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Narrative paper
Ventricular–vascular coupling in hypertension:
methodological considerations and clinical implications
Pier Sergio Sabaa, Matteo Cameli b, Giuseppina Casalnuovoa,
Marco M. Cicconec, Antonello Ganaua, Maria Maiellod, Pietro A. Modestie,
Maria L. Muiesanf, Salvatore Novog, Pasquale Palmierod, Giuseppe D. Sannaa,
Pietro Scicchitanoc, Roberto Pedrinellih, On behalf of Gruppo di Studio
Ipertensione, Prevenzione e Riabilitazione, Società Italiana di Cardiologia
The present review is addressed to analyse the complex

interplay between left ventricle and arterial tree in

hypertension. The different methodological approaches

to the analysis of ventricular–vascular coupling in the

time and frequency domain are discussed. Moreover, the

role of hypertension-related changes of arterial structure

and function (stiffness and wave reflection) on arterial load

and how ventricular–vascular coupling modulates the

process of left ventricular adaptation to hypertension are

analysed.

The different interplay between vascular bed and left

ventricle emerges as the pathophysiological basis for the

development of the multiple patterns of ventricular

structural adaptation in hypertension and provides a

pathway for the interpretation of systolic and diastolic

functional abnormalities observed in hypertensive patients.

Targeting the therapeutic approach to improve ventricular–

vascular coupling may have relevant impact on reversing
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left ventricular hypertrophy and improving systolic and

diastolic dysfunction.
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Introduction
The heart is anatomically and functionally connected

with the vascular system. Structural and functional

changes of the arterial tree, changing left ventricular

afterload, may modulate left ventricular function and

induce adaptive structural modifications. Systolic bra-

chial blood pressure, routinely assessed by sphygmoma-

nometry, is commonly considered to be a good estimate

of aortic pressure and thus a surrogate of the load imposed

on the left ventricle. This simple assessment, however,

provides only a rough estimate of the real aortic pressure,

because of transmission delays and wave reflection.

Moreover, left ventricular load is a complex entity that

comprises both steady and pulsatile elements, such as

peripheral resistance, compliance and pressure wave

reflection, and cannot be reduced to blood pressure.

Hypertension is characterized by high blood pressure

levels. It, however, induces structural and functional

modifications of the arterial tree (atherosclerosis, stiffen-

ing and enhanced reflection of the pressure wave) that

may play a role in increasing arterial load and inducing
adaptive structural changes of the left ventricle above and

beyond blood pressure itself. According to this view, the

different interplay between vascular bed and left

ventricle represents the pathophysiological basis for

the development of the multiple patterns of ventricular

adaptation in hypertension1 and may have important

implications both in the pathogenesis of cardiovascular

diseases and in modulating the response to treatment.

The present review is addressed to analyse the com-

ponents of the arterial load acting on the left ventricle,

the methodological aspects of their assessment and their

impact on ventricular structure and function in the pre-

sence of hypertension. Finally, therapeutic implications

of ventricular–vascular coupling will be discussed.

Assessment of ventricular–arterial coupling
The flow–pressure relationship in the time domain
From a functional point of view, the system represented

by the left ventricle and arterial vessels can be model-

led as a pressure generator located at the origin of a

vessel network, which represents the external load.2 The
uthorized reproduction of this article is prohibited.
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The left ventricular and arterial pressure–flow relationship in steady-
state conditions. Keeping constant the contractile force, the
relationship between cardiac output and ejection pressure (load) is
inverse and the intercept on the pressure axis represents the maximum
pressure level that can be generated during an isometric contraction.
Conversely, the relationship between cardiac output and arterial
pressure is direct and inversely proportional to total peripheral
resistance. In coupling conditions and ventricular–arterial
haemodynamic equilibrium, the flow rate and the pressure of ejection
are determined by the intersection of the two curves. Modified from
references3 and4.
interplay between cardiac and arterial functional charac-

teristics determines the amount of flow (i.e. flow rate)

that the cardiac pump can generate. Instantaneous pres-

sure/flow relationship can be derived using appropriate

models of the ventricular–arterial system.

In steady conditions and in the absence of wave reflec-

tions, each element (cardiac pump and external load) can

be individually represented by the relationship between

the average flow passing through it (the cardiac output)

and the average pressure during flow (Fig. 1). Keeping

constant the contractile force, the lower is the load

(estimated by ejection pressure), the higher is the cardiac

output. The intercept of the relationship between cardiac

output and ejection pressure on the pressure axis

represents the highest level of pressure that can be

generated by the cardiac pump during an isometric con-

traction (heart as ‘pressure generator’), whereas the inter-

cept of the same relationship with the other axis

represents the maximum cardiac output achievable in

the absence of significant afterload (heart as ‘flow gen-

erator’). On the contrary, the flow entering the arterial

system proportionally increases blood pressure, and the

slope of this relationship is inversely related to total

peripheral resistance. When the cardiac pump and the

external load are coupled, their individual mechanical

behaviour is in equilibrium at a single point, where the

ability of the heart pump to generate flow at a certain

pressure exactly balances the pressure required to push

the same flow against the arterial load, represented by

total peripheral resistance (Fig. 1).
pyright © Italian Federation of Cardiology. Unau
Because the cardiac pump acts intermittently, however,

