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We  propose  a novel  set  of  indexes  to classify  the information  content  of  Persistent  Scatterers  (PS)  and  rate
the  health  of  engineering  structures  at urban  to local  scale.  PS  are  automatically  sampled  and  grouped  via
‘control  areas’  coinciding  with  the  building  and its surrounding  environment.  Density  over  the  ‘control
areas’  and  velocity  of PS are  converted  respectively  into:  Completeness  of Information  Index  (Ici)  that
reflects  the  PS  coverage  grade;  and  Conservation  Criticality  Indexes  (Icc)  which  rate  the  health  condition
of  the  monument  separately  for  the object  and  surrounding  control  areas.  The deformation  pattern  over
the  structure  is classified  as  isolated  (i)  or diffused  (d) based  on  the Velocity  Distribution  Index  (Ivd).
Both  Ici and  Icc are  rated from  A  to E classes  using  a colour-coded  system  that  intentionally  emulates  an

energy-efficiency  scale,  to  encourage  the exploitation  of  PS  by  stakeholders  and  end-users  in  the  practise
of  engineering  surveying.  Workability  and  reliability  of  the  classification  indexes  are  demonstrated  over
the  urban  heritage  of  Florence,  Italy, using  well  established  ERS-1/2  (1992–2000)  descending,  ENVISAT
(2003–2010)  ascending  and  descending  PS  datasets.  The  indexes  are  designed  in  perspective  of handling
outputs  from  InSAR  processing  of  higher-resolution  time  series.

©  2015  Z. Published  by  Elsevier  B.V.  This  is an  open  access  article  under  the CC  BY-NC-ND  license
. Introduction

In building surveying, condition assessment is typically pro-
ided as a final rate according to a pre-defined scale of lettered or
umbered classes (e.g. Salim and Zahari, 2011). Practitioners and
nd-users find this type of output very effective to express and
nderstand the structural health of the building in a concise, but
ighly informative way (e.g. Nurul Wahida et al., 2012).

Looking at the current Earth Observation science, Persistent
catterers (PS) obtained via satellite multi-temporal Interferomet-
ic Synthetic Aperture Radar (InSAR) were already demonstrated
aluable to monitor engineering structures and historical assets
e.g. Chang and Hanssen, 2014; Giannico et al., 2013; Osmanoğlu
t al., 2011; Stramondo et al., 2008). Whereas, from an application
oint of view, the international relevance of making this technol-

gy suitable to support daily practise is proved by the efforts done
t various levels to ease the exploitation of PS datasets by stake-
olders, for instance in contexts of urban geohazards mapping (e.g.

∗ Corresponding author. Tel.: +39 3391574015.
E-mail  address: ing.pratesi@gmail.com (F. Pratesi).
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303-2434/© 2015 Z. Published by Elsevier B.V. This is an open access article under the C
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Bateson et al., 2012). Recently indexes were also proposed to auto-
mate and simplify the temporal analysis of PS time series (Berti
et al., 2013), or to predict PS spatial distribution (Cigna et al., 2014),
but not enough attention was  paid so far to classify PS proper-
ties to generate an output that can be effectively implemented for
purposes of building condition assessment.

To fill this gap, in this paper we propose a novel method to
transform PS deformation estimates into classification indexes that
allow us to rate the health and instability of civil engineering
buildings due to structural deformation. We  use the ‘Index of com-
pleteness of information’ (Ici) and ‘Index of conservation criticality’
(Icc) to express the spatial distribution and velocity range, respec-
tively, of the PS covering the building to survey. This means that
for each structure we provide a figure of the estimated hazard
rate (Icc score, from ‘stable structure’ to ‘critical deformation’),
plus the associated level of confidence based on the amount of
PS information available over the structure (Ici score, from ‘com-
plete information’ to ‘no data’). These indexes are scored from A

to E classes that are colour-coded from green to red to intention-
ally emulate an energy-efficiency scale, so that the final output of
the structural assessment is provided in a format that the users are
more familiar with.

C BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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ig. 1. Procedure of PSI-driven condition assessment for hazard rating of heritage a
Ici); (b) object conservation criticality (Icc,o); (c) surrounding area conservation crit
m, average PS density).

