short spaces and its pace is dictated 

by the position of the ball , and therefore not by the stopwatch .  

 

Figure 15 

Another interesting fact visible in the graph regards the greater variability 

of the acceleration while sprinting with GPS ,opposed to Di Prampero’s 

curve that results to be perfectly parabolic . The nature of his curve is the 

result of a regression that can be summarized as if the athlete ran on a 

track, however we know that during a running session we have a 

propulsive phase where weaccelerate ( when we have the foot on the 

ground ) and a phase where we decelerate due to the gravitational 

component present in the aerial phase . No wonder then if at a frequency 

of 5 Hz you notice fluctuations on the acceleration. We believe that it is 

very interesting to see the live performance of power that tends to 

increase within the first 5 meters , reaching a peak of about 70 watts / kg 

before falling back when the athlete accelerates less compared to the first 

meters. This confirms that running the first 10 meters is much more 

energy-costly ( 52 W / kg average ) when speed is kept at medium-low 

standards , compared to the following 10 m where the athlete has already 



increased his speed ( 38 W / kg average ) . If we analyze with GPS a 20 + 20 

meters shuttle ( Figure 16) we notice that : the breaking phase takes place 

in a very short space ± 2-3 meters, but it is preceded by a controlled-speed 

gait ; technically the individual keeps his pace constant for approximately 

ten meters as he knows he will have to slow down eventually, therefore 

he is already preparing for full speed descent. If we were to test this 

exercise on sprinters we would notice that they naturally tend to reach 

high speed, with disastrous results in the breaking and re-acceleration 

phase that occurs in a clumsy and slow fashion . In this case eccentric 

breaking is much faster ( and economic ) than  positive acceleration . This 

is very important for various reasons , one of which , as indicated by the 

same authors, is that the system they used for calculating power only 

works up to negative accelerations of about -5 m / s2 . Currently we have 

replaced the 5th degree equation offered by Minetti (relative to Cr of 

running up and down ) with a more "comfortable " 3° degrees equation 

where even beyond the limits of inclination of ± 45 % , we continue to 

register positive energy cost data . As we will notice later on, breaking at 

such intensity ( < -5m / s2 ) is not so frequent in soccer ( about 5% of all 

the braking); breaking at medium intensity is much more common, 

therefore the margin of error for this evaluation is bearable.  At this point 

we realized that GPS can help us a lot during the evaluation, because this 

way we can also evaluate non-linear shifts, measure speed , accelerations 

and power on mixed routes with CoD ( changes of direction). 



 

Figure 16 

 

3.1 Match Analysis via GPS 

The second step was to analyze some games with GPS systems to see if 

the data we were retrieving were similar to those obtained with video 

analysis . Table 7 below shows that data collected on some U17/18 

matches ( 30 surveys ) are very similar to those obtained by prof. Di 

Prampero. 

 

Table 7  

Data collected are totally reinforcing the studies conducted with video 

match analysis. As a result of this, we can confirm that stressing the 

importance of evaluating athletes according only to high speed 

parameters results to be detrimental in evaluating metabolic efforts 



performed by players. Following the proposals of DP , we simply 

recompiled his table with data gathered from GPS resulting in  table 8: 

 

Table 8 

 If we mistakenly evaluate only speeds higher than the MAP ( >16 km 

/ h) these only refer to  4.3% of the total time in a game. 

 A player performs 14.3 % of his time to a greater metabolic power 

than the MAP ( maximum aerobic power set to 20 W/kg equaling to 

57 mL kg – 1 min - 1 O2); 

 energy deployment  ( EE = Energy expenditure ) depends on 42.4 % 

of  actions above the MAP; 

 the average metabolic power deployed during a game is 12 W / kg 

corresponding to 34.3 ml kg – 1 min - 1 net oxygen utilization ; 

 average energy expenditure ( EE ) in a game equals to 65 kJ / kg, for 

a player weighting  70 kg amounts to 4550 kJ approximately 1100 

kcal ; 

 for over 50 minutes, a player tends to walk ( up to 6 km / h ), but for 

only 2-3 minutes he stands completely still . 