the relation ‘mean flow/mean pressure’ poorly represents

the pulsatile nature of arterial load. It is well known, for

example, that the reduction of arterial compliance is

associated with increased pulse pressure and that it can

lead to a reduction in cardiac output, even in the absence

of changes in peripheral resistance.5 In this regard, it is

noteworthy that, just like mean pressure does not accu-

rately represent the behaviour of the arterial tree, it is a

poor predictor of cardiovascular events when compared

with pulse pressure.6,7

The pulsatility of flow is taken into account by the so-

called Windkessel model. The basic principle of this

model derives from the compliance–resistance combi-

nation used in former fire extinguishers to guarantee

continuous water flow in pipes. This model has been

refined in recent years including up to four elements in

order to better characterize the arterial tree. At present, the

three-element Windkessel model, which includes the

aortic characteristic impedance (Zc)
8 (see Table 1), is

the most widely applied. Although this model allows an

accurate representation of the pulsatile pressure–flow

relationship in the arterial system, it does not consider

wave propagation and reflection that occur at each cardiac

cycle and is less accurate in the presence of enhanced wave

reflections, such as in hypertension and vascular disease.8

Pressure wave propagation and reflection in the
arterial tree
During each cardiac cycle, the flow ejected in the aorta

generates a pressure waveform that propagates along the

arterial tree with a finite velocity and is reflected at points

of abrupt change in impedance.9 Although there are

multiple reflection sites in the upper and lower parts of

the body, the reflected waves merge together, appearing as

a main reflected wave when they reach the heart.10 Back-

ward secondary waves, originating from peripheral reflec-

tion sites or generated by re-reflection phenomena, are

functionally negligible because they occur later and have

significantly lower amplitude than the main component.

When the reflected wave is optimally timed, as usually

occurs in young healthy individuals, the reflected com-

ponent meets the forward wave in ascending aorta during

the early phase of diastole, contributing to coronary per-

fusion (Fig. 2a). Conversely, when the arterial tree

becomes stiffer (as occurs with normal ageing11 or in

hypertension),11,12 the pulse wave velocity increases and

the merging of forward and backward components is timed

predominantly in systole. This elevates peak systolic

pressure and reduces early diastolic pressure in ascending

aorta (Fig. 2b).13 The ‘augmentation pressure’ is the

absolute increase in systolic pressure owing to the reflected

wave, whereas the ‘augmentation index’ expresses this

increment as a percentage of pulse pressure. Recent obser-

vations14,15 suggest that aortic stiffening and increased

pulse wave velocity may act differently on augmentation
thorized reproduction of this article is prohibited.
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Table 1 Dictionary of indices of arterial function cited in text

Index Definition and units

Characteristic impedance (Zc) Relationship between pressure change and flow velocity in the absence of wave reflections
DP/DVel [(mmHg/cm)/s]

Compliance Absolute diameter (or area) change for a given pressure step at fixed vessel length
DD/DP (cm/mmHg) or (cm2/mmHg)

Effective arterial elastance (Ea) Lumped parameter representing the steady and pulsatile components of the arterial load
Pes/SV (mmHg/ml)

Input impedance (Zi) The ‘summed’ mechanical load imposed by all vessels downstream at a particular point
Time-varying pressure/flow relationship in the frequency domain, expressed

as modulus [(dynes s)/cm5] and phase (8) for each harmonic
Peterson’s elastic modulus (Ep) The pressure step required for (theoretical) 100% stretch

from resting diameter at a fixed vessel length
(DP�D)/DD (mmHg)

Pulse wave velocity (PWV) Speed of travel of the pulse wave along an arterial segment
Distance/Dt (m/s)

PWV is related to Young’s elastic modulus by Moens–Korteweg equation (PWV ¼
ffiffiffiffiffiffi
Eh
2rr

q
)

and to characteristic impedance by Waterhammer equation (PWV ¼ Zc
r )

Stiffness index (b0) Ratio of logarithm (systolic/diastolic pressures) to relative change in diameter
ln(Ps/Pd)/[(Ds�Dd)/Dd] (nondimensional)

Total arterial compliance Relationship between pressure fall and volume fall in the arterial tree during the
exponential component of diastolic pressure decay

DV/DP (cm3/mmHg)
Total peripheral resistance (TPR) Resistance to flow that must be overcome to push blood through the systemic circulation

MAP�80/CO [(dynes s)/cm5]
Young’s elastic modulus (E) Elastic modulus per unit area; the pressure step per square centimetre required

for (theoretical) 100% stretch from resting length
(DP�D)/(DDh) (mmHg/cm)

r, blood density; CO, cardiac output; D, diameter; h, wall thickness; MAP, mean arterial pressure; P, pressure; Pes, end-systolic pressure; r, vessel radius; SV, stroke volume;
t, time; V, volume; Vel, velocity.
pressure in younger and older populations. Data from the

Anglo Cardiff Collaborative Trial showed in a large popu-

lation of healthy individuals that in younger individuals,

augmentation pressure is, in fact, more related to the

magnitude of wave reflection rather than pulse wave velo-

city, whereas in older individuals augmentation pressure is

mainly driven by the earlier return of reflected waves.14

Invasive16 and noninvasive17,18 studies have demonstrated

that pressure wave reflection, together with the nonuni-

form elasticity of the arterial tree,12 is responsible for the

progressive increase in systolic and pulse pressure

observed moving from central to peripheral districts of

the arterial tree. This phenomenon, described by Hamil-

ton and Dow,19 is known as ‘pressure wave amplification’