We  apply our method on PS data from ERS-1/2 and ENVISAT
SAR time series covering the built environment of the city of Flo-

ence, Italy. We  demonstrate that our index-based classification
an maximise the PS information of well established datasets also
ccounting for their intrinsic limitations. The discussion focuses on

he novelty that this method can bring into the field of engineering
urveying.
il structures, via the calculation of the indexes of: (a) completeness of information
 (Icc,a); and (d) final integration of the collected information and indexes (notation:

2.  Methodology

The workflow to classify PS and rate hazard for each structure
to survey is reported in Fig. 1. The steps include, in order: the cal-
culation of the ‘Completeness of Information Index’ (Ici, see Section

2.2), the calculation of the ‘Conservation Criticality Index’ for the
object (Icc,o) and for its surrounding area (Icc,a; see Section 2.3), and
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Fig. 2. Example of buildings in the city of Florence with different Ici: (a) National archive – class A, with coverage grade of 0.5 for both the object and surrounding areas; (b)
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illa  La Petraia – class C, due to 0 PS over the surrounding area; (c) Pratolino sanato
he  ENVISAT descending PS dataset.

nally the integration of the collected information and indexes (see
ection 3).

.1.  Definition of control area and automatic PS sampling

PS  valid for the rating procedure are identified using two distinct
ontrol areas (Fig. 2). The object area is drawn exactly along the
lan edges of the object derived from cadastral maps and aerial
hotographs, while the surrounding area is drawn as buffer of the
bject area the stability of which has impact on the object, with a
ay commensurate with the spatial resolution of the SAR images
e.g. 30 m for PS ERS and ENVISAT datasets).

In  this way we account for those PS falling outside but very
losely to the object boundaries (i.e. in the order of a few metres)
hat can derive from double-bounce scattering at the corners
ormed by the object exterior walls and the pavement/ground
urface. Keeping these points in the surrounding area helps
ot to waste informative PS, and counterbalance effects due to
he medium resolution of the pixels generating PS during the
SI processing. This is also useful to account for possible non-
orrect projections of the PS datasets over the geographic support
nformation (e.g. orthophoto, geographic map; cf. Tapete et al.,
015). Furthermore, PS falling within the buffer zone provide dis-
lacement estimates that can be retained as meaningful indirect

nstability indicators for the surrounding field or nearby buildings.
hese PS, of course, can assume a relevant value in case of objects
ot covered by PS.
.2.  Completeness of information index – Ici

Ici index numerically expresses how well or bad the object and
ts surroundings are covered by PS, i.e. the completeness of PS
n the Florentine countryside – class Bs due to the 20 m shift along SW direction for

information.  The numerical value of this index reflects the density
(D) of PS (PS/m2) falling in the relative control area.

We  first calculate the PS density for the object area (Do). If Do is 0,
less or higher than a fixed threshold of average PS density (Dm), then
the partial score attributed takes value of 0, 0.25 or 0.5, respectively
(cf. Fig. 1b). PS density for the surrounding area (Da) is calculated
with the same partial score scale as for Do. Ici is then obtained as
sum of Do and Da partial scores, so that the final comprehensive Ici
is rated from 1 – class A to 0 – class E (with step of 0.25 among two
neighbouring classes), i.e. from the highest to the lowest degree of
information completeness. Null value of Ici therefore stands for no
PS available on both the control areas, and this inhibits the com-
putation of conservation criticality index. No structural assessment
and hazard rating is doable, even if PS distributed outside the buffer
zone can suggest extrapolation to the study object.

With regard to Do and Da calculation, similarly to what discussed
by Colesanti and Wasowski, (2006) for rural and low urbanized
areas, it is challenging (and, in a sense, also arguable) to use a unique
value of average PS density as Dm over urban sites that include a
wide spectrum and inhomogeneous distribution of building typolo-
gies.

Dm values for the object and surrounding areas are obtained by
averaging the values of Do and Da found over the full sample of the
respective control areas covered by a given PS dataset. For instance,
2 × 10−3 and 1 × 10−3 PS/m2 were the thresholds to score Do and Da,
respectively, for the ENVISAT ascending PS dataset, while 1 × 10−3

and 6 × 10−4 PS/m2 for the corresponding descending dataset (cf.
Section 3).
This  approach is therefore dataset-specific, and provides a Dm

value that best describes the performance of a PSI processing in
relation to a given satellite with its own acquisition geometry. This
also makes Ici calculation scalable in cases of SAR imagery from very
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Table  1
Conservation criticality index (Icc) classes and relative PS velocity range.