 

Table 9 

In Table 9 we converted the various power zones of a player as if he ran at 

constant speed : if up to 16 km / h there is a certain similarity between the 

speed and power data (except to 0-6 km / h ) , we notice that over 16 km / 

h the ratio tends to differ, so that when players deliver a metabolic power 

greater than 35 W / kg , there is no speed parameter that justifies it. So, it 

is arguable that what has been done to date using speed over a certain 

threshold, has limited value to indicate the efforts of a football player. If in 

the 70s we believed that the distance covered during a game 

corresponded to almost 10-12 km with about 1000 m performed at more 

than 20 km / h and this helped us to understand that football is played at 

variable speed, now this data are to be considered irrelevant. Nowadays, 

we believe that there is margin for radical changes to be adopdted in 

match analysis and as a result of this different approaches to structuring 

training sessions are being developed: ex, how often does an intense 

action occur? How much recovery do you need? And how is it distributed 

throughout a match? 



 

Tabella 10 

It is interesting to note ( Table 10 ) that 62% of the actions performed over 

the MAP ( > 20 W / kg ) are exploited within 2 seconds ; after two seconds 

the player enters his most "aerobic" performance, recovering the effort in 

a very brief manner. Indeed it is noticeable that the switch from aerobic to 

anaerobic action occurs frequently followed by an average recovery of 

10". Only 6.6% of the actions last for a period exceeding 6" and it is 

interesting to note that when the effort is prolonged beyond 2" the 

average power output rises and complementarily recovery time tends to 

increase. In simpler terms, only 0.8 % of all actions performed over the 

MAP  took longer than 10" and the maximum we observed was 14 

seconds. 

 

Graphic 1 

By analyzing recovery periods ( Graphic 1) , we found out that the actions 

performed above MAP, one out of two were reiterated within 5" and this 



represents an extremely important figure to structure your training. 

Indeed, it is quite obvious that a player who is involved in an action, tends 

to make prolonged efforts separated by short interruptions; this is to 

prevent an excessive use of anaerobic glycolysis and exploit greater 

creatine-phosphate ( CP ) reserves, that can be restored in seconds. 

Therefore, when the ball is far off the player, he is passive in the action, so 

he has more time to recover. Out of all the data we gathered one of the 

most relevant was that RSA (repeated Sprint Ability) that resulted to be 

null in its fabrication with regards to Soccer, even though up until now we 

have always believed that this method was the closest to the real 

performance model of football. 

 Indeed: 

• actions of up to 6" are quite rare and hardly ever consecutive ; 

• in the first RSA repetition, the aerobic system is kept at basic levels, 

reaching the standard value an athlete obtains during the game around 

the 2°-3° rep. : leading to further high energy production through the 

anaerobic mechanism with a broad and unreasonable ( for the model) 

premature lactate production; 

• in this test the athlete starts from scratch while in a real life situation 

accelerations occur when a player is already working at 5-12 km/h;   

• in the RSA recovery phase, pauses/breaks are static, while in real life 

scenarios you either walk or run at medium-low speed. 

It is clear that in order to avoid a player to reach exhaustion we must 

come up with an alternative test that would be as close and efficient as 

possible to the Football Model for performance analysis from a 



Biomechanical point of view, and that it would not push the athlete to 

produce an exaggerated amount of lactate.  

First we must evaluate both a theoretical and practical aspect, highlighted 

in figure 18: 

 

Figure 18 

The acceleration is not absolute, because if the subject is running at very 

low speed ( 0-8 km / h ) he is able to accelerate well up to 5-7 m/s2, but if 

he is running at 18-22 km / his acceleration will only be 2-3 m/s2, even 

though he is pushing to his fullest potential. It is vital for us to be able to 

register both values (speed and acceleration ) in order to determine 

whether or not the athlete is performing his maximum acceleration at two 

different speeds. The graph tells us that even if the athlete reaches his 

maximum, the slope of the straight line between speed and acceleration 

does not vary (the equation of speed over acceleration is always that of 

Prof. Di Prampero). This is why in a game we used this index of maximum 

acceleration relative to speed and as a result we got the following:   

Acc < 50% max   80,1%  

Acc > 50% max   19,9% 



In simpler terms, throughout a game athletes perform 20% of their 

accelerations over 50% of the maximum possible, while all the other 

actions are performed at moderate acceleration. With regard to breaking 

phases: for only 5 % of all decelerations a footballer breaks to his 

maximum ( < -5 m/s2 ) ; on the other hand many more ( 37% of them ) are 

medium decelerations, that are still valuable but of medium speed. 