and is due to the early fusion of the reflected wave with the

systolic component of the forward wave in points close to

the sites of wave reflection. The clinical consequence of

pressure wave amplification is that brachial pressure may

not be representative of the pressure acting in ascending

aorta, especially in young people. Data from the Anglo-

Cardiff Collaborative Trial20 indicate that pressure wave

amplification, expressed as the ratio of brachial/aortic pulse

pressure, varies from 1.7 in people less than 20 years of age

to 1.2 in those more than 80 years of age. When expressed

as absolute change (brachial� aortic systolic augmentation

pressure), the amplification varies from 20 to 7 mmHg,

respectively. The increase in central systolic pressure with

ageing is due to the concomitant increase of aortic stiffness

and pulse wave propagation speed, resulting in reduction

of central–peripheral amplification.14,21 Therefore, the
opyright © Italian Federation of Cardiology. Una
assessment of central blood pressure estimates more accu-

rately the load actually acting on the left ventricle22,23 and

its effects on left ventricular structure and function.24,25

The concept of forward and backward waves travelling

along the arterial tree, although widely accepted, has

been recently challenged by Tyberg and colleagues.26,27

Using a modified Windkessel model (the so-called ‘reser-

voir-wave approach’),28,29 the authors showed that aortic

pressure solely depends on the combination of the reser-

voir function of the proximal aorta and the waveform of

aortic flow, which, in turn, is related to the way the left

ventricle contracts and relaxes.26 Using this approach in a

canine model, they found that ‘backward pressure waves’

paradoxically seemed to be propagated in the forward

direction30 and thus the reality of wave propagation

phenomena has been questioned.26 These results have

been heavily debated by Westerhof and Westerhof,27,31

because they are mostly based on a model that incorrectly

considers the arterial tree as a single tube. Till now,

published data supporting the concept of wave propa-

gation forward and backward in the arterial tree seem

overwhelming in comparison to those that oppose this

concept. Future research will clarify whether we should

look at propagation phenomena in the arterial tree in a

different way.

The flow–pressure relationship in the frequency
domain: the aortic input impedance
The flow–pressure relationship and the ventricular–

vascular coupling can be assessed in the frequency
uthorized reproduction of this article is prohibited.
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Fig. 2
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Forward and backward waves and morphology of pressure waveforms.
The pressure wave generated by left ventricular contraction (red,
interrupted line) travels towards the periphery of the arterial tree, where
it is reflected. The backward wave generated by reflection (blue, dotted
line) merges with forward wave, modifying the morphology of the
measured pressure waveform (orange, continuous line). In central aorta,
when pulse wave velocity is normal, reflected wave merges with
forward wave in diastole, increasing early diastolic pressure and
myocardial perfusion (a). When pulse wave velocity increases (e.g. in
hypertension), the reflected wave merges with the forward wave in late
systole. This can be seen as an inflection in the ascending branch of the
measured waveform (arrow) and an increase in systolic pressure (b).
Augmentation pressure expresses the absolute increase in pressure,
whereas augmentation index expresses this increase relative to
measured pulse pressure.
domain by aortic input impedance. In general, vascular

impedance expresses the relationship between pressure

and flow in a given vessel. It is calculated in the frequency

domain from the ratio between the corresponding har-

monic components of pressure and flow waves, derived

by Fourier analysis (Fig. 3). Input impedance is a com-

plex entity and is represented graphically by ‘modulus’

(amplitude of pressure harmonics divided by amplitude

of corresponding flow components) and ‘phase’ (phase

shift between flow and pressure harmonic components),

as a function of the frequency of the harmonics (Fig. 4).

Aortic input impedance is considered to be the most

accurate estimate of left ventricular afterload, because

it includes both static and pulsatile components of arterial

load.12

The input impedance profile is similar in all major

arteries. Modulus is relatively high at zero frequency

(resistive component, calculated by average pressure

and average flow), and then decreases with increasing

frequency to a minimum, after which it usually increases

up to a local maximum before falling again (Fig. 4). Phase

is initially negative, then becomes positive approximately

at the minimum of the modulus, and then again becomes

negative. The frequency at which modulus reaches its

minimum depends on the distance of the arterial ends: it

is greater in the femoral artery than in abdominal aorta

and is minimal in the ascending aorta. The average
pyright © Italian Federation of Cardiology. Unau
modulus at high frequencies corresponds to aortic charac-

teristic impedance33,34 and thus reflects aortic stiffness.

Oscillations in impedance moduli around characteristic

impedance are related to wave reflections. Changes in

vascular properties are reflected by patterns of impe-

dance. Vasodilation, which is accompanied by decrease

of vascular resistance, reduces the resistive component of

impedance, determines the disappearing of the lesser

peak of the modulus and attenuates the fluctuations of

phase.35,36 Conversely, vasoconstriction is accompanied

by the increase of resistive component of impedance

without further noteworthy modification of modulus

and phase components.35,36

Aortic input impedance is a well established index of left

ventricular afterload in both animals37,38 and humans,39,40

and it is used to assess ventricular–arterial coupling.22,41

The complexity of its calculation and interpretation and

its inherent invasiveness, however, greatly limits its use

in clinical practice. The limitation due to invasiveness

has been overcome using Doppler flowmetry (for esti-

mating flow in the ascending aorta) and carotid arterial

tonometry (for estimating central aortic pressure).42 From

these noninvasive parameters, modulus and phase of

aortic input impedance can be calculated. Kelly and

Fitchett42 demonstrated good correspondence between

impedance values obtained using this method and those

obtained invasively.