Icc Class Velocity range

A |Vmax| ≤ 1.5 mm/yr
B 1.5 mm/yr < |Vmax| ≤ 2.0 mm/yr
C 2.0 mm/yr < |Vmax| ≤ 3.5 mm/yr
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D 3.5 mm/yr < |Vmax| ≤ 10 mm/yr
E 10 mm/yr < |Vmax|

igh resolution space missions (e.g. COSMO-SkyMed and TerraSAR-
).

Fig. 2 shows some examples of Ici scoring. Subscript “s” is added
o the Ici final rate (e.g. As), to indicate that PS are shifted (Fig. 2c).

.3. Conservation criticality index – Icc

This index expresses numerically the condition of the study
bject and its surroundings based on the maximum value (Vmax) of
he displacement velocity estimated along the Line-Of-Sight (LOS)
or the entire monitoring period, among all PS in the relative control
reas.

Similarly to Ici, for each PS dataset two separate values of Icc,o

nd Icc,a are calculated for the object and its surrounding area.
Based  on the Vmax value found in the respective control areas,

cc,o and Icc,a are ranked using a scale of 5 classes of Conservation
riticality  index. Table 1 reports the scale adopted for the city of
lorence, Italy, (cf. Section 3) the lower and upper limits of which
re here commensurate with the velocity distribution of the ERS-
/2 and ENVISAT PS datasets.

Velocity  intervals are determined based on the radar techni-
al parameters and the statistical distribution of velocity values

cross the whole PS dataset. The velocity range associated to a sta-
le object (i.e. class A) depends on the single measure precision
chievable by the radar technique and then on the radar band fre-
uency. Accounting for the C-band radar sensor used here and the

ig. 4. (a) ENVISAT descending PS 2003–2010 over the Artemio Franchi stadium with Ivd

eformation against an overall stability. (b) Differently, the same dataset over theMERC
attern with (Vmax–Vmean) that equals (Vmean–Vmin), thereby leading to Ivd value of 51%.
Fig. 3. Conceptual sketch of the LOS velocity variables required to calculate Ivd.

standard deviation of the PS datasets exploited, a velocity
threshold of ±1.5 mm/yr is recommended (i.e. class A with
|Vmax| ≤ 1.5 mm/yr). As well reported in the literature (Hanssen,
2005; Crosetto et al., 2010; Cigna et al., 2013), velocities higher
than 15 cm/yr inhibit PSI processing of C-band SAR imagery, and
are not easily detected with this technique. In this sense the upper
limit of the class E also accounts for the velocity distribution of
the PS datasets. The scale reported in Table 1 is tuned to intercept
the velocity range which is populated by the majority of the PS
measures of the data stack.

2.4. Velocity distribution index – Ivd

The quantity of unstable PS and their spatial relationship with
stable PS in a control area does not modify the value of Icc. To
numerically express the distribution of deformation estimates, we
introduce the Velocity distribution index (Ivd) to be calculated for
each control area as follows (Fig. 1b, c and Fig. 3):

Ivd = (g/G) × 100

where“g” is the maximum value between (Vmax–Vmean) and (Vmean–
Vmin) “G” is given by (Vmax –Vmin), with “Vmax”, “Vmin” and “Vmean”
as the maximum, minimum and arithmetic mean PS LOS velocity

valuein the relative control area, respectively.

Ivd expresses the symmetry degree of all PS velocity values in a
control area with respect to Vmean and can be determined if at least
3 PS are available within a control area.

value of 76%, which reflects an inhomogeneous velocity distribution, with isolated
AFIR commercial area, periphery of Florence, Italy, show a uniform displacement
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Fig. 5. Distribution of Icc,o indexes over a sector of Florence calculated using ENVISAT ascending data. (For interpretation of the references to colour in the text, the reader is
referred to the web  version of this article.)

Fig. 6. (a) Aerial view of the monumental building of Santa Marta, Florence, Italy (©BingMaps), and corresponding (b) lithological, (c) hydrogeological hazard and (d) seismic
effects maps (modified from Florence City Council, 2010).



86 F. Pratesi et al. / International Journal of Applied Earth Observation and Geoinformation 40 (2015) 81–90

F scend
I nd the

(
t
(

i
i
d
m
t
i
o

c

ig. 7. PS spatial distribution of (a) ERS-1/2 descending 1992–2000, (b) ENVISAT de
taly. Labels c.1, c.2 and c.3 in picture (c) mark PS that are discussed in Section 3.4 a

The minimum value that Ivd can take is 50% that happens when
Vmax–Vmean) equals (Vmean–Vmin), meaning that the PS velocity dis-
ribution is uniform across all the PS falling within the control area
Fig. 4b).