-12 < Dec < -3 m/s2   


    13% 

 

Precisely for this purpose, we have introduced this parameter of intense 

deceleration from -3 m/s2 . 

We must note that the ratio between speed and acceleration (Fig. 18) is 

not visible from the breaks we have analyzed , meaning that when an 

individual tries to break in the least possible time, he is capable of 

performing considerable decelerations in the order of 10 / -12m s-2 even 

at high speed( ≥20 km / h ) ( see Fig. 16) . 

In fact, breaks occurring at the same speed of accelerations take less time 

to be executed, (breaking from 20 km / h can take place in 500 ms, while 

accelerating up to speed of 20 km / h occurs in ≈ 1”5 -2“). 

 

Changes of Direction 

Another interesting parameter concerns the changes of direction ( CoD ) , 

their size and their relationship with power and speed. The CoDs ( shown 

in Table 11) are multiple ( about 1000 with angles greater than 30° ) and 

over 800 have angles > 30° but have also been performed at powers 



greater than 20 watts / kg . In practice we develop a CoD > 30° and at 20> 

W / kg  every 30" .  

 

Table 11 

We believe it is of vital importance to relate the CoD with both power 

(since we can now calculate it) and speed . Table 12 shows that for all 

CoDs performed at angles wide (up to 30° ) there is about 17% of all 

actions above the MAP that decrease below 10 % if the angle of the CoD is 

closed more than 90° and consequently more challenging . 

 

Table 12 

This entails that we must not undervalue those CoDs with small amplitude 

because very often they are carried out at both high speed and intensity. 

In this case Table 13 helps us analyze CoDs in relation to speed : when we 

execute a CoD over 90°, speed is almost always very low ( 55.6 % within 4 

km / h ) because we have to slow down in order to perform this action. 



 

Table 13 

With angles opened up to about 60° we are able to perform some CoDs at 

higher speed , while the speed at which we often carry out CoDs with less 

amplitude is normally between 4 to 8 km / h . 

 

3.2 Comparative evaluation of the standardized model through 

practical training examples 

The final outcome of utilizing GPS is to monitor what happens during 

training and specify if training differs from the Football Model; for the sole 

purpose of identifying and classifying specifically for exercises with the 

ball, whether they have a greater correlation (not only metabolic but also 

coordinative and muscular) with this game. 

Let’s start by analyzing one exercise (with no ball) that is widely used by 

fitness coaches: linear runs at medium intensity:  

- linear runs at medium intensity performed "up and down" over distances 

ranging from 20- 40-60-80 m at speeds ranging from to 60 % to 100%; 

- micro pauses of 15" - 20"; 

- macro pauses 1' - 1'30". 



from Table 14 we notice that linear runs at medium intensity structured 

this way, not only they do not satisfy the required metabolic effort but 

also they lack Cods and intense breaks compared to a real life scenario 

(game). 

  

Table 14 

From the table (15 ) we can say that in terms of effort distribution visible 

in power zones, time dedicated to actions with an intensity over 35 W/kg 

is much more than the game’s (10,5 % vs 4,3 %) but these actions are not 

a result of accelerations, because an athlete tends to maintain a constant 

speed over 16 km/h for a prolonged period of time; in contrast, we notice 

that low intensity (where an athlete is walking or standing still ), is 

considerably higher with respect to a game, so much so that in this kind of 

training the athlete remains still for 30% of the time, while in a game this 

phase lasts between 3-5 % of the total duration of the game.  

Table 15 



In terms of energy expenditure ( EE ) the average power zone is merely 

influenced with this exercise. Practically, a great deal of anaerobic effort 

gets developed, where the athlete through the process of glycolysis will 

produce a lot of lactate as this physical activity gets prolonged for more 

than 2" -3". It is advisable not to reach high speed over long distances, but 

frequently vary both speed and direction, so that breaks and Cods would 

occur, including recovery phases where the athlete is not completely still 

(by walking for example). Therefore, in these exercises we should 

introduce a few variations in terms of accelerations and decelerations, 

with CoDs and medium intensity runs so that these exercises would come 

as close as possible to the metabolic, coordinative and neuro-muscular 

model of football.   