The use of approximated triangular flow waveform for

impedance and wave reflection calculation has been pro-

posed by Westerhof et al.43 This approach further simpli-

fies the assessment of arterial function allowing an easier

application in clinical research. Recently, Qasem and

Avolio44 applied this approach to derive a model for pre-

dicting pulse wave velocity only from carotid pulse wave

decomposition in a group of 46 patients. Application of this

model in a separate group of 44 patients provided good

agreement.44 Data from the large population (>2500

patients, 35–55 years old) of the ASKLEPIOS Study,45

however, did not confirm the accuracy of this approach

when compared with Doppler aortic flowmetry. Moreover,

derived measures of wave reflection showed only modest

correlation with reference values.45 According to these

data, the simplified approach for flow wave reconstruction

(the ‘triangular approximation’) could not be recom-

mended for assessing pressure/flow relationship.

Arterial and ventricular elastance
A relatively simple model for the analysis of ventricular–

arterial coupling was proposed by Sunagawa et al.46 in

the early 1980s. In this model, the left ventricle is

represented as an elastic chamber that during cardiac

cycle increases its stiffness to a maximum, reached at end

systole.47 At a constant inotropic state, the end-systolic

points of left ventricular pressure–volume loops recorded

during acute preload or afterload changes describe the

end-systolic pressure–volume relationship. Under these
thorized reproduction of this article is prohibited.
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Fig. 3
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conditions, left ventricular end-systolic elastance (Elv or

Ees) can be thus quantified by the slope of the straight

line that connects the end-systolic points of the pressure–

volume relationship. Elv is widely regarded as a load-

independent index of left ventricular contractility, but it

is influenced by the geometric and biochemical proper-

ties that underlie left ventricular stiffness. Greater left

ventricular mass, smaller internal dimensions and con-

centric geometry48 increase left ventricular elastance and

should be taken into account when comparing patients

with different characteristics.49,50 In order to obtain body

size–independent and geometry-independent estimates

of Elv, several indexations have been proposed, but one

universally accepted is still lacking. Hayward and col-

leagues49 showed only weak correlation between body

surface area and Elv while left ventricular internal dimen-

sions better normalized this parameter. Discussion on

strengths and weaknesses of the different approaches for
opyright © Italian Federation of Cardiology. Una
normalization of Elv is beyond the scope of this review,

and the reader is addressed to more specific reviews.50,51

The arterial load can be similarly assessed in terms of

effective arterial elastance (Ea) from the slope of the

relationship between end-systolic pressure and stroke

volume (SV).46,52 Ea is a lumped parameter that inte-

grates both static and pulsatile components of arterial

load and has been considered a reliable index of aortic

input impedance.53 The ability of Ea, however, to

represent the pulsatile component of arterial load has

been questioned,54 because it can be approximated by

the ratio between total peripheral resistance (R) and heart

cycle length (T).52 If this was true, Ea should have no

relationship with the pulsatile component of the arterial

load. Mathematical models55 and human studies56 have

however demonstrated that arterial stiffness and pulsatile

components of arterial load, although with a significantly
uthorized reproduction of this article is prohibited.
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Fig. 4
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lesser extent than total peripheral resistance, play a role

in determining the effective arterial elastance. Data

obtained from patients undergoing cardiac catheteriza-

tion showed that the sensitivity of Ea to a change in R/T
was 2.5 times higher than to a similar change in arterial

stiffness.56 The R/T ratio, however, significantly under-

estimated Ea, especially in hypertensive patients, and

this bias was most strongly related to arterial stiffness.

Accordingly, data from a clinical population of hyperten-

sive patients showed significant relationship between the

effective arterial elastance and arterial stiffness.57

The different interplay of SV, peripheral resistance, aortic

stiffness, wave reflections and heart rate on effective

arterial elastance may influence its values and give normal

Ea values also in the presence of high blood pressure.58 In

fact, while high total peripheral resistance and marked

aortic stiffening may elevate Ea,
58 in the presence of only

modest increments of peripheral resistance and/or

reduction of characteristic impedance due to hyperten-

sion-induced increase of aortic diameter,59 normal Ea

values could be observed also in hypertensive patients.58

Because SV is influenced by body size, arterial elastance is

also directly related to body size. In order to compare

absolute values of arterial elastance in heterogeneous
pyright © Italian Federation of Cardiology. Unau
populations, indexation of arterial elastance for body

surface area is needed.57

Using left ventricular and arterial elastances, ventricular–

vascular coupling can be easily analysed as the ratio of

these two entities52 and the SV for a given left ventricular

diastolic volume can be derived from the intersection of

the two relations60 (Fig. 5). Using this model, Sunagawa

et al.52 have shown that the left ventricle generates the

maximum external work for a given load when arterial

and ventricular elastances are equal. If we consider work

efficiency, however, expressed by the ratio between the

work generated by the heart during ejection and the

oxygen consumption,61,62 maximal left ventricular exter-

nal work does not correspond with maximal efficiency for

a given load condition.63 Accordingly, Sasayama and

Asanoi60 demonstrated that in normal individuals ven-

tricular elastance was nearly twice larger than arterial

elastance, warranting maximal mechanical efficiency.