Conversely, higher values of Ivd are obtained when the PS veloc-
ty interval between Vmean and Vmax is different than the PS velocity
nterval between Vmean and Vmin, meaning that the PS velocity
istribution is not uniform. The latter is the case of a localized defor-
ation usually marked by few single moving PSs in contrast with

he majority of stable PSs in the control area. Ivd helps to depict this
nhomogeneity especially when it is not obvious from the overview
f PS spatial distribution (Fig. 4a).
It is recommended that the choice of the Ivd threshold to dis-
riminate concentrated deformation from uniform displacement
ing 2003–2010, and (c) ENVISAT ascending 2003–2010, over Santa Marta, Florence,
 time series of which are reported in Fig. 9.

patterns  is based on the spatial distribution of the Ivd values
obtained across the analysed dataset.

Following this approach, the Ivd threshold used in Florence
equals 60%. If Ivd> 60%, the deformation pattern can be considered
diffused and a “d” subscript is put next to the class indicator of Icc.
If Ivd <60%, the detected deformation is considered isolated and “i”
subscript is used.

The  analysis of PS displacement trend during the last moni-
toring period, although not explanatory of the present damage,
enables the assessment of the evolution state of the ongoing pro-
cess and forecast of future activities. Icc is then completed adding
“+” superscript when displacements estimated with PSI processing

technique accelerate, whereas “−” superscript in case of decelera-
tion.
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Table  2
Main  characteristics of the PSI datasets used to rate hazard of engineering and historical structures in Florence, Italy. PSInSAR processing technique is according to Ferretti
et  al. (2001).

Data stack �[cm] Orbit Repeat cycle [days] Nominal ground resolution [m]  Time interval No. SAR images Processing technique
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for the surrounding area. Furthermore, the image reported in the
Evaluation form reveals that two PS (i.e. “c.2” and “c.3” in Fig. 7c)
are located on the south-west edge of the building not far from the
area mapped as prone to instability.

Table 3
Ici, Icc,o and Icc,a for Santa Marta, Florence, Italy.
ERS-1/2 5.66 Descending 35 25 

ENVISAT  ASAR 5.63 Ascending 35 30 

ENVISAT  ASAR 5.63 Descending 35 30 

. Results and discussion

We  applied Ic, Icc and Ivd indexes to classify PS from ERS-1/2 and
NVISAT ascending and descending time series over Florence, Italy
Table 2), including the historical city centre, areas of recent urban-
zation and the hilly surroundings. We  purposely implemented a

ulti-sensor approach, accounting for the variability of PS char-
cteristics. The Florentine test site was selected for its intrinsic
ariability in terms of characteristics and density of civil structures,
orphology and geological properties of the ground.

To  have samples of statistical significance, we  calculated the
lassification indexes over different categories of buildings, includ-
ng: gates and arches (27.3% of the total number in Florence),
tadiums (33.3%), convents and churches (29.4%), fortifications
50%) and 20th century architecture (9.5%). With regard to ENVISAT
scending PS coverage, for instance, Ici spatial distribution high-
ights that more than 20% of the surveyed buildings is scored ‘A’,

hile only 12.8% have partial or poor PS coverage (i.e. from ‘D’ to
E’). Ici is therefore our measurement of the degree of confidence to
ely on the PS falling within the control areas.

Fig. 5 shows the spatial distribution of the Icc,o indexes over the
istoric centre of Florence, as per classification of ENVISAT ascend-

ng PS. Differential condition across the urban area is apparent,
nd the colour-coding rating system clearly highlights at a small-
cale the buildings that require priority attention based on the PS
roperties.

The benefits that this type classification brings to engineering
urveying at single building-scale are discussed with regard to the
x-Episcopal seminary of Santa Marta (see red square in Fig. 5).
his building hosting the Faculty of Engineering of the University
f Florence serves here as an exemplar to demonstrate the added
alues and mutual complementary nature of the three classification
ndexes.

.1. Background data

The  monumental building is located in via de’ Cappuccini, at
he top of a hill at the northern border of the alluvial plain of the
ity of Florence (Fig. 5a). In 1980 the University of Florence con-
erted the existing Episcopal seminary to host the faculty offices,
ibrary and lecture rooms; additional parts were built in the follow-
ng years, such as the south-west wing hosting the canteen (Fig. 6a).
part from the latter, no other significant structural renovation or
emolition are recorded.

Actually  the building is made of masonry structures, with a C-
hape plant (Fig. 6), constant through all the four floors, one of
hich is partially underground.