Possession ball 

Various types of ball possessions with different technical-tactical purpose 

have been proposed : 

•  10 vs 10 in a space of 60 x 65 m; 

• the work was composed of 2-3 series of 2'- 4'; 

• the break between sets was 60 ". 

We notice that in the ball possession exercises the metabolic effort is 

quite modest, accounting to almost 70% of the game’s power (metabolic) 

(Table 16). Moreover, the number of CoDs > 30° > 20 W / kg account for 

only 30% of what happens in a game . Likewise in terms of muscular and 

coordinative effort, intense accelerations are approximately 40% of the 

game’s and intense decelerations are about 25% of the game’s. 



 

Table 16 

The average distance traveled by a player per minute does not reach 100 

meters, and this fact, combined with limited intensive actions, allows us to 

say that this exercise does not have the minimum requirements of the 

model and therefore must be restructured. This exercise makes an 

individual develop an EE equal to 38 % over the MAP against 42.4 % 

(game) , but on the other hand the time spent working at low intensity 

greatly increases compared a game: this is due to the little integration of 

the athlete with the ball, and consequent decrease of metabolic effort. 

(Table 17 ) . 

 

Table 17 



It is more than likely that an increase in surface of the field or conversely a 

decrease in the number of players, could positively change this exercise. 

Moreover, the duration of the same series (even if more intense) should 

be prolonged; even though we believe that in order to come as close as 

possible to the model we need to be a few points above the VO2 of the 

match. 

- Exercise: 10 vs 10 game on a field 60 X 65 ( doors placed just outside 

the box ) 

Almost all workouts end with a short game that lasts for 15-30 minutes. 

The game gets interrupted once or twice for short pauses (60”) and 

tactical indications. It’s often believed that making players finish their 

training with an exercise like this, would make them respond in a much 

better way in terms of mental, coordinative and metabolic effort. This 

happens only if the game’s parameters are met. (Table 18 ). 

 

Table 18 

The trend however is that the match played at the end of training is often 

performed on small surfaces, where every single player, who normally  

covers about 300 m2 of field in a real game, during training only has to 



cover 100-150 m2 . As we see from these data (Table 19 ), the metabolic 

effort is much lower (similar to ball possessions); also accelerations, 

decelerations and CoDs are half of those that actually happen during a 

game. To confirm this , we see that in these games at the end of practice, 

players tend to take longer breaks even compared to the game’s. 

 

 

Table 19 

 

 

 

 

 

 

 

 

 



AGE GROUPS COMPARATIONS WITHIN A SOCCER CLUB 

4.1 Introduction 

The purpose of this study is to compare the external load retrieved in 

training among the various age groups of a professional football club, 

starting with the U15s up to the first team. 12 weeks of practice have 

been monitored , U15 (three days of practice per week, 20 players h 1,76  

± 0,2m, BM 65 ± 1 Kg) U16 (four days practice per week, 21 players h 1,80  

± 0,1m, BM 71 ± 1,5 Kg), U17-18 (5 days of practice per week, 19 players h 

1,82 ± 0,25 m, BM 74 ± 2,3 Kg) and first team ( 5 days of practice, 25 

players h 1,83 ± 0,27 m BM 75 ± 1,8 Kg), goalkeepers have not been 

included in this study. For every team, physical tests have been registered 

at the beginning, in the course and at the end of the season (table 20). 

For all age groups up until the U17-18s we have proceeded with the same 

set of tests (Anthropometric evaluation, CMJ, Speed Test 10-20mt, Yo-Yo 

int. Rec. Test lev.1) while for the first team we have proceeded with 

Isokinetic tests to evaluate the lower limbs, CMJ, anthropometric 

measurements and Mognoni’s test to evaluate metabolic effort. The final 

scope of this study was to highlight differences in volume/intensity 

between the “formative training for academy players” and the training 

aimed at improving game performance as it should be in a first team.  

Average team Test

CMJ Isocinetic Mognoni B.M. H Speed 10 Speed 20 Yo-Yo Int.

torque ext torque flex

First team 44 ± 6 200 N-M ± 25 155 N-M ± 32 162 ± 5- 4,0 ±1,5 1,83 ±0,27 75 ± 1,8

U 17-18 40 ± 4 1,82 ± 0,25 74 ± 2,3 1,73 ± 0,10 3 ± 0,10 17 ± 0,5 Km/h 

U 16 35 ± 3 1,80 ± 0,1 75 ± 1,5 1,76 ± 0,11 3,01 ± 0,09 17 ± 1 Km/h

U 15 35 ± 4 1,76 ± 0,2 65 ± 1 1,88 ± 0,08 3,24 ± 0,13 16 ± 1 Km/h  

Table 20. Average teams’ Tests 

 

 



4.2 Methods 

In every practice we monitored, 6 GPS Qstarz (10hz) per team were used. 