Conversely, in patients with moderate heart failure, with

ejection fraction of 40–59%, ventricular elastance was

almost equal to arterial elastance, affording maximal

stroke work from a given end-diastolic volume. Finally,

in patients with severe heart failure, and ejection fraction

less than 40%, ventricular elastance was less than half of
thorized reproduction of this article is prohibited.
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Fig. 5
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arterial elastance, which resulted in increased potential

energy and decreased work efficiency (Fig. 6). Ventricu-

lar–arterial coupling is normally set towards higher left

ventricular work efficiency, whereas in patients with

moderate cardiac dysfunction ventricular and arterial

properties are matched in order to maximize stroke work

at the expense of work efficiency.60,64
opyright © Italian Federation of Cardiology. Una
Based on the studies of Sunagawa, this model has been

applied to assess ventricular–arterial coupling in normal

individuals,49,65,66 in the elderly22,67 and in pathological

conditions such as heart failure,64,68 valvular diseases,69,70

ischaemic heart disease71,72 and hypertension.58,73,74

Other studies were conducted also during pharmacolog-

ical interventions,75,76 in cardiac transplant77,78 and even
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Fig. 6
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Ventricular–vascular coupling in different conditions. In normal
individuals (upper panel), Elv exceeds Ea. In this condition, left
ventricular mechanical efficiency is optimal, because the resulting ratio
between stroke work (area described by left ventricular pressure–
volume loop) and potential energy (grey area) is maximized. In patients
with mild left ventricular systolic dysfunction (middle panel), Elv and Ea

tend to equalize, keeping maximized the stroke work at the expenses of
a lower mechanical efficiency. Patients with severe left ventricular
systolic dysfunction (lower panel) show a very compromised
mechanical efficiency. Acceptable stroke work and arterial pressure are
maintained keeping high left ventricular volumes, and Ea exceeds Elv.
in conditions of absence of gravity.79 Recent data suggest

also the application of this model for risk stratification of

patients undergoing stress echocardiography, because an

impaired Ea/Elv ratio reserve during stress was associated

with a higher prevalence of adverse outcomes at follow-

up.80

The main limitation of this approach is related to left

ventricular elastance calculation, which needs acute

modifications of left ventricular load.81 Considering

negligible the value of V0 (the theoretical ventricular

volume at zero pressure), ventricular elastance has been
pyright © Italian Federation of Cardiology. Unau
estimated from a single beat58,67,73,82,83 without consider-

ing V0. The assumption of V0 equal to ‘zero’ substantially

reduces the Elv and the ratio Ea/Elv to a function of the

ejection fraction [Ea/Elv¼ (1/LVEF)� 1]84 and could

lead to the wrong assumption that ejection fraction and

Elv are interchangeable in this analysis (LVEF¼ Left

Ventricular Ejection Fraction). Although ejection frac-

tion and Elv are directly related, this assumption is not

correct, because it is known that V0 can be considerably

different in patients with normal or depressed left ven-

tricular function.64,85 In an attempt to overcome these

limitations, new approaches have been proposed to cal-

culate from a single beat reliable estimates of both V0 and

end-systolic ventricular elastance.86,87

Wave intensity analysis
In the last years, a new approach, the ‘wave intensity

analysis’, has been proposed for the assessment of ven-

tricular–arterial coupling.88,89 Wave intensity considers

changes in pressure and velocity at any point in the

arterial tree as a result of interaction between forward-

travelling and backward-travelling wavelets carrying

energy from the heart and vasculature, respectively.

Wave intensity is defined as dP/dU, where dP and dU
represent instantaneous rates of change in pressure and

flow. As with aortic input impedance, wave intensity

analysis thus provides information on magnitude and

direction of propagating wavelets,90,91 with the advantage

of performing the analysis in the time domain. Another

potential advantage of wave intensity analysis is the

possibility offered by modern ultrasound machines of

automatic calculation, combining the information

derived from Doppler and echo-tracking data.92 The

algorithm of automated calculation is based essentially

on the assumption that the observed changes of arterial

diameter are linearly correlated with changes of blood

pressure.93 It is well known, however, that changes of

arterial diameter follow pressure changes with a variable

hysteresis,94 and therefore this assumption could lead to

an unpredictable bias. Moreover, the clinical applicability

of this approach to the assessment of ventricular–arterial

coupling, although promising, still needs to be demon-

strated in wide populations.

Impact of arterial structure and function on
ventricular load in hypertension
Structural and functional changes of conductance
arteries and arterial load
Hypertension induces structural (atherosclerosis, myoin-

timal thickening) and functional (increased stiffness)

changes of the arterial tree that can change left ventri-

cular load. Atherosclerosis may modify pressure wave

propagation and reflection along the arterial tree. Animal

studies95,96 have shown an increase of pulse wave velocity

after induction of atherosclerosis with lipid-rich diet.

Large population studies, however, did not show a sig-

nificant impact of dyslipidemia on pulse wave velocity
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after correcting for age and blood pressure.97 Accordingly,

no significant correlation between cholesterol levels and

local (carotid Young’s elastic modulus and b stiffness

index)98 or systemic (total arterial compliance)99 indices

of arterial stiffness was found in populations with a high

prevalence of atherosclerosis. Conversely, central pulse

pressure and augmentation index have been found

increased in patients with hypercholesterolemia.100 Inter-

estingly, preliminary data obtained in a population of

familial hypercholesterolemic patients showed an earlier

return of reflected waves, even in the absence of

increased pulse wave velocity.101 This suggests that

atherosclerosis, inducing new proximal sites of wave

reflection, may shorten the effective length of the arterial

tree, contributing to the increase of load imposed on the

left ventricle. Additional studies, however, are needed in

order to assess the impact of atherosclerosis on wave

reflection and ventricular–vascular coupling in human

populations.