The  bedrock underneath the building is made of gravels with a
ne part of 5%–20%, locally reaching 20–50%. This layer lies upon
lluvial deposits of silt and clays dating to late Pleistocene and early
liocene, the border of which is only 40 m distant to the south-west
dge of Santa Marta and 6 m to the south–west edge of the canteen
Florence City Council, 2010) (Fig. 6b).
In correspondence with this discontinuity, the hydrogeological
isk map  provided by the Florentine City Council marks an area of
uperficial degradation due to lack of maintenance of drainage sys-
ems (Fig. 6c). This area corresponds with the west sector of a more
24/04/1992 27/11/2000 79 PSInSAR
16/10/2003 27/05/2010 35 PSInSAR
10/02/2003 28/06/2010 35 PSInSAR

extended  paleo-landslide of colluvial silty deposits that is classified
as stable. The same area is indicated on the Council map of seis-
mic effects as prone to instability in case of earthquakes (Fig. 6d).
However, the official landslide inventories do not report active or
dormant landslides that already affect the building or its annexes
directly.

3.2. Completeness of information

Starting  from the older dataset, Ici of the ERS-1/2 descending PS
is rated B which is consistent with the fact that all portions of the
building are covered by PS, although their density is quite low, i.e.
10−3 PS/m2 (Fig. 7a).

Conversely, the ENVISAT descending dataset covers only the
north-eastern half of Santa Marta (Fig. 7b), thereby resulting in
incomplete information for a considerable portion of the building,
i.e. in this case the portion closer to the area mapped as prone to
instability and where structures of different periods and structural
properties intermingle. The major consequence is that only a par-
tial condition assessment is doable, with low degree of certainty
and confidence. This concept is clearly summarized by C class for
Ici that reflects Do and Da values 10−3 PS/m2 and 8 × 10−4 PS/m2of
PS densities.

On a comparative scale, the best Ici equal to As is obtained
for the ENVISAT ascending dataset (Fig. 7c and Table 3), which
provides higher density of PS covering the whole building, i.e.
2 × 10−3 PS/m2. A good density of PS also eases the identification
of suspected shifts, in this case inferred from the PS misalignment
along the south–west edge of the building.

3.3. Conservation criticalities

Both  Icc,o and Icc,a for the ERS-1/2 descending data are rated A
(see Table 3). This is consistent with the general stability revealed
by all PS for the 1992–2000 period, as well as with the absence of
ground instability phenomena mapped on the building area in the
official mapping documents.

Differently,  with regard to the ENVISAT ascending dataset, rates
for Icc,o and Icc,a are Bi and Ci, respectively. The latter, in particular,
reflects the effect due to four PS the LOS velocity value of which
exceeds the stability threshold of 1.5 mm/yr (Fig. 7c, PS labelled as
c.1, c.2 and c.3). These points are localized in three different sectors
of the building, while the remaining parts PS do not indicate move-
ment. The presence of a localised deformation pattern is effectively
pointed out by Ivd values of 70.74% for the object area and 66 %
Data stack Ici Icc,o Icc,a

ERS desc B Ai Ad

ENVISAT desc C Ai Ad

ENVISAT asc As Bi Ci



88 F. Pratesi et al. / International Journal of Applied Earth Observation and Geoinformation 40 (2015) 81–90

F and (c
O ted re
s eader

3

v
f
b
t
a
o
c
e

ig. 8. (a) Contemporary sculpture installation, (b) faç ade of the canteen annexe 

ctober 2014) for which the ENVISAT ascending PS 2003–2009 show instability. Dot
tructures. (For interpretation of the references to colour in this figure legend, the r

.4. Ground-truth validation

Based  on the evidence collected during an on-site validation sur-
ey, the ENVISAT ascending PS labelled as c.2 (Fig. 7c) were found to
all in correspondence to a portion of the south-west faç ade of the
uilding that is severely affected by vertical fractures. One of the lat-
er in particular runs through the 2nd floor level (Fig. 8c). Although

ll the faç ades of the complex reveal lack of maintenance, this is the
nly portion where fissures deepen into the fabric. Therefore, we
annot exclude that the former connections between the structural
lements were locally damaged. On the other side, it is certain that
) the western faç ade of the main building of Santa Marta (photographs taken in
d boxes in (b) and (c) mark major fissures running across the masonry and concrete

 is referred to the web  version of this article.)

movements  have occurred with a deformation trend away from
the satellite (Vmean of −2.9 mm/yr) from 2003 to 2010, as recorded
in the PS time series (Fig. 8b). It is important to observe that the
approach of counting PS in the buffer area prevented the loss of this
PS that, otherwise, would have been not taken into proper account
(cf. Section 2.2).