All of them have been placed in the upper-central part of the athletes’ 

back. The study has not been influential in any way on the structure of the 

training sessions, every micro-cycle has been prepared by the respective 

technical staff, composed of: 1st Coach, 2nd Coach, Fitness Coach, 

Goalkeepers coach, Technical coach. Data analysis has been conducted 

through a dedicated software called LeGalaColli v.9079b, that generates a 

large volume of figures and parameters; the most relevant ones concern 

the concept of metabolic power derived from Prof. Di Prampero’s studies 

that are consequently elaborated by professor Colli. An initial synoptic 

table collects data gathered during training, correlating them with the 

parameters of the new “Match Analysis”. As we can see from figure 19, 

the synoptic table shows the following data: 

- Average Watts  (Metabolic power) 

- Average VO2 

- Distance/minute (m) 

- % Intense accelerations 

- % Intense decelerations 

- CoD/min 

- CoD/min >30° 

- % Equivalent distance 

- % Speed > 16Km/h 

- % Anaerobic 

- % Watt > 20 t ≥ 3’’ 

- Kcal 

- Total distance (m) 

- % W>35/W>20 (very high intensity). 



 

Fig 19 

 

Fig 20 

The above mentioned data are given by the software for training 

evaluation/analysis. Other info (not mentioned) refers not only to 

physiological situations, but also to tactical situations that dictate key 

points to the remaining technical staff ( not only fitness coaches), (fig. 20) 

The principle insight to the evaluation of the training session is given by 

the synoptic table (fig.19) , as it portrays in a very detailed fashion the 

quality of exercises being performed; however for the purpose of this 

study,  other parameters have been identified in order to measure 

“quality” of the entire session and compare it with other training sessions 

(composed of different exercises) , other weeks of work, and different age 

groups.  



Therefore, this software allows us to monitor the athlete ( with a 360° 

view) and the team not only referring to specific exercises but also to the 

total amount of work being delivered. The parameters identified for 

quantifying the “total external load” (re-elaborated) are(fig 21): 

 

 

- Total Juole  ( Energy Expenditure,) 

-  Joule > 20 W (identifies work delivered at high intensity:  > 20W o > MAP) 

-  Cod > 30° > 20 W (value estimating reactive during Cods  strength)  

- Total Distance (meters) 

-  Distance > 20 W (meters covered at high intensity) 

 

 

 

Fig. 21 

 

 

 

 

 

 



4.3 Results 

Index:  

- kJ  (total Joule/1000) 

- % kJ > 20 W ( % J > 20 W/1000) 

- kJ > 20 W (high intensity Joule/1000) 

- Cod (>30° >20 W) 

- Km (Total Distance) 

- % Km > 20 W (Distance covered at High Intensity) 

The weekly average data gathered in the period of studies (12 weeks) for 

the all the various age groups are shown as follows: U15: kJ 122,5 ± 12,2; 

% kJ > 20 W 30,4 ± 2,2; kJ > 20 W 37 ± 3,7; Cdd 356,4 ± 32; Km 21 ± 3; Km 

> 20 W 3,6 ± 0,4. For the U16 : kJ 143,6 ± 14,2; % kJ > 20 W 31 ± 2,4; kJ > 

20 W 46,9 ± 4,3; Cdd 461,5 ± 39,2; Km 25 ± 3,1; Km > 20 W 4,9 ± 0,6. U17-

18: kJ 158,6 ± 16,3; % kJ > 20 W 37,4 ± 2; kJ > 20 W 57,4 ± 5; Cdd 507 ± 

41,6; Km 29,4 ± 2,2; Km > 20 W 5,5 ± 0,3. First Team: kJ 140,4 ± 22,2; % kJ 

> 20 W 31 ± 2,3; kJ > 20 W 44 ± 4,5; Cdd 403,7 ± 18,8; Km 26,1 ± 5,1; Km > 

20 W 4,8 ± 0,5 (Graphs 2,3,4,5,6). 



 

Graph 2.  Total Energy Expenditure:  *Significant difference (p < 0,05) between first team and  

U 17-18; between first team and  U 15; there are no significant differences between first team 

and U16. # Significant difference (p< 0,05) between  U 17-18 and U 16 and U 15. ^ Significant 

difference (p< 0,05) between  U 16 and U 15. 