Approximately 30% of hypertensive patients develop

carotid intimal–medial thickening.102,103 The chronic cyc-

lic stress of the vessel wall due to high blood pressure

promotes muscular cell proliferation and increases wall

thickness104 with a mechanism tending to wall stress

normalization. Accordingly, in hypertensive patients, the

relative wall thickness of carotid arteries is increased,103

whereas Young’s elastic modulus, which normalizes the

stress/strain relation for wall thickness,105 is not signifi-

cantly different from normotensive patients.106

Several studies have shown that in hypertension arterial

stiffness is increased and age-dependent changes of the

vessel wall are more marked. This increase of ‘operative’

stiffness is related to both structural changes and passive

stretching of the arterial wall. When elastic fibres are

completely elongated, further increments in distending

pressure cause recruitment of inelastic collagen fibres.

Thus, in hypertensive patients the ‘operative’ stiffness

(measured by Peterson’s elastic modulus or pulse wave

velocity) is usually increased, whereas stiffness tends to

be normal when measured by Young’s elastic modulus

(which takes into account arterial wall thickening) or

stiffness index b0 (which takes into account the nonli-

nearity of arterial pressure–distension relationship).57,103

For this reason, increments of arterial stiffness should

be interpreted as secondary to structural changes of the

arterial wall only after considering distending pressure.

Reliable comparisons of stiffness parameters between

normotensive and hypertensive patients should also be

performed at reference pressure levels.107,108

It should be noticed that changes in aortic wall thickness,

stiffness and diameter due to hypertension may have

different impact on stiffness parameters. In fact, whereas

pulse wave velocity is relatively insensitive to diameter,

characteristic impedance is extremely sensitive to

diameter changes. Thus, if operating diameter decreases
opyright © Italian Federation of Cardiology. Una
by 10% with no change in wall properties, pulse wave

velocity will increase by 5%, whereas characteristic impe-

dance will increase by 25%.59 The complex interplay

between hypertension-induced aortic distension, which

reduces characteristic impedance, and passive stiffening

due to recruitment of collagen fibres could thus provide

contrasting results when aortic stiffness and ventricular

load are assessed with different parameters.109,110

Elasticity of large arteries is influenced by polymor-

phisms of genes coding for elastin,111 collagen,112,113

fibrillin114 and the renin–angiotensin system.115,116 All

these genetic variants can affect the structural and func-

tional characteristics of the arterial tree and have signifi-

cant impact on arterial load. For instance, Medley and

colleagues114 demonstrated that different fibrillin geno-

types are associated with modifications of aortic impe-

dance and different levels of central and peripheral blood

pressure. Similarly, Tarasov and colleagues113 found a

significant association between genetic variants of type 4

collagen and pulse wave velocity in the SardiNIA popu-

lation study.

Finally, hypertension-induced endothelial dysfunction

may play a role in determining arterial stiffness and

ventricular load. It is known that nitric oxide and

endothelin contribute to the regulation of vascular tone

and their action may influence arterial distensibility117

and pulse wave velocity.100,118 The relationship between

endothelial dysfunction and vascular stiffening, however,

may also be the opposite (i.e. vascular stiffening contri-

buting to endothelial dysfunction), as some studies119

have shown. The activation of renin–angiotensin–

aldosterone system (RAAS) in endothelial cells and vas-

cular smooth muscle reduces the production of nitric

oxide, leading to endothelial dysfunction, changed vas-

cular smooth muscle cell function and arterial stiffen-

ing.120 The sympathetic nervous system is also involved

in this process, because RAAS, through angiotensin II,

facilitates neuronal transmission within sympathetic

ganglia. This favours, in turn, norepinephrine release

by sympathetic nerve terminals, enhancing a-mediated

vasoconstriction in arterioles.121

Pressure wave reflection and arterial load
The pressure waveform recorded in central arteries

reflects both cardiac pump and arterial characteristics,

providing information on arterial load. The amplitude of

the reflected wave, evaluated in terms of augmentation

index, has been shown to be related to aortic impe-

dance.23 Therefore, the increase in amplitude of reflected

waves, or their earlier return to the central districts,

increases the load imposed on the left ventricle and

reveals suboptimal ventricular–arterial coupling. The

change of load conditions due to early wave reflection

increases myocardial oxygen consumption,122,123 whereas

the concomitant decrease in diastolic blood pressure

reduces coronary perfusion.124 This unfavourable
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combination impairs the blood supply/demand ratio of

the left ventricle and facilitates the onset of myocardial

ischaemia.125,126 The early return of reflected waves to

central arterial districts can therefore be figured as a

poorly timed intra-aortic balloon pump, which increases

left ventricular afterload and myocardial oxygen con-

sumption while simultaneously reducing diastolic pres-

sure in ascending aorta and, as a consequence, coronary

perfusion.13

The clinical impact of pressure wave reflection is not

limited to left ventricular load and coronary perfusion.

Pressure wave amplification may be influenced by hy-

pertension and hypertension-induced arterial damage.