The  PS labelled c.3 is spatially attributed to the north-

west side of the canteen wing (Fig. 7c). Here a sub-vertical
fracture is visible (Fig. 8b). Although the PS Vmean equals to
−1.6 mm/yr, the abrupt discontinuity observed in the time
series of LOS displacements in the course of year 2008 is not
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ig. 9. LOS displacement time series for the PS labelled c.1, c.2 and c.3 in Fig. 7c identifi
egative  values stand for movements away from the sensor, positive values stand f
nd  −1.6 mm/yr, respectively.

egligible (Fig. 9 c.3). We  cannot exclude that this is a sign of a
ailure occurred at that time.

The two PS labelled as c.1 (Fig. 7c) fall over an isolated 4 m-high
teel monument (Fig. 8a), that was installed at the end of October
993. The presence of a high reflecting element in a vegetated
ontext generates an unrelated PS that provides measurements of
bjects without physical interaction with the analysed structure.

n fact, displacements measured for these PS are likely attributed
o a settling of the foundation ground of the monument, rather
han to a generalised instability of the neighbour area that is not
onfirmed by other moving PS. This interpretation is also supported
y the clear seasonality observed within the LOS displacement
rend away from the satellite throughout the time series (Fig. 9 c.1),
hich is compatible with natural response of the soil surrounding

he monument. This case also well clarifies the importance of keep-
ng separate Icc,o and Icc,a. Once the PS is found to be not pertinent
o the building, Icc,a value should be updated by removing from the
ount all the unrelated PS from the surrounding area. In such cir-
umstance, the updated value of Icc,a is still rated Ci as the maximum
S velocity value in the surrounding area belongs to the PS labelled
s c.2 while the Ivd value increases from 66% to 75.5%.

.  Conclusions

The hazard rating procedure proposed in this paper helps to
ake the best out of the density, spatial distribution and veloc-

ty information offered by PS datasets, by converting them into an
utput that surveyors and end-users can be familiar with and eas-

ly understand, i.e. colour-coded rates. In doing so, the procedure
ccounts for the advantages, but also the shortcomings typically
ssociated with the PS coverages. In this sense, the introduction
f Ici index allows us to numerically account for the actual cover-
ge, and therefore unequivocally states if the performed condition
ssessment is sound and relevant.

The demonstration over the urban heritage of Florence proves
he suitability of the colour-coding rating system. Surveyors can
dentify clearly, even at small scale, the buildings that require atten-
ion and further investigation.
The  methodological flow to calculate the classification indexes
as purposely trained on three PS dataset from PSInSAR process-

ng of medium-resolution C-band imagery, i.e. well established SAR
ime series and InSAR processing techniques that still are among
er Santa Marta, positioned over the building portions and sculpture reported in Fig. 8.
vements towards the sensor. Average LOS velocity equals −2.4 mm/yr,−2.9 mm/yr

the  longest SAR archives currently available for real-world applica-
tions and a precious source of historical information for scientists
and practitioners. The copious number of SAR images constituting
the time series is an essential requisite to rely on the LOS velocity
values and displacement trends observed in the time series.

The  above properties justify the use of this satellite data,
although it is arguable that the spatial resolution of archive imagery
is not ideal anymore in light of the developing catalogues of
high resolution SAR imagery acquired by the second generation
spaceborne radar sensors (e.g. those onboard TerraSAR-X and
COSMO-SkyMed operating in X-band, and the recently launched
Sentinel-1A imaging in the C-band).

In this changing scenario of satellite missions, the added value
of this procedure lies on its flexibility to adapt to the PS dataset, the
properties of the satellite and the site-specific performance over a
given study area. Flexibility practically means that the score and
class rating system is open to be adjusted to account for: (i) higher
PS density as expected outputs from PSI processing of high reso-
lution SAR imagery by means of processing algorithms aiming to
increase the numbers of measurement points; (ii) different ranges
of LOS velocities.

Further advance of this research is the ongoing testing of the
procedure on higher resolution data, with shorter repeat cycle, pro-
cessed with different algorithms. The demonstration over Santa
Marta in Florence, on the other side, is a proof of concept of the
current exploitation of this procedure for engineering surveying to
assess safety of public fabric and buildings.
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