 

 

Graph 3. Energy Expenditure at high Intensity: *Significant difference (p < 0,05) between first 

team and U 17-18; between first team and U 15; there are no significant differences between 

frist team and U 16. # Significant difference (p< 0,05) between U 17-18 and U 16 and U 15. ^ 

Significant difference (p< 0,05) between U 16 and U 15. 



 

 

Graph 4. Change of direction at high intensity: *Significant difference (p < 0,05) between first 

team and U17-18; between first team and  U 16; b tween first team ande U 15; # Significant 

difference (p< 0,05) between  U 17-18, U 16 and U 15. ^ Significant difference (p< 0,05) 

between U 16 and U 15. 

 

 

 

Graph 5. Total distance: *Significant difference (p < 0,05) between first team and U 17-18; 

between first team and  U 15;there are no significant differences between first team and U16.  

# Significant difference (p< 0,05) between  U 17-18, U 16 and U 15. ^ Significant difference (p< 

0,05) between U 16 and U 15. 



 

 

Graph 6. Distance covered at high intensity: *Significant difference (p < 0,05) between first 

team and U 17-18; between first team and  U 15; there are no significant differences between 

first team and U 16. # Significant difference (p< 0,05) between U 17-18, U 16 and U 15. ^ 

Significant difference (p< 0,05) between U 16 and U 15. 

 

4.4 Recommendation 

By looking at these graphs we can say that the team with the highest 

parameters is the U17-18. Surprisingly their values/data are higher than 

the first team’s (on all the tests taken into account) in terms of volume 

and intensity ( > 20 w/ > maximal aerobic power) over the exact number 

of days of practice. Even the U16, (with one day less of practice) registered 

the same volume of work as the first team, with higher results in high 

intensity CoDs. The U15 are the group that developed less volume of work 

and intensity over the week(considering they practice one day less a week 

compared to the U16 and two days less a week compared to the U17-18 

and the first team). It must be said that the new parameters used for 

training evaluation need to be revised with care and attention, especially 

when it comes to interpreting the two key words we previously used, 



“volume” and “intensity”. Screening training sessions with these advanced 

measuring systems (GPS, Software LaGalaColli) demands in depth analysis 

by the technical staff who need to take into account remaining data 

portrayed by the software (see specific exercises (fig. 19), and the 

methodology according to which these exercises have been executed: as it 

greatly influence the effect of work-loads on athletes, either quantitatively 

or qualitatively.  We believe the reason why parameters emerged from 

the analysis of U17-18  are considerably higher than the other age groups’, 

is due to the fact that the “formation” of a player depends on various 

types of training (technical/tactical and physical); by mixing up these 

various types of training we are capable of limiting an athlete’s deficits, in 

order to educate and prepare him for professional football.  Data 

retrieved from the other age groups confirm that considering less days of 

practice, the work load is proportionally not very distant from the values 

collected on top players. (Data not been yet elaborated) 

 

 

 

 

 

 

 

 

 



4.5 Conclusion 

The purpose of this study was to compare the external load of the 

different age-groups within a professional football club through innovative 

measuring systems based on the studies conducted by Prof. Di Prampero 

on Metabolic Power.  We can confirm that both quantity and intensity of 

physical work are discriminative traits of the age groups we have analyzed. 

The approach to practice, quality of players, and technical-tactical-

physical-psychological objectives are all variables that carry fundamental 

importance on the variation of work load amongst different teams; further 

development of this model could lead to deeper investigations on the 

differences related to playing position, ranking, and fatigue during a single 

match or during the season. It is also believed that sharing this data could 

be the starting point for strengthening the knowledge of our area of work 

and begin a confrontation with other academies, as they are currently 

raising general awareness in the World of Football.   

 

 

 

 

 

 

 

“One’s destination is never a place, but a new way of seeing things.” 

         Henry Miller 
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