Patients with major cardiovascular risk factors, such as

hypertension, diabetes, hypercholesterolaemia, smoking

or established cardiovascular disease, have lower pressure

wave amplification, independent of confounding factors

such as age, sex, height and heart rate.20 Aside from

physical changes in the arterial wall attributable to these

cardiovascular risk factors, an acute increase in mean

blood pressure may increase arterial stiffness and pres-

sure wave reflections, thus leading to acutely reduced

amplification.127 There is increasing evidence that anti-

hypertensive drugs may have different effects on central

and peripheral pressure by increasing or reducing pres-

sure wave amplification.127 The discrepancy between

brachial and central pulse pressure may account for the

finding that in untreated patients with essential hyper-

tension, regression of left ventricular mass index after 1

year of drug treatment was independently associated with

increase of pressure wave amplification, but not with

reduction in brachial pulse pressure.128

Impact of arterial load on left ventricular
structure and function in hypertension
Arterial load and left ventricular structure
Arterial load acts on left ventricle, modulating its adap-

tive responses. Ganau et al.1,129 have shown that the

adaptation of the left ventricle to arterial hypertension

is polymorphic and is in relation to the different charac-

teristics of the haemodynamic load. More specifically, left

ventricular concentric remodelling reflects a condition of

reduced volume load (denoted by decreased SV),130

whereas volume overload is typically associated with

the development of eccentric hypertrophy. Moreover,

whereas concentric geometric patterns are characterized

by high peripheral resistance, in eccentric hypertrophy

peripheral resistance is not significantly increased.1

The pulsatile load, measured in terms of amplitude of

pressure wave reflection (augmentation index or augmen-

tation pressure), is an additional stimulus to left ventri-

cular hypertrophy in humans, independent of blood

pressure and peripheral resistance.25,131 This finding

was also confirmed in experimental models in which

the arterial load was changed by aortic banding at two

different levels.132 In a group of rats with distal aortic
pyright © Italian Federation of Cardiology. Unau
banding, besides a marked elevation of left ventricular

pressure, a strong reflection component of aortic impe-

dance was observed and a significant increase in left

ventricular mass occurred. On the contrary, in a group

of animals with proximal aortic banding, the pressure

elevation was similar compared with the previous group

and a marked elevation of aortic characteristic impedance

was observed. In the latter group of animals, however, left

ventricular mass did not increase significantly.132 This

study confirms the role of reflected waves as an indepen-

dent stimulus to myocardial hypertrophy and suggests

that arterial stiffness per se has little influence on left

ventricular mass. Accordingly, Roman et al.133 observed in

hypertensive humans that higher arterial stiffness, as

assessed by carotid b0 stiffness index, was not associated

with increased left ventricular mass, whereas a significant

direct relationship between arterial stiffness and left

ventricular relative wall thickness was found. Moreover,

data from a small study suggest that the reduction of left

ventricular mass due to antihypertensive treatment is, at

least in part, related to modification in amplitude and

timing of reflected waves.134

Interestingly, hypertensive patients with elevated effec-

tive arterial elastance have about three-fold greater (30 vs.

9%) prevalence of concentric ventricular geometry than

hypertensive patients with arterial elastance in the nor-

mal range.58 Higher effective arterial elastance was

related with not only relatively smaller left ventricular

cavity size but also larger relative wall thickness in a small

sample of a general population.135 Further studies should

be performed to confirm these observations in wider

populations.

Impact of arterial load on left ventricular
function
Diastolic function
Change of arterial load may profoundly influence left

ventricular diastolic function. Experimental data demon-

strate the functional coupling between the left ventricle

and the arterial tree not only during the systolic phase but

also in diastole.136 This is probably mainly related to the

impact of reflected pressure waves on myocardial fibre

relaxation process and on coronary perfusion.137

Several observations in different populations reported the

dependence of ventricular diastolic function on timing and

amplitude of reflected pressure waves.137,138 Therefore,

the reduction of E-wave amplitude and the inversion of E/

A ratio, commonly observed at transmitral Doppler exam-

ination in hypertensive patients, may be an expression of

the physiological response of myocardial fibres to an abrupt

overload generated by the early return of reflected pressure

waves (load dependence of myocardial relaxation).139

When diastolic function is assessed by tissue Doppler,

E0 also results inversely associated with vascular load,

and this association is most pronounced for late systolic

load, which is mediated predominantly by systolic wave
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reflections.140 These data imply that the changed trans-

mitral flow pattern, commonly observed in the elderly and

in hypertensive patients (both characterized by increased

pressure wave reflection and late systolic pressure peak), is

not necessarily due to structural stiffening of myocardial

tissue, but can be a functional and thus potentially revers-

ible change. Similarly, the higher prevalence of diastolic

dysfunction and heart failure with preserved ejection

fraction (HFpEF) in women could be related to both

enhanced wave reflection141 and higher arterial stiff-

ness.142,143 Therefore, therapies designed to reduce late

systolic vascular loading and arterial stiffening may be

useful for treating patients with diastolic dysfunction

or failure.

Systolic function
The effects of pressure wave reflection on left ventricular

systolic function have been studied mainly on animal

models.24 These studies have shown that the increase of

the pulsatile load, due to the early return of reflected

waves, significantly reduces the efficiency of myocardial

contractility. Kelly et al.24 in a canine model in which

pulsatile load was increased using a Dacron bypass

showed that the change in load was associated with a

mild reduction of ejection fraction (from 50 to 43%),

whereas the cardiac energetic cost of delivering a given

SV, estimated by oxygen consumption, increased by

20–40%. These data were confirmed by Zannoli et al.,144

who showed that the early return of the reflected waves is

associated with reduced flow and external cardiac work.

The operational contractile function of the left ventricle,

assessed as midwall fractional shortening, is reduced in

hypertensive patients with left ventricular concentric

hypertrophy.145,146 Accordingly, in hypertensive patients

with elevated arterial elastance, among whom prevalence

of left ventricular hypertrophy and concentric geometry is

high, a significant reduction of midwall fractional short-

ening has been observed.58 Nevertheless, ventricular

pump function, assessed in terms of ejection fraction

and endocardial fractional shortening, was preserved.58

Similarly, Nitenberg et al.74 showed in a population of

hypertensive patients with left ventricular hypertrophy

that peak ventricular elastance was increased in absolute

terms but, after correction for left ventricular mass, it was

significantly depressed. These data suggest that, despite

the loss in contractility, the increase of left ventricular

mass and elastance, balancing the elevation of arterial

load, helps in keeping the Ea/Elv ratio within the normal

limits. Accordingly, Borlaug et al.48 showed that after

correction for end-systolic stress, left ventricular midwall

fractional shortening is normal or ever increased in

uncomplicated hypertensive patients, providing a normal

ventricular–vascular coupling also in the presence of

elevated afterload. Data from other populations also

confirm the observation of normal ventricular–arterial

coupling in hypertensive patients with a high prevalence
opyright © Italian Federation of Cardiology. Una
of left ventricular hypertrophy.68 According to this view,

concentric left ventricular hypertrophy may represent an

adaptive mechanism that increases Elv, keeping normal

ventricular–vascular coupling. A similar mechanism

occurs in the elderly, in whom, despite a marked

elevation of Ea, ventricular–vascular coupling tends to

be normal.84,147 In this case, the compensatory increase of

Elv is favoured by the age-induced increase of left ven-

tricular concentric geometry.147,148

A changed ventricular–vascular coupling and the conse-

quent combination of reduced contractility and diastolic

dysfunction may represent the pathophysiological basis

of the progression to HFpEF, which is highly prevalent

in hypertensive populations.149 Accordingly, although

Ea/Elv ratio could be still normal in these patients at

rest,48 an abnormal ventricular–vascular coupling can be

revealed during exercise.50,150

Overall, these data suggest that in conditions character-

ized by high arterial load (Ea) such as hypertension and

ageing, the development of left ventricular hypertrophy

and/or concentric geometry preserves left ventricular

pump function (ejection fraction) and, increasing left

ventricular elastance, optimizes ventricular–vascular

coupling (Ea/Elv ratio �1). This occurs at an energy cost

lower than nonhypertrophic hearts, in which the ejection

work is achieved by an increase in contractility, which is

energetically more expensive.74 This is detrimental,

however, in the long term, because it favours the devel-

opment of HFpEF.

Therapeutic implications
Whereas hypertension is associated with an increased risk

of cardiovascular events, blood pressure lowering reduces

the hypertension-attributable cardiovascular risk. This is

in part related to slowing target organ damage pro-

gression, but could also be related to improvement of

ventricular–vascular coupling. Blood pressure normaliza-

tion, independently of the drug used, reduces effective

arterial elastance and the coupling ratio, allowing better

left ventricular mechanical efficiency and lesser oxygen

consumption.151,152 The various classes of antihyperten-

sive agents, however, act differently on pressure wave

reflection and impedance modulus: after short-term

administration, whereas vasodilators, calcium channel

blockers and angiotensin-converting enzyme inhibitors

(ACEIs) improve all the haemodynamic changes,

b-blockade appears deleterious.153 Moreover, the bene-

ficial action of ACEIs compared with b-blockers lasts in

the long term.153 The beneficial effect of ACEIs seems to

be related to a reduction of wave reflections. This is

potentially attributable to chronic reverse remodelling of

the small arteries leading to reduced reflection coeffi-

cients.127 Class-specific effects of drugs on central hae-

modynamics (with special regard to b-blockers) may

explain, at least in part, the difference in mortality and

left ventricular structure that was observed in the
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CAFÉ,154 REASON155 and LIFE156 trials. Therefore,

b-blockers may be suboptimal as first-line therapy in

hypertension, especially in patients with increased pulse

pressure. It should also be considered that, compared

with b-blockers, vasodilating drugs exert a favourable

effect on pressure wave amplification. This means that

for the same reduction of brachial pulse pressure, they

reduce central pulse pressure more than b-blockers.127

Finally, reduction of arterial stiffness could be a thera-

peutic target in order to reduce pulsatile vascular load.

Diuretics and ACEIs have been shown to reduce arterial

wall thickening and improve arterial compliance through

reduction of operative stiffness.157 This mechanism,

however, could be reasonably extended to all antihyper-

tensive drugs. Newer pharmacological approaches have

been evaluated for the reduction of arterial stiffness158,159

and improvement of ventricular–vascular coupling but

are still not available in the clinical practice.

Conclusion
The assessment of ventricular–vascular coupling is

crucial for the understanding of several aspects of hyper-

tension, from ventricular adaptation to therapeutic

strategies. The old, reductive concept that hypertension

acts on left ventricle only as pressure overload has been

widely reconsidered. Moreover, the role of pulsatile

components of arterial load and wave reflection emerged

as critical in modulating the hypertension-induced left

ventricular structural and functional modifications. As a

consequence, therapeutic strategies for treating hyper-

tension need to consider the impact of drugs on the

different components of arterial load in order to favour

the regression of left ventricular hypertrophy and

improve systolic and diastolic function.

Although often questioned, the Ea/Elv model appears as

more suitable for the assessment of ventricular–vascular

coupling in wide study populations. Its applicability in the

daily clinical practice, however, is still far away. Possibly, in

the near future, the automated calculation of wave inten-

sity could provide reliable insights of the ventricular–

vascular interaction also in the daily clinical practice.
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